#include "components/ImageComponent.h" #include #include #include #include "Log.h" #include "Renderer.h" #include "ThemeData.h" #include "Util.h" Eigen::Vector2i ImageComponent::getTextureSize() const { if(mTexture) return mTexture->getSize(); else return Eigen::Vector2i(0, 0); } Eigen::Vector2f ImageComponent::getCenter() const { return Eigen::Vector2f(mPosition.x() - (getSize().x() * mOrigin.x()) + getSize().x() / 2, mPosition.y() - (getSize().y() * mOrigin.y()) + getSize().y() / 2); } ImageComponent::ImageComponent(Window* window, bool forceLoad, bool dynamic) : GuiComponent(window), mTargetIsMax(false), mFlipX(false), mFlipY(false), mOrigin(0.0, 0.0), mTargetSize(0, 0), mColorShift(0xFFFFFFFF), mForceLoad(forceLoad), mDynamic(dynamic), mFadeOpacity(0.0f), mFading(false) { updateColors(); } ImageComponent::~ImageComponent() { } void ImageComponent::resize() { if(!mTexture) return; const Eigen::Vector2f textureSize = mTexture->getSourceImageSize(); if(textureSize.isZero()) return; if(mTexture->isTiled()) { mSize = mTargetSize; }else{ // SVG rasterization is determined by height (see SVGResource.cpp), and rasterization is done in terms of pixels // if rounding is off enough in the rasterization step (for images with extreme aspect ratios), it can cause cutoff when the aspect ratio breaks // so, we always make sure the resultant height is an integer to make sure cutoff doesn't happen, and scale width from that // (you'll see this scattered throughout the function) // this is probably not the best way, so if you're familiar with this problem and have a better solution, please make a pull request! if(mTargetIsMax) { mSize = textureSize; Eigen::Vector2f resizeScale((mTargetSize.x() / mSize.x()), (mTargetSize.y() / mSize.y())); if(resizeScale.x() < resizeScale.y()) { mSize[0] *= resizeScale.x(); mSize[1] *= resizeScale.x(); }else{ mSize[0] *= resizeScale.y(); mSize[1] *= resizeScale.y(); } // for SVG rasterization, always calculate width from rounded height (see comment above) mSize[1] = round(mSize[1]); mSize[0] = (mSize[1] / textureSize.y()) * textureSize.x(); }else{ // if both components are set, we just stretch // if no components are set, we don't resize at all mSize = mTargetSize.isZero() ? textureSize : mTargetSize; // if only one component is set, we resize in a way that maintains aspect ratio // for SVG rasterization, we always calculate width from rounded height (see comment above) if(!mTargetSize.x() && mTargetSize.y()) { mSize[1] = round(mTargetSize.y()); mSize[0] = (mSize.y() / textureSize.y()) * textureSize.x(); }else if(mTargetSize.x() && !mTargetSize.y()) { mSize[1] = round((mTargetSize.x() / textureSize.x()) * textureSize.y()); mSize[0] = (mSize.y() / textureSize.y()) * textureSize.x(); } } } // mSize.y() should already be rounded mTexture->rasterizeAt((int)round(mSize.x()), (int)round(mSize.y())); onSizeChanged(); } void ImageComponent::onSizeChanged() { updateVertices(); } void ImageComponent::setImage(std::string path, bool tile) { if(path.empty() || !ResourceManager::getInstance()->fileExists(path)) mTexture.reset(); else mTexture = TextureResource::get(path, tile, mForceLoad, mDynamic); resize(); } void ImageComponent::setImage(const char* path, size_t length, bool tile) { mTexture.reset(); mTexture = TextureResource::get("", tile); mTexture->initFromMemory(path, length); resize(); } void ImageComponent::setImage(const std::shared_ptr& texture) { mTexture = texture; resize(); } void ImageComponent::setOrigin(float originX, float originY) { mOrigin << originX, originY; updateVertices(); } void ImageComponent::setResize(float width, float height) { mTargetSize << width, height; mTargetIsMax = false; resize(); } void ImageComponent::setMaxSize(float width, float height) { mTargetSize << width, height; mTargetIsMax = true; resize(); } void ImageComponent::setFlipX(bool flip) { mFlipX = flip; updateVertices(); } void ImageComponent::setFlipY(bool flip) { mFlipY = flip; updateVertices(); } void ImageComponent::setColorShift(unsigned int color) { mColorShift = color; // Grab the opacity from the color shift because we may need to apply it if // fading textures in mOpacity = color & 0xff; updateColors(); } void ImageComponent::setOpacity(unsigned char opacity) { mOpacity = opacity; mColorShift = (mColorShift >> 8 << 8) | mOpacity; updateColors(); } void ImageComponent::updateVertices() { if(!mTexture || !mTexture->isInitialized()) return; // we go through this mess to make sure everything is properly rounded // if we just round vertices at the end, edge cases occur near sizes of 0.5 Eigen::Vector2f topLeft(-mSize.x() * mOrigin.x(), -mSize.y() * mOrigin.y()); Eigen::Vector2f bottomRight(mSize.x() * (1 -mOrigin.x()), mSize.y() * (1 - mOrigin.y())); const float width = round(bottomRight.x() - topLeft.x()); const float height = round(bottomRight.y() - topLeft.y()); topLeft[0] = floor(topLeft[0]); topLeft[1] = floor(topLeft[1]); bottomRight[0] = topLeft[0] + width; bottomRight[1] = topLeft[1] + height; mVertices[0].pos << topLeft.x(), topLeft.y(); mVertices[1].pos << topLeft.x(), bottomRight.y(); mVertices[2].pos << bottomRight.x(), topLeft.y(); mVertices[3].pos << bottomRight.x(), topLeft.y(); mVertices[4].pos << topLeft.x(), bottomRight.y(); mVertices[5].pos << bottomRight.x(), bottomRight.y(); float px, py; if(mTexture->isTiled()) { px = mSize.x() / getTextureSize().x(); py = mSize.y() / getTextureSize().y(); }else{ px = 1; py = 1; } mVertices[0].tex << 0, py; mVertices[1].tex << 0, 0; mVertices[2].tex << px, py; mVertices[3].tex << px, py; mVertices[4].tex << 0, 0; mVertices[5].tex << px, 0; if(mFlipX) { for(int i = 0; i < 6; i++) mVertices[i].tex[0] = mVertices[i].tex[0] == px ? 0 : px; } if(mFlipY) { for(int i = 1; i < 6; i++) mVertices[i].tex[1] = mVertices[i].tex[1] == py ? 0 : py; } } void ImageComponent::updateColors() { Renderer::buildGLColorArray(mColors, mColorShift, 6); } void ImageComponent::render(const Eigen::Affine3f& parentTrans) { Eigen::Affine3f trans = roundMatrix(parentTrans * getTransform()); Renderer::setMatrix(trans); if(mTexture && mOpacity > 0) { if(mTexture->isInitialized()) { // actually draw the image // The bind() function returns false if the texture is not currently loaded. A blank // texture is bound in this case but we want to handle a fade so it doesn't just 'jump' in // when it finally loads fadeIn(mTexture->bind()); glEnable(GL_TEXTURE_2D); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glEnableClientState(GL_COLOR_ARRAY); glVertexPointer(2, GL_FLOAT, sizeof(Vertex), &mVertices[0].pos); glTexCoordPointer(2, GL_FLOAT, sizeof(Vertex), &mVertices[0].tex); glColorPointer(4, GL_UNSIGNED_BYTE, 0, mColors); glDrawArrays(GL_TRIANGLES, 0, 6); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); glDisableClientState(GL_COLOR_ARRAY); glDisable(GL_TEXTURE_2D); glDisable(GL_BLEND); }else{ LOG(LogError) << "Image texture is not initialized!"; mTexture.reset(); } } GuiComponent::renderChildren(trans); } void ImageComponent::fadeIn(bool textureLoaded) { if (!mForceLoad) { if (!textureLoaded) { // Start the fade if this is the first time we've encountered the unloaded texture if (!mFading) { // Start with a zero opacity and flag it as fading mFadeOpacity = 0; mFading = true; // Set the colours to be translucent mColorShift = (mColorShift >> 8 << 8) | 0; updateColors(); } } else if (mFading) { // The texture is loaded and we need to fade it in. The fade is based on the frame rate // and is 1/4 second if running at 60 frames per second although the actual value is not // that important int opacity = mFadeOpacity + 255 / 15; // See if we've finished fading if (opacity >= 255) { mFadeOpacity = 255; mFading = false; } else { mFadeOpacity = (unsigned char)opacity; } // Apply the combination of the target opacity and current fade float newOpacity = (float)mOpacity * ((float)mFadeOpacity / 255.0f); mColorShift = (mColorShift >> 8 << 8) | (unsigned char)newOpacity; updateColors(); } } } bool ImageComponent::hasImage() { return (bool)mTexture; } void ImageComponent::applyTheme(const std::shared_ptr& theme, const std::string& view, const std::string& element, unsigned int properties) { using namespace ThemeFlags; const ThemeData::ThemeElement* elem = theme->getElement(view, element, "image"); if(!elem) { return; } Eigen::Vector2f scale = getParent() ? getParent()->getSize() : Eigen::Vector2f((float)Renderer::getScreenWidth(), (float)Renderer::getScreenHeight()); if(properties & POSITION && elem->has("pos")) { Eigen::Vector2f denormalized = elem->get("pos").cwiseProduct(scale); setPosition(Eigen::Vector3f(denormalized.x(), denormalized.y(), 0)); } if(properties & ThemeFlags::SIZE) { if(elem->has("size")) setResize(elem->get("size").cwiseProduct(scale)); else if(elem->has("maxSize")) setMaxSize(elem->get("maxSize").cwiseProduct(scale)); } // position + size also implies origin if((properties & ORIGIN || (properties & POSITION && properties & ThemeFlags::SIZE)) && elem->has("origin")) setOrigin(elem->get("origin")); if(properties & PATH && elem->has("path")) { bool tile = (elem->has("tile") && elem->get("tile")); setImage(elem->get("path"), tile); } if(properties & COLOR && elem->has("color")) setColorShift(elem->get("color")); if(properties & ThemeFlags::Z_INDEX && elem->has("zIndex")) setZIndex(elem->get("zIndex")); else setZIndex(getDefaultZIndex()); } std::vector ImageComponent::getHelpPrompts() { std::vector ret; ret.push_back(HelpPrompt("a", "select")); return ret; }