// // ComponentList.cpp // // Used to lay out and navigate lists in GUI menus. // #include "components/ComponentList.h" #define TOTAL_HORIZONTAL_PADDING_PX 20 ComponentList::ComponentList(Window* window) : IList(window, LIST_SCROLL_STYLE_SLOW, LIST_NEVER_LOOP) { mSelectorBarOffset = 0; mCameraOffset = 0; mFocused = false; } void ComponentList::addRow(const ComponentListRow& row, bool setCursorHere) { IList::Entry e; e.name = ""; e.object = NULL; e.data = row; this->add(e); for (auto it = mEntries.back().data.elements.cbegin(); it != mEntries.back().data.elements.cend(); it++) addChild(it->component.get()); updateElementSize(mEntries.back().data); updateElementPosition(mEntries.back().data); if (setCursorHere) { mCursor = (int)mEntries.size() - 1; onCursorChanged(CURSOR_STOPPED); } } void ComponentList::onSizeChanged() { for (auto it = mEntries.cbegin(); it != mEntries.cend(); it++) { updateElementSize(it->data); updateElementPosition(it->data); } updateCameraOffset(); } void ComponentList::onFocusLost() { mFocused = false; } void ComponentList::onFocusGained() { mFocused = true; } bool ComponentList::input(InputConfig* config, Input input) { if (size() == 0) return false; // Give it to the current row's input handler. if (mEntries.at(mCursor).data.input_handler) { if (mEntries.at(mCursor).data.input_handler(config, input)) return true; } else { // No input handler assigned, do the default, which is to give it // to the rightmost element in the row. auto& row = mEntries.at(mCursor).data; if (row.elements.size()) { if (row.elements.back().component->input(config, input)) return true; } } // Input handler didn't consume the input - try to scroll. if (config->isMappedLike("up", input)) return listInput(input.value != 0 ? -1 : 0); else if (config->isMappedLike("down", input)) return listInput(input.value != 0 ? 1 : 0); else if (config->isMappedLike("leftshoulder", input)) return listInput(input.value != 0 ? -6 : 0); else if (config->isMappedLike("rightshoulder", input)) return listInput(input.value != 0 ? 6 : 0); return false; } void ComponentList::update(int deltaTime) { listUpdate(deltaTime); if (size()) { // Update our currently selected row. for (auto it = mEntries.at(mCursor).data.elements.cbegin(); it != mEntries.at(mCursor).data.elements.cend(); it++) it->component->update(deltaTime); } } void ComponentList::onCursorChanged(const CursorState& state) { // Update the selector bar position. // In the future this might be animated. mSelectorBarOffset = 0; for (int i = 0; i < mCursor; i++) mSelectorBarOffset += getRowHeight(mEntries.at(i).data); updateCameraOffset(); // This is terribly inefficient but we don't know what we came from so... if (size()) { for (auto it = mEntries.cbegin(); it != mEntries.cend(); it++) it->data.elements.back().component->onFocusLost(); mEntries.at(mCursor).data.elements.back().component->onFocusGained(); } if (mCursorChangedCallback) mCursorChangedCallback(state); updateHelpPrompts(); } void ComponentList::updateCameraOffset() { // Move the camera to scroll. const float totalHeight = getTotalRowHeight(); if (totalHeight > mSize.y()) { float target = mSelectorBarOffset + getRowHeight(mEntries.at(mCursor).data)/2 - (mSize.y() / 2); // Clamp it. mCameraOffset = 0; unsigned int i = 0; while (mCameraOffset < target && i < mEntries.size()) { mCameraOffset += getRowHeight(mEntries.at(i).data); i++; } if (mCameraOffset < 0) mCameraOffset = 0; else if (mCameraOffset + mSize.y() > totalHeight) mCameraOffset = totalHeight - mSize.y(); } else { mCameraOffset = 0; } } void ComponentList::render(const Transform4x4f& parentTrans) { if (!size()) return; Transform4x4f trans = parentTrans * getTransform(); // Clip everything to be inside our bounds. Vector3f dim(mSize.x(), mSize.y(), 0); dim = trans * dim - trans.translation(); Renderer::pushClipRect(Vector2i((int)trans.translation().x(), (int)trans.translation().y()), Vector2i((int)Math::round(dim.x()), (int)Math::round(dim.y() + 1))); // Scroll the camera. trans.translate(Vector3f(0, -Math::round(mCameraOffset), 0)); // Draw our entries. std::vector drawAfterCursor; bool drawAll; for (unsigned int i = 0; i < mEntries.size(); i++) { auto& entry = mEntries.at(i); drawAll = !mFocused || i != (unsigned int)mCursor; for (auto it = entry.data.elements.cbegin(); it != entry.data.elements.cend(); it++) { if (drawAll || it->invert_when_selected) { // For the row where the cursor is at, we want to remove any hue from the // font color before inverting, as it would otherwise lead to an ugly // inverted color (e.g. red text inverting to a green hue). if (i == mCursor && it->component->getValue() != "" ) { // Check if the text color is neutral. unsigned int origColor = it->component->getColor(); unsigned char byteRed = origColor >> 24 & 0xFF; unsigned char byteGreen = origColor >> 16 & 0xFF; unsigned char byteBlue = origColor >> 8 & 0xFF; // If it's neutral, just proceed with normal rendering. if (byteRed == byteGreen && byteGreen == byteBlue) { it->component->render(trans); } else { // If there is a hue, average the brightness values to make // an equivalent gray value before inverting the text. // This is not the proper way to do a BW conversion as the RGB values // should not be evenly distributed, but it's definitely good enough // for this situation. unsigned char byteAverage = (byteRed + byteGreen + byteBlue) / 3; unsigned int averageColor = byteAverage << 24 | byteAverage << 16 | byteAverage << 8 | 0xFF; it->component->setColor(averageColor); it->component->render(trans); // Revert to the original color after rendering. it->component->setColor(origColor); } } else { it->component->render(trans); } } else drawAfterCursor.push_back(it->component.get()); } } // Custom rendering. Renderer::setMatrix(trans); // Draw selector bar. if (mFocused) { // Inversion: src * (1 - dst) + dst * 0 = where src = 1 // Need a function that goes roughly 0x777777 -> 0xFFFFFF // and 0xFFFFFF -> 0x777777 // (1 - dst) + 0x77 const float selectedRowHeight = getRowHeight(mEntries.at(mCursor).data); Renderer::drawRect(0.0f, mSelectorBarOffset, mSize.x(), selectedRowHeight, 0xFFFFFFFF, 0xFFFFFFFF, false, Renderer::Blend::ONE_MINUS_DST_COLOR, Renderer::Blend::ZERO); Renderer::drawRect(0.0f, mSelectorBarOffset, mSize.x(), selectedRowHeight, 0x777777FF, 0x777777FF, false, Renderer::Blend::ONE, Renderer::Blend::ONE); // Hack to draw 2px dark on left/right of the bar. Renderer::drawRect(0.0f, mSelectorBarOffset, 2.0f, selectedRowHeight, 0x878787FF, 0x878787FF); Renderer::drawRect(mSize.x() - 2.0f, mSelectorBarOffset, 2.0f, selectedRowHeight, 0x878787FF, 0x878787FF); for (auto it = drawAfterCursor.cbegin(); it != drawAfterCursor.cend(); it++) (*it)->render(trans); // Reset matrix if one of these components changed it. if (drawAfterCursor.size()) Renderer::setMatrix(trans); } // Draw separators. float y = 0; for (unsigned int i = 0; i < mEntries.size(); i++) { Renderer::drawRect(0.0f, y, mSize.x(), 1.0f, 0xC6C7C6FF, 0xC6C7C6FF); y += getRowHeight(mEntries.at(i).data); } Renderer::drawRect(0.0f, y, mSize.x(), 1.0f, 0xC6C7C6FF, 0xC6C7C6FF); Renderer::popClipRect(); } float ComponentList::getRowHeight(const ComponentListRow& row) const { // Returns the highest component height found in the row. float height = 0; for (unsigned int i = 0; i < row.elements.size(); i++) { if (row.elements.at(i).component->getSize().y() > height) height = row.elements.at(i).component->getSize().y(); } return height; } float ComponentList::getTotalRowHeight() const { float height = 0; for (auto it = mEntries.cbegin(); it != mEntries.cend(); it++) height += getRowHeight(it->data); return height; } void ComponentList::updateElementPosition(const ComponentListRow& row) { float yOffset = 0; for (auto it = mEntries.cbegin(); it != mEntries.cend() && &it->data != &row; it++) yOffset += getRowHeight(it->data); // Assumes updateElementSize has already been called. float rowHeight = getRowHeight(row); float x = TOTAL_HORIZONTAL_PADDING_PX / 2; for (unsigned int i = 0; i < row.elements.size(); i++) { const auto comp = row.elements.at(i).component; // Center vertically. comp->setPosition(x, (rowHeight - comp->getSize().y()) / 2 + yOffset); x += comp->getSize().x(); } } void ComponentList::updateElementSize(const ComponentListRow& row) { float width = mSize.x() - TOTAL_HORIZONTAL_PADDING_PX; std::vector< std::shared_ptr > resizeVec; for (auto it = row.elements.cbegin(); it != row.elements.cend(); it++) { if (it->resize_width) resizeVec.push_back(it->component); else width -= it->component->getSize().x(); } // Redistribute the "unused" width equally among the components with resize_width set to true. width = width / resizeVec.size(); for (auto it = resizeVec.cbegin(); it != resizeVec.cend(); it++) (*it)->setSize(width, (*it)->getSize().y()); } void ComponentList::textInput(const char* text) { if (!size()) return; mEntries.at(mCursor).data.elements.back().component->textInput(text); } std::vector ComponentList::getHelpPrompts() { if (!size()) return std::vector(); std::vector prompts = mEntries.at(mCursor).data.elements.back().component->getHelpPrompts(); if (size() > 1) { bool addMovePrompt = true; for (auto it = prompts.cbegin(); it != prompts.cend(); it++) { if (it->first == "up/down" || it->first == "up/down/left/right") { addMovePrompt = false; break; } } if (addMovePrompt) prompts.push_back(HelpPrompt("up/down", "choose")); } return prompts; } bool ComponentList::moveCursor(int amt) { bool ret = listInput(amt); listInput(0); return ret; }