/* # # File : skeleton.h # ( C++ header file - CImg plug-in ) # # Description : CImg plugin that implements the computation of the Hamilton-Jacobi skeletons # using Siddiqi algorithm with the correction proposed by Torsello, # as described in : # # [SBTZ02] K. Siddiqi, S. Bouix, A. Tannenbaum and S.W. Zucker. Hamilton-Jacobi Skeletons # International Journal of Computer Vision, 48(3):215-231, 2002 # # [TH03] A. Torsello and E. R. Hancock. Curvature Correction of the Hamilton-Jacobi Skeleton # IEEE Computer Vision and Pattern Recognition, 2003 # # [BST05] S. Bouix, K. Siddiqi and A. Tannenbaum. Flux driven automatic centerline # extraction. Medical Image Analysis, 9:209-221, 2005 # # IMPORTANT WARNING : You must include STL's before plugin inclusion to make it working ! # # Copyright : Francois-Xavier Dupe # ( http://www.greyc.ensicaen.fr/~fdupe/ ) # # This software is governed by the CeCILL license under French law and # abiding by the rules of distribution of free software. You can use, # modify and/or redistribute the software under the terms of the CeCILL # license as circulated by CEA, CNRS and INRIA at the following URL # "http://www.cecill.info". # # As a counterpart to the access to the source code and rights to copy, # modify and redistribute granted by the license, users are provided only # with a limited warranty and the software's author, the holder of the # economic rights, and the successive licensors have only limited # liability. # # In this respect, the user's attention is drawn to the risks associated # with loading, using, modifying and/or developing or reproducing the # software by the user in light of its specific status of free software, # that may mean that it is complicated to manipulate, and that also # therefore means that it is reserved for developers and experienced # professionals having in-depth computer knowledge. Users are therefore # encouraged to load and test the software's suitability as regards their # requirements in conditions enabling the security of their systems and/or # data to be ensured and, more generally, to use and operate it in the # same conditions as regards security. # # The fact that you are presently reading this means that you have had # knowledge of the CeCILL license and that you accept its terms. # */ #ifndef cimg_plugin_skeleton #define cimg_plugin_skeleton /** * Compute the flux of the gradient * @param grad the gradient of the distance function * @param sY the sampling size in Y * @param sZ the sampling size in Z * @return the flux */ CImg get_flux(const CImgList & grad, const float sY=1.0f, const float sZ=1.0f) const { int stop = 0; // Stop flag float f = 0; // The current flux int count = 0; // Counter CImg flux(width(),height(),depth(),1,0); cimg_forXYZ((*this),x,y,z) { if (!(*this)(x,y,z)) continue; // If the point is the background // Look at the neigthboorhound and compute the flux stop = 0; f = 0; count = 0; for (int k = -1; k<=1; ++k) for (int l = -1; l<= 1; ++l) for (int m = -1; m<= 1; ++m) { if (stop==1) continue; // Protection if ((x + k<0) || (x + k>=width()) || (y + l<0) || (y + l>=height()) || (z + m<0) || (z + m>=depth()) || (k==0 && l==0 && m==0)) continue; ++count; // Test if the point is in the interior if ((*this)(x + k,y + l,z + m)==0) { stop = 1; continue; } // Compute the flux f+=(grad(0,x + k,y + l,z + m)*k + grad(1,x + k,y + l,z + m)*l/sY + grad(2,x + k,y + l,z + m)*m/sZ)/ std::sqrt((float)(k*k + l*l + m*m)); } // Update if (stop==1 || count==0) flux(x,y,z) = 0; else flux(x,y,z) = f/count; } return flux; } /** * Definition of a point with his flux value */ struct _PointFlux { int pos [3]; float flux; float dist; }; /** * Class for the priority queue */ class _compare_point { /** * Create medial curves */ bool curve; public: _compare_point(const bool _curve=false) { this->curve = _curve; } bool operator()(const _PointFlux & p1, const _PointFlux & p2) const { if (curve) { if (p1.dist>p2.dist) return true; else if (p1.dist==p2.dist && p1.fluxp2.dist) return true; } return false; } }; /** * Compute the log-density using the algorithm from Torsello * @param dist the distance map * @param grad the gradient of the distance map, e.g. the flux * @param flux the divergence map * @param delta the threshold for the division * @return the logdensity \rho */ CImg get_logdensity(const CImg & dist, const CImgList & grad, const CImg & flux, float delta = 0.1) const { std::priority_queue< _PointFlux, std::vector<_PointFlux>, _compare_point > pqueue(true); CImg logdensity(width(),height(),depth(),1,0); // 1 - Put all the pixel inside the priority queue cimg_forXYZ(dist,x,y,z) if (dist(x,y,z)!=0) { _PointFlux p; p.pos[0] = x; p.pos[1] = y; p.pos[2] = z; p.flux = 0; p.dist = dist(x,y,z); pqueue.push(p); } // 2 - Compute the logdensity while (!pqueue.empty()) { _PointFlux p = pqueue.top(); pqueue.pop(); const float Fx = grad(0,p.pos[0],p.pos[1],p.pos[2]), Fy = grad(1,p.pos[0],p.pos[1],p.pos[2]), Fz = grad(2,p.pos[0],p.pos[1],p.pos[2]); logdensity(p.pos[0],p.pos[1],p.pos[2]) = logdensity.linear_atXYZ(p.pos[0] - Fx,p.pos[1] - Fy,p.pos[2] - Fz) - 0.5f * (flux(p.pos[0],p.pos[1],p.pos[2]) + flux.linear_atXYZ(p.pos[0] - Fx,p.pos[1] - Fy,p.pos[2] - Fz)); const float tmp = 1.0f - (1.0f - std::fabs(Fx)) * (1.0f - std::fabs(Fy)) * (1.0f - std::fabs(Fz)); if (tmp>delta) logdensity(p.pos[0],p.pos[1],p.pos[2])/=tmp; else if (delta<1) logdensity(p.pos[0],p.pos[1],p.pos[2]) = 0; } return logdensity; } /** * Computed the corrected divergence map using Torsello formula and idea * @param logdensity the log density map * @param grad the gradient of the distance map * @param flux the flux using siddiqi formula * @param delta the discrete step * @return the corrected divergence map */ CImg get_corrected_flux(const CImg & logdensity, const CImgList & grad, const CImg & flux, float delta = 1.0) const { CImg corr_map(width(),height(),depth(),1,0); cimg_forXYZ(corr_map,x,y,z) { const float Fx = grad(0,x,y,z), Fy = grad(1,x,y,z), Fz = grad(2,x,y,z); corr_map(x,y,z) = (logdensity(x,y,z) - logdensity.linear_atXYZ(x - Fx,y - Fy,z - Fz)) * expf(logdensity(x,y,z) - 0.5f * delta) + 0.5f * ( flux.linear_atXYZ(x - Fx,y - Fy,z - Fz)*expf(logdensity.linear_atXYZ(x - Fx,y - Fy,z - Fz)) + flux(x,y,z)*expf(logdensity(x,y,z))); } return corr_map; } /** * Test if a point is simple using Euler number for 2D case * or using Malandain criterion for 3D case * @param img the image * @param x the x coordinate * @param y the y coordinate * @param z the z coordinate * @return true if simple */ bool _isSimple (const CImg & img, int x, int y, int z ) const { if (img.depth()==1) { // 2D case int V = 0, E = 0; // Number of vertices and edges for (int k = -1; k<=1; ++k) for (int l = -1; l<=1; ++l) { // Protection if (x+k<0 || x+k>=img.width() || y+l<0 || y+l>=img.height()) continue; // Count the number of vertices if (img(x + k,y + l)!=0 && !(k==0 && l==0)) { ++V; // Count the number of edges for (int k1 = -1; k1<=1; ++k1) for (int l1 = -1; l1<=1; ++l1) { // Protection if (x + k + k1<0 || x + k + k1>=img.width() || y + l + l1<0 || y + l + l1>=img.height()) continue; if (!(k1==0 && l1==0) && img(x + k + k1,y + l + l1)!=0 && k + k1>-2 && l + l1>-2 && k + k1<2 && l + l1<2 && !(k + k1==0 && l + l1==0)) ++E; } } } // Remove the corner if exists if (x - 1>=0 && y - 1>=0 && img(x - 1,y - 1)!=0 && img(x,y - 1)!=0 && img(x - 1,y)!=0) E-=2; if (x - 1>=0 && y + 1=0 && img(x + 1,y - 1)!=0 && img(x,y - 1)!=0 && img(x + 1,y)!=0) E-=2; if (x + 1 visit(3,3,3,1,0); // Visitor table int C_asterix = 0, C_bar = 0, count = 0; visit(1,1,1) = -1; // Compute C^* // Seeking for a component for (int k = -1; k<=1; ++k) for (int l = -1; l<=1; ++l) for (int m = -1; m<=1; ++m) { int a_label = 0; // Protection if (x + k<0 || x + k>=img.width() || y + l<0 || y + l>=img.height() || z + m<0 || z + m>=img.depth() || (k==0 && l==0 && m==0)) continue; if (visit(1 + k,1 + l,1 + m)==0 && img(x + k,y + l,z + m)!=0) { // Look after the neightbor for (int k1 = -1; k1<=1; ++k1) for (int l1 = -1; l1<=1; ++l1) for (int m1 = -1; m1<=1; ++m1) { // Protection if (x + k + k1<0 || x + k + k1>=img.width() || y + l + l1<0 || y + l + l1>=img.height() || z + m + m1<0 || z + m + m1>=img.depth() || k + k1>1 || k + k1<-1 || l + l1>1 || l + l1<-1 || m + m1>1 || m + m1<-1 ) continue; // Search for a already knew component if (visit(1 + k + k1,1 + l + l1,1 + m + m1)>0 && img(x + k + k1,y + l + l1,z + m + m1)!=0) { if (a_label==0) a_label = visit(1 + k + k1,1 + l + l1,1 + m + m1); else if (a_label!=visit(1 + k + k1,1 + l + l1,1 + m + m1)) { // Meld component --C_asterix; int C = visit(1 + k + k1,1 + l + l1,1 + m + m1); cimg_forXYZ(visit,a,b,c) if (visit(a,b,c)==C) visit(a,b,c) = a_label; } } } // Label the point if (a_label==0) { // Find a new component ++C_asterix; ++count; visit(1 + k ,1 + l,1 + m) = count; } else visit(1 + k,1 + l,1 + m) = a_label; } } if (C_asterix!=1) return false; // Compute \bar{C} // Reinit visit visit.fill(0); visit(1,1,1) = -1; // Seeking for a component // Look at X-axis for (int k = -1; k<=1; ++k) { if (x + k<0 || x + k>=img.width()) continue; if (img(x + k,y,z)==0 && visit(1 + k,1,1)==0) { ++C_bar; ++count; visit(1 + k,1,1) = count; // Follow component for (int l = -1; l<=1; ++l) { if (y + l=0 && img(x + k,y + l,z)==0 && visit(1 + k,1 + l,1)==0) visit(1 + k,1 + l,1) = count; if (z + l=0 && img(x + k,y,z + l)==0 && visit(1 + k,1,1 + l)==0) visit(1 + k,1,1 + l) = count; } } } // Look at Y-axis for (int k = -1; k<=1; ++k) { if (y + k<0 || y + k>=img.height()) continue; if (img(x,y + k,z)==0 && visit(1,1 + k,1)==0) { int a_label = 0; ++C_bar; ++count; visit(1,1 + k,1) = count; a_label = count; // Follow component for (int l = -1; l<=1; ++l) { if (l==0) continue; if (x + l=0 && img(x + l,y + k,z)==0) { if (visit(1 + l,1 + k,1)!=0) { if (a_label!=visit(1 + l,1 + k,1)) { // Meld component --C_bar; int C = visit(1 + l,1 + k,1); cimg_forXYZ(visit,a,b,c) if (visit(a,b,c)==C) visit(a,b,c) = a_label; } } else visit(1 + l,1 + k,1) = a_label; } if (z + l=0 && img(x,y + k,z + l)==0) { if (visit(1,1 + k,1 + l)!=0) { if (a_label!=visit(1,1 + k,1 + l)) { // Meld component --C_bar; int C = visit(1,1 + k,1 + l); cimg_forXYZ(visit,a,b,c) if (visit(a,b,c)==C) visit(a,b,c) = a_label; } } else visit(1,1 + k,1 + l) = a_label; } } } } // Look at Z-axis for (int k = -1; k<=1; ++k) { if (z + k<0 || z + k>=img.depth()) continue; if (img(x,y,z + k)==0 && visit(1,1,1 + k)==0) { int a_label = 0; ++C_bar; ++count; visit(1,1,1 + k) = count; a_label = count; // Follow component for (int l = -1; l<=1; ++l) { if (l==0) continue; if (x + l=0 && img(x + l,y,z + k)==0) { if (visit(1 + l,1,1 + k)!=0) { if (a_label!=visit(1 + l,1,1 + k)) { // Meld component --C_bar; int C = visit(1 + l,1,1 + k); cimg_forXYZ(visit,a,b,c) if (visit(a,b,c)==C) visit(a,b,c) = a_label; } } else visit(1 + l,1,1 + k) = a_label; } if (y + l=0 && img(x,y + l,z + k)==0) { if (visit(1,1 + l,1 + k)!=0) { if (a_label!=visit(1,1 + l,1 + k)) { // Meld component --C_bar; int C = visit(1,1 + l,1 + k); cimg_forXYZ(visit,a,b,c) if (visit(a,b,c)==C) visit(a,b,c) = a_label; } } else visit(1,1 + l,1 + k) = a_label; } } } } if (C_bar==1) return true; } return false; } /** * Test if a point is a end point * @param img the image * @param a_label the table of labels * @param curve set it to true for having medial curve * @param x the x coordinate * @param y the y coordinate * @param z the z coordinate * @return true if simple */ bool _isEndPoint(const CImg & img, const CImg & a_label, const bool curve, const int x, const int y, const int z) const { if (a_label(x,y,z)==1) return true; if ((!curve) && (img.depth()!=1)) { // 3D case with medial surface // Use Pudney specification with the 9 plans const int plan9 [9][8][3] = { { {-1,0,-1}, {0,0,-1}, {1,0,-1}, {-1,0,0}, {1,0,0}, {-1,0,1}, {0,0,1}, {1,0,1} }, // Plan 1 { {-1,1,0}, {0,1,0}, {1,1,0}, {-1,0,0}, {1,0,0}, {-1,-1,0}, {0,-1,0}, {1,-1,0} }, // Plan 2 { {0,-1,-1}, {0,0,-1}, {0,1,-1}, {0,-1,0}, {0,1,0}, {0,-1,1}, {0,0,1}, {0,1,1} }, // Plan 3 { {1,1,1}, {0,1,0}, {-1,1,-1}, {1,0,1}, {-1,0,-1}, {-1,-1,-1}, {0,-1,0}, {1,-1,1} }, // Plan 4 { {-1,1,1}, {0,1,0}, {1,1,-1}, {-1,0,1}, {1,0,-1}, {-1,-1,1}, {0,-1,0}, {1,-1,-1} }, // Plan 5 { {-1,1,1}, {0,1,1}, {1,1,1}, {-1,0,0}, {1,0,0}, {-1,-1,-1}, {0,-1,-1}, {1,-1,-1} }, // Plan 6 { {-1,1,-1}, {0,1,-1}, {1,1,-1}, {-1,0,0}, {1,0,0}, {-1,-1,1}, {0,-1,1}, {1,-1,1} }, // Plan 7 { {-1,1,-1}, {-1,1,0}, {-1,1,1}, {0,0,-1}, {0,0,1}, {1,-1,-1}, {1,-1,0}, {1,-1,1} }, // Plan 8 { {1,1,-1}, {1,1,0}, {1,1,1}, {0,0,-1}, {0,0,1}, {-1,-1,-1}, {-1,-1,0}, {-1,-1,1} } // Plan 9 }; // Count the number of neighbors on each plan for (int k = 0; k<9; ++k) { int count = 0; for (int l = 0; l<8; ++l) { if (x + plan9[k][l][0]<0 || x + plan9[k][l][0]>=img.width() || y + plan9[k][l][1]<0 || y + plan9[k][l][1]>=img.height() || z + plan9[k][l][2]<0 || z + plan9[k][l][2]>=img.depth()) continue; if (img(x + plan9[k][l][0],y + plan9[k][l][1],z + plan9[k][l][2])!=0) ++count; } if (count<2) return true; } } else { // 2D or 3D case with medial curve int isb = 0; for (int k = -1; k<=1; ++k) for (int l = -1; l<=1; ++l) for (int m = -1; m<=1; ++m) { // Protection if (x + k<0 || x + k>=img.width() || y + l<0 || y + l>=img.height() || z + m<0 || z + m>=img.depth()) continue; if (img(x + k,y + l,z + m)!=0) ++isb; } if (isb==2) return true; // The pixel with one neighbor } // Else it's not... return false; } /** * Compute the skeleton of the shape using Hamilton-Jacobi scheme * @param flux the flux of the distance gradient * @param dist the euclidean distance of the object * @param curve create or not medial curve * @param thres the threshold on the flux * @return the skeleton */ CImg get_skeleton (const CImg & flux, const CImg & dist, const bool curve, const float thres) const { CImg skeleton(*this), // The skeleton a_label(width(),height(),depth(),1,0), // Save label count(width(),height(),depth(),1,0); // A counter for the queue std::priority_queue< _PointFlux, std::vector<_PointFlux>, _compare_point > pqueue(curve); int isb = 0; // 1 - Init get the bound points cimg_forXYZ(*this,x,y,z) { if (skeleton(x,y,z)==0) continue; // Test bound condition isb = 0; for (int k = -1; k<=1; ++k) for (int l = -1; l<=1; ++l) for (int m = -1; m<=1; ++m) { // Protection if (x + k<0 || x + k>=width() || y + l<0 || y + l>=height() || z + m<0 || z + m>=depth()) continue; if (skeleton(x + k,y + l,z + m)==0) isb = 1; } if (isb==1 && _isSimple(skeleton,x,y,z)) { _PointFlux p; p.pos[0] = x; p.pos[1] = y; p.pos[2] = z; p.flux = flux(x,y,z); p.dist = dist(x,y,z); pqueue.push(p); count(x,y,z) = 1; } } // 2 - Compute the skeleton while (!pqueue.empty()) { _PointFlux p = pqueue.top(); // Get the point with the max flux pqueue.pop(); // Remove the point from the queue count(p.pos[0],p.pos[1],p.pos[2]) = 0; // Reinit counter // Test if the point is simple if (_isSimple(skeleton,p.pos[0],p.pos[1],p.pos[2])) { if ((! _isEndPoint(skeleton,a_label,curve,p.pos[0],p.pos[1],p.pos[2])) || p.flux>thres) { skeleton(p.pos[0],p.pos[1],p.pos[2]) = 0; // Remove the point for (int k = -1; k<=1; ++k) for (int l = -1; l<=1; ++l) for (int m = -1; m<=1; ++m) { // Protection if (p.pos[0] + k<0 || p.pos[0] + k>= width() || p.pos[1] + l<0 || p.pos[1] + l>= height() || p.pos[2] + m<0 || p.pos[2] + m>= depth()) continue; if (skeleton(p.pos[0] + k,p.pos[1] + l,p.pos[2] + m)!=0 && count(p.pos[0] + k,p.pos[1] + l,p.pos[2] + m)<1 && _isSimple(skeleton,p.pos[0] + k,p.pos[1] + l,p.pos[2] + m)) { _PointFlux p1; p1.pos[0] = p.pos[0] + k; p1.pos[1] = p.pos[1] + l; p1.pos[2] = p.pos[2] + m; p1.flux = flux(p.pos[0] + k,p.pos[1] + l,p.pos[2] + m); p1.dist = dist(p.pos[0] + k,p.pos[1] + l,p.pos[2] + m); pqueue.push(p1); count(p.pos[0] + k,p.pos[1] + l,p.pos[2] + m) = 1; } } } else a_label(p.pos[0],p.pos[1],p.pos[2]) = 1; // Mark the point as skeletal } } return skeleton; } /** * In place version of get_skeleton */ CImg skeleton(const CImg & flux, const CImg & dist, bool curve ,float thres) { return get_skeleton(flux,dist,curve,thres).move_to(*this); } #endif /* cimg_plugin_skeleton */