/* # # File : CImg_demo.cpp # ( C++ source file ) # # Description : A multi-part demo demonstrating some of the CImg capabilities. # This file is a part of the CImg Library project. # ( http://cimg.eu ) # # Copyright : David Tschumperlé # ( http://tschumperle.users.greyc.fr/ ) # # License : CeCILL v2.0 # ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html ) # # This software is governed by the CeCILL license under French law and # abiding by the rules of distribution of free software. You can use, # modify and/ or redistribute the software under the terms of the CeCILL # license as circulated by CEA, CNRS and INRIA at the following URL # "http://www.cecill.info". # # As a counterpart to the access to the source code and rights to copy, # modify and redistribute granted by the license, users are provided only # with a limited warranty and the software's author, the holder of the # economic rights, and the successive licensors have only limited # liability. # # In this respect, the user's attention is drawn to the risks associated # with loading, using, modifying and/or developing or reproducing the # software by the user in light of its specific status of free software, # that may mean that it is complicated to manipulate, and that also # therefore means that it is reserved for developers and experienced # professionals having in-depth computer knowledge. Users are therefore # encouraged to load and test the software's suitability as regards their # requirements in conditions enabling the security of their systems and/or # data to be ensured and, more generally, to use and operate it in the # same conditions as regards security. # # The fact that you are presently reading this means that you have had # knowledge of the CeCILL license and that you accept its terms. # */ // Include static image data, so that the exe does not depend on external image files. #include "img/CImg_demo.h" // Include CImg library header. #include "CImg.h" using namespace cimg_library; #undef min #undef max // Item : Blurring Gradient //---------------------------- void* item_blurring_gradient() { const CImg src(data_milla,211,242,1,3); CImgList grad = src.get_gradient(); CImgList visu = (src,sqrt(grad[0].pow(2) + grad[1].pow(2)).normalize(0,255),src); CImgDisplay disp(visu,"[#1] - Color Image, Gradient Norm and Blurring Gradient",0); for (double sigma = 0; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); sigma+=0.05) { visu[2] = visu[1].get_blur((float)cimg::abs(30*std::cos(sigma))).normalize(0,255); disp.resize(false).display(visu).wait(20); } return 0; } // Item : Rotozoom //----------------- void* item_rotozoom() { CImg src = CImg(data_milla,211,242,1,3,false).resize(400,300,1,3,3), img(src), img2(img); CImgDisplay disp(img.width(),img.height(),"[#2] - Rotozoom",0); float alpha = 0, t = 0, angle = 0, zoom0 = -0.9f, w2 = 0.5f*img.width(), h2 = 0.5f*img.height(); const unsigned char color[] = { 16,32,64 }; while (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) { cimg_forYC(src,y,k) { const int xc = 4*src.width() + (int)(60*std::sin((float)y*3/src.height() + 10*t)); cimg_forX(src,x) { const float val = (float)(src((xc + x)%src.width(),y,0,k)* (1.3f + 0.20*std::sin(alpha + k*k*((float)src.width()/2 - x)* ((float)src.height()/2 - y)*std::cos(t)/300.0))); img(x,y,0,k) = (unsigned char)(val>255.0f?255:val); } } const float zoom = 1.0f + (float)(zoom0 + 0.3f*(1 + std::cos(3*t))), rad = (float)(angle*cimg::PI/180), ca = (float)std::cos(rad)/zoom, sa = (float)std::sin(rad)/zoom; cimg_forXY(img,x,y) { const float cX = x - w2, cY = y - h2, fX = w2 + cX*ca - cY*sa, fY = h2 + cX*sa + cY*ca; const int X = cimg::mod((int)fX,img.width()), Y = cimg::mod((int)fY,img.height()); cimg_forC(img,c) img2(x,y,c) = img(X,Y,c); } img2.swap(img).draw_text(3,3,"Mouse buttons\nto zoom in/out",color,0,0.8f,24).display(disp.resize(false).wait(20)); alpha+=0.7f; t+=0.01f; angle+=0.8f; zoom0+=disp.button()&1?0.1f:disp.button()&2?-0.1f:0; if (disp.is_keyCTRLLEFT() && disp.is_keyF()) disp.resize(400,400,false).toggle_fullscreen(false); } return 0; } // Item : Anisotropic Smoothing (Total variation PDE, explicit scheme) //-------------------------------------------------------------------- void* item_anisotropic_smoothing() { const CImg src = CImg<>(data_milla,211,242,1,3).noise(-30,1); CImgList images(src,src); CImgDisplay disp(images,"[#3] - Anisotropic smoothing"); const float white[] = { 255, 255, 255 }, black[] = { 0, 0, 0 }; for (unsigned int iter = 0; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); ++iter) { // Compute PDE velocity field. CImg_3x3(I,float); CImg veloc(src); float *ptrd = veloc.data(), betamax = 0; cimg_forC(src,k) cimg_for3x3(images[1],x,y,0,k,I,float) { const float ix = (Inc - Ipc)/2, iy = (Icn - Icp)/2, ng = (float)std::sqrt(1e-10f + ix*ix + iy*iy), ixx = Inc + Ipc - 2*Icc, iyy = Icn + Icp - 2*Icc, ixy = 0.25f*(Inn + Ipp - Ipn - Inp), iee = (ix*ix*iyy + iy*iy*ixx - 2*ix*iy*ixy)/(ng*ng), beta = iee/(0.1f + ng); if (beta>betamax) betamax = beta; else if (-beta>betamax) betamax = -beta; *(ptrd++) = beta; } veloc*=40.0f/betamax; images[1]+=veloc; images[0].draw_text(4,4,"Iteration : %u ",white,black,1,13,iter); disp.resize(false).display(images); } return 0; } // Item : Fractal Animation //-------------------------- void* item_fractal_animation() { CImg img(400,400,1,3,0), img2(img), noise(3,2,1,3); const float w2 = 0.5f*img.width(), h2 = 0.5f*img.height(); CImgDisplay disp(img,"[#4] - Fractal Animation"); float zoom = 0; for (unsigned int iter = 0; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); ++iter, zoom+=0.2f) { img.draw_image((img.width() - noise.width())/2, (img.height() - noise.height())/2, noise.fill(0).noise(255,1)); const float nzoom = (float)(1.04f + 0.02f*std::sin(zoom/10)), rad = (float)(10*std::sin(iter/25.0)*cimg::PI/180), ca = (float)std::cos(rad)/nzoom, sa = (float)std::sin(rad)/nzoom; cimg_forXY(img,x,y) { const float cX = x - w2, cY = y - h2, X = w2 + cX*ca - cY*sa, Y = h2 + cX*sa + cY*ca; cimg_forC(img,c) img2(x,y,c) = img.atXY((int)X,(int)Y,0,c,0); } img2.swap(img).resize(disp.resize(false)).display(disp.wait(25)); if (disp.is_keyCTRLLEFT() && disp.is_keyF()) disp.resize(400,400,false).toggle_fullscreen(false); } return 0; } // Item : Gamma Correction and Histogram Visualization //----------------------------------------------------- void* item_gamma_correction() { CImg img = CImg<>(data_milla,211,242,1,3).normalize(0,1); CImgList visu(img*255.0,CImg(512,300,1,3,0)); CImgDisplay disp(visu,"[#5] - Gamma Corrected Image and Histogram (Click to set Gamma)"); const unsigned char yellow[] = { 255, 255, 0 }, blue[] = { 0, 155, 255 }, blue2[] = { 0, 0, 255 }, blue3[] = { 0, 0, 155 }, white[] = { 255, 255, 255 }, green[] = { 50, 128, 50 }; for (double gamma = 1; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); ) { cimg_forXYZC(visu[0],x,y,z,k) visu[0](x,y,z,k) = (unsigned char)(std::pow((double)img(x,y,z,k),1.0/gamma)*256); const CImg hist = visu[0].get_histogram(50,0,255); visu[1].fill(0).draw_text(50,5,"Gamma = %.3g",white,0,1,24,gamma). draw_graph(hist,green,1,3,0,20000,0).draw_graph(hist,yellow,1,2,0,20000,0). draw_axes(0,256,20000,0,white,0.7f); const int xb = (int)(50 + gamma*150); visu[1].draw_grid(20,20,0,0,false,false,white,0.3f,0xCCCCCCCC,0xCCCCCCCC). draw_rectangle(51,31,xb - 1,39,blue2).draw_rectangle(50,30,xb,30,blue).draw_rectangle(xb,30,xb,40,blue). draw_rectangle(xb,40,50,39,blue3).draw_rectangle(50,30,51,40,blue3); if (disp.button() && disp.mouse_x()>=img.width() + 50 && disp.mouse_x()<=img.width() + 450) gamma = (disp.mouse_x() - img.width() - 50)/150.0; disp.resize(disp,false).display(visu).wait(); } return 0; } // Item : Filled Triangles //------------------------- void* item_filled_triangles() { // Create a colored 640x480 background image which consists of different color shades. CImg background(640,480,1,3); cimg_forXY(background,x,y) background.fillC(x,y,0, x*std::cos(6.0*y/background.height()) + y*std::sin(9.0*x/background.width()), x*std::sin(8.0*y/background.height()) - y*std::cos(11.0*x/background.width()), x*std::cos(13.0*y/background.height()) - y*std::sin(8.0*x/background.width())); background.normalize(0,180); // Init images and create display window. CImg img0(background), img; unsigned char white[] = { 255, 255, 255 }, color[100][3]; CImgDisplay disp(img0,"[#6] - Filled Triangles (Click to shrink)"); // Define random properties (pos, size, colors, ..) for all triangles that will be displayed. float posx[100], posy[100], rayon[100], angle[100], veloc[100], opacity[100]; int num = 1; std::srand((unsigned int)time(0)); for (int k = 0; k<100; ++k) { posx[k] = (float)(cimg::rand()*img0.width()); posy[k] = (float)(cimg::rand()*img0.height()); rayon[k] = (float)(10 + cimg::rand()*50); angle[k] = (float)(cimg::rand()*360); veloc[k] = (float)(cimg::rand()*20 - 10); color[k][0] = (unsigned char)(cimg::rand()*255); color[k][1] = (unsigned char)(cimg::rand()*255); color[k][2] = (unsigned char)(cimg::rand()*255); opacity[k] = (float)(0.3 + 1.5*cimg::rand()); } // Start animation loop. while (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) { img = img0; // Draw each triangle on the background image. for (int k = 0; k0 && disp.mouse_y()>0) { float u = disp.mouse_x() - posx[k], v = disp.mouse_y() - posy[k]; if (disp.button()) { u = -u; v = -v; } posx[k]-=0.03f*u, posy[k]-=0.03f*v; if (posx[k]<0 || posx[k]>=img.width()) posx[k] = (float)(cimg::rand()*img.width()); if (posy[k]<0 || posy[k]>=img.height()) posy[k] = (float)(cimg::rand()*img.height()); } } // Display current animation framerate, and refresh display window. img.draw_text(5,5,"%u frames/s",white,0,0.5f,13,(unsigned int)disp.frames_per_second()); img0.resize(disp.display(img).resize(false).wait(20)); if (++num>100) num = 100; // Allow the user to toggle fullscreen mode, by pressing CTRL+F. if (disp.is_keyCTRLLEFT() && disp.is_keyF()) disp.resize(640,480,false).toggle_fullscreen(false); } return 0; } // Item : Mandelbrot/Julia Explorer //---------------------------------- void* item_mandelbrot_explorer() { // Define image canvas and corresponding display window. CImg img(800,600,1,3,0); CImgDisplay disp(img); // Start main explorer loop. double julia_r = 0, julia_i = 0; for (bool endflag = false, fractal_type = false, smooth = false, show_help = true; !endflag;) { bool stopflag = false; double xmin, xmax, ymin, ymax; // Init default upper-left/lower-right coordinates of the fractal set. if (fractal_type) { xmin = -1.5; xmax = 1.5; ymin = -1.5; ymax = 1.5; julia_r = 0.317; julia_i = 0.029; } else { xmin = -2.25; xmax = 1.0; ymin = -1.5; ymax = 1.5; julia_r = julia_i = 0; } // Create random palette for displaying the fractal set. const CImg palette = CImg(256,1,1,3,16 + 120).noise(119,1).resize(1024,1,1,3,3).fillC(0,0,0,0,0,0); // Enter event loop for the current fractal set. for (unsigned int maxiter = 64; !stopflag; ) { // Draw Mandelbrot or Julia fractal set on the image. img.resize(disp.resize().set_title("[#7] - %s Set : (%g,%g)-(%g,%g), %s = (%g,%g) (%u iter.)", fractal_type?"Julia":"Mandelbrot",xmin,ymin,xmax,ymax, fractal_type?"c":"z0",julia_r,julia_i,maxiter)). fill(0).draw_mandelbrot(palette,1,xmin,ymin,xmax,ymax,maxiter,smooth,fractal_type,julia_r,julia_i); // Display help if necessary. if (show_help) { const unsigned char white[] = { 255, 255, 255 }; static CImg help = CImg().draw_text(0,0,"\n" " Use mouse to zoom on desired region. \n" " H Show/Hide help \n" " PAD 1...9 Fractal navigation \n" " PAD +/- Zoom/Unzoom \n" " SPACE Set/Disable color smoothing \n" " ENTER Switch Mandelbrot/Julia sets \n" " Arrows Change set parameterization \n" " Page UP/DOWN Add/Reduce iteration numbers \n\n", white).resize(-100,-100,1,3); help.draw_rectangle(2,2,help.width() - 3,help.height() - 3,white,1,~0U); img.draw_image(img.width() - help.width(),help,0.7f); } // Get rectangular shape from the user to define the zoomed region. const CImg selection = img.get_select(disp,2,0,true); const int xs0 = selection[0], ys0 = selection[1], xs1 = selection[3], ys1 = selection[4]; // If the user has selected a region with the mouse, then zoom-in ! if (xs0>=0 && ys0>=0 && xs1>=0 && ys1>=0) { const double dx =(xmax - xmin)/img.width(), dy =(ymax - ymin)/img.height(); const int dsmax = (ys1 - ys0)/2, xs = (xs0 + xs1)/2, ys = (ys0 + ys1)/2; // If the region is too small (point) then reset the fractal set position and zoom. if (dsmax<5) stopflag = true; xmin+=(xs - dsmax*dy/dx)*dx; ymin+=(ys - dsmax)*dy; xmax-=(img.width() - xs - dsmax*dy/dx)*dx; ymax-=(img.height() - ys - dsmax)*dy; } // Also, test if a key has been pressed. // (moving in the fractal set can be done, using keyboard). switch (disp.key()) { // Show/hide help. case cimg::keyH: show_help = !show_help; break; // Switch between Julia/Mandelbrot sets. case cimg::keyENTER: fractal_type = !fractal_type; stopflag = true; break; // Enable/disable smoothed colors. case cimg::keySPACE: smooth = !smooth; break; // Change fractal set parameters. case cimg::keyARROWLEFT: julia_r-=fractal_type?0.001f:0.05f; break; case cimg::keyARROWRIGHT: julia_r+=fractal_type?0.001f:0.05f; break; case cimg::keyARROWUP: julia_i+=fractal_type?0.001f:0.05f; break; case cimg::keyARROWDOWN: julia_i-=fractal_type?0.001f:0.05f; break; // Add/remove iterations. case cimg::keyPAGEDOWN: maxiter-=32; break; case cimg::keyPAGEUP: maxiter+=16; break; // Move left, right, up and down in the fractal set. case cimg::keyPAD4: { const double delta = (xmax - xmin)/10; xmin-=delta; xmax-=delta; } break; case cimg::keyPAD6: { const double delta = (xmax - xmin)/10; xmin+=delta; xmax+=delta; } break; case cimg::keyPAD8: { const double delta = (ymax - ymin)/10; ymin-=delta; ymax-=delta; } break; case cimg::keyPAD2: { const double delta = (ymax - ymin)/10; ymin+=delta; ymax+=delta; } break; // Allow to zoom in/out in the fractal set. case cimg::keyPADADD: { const double xc = 0.5*(xmin + xmax), yc = 0.5*(ymin + ymax), dx = (xmax - xmin)*0.85/2, dy = (ymax - ymin)*0.85/2; xmin = xc - dx; ymin = yc - dy; xmax = xc + dx; ymax = yc + dy; } break; case cimg::keyPADSUB: const double xc = 0.5*(xmin + xmax), yc = 0.5*(ymin + ymax), dx = (xmax - xmin)*1.15/2, dy = (ymax - ymin)*1.15/2; xmin = xc - dx; ymin = yc - dy; xmax = xc + dx; ymax = yc + dy; break; } // Do a simple test to check if more/less iterations are necessary for the next step. const float value = (float)img.get_norm().get_histogram(256,0,255)(0)*3; if (value>img.size()/6.0f) maxiter+=16; if (maxiter>1024) maxiter = 1024; if (value img(256,256 + 64,1,3,0); unsigned char color[] = { 255, 255, 255 }; cimg_for_inY(img,256,img.height() - 1,yy) cimg_forX(img,xx) img.fillC(xx,yy,0,xx,(yy - 256)*4,(3*xx)%256); CImgDisplay disp(img.draw_text(5,5," ",color,color),"[#8] - Mini-Paint"); while (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) { const unsigned int but = disp.button(); redraw = false; xo = x; yo = y; x = disp.mouse_x(); y = disp.mouse_y(); if (xo>=0 && yo>=0 && x>=0 && y>=0) { if (but&1 || but&4) { if (y<253) { const float tmax = (float)std::max(cimg::abs(xo - x),cimg::abs(yo - y)) + 0.1f; const int radius = (but&1?3:0) + (but&4?6:0); for (float t = 0; t<=tmax; ++t) img.draw_circle((int)(x + t*(xo - x)/tmax),(int)(y + t*(yo - y)/tmax),radius,color); } if (y>=256) { color[0] = img(x,y,0); color[1] = img(x,y,1); color[2] = img(x,y,2); img.draw_text(5,5," ",color,color); } redraw = true; } if (y>=253) y = 252; if (disp.button()&2) { img.draw_fill(x,y,color); redraw = true; } } if (redraw) disp.display(img); disp.resize(disp).wait(); if (disp.key()) cimg_forC(img,k) { img.get_shared_rows(0,255,0,k).fill(0); img.display(disp); } } return 0; } // Item : Soccer Bobs //------------------- void* item_soccer_bobs() { CImg foot(data_foot,200,200,1,3,false), canvas0(640,480,1,3,0); const unsigned char color[] = { 255, 255, 0 }; float zoom = 0.2f; cimg_forXY(canvas0,x,y) canvas0(x,y,1) = (unsigned char)(20 + (y*215/canvas0.height()) + 19*cimg::rand(-1,1)); canvas0.draw_text(5,5,"Left/Right Mouse Button = Zoom In/Out\nMiddle Button = Reset Screen",color); CImgList canvas(16,canvas0); CImg mask(foot.width(),foot.height()); cimg_forXY(mask,x,y) mask(x,y) = (foot(x,y,0)==255 && !foot(x,y,1) && !foot(x,y,2))?0:0.8f; CImgDisplay disp(canvas0,"[#9] - Unlimited Soccer Bobs"); for (unsigned int curr_canvas = 0; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); (++curr_canvas) %= 16) { if (disp.mouse_x()>=0 && disp.mouse_y()>=0) canvas[curr_canvas].draw_image((int)(disp.mouse_x() - zoom*foot.width()/2), (int)(disp.mouse_y() - zoom*foot.height()/2), foot.get_resize((int)(foot.width()*zoom),(int)(foot.height()*zoom)), mask.get_resize((int)(foot.width()*zoom),(int)(foot.height()*zoom))); zoom+=disp.button()&1?0.03f:disp.button()&2?-0.03f:0; zoom = zoom<0.1f?0.1f:zoom>1?1.0f:zoom; if (disp.button()&4) cimglist_for(canvas,l) canvas[l] = canvas0; if (disp.is_keyCTRLLEFT() && disp.is_keyF()) disp.toggle_fullscreen(false); disp.display(canvas[curr_canvas]).resize(disp,false).wait(20); } return 0; } // Item : Bump Effect //-------------------- void* item_bump() { CImg logo = CImg<>(56,32,1,1,0).draw_text(12,3,"I Love\nCImg !",CImg<>::vector(255).data()). resize(-800,-800,1,1,3).blur(6).normalize(0,255); logo+=CImg<>(logo.width(),logo.height(),1,1,0).noise(80,1).deriche(2,0,'y',false).deriche(10,0,'x',false); CImgList grad = logo.get_gradient(); cimglist_apply(grad,normalize)(-140,140); logo.normalize(0,255); CImg light = CImg<>(300 + 2*logo.width(),300 + 2*logo.height()); light.draw_gaussian(0.5f*light.width(),0.5f*light.height(),80,CImg<>::vector(255).data()); CImg img(logo.width(),logo.height(),1,3,0); CImgDisplay disp(img,"[#10] - Bump Effect (Move lightsource with mouse)"); for (float t = 0; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); t+=0.03f) { const int mouse_x = (disp.mouse_x()>=0 && disp.button())?disp.mouse_x()*img.width()/disp.width(): (int)(img.width()/2 + img.width()*std::cos(1*t)/2), mouse_y = (disp.mouse_y()>=0 && disp.button())?disp.mouse_y()*img.height()/disp.height(): (int)(img.height()/2 + img.height()*std::sin(3*t)/2); cimg_forXY(img,x,y) { const int gx = (int)grad[0](x,y), gy = (int)grad[1](x,y); const float val = 40 + (gx + gy)/2 + light(light.width()/2 + mouse_x - x + gx, light.height()/2 + mouse_y - y + gy); img(x,y,0) = img(x,y,1) = img(x,y,2) = (unsigned char)(val>255?255:val<0?0:val); } disp.resize(false).display(img.draw_image(0,0,0,1,logo,0.1f)).wait(25); if (disp.is_keyCTRLLEFT() && disp.is_keyF()) disp.resize(640,480,false).toggle_fullscreen(false); } return 0; } // Item : Bouncing Bubble //------------------------ void* item_bouncing_bubble() { CImg back(420,256,1,3,0), img; cimg_forXY(back,x,y) back(x,y,2) = (unsigned char)((y<2*back.height()/3)?30:(255 - 2*(y + back.height()/2))); CImgDisplay disp(back,"[#11] - Bouncing bubble"); const unsigned char col1[] = { 40, 100, 10 }, col2[] = { 20, 70, 0 }, col3[] = { 40, 150, 10 }, col4[] = { 200, 255, 100 }, white[] = { 255, 255, 255 }; float u = (float)std::sqrt(2.0f), cx = back.width()/2.0f, t = 0, vt = 0.05f, vx = 2; while (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) { img = back; int xm = (int)cx, ym = (int)(img.height()/2 - 70 + (img.height()/2 + 10)*(1 - cimg::abs(std::cos((t+=vt))))); float r1 = 50, r2 = 50; vt = 0.05f; if (xm + r1>=img.width()) { const float delta = (xm + r1) - img.width(); r1-=delta; r2+=delta; } if (xm - r1<0) { const float delta = -(xm - r1); r1-=delta; r2+=delta; } if (ym + r2>=img.height() - 40) { const float delta = (ym + r2) - img.height() + 40; r2-=delta; r1+=delta; vt = 0.05f - 0.0015f*(50 - r2); } if (ym - r2<0) { const float delta = -(ym - r2); r2-=delta; r1+=delta; } img.draw_ellipse(xm,ym,r1,r2,0,col1). draw_ellipse((int)(xm + 0.03*r1*u),(int)(ym - 0.03*r2*u),0.85f*r1,0.85f*r2,0,col2). draw_ellipse((int)(xm + 0.1*r1*u),(int)(ym - 0.1*r2*u),0.8f*r1,0.8f*r2,0,col1). draw_ellipse((int)(xm + 0.2*r1*u),(int)(ym - 0.2*r2*u),r1/2,r2/2,0,col3). draw_ellipse((int)(xm + 0.3*r1*u),(int)(ym - 0.3*r2*u),r1/4,r2/4,0,col4). draw_image(0,img.height() - 40,img.get_crop(0,img.height() - 80,img.width() - 1,img.height() - 40). mirror('y'),0.45f). draw_text(xm - 70,(int)(ym - r2 - 30),"Bubble (%d,%d)",white,0,0.7f,24,xm,ym); if ((cx+=20*vt*vx)>=img.width() - 30 || cx<30) vx = -vx; disp.display(img).wait(20); if (disp.is_resized()) { back.resize(disp.resize(disp.window_width()>200?disp.window_width():200,disp.height(),false)); cx = back.width()/2.0f; } } return 0; } // Item : Virtual Landscape //-------------------------- void* item_virtual_landscape() { CImg background(400,300,1,3,0), visu(background); cimg_forXY(background,x,y) { if (y>background.height()/2) { background(x,y,2) = 255; background(x,y,0) = (y - background.height()/2)*512/background.height(); } else background(x,y,2) = y*512/background.height(); } const int white[] = { 255, 255, 255 }; CImgDisplay disp(visu.draw_text(10,10,"Please wait, generating landscape...",white). normalize(0,255),"[#12] - Virtual Landscape",0); CImg map = 5.0*(CImg<>(700,700,1,1,300).noise(300).draw_plasma(0.2f,300).normalize(-140,150).blur(5).cut(0,150)), cmap(map.width(),map.height()); CImg_3x3(I,float); Ipp = Inp = Icc = Ipn = Inn = 0; cimg_for3x3(map,x,y,0,0,I,float) { const float nox = 0.5f*(Inc - Ipc), noy = 0.5f*(Icn - Icp); cmap(x,y) = std::max(0.0f,0.5f*nox + noy); } cmap.normalize(0,255); for (float t = 0; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); t+=0.0025f) { visu = background; const int xm = (int)(map.width()/2 + (map.width()/3)*std::cos(4.2f*t)), ym = (int)(map.height()/2 + (map.height()/3)*std::sin(5.6f*t)); const CImg smap = map.get_crop(xm,ym,xm + 100,ym + 90), scmap = cmap.get_crop(xm,ym,xm + 100,ym + 90); CImg ymin(visu.width(),1,1,1,visu.height()), ymax(ymin.width(),1,1,1,0); cimg_forY(smap,z) { const int y0 = (int)(visu.height() - 1 - 10*std::pow((double)z,0.63) + 80); cimg_forX(visu,x) { const int nz = smap.height() - z; float mx = x*(smap.width() - 2.0f*nz*0.2f)/visu.width() + 0.2f*nz; const int y = (int)(y0 - smap.linear_atX(mx,z)/(1 + 0.02*z)); const float cc = (float)scmap.linear_atX(mx,z); if (y0.25?1:4*cz; if (y!=y0) for (int l = y>0?y:0; l0?y:0; l plasma, camp(3), cfreq(3), namp(3), nfreq(3); CImgList font = CImgList::font(53); CImg visu(400,300,1,3,0), scroll(visu.width() + 2*font[(int)'W'].width(),font[(int)'W'].height(),1,1,0); const char *text = " * The CImg Library : C++ Template Image Processing Toolkit *"; CImgDisplay disp(visu,"[#13] - Plasma Effect"); const unsigned char white[] = { 255, 255, 255 }; unsigned int cplasma = 0, pos = 0, tpos = 0, lwidth = 0; float tx = 0, ts = 0, alpha = 2, beta = 0; namp.fill(0).noise(visu.height()/4,0); nfreq.fill(0).noise(0.1); visu.draw_text(10,10,"Please wait, generating plasma...",white).display(disp); const unsigned int nb_plasmas = 5; plasma.assign(5*visu.width()/3,visu.height() + 1,1,nb_plasmas,0).noise(100).draw_plasma(); cimg_forC(plasma,k) plasma.get_shared_channel(k).blur((float)(cimg::rand()*6)).normalize(0,255); while (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) { if (alpha>1) { alpha-=1; cplasma = (cplasma + 1)%plasma.spectrum(); camp = namp; cfreq = nfreq; namp.fill(0).noise(100).normalize(0,visu.height()/4.0f); nfreq.fill(0).noise(0.2); } const unsigned int v0 = cplasma, v1 = (cplasma + 1)%plasma.spectrum(), v2 = (cplasma + 2)%plasma.spectrum(), v3 = (cplasma + 3)%plasma.spectrum(); const float umalpha = 1 - alpha; unsigned char *ptr_r = visu.data(0,0,0,0), *ptr_g = visu.data(0,0,0,1), *ptr_b = visu.data(0,0,0,2); cimg_forY(visu,y) { const float *ptr_r1 = plasma.data((unsigned int)std::max(0.0f,camp(0)*(1.1f + std::sin(tx + cfreq(0)*y))),y,v0), *ptr_g1 = plasma.data((unsigned int)std::max(0.0f,camp(1)*(1.1f + std::sin(tx + cfreq(1)*y))),y,v1), *ptr_b1 = plasma.data((unsigned int)std::max(0.0f,camp(2)*(2.0f + std::sin(tx + cfreq(2)*y))),y,v2), *ptr_r2 = plasma.data((unsigned int)std::max(0.0f,namp(0)*(1.1f + std::sin(tx + nfreq(0)*y))),y,v1), *ptr_g2 = plasma.data((unsigned int)std::max(0.0f,namp(1)*(1.1f + std::sin(tx + nfreq(1)*y))),y,v2), *ptr_b2 = plasma.data((unsigned int)std::max(0.0f,namp(2)*(2.0f + std::sin(tx + nfreq(2)*y))),y,v3); cimg_forX(visu,x) { *(ptr_r++) = (unsigned char)(umalpha*(*(ptr_r1++)) + alpha*(*(ptr_r2++))); *(ptr_g++) = (unsigned char)(umalpha*(*(ptr_g1++)) + alpha*(*(ptr_g2++))); *(ptr_b++) = (unsigned char)(umalpha*(*(ptr_b1++)) + alpha*(*(ptr_b2++))); } } if (!pos) { const CImg& letter = font(text[tpos] + 256); lwidth = (unsigned int)letter.width(); scroll.draw_image(visu.width(),letter); (++tpos) %= std::strlen(text); } scroll.shift(-2); if ((pos+=2)>lwidth + 2) pos = 0; cimg_forX(visu,x) { const int y0 = (int)(visu.height()/2 + visu.height()/4*std::sin(ts + x/(70 + 30*std::cos(beta)))); cimg_forY(scroll,y) if (scroll(x,y)) { const unsigned int y1 = y0 + y + 2; const unsigned int y2 = y1 - 6; const float c = scroll(x,y)/255.0f; cimg_forC(visu,k) { visu(x,y1,k) = (unsigned char)(visu(x,y1,k)*0.7f); visu(x,y2,k) = (unsigned char)(visu(x,y2,k)*(1 - c) + 254*c); } } } alpha+=0.007f; beta+=0.04f; tx+=0.09f; ts+=0.04f; disp.resize(false).display(visu).wait(20); if (disp.is_keyCTRLLEFT() && disp.is_keyF()) disp.resize(640,480,false).toggle_fullscreen(false); } return 0; } // Item : Oriented Convolutions //------------------------------ void* item_oriented_convolutions() { const CImg img = CImg(data_milla,211,242,1,3).RGBtoYCbCr().channel(0).noise(50,2); CImgList visu = (img,img,img); CImg mask(16,16); const float value = 255; CImgDisplay disp(visu,"[#14] - Original image, Oriented kernel and Convolved image"); for (float angle = 0; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); angle+=0.1f) { const float ca = (float)std::cos(angle), sa = (float)std::sin(angle); const CImg u = CImg<>::vector(ca,sa), v = CImg<>::vector(-sa,ca), tensor = 30.0*u*u.get_transpose() + 2.0*v*v.get_transpose(); mask.draw_gaussian(0.5f*mask.width(),0.5f*mask.height(),tensor,&value); mask/=mask.sum(); visu[1] = mask.get_resize(img).normalize(0,255). draw_text(2,2,"Angle = %d deg",&value,0,1,13,cimg::mod((int)(angle*180/cimg::PI),360)); visu[2] = img.get_convolve(mask); disp.resize(disp.window_width(),(int)(disp.height()*disp.window_width()/disp.width()),false). display(visu).wait(25); } return 0; } // Item : Shade Bobs //------------------- void* item_shade_bobs() { float t = 100, rx = 0, ry = 0, rz = 0, rt = 0, rcx = 0; CImg img(512,512,1,1,0), palette; CImgDisplay disp(img,"[#15] - Shade Bobs"); const unsigned char one = 1; int nbbobs = 0, rybobs = 0; while (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) { if ((t+=0.015f)>4*cimg::PI) { img.fill(0); rx = (float)(cimg::rand(-1,1)); ry = (float)(cimg::rand(-1,1)); rz = (float)(cimg::rand(-1,1)); rt = (float)(cimg::rand(-1,1)); rcx = 0.6f*(float)(cimg::rand(-1,1)); t = 0; palette = CImg(3,4 + (int)(12*cimg::rand()),1,1,0).noise(255,2).resize(3,256,1,1,3); palette(0) = palette(1) = palette(2) = 0; nbbobs = 20 + (int)(cimg::rand()*80); rybobs = (10 + (int)(cimg::rand()*50))*std::min(img.width(),img.height())/300; } for (int i = 0; i tmp(img); cimg_for3x3(tmp,x,y,0,0,I,unsigned char) img(x,y) = (Inc + Ipc + Icn + Icp + (Icc<<2))>>3; CImg visu(img.width(),img.height(),1,3); cimg_forXY(visu,xx,yy) { const unsigned char *col = palette.data(0,img(xx,yy)); visu(xx,yy,0) = *(col++); visu(xx,yy,1) = *(col++); visu(xx,yy,2) = *(col++); } disp.display(visu).wait(25); if (disp.is_keyCTRLLEFT() && disp.is_keyF()) disp.resize(640,480,false).toggle_fullscreen(false); if (disp.is_resized()) img.resize(disp.resize(false),3); if ((disp.key() && !disp.is_keyCTRLLEFT()) || disp.button()) { t = 70; if (!(disp.is_keyQ() || disp.is_keyESC())) disp.set_key(); disp.set_button(); } } return 0; } // Item : Fourier Filtering //------------------------- void* item_fourier_filtering() { const CImg img = CImg(data_milla,211,242,1,3).RGBtoYCbCr().channel(0).resize(256,256); CImgList F = img.get_FFT(); cimglist_apply(F,shift)(img.width()/2,img.height()/2,0,0,2); const CImg mag = ((F[0].get_pow(2) + F[1].get_pow(2)).sqrt() + 1).log().normalize(0,255); CImgList visu(img,mag); CImgDisplay disp(visu,"[#16] - Fourier Filtering (Click to set filter)"); CImg mask(img.width(),img.height(),1,1,1); const unsigned char one[] = { 1 }, zero[] = { 0 }, white[] = { 255 }; int rmin = 0, rmax = 256; while (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) { disp.wait(); const int xm = disp.mouse_x()*2*img.width()/disp.width() - img.width(), ym = disp.mouse_y()*img.height()/disp.height(), x = xm - img.width()/2, y = ym - img.height()/2; if (disp.button() && xm>=0 && ym>=0) { const int r = (int)std::max(0.0f,(float)std::sqrt((float)x*x + y*y) - 3); if (disp.button()&1) rmax = r; if (disp.button()&2) rmin = r; if (rmin>=rmax) rmin = std::max(rmax - 1,0); mask.fill(0).draw_circle(mag.width()/2,mag.height()/2,rmax,one). draw_circle(mag.width()/2,mag.height()/2,rmin,zero); CImgList nF(F); cimglist_for(F,l) nF[l].mul(mask).shift(-img.width()/2,-img.height()/2,0,0,2); visu[0] = nF.FFT(true)[0].normalize(0,255); } if (disp.is_resized()) disp.resize(disp.window_width(),disp.window_width()/2).display(visu); visu[1] = mag.get_mul(mask).draw_text(5,5,"Freq Min/Max = %d / %d",white,zero,0.6f,13,(int)rmin,(int)rmax); visu.display(disp); } return 0; } // Item : Image Zoomer //--------------------- void* item_image_zoomer() { const CImg img = CImg(data_logo,555,103,1,3,false); CImgDisplay disp(img,"[#17] - Original Image"), dispz(500,500,"[#17] - Zoomed Image",0); disp.move((CImgDisplay::screen_width() - dispz.width())/2, (CImgDisplay::screen_height() - dispz.height() - disp.height())/2); dispz.move(disp.window_x(),disp.window_y() + disp.window_height() + 40); int factor = 20, x = 0, y = 0; bool grid = false, redraw = false; while (!disp.is_closed() && !dispz.is_closed() && !disp.is_keyQ() && !dispz.is_keyQ() && !disp.is_keyESC() && !dispz.is_keyESC()) { if (disp.mouse_x()>=0) { x = disp.mouse_x(); y = disp.mouse_y(); redraw = true; } if (redraw) { const int x0 = x - factor, y0 = y - factor, x1 = x + factor, y1 = y + factor; const unsigned char red[] = { 255, 0, 0 }, black[] = { 0, 0, 0 }, white[] = { 255, 255, 255 }; (+img).draw_rectangle(x0,y0,x1,y1,red,1.0f,~0U).display(disp); CImg visu = img.get_crop(x0,y0,x1,y1).draw_point(x - x0,y - y0,red,0.2f).resize(dispz); if (grid) { const int bfac = 2*factor + 1; for (int i = 0; i100) factor = 100; disp.set_button(); redraw = true; } if (disp.button()&4 || dispz.button()) { grid = !grid; disp.set_button(); dispz.set_button(); redraw = true; } if (disp.is_resized()) disp.resize(disp); if (dispz.is_resized()) { dispz.resize(); redraw = true; } CImgDisplay::wait(disp,dispz); } return 0; } // Item : Blobs Editor //-------------------- void* item_blobs_editor() { CImg img(300,300,1,3); CImgList colors; CImgList blobs; CImgDisplay disp(img,"[#18] - Blobs Editor",0); const unsigned int white[] = { 255, 255, 255 }; bool moving = false; for (float alpha = 0; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); alpha+=0.1f) { const int xm = disp.mouse_x()*img.width()/disp.width(), ym = disp.mouse_y()*img.height()/disp.height(); int selected = -1; img.fill(0); if (blobs) { float dist = 0, dist_min = (float)img.width()*img.width() + img.height()*img.height(); cimglist_for(blobs,l) { const CImg& blob = blobs[l]; const float xb = blob[0], yb = blob[1], rb = blob[2], sigma = (float)(rb*(1 + 0.05f*std::cos(blob[3]*alpha))), sigma2 = 2*sigma*sigma, precision = 4.5f*sigma2; const int tx0 = (int)(xb - 3*sigma), ty0 = (int)(yb - 3*sigma), tx1 = (int)(xb + 3*sigma), ty1 = (int)(yb + 3*sigma); const unsigned int col1 = colors[l](0), col2 = colors[l](1), col3 = colors[l](2), wh = img.width()*img.height(), x0 = tx0<0?0:tx0, y0 = ty0<0?0:ty0, x1 = tx1>=img.width()?img.width() - 1:tx1, y1 = ty1>=img.height()?img.height() - 1:ty1; float dy = y0 - yb; unsigned int *ptr = img.data(x0,y0); for (unsigned int y = y0; y<=y1; ++y) { float dx = x0 - xb; for (unsigned int x = x0; x<=x1; ++x) { float _dist = dx*dx + dy*dy; if (_distimg.data(); ++off) { unsigned int val1 = *(--ptr1), val2 = *(--ptr2), val3 = *(--ptr3); const unsigned int pot = val1*val1 + val2*val2 + val3*val3; if (pot<128*128) { *ptr1 = *ptr3 = 255*off/wh; *ptr2 = 180*off/wh; } else { if (pot<140*140) { *ptr1 >>= 1; *ptr2 >>= 1; *ptr3 >>= 1; } else { *ptr1 = val1<255?val1:255; *ptr2 = val2<255?val2:255; *ptr3 = val3<255?val3:255; } } } cimglist_for(blobs,ll) { const CImg& blob = blobs[ll]; const int rb = (int)(blob[2]*(1 + 0.05f*std::cos(blob[3]*alpha))), xb = (int)(blob[0] + rb/2.5f), yb = (int)(blob[1] - rb/2.5f); img.draw_circle(xb,yb,rb>>1,white,0.2f).draw_circle(xb,yb,rb/3,white,0.2f). draw_circle(xb,yb,rb/5,white,0.2f); } } else { CImg text; text.draw_text(0,0, "CImg Blobs Editor\n" "-----------------------\n\n" "* Left mouse button :\n Create and Move Blob.\n\n" "* Right mouse button :\n Remove nearest Blob.\n\n" "* Colors and size of Appearing Blobs\n" " are randomly chosen.\n\n\n" " >> Press mouse button to start ! <<", white).resize(-100,-100,1,3); img.fill(100).draw_image((img.width() - text.width())/2, (img.height() - text.height())/2, text,text,1,255U); } if (disp.mouse_x()>=0 && disp.mouse_y()>=0) { if (disp.button()&1) { float dist_selected = 0; if (selected>=0) { const float a = xm - blobs[selected](0), b = ym - blobs[selected](1), c = blobs[selected](2); dist_selected = a*a + b*b - c*c; } if (moving || dist_selected<0) { blobs[selected](0) = (float)xm; blobs[selected](1) = (float)ym; } else { blobs.insert(CImg<>::vector((float)xm,(float)ym,(float)(10 + 30*cimg::rand()),(float)(3*cimg::rand()))); colors.insert(CImg<>(3).fill(0).noise(255,1).normalize(0,255)); } moving = true; } else moving = false; if (selected>=0 && disp.button()&2) { blobs.remove(selected); colors.remove(selected); disp.set_button(); } } img.display(disp.wait(25)); if (disp.is_resized()) { img.resize(disp.resize(false)); cimglist_for(blobs,l) if (blobs[l](0)>=img.width() || blobs[l](1)>=img.height()) { blobs.remove(l); colors.remove(l--); } } } return 0; } // Item : Double Torus //--------------------- void* item_double_torus() { CImg visu(300,256,1,3,0); CImgDisplay disp(visu,"[#19] - Double 3D Torus"); CImgList primitives; CImg points = CImg<>::torus3d(primitives,60,20), points2 = CImg<>::rotation_matrix(1,0,0,90)*points; CImgList colors(2*primitives.size(),CImg::vector(255,255,0)); cimglist_for(primitives,ll) colors[ll++].fill(100,255,100); cimglist_for(primitives,l) if (l%2) colors[primitives.size() + l].fill(255,200,255); else colors[primitives.size() + l].fill(200,150,255); const CImg opacities = CImg<>(primitives.size(),1,1,1,1.0f).append(CImg<>(primitives.size(),1,1,1,0.4f)); points.shift_object3d(-30,0,0).append_object3d(primitives,points2.shift_object3d(30,0,0),primitives); float alpha = 0, beta = 0, gamma = 0, theta = 0; while (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) { visu.get_shared_channels(1,2).fill(0); visu.get_shared_row(visu.height() - 1,0,0).noise(200,1); CImg_3x3(I,unsigned char); Ipp = Icp = Inp = Ipc = Inc = 0; cimg_for3x3(visu,x,y,0,0,I,unsigned char) visu(x,y,0) = (Icc + Ipn + Icn + Inn)>>2; for (unsigned int y = 0; y<100; ++y) std::memset(visu.data(0,y,0,2),255 - y*255/100,visu.width()); const CImg rpoints = CImg<>::rotation_matrix(1,1,0,(alpha+=1))*CImg<>::rotation_matrix(1,0,1,(beta-=2))* CImg<>::rotation_matrix(0,1,1,(gamma+=3))*points; if (disp.is_resized()) disp.resize(false); if (disp.is_keyCTRLLEFT() && disp.is_keyF()) disp.resize(300,256,false).toggle_fullscreen(false); visu.draw_object3d(visu.width()/2.0f,visu.height()/2.0f,0, rpoints,primitives,colors,opacities,4, false,500.0f,(float)(std::cos(theta+=0.01f) + 1)*visu.width()/2.0f, (float)visu.height(),-100.0f,0.1f,1.5f). display(disp.wait(25)); } return 0; } // Item : 3D Metaballs //--------------------- struct metaballs3d { float cx1, cy1, cz1, cx2, cy2, cz2, cx3, cy3, cz3; inline float operator()(const float x, const float y, const float z) const { const float x1 = x - cx1, y1 = y - cy1, z1 = z - cz1, x2 = x - cx2, y2 = y - cy2, z2 = z - cz2, x3 = x - cx3, y3 = y - cy3, z3 = z - cz3, r1 = 0.3f*(x1*x1 + y1*y1 + z1*z1), r2 = 0.4f*(x2*x2 + y2*y2 + z2*z2), r3 = 0.5f*(x3*x3 + y3*y3 + z3*z3); float potential = 0; if (r1<1.3f) potential+= 1.0f - r1*(r1*(4*r1 + 17) - 22)/9; if (r2<1.3f) potential+= 1.0f - r2*(r2*(4*r2 + 17) - 22)/9; if (r3<1.3f) potential+= 1.0f - r3*(r3*(4*r3 + 17) - 22)/9; return potential; } }; void* item_3d_metaballs() { CImg img = CImg(100,100,1,3,0).noise(100,2).draw_plasma(1,0,10). resize(512,320,1,3).blur(4); img.get_shared_channel(2)/=4; img.get_shared_channel(1)/=2; metaballs3d met; CImgList primitives; CImgList colors; const unsigned char white[] = { 255,255,255 }; float alpha = 0, beta = 0, delta = 0, theta = 0, gamma = 0; CImgDisplay disp(img,"[#20] - 3D Metaballs"); while (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) { met.cx2 = 1.5f*(float)std::cos(theta); met.cy2 = 2.5f*(float)std::sin(3*(theta+=0.017f)); met.cz2 = 0; met.cx1 = 0; met.cy1 = 2.0f*(float)std::sin(4*gamma); met.cz1 = 1.2f*(float)std::cos(2*(gamma-=0.0083f)); met.cx3 = 2.5f*(float)std::cos(2.5*delta); met.cy3 = 0; met.cz3 = 1.5f*(float)std::sin(2*(delta+=0.0125f)); const CImg points = CImg<>::isosurface3d(primitives,met,0.8f,-4.5f,-4.5f,-3.5f,4.5f,4.5f,3.5f,24,24,24), rot = 50.0*CImg<>::rotation_matrix(0,0,1,(alpha+=2))*CImg<>::rotation_matrix(1,1,0,(beta+=5.6f)), rpoints = rot*points; primitives.reverse_object3d(); if (colors.size() img(640,480,1,3,0); CImgDisplay disp(img,"[#21] - Fireworks (Click to add/explode rockets)"); CImgList colors; const unsigned char white[] = { 255,255,255 }, red[] = { 128,0,0 }; CImgList particles; float time = 0, speed = 100.0f; while (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) { if (disp.button()&1 || !particles.size() || (--time)<0) { particles.insert(CImg<>::vector((float)cimg::rand()*img.width(),(float)img.height(), (float)cimg::rand(-1,1)*4,-6 - (float)cimg::rand()*3, 30 + 60*(float)cimg::rand(),3)); colors.insert(CImg::vector(255,255,255)); time = (float)(cimg::rand()*speed); } img*=0.92f; cimglist_for(particles,l) { bool remove_particle = false; float &x = particles(l,0), &y = particles(l,1), &vx = particles(l,2), &vy = particles(l,3), &t = particles(l,4), &r = particles(l,5); const float r2 = (t>0 || t<-42)?r/3:r*(1 - 2*(-(t + 2)/40.0f)/3); img.draw_ellipse((int)x,(int)y,r,r2,(float)(std::atan2(vy,vx)*180/cimg::PI),colors[l].data(),0.6f); x+=vx; y+=vy; vy+=0.09f; t--; if (y>img.height() + 10 || x<0 || x>=img.width() + 10) remove_particle = true; if (t<0 && t>=-1) { if ((speed*=0.9f)<10) speed=10.0f; const unsigned char cr = (unsigned char)std::min(50 + 3*(unsigned char)(100*cimg::rand()), 255), cg = (unsigned char)std::min(50 + 3*(unsigned char)(100*cimg::rand()), 255), cb = (unsigned char)std::min(50 + 3*(unsigned char)(100*cimg::rand()), 255); const float di = 10 + (float)cimg::rand()*60, nr = (float)cimg::rand()*30; for (float i=0; i<360; i+=di) { const float rad = i*(float)cimg::PI/180, c = (float)std::cos(rad), s = (float)std::sin(rad); particles.insert(CImg<>::vector(x,y,2*c + vx/1.5f,2*s + vy/1.5f,-2.0f,nr)); colors.insert(CImg::vector(cr,cg,cb)); } remove_particle = true; } else if (t<-1) { r*=0.95f; if (r<0.5f) remove_particle=true; } if (remove_particle) { particles.remove(l); colors.remove(l); l--; } } if (disp.button()&2) cimglist_for(particles,l) if (particles(l,4)>0) particles(l,4)=0.5f; img.draw_text(5,5," %u frames/s ",white,red,0.5f,13,(unsigned int)disp.frames_per_second()); disp.display(img).wait(25); if (disp.is_keyCTRLLEFT() && disp.is_keyF()) disp.resize(640,480,false).toggle_fullscreen(false); if (disp.is_resized()) disp.resize(disp,false); } return 0; } // Item : Rubber Logo //-------------------- void* item_rubber_logo() { const unsigned char white[] = { 255,255,255 }; CImg background = CImg(300,300).noise(100,2); background(0,0) = background(299,0) = background(299,299) = background(0,299) = 0; background.draw_plasma().blur(1.0f,14.0f,0.0f,0).resize(-100,-100,1,3); CImgDisplay disp(CImg(background). draw_text(10,10,"Please wait, generating rubber object...",white),"[#22] - 3D Rubber Logo"); CImg vol = CImg().draw_text(30,30,"CImg",white,0,1,57).resize(-100,-100,15,1); for (unsigned int k = 0; k<5; ++k) { vol.get_shared_slice(k).fill(0); vol.get_shared_slice(vol.depth()-1-k).fill(0); } vol.resize(vol.width() + 30,vol.height() + 30,-100,1,0).blur(2).resize(-50,-50); CImgList faces; CImg points = vol.get_isosurface3d(faces,45); CImgList colors(faces.size(),CImg::vector(100,100,255)); cimglist_for(colors,l) { const float x = (points(faces(l,0),0) + points(faces(l,1),0) + points(faces(l,2),0))/3; if (x<30.3) colors[l] = CImg::vector(255,100,100); else { if (x<34.6) colors[l] = CImg::vector(200,155,100); else { if (x<55.5) colors[l] = CImg::vector(100,255,155); }}} faces.reverse_object3d(); points.shift_object3d()*=5.5f; CImgList frames(100,background); bool ok_visu = false; unsigned int nb_frame = 0; float alpha = 0, beta = 0, gamma = 0; while (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) { CImg& frame = frames[nb_frame++]; if (nb_frame>=frames.size()) { ok_visu = true; nb_frame = 0; } const CImg rot = CImg<>::rotation_matrix(0,1,0.2f,alpha+=1.1f)* CImg<>::rotation_matrix(1,0.4f,1,beta+=1.5f)* (1 + 0.1f*std::cos((double)(gamma+=0.1f))); (frame=background).draw_object3d(frame.width()/2.0f,frame.height()/2.0f,frame.depth()/2.0f, rot*points,faces,colors,5,false,500,0,0,-5000,0.1f,1.0f); if (ok_visu) { CImg visu(frame); cimglist_for(frames,l) { const unsigned int y0 = l*visu.height()/frames.size(), y1 = (l + 1)*visu.height()/frames.size() - 1; cimg_forC(visu,k) visu.get_shared_rows(y0,y1,0,k) = frames[(nb_frame + l)%frames.size()].get_shared_rows(y0,y1,0,k); } visu.get_resize(disp,1).draw_text(5,5," %u frames/s ",white,0,0.5f,13,(unsigned int)disp.frames_per_second()). display(disp.wait(20)); } if (disp.is_keyCTRLLEFT() && disp.is_keyF()) disp.resize(300,300,false).toggle_fullscreen(false); if (disp.is_resized()) disp.resize(); } return 0; } // Item : Image Waves //-------------------- void* item_image_waves() { const CImg img = CImg(data_milla,211,242,1,3,false).get_resize(128,128,1,3); CImgList faces0; CImgList colors0; const CImgList points0 = (img.get_elevation3d(faces0,colors0,img.get_channel(0).fill(0)).shift_object3d()*=3)<'x', opacities0(faces0.size(),1,1,1,1,1.0f); CImg back = CImg(400,300,1,3).sequence(0,130), ball = CImg(12,12,1,3,0).draw_circle(6,6,5,CImg::vector(0,128,64).data()); const CImg mball = CImg<>(12,12,1,1,0).draw_circle(6,6,5,CImg<>::vector(1.0f).data()); ball.draw_circle(7,5,4,CImg::vector(16,96,52).data()). draw_circle(8,4,2,CImg::vector(0,128,64).data()). draw_circle(8,4,1,CImg::vector(64,196,128).data()); CImg uc(img.width()/2,img.height()/2,1,1,0), up(uc), upp(uc); CImgList particles; CImgDisplay disp(back,"[#23] - Image Waves (Try mouse buttons!)"); for (float alpha = 0.0f, count = 10.0f; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); ) { if ((disp.button()&1 && disp.mouse_x()>=0) || --count<0) { CImg<>::vector((float)(cimg::rand()*(img.width() - 1)),(float)(cimg::rand()*(img.height() - 1)),-200,0). move_to(particles); count = (float)(cimg::rand()*15); } alpha = (disp.mouse_x()>=0 && disp.button()&2)?(float)(disp.mouse_x()*2*180/disp.width()):(alpha + 2); if (disp.is_keyCTRLLEFT() && disp.is_keyF()) disp.resize(400,300,false).toggle_fullscreen(false); cimglist_for(particles,l) { float& z = up((int)particles(l,0)>>1,(int)particles(l,1)>>1); if ((particles(l,2)+=(particles(l,3)+=0.5f))>z-10) { z = 250.0f; particles.remove(l--); } } CImg_3x3(U,float); Upp = Unp = Ucc = Upn = Unn = 0; cimg_for3x3(up,x,y,0,0,U,float) uc(x,y) = (Unc + Upc + Ucn + Ucp)/2 - upp(x,y); (uc-=(float)(uc.blur(0.7f).mean())).swap(upp).swap(up); CImgList points(points0); CImgList faces(faces0); CImgList colors(colors0); CImgList opacities(opacities0); cimglist_for(points,p) points(p,2) = std::min(30 + uc.linear_atXY((p%img.width())/2.0f,(p/img.width())/2.0f),70.0f); cimglist_for(particles,l) { points.insert(CImg<>::vector(3*(particles(l,0) - img.width()/2.0f),3*(particles(l,1) - img.height()/2.0f),30.0f + particles(l,2))); faces.insert(CImg::vector(points.size() - 1)); colors.insert(ball,~0U,true); opacities.insert(mball,~0U,true); } const CImg rot = CImg<>::rotation_matrix(1.0f,0,0,-60)*CImg<>::rotation_matrix(0,0,1.0f,-alpha), rpoints = rot*(points>'x'); (+back).draw_object3d(back.width()/2.0f,back.height()/2.0f,0,rpoints,faces,colors,opacities,4,false, 500.0f,0,0,0,1,1).display(disp.resize(false).wait(30)); } return 0; } // Item : Breakout //----------------- void* item_breakout() { // Init graphics CImg board(8,10,1,1,0), background = CImg(board.width()*32,board.height()*16 + 200,1,3,0).noise(20,1). draw_plasma().blur(1,8,0,true), visu0(background/2.0), visu(visu0), brick(16,16,1,1,200), racket(64,8,1,3,0), ball(8,8,1,3,0); const unsigned char white[] = { 255,255,255 }, green1[] = { 60,150,30 }, green2[] = { 130,255,130 }; cimg_for_borderXY(brick,x,y,1) brick(x,y) = x>y?255:128; cimg_for_insideXY(brick,x,y,1) brick(x,y) = (unsigned char)std::min(255,64 + 8*(x + y)); brick.resize(31,15,1,1,1).resize(32,16,1,1,0); ball.draw_circle(4,4,2,white); ball-=ball.get_erode(3)/1.5; racket.draw_circle(4,3,4,green1).draw_circle(3,2,2,green2); cimg_forY(racket,y) racket.draw_rectangle(4,y,racket.width() - 7,y, CImg::vector((unsigned char)(y*4), (unsigned char)(255 - y*32), (unsigned char)(255 - y*25)).data()); racket.draw_image(racket.width()/2,racket.get_crop(0,0,racket.width()/2 - 1,racket.height() - 1).mirror('x')); const int w = visu.width(), h = visu.height(), w2 = w/2, h2 = h/2, bw = ball.width(), bh = ball.height(), bw2 = bw/2, bh2 = bh/2, rw = racket.width(), rh = racket.height(), rw2 = rw/2; float xr = (float)(w - rw2), oxr = (float)xr, xb = 0, yb = 0, oxb = 0, oyb = 0, vxb = 0, vyb = 0; const CImg racket_mask = racket.get_threshold(1).channel(1), ball_mask = ball.get_threshold(1).channel(1); // Begin game loop CImgDisplay disp(visu,"[#24] - Breakout"); disp.move((CImgDisplay::screen_width() - w)/2,(CImgDisplay::screen_height() - h)/2); for (unsigned int N = 0, N0 = 0; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); ) { if (N0) { int X = (int)xr; if (disp.mouse_x()>=0) X = (int)(w2 + ((disp.mouse_x()<0?w2:disp.mouse_x()) - w2)*2); else disp.set_mouse(xr>w2?w - 81:80,h2); if (X=w - rw2) { X = w - rw2 - 1; disp.set_mouse(w - 81,h2); } oxr = xr; xr = (float)X; oxb = xb; oyb = yb; xb+=vxb; yb+=vyb; if ((xb>=w - bw2) || (xb=h - rh - 8 - bh2 && yb=xb) { xb = oxb; yb = h - rh - 8.0f - bh2; vyb=-vyb; vxb+=(xr - oxr)/4; if (cimg::abs(vxb)>8) vxb*=8/cimg::abs(vxb); } if (yb=((cX + 1)<<5)) vxb=-vxb; else if (oyb<(cY<<4) || oyb>=((cY + 1)<<4)) vyb=-vyb; } } disp.set_title("[#24] - Breakout : %u/%u",N,N0); } if (yb>h || N==N0) { disp.show_mouse(); while (!disp.is_closed() && !disp.key() && !disp.button()) { ((visu=visu0)/=2).draw_text(50,visu.height()/2 - 10,N0?" Game Over !":"Get Ready ?",white,0,1,24). display(disp); disp.wait(); if (disp.is_resized()) disp.resize(disp); } board.fill(0); visu0 = background; cimg_forXY(board,x,y) if (0.2f + cimg::rand(-1,1)>=0) { CImg cbrick = CImg::vector(100 + cimg::rand()*155,100 + cimg::rand()*155,100 + cimg::rand()*155). unroll('v').resize(brick.width(),brick.height()); cimg_forC(cbrick,k) (cbrick.get_shared_channel(k).mul(brick))/=255; visu0.draw_image(x*32,y*16,cbrick); board(x,y) = 1; } N0 = (int)board.sum(); N = 0; oxb = xb = (float)w2; oyb = yb = board.height()*16.0f + bh; vxb = 2.0f; vyb = 3.0f; disp.hide_mouse(); } else disp.display((visu=visu0).draw_image((int)(xr - rw2),h - rh - 8,racket,racket_mask). draw_image((int)(xb - bw2),(int)(yb - bh2),ball,ball_mask)); if (disp.is_resized()) disp.resize(disp); disp.wait(20); } return 0; } // Item : 3D Reflection //---------------------- void* item_3d_reflection() { // Init images and display CImgDisplay disp(512,512,"[#25] - 3D Reflection",0); CImg back = CImg(200,400,1,3,0).rand(0,255).draw_plasma(); ((back,back.get_mirror('x'),back)>'x').blur(15,1,0,true).columns(100,499).normalize(0,120).move_to(back); CImg light0 = back.get_resize(-50,-50,1,1).normalize(1,255), visu(back), reflect(back.width(),back.height(),1,1), light(light0); back.get_shared_channel(0)/=3; back.get_shared_channel(2)/=2; // Create 3D objects. CImgList back_faces, main_faces; CImgList main_colors, back_colors, light_colors, light_colors2; CImgList back_pts0, main_pts = CImg<>::torus3d(main_faces,30,12,24,12)<'x'; cimglist_for(main_faces,l) if (l%2) CImg::vector(255,120,16).move_to(main_colors); else CImg::vector(255,100,16).move_to(main_colors); const unsigned int res1 = 32, res2 = 32; for (unsigned int v = 1; v::vector(x,y,z)); } const unsigned int N = back_pts0.size(); back_pts0.insert(CImg<>::vector(0,0,-140)).insert(CImg<>::vector(0,0,140)); CImg back_pts = back_pts0>'x'; for (unsigned int vv = 0; vv::vector(res1*vv + nu,res1*nv + uu,res1*vv + uu)); back_faces.insert(CImg::vector(res1*vv + nu,res1*nv + nu,res1*nv + uu)); back_colors.insert(CImg::vector(128,255,255)); back_colors.insert(CImg::vector(64,240,196)); } for (unsigned int uu = 0; uu::vector(nu,uu,N)); back_faces.insert(CImg::vector(res1*(res2 - 2) + nu, N + 1,res1*(res2 - 2) + uu)); if (uu%2) back_colors.insert(2,CImg::vector(128,255,255)); else back_colors.insert(2,CImg::vector(64,240,196)); } light_colors.assign(main_faces.size(),CImg::vector(255)); light_colors2.assign(back_faces.size(),CImg::vector(255)).insert(light,~0U,true); // Start 3D animation. for (float main_x = -1.5f*visu.width(), back_alpha = 0, back_beta = 0, back_theta = -3.0f, main_alpha = 0, main_beta = 0, main_theta = 0; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); main_alpha+=2.1f, main_beta+=3.3f, main_theta+=0.02f, back_alpha+=0.31f, back_beta+=0.43f, back_theta+=0.01f) { const int main_X = (int)(visu.width()/2 + main_x + 100*std::cos(2.1*main_theta)), main_Y = (int)(visu.height()/2 + 120*std::sin(1.8*main_theta)); CImg rmain_pts = (CImg<>::rotation_matrix(-1,1,0,main_alpha)*CImg<>::rotation_matrix(1,0,1,main_beta))*(main_pts>'x'), rback_pts = (CImg<>::rotation_matrix(1,1,0,back_alpha)*CImg<>::rotation_matrix(0.5,0,1,back_beta))*back_pts; (light=light0).draw_object3d(main_X/2.0f,main_Y/2.0f,0,rmain_pts,main_faces,light_colors,3,false, 500,0,0,-5000,0.2f,0.1f); reflect.fill(0).draw_object3d(2*visu.width()/3.0f,visu.height()/2.0f,0,rback_pts,back_faces,light_colors2,5,false, 500,0,0,-5000,0.2f,0.1f); rmain_pts*=2; (visu=back).draw_object3d(2*visu.width()/3.0f,visu.height()/2.0f,0,rback_pts,back_faces,back_colors,3,false, 500,0,0,-5000,0.2f,0.1f); unsigned char *ptrs = reflect.data(), *ptrr = visu.data(0,0,0,0), *ptrg = visu.data(0,0,0,1), *ptrb = visu.data(0,0,0,2); cimg_foroff(reflect,xy) { const unsigned char v = *(ptrs++); if (v) { *ptrr = (*ptrr+v)>>1; *ptrg = (*ptrr+v)>>1; *ptrb = (*ptrb+v)>>1; } ++ptrr; ++ptrg; ++ptrb; } visu.draw_object3d((float)main_X,(float)main_Y,0,rmain_pts,main_faces,main_colors,4, false,500,0,0,-5000,0.1f,1.4f); if (disp.is_resized()) { const int s = std::min(disp.window_width(),disp.window_height()); disp.resize(s,s,false); } if (disp.is_keyCTRLLEFT() && disp.is_keyF()) disp.resize(512,512,false).toggle_fullscreen(false); disp.display(visu).wait(20); back.shift(4,0,0,0,2); light0.shift(-2,0,0,0,2); if (main_x<0) main_x +=2; const float H = back_theta<0?0.0f:(float)(0.3f - 0.3f*std::cos(back_theta)); for (unsigned int p = 0, v = 1; v img0 = CImg(data_logo,555,103,1,3,true).get_resize(-144,-144,1,3,6); CImgDisplay disp(img0,"[#26] - Fish-Eye Magnification"); int rm = 80, xc = 0, yc = 0, rc = 0; CImg img, res; for (float alpha = 0; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); alpha+=0.02f) { if (!img) img = img0.get_resize(disp,3); if (disp.mouse_x()>=0) { xc = disp.mouse_x(); yc = disp.mouse_y(); rc = rm; } else { xc = (int)(img.width()*(1 + 0.9f*std::cos(1.2f*alpha))/2); yc = (int)(img.height()*(1 + 0.8f*std::sin(3.4f*alpha))/2); rc = (int)(90 + 60*std::sin(alpha)); } const int x0 = xc - rc, y0 = yc - rc, x1 = xc + rc, y1 = yc + rc; res = img; cimg_for_inXY(res,x0,y0,x1,y1,x,y) { const float X = (float)x - xc, Y = (float)y - yc, r2 = X*X + Y*Y, rrc = (float)std::sqrt(r2)/rc; if (rrc<1) { const int xi = (int)(xc + rrc*X), yi = (int)(yc + rrc*Y); res(x,y,0) = img(xi,yi,0); res(x,y,1) = img(xi,yi,1); res(x,y,2) = img(xi,yi,2); } } const int xf = xc + 3*rc/8, yf = yc - 3*rc/8; res.draw_circle(xc,yc,rc,purple,0.2f).draw_circle(xf,yf,rc/3,white,0.2f).draw_circle(xf,yf,rc/5,white,0.2f). draw_circle(xf,yf,rc/10,white,0.2f).draw_circle(xc,yc,rc,black,0.7f,~0U); disp.display(res).wait(20); rm+=(disp.button()&1?8:(disp.button()&2?-8:0)); rm = rm<30?30:(rm>200?200:rm); if (disp.is_resized()) { disp.resize(false); img.assign(); } } return 0; } // Item : Word Puzzle //-------------------- void* item_word_puzzle() { // Create B&W and color letters CImg model(60,60,1,3,0), color(3), background, canvas, elaps; CImgList letters('Z' - 'A' + 1), cletters(letters); const unsigned char white[] = { 255, 255, 255 }, gray[] = { 128, 128, 128 }, black[] = { 0, 0, 0 }; char tmptxt[] = { 'A',0 }; model.fill(255).draw_rectangle(5,5,54,54,gray).blur(3,0).threshold(140).normalize(0,255); cimglist_for(letters,l) (letters[l].draw_text(5,2,&(tmptxt[0]=(char)('A' + l)),white,0,1,57).resize(60,60,1,1,0,0,0.5,0.5). resize(-100,-100,1,3)|=model).blur(0.5); { cimglist_for(cletters,l) { CImg tmp = letters[l]; color.rand(100,255); cimg_forC(tmp,k) (tmp.get_shared_channel(k)*=color[k])/=255; cletters[l] = tmp; }} CImgDisplay disp(500,400,"[#27] - Word Puzzle",0); while (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) { // Create background, word data and display. background.assign(40,40,1,2,0).noise(30,2).distance(255).normalize(0,255).resize(500,400,1,3,3); CImg current(14,6,1,1,0), solution(14,4,1,1,0); current.get_shared_row(0).fill('T','H','E','C','I','M','G','L','I','B','R','A','R','Y'); current.get_shared_row(1).rand(-30,background.width() - 30); current.get_shared_row(2).rand(-30,background.height() - 30); solution.get_shared_row(0) = current.get_shared_row(0); solution.get_shared_row(1).fill(20,80,140,100,180,260,340,40,100,160,220,280,340,400); solution.get_shared_row(2).fill(20,20,20,120,150,180,210,310,310,310,310,310,310,310); cimg_forX(solution,l) background.draw_image(solution(l,1),solution(l,2),letters(solution(l) - 'A'),0.3f); const int last = current.width() - 1; // Start user interaction int timer = 0, completed = 0; for (bool selected = false, refresh_canvas = true, stopflag = false; !stopflag && !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); disp.resize(disp).wait(20)) { if (refresh_canvas) { canvas = background; cimg_forX(current,l) if (!current(l,5)) { int &x = current(l,1), &y = current(l,2); if (x<-30) x = -30; else if (x>canvas.width() - 30) x = canvas.width() - 30; if (y<-30) y = -30; else if (y>canvas.height() - 30) y = canvas.height() - 30; canvas.draw_rectangle(x + 8,y + 8,x + 67,y + 67,black,0.3f).draw_image(x,y,cletters(current(l) - 'A')); } refresh_canvas = false; } (+canvas).draw_text(280,3,"Elapsed Time : %d",white,0,0.7f,24,timer++).display(disp); if (disp.button()&1) { const int mx = disp.mouse_x(), my = disp.mouse_y(); if (mx>=0 && my>=0) { if (!selected) { int ind = -1; cimg_forX(current,l) if (!current(l,5)) { const int x = current(l,1), y = current(l,2), dx = mx - x, dy = my - y; if (dx>=0 && dx<60 && dy>=0 && dy<60) { selected = true; ind = l; current(l,3) = dx; current(l,4) = dy; } } if (ind>=0 && ind vec = current.get_column(ind); current.draw_image(ind,current.get_crop(ind + 1,last)).draw_image(last,vec); } } else { current(last,1) = mx - current(last,3); current(last,2) = my - current(last,4); refresh_canvas = true; } } } else { bool win = true; cimg_forX(solution,j) if (!solution(j,3)) { win = false; const int x = solution(j,1), y = solution(j,2); cimg_forX(current,i) if (!current(i,5) && solution(j)==current(i)) { const int xc = current(i,1), yc = current(i,2), dx = cimg::abs(x - xc), dy = cimg::abs(y - yc); if (dx<=12 && dy<=12) { cimg_forC(background,k) cimg_forY(letters[0],ly) background.get_shared_row(solution(j,2) + ly,0,k). draw_image(solution(j,1),0, (CImg<>(cletters(solution(j) - 'A').get_shared_row(ly,0,k))*=2.0*std::cos((ly - 30.0f)/18)). cut(0,255),0.8f); current(i,5) = solution(j,3) = 1; refresh_canvas = true; } } } selected = false; if (win) { stopflag = true; completed = 1; } } } // Display final score const char *const mention0 = "Need more training !", *const mention1 = "Still amateur, hu ?", *const mention2 = "Not so bad !", *const mention3 = " Good !", *const mention4 = "Very good !", *const mention5 = " Expert !", *mention = completed?(timer<700?mention5:timer<800?mention4:timer<900?mention3: timer<1000?mention2:timer<1200?mention1:mention0):mention0; canvas.assign().draw_text(0,0,"Final time : %d\n\n%s",white,0,1,32,timer,mention).resize(-100,-100,1,3); ((background/=2)&CImg(2,2).fill((unsigned char)0,255,255,0).resize(background,0,2)). draw_image((background.width() - canvas.width())/2,(background.height() - canvas.height())/2, canvas,canvas.get_dilate(3).dilate(3).dilate(3),1,255).display(disp.flush()); while (!disp.is_closed() && !disp.key() && !disp.button()) disp.resize(disp).wait(); } return 0; } // Run a selected effect //----------------------- void start_item(const unsigned int demo_number) { switch (demo_number) { case 1: item_blurring_gradient(); break; case 2: item_rotozoom(); break; case 3: item_anisotropic_smoothing(); break; case 4: item_fractal_animation(); break; case 5: item_gamma_correction(); break; case 6: item_filled_triangles(); break; case 7: item_mandelbrot_explorer(); break; case 8: item_mini_paint(); break; case 9: item_soccer_bobs(); break; case 10: item_bump(); break; case 11: item_bouncing_bubble(); break; case 12: item_virtual_landscape(); break; case 13: item_plasma(); break; case 14: item_oriented_convolutions(); break; case 15: item_shade_bobs(); break; case 16: item_fourier_filtering(); break; case 17: item_image_zoomer(); break; case 18: item_blobs_editor(); break; case 19: item_double_torus(); break; case 20: item_3d_metaballs(); break; case 21: item_fireworks(); break; case 22: item_rubber_logo(); break; case 23: item_image_waves(); break; case 24: item_breakout(); break; case 25: item_3d_reflection(); break; case 26: item_fisheye_magnification(); break; case 27: item_word_puzzle(); break; default: break; } } /*--------------------------- Main procedure --------------------------*/ int main(int argc, char **argv) { // Display info about the CImg Library configuration //-------------------------------------------------- unsigned int demo_number = cimg_option("-run",0,0); if (demo_number) start_item(demo_number); else { cimg::info(); // Demo selection menu //--------------------- const unsigned char white[] = { 255, 255, 255 }, black[] = { 0, 0, 0 }, red[] = { 120, 50, 80 }, yellow[] = { 200, 155, 0 }, green[] = { 30, 200, 70 }, purple[] = { 175, 32, 186 }, blue[] = { 55, 140, 185 }, grey[] = { 127, 127, 127 }; float rx = 0, ry = 0, t = 0, gamma = 0, vgamma = 0, T = 0.9f, nrx = (float)(2*cimg::rand(-1,1)), nry = (float)(2*cimg::rand(-1,1)); int y0 = 2*13; CImg back(1,2,1,3,10), fore, text, img; back.fillC(0,1,0,10,10,235).resize(350,570,1,3,3).get_shared_channel(2).noise(10,1).draw_plasma(); back.draw_rectangle(0,y0 - 7,back.width() - 1,y0 + 20,red); fore.assign(back.width(),50,1,1,0).draw_text(20,y0 - 3,"** CImg %u.%u.%u Samples **",grey,0,1,23, cimg_version/100,(cimg_version/10)%10,cimg_version%10); fore.max(fore.get_threshold(1).dilate(3)).resize(-100,-100,1,3); cimg_forXY(fore,x,y) if (fore(x,y)>1) { const float val = std::min(255.0f,7.0f*(y - 3))*fore(x,y)/127; fore(x,y,0) = (unsigned char)(val/1.5f); fore(x,y,1) = (unsigned char)val; fore(x,y,2) = (unsigned char)(val/1.1f); } text.draw_text(1,1, "1- Blurring Gradient\n" "2- Rotozoom\n" "3- Anisotropic Smoothing\n" "4- Fractal Animation\n" "5- Gamma Correction\n" "6- Filled Triangles\n" "7- Mandelbrot explorer\n" "8- Mini-Paint\n" "9- Soccer Bobs\n" "10- Bump Effect\n" "11- Bouncing Bubble\n" "12- Virtual Landscape\n" "13- Plasma & Sinus Scroll\n" "14- Oriented Convolutions\n" "15- Shade Bobs\n" "16- Fourier Filtering\n" "17- Image Zoomer\n" "18- Blobs Editor\n" "19- Double Torus\n" "20- 3D Metaballs\n" "21- Fireworks\n" "22- Rubber Logo\n" "23- Image Waves\n" "24- Breakout\n" "25- 3D Reflection\n" "26- Fish-Eye Magnification\n" "27- Word Puzzle\n", white,0,1,18).resize(-100,-100,1,3); fore.resize(back,0).draw_image(20,y0 + 3*13,text|=text.get_dilate(3)>>4); CImgDisplay disp(back,"CImg Library Samples",0,false,true); disp.move((disp.screen_width() - disp.window_width())/2,(disp.screen_height() - disp.window_height())/2); img = back; back*=0.15f; for (y0+=3*13; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); demo_number = 0) { while (!demo_number && !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) { img*=0.85f; img+=back; for (int i = 0; i<60; ++i) { const float mx = (float)(img.width()/2 + (img.width()/2 - 30)*((1 - gamma)*std::cos(3*t + rx*i*18.0f*cimg::PI/180) + gamma*std::cos(3*t + nrx*i*18.0f*cimg::PI/180))), my = (float)(img.height()/2 + (img.height()/2 - 30)*((1 - gamma)*std::sin(4*t + ry*i*18.0f*cimg::PI/180) + gamma*std::sin(4*t + nry*i*18.0f*cimg::PI/180))), mz = (float)(1.3f + 1.2f*((1 - gamma)*std::sin(2*t + (rx + ry)*i*20*cimg::PI/180) + gamma*std::sin(2*t + (nrx + nry)*i*20*cimg::PI/180))); const int j = i%5; img.draw_circle((int)mx,(int)my,(int)(10*mz),j!=0?(j!=1?(j!=2?(j!=3?green:red):yellow):purple):blue,0.2f). draw_circle((int)(mx + 4*mz),(int)(my - 4),(int)(3*mz),white,0.1f). draw_circle((int)mx,(int)my,(int)(10*mz),black,0.2f,~0U); } const unsigned char *ptrs = fore.data(); cimg_for(img,ptrd,unsigned char) { const unsigned char val = *(ptrs++); if (val) *ptrd = val; } const int y = (disp.mouse_y() - y0)/18, _y = 18*y + y0 + 9; if (y>=0 && y<27) { for (int yy = _y - 9; yy<=_y + 8; ++yy) img.draw_rectangle(0,yy,0,1,img.width() - 1,yy,0,1,(unsigned char)(130 - 14*cimg::abs(yy - _y))); img.draw_triangle(2,_y - 6,2,_y + 6,8,_y,yellow). draw_triangle(img.width() - 2,_y - 6,img.width() - 2,_y + 6,img.width() - 8,_y,yellow); } gamma+=vgamma; if (gamma>1) { gamma = vgamma = 0; rx = nrx; ry = nry; nrx=(float)(2*cimg::rand(-1,1)); nry=(float)(2*cimg::rand(-1,1)); } t+=0.006f; T+=0.005f; if (T>1) { T-=(float)(1 + cimg::rand(-1,1)); vgamma = 0.03f; } if (disp.button()) { demo_number = 1 + (disp.mouse_y() - y0)/18; disp.set_button(); } disp.resize(disp,false).display(img).wait(25); } start_item(demo_number); } } // Exit demo //----------- std::exit(0); return 0; }