#include "scalar_constants.hpp" namespace glm { template<typename T, qualifier Q> GLM_FUNC_QUALIFIER qua<T, Q> exp(qua<T, Q> const& q) { vec<3, T, Q> u(q.x, q.y, q.z); T const Angle = glm::length(u); if (Angle < epsilon<T>()) return qua<T, Q>(); vec<3, T, Q> const v(u / Angle); return qua<T, Q>(cos(Angle), sin(Angle) * v); } template<typename T, qualifier Q> GLM_FUNC_QUALIFIER qua<T, Q> log(qua<T, Q> const& q) { vec<3, T, Q> u(q.x, q.y, q.z); T Vec3Len = length(u); if (Vec3Len < epsilon<T>()) { if(q.w > static_cast<T>(0)) return qua<T, Q>(log(q.w), static_cast<T>(0), static_cast<T>(0), static_cast<T>(0)); else if(q.w < static_cast<T>(0)) return qua<T, Q>(log(-q.w), pi<T>(), static_cast<T>(0), static_cast<T>(0)); else return qua<T, Q>(std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity()); } else { T t = atan(Vec3Len, T(q.w)) / Vec3Len; T QuatLen2 = Vec3Len * Vec3Len + q.w * q.w; return qua<T, Q>(static_cast<T>(0.5) * log(QuatLen2), t * q.x, t * q.y, t * q.z); } } template<typename T, qualifier Q> GLM_FUNC_QUALIFIER qua<T, Q> pow(qua<T, Q> const& x, T y) { //Raising to the power of 0 should yield 1 //Needed to prevent a division by 0 error later on if(y > -epsilon<T>() && y < epsilon<T>()) return qua<T, Q>(1,0,0,0); //To deal with non-unit quaternions T magnitude = sqrt(x.x * x.x + x.y * x.y + x.z * x.z + x.w *x.w); T Angle; if(abs(x.w / magnitude) > cos_one_over_two<T>()) { //Scalar component is close to 1; using it to recover angle would lose precision //Instead, we use the non-scalar components since sin() is accurate around 0 //Prevent a division by 0 error later on T VectorMagnitude = x.x * x.x + x.y * x.y + x.z * x.z; if (glm::abs(VectorMagnitude - static_cast<T>(0)) < glm::epsilon<T>()) { //Equivalent to raising a real number to a power return qua<T, Q>(pow(x.w, y), 0, 0, 0); } Angle = asin(sqrt(VectorMagnitude) / magnitude); } else { //Scalar component is small, shouldn't cause loss of precision Angle = acos(x.w / magnitude); } T NewAngle = Angle * y; T Div = sin(NewAngle) / sin(Angle); T Mag = pow(magnitude, y - static_cast<T>(1)); return qua<T, Q>(cos(NewAngle) * magnitude * Mag, x.x * Div * Mag, x.y * Div * Mag, x.z * Div * Mag); } template<typename T, qualifier Q> GLM_FUNC_QUALIFIER qua<T, Q> sqrt(qua<T, Q> const& x) { return pow(x, static_cast<T>(0.5)); } }//namespace glm