// Code sample from Filippo Ramaciotti #define GLM_ENABLE_EXPERIMENTAL #include <glm/gtc/matrix_transform.hpp> #include <glm/gtx/matrix_cross_product.hpp> #include <glm/gtx/matrix_operation.hpp> #include <glm/gtc/epsilon.hpp> #include <glm/gtx/string_cast.hpp> #include <glm/gtx/euler_angles.hpp> #include <cstdio> #include <vector> #include <utility> namespace test_eulerAngleX { int test() { int Error = 0; float const Angle(glm::pi<float>() * 0.5f); glm::vec3 const X(1.0f, 0.0f, 0.0f); glm::vec4 const Y(0.0f, 1.0f, 0.0f, 1.0f); glm::vec4 const Y1 = glm::rotate(glm::mat4(1.0f), Angle, X) * Y; glm::vec4 const Y2 = glm::eulerAngleX(Angle) * Y; glm::vec4 const Y3 = glm::eulerAngleXY(Angle, 0.0f) * Y; glm::vec4 const Y4 = glm::eulerAngleYX(0.0f, Angle) * Y; glm::vec4 const Y5 = glm::eulerAngleXZ(Angle, 0.0f) * Y; glm::vec4 const Y6 = glm::eulerAngleZX(0.0f, Angle) * Y; glm::vec4 const Y7 = glm::eulerAngleYXZ(0.0f, Angle, 0.0f) * Y; Error += glm::all(glm::epsilonEqual(Y1, Y2, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(Y1, Y3, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(Y1, Y4, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(Y1, Y5, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(Y1, Y6, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(Y1, Y7, 0.00001f)) ? 0 : 1; glm::vec4 const Z(0.0f, 0.0f, 1.0f, 1.0f); glm::vec4 const Z1 = glm::rotate(glm::mat4(1.0f), Angle, X) * Z; glm::vec4 const Z2 = glm::eulerAngleX(Angle) * Z; glm::vec4 const Z3 = glm::eulerAngleXY(Angle, 0.0f) * Z; glm::vec4 const Z4 = glm::eulerAngleYX(0.0f, Angle) * Z; glm::vec4 const Z5 = glm::eulerAngleXZ(Angle, 0.0f) * Z; glm::vec4 const Z6 = glm::eulerAngleZX(0.0f, Angle) * Z; glm::vec4 const Z7 = glm::eulerAngleYXZ(0.0f, Angle, 0.0f) * Z; Error += glm::all(glm::epsilonEqual(Z1, Z2, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(Z1, Z3, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(Z1, Z4, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(Z1, Z5, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(Z1, Z6, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(Z1, Z7, 0.00001f)) ? 0 : 1; return Error; } }//namespace test_eulerAngleX namespace test_eulerAngleY { int test() { int Error = 0; float const Angle(glm::pi<float>() * 0.5f); glm::vec3 const Y(0.0f, 1.0f, 0.0f); glm::vec4 const X(1.0f, 0.0f, 0.0f, 1.0f); glm::vec4 const X1 = glm::rotate(glm::mat4(1.0f), Angle, Y) * X; glm::vec4 const X2 = glm::eulerAngleY(Angle) * X; glm::vec4 const X3 = glm::eulerAngleYX(Angle, 0.0f) * X; glm::vec4 const X4 = glm::eulerAngleXY(0.0f, Angle) * X; glm::vec4 const X5 = glm::eulerAngleYZ(Angle, 0.0f) * X; glm::vec4 const X6 = glm::eulerAngleZY(0.0f, Angle) * X; glm::vec4 const X7 = glm::eulerAngleYXZ(Angle, 0.0f, 0.0f) * X; Error += glm::all(glm::epsilonEqual(X1, X2, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(X1, X3, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(X1, X4, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(X1, X5, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(X1, X6, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(X1, X7, 0.00001f)) ? 0 : 1; glm::vec4 const Z(0.0f, 0.0f, 1.0f, 1.0f); glm::vec4 const Z1 = glm::eulerAngleY(Angle) * Z; glm::vec4 const Z2 = glm::rotate(glm::mat4(1.0f), Angle, Y) * Z; glm::vec4 const Z3 = glm::eulerAngleYX(Angle, 0.0f) * Z; glm::vec4 const Z4 = glm::eulerAngleXY(0.0f, Angle) * Z; glm::vec4 const Z5 = glm::eulerAngleYZ(Angle, 0.0f) * Z; glm::vec4 const Z6 = glm::eulerAngleZY(0.0f, Angle) * Z; glm::vec4 const Z7 = glm::eulerAngleYXZ(Angle, 0.0f, 0.0f) * Z; Error += glm::all(glm::epsilonEqual(Z1, Z2, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(Z1, Z3, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(Z1, Z4, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(Z1, Z5, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(Z1, Z6, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(Z1, Z7, 0.00001f)) ? 0 : 1; return Error; } }//namespace test_eulerAngleY namespace test_eulerAngleZ { int test() { int Error = 0; float const Angle(glm::pi<float>() * 0.5f); glm::vec3 const Z(0.0f, 0.0f, 1.0f); glm::vec4 const X(1.0f, 0.0f, 0.0f, 1.0f); glm::vec4 const X1 = glm::rotate(glm::mat4(1.0f), Angle, Z) * X; glm::vec4 const X2 = glm::eulerAngleZ(Angle) * X; glm::vec4 const X3 = glm::eulerAngleZX(Angle, 0.0f) * X; glm::vec4 const X4 = glm::eulerAngleXZ(0.0f, Angle) * X; glm::vec4 const X5 = glm::eulerAngleZY(Angle, 0.0f) * X; glm::vec4 const X6 = glm::eulerAngleYZ(0.0f, Angle) * X; glm::vec4 const X7 = glm::eulerAngleYXZ(0.0f, 0.0f, Angle) * X; Error += glm::all(glm::epsilonEqual(X1, X2, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(X1, X3, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(X1, X4, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(X1, X5, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(X1, X6, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(X1, X7, 0.00001f)) ? 0 : 1; glm::vec4 const Y(1.0f, 0.0f, 0.0f, 1.0f); glm::vec4 const Z1 = glm::rotate(glm::mat4(1.0f), Angle, Z) * Y; glm::vec4 const Z2 = glm::eulerAngleZ(Angle) * Y; glm::vec4 const Z3 = glm::eulerAngleZX(Angle, 0.0f) * Y; glm::vec4 const Z4 = glm::eulerAngleXZ(0.0f, Angle) * Y; glm::vec4 const Z5 = glm::eulerAngleZY(Angle, 0.0f) * Y; glm::vec4 const Z6 = glm::eulerAngleYZ(0.0f, Angle) * Y; glm::vec4 const Z7 = glm::eulerAngleYXZ(0.0f, 0.0f, Angle) * Y; Error += glm::all(glm::epsilonEqual(Z1, Z2, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(Z1, Z3, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(Z1, Z4, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(Z1, Z5, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(Z1, Z6, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(Z1, Z7, 0.00001f)) ? 0 : 1; return Error; } }//namespace test_eulerAngleZ namespace test_derivedEulerAngles { bool epsilonEqual(glm::mat4 const& mat1, glm::mat4 const& mat2, glm::mat4::value_type const& epsilon) { return glm::all(glm::epsilonEqual(mat1[0], mat2[0], epsilon)) ? ( glm::all(glm::epsilonEqual(mat1[1], mat2[1], epsilon)) ? ( glm::all(glm::epsilonEqual(mat1[2], mat2[2], epsilon)) ? ( glm::all(glm::epsilonEqual(mat1[3], mat2[3], epsilon)) ? true : false ) : false ) : false ) : false; } template<typename RotationFunc, typename TestDerivedFunc> int test(RotationFunc rotationFunc, TestDerivedFunc testDerivedFunc, const glm::vec3& basis) { int Error = 0; typedef glm::vec3::value_type value; value const zeroAngle(0.0f); value const Angle(glm::pi<float>() * 0.75f); value const negativeAngle(-Angle); value const zeroAngleVelocity(0.0f); value const AngleVelocity(glm::pi<float>() * 0.27f); value const negativeAngleVelocity(-AngleVelocity); typedef std::pair<value,value> AngleAndAngleVelocity; std::vector<AngleAndAngleVelocity> testPairs; testPairs.push_back(AngleAndAngleVelocity(zeroAngle, zeroAngleVelocity)); testPairs.push_back(AngleAndAngleVelocity(zeroAngle, AngleVelocity)); testPairs.push_back(AngleAndAngleVelocity(zeroAngle, negativeAngleVelocity)); testPairs.push_back(AngleAndAngleVelocity(Angle, zeroAngleVelocity)); testPairs.push_back(AngleAndAngleVelocity(Angle, AngleVelocity)); testPairs.push_back(AngleAndAngleVelocity(Angle, negativeAngleVelocity)); testPairs.push_back(AngleAndAngleVelocity(negativeAngle, zeroAngleVelocity)); testPairs.push_back(AngleAndAngleVelocity(negativeAngle, AngleVelocity)); testPairs.push_back(AngleAndAngleVelocity(negativeAngle, negativeAngleVelocity)); for (size_t i = 0, size = testPairs.size(); i < size; ++i) { AngleAndAngleVelocity const& pair = testPairs.at(i); glm::mat4 const W = glm::matrixCross4(basis * pair.second); glm::mat4 const rotMt = glm::transpose(rotationFunc(pair.first)); glm::mat4 const derivedRotM = testDerivedFunc(pair.first, pair.second); Error += epsilonEqual(W, derivedRotM * rotMt, 0.00001f) ? 0 : 1; } return Error; } }//namespace test_derivedEulerAngles namespace test_eulerAngleXY { int test() { int Error = 0; glm::vec4 const V(1.0f); float const AngleX(glm::pi<float>() * 0.5f); float const AngleY(glm::pi<float>() * 0.25f); glm::vec3 const axisX(1.0f, 0.0f, 0.0f); glm::vec3 const axisY(0.0f, 1.0f, 0.0f); glm::vec4 const V1 = (glm::rotate(glm::mat4(1.0f), AngleX, axisX) * glm::rotate(glm::mat4(1.0f), AngleY, axisY)) * V; glm::vec4 const V2 = glm::eulerAngleXY(AngleX, AngleY) * V; glm::vec4 const V3 = glm::eulerAngleX(AngleX) * glm::eulerAngleY(AngleY) * V; Error += glm::all(glm::epsilonEqual(V1, V2, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(V1, V3, 0.00001f)) ? 0 : 1; return Error; } }//namespace test_eulerAngleXY namespace test_eulerAngleYX { int test() { int Error = 0; glm::vec4 const V(1.0f); float const AngleX(glm::pi<float>() * 0.5f); float const AngleY(glm::pi<float>() * 0.25f); glm::vec3 const axisX(1.0f, 0.0f, 0.0f); glm::vec3 const axisY(0.0f, 1.0f, 0.0f); glm::vec4 const V1 = (glm::rotate(glm::mat4(1.0f), AngleY, axisY) * glm::rotate(glm::mat4(1.0f), AngleX, axisX)) * V; glm::vec4 const V2 = glm::eulerAngleYX(AngleY, AngleX) * V; glm::vec4 const V3 = glm::eulerAngleY(AngleY) * glm::eulerAngleX(AngleX) * V; Error += glm::all(glm::epsilonEqual(V1, V2, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(V1, V3, 0.00001f)) ? 0 : 1; return Error; } }//namespace test_eulerAngleYX namespace test_eulerAngleXZ { int test() { int Error = 0; glm::vec4 const V(1.0f); float const AngleX(glm::pi<float>() * 0.5f); float const AngleZ(glm::pi<float>() * 0.25f); glm::vec3 const axisX(1.0f, 0.0f, 0.0f); glm::vec3 const axisZ(0.0f, 0.0f, 1.0f); glm::vec4 const V1 = (glm::rotate(glm::mat4(1.0f), AngleX, axisX) * glm::rotate(glm::mat4(1.0f), AngleZ, axisZ)) * V; glm::vec4 const V2 = glm::eulerAngleXZ(AngleX, AngleZ) * V; glm::vec4 const V3 = glm::eulerAngleX(AngleX) * glm::eulerAngleZ(AngleZ) * V; Error += glm::all(glm::epsilonEqual(V1, V2, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(V1, V3, 0.00001f)) ? 0 : 1; return Error; } }//namespace test_eulerAngleXZ namespace test_eulerAngleZX { int test() { int Error = 0; glm::vec4 const V(1.0f); float const AngleX(glm::pi<float>() * 0.5f); float const AngleZ(glm::pi<float>() * 0.25f); glm::vec3 const axisX(1.0f, 0.0f, 0.0f); glm::vec3 const axisZ(0.0f, 0.0f, 1.0f); glm::vec4 const V1 = (glm::rotate(glm::mat4(1.0f), AngleZ, axisZ) * glm::rotate(glm::mat4(1.0f), AngleX, axisX)) * V; glm::vec4 const V2 = glm::eulerAngleZX(AngleZ, AngleX) * V; glm::vec4 const V3 = glm::eulerAngleZ(AngleZ) * glm::eulerAngleX(AngleX) * V; Error += glm::all(glm::epsilonEqual(V1, V2, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(V1, V3, 0.00001f)) ? 0 : 1; return Error; } }//namespace test_eulerAngleZX namespace test_eulerAngleYZ { int test() { int Error = 0; glm::vec4 const V(1.0f); float const AngleY(glm::pi<float>() * 0.5f); float const AngleZ(glm::pi<float>() * 0.25f); glm::vec3 const axisX(1.0f, 0.0f, 0.0f); glm::vec3 const axisY(0.0f, 1.0f, 0.0f); glm::vec3 const axisZ(0.0f, 0.0f, 1.0f); glm::vec4 const V1 = (glm::rotate(glm::mat4(1.0f), AngleY, axisY) * glm::rotate(glm::mat4(1.0f), AngleZ, axisZ)) * V; glm::vec4 const V2 = glm::eulerAngleYZ(AngleY, AngleZ) * V; glm::vec4 const V3 = glm::eulerAngleY(AngleY) * glm::eulerAngleZ(AngleZ) * V; Error += glm::all(glm::epsilonEqual(V1, V2, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(V1, V3, 0.00001f)) ? 0 : 1; return Error; } }//namespace test_eulerAngleYZ namespace test_eulerAngleZY { int test() { int Error = 0; glm::vec4 const V(1.0f); float const AngleY(glm::pi<float>() * 0.5f); float const AngleZ(glm::pi<float>() * 0.25f); glm::vec3 const axisX(1.0f, 0.0f, 0.0f); glm::vec3 const axisY(0.0f, 1.0f, 0.0f); glm::vec3 const axisZ(0.0f, 0.0f, 1.0f); glm::vec4 const V1 = (glm::rotate(glm::mat4(1.0f), AngleZ, axisZ) * glm::rotate(glm::mat4(1.0f), AngleY, axisY)) * V; glm::vec4 const V2 = glm::eulerAngleZY(AngleZ, AngleY) * V; glm::vec4 const V3 = glm::eulerAngleZ(AngleZ) * glm::eulerAngleY(AngleY) * V; Error += glm::all(glm::epsilonEqual(V1, V2, 0.00001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(V1, V3, 0.00001f)) ? 0 : 1; return Error; } }//namespace test_eulerAngleZY namespace test_eulerAngleYXZ { int test() { glm::f32 first = 1.046f; glm::f32 second = 0.52f; glm::f32 third = -0.785f; glm::fmat4 rotationEuler = glm::eulerAngleYXZ(first, second, third); glm::fmat4 rotationInvertedY = glm::eulerAngleY(-1.f*first) * glm::eulerAngleX(second) * glm::eulerAngleZ(third); glm::fmat4 rotationDumb = glm::fmat4(); rotationDumb = glm::rotate(rotationDumb, first, glm::fvec3(0,1,0)); rotationDumb = glm::rotate(rotationDumb, second, glm::fvec3(1,0,0)); rotationDumb = glm::rotate(rotationDumb, third, glm::fvec3(0,0,1)); std::printf("%s\n", glm::to_string(glm::fmat3(rotationEuler)).c_str()); std::printf("%s\n", glm::to_string(glm::fmat3(rotationDumb)).c_str()); std::printf("%s\n", glm::to_string(glm::fmat3(rotationInvertedY)).c_str()); std::printf("\nRESIDUAL\n"); std::printf("%s\n", glm::to_string(glm::fmat3(rotationEuler-(rotationDumb))).c_str()); std::printf("%s\n", glm::to_string(glm::fmat3(rotationEuler-(rotationInvertedY))).c_str()); return 0; } }//namespace eulerAngleYXZ namespace test_eulerAngles { template<typename TestRotationFunc> int test(TestRotationFunc testRotationFunc, glm::vec3 const& I, glm::vec3 const& J, glm::vec3 const& K) { int Error = 0; typedef glm::mat4::value_type value; value const minAngle(-glm::pi<value>()); value const maxAngle(glm::pi<value>()); value const maxAngleWithDelta(maxAngle - 0.0000001f); value const minMidAngle(-glm::pi<value>() * 0.5f); value const maxMidAngle(glm::pi<value>() * 0.5f); std::vector<glm::vec3> testEulerAngles; testEulerAngles.push_back(glm::vec3(1.046f, 0.52f, -0.785f)); testEulerAngles.push_back(glm::vec3(minAngle, minMidAngle, minAngle)); testEulerAngles.push_back(glm::vec3(minAngle, minMidAngle, maxAngle)); testEulerAngles.push_back(glm::vec3(minAngle, minMidAngle, maxAngleWithDelta)); testEulerAngles.push_back(glm::vec3(minAngle, maxMidAngle, minAngle)); testEulerAngles.push_back(glm::vec3(minAngle, maxMidAngle, maxAngle)); testEulerAngles.push_back(glm::vec3(minAngle, maxMidAngle, maxAngleWithDelta)); testEulerAngles.push_back(glm::vec3(maxAngle, minMidAngle, minAngle)); testEulerAngles.push_back(glm::vec3(maxAngle, minMidAngle, maxAngle)); testEulerAngles.push_back(glm::vec3(maxAngle, minMidAngle, maxAngleWithDelta)); testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, minMidAngle, maxAngle)); testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, minMidAngle, maxAngleWithDelta)); testEulerAngles.push_back(glm::vec3(maxAngle, maxMidAngle, minAngle)); testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, maxMidAngle, minAngle)); testEulerAngles.push_back(glm::vec3(maxAngle, maxMidAngle, maxAngle)); testEulerAngles.push_back(glm::vec3(maxAngle, maxMidAngle, maxAngleWithDelta)); testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, maxMidAngle, maxAngle)); testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, maxMidAngle, maxAngleWithDelta)); testEulerAngles.push_back(glm::vec3(minAngle, 0.0f, minAngle)); testEulerAngles.push_back(glm::vec3(minAngle, 0.0f, maxAngle)); testEulerAngles.push_back(glm::vec3(maxAngle, maxAngle, minAngle)); testEulerAngles.push_back(glm::vec3(maxAngle, maxAngle, maxAngle)); for (size_t i = 0, size = testEulerAngles.size(); i < size; ++i) { glm::vec3 const& angles = testEulerAngles.at(i); glm::mat4 const rotationEuler = testRotationFunc(angles.x, angles.y, angles.z); glm::mat4 rotationDumb = glm::diagonal4x4(glm::mat4::col_type(1.0f)); rotationDumb = glm::rotate(rotationDumb, angles.x, I); rotationDumb = glm::rotate(rotationDumb, angles.y, J); rotationDumb = glm::rotate(rotationDumb, angles.z, K); glm::vec4 const V(1.0f,1.0f,1.0f,1.0f); glm::vec4 const V1 = rotationEuler * V; glm::vec4 const V2 = rotationDumb * V; Error += glm::all(glm::epsilonEqual(V1, V2, 0.00001f)) ? 0 : 1; } return Error; } }//namespace test_extractsEulerAngles namespace test_extractsEulerAngles { template<typename RotationFunc, typename TestExtractionFunc> int test(RotationFunc rotationFunc, TestExtractionFunc testExtractionFunc) { int Error = 0; typedef glm::mat4::value_type value; value const minAngle(-glm::pi<value>()); value const maxAngle(glm::pi<value>()); value const maxAngleWithDelta(maxAngle - 0.0000001f); value const minMidAngle(-glm::pi<value>() * 0.5f); value const maxMidAngle(glm::pi<value>() * 0.5f); std::vector<glm::vec3> testEulerAngles; testEulerAngles.push_back(glm::vec3(1.046f, 0.52f, -0.785f)); testEulerAngles.push_back(glm::vec3(minAngle, minMidAngle, minAngle)); testEulerAngles.push_back(glm::vec3(minAngle, minMidAngle, maxAngle)); testEulerAngles.push_back(glm::vec3(minAngle, minMidAngle, maxAngleWithDelta)); testEulerAngles.push_back(glm::vec3(minAngle, maxMidAngle, minAngle)); testEulerAngles.push_back(glm::vec3(minAngle, maxMidAngle, maxAngle)); testEulerAngles.push_back(glm::vec3(minAngle, maxMidAngle, maxAngleWithDelta)); testEulerAngles.push_back(glm::vec3(maxAngle, minMidAngle, minAngle)); testEulerAngles.push_back(glm::vec3(maxAngle, minMidAngle, maxAngle)); testEulerAngles.push_back(glm::vec3(maxAngle, minMidAngle, maxAngleWithDelta)); testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, minMidAngle, maxAngle)); testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, minMidAngle, maxAngleWithDelta)); testEulerAngles.push_back(glm::vec3(maxAngle, maxMidAngle, minAngle)); testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, maxMidAngle, minAngle)); testEulerAngles.push_back(glm::vec3(maxAngle, maxMidAngle, maxAngle)); testEulerAngles.push_back(glm::vec3(maxAngle, maxMidAngle, maxAngleWithDelta)); testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, maxMidAngle, maxAngle)); testEulerAngles.push_back(glm::vec3(maxAngleWithDelta, maxMidAngle, maxAngleWithDelta)); testEulerAngles.push_back(glm::vec3(minAngle, 0.0f, minAngle)); testEulerAngles.push_back(glm::vec3(minAngle, 0.0f, maxAngle)); testEulerAngles.push_back(glm::vec3(maxAngle, maxAngle, minAngle)); testEulerAngles.push_back(glm::vec3(maxAngle, maxAngle, maxAngle)); for (size_t i = 0, size = testEulerAngles.size(); i < size; ++i) { glm::vec3 const& angles = testEulerAngles.at(i); glm::mat4 const rotation = rotationFunc(angles.x, angles.y, angles.z); glm::vec3 extractedEulerAngles(0.0f); testExtractionFunc(rotation, extractedEulerAngles.x, extractedEulerAngles.y, extractedEulerAngles.z); glm::mat4 const extractedRotation = rotationFunc(extractedEulerAngles.x, extractedEulerAngles.y, extractedEulerAngles.z); glm::vec4 const V(1.0f,1.0f,1.0f,1.0f); glm::vec4 const V1 = rotation * V; glm::vec4 const V2 = extractedRotation * V; Error += glm::all(glm::epsilonEqual(V1, V2, 0.00001f)) ? 0 : 1; } return Error; } }//namespace test_extractsEulerAngles int main() { int Error = 0; typedef glm::mat4::value_type value; glm::vec3 const X(1.0f, 0.0f, 0.0f); glm::vec3 const Y(0.0f, 1.0f, 0.0f); glm::vec3 const Z(0.0f, 0.0f, 1.0f); Error += test_eulerAngleX::test(); Error += test_eulerAngleY::test(); Error += test_eulerAngleZ::test(); Error += test_derivedEulerAngles::test(glm::eulerAngleX<value>, glm::derivedEulerAngleX<value>, X); Error += test_derivedEulerAngles::test(glm::eulerAngleY<value>, glm::derivedEulerAngleY<value>, Y); Error += test_derivedEulerAngles::test(glm::eulerAngleZ<value>, glm::derivedEulerAngleZ<value>, Z); Error += test_eulerAngleXY::test(); Error += test_eulerAngleYX::test(); Error += test_eulerAngleXZ::test(); Error += test_eulerAngleZX::test(); Error += test_eulerAngleYZ::test(); Error += test_eulerAngleZY::test(); Error += test_eulerAngleYXZ::test(); Error += test_eulerAngles::test(glm::eulerAngleXZX<value>, X, Z, X); Error += test_eulerAngles::test(glm::eulerAngleXYX<value>, X, Y, X); Error += test_eulerAngles::test(glm::eulerAngleYXY<value>, Y, X, Y); Error += test_eulerAngles::test(glm::eulerAngleYZY<value>, Y, Z, Y); Error += test_eulerAngles::test(glm::eulerAngleZYZ<value>, Z, Y, Z); Error += test_eulerAngles::test(glm::eulerAngleZXZ<value>, Z, X, Z); Error += test_eulerAngles::test(glm::eulerAngleXZY<value>, X, Z, Y); Error += test_eulerAngles::test(glm::eulerAngleYZX<value>, Y, Z, X); Error += test_eulerAngles::test(glm::eulerAngleZYX<value>, Z, Y, X); Error += test_eulerAngles::test(glm::eulerAngleZXY<value>, Z, X, Y); Error += test_extractsEulerAngles::test(glm::eulerAngleYXZ<value>, glm::extractEulerAngleYXZ<value>); Error += test_extractsEulerAngles::test(glm::eulerAngleXZX<value>, glm::extractEulerAngleXZX<value>); Error += test_extractsEulerAngles::test(glm::eulerAngleXYX<value>, glm::extractEulerAngleXYX<value>); Error += test_extractsEulerAngles::test(glm::eulerAngleYXY<value>, glm::extractEulerAngleYXY<value>); Error += test_extractsEulerAngles::test(glm::eulerAngleYZY<value>, glm::extractEulerAngleYZY<value>); Error += test_extractsEulerAngles::test(glm::eulerAngleZYZ<value>, glm::extractEulerAngleZYZ<value>); Error += test_extractsEulerAngles::test(glm::eulerAngleZXZ<value>, glm::extractEulerAngleZXZ<value>); Error += test_extractsEulerAngles::test(glm::eulerAngleXZY<value>, glm::extractEulerAngleXZY<value>); Error += test_extractsEulerAngles::test(glm::eulerAngleYZX<value>, glm::extractEulerAngleYZX<value>); Error += test_extractsEulerAngles::test(glm::eulerAngleZYX<value>, glm::extractEulerAngleZYX<value>); Error += test_extractsEulerAngles::test(glm::eulerAngleZXY<value>, glm::extractEulerAngleZXY<value>); return Error; }