// SPDX-License-Identifier: MIT // // EmulationStation Desktop Edition // MathUtil.cpp // // Math utility functions. // The GLM library headers are also included from here. // #if defined(_MSC_VER) // MSVC compiler. #define _CRT_SECURE_NO_WARNINGS #endif #include "utils/MathUtil.h" #include #include namespace Utils { namespace Math { float smoothStep(const float left, const float right, const float value) { const float x{glm::clamp((value - left) / (right - left), 0.0f, 1.0f)}; return x * x * (3.0f - (2.0f * x)); } float smootherStep(const float left, const float right, const float value) { const float x{glm::clamp((value - left) / (right - left), 0.0f, 1.0f)}; return x * x * x * (x * ((x * 6.0f) - 15.0f) + 10.0f); } float loop(const float delayTime, const float scrollTime, const float currentTime, const float scrollLength) { if (currentTime < delayTime) { // Wait. return 0.0f; } else if (currentTime < (delayTime + scrollTime)) { // Interpolate from 0 to scrollLength. const float fraction{(currentTime - delayTime) / scrollTime}; return glm::mix(0.0f, scrollLength, fraction); } // And back to waiting. return 0.0f; } float bounce(const float delayTime, const float scrollTime, const float currentTime, const float scrollLength) { if (currentTime < delayTime) { // Wait. return 0.0f; } else if (currentTime < (delayTime + scrollTime)) { // Interpolate from 0 to scrollLength. const float fraction{(currentTime - delayTime) / scrollTime}; return glm::mix(0.0f, scrollLength, smootherStep(0.0f, 1.0f, fraction)); } else if (currentTime < (delayTime + scrollTime + delayTime)) { // Wait some more. return scrollLength; } else if (currentTime < (delayTime + scrollTime + delayTime + scrollTime)) { // Interpolate back from scrollLength to 0. const float fraction{(currentTime - delayTime - scrollTime - delayTime) / scrollTime}; return glm::mix(scrollLength, 0.0f, smootherStep(0.0f, 1.0f, fraction)); } // And back to waiting. return 0.0f; } std::string md5Hash(const std::string& data) { // Data that didn't fit in last 64 byte chunk. unsigned char buffer[64]{}; // 64 bit counter for the number of bits (low, high). unsigned int count[2]{}; // Digest so far. unsigned int state[4]; // Magic initialization constants. state[0] = 0x67452301; state[1] = 0xefcdab89; state[2] = 0x98badcfe; state[3] = 0x10325476; md5Update(reinterpret_cast(data.c_str()), static_cast(data.length()), state, count, buffer); static unsigned char padding[64]{0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; // Encodes unsigned int input into unsigned char output. Assumes len is a multiple of 4. auto encodeFunc = [](unsigned char output[], const unsigned int input[], unsigned int len) { for (unsigned int i = 0, j = 0; j < len; i++, j += 4) { output[j] = input[i] & 0xff; output[j + 1] = (input[i] >> 8) & 0xff; output[j + 2] = (input[i] >> 16) & 0xff; output[j + 3] = (input[i] >> 24) & 0xff; } }; // Save number of bits. unsigned char bits[8]; encodeFunc(bits, count, 8); // Pad out to 56 mod 64. unsigned int index = count[0] / 8 % 64; unsigned int padLen = (index < 56) ? (56 - index) : (120 - index); md5Update(padding, padLen, state, count, buffer); // Append length (before padding). md5Update(bits, 8, state, count, buffer); // The result. unsigned char digest[16]; // Store state in digest. encodeFunc(digest, state, 16); // Convert to hex string. char buf[33]; for (int i = 0; i < 16; i++) sprintf(buf + i * 2, "%02x", digest[i]); buf[32] = 0; return std::string(buf); } void md5Update(const unsigned char input[], unsigned int length, unsigned int (&state)[4], unsigned int (&count)[2], unsigned char (&buffer)[64]) { // Compute number of bytes (mod 64). unsigned int index = count[0] / 8 % 64; // Update number of bits. if ((count[0] += (length << 3)) < (length << 3)) count[1]++; count[1] += (length >> 29); // Number of bytes we need to fill in buffer. unsigned int firstpart = 64 - index; unsigned int i; // Encodes unsigned int input into unsigned char output. Assumes len is a multiple of 4. // Transform as many times as possible. if (length >= firstpart) { // Fill buffer first, then transform. memcpy(&buffer[index], input, firstpart); md5Transform(buffer, state); // Transform chunks of 64 (64 bytes). for (i = firstpart; i + 64 <= length; i += 64) md5Transform(&input[i], state); index = 0; } else i = 0; // Buffer remaining input. memcpy(&buffer[index], &input[i], length - i); } void md5Transform(const unsigned char block[64], unsigned int (&state)[4]) { unsigned int a{state[0]}; unsigned int b{state[1]}; unsigned int c{state[2]}; unsigned int d{state[3]}; unsigned int x[16]{}; // Encodes unsigned int input into unsigned char output. Assumes len is a multiple of 4. for (unsigned int i = 0, j = 0; j < 64; i++, j += 4) x[i] = (static_cast(block[j])) | ((static_cast(block[j + 1])) << 8) | ((static_cast(block[j + 2])) << 16) | ((static_cast(block[j + 3])) << 24); const unsigned int S11{7}; const unsigned int S12{12}; const unsigned int S13{17}; const unsigned int S14{22}; const unsigned int S21{5}; const unsigned int S22{9}; const unsigned int S23{14}; const unsigned int S24{20}; const unsigned int S31{4}; const unsigned int S32{11}; const unsigned int S33{16}; const unsigned int S34{23}; const unsigned int S41{6}; const unsigned int S42{10}; const unsigned int S43{15}; const unsigned int S44{21}; // fFunc, gFunc, hFunc and iFunc are basic MD5 functions. auto fFunc = [](unsigned int x, unsigned int y, unsigned int z) { return (x & y) | (~x & z); }; auto gFunc = [](unsigned int x, unsigned int y, unsigned int z) { return (x & z) | (y & ~z); }; auto hFunc = [](unsigned int x, unsigned int y, unsigned int z) { return x ^ y ^ z; }; auto iFunc = [](unsigned int x, unsigned int y, unsigned int z) { return y ^ (x | ~z); }; auto rotateLeftFunc = [](unsigned int x, int n) { return (x << n) | (x >> (32 - n)); }; // ffFunc, ggFunc, hhFunc, and iiFunc transformations for rounds 1, 2, 3, and 4. // Rotation is separate from addition to prevent recomputation. auto ffFunc = [fFunc, rotateLeftFunc](unsigned int& a, unsigned int b, unsigned int c, unsigned int d, unsigned int x, unsigned int s, unsigned int ac) { a = rotateLeftFunc(a + fFunc(b, c, d) + x + ac, s) + b; }; auto ggFunc = [gFunc, rotateLeftFunc](unsigned int& a, unsigned int b, unsigned int c, unsigned int d, unsigned int x, unsigned int s, unsigned int ac) { a = rotateLeftFunc(a + gFunc(b, c, d) + x + ac, s) + b; }; auto hhFunc = [hFunc, rotateLeftFunc](unsigned int& a, unsigned int b, unsigned int c, unsigned int d, unsigned int x, unsigned int s, unsigned int ac) { a = rotateLeftFunc(a + hFunc(b, c, d) + x + ac, s) + b; }; auto iiFunc = [iFunc, rotateLeftFunc](unsigned int& a, unsigned int b, unsigned int c, unsigned int d, unsigned int x, unsigned int s, unsigned int ac) { a = rotateLeftFunc(a + iFunc(b, c, d) + x + ac, s) + b; }; // Round 1. ffFunc(a, b, c, d, x[0], S11, 0xd76aa478); /* 1 */ ffFunc(d, a, b, c, x[1], S12, 0xe8c7b756); /* 2 */ ffFunc(c, d, a, b, x[2], S13, 0x242070db); /* 3 */ ffFunc(b, c, d, a, x[3], S14, 0xc1bdceee); /* 4 */ ffFunc(a, b, c, d, x[4], S11, 0xf57c0faf); /* 5 */ ffFunc(d, a, b, c, x[5], S12, 0x4787c62a); /* 6 */ ffFunc(c, d, a, b, x[6], S13, 0xa8304613); /* 7 */ ffFunc(b, c, d, a, x[7], S14, 0xfd469501); /* 8 */ ffFunc(a, b, c, d, x[8], S11, 0x698098d8); /* 9 */ ffFunc(d, a, b, c, x[9], S12, 0x8b44f7af); /* 10 */ ffFunc(c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */ ffFunc(b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */ ffFunc(a, b, c, d, x[12], S11, 0x6b901122); /* 13 */ ffFunc(d, a, b, c, x[13], S12, 0xfd987193); /* 14 */ ffFunc(c, d, a, b, x[14], S13, 0xa679438e); /* 15 */ ffFunc(b, c, d, a, x[15], S14, 0x49b40821); /* 16 */ // Round 2. ggFunc(a, b, c, d, x[1], S21, 0xf61e2562); /* 17 */ ggFunc(d, a, b, c, x[6], S22, 0xc040b340); /* 18 */ ggFunc(c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */ ggFunc(b, c, d, a, x[0], S24, 0xe9b6c7aa); /* 20 */ ggFunc(a, b, c, d, x[5], S21, 0xd62f105d); /* 21 */ ggFunc(d, a, b, c, x[10], S22, 0x2441453); /* 22 */ ggFunc(c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */ ggFunc(b, c, d, a, x[4], S24, 0xe7d3fbc8); /* 24 */ ggFunc(a, b, c, d, x[9], S21, 0x21e1cde6); /* 25 */ ggFunc(d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */ ggFunc(c, d, a, b, x[3], S23, 0xf4d50d87); /* 27 */ ggFunc(b, c, d, a, x[8], S24, 0x455a14ed); /* 28 */ ggFunc(a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */ ggFunc(d, a, b, c, x[2], S22, 0xfcefa3f8); /* 30 */ ggFunc(c, d, a, b, x[7], S23, 0x676f02d9); /* 31 */ ggFunc(b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */ // Round 3. hhFunc(a, b, c, d, x[5], S31, 0xfffa3942); /* 33 */ hhFunc(d, a, b, c, x[8], S32, 0x8771f681); /* 34 */ hhFunc(c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */ hhFunc(b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */ hhFunc(a, b, c, d, x[1], S31, 0xa4beea44); /* 37 */ hhFunc(d, a, b, c, x[4], S32, 0x4bdecfa9); /* 38 */ hhFunc(c, d, a, b, x[7], S33, 0xf6bb4b60); /* 39 */ hhFunc(b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */ hhFunc(a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */ hhFunc(d, a, b, c, x[0], S32, 0xeaa127fa); /* 42 */ hhFunc(c, d, a, b, x[3], S33, 0xd4ef3085); /* 43 */ hhFunc(b, c, d, a, x[6], S34, 0x4881d05); /* 44 */ hhFunc(a, b, c, d, x[9], S31, 0xd9d4d039); /* 45 */ hhFunc(d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */ hhFunc(c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */ hhFunc(b, c, d, a, x[2], S34, 0xc4ac5665); /* 48 */ // Round 4. iiFunc(a, b, c, d, x[0], S41, 0xf4292244); /* 49 */ iiFunc(d, a, b, c, x[7], S42, 0x432aff97); /* 50 */ iiFunc(c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */ iiFunc(b, c, d, a, x[5], S44, 0xfc93a039); /* 52 */ iiFunc(a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */ iiFunc(d, a, b, c, x[3], S42, 0x8f0ccc92); /* 54 */ iiFunc(c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */ iiFunc(b, c, d, a, x[1], S44, 0x85845dd1); /* 56 */ iiFunc(a, b, c, d, x[8], S41, 0x6fa87e4f); /* 57 */ iiFunc(d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */ iiFunc(c, d, a, b, x[6], S43, 0xa3014314); /* 59 */ iiFunc(b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */ iiFunc(a, b, c, d, x[4], S41, 0xf7537e82); /* 61 */ iiFunc(d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */ iiFunc(c, d, a, b, x[2], S43, 0x2ad7d2bb); /* 63 */ iiFunc(b, c, d, a, x[9], S44, 0xeb86d391); /* 64 */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; } } // namespace Math } // namespace Utils