#include "plutovg-private.h" #include #include #define COLOR_TABLE_SIZE 1024 typedef struct { plutovg_spread_method_t spread; plutovg_matrix_t matrix; uint32_t colortable[COLOR_TABLE_SIZE]; union { struct { double x1, y1; double x2, y2; } linear; struct { double cx, cy, cr; double fx, fy, fr; } radial; }; } gradient_data_t; typedef struct { plutovg_matrix_t matrix; uint8_t* data; int width; int height; int stride; int const_alpha; } texture_data_t; typedef struct { double dx; double dy; double l; double off; } linear_gradient_values_t; typedef struct { double dx; double dy; double dr; double sqrfr; double a; double inv2a; int extended; } radial_gradient_values_t; static inline uint32_t premultiply_color(const plutovg_color_t* color, double opacity) { uint32_t alpha = (uint8_t)(color->a * opacity * 255); uint32_t pr = (uint8_t)(color->r * alpha); uint32_t pg = (uint8_t)(color->g * alpha); uint32_t pb = (uint8_t)(color->b * alpha); return (alpha << 24) | (pr << 16) | (pg << 8) | (pb); } static inline uint32_t combine_opacity(const plutovg_color_t* color, double opacity) { uint32_t a = (uint8_t)(color->a * opacity * 255); uint32_t r = (uint8_t)(color->r * 255); uint32_t g = (uint8_t)(color->g * 255); uint32_t b = (uint8_t)(color->b * 255); return (a << 24) | (r << 16) | (g << 8) | (b); } static inline uint32_t premultiply_pixel(uint32_t color) { uint32_t a = plutovg_alpha(color); uint32_t r = plutovg_red(color); uint32_t g = plutovg_green(color); uint32_t b = plutovg_blue(color); uint32_t pr = (r * a) / 255; uint32_t pg = (g * a) / 255; uint32_t pb = (b * a) / 255; return (a << 24) | (pr << 16) | (pg << 8) | (pb); } static inline uint32_t interpolate_pixel(uint32_t x, uint32_t a, uint32_t y, uint32_t b) { uint32_t t = (x & 0xff00ff) * a + (y & 0xff00ff) * b; t = (t + ((t >> 8) & 0xff00ff) + 0x800080) >> 8; t &= 0xff00ff; x = ((x >> 8) & 0xff00ff) * a + ((y >> 8) & 0xff00ff) * b; x = (x + ((x >> 8) & 0xff00ff) + 0x800080); x &= 0xff00ff00; x |= t; return x; } static inline uint32_t BYTE_MUL(uint32_t x, uint32_t a) { uint32_t t = (x & 0xff00ff) * a; t = (t + ((t >> 8) & 0xff00ff) + 0x800080) >> 8; t &= 0xff00ff; x = ((x >> 8) & 0xff00ff) * a; x = (x + ((x >> 8) & 0xff00ff) + 0x800080); x &= 0xff00ff00; x |= t; return x; } static inline void memfill32(uint32_t* dest, uint32_t value, int length) { for(int i = 0;i < length;i++) dest[i] = value; } static inline int gradient_clamp(const gradient_data_t* gradient, int ipos) { if(gradient->spread == plutovg_spread_method_repeat) { ipos = ipos % COLOR_TABLE_SIZE; ipos = ipos < 0 ? COLOR_TABLE_SIZE + ipos : ipos; } else if(gradient->spread == plutovg_spread_method_reflect) { const int limit = COLOR_TABLE_SIZE * 2; ipos = ipos % limit; ipos = ipos < 0 ? limit + ipos : ipos; ipos = ipos >= COLOR_TABLE_SIZE ? limit - 1 - ipos : ipos; } else { if(ipos < 0) ipos = 0; else if(ipos >= COLOR_TABLE_SIZE) ipos = COLOR_TABLE_SIZE - 1; } return ipos; } #define FIXPT_BITS 8 #define FIXPT_SIZE (1 << FIXPT_BITS) static inline uint32_t gradient_pixel_fixed(const gradient_data_t* gradient, int fixed_pos) { int ipos = (fixed_pos + (FIXPT_SIZE / 2)) >> FIXPT_BITS; return gradient->colortable[gradient_clamp(gradient, ipos)]; } static inline uint32_t gradient_pixel(const gradient_data_t* gradient, double pos) { int ipos = (int)(pos * (COLOR_TABLE_SIZE - 1) + 0.5); return gradient->colortable[gradient_clamp(gradient, ipos)]; } static void fetch_linear_gradient(uint32_t* buffer, const linear_gradient_values_t* v, const gradient_data_t* gradient, int y, int x, int length) { double t, inc; double rx = 0, ry = 0; if(v->l == 0.0) { t = inc = 0; } else { rx = gradient->matrix.m01 * (y + 0.5) + gradient->matrix.m00 * (x + 0.5) + gradient->matrix.m02; ry = gradient->matrix.m11 * (y + 0.5) + gradient->matrix.m10 * (x + 0.5) + gradient->matrix.m12; t = v->dx * rx + v->dy * ry + v->off; inc = v->dx * gradient->matrix.m00 + v->dy * gradient->matrix.m10; t *= (COLOR_TABLE_SIZE - 1); inc *= (COLOR_TABLE_SIZE - 1); } const uint32_t* end = buffer + length; if(inc > -1e-5 && inc < 1e-5) { memfill32(buffer, gradient_pixel_fixed(gradient, (int)(t * FIXPT_SIZE)), length); } else { if(t + inc * length < (double)(INT_MAX >> (FIXPT_BITS + 1)) && t + inc * length > (double)(INT_MIN >> (FIXPT_BITS + 1))) { int t_fixed = (int)(t * FIXPT_SIZE); int inc_fixed = (int)(inc * FIXPT_SIZE); while(buffer < end) { *buffer = gradient_pixel_fixed(gradient, t_fixed); t_fixed += inc_fixed; ++buffer; } } else { while(buffer < end) { *buffer = gradient_pixel(gradient, t / COLOR_TABLE_SIZE); t += inc; ++buffer; } } } } static void fetch_radial_gradient(uint32_t* buffer, const radial_gradient_values_t* v, const gradient_data_t* gradient, int y, int x, int length) { if(v->a == 0.0) { memfill32(buffer, 0, length); return; } double rx = gradient->matrix.m01 * (y + 0.5) + gradient->matrix.m02 + gradient->matrix.m00 * (x + 0.5); double ry = gradient->matrix.m11 * (y + 0.5) + gradient->matrix.m12 + gradient->matrix.m10 * (x + 0.5); rx -= gradient->radial.fx; ry -= gradient->radial.fy; double inv_a = 1 / (2 * v->a); double delta_rx = gradient->matrix.m00; double delta_ry = gradient->matrix.m10; double b = 2 * (v->dr * gradient->radial.fr + rx * v->dx + ry * v->dy); double delta_b = 2 * (delta_rx * v->dx + delta_ry * v->dy); double b_delta_b = 2 * b * delta_b; double delta_b_delta_b = 2 * delta_b * delta_b; double bb = b * b; double delta_bb = delta_b * delta_b; b *= inv_a; delta_b *= inv_a; double rxrxryry = rx * rx + ry * ry; double delta_rxrxryry = delta_rx * delta_rx + delta_ry * delta_ry; double rx_plus_ry = 2 * (rx * delta_rx + ry * delta_ry); double delta_rx_plus_ry = 2 * delta_rxrxryry; inv_a *= inv_a; double det = (bb - 4 * v->a * (v->sqrfr - rxrxryry)) * inv_a; double delta_det = (b_delta_b + delta_bb + 4 * v->a * (rx_plus_ry + delta_rxrxryry)) * inv_a; double delta_delta_det = (delta_b_delta_b + 4 * v->a * delta_rx_plus_ry) * inv_a; const uint32_t* end = buffer + length; if(v->extended) { while(buffer < end) { uint32_t result = 0; if(det >= 0) { double w = sqrt(det) - b; if(gradient->radial.fr + v->dr * w >= 0) result = gradient_pixel(gradient, w); } *buffer = result; det += delta_det; delta_det += delta_delta_det; b += delta_b; ++buffer; } } else { while(buffer < end) { *buffer++ = gradient_pixel(gradient, sqrt(det) - b); det += delta_det; delta_det += delta_delta_det; b += delta_b; } } } static void composition_solid_source(uint32_t* dest, int length, uint32_t color, uint32_t alpha) { if(alpha == 255) { memfill32(dest, color, length); } else { uint32_t ialpha = 255 - alpha; color = BYTE_MUL(color, alpha); for(int i = 0;i < length;i++) dest[i] = color + BYTE_MUL(dest[i], ialpha); } } static void composition_solid_source_over(uint32_t* dest, int length, uint32_t color, uint32_t const_alpha) { if(const_alpha != 255) color = BYTE_MUL(color, const_alpha); uint32_t ialpha = 255 - plutovg_alpha(color); for(int i = 0;i < length;i++) dest[i] = color + BYTE_MUL(dest[i], ialpha); } static void composition_solid_destination_in(uint32_t* dest, int length, uint32_t color, uint32_t const_alpha) { uint32_t a = plutovg_alpha(color); if(const_alpha != 255) a = BYTE_MUL(a, const_alpha) + 255 - const_alpha; for(int i = 0;i < length;i++) dest[i] = BYTE_MUL(dest[i], a); } static void composition_solid_destination_out(uint32_t* dest, int length, uint32_t color, uint32_t const_alpha) { uint32_t a = plutovg_alpha(~color); if(const_alpha != 255) a = BYTE_MUL(a, const_alpha) + 255 - const_alpha; for(int i = 0; i < length;i++) dest[i] = BYTE_MUL(dest[i], a); } static void composition_source(uint32_t* dest, int length, const uint32_t* src, uint32_t const_alpha) { if(const_alpha == 255) { memcpy(dest, src, (size_t)(length) * sizeof(uint32_t)); } else { uint32_t ialpha = 255 - const_alpha; for(int i = 0;i < length;i++) dest[i] = interpolate_pixel(src[i], const_alpha, dest[i], ialpha); } } static void composition_source_over(uint32_t* dest, int length, const uint32_t* src, uint32_t const_alpha) { uint32_t s, sia; if(const_alpha == 255) { for(int i = 0;i < length;i++) { s = src[i]; if(s >= 0xff000000) dest[i] = s; else if(s != 0) { sia = plutovg_alpha(~s); dest[i] = s + BYTE_MUL(dest[i], sia); } } } else { for(int i = 0;i < length;i++) { s = BYTE_MUL(src[i], const_alpha); sia = plutovg_alpha(~s); dest[i] = s + BYTE_MUL(dest[i], sia); } } } static void composition_destination_in(uint32_t* dest, int length, const uint32_t* src, uint32_t const_alpha) { if(const_alpha == 255) { for(int i = 0; i < length;i++) dest[i] = BYTE_MUL(dest[i], plutovg_alpha(src[i])); } else { uint32_t cia = 255 - const_alpha; uint32_t a; for(int i = 0;i < length;i++) { a = BYTE_MUL(plutovg_alpha(src[i]), const_alpha) + cia; dest[i] = BYTE_MUL(dest[i], a); } } } static void composition_destination_out(uint32_t* dest, int length, const uint32_t* src, uint32_t const_alpha) { if(const_alpha == 255) { for(int i = 0;i < length;i++) dest[i] = BYTE_MUL(dest[i], plutovg_alpha(~src[i])); } else { uint32_t cia = 255 - const_alpha; uint32_t sia; for(int i = 0;i < length;i++) { sia = BYTE_MUL(plutovg_alpha(~src[i]), const_alpha) + cia; dest[i] = BYTE_MUL(dest[i], sia); } } } typedef void(*composition_solid_function_t)(uint32_t* dest, int length, uint32_t color, uint32_t const_alpha); typedef void(*composition_function_t)(uint32_t* dest, int length, const uint32_t* src, uint32_t const_alpha); static const composition_solid_function_t composition_solid_map[] = { composition_solid_source, composition_solid_source_over, composition_solid_destination_in, composition_solid_destination_out }; static const composition_function_t composition_map[] = { composition_source, composition_source_over, composition_destination_in, composition_destination_out }; static void blend_solid(plutovg_surface_t* surface, plutovg_operator_t op, const plutovg_rle_t* rle, uint32_t solid) { composition_solid_function_t func = composition_solid_map[op]; int count = rle->spans.size; const plutovg_span_t* spans = rle->spans.data; while(count--) { uint32_t* target = (uint32_t*)(surface->data + spans->y * surface->stride) + spans->x; func(target, spans->len, solid, spans->coverage); ++spans; } } #define MIN(a, b) ((a) < (b) ? (a) : (b)) #define BUFFER_SIZE 1024 static void blend_linear_gradient(plutovg_surface_t* surface, plutovg_operator_t op, const plutovg_rle_t* rle, const gradient_data_t* gradient) { composition_function_t func = composition_map[op]; unsigned int buffer[BUFFER_SIZE]; linear_gradient_values_t v; v.dx = gradient->linear.x2 - gradient->linear.x1; v.dy = gradient->linear.y2 - gradient->linear.y1; v.l = v.dx * v.dx + v.dy * v.dy; v.off = 0.0; if(v.l != 0.0) { v.dx /= v.l; v.dy /= v.l; v.off = -v.dx * gradient->linear.x1 - v.dy * gradient->linear.y1; } int count = rle->spans.size; const plutovg_span_t* spans = rle->spans.data; while(count--) { int length = spans->len; int x = spans->x; while(length) { int l = MIN(length, BUFFER_SIZE); fetch_linear_gradient(buffer, &v, gradient, spans->y, x, l); uint32_t* target = (uint32_t*)(surface->data + spans->y * surface->stride) + x; func(target, l, buffer, spans->coverage); x += l; length -= l; } ++spans; } } static void blend_radial_gradient(plutovg_surface_t* surface, plutovg_operator_t op, const plutovg_rle_t* rle, const gradient_data_t* gradient) { composition_function_t func = composition_map[op]; unsigned int buffer[BUFFER_SIZE]; radial_gradient_values_t v; v.dx = gradient->radial.cx - gradient->radial.fx; v.dy = gradient->radial.cy - gradient->radial.fy; v.dr = gradient->radial.cr - gradient->radial.fr; v.sqrfr = gradient->radial.fr * gradient->radial.fr; v.a = v.dr * v.dr - v.dx * v.dx - v.dy * v.dy; v.inv2a = 1.0 / (2.0 * v.a); v.extended = gradient->radial.fr != 0.0 || v.a <= 0.0; int count = rle->spans.size; const plutovg_span_t* spans = rle->spans.data; while(count--) { int length = spans->len; int x = spans->x; while(length) { int l = MIN(length, BUFFER_SIZE); fetch_radial_gradient(buffer, &v, gradient, spans->y, x, l); uint32_t* target = (uint32_t*)(surface->data + spans->y * surface->stride) + x; func(target, l, buffer, spans->coverage); x += l; length -= l; } ++spans; } } #define CLAMP(v, lo, hi) ((v) < (lo) ? (lo) : (hi) < (v) ? (hi) : (v)) #define FIXED_SCALE (1 << 16) static void blend_transformed_argb(plutovg_surface_t* surface, plutovg_operator_t op, const plutovg_rle_t* rle, const texture_data_t* texture) { composition_function_t func = composition_map[op]; uint32_t buffer[BUFFER_SIZE]; int image_width = texture->width; int image_height = texture->height; int fdx = (int)(texture->matrix.m00 * FIXED_SCALE); int fdy = (int)(texture->matrix.m10 * FIXED_SCALE); int count = rle->spans.size; const plutovg_span_t* spans = rle->spans.data; while(count--) { uint32_t* target = (uint32_t*)(surface->data + spans->y * surface->stride) + spans->x; const double cx = spans->x + 0.5; const double cy = spans->y + 0.5; int x = (int)((texture->matrix.m01 * cy + texture->matrix.m00 * cx + texture->matrix.m02) * FIXED_SCALE); int y = (int)((texture->matrix.m11 * cy + texture->matrix.m10 * cx + texture->matrix.m12) * FIXED_SCALE); int length = spans->len; const int coverage = (spans->coverage * texture->const_alpha) >> 8; while(length) { int l = MIN(length, BUFFER_SIZE); const uint32_t* end = buffer + l; uint32_t* b = buffer; while(b < end) { int px = CLAMP(x >> 16, 0, image_width - 1); int py = CLAMP(y >> 16, 0, image_height - 1); *b = ((const uint32_t*)(texture->data + py * texture->stride))[px]; x += fdx; y += fdy; ++b; } func(target, l, buffer, coverage); target += l; length -= l; } ++spans; } } static void blend_untransformed_argb(plutovg_surface_t* surface, plutovg_operator_t op, const plutovg_rle_t* rle, const texture_data_t* texture) { composition_function_t func = composition_map[op]; const int image_width = texture->width; const int image_height = texture->height; int xoff = (int)(texture->matrix.m02); int yoff = (int)(texture->matrix.m12); int count = rle->spans.size; const plutovg_span_t* spans = rle->spans.data; while(count--) { int x = spans->x; int length = spans->len; int sx = xoff + x; int sy = yoff + spans->y; if(sy >= 0 && sy < image_height && sx < image_width) { if(sx < 0) { x -= sx; length += sx; sx = 0; } if(sx + length > image_width) length = image_width - sx; if(length > 0) { const int coverage = (spans->coverage * texture->const_alpha) >> 8; const uint32_t* src = (const uint32_t*)(texture->data + sy * texture->stride) + sx; uint32_t* dest = (uint32_t*)(surface->data + spans->y * surface->stride) + x; func(dest, length, src, coverage); } } ++spans; } } static void blend_untransformed_tiled_argb(plutovg_surface_t* surface, plutovg_operator_t op, const plutovg_rle_t* rle, const texture_data_t* texture) { composition_function_t func = composition_map[op]; int image_width = texture->width; int image_height = texture->height; int xoff = (int)(texture->matrix.m02) % image_width; int yoff = (int)(texture->matrix.m12) % image_height; if(xoff < 0) xoff += image_width; if(yoff < 0) yoff += image_height; int count = rle->spans.size; const plutovg_span_t* spans = rle->spans.data; while(count--) { int x = spans->x; int length = spans->len; int sx = (xoff + spans->x) % image_width; int sy = (spans->y + yoff) % image_height; if(sx < 0) sx += image_width; if(sy < 0) sy += image_height; const int coverage = (spans->coverage * texture->const_alpha) >> 8; while(length) { int l = MIN(image_width - sx, length); if(BUFFER_SIZE < l) l = BUFFER_SIZE; const uint32_t* src = (const uint32_t*)(texture->data + sy * texture->stride) + sx; uint32_t* dest = (uint32_t*)(surface->data + spans->y * surface->stride) + x; func(dest, l, src, coverage); x += l; length -= l; sx = 0; } ++spans; } } static void blend_transformed_tiled_argb(plutovg_surface_t* surface, plutovg_operator_t op, const plutovg_rle_t* rle, const texture_data_t* texture) { composition_function_t func = composition_map[op]; uint32_t buffer[BUFFER_SIZE]; int image_width = texture->width; int image_height = texture->height; const int scanline_offset = texture->stride / 4; int fdx = (int)(texture->matrix.m00 * FIXED_SCALE); int fdy = (int)(texture->matrix.m10 * FIXED_SCALE); int count = rle->spans.size; const plutovg_span_t* spans = rle->spans.data; while(count--) { uint32_t* target = (uint32_t*)(surface->data + spans->y * surface->stride) + spans->x; const uint32_t* image_bits = (const uint32_t*)texture->data; const double cx = spans->x + 0.5; const double cy = spans->y + 0.5; int x = (int)((texture->matrix.m01 * cy + texture->matrix.m00 * cx + texture->matrix.m02) * FIXED_SCALE); int y = (int)((texture->matrix.m11 * cy + texture->matrix.m10 * cx + texture->matrix.m12) * FIXED_SCALE); const int coverage = (spans->coverage * texture->const_alpha) >> 8; int length = spans->len; while(length) { int l = MIN(length, BUFFER_SIZE); const uint32_t* end = buffer + l; uint32_t* b = buffer; int px16 = x % (image_width << 16); int py16 = y % (image_height << 16); int px_delta = fdx % (image_width << 16); int py_delta = fdy % (image_height << 16); while(b < end) { if(px16 < 0) px16 += image_width << 16; if(py16 < 0) py16 += image_height << 16; int px = px16 >> 16; int py = py16 >> 16; int y_offset = py * scanline_offset; *b = image_bits[y_offset + px]; x += fdx; y += fdy; px16 += px_delta; if(px16 >= image_width << 16) px16 -= image_width << 16; py16 += py_delta; if(py16 >= image_height << 16) py16 -= image_height << 16; ++b; } func(target, l, buffer, coverage); target += l; length -= l; } ++spans; } } void plutovg_blend(plutovg_t* pluto, const plutovg_rle_t* rle) { plutovg_paint_t* source = pluto->state->source; if(source->type == plutovg_paint_type_color) plutovg_blend_color(pluto, rle, source->color); else if(source->type == plutovg_paint_type_gradient) plutovg_blend_gradient(pluto, rle, source->gradient); else plutovg_blend_texture(pluto, rle, source->texture); } void plutovg_blend_color(plutovg_t* pluto, const plutovg_rle_t* rle, const plutovg_color_t* color) { plutovg_state_t* state = pluto->state; uint32_t solid = premultiply_color(color, state->opacity); uint32_t alpha = plutovg_alpha(solid); if(alpha == 255 && state->op == plutovg_operator_src_over) blend_solid(pluto->surface, plutovg_operator_src, rle, solid); else blend_solid(pluto->surface, state->op, rle, solid); } void plutovg_blend_gradient(plutovg_t* pluto, const plutovg_rle_t* rle, const plutovg_gradient_t* gradient) { plutovg_state_t* state = pluto->state; gradient_data_t data; int i, pos = 0, nstop = gradient->stops.size; const plutovg_gradient_stop_t *curr, *next, *start, *last; uint32_t curr_color, next_color, last_color; uint32_t dist, idist; double delta, t, incr, fpos; double opacity = state->opacity * gradient->opacity; start = gradient->stops.data; curr = start; curr_color = combine_opacity(&curr->color, opacity); data.colortable[pos] = premultiply_pixel(curr_color); ++pos; incr = 1.0 / COLOR_TABLE_SIZE; fpos = 1.5 * incr; while(fpos <= curr->offset) { data.colortable[pos] = data.colortable[pos - 1]; ++pos; fpos += incr; } for(i = 0;i < nstop - 1;i++) { curr = (start + i); next = (start + i + 1); delta = 1.0 / (next->offset - curr->offset); next_color = combine_opacity(&next->color, opacity); while(fpos < next->offset && pos < COLOR_TABLE_SIZE) { t = (fpos - curr->offset) * delta; dist = (uint32_t)(255 * t); idist = 255 - dist; data.colortable[pos] = premultiply_pixel(interpolate_pixel(curr_color, idist, next_color, dist)); ++pos; fpos += incr; } curr_color = next_color; } last = start + nstop - 1; last_color = premultiply_color(&last->color, opacity); for(;pos < COLOR_TABLE_SIZE;++pos) data.colortable[pos] = last_color; data.spread = gradient->spread; data.matrix = gradient->matrix; plutovg_matrix_multiply(&data.matrix, &data.matrix, &state->matrix); plutovg_matrix_invert(&data.matrix); if(gradient->type==plutovg_gradient_type_linear) { data.linear.x1 = gradient->values[0]; data.linear.y1 = gradient->values[1]; data.linear.x2 = gradient->values[2]; data.linear.y2 = gradient->values[3]; blend_linear_gradient(pluto->surface, state->op, rle, &data); } else { data.radial.cx = gradient->values[0]; data.radial.cy = gradient->values[1]; data.radial.cr = gradient->values[2]; data.radial.fx = gradient->values[3]; data.radial.fy = gradient->values[4]; data.radial.fr = gradient->values[5]; blend_radial_gradient(pluto->surface, state->op, rle, &data); } } void plutovg_blend_texture(plutovg_t* pluto, const plutovg_rle_t* rle, const plutovg_texture_t* texture) { plutovg_state_t* state = pluto->state; texture_data_t data; data.data = texture->surface->data; data.width = texture->surface->width; data.height = texture->surface->height; data.stride = texture->surface->stride; data.const_alpha = (int)(state->opacity * texture->opacity * 256.0); data.matrix = texture->matrix; plutovg_matrix_multiply(&data.matrix, &data.matrix, &state->matrix); plutovg_matrix_invert(&data.matrix); const plutovg_matrix_t* matrix = &data.matrix; int translating = (matrix->m00==1.0 && matrix->m10==0.0 && matrix->m01==0.0 && matrix->m11==1.0); if(translating) { if(texture->type==plutovg_texture_type_plain) blend_untransformed_argb(pluto->surface, state->op, rle, &data); else blend_untransformed_tiled_argb(pluto->surface, state->op, rle, &data); } else { if(texture->type==plutovg_texture_type_plain) blend_transformed_argb(pluto->surface, state->op, rle, &data); else blend_transformed_tiled_argb(pluto->surface, state->op, rle, &data); } }