mirror of
https://github.com/RetroDECK/ES-DE.git
synced 2024-11-23 06:35:38 +00:00
32546b5874
git-subtree-dir: external/lunasvg git-subtree-split: 7417baa0aff477f361e44e2aa793fdb0c7aae352
462 lines
12 KiB
C
462 lines
12 KiB
C
/***************************************************************************/
|
|
/* */
|
|
/* fttrigon.c */
|
|
/* */
|
|
/* FreeType trigonometric functions (body). */
|
|
/* */
|
|
/* Copyright 2001-2005, 2012-2013 by */
|
|
/* David Turner, Robert Wilhelm, and Werner Lemberg. */
|
|
/* */
|
|
/* This file is part of the FreeType project, and may only be used, */
|
|
/* modified, and distributed under the terms of the FreeType project */
|
|
/* license, LICENSE.TXT. By continuing to use, modify, or distribute */
|
|
/* this file you indicate that you have read the license and */
|
|
/* understand and accept it fully. */
|
|
/* */
|
|
/***************************************************************************/
|
|
|
|
#include "sw_ft_math.h"
|
|
#include <math.h>
|
|
|
|
//form https://github.com/chromium/chromium/blob/59afd8336009c9d97c22854c52e0382b62b3aa5e/third_party/abseil-cpp/absl/base/internal/bits.h
|
|
|
|
#if defined(_MSC_VER)
|
|
#include <intrin.h>
|
|
static unsigned int __inline clz(unsigned int x) {
|
|
unsigned long r = 0;
|
|
if (x != 0)
|
|
{
|
|
_BitScanReverse(&r, x);
|
|
}
|
|
return r;
|
|
}
|
|
#define SW_FT_MSB(x) (clz(x))
|
|
#elif defined(__GNUC__)
|
|
#define SW_FT_MSB(x) (31 - __builtin_clz(x))
|
|
#else
|
|
static unsigned int __inline clz(unsigned int x) {
|
|
int c = 31;
|
|
x &= ~x + 1;
|
|
if (n & 0x0000FFFF) c -= 16;
|
|
if (n & 0x00FF00FF) c -= 8;
|
|
if (n & 0x0F0F0F0F) c -= 4;
|
|
if (n & 0x33333333) c -= 2;
|
|
if (n & 0x55555555) c -= 1;
|
|
return c;
|
|
}
|
|
#define SW_FT_MSB(x) (clz(x))
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
#define SW_FT_PAD_FLOOR(x, n) ((x) & ~((n)-1))
|
|
#define SW_FT_PAD_ROUND(x, n) SW_FT_PAD_FLOOR((x) + ((n) / 2), n)
|
|
#define SW_FT_PAD_CEIL(x, n) SW_FT_PAD_FLOOR((x) + ((n)-1), n)
|
|
|
|
#define SW_FT_BEGIN_STMNT do {
|
|
#define SW_FT_END_STMNT \
|
|
} \
|
|
while (0)
|
|
/* transfer sign leaving a positive number */
|
|
#define SW_FT_MOVE_SIGN(x, s) \
|
|
SW_FT_BEGIN_STMNT \
|
|
if (x < 0) { \
|
|
x = -x; \
|
|
s = -s; \
|
|
} \
|
|
SW_FT_END_STMNT
|
|
|
|
SW_FT_Long SW_FT_MulFix(SW_FT_Long a, SW_FT_Long b)
|
|
{
|
|
SW_FT_Int s = 1;
|
|
SW_FT_Long c;
|
|
|
|
SW_FT_MOVE_SIGN(a, s);
|
|
SW_FT_MOVE_SIGN(b, s);
|
|
|
|
c = (SW_FT_Long)(((SW_FT_Int64)a * b + 0x8000L) >> 16);
|
|
|
|
return (s > 0) ? c : -c;
|
|
}
|
|
|
|
SW_FT_Long SW_FT_MulDiv(SW_FT_Long a, SW_FT_Long b, SW_FT_Long c)
|
|
{
|
|
SW_FT_Int s = 1;
|
|
SW_FT_Long d;
|
|
|
|
SW_FT_MOVE_SIGN(a, s);
|
|
SW_FT_MOVE_SIGN(b, s);
|
|
SW_FT_MOVE_SIGN(c, s);
|
|
|
|
d = (SW_FT_Long)(c > 0 ? ((SW_FT_Int64)a * b + (c >> 1)) / c : 0x7FFFFFFFL);
|
|
|
|
return (s > 0) ? d : -d;
|
|
}
|
|
|
|
SW_FT_Long SW_FT_DivFix(SW_FT_Long a, SW_FT_Long b)
|
|
{
|
|
SW_FT_Int s = 1;
|
|
SW_FT_Long q;
|
|
|
|
SW_FT_MOVE_SIGN(a, s);
|
|
SW_FT_MOVE_SIGN(b, s);
|
|
|
|
q = (SW_FT_Long)(b > 0 ? (((SW_FT_UInt64)a << 16) + (b >> 1)) / b
|
|
: 0x7FFFFFFFL);
|
|
|
|
return (s < 0 ? -q : q);
|
|
}
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* This is a fixed-point CORDIC implementation of trigonometric */
|
|
/* functions as well as transformations between Cartesian and polar */
|
|
/* coordinates. The angles are represented as 16.16 fixed-point values */
|
|
/* in degrees, i.e., the angular resolution is 2^-16 degrees. Note that */
|
|
/* only vectors longer than 2^16*180/pi (or at least 22 bits) on a */
|
|
/* discrete Cartesian grid can have the same or better angular */
|
|
/* resolution. Therefore, to maintain this precision, some functions */
|
|
/* require an interim upscaling of the vectors, whereas others operate */
|
|
/* with 24-bit long vectors directly. */
|
|
/* */
|
|
/*************************************************************************/
|
|
|
|
/* the Cordic shrink factor 0.858785336480436 * 2^32 */
|
|
#define SW_FT_TRIG_SCALE 0xDBD95B16UL
|
|
|
|
/* the highest bit in overflow-safe vector components, */
|
|
/* MSB of 0.858785336480436 * sqrt(0.5) * 2^30 */
|
|
#define SW_FT_TRIG_SAFE_MSB 29
|
|
|
|
/* this table was generated for SW_FT_PI = 180L << 16, i.e. degrees */
|
|
#define SW_FT_TRIG_MAX_ITERS 23
|
|
|
|
static const SW_FT_Fixed ft_trig_arctan_table[] = {
|
|
1740967L, 919879L, 466945L, 234379L, 117304L, 58666L, 29335L, 14668L,
|
|
7334L, 3667L, 1833L, 917L, 458L, 229L, 115L, 57L,
|
|
29L, 14L, 7L, 4L, 2L, 1L};
|
|
|
|
/* multiply a given value by the CORDIC shrink factor */
|
|
static SW_FT_Fixed ft_trig_downscale(SW_FT_Fixed val)
|
|
{
|
|
SW_FT_Fixed s;
|
|
SW_FT_Int64 v;
|
|
|
|
s = val;
|
|
val = SW_FT_ABS(val);
|
|
|
|
v = (val * (SW_FT_Int64)SW_FT_TRIG_SCALE) + 0x100000000UL;
|
|
val = (SW_FT_Fixed)(v >> 32);
|
|
|
|
return (s >= 0) ? val : -val;
|
|
}
|
|
|
|
/* undefined and never called for zero vector */
|
|
static SW_FT_Int ft_trig_prenorm(SW_FT_Vector* vec)
|
|
{
|
|
SW_FT_Pos x, y;
|
|
SW_FT_Int shift;
|
|
|
|
x = vec->x;
|
|
y = vec->y;
|
|
|
|
shift = SW_FT_MSB(SW_FT_ABS(x) | SW_FT_ABS(y));
|
|
|
|
if (shift <= SW_FT_TRIG_SAFE_MSB) {
|
|
shift = SW_FT_TRIG_SAFE_MSB - shift;
|
|
vec->x = (SW_FT_Pos)((SW_FT_ULong)x << shift);
|
|
vec->y = (SW_FT_Pos)((SW_FT_ULong)y << shift);
|
|
} else {
|
|
shift -= SW_FT_TRIG_SAFE_MSB;
|
|
vec->x = x >> shift;
|
|
vec->y = y >> shift;
|
|
shift = -shift;
|
|
}
|
|
|
|
return shift;
|
|
}
|
|
|
|
static void ft_trig_pseudo_rotate(SW_FT_Vector* vec, SW_FT_Angle theta)
|
|
{
|
|
SW_FT_Int i;
|
|
SW_FT_Fixed x, y, xtemp, b;
|
|
const SW_FT_Fixed* arctanptr;
|
|
|
|
x = vec->x;
|
|
y = vec->y;
|
|
|
|
/* Rotate inside [-PI/4,PI/4] sector */
|
|
while (theta < -SW_FT_ANGLE_PI4) {
|
|
xtemp = y;
|
|
y = -x;
|
|
x = xtemp;
|
|
theta += SW_FT_ANGLE_PI2;
|
|
}
|
|
|
|
while (theta > SW_FT_ANGLE_PI4) {
|
|
xtemp = -y;
|
|
y = x;
|
|
x = xtemp;
|
|
theta -= SW_FT_ANGLE_PI2;
|
|
}
|
|
|
|
arctanptr = ft_trig_arctan_table;
|
|
|
|
/* Pseudorotations, with right shifts */
|
|
for (i = 1, b = 1; i < SW_FT_TRIG_MAX_ITERS; b <<= 1, i++) {
|
|
SW_FT_Fixed v1 = ((y + b) >> i);
|
|
SW_FT_Fixed v2 = ((x + b) >> i);
|
|
if (theta < 0) {
|
|
xtemp = x + v1;
|
|
y = y - v2;
|
|
x = xtemp;
|
|
theta += *arctanptr++;
|
|
} else {
|
|
xtemp = x - v1;
|
|
y = y + v2;
|
|
x = xtemp;
|
|
theta -= *arctanptr++;
|
|
}
|
|
}
|
|
|
|
vec->x = x;
|
|
vec->y = y;
|
|
}
|
|
|
|
static void ft_trig_pseudo_polarize(SW_FT_Vector* vec)
|
|
{
|
|
SW_FT_Angle theta;
|
|
SW_FT_Int i;
|
|
SW_FT_Fixed x, y, xtemp, b;
|
|
const SW_FT_Fixed* arctanptr;
|
|
|
|
x = vec->x;
|
|
y = vec->y;
|
|
|
|
/* Get the vector into [-PI/4,PI/4] sector */
|
|
if (y > x) {
|
|
if (y > -x) {
|
|
theta = SW_FT_ANGLE_PI2;
|
|
xtemp = y;
|
|
y = -x;
|
|
x = xtemp;
|
|
} else {
|
|
theta = y > 0 ? SW_FT_ANGLE_PI : -SW_FT_ANGLE_PI;
|
|
x = -x;
|
|
y = -y;
|
|
}
|
|
} else {
|
|
if (y < -x) {
|
|
theta = -SW_FT_ANGLE_PI2;
|
|
xtemp = -y;
|
|
y = x;
|
|
x = xtemp;
|
|
} else {
|
|
theta = 0;
|
|
}
|
|
}
|
|
|
|
arctanptr = ft_trig_arctan_table;
|
|
|
|
/* Pseudorotations, with right shifts */
|
|
for (i = 1, b = 1; i < SW_FT_TRIG_MAX_ITERS; b <<= 1, i++) {
|
|
SW_FT_Fixed v1 = ((y + b) >> i);
|
|
SW_FT_Fixed v2 = ((x + b) >> i);
|
|
if (y > 0) {
|
|
xtemp = x + v1;
|
|
y = y - v2;
|
|
x = xtemp;
|
|
theta += *arctanptr++;
|
|
} else {
|
|
xtemp = x - v1;
|
|
y = y + v2;
|
|
x = xtemp;
|
|
theta -= *arctanptr++;
|
|
}
|
|
}
|
|
|
|
/* round theta */
|
|
if (theta >= 0)
|
|
theta = SW_FT_PAD_ROUND(theta, 32);
|
|
else
|
|
theta = -SW_FT_PAD_ROUND(-theta, 32);
|
|
|
|
vec->x = x;
|
|
vec->y = theta;
|
|
}
|
|
|
|
/* documentation is in fttrigon.h */
|
|
|
|
SW_FT_Fixed SW_FT_Cos(SW_FT_Angle angle)
|
|
{
|
|
SW_FT_Vector v;
|
|
|
|
v.x = SW_FT_TRIG_SCALE >> 8;
|
|
v.y = 0;
|
|
ft_trig_pseudo_rotate(&v, angle);
|
|
|
|
return (v.x + 0x80L) >> 8;
|
|
}
|
|
|
|
/* documentation is in fttrigon.h */
|
|
|
|
SW_FT_Fixed SW_FT_Sin(SW_FT_Angle angle)
|
|
{
|
|
return SW_FT_Cos(SW_FT_ANGLE_PI2 - angle);
|
|
}
|
|
|
|
/* documentation is in fttrigon.h */
|
|
|
|
SW_FT_Fixed SW_FT_Tan(SW_FT_Angle angle)
|
|
{
|
|
SW_FT_Vector v;
|
|
|
|
v.x = SW_FT_TRIG_SCALE >> 8;
|
|
v.y = 0;
|
|
ft_trig_pseudo_rotate(&v, angle);
|
|
|
|
return SW_FT_DivFix(v.y, v.x);
|
|
}
|
|
|
|
/* documentation is in fttrigon.h */
|
|
|
|
SW_FT_Angle SW_FT_Atan2(SW_FT_Fixed dx, SW_FT_Fixed dy)
|
|
{
|
|
SW_FT_Vector v;
|
|
|
|
if (dx == 0 && dy == 0) return 0;
|
|
|
|
v.x = dx;
|
|
v.y = dy;
|
|
ft_trig_prenorm(&v);
|
|
ft_trig_pseudo_polarize(&v);
|
|
|
|
return v.y;
|
|
}
|
|
|
|
/* documentation is in fttrigon.h */
|
|
|
|
void SW_FT_Vector_Unit(SW_FT_Vector* vec, SW_FT_Angle angle)
|
|
{
|
|
vec->x = SW_FT_TRIG_SCALE >> 8;
|
|
vec->y = 0;
|
|
ft_trig_pseudo_rotate(vec, angle);
|
|
vec->x = (vec->x + 0x80L) >> 8;
|
|
vec->y = (vec->y + 0x80L) >> 8;
|
|
}
|
|
|
|
/* these macros return 0 for positive numbers,
|
|
and -1 for negative ones */
|
|
#define SW_FT_SIGN_LONG(x) ((x) >> (SW_FT_SIZEOF_LONG * 8 - 1))
|
|
#define SW_FT_SIGN_INT(x) ((x) >> (SW_FT_SIZEOF_INT * 8 - 1))
|
|
#define SW_FT_SIGN_INT32(x) ((x) >> 31)
|
|
#define SW_FT_SIGN_INT16(x) ((x) >> 15)
|
|
|
|
/* documentation is in fttrigon.h */
|
|
|
|
void SW_FT_Vector_Rotate(SW_FT_Vector* vec, SW_FT_Angle angle)
|
|
{
|
|
SW_FT_Int shift;
|
|
SW_FT_Vector v;
|
|
|
|
v.x = vec->x;
|
|
v.y = vec->y;
|
|
|
|
if (angle && (v.x != 0 || v.y != 0)) {
|
|
shift = ft_trig_prenorm(&v);
|
|
ft_trig_pseudo_rotate(&v, angle);
|
|
v.x = ft_trig_downscale(v.x);
|
|
v.y = ft_trig_downscale(v.y);
|
|
|
|
if (shift > 0) {
|
|
SW_FT_Int32 half = (SW_FT_Int32)1L << (shift - 1);
|
|
|
|
vec->x = (v.x + half + SW_FT_SIGN_LONG(v.x)) >> shift;
|
|
vec->y = (v.y + half + SW_FT_SIGN_LONG(v.y)) >> shift;
|
|
} else {
|
|
shift = -shift;
|
|
vec->x = (SW_FT_Pos)((SW_FT_ULong)v.x << shift);
|
|
vec->y = (SW_FT_Pos)((SW_FT_ULong)v.y << shift);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* documentation is in fttrigon.h */
|
|
|
|
SW_FT_Fixed SW_FT_Vector_Length(SW_FT_Vector* vec)
|
|
{
|
|
SW_FT_Int shift;
|
|
SW_FT_Vector v;
|
|
|
|
v = *vec;
|
|
|
|
/* handle trivial cases */
|
|
if (v.x == 0) {
|
|
return SW_FT_ABS(v.y);
|
|
} else if (v.y == 0) {
|
|
return SW_FT_ABS(v.x);
|
|
}
|
|
|
|
/* general case */
|
|
shift = ft_trig_prenorm(&v);
|
|
ft_trig_pseudo_polarize(&v);
|
|
|
|
v.x = ft_trig_downscale(v.x);
|
|
|
|
if (shift > 0) return (v.x + (1 << (shift - 1))) >> shift;
|
|
|
|
return (SW_FT_Fixed)((SW_FT_UInt32)v.x << -shift);
|
|
}
|
|
|
|
/* documentation is in fttrigon.h */
|
|
|
|
void SW_FT_Vector_Polarize(SW_FT_Vector* vec, SW_FT_Fixed* length,
|
|
SW_FT_Angle* angle)
|
|
{
|
|
SW_FT_Int shift;
|
|
SW_FT_Vector v;
|
|
|
|
v = *vec;
|
|
|
|
if (v.x == 0 && v.y == 0) return;
|
|
|
|
shift = ft_trig_prenorm(&v);
|
|
ft_trig_pseudo_polarize(&v);
|
|
|
|
v.x = ft_trig_downscale(v.x);
|
|
|
|
*length = (shift >= 0) ? (v.x >> shift)
|
|
: (SW_FT_Fixed)((SW_FT_UInt32)v.x << -shift);
|
|
*angle = v.y;
|
|
}
|
|
|
|
/* documentation is in fttrigon.h */
|
|
|
|
void SW_FT_Vector_From_Polar(SW_FT_Vector* vec, SW_FT_Fixed length,
|
|
SW_FT_Angle angle)
|
|
{
|
|
vec->x = length;
|
|
vec->y = 0;
|
|
|
|
SW_FT_Vector_Rotate(vec, angle);
|
|
}
|
|
|
|
/* documentation is in fttrigon.h */
|
|
|
|
SW_FT_Angle SW_FT_Angle_Diff( SW_FT_Angle angle1, SW_FT_Angle angle2 )
|
|
{
|
|
SW_FT_Angle delta = angle2 - angle1;
|
|
|
|
while ( delta <= -SW_FT_ANGLE_PI )
|
|
delta += SW_FT_ANGLE_2PI;
|
|
|
|
while ( delta > SW_FT_ANGLE_PI )
|
|
delta -= SW_FT_ANGLE_2PI;
|
|
|
|
return delta;
|
|
}
|
|
|
|
/* END */
|