mirror of
https://github.com/RetroDECK/ES-DE.git
synced 2024-11-23 06:35:38 +00:00
32546b5874
git-subtree-dir: external/lunasvg git-subtree-split: 7417baa0aff477f361e44e2aa793fdb0c7aae352
1424 lines
46 KiB
C
1424 lines
46 KiB
C
/***************************************************************************/
|
|
/* */
|
|
/* ftgrays.c */
|
|
/* */
|
|
/* A new `perfect' anti-aliasing renderer (body). */
|
|
/* */
|
|
/* Copyright 2000-2003, 2005-2014 by */
|
|
/* David Turner, Robert Wilhelm, and Werner Lemberg. */
|
|
/* */
|
|
/* This file is part of the FreeType project, and may only be used, */
|
|
/* modified, and distributed under the terms of the FreeType project */
|
|
/* license, LICENSE.TXT. By continuing to use, modify, or distribute */
|
|
/* this file you indicate that you have read the license and */
|
|
/* understand and accept it fully. */
|
|
/* */
|
|
/***************************************************************************/
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* This is a new anti-aliasing scan-converter for FreeType 2. The */
|
|
/* algorithm used here is _very_ different from the one in the standard */
|
|
/* `ftraster' module. Actually, `ftgrays' computes the _exact_ */
|
|
/* coverage of the outline on each pixel cell. */
|
|
/* */
|
|
/* It is based on ideas that I initially found in Raph Levien's */
|
|
/* excellent LibArt graphics library (see http://www.levien.com/libart */
|
|
/* for more information, though the web pages do not tell anything */
|
|
/* about the renderer; you'll have to dive into the source code to */
|
|
/* understand how it works). */
|
|
/* */
|
|
/* Note, however, that this is a _very_ different implementation */
|
|
/* compared to Raph's. Coverage information is stored in a very */
|
|
/* different way, and I don't use sorted vector paths. Also, it doesn't */
|
|
/* use floating point values. */
|
|
/* */
|
|
/* This renderer has the following advantages: */
|
|
/* */
|
|
/* - It doesn't need an intermediate bitmap. Instead, one can supply a */
|
|
/* callback function that will be called by the renderer to draw gray */
|
|
/* spans on any target surface. You can thus do direct composition on */
|
|
/* any kind of bitmap, provided that you give the renderer the right */
|
|
/* callback. */
|
|
/* */
|
|
/* - A perfect anti-aliaser, i.e., it computes the _exact_ coverage on */
|
|
/* each pixel cell. */
|
|
/* */
|
|
/* - It performs a single pass on the outline (the `standard' FT2 */
|
|
/* renderer makes two passes). */
|
|
/* */
|
|
/* - It can easily be modified to render to _any_ number of gray levels */
|
|
/* cheaply. */
|
|
/* */
|
|
/* - For small (< 20) pixel sizes, it is faster than the standard */
|
|
/* renderer. */
|
|
/* */
|
|
/*************************************************************************/
|
|
|
|
#include "sw_ft_raster.h"
|
|
#include "sw_ft_math.h"
|
|
|
|
/* Auxiliary macros for token concatenation. */
|
|
#define SW_FT_ERR_XCAT(x, y) x##y
|
|
#define SW_FT_ERR_CAT(x, y) SW_FT_ERR_XCAT(x, y)
|
|
|
|
#define SW_FT_BEGIN_STMNT do {
|
|
#define SW_FT_END_STMNT \
|
|
} \
|
|
while (0)
|
|
|
|
#include <limits.h>
|
|
#include <setjmp.h>
|
|
#include <stddef.h>
|
|
#include <string.h>
|
|
#define SW_FT_UINT_MAX UINT_MAX
|
|
#define SW_FT_INT_MAX INT_MAX
|
|
#define SW_FT_ULONG_MAX ULONG_MAX
|
|
#define SW_FT_CHAR_BIT CHAR_BIT
|
|
|
|
#define ft_memset memset
|
|
|
|
#define ft_setjmp setjmp
|
|
#define ft_longjmp longjmp
|
|
#define ft_jmp_buf jmp_buf
|
|
|
|
typedef ptrdiff_t SW_FT_PtrDist;
|
|
|
|
#define ErrRaster_Invalid_Mode -2
|
|
#define ErrRaster_Invalid_Outline -1
|
|
#define ErrRaster_Invalid_Argument -3
|
|
#define ErrRaster_Memory_Overflow -4
|
|
|
|
#define SW_FT_BEGIN_HEADER
|
|
#define SW_FT_END_HEADER
|
|
|
|
/* This macro is used to indicate that a function parameter is unused. */
|
|
/* Its purpose is simply to reduce compiler warnings. Note also that */
|
|
/* simply defining it as `(void)x' doesn't avoid warnings with certain */
|
|
/* ANSI compilers (e.g. LCC). */
|
|
#define SW_FT_UNUSED(x) (x) = (x)
|
|
|
|
#define SW_FT_THROW(e) SW_FT_ERR_CAT(ErrRaster_, e)
|
|
|
|
/* The size in bytes of the render pool used by the scan-line converter */
|
|
/* to do all of its work. */
|
|
#define SW_FT_RENDER_POOL_SIZE 16384L
|
|
|
|
typedef int (*SW_FT_Outline_MoveToFunc)(const SW_FT_Vector* to, void* user);
|
|
|
|
#define SW_FT_Outline_MoveTo_Func SW_FT_Outline_MoveToFunc
|
|
|
|
typedef int (*SW_FT_Outline_LineToFunc)(const SW_FT_Vector* to, void* user);
|
|
|
|
#define SW_FT_Outline_LineTo_Func SW_FT_Outline_LineToFunc
|
|
|
|
typedef int (*SW_FT_Outline_ConicToFunc)(const SW_FT_Vector* control,
|
|
const SW_FT_Vector* to, void* user);
|
|
|
|
#define SW_FT_Outline_ConicTo_Func SW_FT_Outline_ConicToFunc
|
|
|
|
typedef int (*SW_FT_Outline_CubicToFunc)(const SW_FT_Vector* control1,
|
|
const SW_FT_Vector* control2,
|
|
const SW_FT_Vector* to, void* user);
|
|
|
|
#define SW_FT_Outline_CubicTo_Func SW_FT_Outline_CubicToFunc
|
|
|
|
typedef struct SW_FT_Outline_Funcs_ {
|
|
SW_FT_Outline_MoveToFunc move_to;
|
|
SW_FT_Outline_LineToFunc line_to;
|
|
SW_FT_Outline_ConicToFunc conic_to;
|
|
SW_FT_Outline_CubicToFunc cubic_to;
|
|
|
|
int shift;
|
|
SW_FT_Pos delta;
|
|
|
|
} SW_FT_Outline_Funcs;
|
|
|
|
#define SW_FT_DEFINE_OUTLINE_FUNCS(class_, move_to_, line_to_, conic_to_, \
|
|
cubic_to_, shift_, delta_) \
|
|
static const SW_FT_Outline_Funcs class_ = {move_to_, line_to_, conic_to_, \
|
|
cubic_to_, shift_, delta_};
|
|
|
|
#define SW_FT_DEFINE_RASTER_FUNCS(class_, raster_new_, raster_reset_, \
|
|
raster_render_, raster_done_) \
|
|
const SW_FT_Raster_Funcs class_ = {raster_new_, raster_reset_, \
|
|
raster_render_, raster_done_};
|
|
|
|
#ifndef SW_FT_MEM_SET
|
|
#define SW_FT_MEM_SET(d, s, c) ft_memset(d, s, c)
|
|
#endif
|
|
|
|
#ifndef SW_FT_MEM_ZERO
|
|
#define SW_FT_MEM_ZERO(dest, count) SW_FT_MEM_SET(dest, 0, count)
|
|
#endif
|
|
|
|
/* as usual, for the speed hungry :-) */
|
|
|
|
#undef RAS_ARG
|
|
#undef RAS_ARG_
|
|
#undef RAS_VAR
|
|
#undef RAS_VAR_
|
|
|
|
#ifndef SW_FT_STATIC_RASTER
|
|
|
|
#define RAS_ARG gray_PWorker worker
|
|
#define RAS_ARG_ gray_PWorker worker,
|
|
|
|
#define RAS_VAR worker
|
|
#define RAS_VAR_ worker,
|
|
|
|
#else /* SW_FT_STATIC_RASTER */
|
|
|
|
#define RAS_ARG /* empty */
|
|
#define RAS_ARG_ /* empty */
|
|
#define RAS_VAR /* empty */
|
|
#define RAS_VAR_ /* empty */
|
|
|
|
#endif /* SW_FT_STATIC_RASTER */
|
|
|
|
/* must be at least 6 bits! */
|
|
#define PIXEL_BITS 8
|
|
|
|
#undef FLOOR
|
|
#undef CEILING
|
|
#undef TRUNC
|
|
#undef SCALED
|
|
|
|
#define ONE_PIXEL (1L << PIXEL_BITS)
|
|
#define PIXEL_MASK (-1L << PIXEL_BITS)
|
|
#define TRUNC(x) ((TCoord)((x) >> PIXEL_BITS))
|
|
#define SUBPIXELS(x) ((TPos)(x) << PIXEL_BITS)
|
|
#define FLOOR(x) ((x) & -ONE_PIXEL)
|
|
#define CEILING(x) (((x) + ONE_PIXEL - 1) & -ONE_PIXEL)
|
|
#define ROUND(x) (((x) + ONE_PIXEL / 2) & -ONE_PIXEL)
|
|
|
|
#if PIXEL_BITS >= 6
|
|
#define UPSCALE(x) ((x) << (PIXEL_BITS - 6))
|
|
#define DOWNSCALE(x) ((x) >> (PIXEL_BITS - 6))
|
|
#else
|
|
#define UPSCALE(x) ((x) >> (6 - PIXEL_BITS))
|
|
#define DOWNSCALE(x) ((x) << (6 - PIXEL_BITS))
|
|
#endif
|
|
|
|
/* Compute `dividend / divisor' and return both its quotient and */
|
|
/* remainder, cast to a specific type. This macro also ensures that */
|
|
/* the remainder is always positive. */
|
|
#define SW_FT_DIV_MOD(type, dividend, divisor, quotient, remainder) \
|
|
SW_FT_BEGIN_STMNT(quotient) = (type)((dividend) / (divisor)); \
|
|
(remainder) = (type)((dividend) % (divisor)); \
|
|
if ((remainder) < 0) { \
|
|
(quotient)--; \
|
|
(remainder) += (type)(divisor); \
|
|
} \
|
|
SW_FT_END_STMNT
|
|
|
|
#ifdef __arm__
|
|
/* Work around a bug specific to GCC which make the compiler fail to */
|
|
/* optimize a division and modulo operation on the same parameters */
|
|
/* into a single call to `__aeabi_idivmod'. See */
|
|
/* */
|
|
/* http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43721 */
|
|
#undef SW_FT_DIV_MOD
|
|
#define SW_FT_DIV_MOD(type, dividend, divisor, quotient, remainder) \
|
|
SW_FT_BEGIN_STMNT(quotient) = (type)((dividend) / (divisor)); \
|
|
(remainder) = (type)((dividend) - (quotient) * (divisor)); \
|
|
if ((remainder) < 0) { \
|
|
(quotient)--; \
|
|
(remainder) += (type)(divisor); \
|
|
} \
|
|
SW_FT_END_STMNT
|
|
#endif /* __arm__ */
|
|
|
|
/* These macros speed up repetitive divisions by replacing them */
|
|
/* with multiplications and right shifts. */
|
|
#define SW_FT_UDIVPREP(b) \
|
|
long b##_r = (long)(SW_FT_ULONG_MAX >> PIXEL_BITS) / (b)
|
|
#define SW_FT_UDIV(a, b) \
|
|
(((unsigned long)(a) * (unsigned long)(b##_r)) >> \
|
|
(sizeof(long) * SW_FT_CHAR_BIT - PIXEL_BITS))
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* TYPE DEFINITIONS */
|
|
/* */
|
|
|
|
/* don't change the following types to SW_FT_Int or SW_FT_Pos, since we might */
|
|
/* need to define them to "float" or "double" when experimenting with */
|
|
/* new algorithms */
|
|
|
|
typedef long TCoord; /* integer scanline/pixel coordinate */
|
|
typedef long TPos; /* sub-pixel coordinate */
|
|
|
|
/* determine the type used to store cell areas. This normally takes at */
|
|
/* least PIXEL_BITS*2 + 1 bits. On 16-bit systems, we need to use */
|
|
/* `long' instead of `int', otherwise bad things happen */
|
|
|
|
#if PIXEL_BITS <= 7
|
|
|
|
typedef int TArea;
|
|
|
|
#else /* PIXEL_BITS >= 8 */
|
|
|
|
/* approximately determine the size of integers using an ANSI-C header */
|
|
#if SW_FT_UINT_MAX == 0xFFFFU
|
|
typedef long TArea;
|
|
#else
|
|
typedef int TArea;
|
|
#endif
|
|
|
|
#endif /* PIXEL_BITS >= 8 */
|
|
|
|
/* maximum number of gray spans in a call to the span callback */
|
|
#define SW_FT_MAX_GRAY_SPANS 256
|
|
|
|
typedef struct TCell_* PCell;
|
|
|
|
typedef struct TCell_ {
|
|
TPos x; /* same with gray_TWorker.ex */
|
|
TCoord cover; /* same with gray_TWorker.cover */
|
|
TArea area;
|
|
PCell next;
|
|
|
|
} TCell;
|
|
|
|
#if defined(_MSC_VER) /* Visual C++ (and Intel C++) */
|
|
/* We disable the warning `structure was padded due to */
|
|
/* __declspec(align())' in order to compile cleanly with */
|
|
/* the maximum level of warnings. */
|
|
#pragma warning(push)
|
|
#pragma warning(disable : 4324)
|
|
#endif /* _MSC_VER */
|
|
|
|
typedef struct gray_TWorker_ {
|
|
TCoord ex, ey;
|
|
TPos min_ex, max_ex;
|
|
TPos min_ey, max_ey;
|
|
TPos count_ex, count_ey;
|
|
|
|
TArea area;
|
|
TCoord cover;
|
|
int invalid;
|
|
|
|
PCell cells;
|
|
SW_FT_PtrDist max_cells;
|
|
SW_FT_PtrDist num_cells;
|
|
|
|
TPos x, y;
|
|
|
|
SW_FT_Vector bez_stack[32 * 3 + 1];
|
|
int lev_stack[32];
|
|
|
|
SW_FT_Outline outline;
|
|
SW_FT_BBox clip_box;
|
|
|
|
int bound_left;
|
|
int bound_top;
|
|
int bound_right;
|
|
int bound_bottom;
|
|
|
|
SW_FT_Span gray_spans[SW_FT_MAX_GRAY_SPANS];
|
|
int num_gray_spans;
|
|
|
|
SW_FT_Raster_Span_Func render_span;
|
|
void* render_span_data;
|
|
|
|
int band_size;
|
|
int band_shoot;
|
|
|
|
ft_jmp_buf jump_buffer;
|
|
|
|
void* buffer;
|
|
long buffer_size;
|
|
|
|
PCell* ycells;
|
|
TPos ycount;
|
|
|
|
} gray_TWorker, *gray_PWorker;
|
|
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(pop)
|
|
#endif
|
|
|
|
#ifndef SW_FT_STATIC_RASTER
|
|
#define ras (*worker)
|
|
#else
|
|
static gray_TWorker ras;
|
|
#endif
|
|
|
|
typedef struct gray_TRaster_ {
|
|
void* memory;
|
|
|
|
} gray_TRaster, *gray_PRaster;
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* Initialize the cells table. */
|
|
/* */
|
|
static void gray_init_cells(RAS_ARG_ void* buffer, long byte_size)
|
|
{
|
|
ras.buffer = buffer;
|
|
ras.buffer_size = byte_size;
|
|
|
|
ras.ycells = (PCell*)buffer;
|
|
ras.cells = NULL;
|
|
ras.max_cells = 0;
|
|
ras.num_cells = 0;
|
|
ras.area = 0;
|
|
ras.cover = 0;
|
|
ras.invalid = 1;
|
|
|
|
ras.bound_left = INT_MAX;
|
|
ras.bound_top = INT_MAX;
|
|
ras.bound_right = INT_MIN;
|
|
ras.bound_bottom = INT_MIN;
|
|
}
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* Compute the outline bounding box. */
|
|
/* */
|
|
static void gray_compute_cbox(RAS_ARG)
|
|
{
|
|
SW_FT_Outline* outline = &ras.outline;
|
|
SW_FT_Vector* vec = outline->points;
|
|
SW_FT_Vector* limit = vec + outline->n_points;
|
|
|
|
if (outline->n_points <= 0) {
|
|
ras.min_ex = ras.max_ex = 0;
|
|
ras.min_ey = ras.max_ey = 0;
|
|
return;
|
|
}
|
|
|
|
ras.min_ex = ras.max_ex = vec->x;
|
|
ras.min_ey = ras.max_ey = vec->y;
|
|
|
|
vec++;
|
|
|
|
for (; vec < limit; vec++) {
|
|
TPos x = vec->x;
|
|
TPos y = vec->y;
|
|
|
|
if (x < ras.min_ex) ras.min_ex = x;
|
|
if (x > ras.max_ex) ras.max_ex = x;
|
|
if (y < ras.min_ey) ras.min_ey = y;
|
|
if (y > ras.max_ey) ras.max_ey = y;
|
|
}
|
|
|
|
/* truncate the bounding box to integer pixels */
|
|
ras.min_ex = ras.min_ex >> 6;
|
|
ras.min_ey = ras.min_ey >> 6;
|
|
ras.max_ex = (ras.max_ex + 63) >> 6;
|
|
ras.max_ey = (ras.max_ey + 63) >> 6;
|
|
}
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* Record the current cell in the table. */
|
|
/* */
|
|
static PCell gray_find_cell(RAS_ARG)
|
|
{
|
|
PCell *pcell, cell;
|
|
TPos x = ras.ex;
|
|
|
|
if (x > ras.count_ex) x = ras.count_ex;
|
|
|
|
pcell = &ras.ycells[ras.ey];
|
|
for (;;) {
|
|
cell = *pcell;
|
|
if (cell == NULL || cell->x > x) break;
|
|
|
|
if (cell->x == x) goto Exit;
|
|
|
|
pcell = &cell->next;
|
|
}
|
|
|
|
if (ras.num_cells >= ras.max_cells) ft_longjmp(ras.jump_buffer, 1);
|
|
|
|
cell = ras.cells + ras.num_cells++;
|
|
cell->x = x;
|
|
cell->area = 0;
|
|
cell->cover = 0;
|
|
|
|
cell->next = *pcell;
|
|
*pcell = cell;
|
|
|
|
Exit:
|
|
return cell;
|
|
}
|
|
|
|
static void gray_record_cell(RAS_ARG)
|
|
{
|
|
if (ras.area | ras.cover) {
|
|
PCell cell = gray_find_cell(RAS_VAR);
|
|
|
|
cell->area += ras.area;
|
|
cell->cover += ras.cover;
|
|
}
|
|
}
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* Set the current cell to a new position. */
|
|
/* */
|
|
static void gray_set_cell(RAS_ARG_ TCoord ex, TCoord ey)
|
|
{
|
|
/* Move the cell pointer to a new position. We set the `invalid' */
|
|
/* flag to indicate that the cell isn't part of those we're interested */
|
|
/* in during the render phase. This means that: */
|
|
/* */
|
|
/* . the new vertical position must be within min_ey..max_ey-1. */
|
|
/* . the new horizontal position must be strictly less than max_ex */
|
|
/* */
|
|
/* Note that if a cell is to the left of the clipping region, it is */
|
|
/* actually set to the (min_ex-1) horizontal position. */
|
|
|
|
/* All cells that are on the left of the clipping region go to the */
|
|
/* min_ex - 1 horizontal position. */
|
|
ey -= ras.min_ey;
|
|
|
|
if (ex > ras.max_ex) ex = ras.max_ex;
|
|
|
|
ex -= ras.min_ex;
|
|
if (ex < 0) ex = -1;
|
|
|
|
/* are we moving to a different cell ? */
|
|
if (ex != ras.ex || ey != ras.ey) {
|
|
/* record the current one if it is valid */
|
|
if (!ras.invalid) gray_record_cell(RAS_VAR);
|
|
|
|
ras.area = 0;
|
|
ras.cover = 0;
|
|
ras.ex = ex;
|
|
ras.ey = ey;
|
|
}
|
|
|
|
ras.invalid =
|
|
((unsigned)ey >= (unsigned)ras.count_ey || ex >= ras.count_ex);
|
|
}
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* Start a new contour at a given cell. */
|
|
/* */
|
|
static void gray_start_cell(RAS_ARG_ TCoord ex, TCoord ey)
|
|
{
|
|
if (ex > ras.max_ex) ex = (TCoord)(ras.max_ex);
|
|
|
|
if (ex < ras.min_ex) ex = (TCoord)(ras.min_ex - 1);
|
|
|
|
ras.area = 0;
|
|
ras.cover = 0;
|
|
ras.ex = ex - ras.min_ex;
|
|
ras.ey = ey - ras.min_ey;
|
|
ras.invalid = 0;
|
|
|
|
gray_set_cell(RAS_VAR_ ex, ey);
|
|
}
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* Render a straight line across multiple cells in any direction. */
|
|
/* */
|
|
static void gray_render_line(RAS_ARG_ TPos to_x, TPos to_y)
|
|
{
|
|
TPos dx, dy, fx1, fy1, fx2, fy2;
|
|
TCoord ex1, ex2, ey1, ey2;
|
|
|
|
ex1 = TRUNC(ras.x);
|
|
ex2 = TRUNC(to_x);
|
|
ey1 = TRUNC(ras.y);
|
|
ey2 = TRUNC(to_y);
|
|
|
|
/* perform vertical clipping */
|
|
if ((ey1 >= ras.max_ey && ey2 >= ras.max_ey) ||
|
|
(ey1 < ras.min_ey && ey2 < ras.min_ey))
|
|
goto End;
|
|
|
|
dx = to_x - ras.x;
|
|
dy = to_y - ras.y;
|
|
|
|
fx1 = ras.x - SUBPIXELS(ex1);
|
|
fy1 = ras.y - SUBPIXELS(ey1);
|
|
|
|
if (ex1 == ex2 && ey1 == ey2) /* inside one cell */
|
|
;
|
|
else if (dy == 0) /* ex1 != ex2 */ /* any horizontal line */
|
|
{
|
|
ex1 = ex2;
|
|
gray_set_cell(RAS_VAR_ ex1, ey1);
|
|
} else if (dx == 0) {
|
|
if (dy > 0) /* vertical line up */
|
|
do {
|
|
fy2 = ONE_PIXEL;
|
|
ras.cover += (fy2 - fy1);
|
|
ras.area += (fy2 - fy1) * fx1 * 2;
|
|
fy1 = 0;
|
|
ey1++;
|
|
gray_set_cell(RAS_VAR_ ex1, ey1);
|
|
} while (ey1 != ey2);
|
|
else /* vertical line down */
|
|
do {
|
|
fy2 = 0;
|
|
ras.cover += (fy2 - fy1);
|
|
ras.area += (fy2 - fy1) * fx1 * 2;
|
|
fy1 = ONE_PIXEL;
|
|
ey1--;
|
|
gray_set_cell(RAS_VAR_ ex1, ey1);
|
|
} while (ey1 != ey2);
|
|
} else /* any other line */
|
|
{
|
|
TArea prod = dx * fy1 - dy * fx1;
|
|
SW_FT_UDIVPREP(dx);
|
|
SW_FT_UDIVPREP(dy);
|
|
|
|
/* The fundamental value `prod' determines which side and the */
|
|
/* exact coordinate where the line exits current cell. It is */
|
|
/* also easily updated when moving from one cell to the next. */
|
|
do {
|
|
if (prod <= 0 && prod - dx * ONE_PIXEL > 0) /* left */
|
|
{
|
|
fx2 = 0;
|
|
fy2 = (TPos)SW_FT_UDIV(-prod, -dx);
|
|
prod -= dy * ONE_PIXEL;
|
|
ras.cover += (fy2 - fy1);
|
|
ras.area += (fy2 - fy1) * (fx1 + fx2);
|
|
fx1 = ONE_PIXEL;
|
|
fy1 = fy2;
|
|
ex1--;
|
|
} else if (prod - dx * ONE_PIXEL <= 0 &&
|
|
prod - dx * ONE_PIXEL + dy * ONE_PIXEL > 0) /* up */
|
|
{
|
|
prod -= dx * ONE_PIXEL;
|
|
fx2 = (TPos)SW_FT_UDIV(-prod, dy);
|
|
fy2 = ONE_PIXEL;
|
|
ras.cover += (fy2 - fy1);
|
|
ras.area += (fy2 - fy1) * (fx1 + fx2);
|
|
fx1 = fx2;
|
|
fy1 = 0;
|
|
ey1++;
|
|
} else if (prod - dx * ONE_PIXEL + dy * ONE_PIXEL <= 0 &&
|
|
prod + dy * ONE_PIXEL >= 0) /* right */
|
|
{
|
|
prod += dy * ONE_PIXEL;
|
|
fx2 = ONE_PIXEL;
|
|
fy2 = (TPos)SW_FT_UDIV(prod, dx);
|
|
ras.cover += (fy2 - fy1);
|
|
ras.area += (fy2 - fy1) * (fx1 + fx2);
|
|
fx1 = 0;
|
|
fy1 = fy2;
|
|
ex1++;
|
|
} else /* ( prod + dy * ONE_PIXEL < 0 &&
|
|
prod > 0 ) down */
|
|
{
|
|
fx2 = (TPos)SW_FT_UDIV(prod, -dy);
|
|
fy2 = 0;
|
|
prod += dx * ONE_PIXEL;
|
|
ras.cover += (fy2 - fy1);
|
|
ras.area += (fy2 - fy1) * (fx1 + fx2);
|
|
fx1 = fx2;
|
|
fy1 = ONE_PIXEL;
|
|
ey1--;
|
|
}
|
|
|
|
gray_set_cell(RAS_VAR_ ex1, ey1);
|
|
} while (ex1 != ex2 || ey1 != ey2);
|
|
}
|
|
|
|
fx2 = to_x - SUBPIXELS(ex2);
|
|
fy2 = to_y - SUBPIXELS(ey2);
|
|
|
|
ras.cover += (fy2 - fy1);
|
|
ras.area += (fy2 - fy1) * (fx1 + fx2);
|
|
|
|
End:
|
|
ras.x = to_x;
|
|
ras.y = to_y;
|
|
}
|
|
|
|
static void gray_split_conic(SW_FT_Vector* base)
|
|
{
|
|
TPos a, b;
|
|
|
|
base[4].x = base[2].x;
|
|
a = base[0].x + base[1].x;
|
|
b = base[1].x + base[2].x;
|
|
base[3].x = b >> 1;
|
|
base[2].x = ( a + b ) >> 2;
|
|
base[1].x = a >> 1;
|
|
|
|
base[4].y = base[2].y;
|
|
a = base[0].y + base[1].y;
|
|
b = base[1].y + base[2].y;
|
|
base[3].y = b >> 1;
|
|
base[2].y = ( a + b ) >> 2;
|
|
base[1].y = a >> 1;
|
|
}
|
|
|
|
static void gray_render_conic(RAS_ARG_ const SW_FT_Vector* control,
|
|
const SW_FT_Vector* to)
|
|
{
|
|
TPos dx, dy;
|
|
TPos min, max, y;
|
|
int top, level;
|
|
int* levels;
|
|
SW_FT_Vector* arc;
|
|
|
|
levels = ras.lev_stack;
|
|
|
|
arc = ras.bez_stack;
|
|
arc[0].x = UPSCALE(to->x);
|
|
arc[0].y = UPSCALE(to->y);
|
|
arc[1].x = UPSCALE(control->x);
|
|
arc[1].y = UPSCALE(control->y);
|
|
arc[2].x = ras.x;
|
|
arc[2].y = ras.y;
|
|
top = 0;
|
|
|
|
dx = SW_FT_ABS(arc[2].x + arc[0].x - 2 * arc[1].x);
|
|
dy = SW_FT_ABS(arc[2].y + arc[0].y - 2 * arc[1].y);
|
|
if (dx < dy) dx = dy;
|
|
|
|
if (dx < ONE_PIXEL / 4) goto Draw;
|
|
|
|
/* short-cut the arc that crosses the current band */
|
|
min = max = arc[0].y;
|
|
|
|
y = arc[1].y;
|
|
if (y < min) min = y;
|
|
if (y > max) max = y;
|
|
|
|
y = arc[2].y;
|
|
if (y < min) min = y;
|
|
if (y > max) max = y;
|
|
|
|
if (TRUNC(min) >= ras.max_ey || TRUNC(max) < ras.min_ey) goto Draw;
|
|
|
|
level = 0;
|
|
do {
|
|
dx >>= 2;
|
|
level++;
|
|
} while (dx > ONE_PIXEL / 4);
|
|
|
|
levels[0] = level;
|
|
|
|
do {
|
|
level = levels[top];
|
|
if (level > 0) {
|
|
gray_split_conic(arc);
|
|
arc += 2;
|
|
top++;
|
|
levels[top] = levels[top - 1] = level - 1;
|
|
continue;
|
|
}
|
|
|
|
Draw:
|
|
gray_render_line(RAS_VAR_ arc[0].x, arc[0].y);
|
|
top--;
|
|
arc -= 2;
|
|
|
|
} while (top >= 0);
|
|
}
|
|
|
|
static void gray_split_cubic(SW_FT_Vector* base)
|
|
{
|
|
TPos a, b, c;
|
|
|
|
|
|
base[6].x = base[3].x;
|
|
a = base[0].x + base[1].x;
|
|
b = base[1].x + base[2].x;
|
|
c = base[2].x + base[3].x;
|
|
base[5].x = c >> 1;
|
|
c += b;
|
|
base[4].x = c >> 2;
|
|
base[1].x = a >> 1;
|
|
a += b;
|
|
base[2].x = a >> 2;
|
|
base[3].x = ( a + c ) >> 3;
|
|
|
|
base[6].y = base[3].y;
|
|
a = base[0].y + base[1].y;
|
|
b = base[1].y + base[2].y;
|
|
c = base[2].y + base[3].y;
|
|
base[5].y = c >> 1;
|
|
c += b;
|
|
base[4].y = c >> 2;
|
|
base[1].y = a >> 1;
|
|
a += b;
|
|
base[2].y = a >> 2;
|
|
base[3].y = ( a + c ) >> 3;
|
|
}
|
|
|
|
|
|
static void
|
|
gray_render_cubic(RAS_ARG_ const SW_FT_Vector* control1,
|
|
const SW_FT_Vector* control2,
|
|
const SW_FT_Vector* to)
|
|
{
|
|
SW_FT_Vector* arc = ras.bez_stack;
|
|
|
|
arc[0].x = UPSCALE( to->x );
|
|
arc[0].y = UPSCALE( to->y );
|
|
arc[1].x = UPSCALE( control2->x );
|
|
arc[1].y = UPSCALE( control2->y );
|
|
arc[2].x = UPSCALE( control1->x );
|
|
arc[2].y = UPSCALE( control1->y );
|
|
arc[3].x = ras.x;
|
|
arc[3].y = ras.y;
|
|
|
|
/* short-cut the arc that crosses the current band */
|
|
if ( ( TRUNC( arc[0].y ) >= ras.max_ey &&
|
|
TRUNC( arc[1].y ) >= ras.max_ey &&
|
|
TRUNC( arc[2].y ) >= ras.max_ey &&
|
|
TRUNC( arc[3].y ) >= ras.max_ey ) ||
|
|
( TRUNC( arc[0].y ) < ras.min_ey &&
|
|
TRUNC( arc[1].y ) < ras.min_ey &&
|
|
TRUNC( arc[2].y ) < ras.min_ey &&
|
|
TRUNC( arc[3].y ) < ras.min_ey ) )
|
|
{
|
|
ras.x = arc[0].x;
|
|
ras.y = arc[0].y;
|
|
return;
|
|
}
|
|
|
|
for (;;)
|
|
{
|
|
/* with each split, control points quickly converge towards */
|
|
/* chord trisection points and the vanishing distances below */
|
|
/* indicate when the segment is flat enough to draw */
|
|
if ( SW_FT_ABS( 2 * arc[0].x - 3 * arc[1].x + arc[3].x ) > ONE_PIXEL / 2 ||
|
|
SW_FT_ABS( 2 * arc[0].y - 3 * arc[1].y + arc[3].y ) > ONE_PIXEL / 2 ||
|
|
SW_FT_ABS( arc[0].x - 3 * arc[2].x + 2 * arc[3].x ) > ONE_PIXEL / 2 ||
|
|
SW_FT_ABS( arc[0].y - 3 * arc[2].y + 2 * arc[3].y ) > ONE_PIXEL / 2 )
|
|
goto Split;
|
|
|
|
gray_render_line( RAS_VAR_ arc[0].x, arc[0].y );
|
|
|
|
if ( arc == ras.bez_stack )
|
|
return;
|
|
|
|
arc -= 3;
|
|
continue;
|
|
|
|
Split:
|
|
gray_split_cubic( arc );
|
|
arc += 3;
|
|
}
|
|
}
|
|
|
|
static int gray_move_to(const SW_FT_Vector* to, gray_PWorker worker)
|
|
{
|
|
TPos x, y;
|
|
|
|
/* record current cell, if any */
|
|
if (!ras.invalid) gray_record_cell(RAS_VAR);
|
|
|
|
/* start to a new position */
|
|
x = UPSCALE(to->x);
|
|
y = UPSCALE(to->y);
|
|
|
|
gray_start_cell(RAS_VAR_ TRUNC(x), TRUNC(y));
|
|
|
|
worker->x = x;
|
|
worker->y = y;
|
|
return 0;
|
|
}
|
|
|
|
static int gray_line_to(const SW_FT_Vector* to, gray_PWorker worker)
|
|
{
|
|
gray_render_line(RAS_VAR_ UPSCALE(to->x), UPSCALE(to->y));
|
|
return 0;
|
|
}
|
|
|
|
static int gray_conic_to(const SW_FT_Vector* control, const SW_FT_Vector* to,
|
|
gray_PWorker worker)
|
|
{
|
|
gray_render_conic(RAS_VAR_ control, to);
|
|
return 0;
|
|
}
|
|
|
|
static int gray_cubic_to(const SW_FT_Vector* control1,
|
|
const SW_FT_Vector* control2, const SW_FT_Vector* to,
|
|
gray_PWorker worker)
|
|
{
|
|
gray_render_cubic(RAS_VAR_ control1, control2, to);
|
|
return 0;
|
|
}
|
|
|
|
static void gray_hline(RAS_ARG_ TCoord x, TCoord y, TPos area, TCoord acount)
|
|
{
|
|
int coverage;
|
|
|
|
/* compute the coverage line's coverage, depending on the */
|
|
/* outline fill rule */
|
|
/* */
|
|
/* the coverage percentage is area/(PIXEL_BITS*PIXEL_BITS*2) */
|
|
/* */
|
|
coverage = (int)(area >> (PIXEL_BITS * 2 + 1 - 8));
|
|
/* use range 0..256 */
|
|
if (coverage < 0) coverage = -coverage;
|
|
|
|
if (ras.outline.flags & SW_FT_OUTLINE_EVEN_ODD_FILL) {
|
|
coverage &= 511;
|
|
|
|
if (coverage > 256)
|
|
coverage = 512 - coverage;
|
|
else if (coverage == 256)
|
|
coverage = 255;
|
|
} else {
|
|
/* normal non-zero winding rule */
|
|
if (coverage >= 256) coverage = 255;
|
|
}
|
|
|
|
y += (TCoord)ras.min_ey;
|
|
x += (TCoord)ras.min_ex;
|
|
|
|
/* SW_FT_Span.x is a 16-bit short, so limit our coordinates appropriately */
|
|
if (x >= 32767) x = 32767;
|
|
|
|
/* SW_FT_Span.y is an integer, so limit our coordinates appropriately */
|
|
if (y >= SW_FT_INT_MAX) y = SW_FT_INT_MAX;
|
|
|
|
if (coverage) {
|
|
SW_FT_Span* span;
|
|
int count;
|
|
|
|
// update bounding box.
|
|
if (x < ras.bound_left) ras.bound_left = x;
|
|
if (y < ras.bound_top) ras.bound_top = y;
|
|
if (y > ras.bound_bottom) ras.bound_bottom = y;
|
|
if (x + acount > ras.bound_right) ras.bound_right = x + acount;
|
|
|
|
/* see whether we can add this span to the current list */
|
|
count = ras.num_gray_spans;
|
|
span = ras.gray_spans + count - 1;
|
|
if (count > 0 && span->y == y && (int)span->x + span->len == (int)x &&
|
|
span->coverage == coverage) {
|
|
span->len = (unsigned short)(span->len + acount);
|
|
return;
|
|
}
|
|
|
|
if (count >= SW_FT_MAX_GRAY_SPANS) {
|
|
if (ras.render_span && count > 0)
|
|
ras.render_span(count, ras.gray_spans, ras.render_span_data);
|
|
|
|
#ifdef DEBUG_GRAYS
|
|
|
|
if (1) {
|
|
int n;
|
|
|
|
fprintf(stderr, "count = %3d ", count);
|
|
span = ras.gray_spans;
|
|
for (n = 0; n < count; n++, span++)
|
|
fprintf(stderr, "[%d , %d..%d] : %d ", span->y, span->x,
|
|
span->x + span->len - 1, span->coverage);
|
|
fprintf(stderr, "\n");
|
|
}
|
|
|
|
#endif /* DEBUG_GRAYS */
|
|
|
|
ras.num_gray_spans = 0;
|
|
|
|
span = ras.gray_spans;
|
|
} else
|
|
span++;
|
|
|
|
/* add a gray span to the current list */
|
|
span->x = (short)x;
|
|
span->y = (short)y;
|
|
span->len = (unsigned short)acount;
|
|
span->coverage = (unsigned char)coverage;
|
|
|
|
ras.num_gray_spans++;
|
|
}
|
|
}
|
|
|
|
static void gray_sweep(RAS_ARG)
|
|
{
|
|
int yindex;
|
|
|
|
if (ras.num_cells == 0) return;
|
|
|
|
ras.num_gray_spans = 0;
|
|
|
|
for (yindex = 0; yindex < ras.ycount; yindex++) {
|
|
PCell cell = ras.ycells[yindex];
|
|
TCoord cover = 0;
|
|
TCoord x = 0;
|
|
|
|
for (; cell != NULL; cell = cell->next) {
|
|
TPos area;
|
|
|
|
if (cell->x > x && cover != 0)
|
|
gray_hline(RAS_VAR_ x, yindex, cover * (ONE_PIXEL * 2),
|
|
cell->x - x);
|
|
|
|
cover += cell->cover;
|
|
area = cover * (ONE_PIXEL * 2) - cell->area;
|
|
|
|
if (area != 0 && cell->x >= 0)
|
|
gray_hline(RAS_VAR_ cell->x, yindex, area, 1);
|
|
|
|
x = cell->x + 1;
|
|
}
|
|
|
|
if (cover != 0)
|
|
gray_hline(RAS_VAR_ x, yindex, cover * (ONE_PIXEL * 2),
|
|
ras.count_ex - x);
|
|
}
|
|
|
|
if (ras.render_span && ras.num_gray_spans > 0)
|
|
ras.render_span(ras.num_gray_spans, ras.gray_spans,
|
|
ras.render_span_data);
|
|
}
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* The following function should only compile in stand-alone mode, */
|
|
/* i.e., when building this component without the rest of FreeType. */
|
|
/* */
|
|
/*************************************************************************/
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* <Function> */
|
|
/* SW_FT_Outline_Decompose */
|
|
/* */
|
|
/* <Description> */
|
|
/* Walk over an outline's structure to decompose it into individual */
|
|
/* segments and Bézier arcs. This function is also able to emit */
|
|
/* `move to' and `close to' operations to indicate the start and end */
|
|
/* of new contours in the outline. */
|
|
/* */
|
|
/* <Input> */
|
|
/* outline :: A pointer to the source target. */
|
|
/* */
|
|
/* func_interface :: A table of `emitters', i.e., function pointers */
|
|
/* called during decomposition to indicate path */
|
|
/* operations. */
|
|
/* */
|
|
/* <InOut> */
|
|
/* user :: A typeless pointer which is passed to each */
|
|
/* emitter during the decomposition. It can be */
|
|
/* used to store the state during the */
|
|
/* decomposition. */
|
|
/* */
|
|
/* <Return> */
|
|
/* Error code. 0 means success. */
|
|
/* */
|
|
static int SW_FT_Outline_Decompose(const SW_FT_Outline* outline,
|
|
const SW_FT_Outline_Funcs* func_interface,
|
|
void* user)
|
|
{
|
|
#undef SCALED
|
|
#define SCALED(x) (((x) << shift) - delta)
|
|
|
|
SW_FT_Vector v_last;
|
|
SW_FT_Vector v_control;
|
|
SW_FT_Vector v_start;
|
|
|
|
SW_FT_Vector* point;
|
|
SW_FT_Vector* limit;
|
|
char* tags;
|
|
|
|
int error;
|
|
|
|
int n; /* index of contour in outline */
|
|
int first; /* index of first point in contour */
|
|
char tag; /* current point's state */
|
|
|
|
int shift;
|
|
TPos delta;
|
|
|
|
if (!outline || !func_interface) return SW_FT_THROW(Invalid_Argument);
|
|
|
|
shift = func_interface->shift;
|
|
delta = func_interface->delta;
|
|
first = 0;
|
|
|
|
for (n = 0; n < outline->n_contours; n++) {
|
|
int last; /* index of last point in contour */
|
|
|
|
last = outline->contours[n];
|
|
if (last < 0) goto Invalid_Outline;
|
|
limit = outline->points + last;
|
|
|
|
v_start = outline->points[first];
|
|
v_start.x = SCALED(v_start.x);
|
|
v_start.y = SCALED(v_start.y);
|
|
|
|
v_last = outline->points[last];
|
|
v_last.x = SCALED(v_last.x);
|
|
v_last.y = SCALED(v_last.y);
|
|
|
|
v_control = v_start;
|
|
|
|
point = outline->points + first;
|
|
tags = outline->tags + first;
|
|
tag = SW_FT_CURVE_TAG(tags[0]);
|
|
|
|
/* A contour cannot start with a cubic control point! */
|
|
if (tag == SW_FT_CURVE_TAG_CUBIC) goto Invalid_Outline;
|
|
|
|
/* check first point to determine origin */
|
|
if (tag == SW_FT_CURVE_TAG_CONIC) {
|
|
/* first point is conic control. Yes, this happens. */
|
|
if (SW_FT_CURVE_TAG(outline->tags[last]) == SW_FT_CURVE_TAG_ON) {
|
|
/* start at last point if it is on the curve */
|
|
v_start = v_last;
|
|
limit--;
|
|
} else {
|
|
/* if both first and last points are conic, */
|
|
/* start at their middle and record its position */
|
|
/* for closure */
|
|
v_start.x = (v_start.x + v_last.x) / 2;
|
|
v_start.y = (v_start.y + v_last.y) / 2;
|
|
}
|
|
point--;
|
|
tags--;
|
|
}
|
|
|
|
error = func_interface->move_to(&v_start, user);
|
|
if (error) goto Exit;
|
|
|
|
while (point < limit) {
|
|
point++;
|
|
tags++;
|
|
|
|
tag = SW_FT_CURVE_TAG(tags[0]);
|
|
switch (tag) {
|
|
case SW_FT_CURVE_TAG_ON: /* emit a single line_to */
|
|
{
|
|
SW_FT_Vector vec;
|
|
|
|
vec.x = SCALED(point->x);
|
|
vec.y = SCALED(point->y);
|
|
|
|
error = func_interface->line_to(&vec, user);
|
|
if (error) goto Exit;
|
|
continue;
|
|
}
|
|
|
|
case SW_FT_CURVE_TAG_CONIC: /* consume conic arcs */
|
|
v_control.x = SCALED(point->x);
|
|
v_control.y = SCALED(point->y);
|
|
|
|
Do_Conic:
|
|
if (point < limit) {
|
|
SW_FT_Vector vec;
|
|
SW_FT_Vector v_middle;
|
|
|
|
point++;
|
|
tags++;
|
|
tag = SW_FT_CURVE_TAG(tags[0]);
|
|
|
|
vec.x = SCALED(point->x);
|
|
vec.y = SCALED(point->y);
|
|
|
|
if (tag == SW_FT_CURVE_TAG_ON) {
|
|
error =
|
|
func_interface->conic_to(&v_control, &vec, user);
|
|
if (error) goto Exit;
|
|
continue;
|
|
}
|
|
|
|
if (tag != SW_FT_CURVE_TAG_CONIC) goto Invalid_Outline;
|
|
|
|
v_middle.x = (v_control.x + vec.x) / 2;
|
|
v_middle.y = (v_control.y + vec.y) / 2;
|
|
|
|
error =
|
|
func_interface->conic_to(&v_control, &v_middle, user);
|
|
if (error) goto Exit;
|
|
|
|
v_control = vec;
|
|
goto Do_Conic;
|
|
}
|
|
|
|
error = func_interface->conic_to(&v_control, &v_start, user);
|
|
goto Close;
|
|
|
|
default: /* SW_FT_CURVE_TAG_CUBIC */
|
|
{
|
|
SW_FT_Vector vec1, vec2;
|
|
|
|
if (point + 1 > limit ||
|
|
SW_FT_CURVE_TAG(tags[1]) != SW_FT_CURVE_TAG_CUBIC)
|
|
goto Invalid_Outline;
|
|
|
|
point += 2;
|
|
tags += 2;
|
|
|
|
vec1.x = SCALED(point[-2].x);
|
|
vec1.y = SCALED(point[-2].y);
|
|
|
|
vec2.x = SCALED(point[-1].x);
|
|
vec2.y = SCALED(point[-1].y);
|
|
|
|
if (point <= limit) {
|
|
SW_FT_Vector vec;
|
|
|
|
vec.x = SCALED(point->x);
|
|
vec.y = SCALED(point->y);
|
|
|
|
error = func_interface->cubic_to(&vec1, &vec2, &vec, user);
|
|
if (error) goto Exit;
|
|
continue;
|
|
}
|
|
|
|
error = func_interface->cubic_to(&vec1, &vec2, &v_start, user);
|
|
goto Close;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* close the contour with a line segment */
|
|
error = func_interface->line_to(&v_start, user);
|
|
|
|
Close:
|
|
if (error) goto Exit;
|
|
|
|
first = last + 1;
|
|
}
|
|
|
|
return 0;
|
|
|
|
Exit:
|
|
return error;
|
|
|
|
Invalid_Outline:
|
|
return SW_FT_THROW(Invalid_Outline);
|
|
}
|
|
|
|
typedef struct gray_TBand_ {
|
|
TPos min, max;
|
|
|
|
} gray_TBand;
|
|
|
|
SW_FT_DEFINE_OUTLINE_FUNCS(func_interface,
|
|
(SW_FT_Outline_MoveTo_Func)gray_move_to,
|
|
(SW_FT_Outline_LineTo_Func)gray_line_to,
|
|
(SW_FT_Outline_ConicTo_Func)gray_conic_to,
|
|
(SW_FT_Outline_CubicTo_Func)gray_cubic_to, 0, 0)
|
|
|
|
static int gray_convert_glyph_inner(RAS_ARG)
|
|
{
|
|
volatile int error = 0;
|
|
|
|
if (ft_setjmp(ras.jump_buffer) == 0) {
|
|
error = SW_FT_Outline_Decompose(&ras.outline, &func_interface, &ras);
|
|
if (!ras.invalid) gray_record_cell(RAS_VAR);
|
|
} else
|
|
error = SW_FT_THROW(Memory_Overflow);
|
|
|
|
return error;
|
|
}
|
|
|
|
static int gray_convert_glyph(RAS_ARG)
|
|
{
|
|
gray_TBand bands[40];
|
|
gray_TBand* volatile band;
|
|
int volatile n, num_bands;
|
|
TPos volatile min, max, max_y;
|
|
SW_FT_BBox* clip;
|
|
|
|
/* Set up state in the raster object */
|
|
gray_compute_cbox(RAS_VAR);
|
|
|
|
/* clip to target bitmap, exit if nothing to do */
|
|
clip = &ras.clip_box;
|
|
|
|
if (ras.max_ex <= clip->xMin || ras.min_ex >= clip->xMax ||
|
|
ras.max_ey <= clip->yMin || ras.min_ey >= clip->yMax)
|
|
return 0;
|
|
|
|
if (ras.min_ex < clip->xMin) ras.min_ex = clip->xMin;
|
|
if (ras.min_ey < clip->yMin) ras.min_ey = clip->yMin;
|
|
|
|
if (ras.max_ex > clip->xMax) ras.max_ex = clip->xMax;
|
|
if (ras.max_ey > clip->yMax) ras.max_ey = clip->yMax;
|
|
|
|
ras.count_ex = ras.max_ex - ras.min_ex;
|
|
ras.count_ey = ras.max_ey - ras.min_ey;
|
|
|
|
/* set up vertical bands */
|
|
num_bands = (int)((ras.max_ey - ras.min_ey) / ras.band_size);
|
|
if (num_bands == 0) num_bands = 1;
|
|
if (num_bands >= 39) num_bands = 39;
|
|
|
|
ras.band_shoot = 0;
|
|
|
|
min = ras.min_ey;
|
|
max_y = ras.max_ey;
|
|
|
|
for (n = 0; n < num_bands; n++, min = max) {
|
|
max = min + ras.band_size;
|
|
if (n == num_bands - 1 || max > max_y) max = max_y;
|
|
|
|
bands[0].min = min;
|
|
bands[0].max = max;
|
|
band = bands;
|
|
|
|
while (band >= bands) {
|
|
TPos bottom, top, middle;
|
|
int error;
|
|
|
|
{
|
|
PCell cells_max;
|
|
int yindex;
|
|
long cell_start, cell_end, cell_mod;
|
|
|
|
ras.ycells = (PCell*)ras.buffer;
|
|
ras.ycount = band->max - band->min;
|
|
|
|
cell_start = sizeof(PCell) * ras.ycount;
|
|
cell_mod = cell_start % sizeof(TCell);
|
|
if (cell_mod > 0) cell_start += sizeof(TCell) - cell_mod;
|
|
|
|
cell_end = ras.buffer_size;
|
|
cell_end -= cell_end % sizeof(TCell);
|
|
|
|
cells_max = (PCell)((char*)ras.buffer + cell_end);
|
|
ras.cells = (PCell)((char*)ras.buffer + cell_start);
|
|
if (ras.cells >= cells_max) goto ReduceBands;
|
|
|
|
ras.max_cells = cells_max - ras.cells;
|
|
if (ras.max_cells < 2) goto ReduceBands;
|
|
|
|
for (yindex = 0; yindex < ras.ycount; yindex++)
|
|
ras.ycells[yindex] = NULL;
|
|
}
|
|
|
|
ras.num_cells = 0;
|
|
ras.invalid = 1;
|
|
ras.min_ey = band->min;
|
|
ras.max_ey = band->max;
|
|
ras.count_ey = band->max - band->min;
|
|
|
|
error = gray_convert_glyph_inner(RAS_VAR);
|
|
|
|
if (!error) {
|
|
gray_sweep(RAS_VAR);
|
|
band--;
|
|
continue;
|
|
} else if (error != ErrRaster_Memory_Overflow)
|
|
return 1;
|
|
|
|
ReduceBands:
|
|
/* render pool overflow; we will reduce the render band by half */
|
|
bottom = band->min;
|
|
top = band->max;
|
|
middle = bottom + ((top - bottom) >> 1);
|
|
|
|
/* This is too complex for a single scanline; there must */
|
|
/* be some problems. */
|
|
if (middle == bottom) {
|
|
return 1;
|
|
}
|
|
|
|
if (bottom - top >= ras.band_size) ras.band_shoot++;
|
|
|
|
band[1].min = bottom;
|
|
band[1].max = middle;
|
|
band[0].min = middle;
|
|
band[0].max = top;
|
|
band++;
|
|
}
|
|
}
|
|
|
|
if (ras.band_shoot > 8 && ras.band_size > 16)
|
|
ras.band_size = ras.band_size / 2;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gray_raster_render(gray_PRaster raster,
|
|
const SW_FT_Raster_Params* params)
|
|
{
|
|
SW_FT_UNUSED(raster);
|
|
const SW_FT_Outline* outline = (const SW_FT_Outline*)params->source;
|
|
|
|
gray_TWorker worker[1];
|
|
|
|
TCell buffer[SW_FT_RENDER_POOL_SIZE / sizeof(TCell)];
|
|
long buffer_size = sizeof(buffer);
|
|
int band_size = (int)(buffer_size / (long)(sizeof(TCell) * 8));
|
|
|
|
if (!outline) return SW_FT_THROW(Invalid_Outline);
|
|
|
|
/* return immediately if the outline is empty */
|
|
if (outline->n_points == 0 || outline->n_contours <= 0) return 0;
|
|
|
|
if (!outline->contours || !outline->points)
|
|
return SW_FT_THROW(Invalid_Outline);
|
|
|
|
if (outline->n_points != outline->contours[outline->n_contours - 1] + 1)
|
|
return SW_FT_THROW(Invalid_Outline);
|
|
|
|
/* this version does not support monochrome rendering */
|
|
if (!(params->flags & SW_FT_RASTER_FLAG_AA))
|
|
return SW_FT_THROW(Invalid_Mode);
|
|
|
|
if (params->flags & SW_FT_RASTER_FLAG_CLIP)
|
|
ras.clip_box = params->clip_box;
|
|
else {
|
|
ras.clip_box.xMin = -32768L;
|
|
ras.clip_box.yMin = -32768L;
|
|
ras.clip_box.xMax = 32767L;
|
|
ras.clip_box.yMax = 32767L;
|
|
}
|
|
|
|
gray_init_cells(RAS_VAR_ buffer, buffer_size);
|
|
|
|
ras.outline = *outline;
|
|
ras.num_cells = 0;
|
|
ras.invalid = 1;
|
|
ras.band_size = band_size;
|
|
ras.num_gray_spans = 0;
|
|
|
|
ras.render_span = (SW_FT_Raster_Span_Func)params->gray_spans;
|
|
ras.render_span_data = params->user;
|
|
|
|
gray_convert_glyph(RAS_VAR);
|
|
params->bbox_cb(ras.bound_left, ras.bound_top,
|
|
ras.bound_right - ras.bound_left,
|
|
ras.bound_bottom - ras.bound_top + 1, params->user);
|
|
return 1;
|
|
}
|
|
|
|
/**** RASTER OBJECT CREATION: In stand-alone mode, we simply use *****/
|
|
/**** a static object. *****/
|
|
|
|
static int gray_raster_new(SW_FT_Raster* araster)
|
|
{
|
|
static gray_TRaster the_raster;
|
|
|
|
*araster = (SW_FT_Raster)&the_raster;
|
|
SW_FT_MEM_ZERO(&the_raster, sizeof(the_raster));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void gray_raster_done(SW_FT_Raster raster)
|
|
{
|
|
/* nothing */
|
|
SW_FT_UNUSED(raster);
|
|
}
|
|
|
|
static void gray_raster_reset(SW_FT_Raster raster, char* pool_base,
|
|
long pool_size)
|
|
{
|
|
SW_FT_UNUSED(raster);
|
|
SW_FT_UNUSED(pool_base);
|
|
SW_FT_UNUSED(pool_size);
|
|
}
|
|
|
|
SW_FT_DEFINE_RASTER_FUNCS(sw_ft_grays_raster,
|
|
|
|
(SW_FT_Raster_New_Func)gray_raster_new,
|
|
(SW_FT_Raster_Reset_Func)gray_raster_reset,
|
|
(SW_FT_Raster_Render_Func)gray_raster_render,
|
|
(SW_FT_Raster_Done_Func)gray_raster_done)
|
|
|
|
/* END */
|