mirror of
				https://github.com/RetroDECK/ES-DE.git
				synced 2025-04-10 19:15:13 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			836 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			836 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| //
 | |
| // gif.h
 | |
| // by Charlie Tangora
 | |
| // Public domain.
 | |
| // Email me : ctangora -at- gmail -dot- com
 | |
| //
 | |
| // This file offers a simple, very limited way to create animated GIFs directly in code.
 | |
| //
 | |
| // Those looking for particular cleverness are likely to be disappointed; it's pretty
 | |
| // much a straight-ahead implementation of the GIF format with optional Floyd-Steinberg
 | |
| // dithering. (It does at least use delta encoding - only the changed portions of each
 | |
| // frame are saved.)
 | |
| //
 | |
| // So resulting files are often quite large. The hope is that it will be handy nonetheless
 | |
| // as a quick and easily-integrated way for programs to spit out animations.
 | |
| //
 | |
| // Only RGBA8 is currently supported as an input format. (The alpha is ignored.)
 | |
| //
 | |
| // If capturing a buffer with a bottom-left origin (such as OpenGL), define GIF_FLIP_VERT
 | |
| // to automatically flip the buffer data when writing the image (the buffer itself is
 | |
| // unchanged.
 | |
| //
 | |
| // USAGE:
 | |
| // Create a GifWriter struct. Pass it to GifBegin() to initialize and write the header.
 | |
| // Pass subsequent frames to GifWriteFrame().
 | |
| // Finally, call GifEnd() to close the file handle and free memory.
 | |
| //
 | |
| 
 | |
| #ifndef gif_h
 | |
| #define gif_h
 | |
| 
 | |
| #include <stdio.h>   // for FILE*
 | |
| #include <string.h>  // for memcpy and bzero
 | |
| #include <stdint.h>  // for integer typedefs
 | |
| 
 | |
| // Define these macros to hook into a custom memory allocator.
 | |
| // TEMP_MALLOC and TEMP_FREE will only be called in stack fashion - frees in the reverse order of mallocs
 | |
| // and any temp memory allocated by a function will be freed before it exits.
 | |
| // MALLOC and FREE are used only by GifBegin and GifEnd respectively (to allocate a buffer the size of the image, which
 | |
| // is used to find changed pixels for delta-encoding.)
 | |
| 
 | |
| #ifndef GIF_TEMP_MALLOC
 | |
| #include <stdlib.h>
 | |
| #define GIF_TEMP_MALLOC malloc
 | |
| #endif
 | |
| 
 | |
| #ifndef GIF_TEMP_FREE
 | |
| #include <stdlib.h>
 | |
| #define GIF_TEMP_FREE free
 | |
| #endif
 | |
| 
 | |
| #ifndef GIF_MALLOC
 | |
| #include <stdlib.h>
 | |
| #define GIF_MALLOC malloc
 | |
| #endif
 | |
| 
 | |
| #ifndef GIF_FREE
 | |
| #include <stdlib.h>
 | |
| #define GIF_FREE free
 | |
| #endif
 | |
| 
 | |
| const int kGifTransIndex = 0;
 | |
| 
 | |
| struct GifPalette
 | |
| {
 | |
|     int bitDepth;
 | |
| 
 | |
|     uint8_t r[256];
 | |
|     uint8_t g[256];
 | |
|     uint8_t b[256];
 | |
| 
 | |
|     // k-d tree over RGB space, organized in heap fashion
 | |
|     // i.e. left child of node i is node i*2, right child is node i*2+1
 | |
|     // nodes 256-511 are implicitly the leaves, containing a color
 | |
|     uint8_t treeSplitElt[255];
 | |
|     uint8_t treeSplit[255];
 | |
| };
 | |
| 
 | |
| // max, min, and abs functions
 | |
| int GifIMax(int l, int r) { return l>r?l:r; }
 | |
| int GifIMin(int l, int r) { return l<r?l:r; }
 | |
| int GifIAbs(int i) { return i<0?-i:i; }
 | |
| 
 | |
| // walks the k-d tree to pick the palette entry for a desired color.
 | |
| // Takes as in/out parameters the current best color and its error -
 | |
| // only changes them if it finds a better color in its subtree.
 | |
| // this is the major hotspot in the code at the moment.
 | |
| void GifGetClosestPaletteColor(GifPalette* pPal, int r, int g, int b, int& bestInd, int& bestDiff, int treeRoot = 1)
 | |
| {
 | |
|     // base case, reached the bottom of the tree
 | |
|     if(treeRoot > (1<<pPal->bitDepth)-1)
 | |
|     {
 | |
|         int ind = treeRoot-(1<<pPal->bitDepth);
 | |
|         if(ind == kGifTransIndex) return;
 | |
| 
 | |
|         // check whether this color is better than the current winner
 | |
|         int r_err = r - ((int32_t)pPal->r[ind]);
 | |
|         int g_err = g - ((int32_t)pPal->g[ind]);
 | |
|         int b_err = b - ((int32_t)pPal->b[ind]);
 | |
|         int diff = GifIAbs(r_err)+GifIAbs(g_err)+GifIAbs(b_err);
 | |
| 
 | |
|         if(diff < bestDiff)
 | |
|         {
 | |
|             bestInd = ind;
 | |
|             bestDiff = diff;
 | |
|         }
 | |
| 
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // take the appropriate color (r, g, or b) for this node of the k-d tree
 | |
|     int comps[3]; comps[0] = r; comps[1] = g; comps[2] = b;
 | |
|     int splitComp = comps[pPal->treeSplitElt[treeRoot]];
 | |
| 
 | |
|     int splitPos = pPal->treeSplit[treeRoot];
 | |
|     if(splitPos > splitComp)
 | |
|     {
 | |
|         // check the left subtree
 | |
|         GifGetClosestPaletteColor(pPal, r, g, b, bestInd, bestDiff, treeRoot*2);
 | |
|         if( bestDiff > splitPos - splitComp )
 | |
|         {
 | |
|             // cannot prove there's not a better value in the right subtree, check that too
 | |
|             GifGetClosestPaletteColor(pPal, r, g, b, bestInd, bestDiff, treeRoot*2+1);
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         GifGetClosestPaletteColor(pPal, r, g, b, bestInd, bestDiff, treeRoot*2+1);
 | |
|         if( bestDiff > splitComp - splitPos )
 | |
|         {
 | |
|             GifGetClosestPaletteColor(pPal, r, g, b, bestInd, bestDiff, treeRoot*2);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void GifSwapPixels(uint8_t* image, int pixA, int pixB)
 | |
| {
 | |
|     uint8_t rA = image[pixA*4];
 | |
|     uint8_t gA = image[pixA*4+1];
 | |
|     uint8_t bA = image[pixA*4+2];
 | |
|     uint8_t aA = image[pixA*4+3];
 | |
| 
 | |
|     uint8_t rB = image[pixB*4];
 | |
|     uint8_t gB = image[pixB*4+1];
 | |
|     uint8_t bB = image[pixB*4+2];
 | |
|     uint8_t aB = image[pixA*4+3];
 | |
| 
 | |
|     image[pixA*4] = rB;
 | |
|     image[pixA*4+1] = gB;
 | |
|     image[pixA*4+2] = bB;
 | |
|     image[pixA*4+3] = aB;
 | |
| 
 | |
|     image[pixB*4] = rA;
 | |
|     image[pixB*4+1] = gA;
 | |
|     image[pixB*4+2] = bA;
 | |
|     image[pixB*4+3] = aA;
 | |
| }
 | |
| 
 | |
| // just the partition operation from quicksort
 | |
| int GifPartition(uint8_t* image, const int left, const int right, const int elt, int pivotIndex)
 | |
| {
 | |
|     const int pivotValue = image[(pivotIndex)*4+elt];
 | |
|     GifSwapPixels(image, pivotIndex, right-1);
 | |
|     int storeIndex = left;
 | |
|     bool split = 0;
 | |
|     for(int ii=left; ii<right-1; ++ii)
 | |
|     {
 | |
|         int arrayVal = image[ii*4+elt];
 | |
|         if( arrayVal < pivotValue )
 | |
|         {
 | |
|             GifSwapPixels(image, ii, storeIndex);
 | |
|             ++storeIndex;
 | |
|         }
 | |
|         else if( arrayVal == pivotValue )
 | |
|         {
 | |
|             if(split)
 | |
|             {
 | |
|                 GifSwapPixels(image, ii, storeIndex);
 | |
|                 ++storeIndex;
 | |
|             }
 | |
|             split = !split;
 | |
|         }
 | |
|     }
 | |
|     GifSwapPixels(image, storeIndex, right-1);
 | |
|     return storeIndex;
 | |
| }
 | |
| 
 | |
| // Perform an incomplete sort, finding all elements above and below the desired median
 | |
| void GifPartitionByMedian(uint8_t* image, int left, int right, int com, int neededCenter)
 | |
| {
 | |
|     if(left < right-1)
 | |
|     {
 | |
|         int pivotIndex = left + (right-left)/2;
 | |
| 
 | |
|         pivotIndex = GifPartition(image, left, right, com, pivotIndex);
 | |
| 
 | |
|         // Only "sort" the section of the array that contains the median
 | |
|         if(pivotIndex > neededCenter)
 | |
|             GifPartitionByMedian(image, left, pivotIndex, com, neededCenter);
 | |
| 
 | |
|         if(pivotIndex < neededCenter)
 | |
|             GifPartitionByMedian(image, pivotIndex+1, right, com, neededCenter);
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Builds a palette by creating a balanced k-d tree of all pixels in the image
 | |
| void GifSplitPalette(uint8_t* image, int numPixels, int firstElt, int lastElt, int splitElt, int splitDist, int treeNode, bool buildForDither, GifPalette* pal)
 | |
| {
 | |
|     if(lastElt <= firstElt || numPixels == 0)
 | |
|         return;
 | |
| 
 | |
|     // base case, bottom of the tree
 | |
|     if(lastElt == firstElt+1)
 | |
|     {
 | |
|         if(buildForDither)
 | |
|         {
 | |
|             // Dithering needs at least one color as dark as anything
 | |
|             // in the image and at least one brightest color -
 | |
|             // otherwise it builds up error and produces strange artifacts
 | |
|             if( firstElt == 1 )
 | |
|             {
 | |
|                 // special case: the darkest color in the image
 | |
|                 uint32_t r=255, g=255, b=255;
 | |
|                 for(int ii=0; ii<numPixels; ++ii)
 | |
|                 {
 | |
|                     r = (uint32_t)GifIMin((int32_t)r, image[ii * 4 + 0]);
 | |
|                     g = (uint32_t)GifIMin((int32_t)g, image[ii * 4 + 1]);
 | |
|                     b = (uint32_t)GifIMin((int32_t)b, image[ii * 4 + 2]);
 | |
|                 }
 | |
| 
 | |
|                 pal->r[firstElt] = (uint8_t)r;
 | |
|                 pal->g[firstElt] = (uint8_t)g;
 | |
|                 pal->b[firstElt] = (uint8_t)b;
 | |
| 
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             if( firstElt == (1 << pal->bitDepth)-1 )
 | |
|             {
 | |
|                 // special case: the lightest color in the image
 | |
|                 uint32_t r=0, g=0, b=0;
 | |
|                 for(int ii=0; ii<numPixels; ++ii)
 | |
|                 {
 | |
|                     r = (uint32_t)GifIMax((int32_t)r, image[ii * 4 + 0]);
 | |
|                     g = (uint32_t)GifIMax((int32_t)g, image[ii * 4 + 1]);
 | |
|                     b = (uint32_t)GifIMax((int32_t)b, image[ii * 4 + 2]);
 | |
|                 }
 | |
| 
 | |
|                 pal->r[firstElt] = (uint8_t)r;
 | |
|                 pal->g[firstElt] = (uint8_t)g;
 | |
|                 pal->b[firstElt] = (uint8_t)b;
 | |
| 
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // otherwise, take the average of all colors in this subcube
 | |
|         uint64_t r=0, g=0, b=0;
 | |
|         for(int ii=0; ii<numPixels; ++ii)
 | |
|         {
 | |
|             r += image[ii*4+0];
 | |
|             g += image[ii*4+1];
 | |
|             b += image[ii*4+2];
 | |
|         }
 | |
| 
 | |
|         r += (uint64_t)numPixels / 2;  // round to nearest
 | |
|         g += (uint64_t)numPixels / 2;
 | |
|         b += (uint64_t)numPixels / 2;
 | |
| 
 | |
|         r /= (uint64_t)numPixels;
 | |
|         g /= (uint64_t)numPixels;
 | |
|         b /= (uint64_t)numPixels;
 | |
| 
 | |
|         pal->r[firstElt] = (uint8_t)r;
 | |
|         pal->g[firstElt] = (uint8_t)g;
 | |
|         pal->b[firstElt] = (uint8_t)b;
 | |
| 
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Find the axis with the largest range
 | |
|     int minR = 255, maxR = 0;
 | |
|     int minG = 255, maxG = 0;
 | |
|     int minB = 255, maxB = 0;
 | |
|     for(int ii=0; ii<numPixels; ++ii)
 | |
|     {
 | |
|         int r = image[ii*4+0];
 | |
|         int g = image[ii*4+1];
 | |
|         int b = image[ii*4+2];
 | |
| 
 | |
|         if(r > maxR) maxR = r;
 | |
|         if(r < minR) minR = r;
 | |
| 
 | |
|         if(g > maxG) maxG = g;
 | |
|         if(g < minG) minG = g;
 | |
| 
 | |
|         if(b > maxB) maxB = b;
 | |
|         if(b < minB) minB = b;
 | |
|     }
 | |
| 
 | |
|     int rRange = maxR - minR;
 | |
|     int gRange = maxG - minG;
 | |
|     int bRange = maxB - minB;
 | |
| 
 | |
|     // and split along that axis. (incidentally, this means this isn't a "proper" k-d tree but I don't know what else to call it)
 | |
|     int splitCom = 1;
 | |
|     if(bRange > gRange) splitCom = 2;
 | |
|     if(rRange > bRange && rRange > gRange) splitCom = 0;
 | |
| 
 | |
|     int subPixelsA = numPixels * (splitElt - firstElt) / (lastElt - firstElt);
 | |
|     int subPixelsB = numPixels-subPixelsA;
 | |
| 
 | |
|     GifPartitionByMedian(image, 0, numPixels, splitCom, subPixelsA);
 | |
| 
 | |
|     pal->treeSplitElt[treeNode] = (uint8_t)splitCom;
 | |
|     pal->treeSplit[treeNode] = image[subPixelsA*4+splitCom];
 | |
| 
 | |
|     GifSplitPalette(image,              subPixelsA, firstElt, splitElt, splitElt-splitDist, splitDist/2, treeNode*2,   buildForDither, pal);
 | |
|     GifSplitPalette(image+subPixelsA*4, subPixelsB, splitElt, lastElt,  splitElt+splitDist, splitDist/2, treeNode*2+1, buildForDither, pal);
 | |
| }
 | |
| 
 | |
| // Finds all pixels that have changed from the previous image and
 | |
| // moves them to the fromt of th buffer.
 | |
| // This allows us to build a palette optimized for the colors of the
 | |
| // changed pixels only.
 | |
| int GifPickChangedPixels( const uint8_t* lastFrame, uint8_t* frame, int numPixels )
 | |
| {
 | |
|     int numChanged = 0;
 | |
|     uint8_t* writeIter = frame;
 | |
| 
 | |
|     for (int ii=0; ii<numPixels; ++ii)
 | |
|     {
 | |
|         if(lastFrame[0] != frame[0] ||
 | |
|            lastFrame[1] != frame[1] ||
 | |
|            lastFrame[2] != frame[2])
 | |
|         {
 | |
|             writeIter[0] = frame[0];
 | |
|             writeIter[1] = frame[1];
 | |
|             writeIter[2] = frame[2];
 | |
|             ++numChanged;
 | |
|             writeIter += 4;
 | |
|         }
 | |
|         lastFrame += 4;
 | |
|         frame += 4;
 | |
|     }
 | |
| 
 | |
|     return numChanged;
 | |
| }
 | |
| 
 | |
| // Creates a palette by placing all the image pixels in a k-d tree and then averaging the blocks at the bottom.
 | |
| // This is known as the "modified median split" technique
 | |
| void GifMakePalette( const uint8_t* lastFrame, const uint8_t* nextFrame, uint32_t width, uint32_t height, int bitDepth, bool buildForDither, GifPalette* pPal )
 | |
| {
 | |
|     pPal->bitDepth = bitDepth;
 | |
| 
 | |
|     // SplitPalette is destructive (it sorts the pixels by color) so
 | |
|     // we must create a copy of the image for it to destroy
 | |
|     size_t imageSize = (size_t)(width * height * 4 * sizeof(uint8_t));
 | |
|     uint8_t* destroyableImage = (uint8_t*)GIF_TEMP_MALLOC(imageSize);
 | |
|     memcpy(destroyableImage, nextFrame, imageSize);
 | |
| 
 | |
|     int numPixels = (int)(width * height);
 | |
|     if(lastFrame)
 | |
|         numPixels = GifPickChangedPixels(lastFrame, destroyableImage, numPixels);
 | |
| 
 | |
|     const int lastElt = 1 << bitDepth;
 | |
|     const int splitElt = lastElt/2;
 | |
|     const int splitDist = splitElt/2;
 | |
| 
 | |
|     GifSplitPalette(destroyableImage, numPixels, 1, lastElt, splitElt, splitDist, 1, buildForDither, pPal);
 | |
| 
 | |
|     GIF_TEMP_FREE(destroyableImage);
 | |
| 
 | |
|     // add the bottom node for the transparency index
 | |
|     pPal->treeSplit[1 << (bitDepth-1)] = 0;
 | |
|     pPal->treeSplitElt[1 << (bitDepth-1)] = 0;
 | |
| 
 | |
|     pPal->r[0] = pPal->g[0] = pPal->b[0] = 0;
 | |
| }
 | |
| 
 | |
| // Implements Floyd-Steinberg dithering, writes palette value to alpha
 | |
| void GifDitherImage( const uint8_t* lastFrame, const uint8_t* nextFrame, uint8_t* outFrame, uint32_t width, uint32_t height, GifPalette* pPal )
 | |
| {
 | |
|     int numPixels = (int)(width * height);
 | |
| 
 | |
|     // quantPixels initially holds color*256 for all pixels
 | |
|     // The extra 8 bits of precision allow for sub-single-color error values
 | |
|     // to be propagated
 | |
|     int32_t *quantPixels = (int32_t *)GIF_TEMP_MALLOC(sizeof(int32_t) * (size_t)numPixels * 4);
 | |
| 
 | |
|     for( int ii=0; ii<numPixels*4; ++ii )
 | |
|     {
 | |
|         uint8_t pix = nextFrame[ii];
 | |
|         int32_t pix16 = int32_t(pix) * 256;
 | |
|         quantPixels[ii] = pix16;
 | |
|     }
 | |
| 
 | |
|     for( uint32_t yy=0; yy<height; ++yy )
 | |
|     {
 | |
|         for( uint32_t xx=0; xx<width; ++xx )
 | |
|         {
 | |
|             int32_t* nextPix = quantPixels + 4*(yy*width+xx);
 | |
|             const uint8_t* lastPix = lastFrame? lastFrame + 4*(yy*width+xx) : NULL;
 | |
| 
 | |
|             // Compute the colors we want (rounding to nearest)
 | |
|             int32_t rr = (nextPix[0] + 127) / 256;
 | |
|             int32_t gg = (nextPix[1] + 127) / 256;
 | |
|             int32_t bb = (nextPix[2] + 127) / 256;
 | |
| 
 | |
|             // if it happens that we want the color from last frame, then just write out
 | |
|             // a transparent pixel
 | |
|             if( lastFrame &&
 | |
|                lastPix[0] == rr &&
 | |
|                lastPix[1] == gg &&
 | |
|                lastPix[2] == bb )
 | |
|             {
 | |
|                 nextPix[0] = rr;
 | |
|                 nextPix[1] = gg;
 | |
|                 nextPix[2] = bb;
 | |
|                 nextPix[3] = kGifTransIndex;
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             int32_t bestDiff = 1000000;
 | |
|             int32_t bestInd = kGifTransIndex;
 | |
| 
 | |
|             // Search the palete
 | |
|             GifGetClosestPaletteColor(pPal, rr, gg, bb, bestInd, bestDiff);
 | |
| 
 | |
|             // Write the result to the temp buffer
 | |
|             int32_t r_err = nextPix[0] - int32_t(pPal->r[bestInd]) * 256;
 | |
|             int32_t g_err = nextPix[1] - int32_t(pPal->g[bestInd]) * 256;
 | |
|             int32_t b_err = nextPix[2] - int32_t(pPal->b[bestInd]) * 256;
 | |
| 
 | |
|             nextPix[0] = pPal->r[bestInd];
 | |
|             nextPix[1] = pPal->g[bestInd];
 | |
|             nextPix[2] = pPal->b[bestInd];
 | |
|             nextPix[3] = bestInd;
 | |
| 
 | |
|             // Propagate the error to the four adjacent locations
 | |
|             // that we haven't touched yet
 | |
|             int quantloc_7 = (int)(yy * width + xx + 1);
 | |
|             int quantloc_3 = (int)(yy * width + width + xx - 1);
 | |
|             int quantloc_5 = (int)(yy * width + width + xx);
 | |
|             int quantloc_1 = (int)(yy * width + width + xx + 1);
 | |
| 
 | |
|             if(quantloc_7 < numPixels)
 | |
|             {
 | |
|                 int32_t* pix7 = quantPixels+4*quantloc_7;
 | |
|                 pix7[0] += GifIMax( -pix7[0], r_err * 7 / 16 );
 | |
|                 pix7[1] += GifIMax( -pix7[1], g_err * 7 / 16 );
 | |
|                 pix7[2] += GifIMax( -pix7[2], b_err * 7 / 16 );
 | |
|             }
 | |
| 
 | |
|             if(quantloc_3 < numPixels)
 | |
|             {
 | |
|                 int32_t* pix3 = quantPixels+4*quantloc_3;
 | |
|                 pix3[0] += GifIMax( -pix3[0], r_err * 3 / 16 );
 | |
|                 pix3[1] += GifIMax( -pix3[1], g_err * 3 / 16 );
 | |
|                 pix3[2] += GifIMax( -pix3[2], b_err * 3 / 16 );
 | |
|             }
 | |
| 
 | |
|             if(quantloc_5 < numPixels)
 | |
|             {
 | |
|                 int32_t* pix5 = quantPixels+4*quantloc_5;
 | |
|                 pix5[0] += GifIMax( -pix5[0], r_err * 5 / 16 );
 | |
|                 pix5[1] += GifIMax( -pix5[1], g_err * 5 / 16 );
 | |
|                 pix5[2] += GifIMax( -pix5[2], b_err * 5 / 16 );
 | |
|             }
 | |
| 
 | |
|             if(quantloc_1 < numPixels)
 | |
|             {
 | |
|                 int32_t* pix1 = quantPixels+4*quantloc_1;
 | |
|                 pix1[0] += GifIMax( -pix1[0], r_err / 16 );
 | |
|                 pix1[1] += GifIMax( -pix1[1], g_err / 16 );
 | |
|                 pix1[2] += GifIMax( -pix1[2], b_err / 16 );
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Copy the palettized result to the output buffer
 | |
|     for( int ii=0; ii<numPixels*4; ++ii )
 | |
|     {
 | |
|         outFrame[ii] = (uint8_t)quantPixels[ii];
 | |
|     }
 | |
| 
 | |
|     GIF_TEMP_FREE(quantPixels);
 | |
| }
 | |
| 
 | |
| // Picks palette colors for the image using simple thresholding, no dithering
 | |
| void GifThresholdImage( const uint8_t* lastFrame, const uint8_t* nextFrame, uint8_t* outFrame, uint32_t width, uint32_t height, GifPalette* pPal )
 | |
| {
 | |
|     uint32_t numPixels = width*height;
 | |
|     for( uint32_t ii=0; ii<numPixels; ++ii )
 | |
|     {
 | |
|         // if a previous color is available, and it matches the current color,
 | |
|         // set the pixel to transparent
 | |
|         if(lastFrame &&
 | |
|            lastFrame[0] == nextFrame[0] &&
 | |
|            lastFrame[1] == nextFrame[1] &&
 | |
|            lastFrame[2] == nextFrame[2])
 | |
|         {
 | |
|             outFrame[0] = lastFrame[0];
 | |
|             outFrame[1] = lastFrame[1];
 | |
|             outFrame[2] = lastFrame[2];
 | |
|             outFrame[3] = kGifTransIndex;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             // palettize the pixel
 | |
|             int32_t bestDiff = 1000000;
 | |
|             int32_t bestInd = 1;
 | |
|             GifGetClosestPaletteColor(pPal, nextFrame[0], nextFrame[1], nextFrame[2], bestInd, bestDiff);
 | |
| 
 | |
|             // Write the resulting color to the output buffer
 | |
|             outFrame[0] = pPal->r[bestInd];
 | |
|             outFrame[1] = pPal->g[bestInd];
 | |
|             outFrame[2] = pPal->b[bestInd];
 | |
|             outFrame[3] = (uint8_t)bestInd;
 | |
|         }
 | |
| 
 | |
|         if(lastFrame) lastFrame += 4;
 | |
|         outFrame += 4;
 | |
|         nextFrame += 4;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Simple structure to write out the LZW-compressed portion of the image
 | |
| // one bit at a time
 | |
| struct GifBitStatus
 | |
| {
 | |
|     uint8_t bitIndex;  // how many bits in the partial byte written so far
 | |
|     uint8_t byte;      // current partial byte
 | |
| 
 | |
|     uint32_t chunkIndex;
 | |
|     uint8_t chunk[256];   // bytes are written in here until we have 256 of them, then written to the file
 | |
| };
 | |
| 
 | |
| // insert a single bit
 | |
| void GifWriteBit( GifBitStatus& stat, uint32_t bit )
 | |
| {
 | |
|     bit = bit & 1;
 | |
|     bit = bit << stat.bitIndex;
 | |
|     stat.byte |= bit;
 | |
| 
 | |
|     ++stat.bitIndex;
 | |
|     if( stat.bitIndex > 7 )
 | |
|     {
 | |
|         // move the newly-finished byte to the chunk buffer
 | |
|         stat.chunk[stat.chunkIndex++] = stat.byte;
 | |
|         // and start a new byte
 | |
|         stat.bitIndex = 0;
 | |
|         stat.byte = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // write all bytes so far to the file
 | |
| void GifWriteChunk( FILE* f, GifBitStatus& stat )
 | |
| {
 | |
|     fputc((int)stat.chunkIndex, f);
 | |
|     fwrite(stat.chunk, 1, stat.chunkIndex, f);
 | |
| 
 | |
|     stat.bitIndex = 0;
 | |
|     stat.byte = 0;
 | |
|     stat.chunkIndex = 0;
 | |
| }
 | |
| 
 | |
| void GifWriteCode( FILE* f, GifBitStatus& stat, uint32_t code, uint32_t length )
 | |
| {
 | |
|     for( uint32_t ii=0; ii<length; ++ii )
 | |
|     {
 | |
|         GifWriteBit(stat, code);
 | |
|         code = code >> 1;
 | |
| 
 | |
|         if( stat.chunkIndex == 255 )
 | |
|         {
 | |
|             GifWriteChunk(f, stat);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // The LZW dictionary is a 256-ary tree constructed as the file is encoded,
 | |
| // this is one node
 | |
| struct GifLzwNode
 | |
| {
 | |
|     uint16_t m_next[256];
 | |
| };
 | |
| 
 | |
| // write a 256-color (8-bit) image palette to the file
 | |
| void GifWritePalette( const GifPalette* pPal, FILE* f )
 | |
| {
 | |
|     fputc(0, f);  // first color: transparency
 | |
|     fputc(0, f);
 | |
|     fputc(0, f);
 | |
| 
 | |
|     for(int ii=1; ii<(1 << pPal->bitDepth); ++ii)
 | |
|     {
 | |
|         uint32_t r = pPal->r[ii];
 | |
|         uint32_t g = pPal->g[ii];
 | |
|         uint32_t b = pPal->b[ii];
 | |
| 
 | |
|         fputc((int)r, f);
 | |
|         fputc((int)g, f);
 | |
|         fputc((int)b, f);
 | |
|     }
 | |
| }
 | |
| 
 | |
| // write the image header, LZW-compress and write out the image
 | |
| void GifWriteLzwImage(FILE* f, uint8_t* image, uint32_t left, uint32_t top,  uint32_t width, uint32_t height, uint32_t delay, GifPalette* pPal)
 | |
| {
 | |
|     // graphics control extension
 | |
|     fputc(0x21, f);
 | |
|     fputc(0xf9, f);
 | |
|     fputc(0x04, f);
 | |
|     fputc(0x05, f); // leave prev frame in place, this frame has transparency
 | |
|     fputc(delay & 0xff, f);
 | |
|     fputc((delay >> 8) & 0xff, f);
 | |
|     fputc(kGifTransIndex, f); // transparent color index
 | |
|     fputc(0, f);
 | |
| 
 | |
|     fputc(0x2c, f); // image descriptor block
 | |
| 
 | |
|     fputc(left & 0xff, f);           // corner of image in canvas space
 | |
|     fputc((left >> 8) & 0xff, f);
 | |
|     fputc(top & 0xff, f);
 | |
|     fputc((top >> 8) & 0xff, f);
 | |
| 
 | |
|     fputc(width & 0xff, f);          // width and height of image
 | |
|     fputc((width >> 8) & 0xff, f);
 | |
|     fputc(height & 0xff, f);
 | |
|     fputc((height >> 8) & 0xff, f);
 | |
| 
 | |
|     //fputc(0, f); // no local color table, no transparency
 | |
|     //fputc(0x80, f); // no local color table, but transparency
 | |
| 
 | |
|     fputc(0x80 + pPal->bitDepth-1, f); // local color table present, 2 ^ bitDepth entries
 | |
|     GifWritePalette(pPal, f);
 | |
| 
 | |
|     const int minCodeSize = pPal->bitDepth;
 | |
|     const uint32_t clearCode = 1 << pPal->bitDepth;
 | |
| 
 | |
|     fputc(minCodeSize, f); // min code size 8 bits
 | |
| 
 | |
|     GifLzwNode* codetree = (GifLzwNode*)GIF_TEMP_MALLOC(sizeof(GifLzwNode)*4096);
 | |
| 
 | |
|     memset(codetree, 0, sizeof(GifLzwNode)*4096);
 | |
|     int32_t curCode = -1;
 | |
|     uint32_t codeSize = (uint32_t)minCodeSize + 1;
 | |
|     uint32_t maxCode = clearCode+1;
 | |
| 
 | |
|     GifBitStatus stat;
 | |
|     stat.byte = 0;
 | |
|     stat.bitIndex = 0;
 | |
|     stat.chunkIndex = 0;
 | |
| 
 | |
|     GifWriteCode(f, stat, clearCode, codeSize);  // start with a fresh LZW dictionary
 | |
| 
 | |
|     for(uint32_t yy=0; yy<height; ++yy)
 | |
|     {
 | |
|         for(uint32_t xx=0; xx<width; ++xx)
 | |
|         {
 | |
|     #ifdef GIF_FLIP_VERT
 | |
|             // bottom-left origin image (such as an OpenGL capture)
 | |
|             uint8_t nextValue = image[((height-1-yy)*width+xx)*4+3];
 | |
|     #else
 | |
|             // top-left origin
 | |
|             uint8_t nextValue = image[(yy*width+xx)*4+3];
 | |
|     #endif
 | |
| 
 | |
|             // "loser mode" - no compression, every single code is followed immediately by a clear
 | |
|             //WriteCode( f, stat, nextValue, codeSize );
 | |
|             //WriteCode( f, stat, 256, codeSize );
 | |
| 
 | |
|             if( curCode < 0 )
 | |
|             {
 | |
|                 // first value in a new run
 | |
|                 curCode = nextValue;
 | |
|             }
 | |
|             else if( codetree[curCode].m_next[nextValue] )
 | |
|             {
 | |
|                 // current run already in the dictionary
 | |
|                 curCode = codetree[curCode].m_next[nextValue];
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 // finish the current run, write a code
 | |
|                 GifWriteCode(f, stat, (uint32_t)curCode, codeSize);
 | |
| 
 | |
|                 // insert the new run into the dictionary
 | |
|                 codetree[curCode].m_next[nextValue] = (uint16_t)++maxCode;
 | |
| 
 | |
|                 if( maxCode >= (1ul << codeSize) )
 | |
|                 {
 | |
|                     // dictionary entry count has broken a size barrier,
 | |
|                     // we need more bits for codes
 | |
|                     codeSize++;
 | |
|                 }
 | |
|                 if( maxCode == 4095 )
 | |
|                 {
 | |
|                     // the dictionary is full, clear it out and begin anew
 | |
|                     GifWriteCode(f, stat, clearCode, codeSize); // clear tree
 | |
| 
 | |
|                     memset(codetree, 0, sizeof(GifLzwNode)*4096);
 | |
|                     codeSize = (uint32_t)(minCodeSize + 1);
 | |
|                     maxCode = clearCode+1;
 | |
|                 }
 | |
| 
 | |
|                 curCode = nextValue;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // compression footer
 | |
|     GifWriteCode(f, stat, (uint32_t)curCode, codeSize);
 | |
|     GifWriteCode(f, stat, clearCode, codeSize);
 | |
|     GifWriteCode(f, stat, clearCode + 1, (uint32_t)minCodeSize + 1);
 | |
| 
 | |
|     // write out the last partial chunk
 | |
|     while( stat.bitIndex ) GifWriteBit(stat, 0);
 | |
|     if( stat.chunkIndex ) GifWriteChunk(f, stat);
 | |
| 
 | |
|     fputc(0, f); // image block terminator
 | |
| 
 | |
|     GIF_TEMP_FREE(codetree);
 | |
| }
 | |
| 
 | |
| struct GifWriter
 | |
| {
 | |
|     FILE* f;
 | |
|     uint8_t* oldImage;
 | |
|     bool firstFrame;
 | |
| };
 | |
| 
 | |
| // Creates a gif file.
 | |
| // The input GIFWriter is assumed to be uninitialized.
 | |
| // The delay value is the time between frames in hundredths of a second - note that not all viewers pay much attention to this value.
 | |
| bool GifBegin( GifWriter* writer, const char* filename, uint32_t width, uint32_t height, uint32_t delay, int32_t bitDepth = 8, bool dither = false )
 | |
| {
 | |
|     (void)bitDepth; (void)dither; // Mute "Unused argument" warnings
 | |
| #if defined(_MSC_VER) && (_MSC_VER >= 1400)
 | |
| 	writer->f = 0;
 | |
|     fopen_s(&writer->f, filename, "wb");
 | |
| #else
 | |
|     writer->f = fopen(filename, "wb");
 | |
| #endif
 | |
|     if(!writer->f) return false;
 | |
| 
 | |
|     writer->firstFrame = true;
 | |
| 
 | |
|     // allocate
 | |
|     writer->oldImage = (uint8_t*)GIF_MALLOC(width*height*4);
 | |
| 
 | |
|     fputs("GIF89a", writer->f);
 | |
| 
 | |
|     // screen descriptor
 | |
|     fputc(width & 0xff, writer->f);
 | |
|     fputc((width >> 8) & 0xff, writer->f);
 | |
|     fputc(height & 0xff, writer->f);
 | |
|     fputc((height >> 8) & 0xff, writer->f);
 | |
| 
 | |
|     fputc(0xf0, writer->f);  // there is an unsorted global color table of 2 entries
 | |
|     fputc(0, writer->f);     // background color
 | |
|     fputc(0, writer->f);     // pixels are square (we need to specify this because it's 1989)
 | |
| 
 | |
|     // now the "global" palette (really just a dummy palette)
 | |
|     // color 0: black
 | |
|     fputc(0, writer->f);
 | |
|     fputc(0, writer->f);
 | |
|     fputc(0, writer->f);
 | |
|     // color 1: also black
 | |
|     fputc(0, writer->f);
 | |
|     fputc(0, writer->f);
 | |
|     fputc(0, writer->f);
 | |
| 
 | |
|     if( delay != 0 )
 | |
|     {
 | |
|         // animation header
 | |
|         fputc(0x21, writer->f); // extension
 | |
|         fputc(0xff, writer->f); // application specific
 | |
|         fputc(11, writer->f); // length 11
 | |
|         fputs("NETSCAPE2.0", writer->f); // yes, really
 | |
|         fputc(3, writer->f); // 3 bytes of NETSCAPE2.0 data
 | |
| 
 | |
|         fputc(1, writer->f); // JUST BECAUSE
 | |
|         fputc(0, writer->f); // loop infinitely (byte 0)
 | |
|         fputc(0, writer->f); // loop infinitely (byte 1)
 | |
| 
 | |
|         fputc(0, writer->f); // block terminator
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // Writes out a new frame to a GIF in progress.
 | |
| // The GIFWriter should have been created by GIFBegin.
 | |
| // AFAIK, it is legal to use different bit depths for different frames of an image -
 | |
| // this may be handy to save bits in animations that don't change much.
 | |
| bool GifWriteFrame( GifWriter* writer, const uint8_t* image, uint32_t width, uint32_t height, uint32_t delay, int bitDepth = 8, bool dither = false )
 | |
| {
 | |
|     if(!writer->f) return false;
 | |
| 
 | |
|     const uint8_t* oldImage = writer->firstFrame? NULL : writer->oldImage;
 | |
|     writer->firstFrame = false;
 | |
| 
 | |
|     GifPalette pal;
 | |
|     GifMakePalette((dither? NULL : oldImage), image, width, height, bitDepth, dither, &pal);
 | |
| 
 | |
|     if(dither)
 | |
|         GifDitherImage(oldImage, image, writer->oldImage, width, height, &pal);
 | |
|     else
 | |
|         GifThresholdImage(oldImage, image, writer->oldImage, width, height, &pal);
 | |
| 
 | |
|     GifWriteLzwImage(writer->f, writer->oldImage, 0, 0, width, height, delay, &pal);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // Writes the EOF code, closes the file handle, and frees temp memory used by a GIF.
 | |
| // Many if not most viewers will still display a GIF properly if the EOF code is missing,
 | |
| // but it's still a good idea to write it out.
 | |
| bool GifEnd( GifWriter* writer )
 | |
| {
 | |
|     if(!writer->f) return false;
 | |
| 
 | |
|     fputc(0x3b, writer->f); // end of file
 | |
|     fclose(writer->f);
 | |
|     GIF_FREE(writer->oldImage);
 | |
| 
 | |
|     writer->f = NULL;
 | |
|     writer->oldImage = NULL;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| #endif
 | 
