mirror of
				https://github.com/RetroDECK/ES-DE.git
				synced 2025-04-10 19:15:13 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			687 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			687 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include <glm/ext/scalar_integer.hpp>
 | |
| #include <glm/ext/scalar_int_sized.hpp>
 | |
| #include <glm/ext/scalar_uint_sized.hpp>
 | |
| #include <vector>
 | |
| #include <ctime>
 | |
| #include <cstdio>
 | |
| 
 | |
| #if GLM_LANG & GLM_LANG_CXX11_FLAG
 | |
| #include <chrono>
 | |
| 
 | |
| namespace isPowerOfTwo
 | |
| {
 | |
| 	template<typename genType>
 | |
| 	struct type
 | |
| 	{
 | |
| 		genType		Value;
 | |
| 		bool		Return;
 | |
| 	};
 | |
| 
 | |
| 	int test_int16()
 | |
| 	{
 | |
| 		type<glm::int16> const Data[] =
 | |
| 		{
 | |
| 			{0x0001, true},
 | |
| 			{0x0002, true},
 | |
| 			{0x0004, true},
 | |
| 			{0x0080, true},
 | |
| 			{0x0000, true},
 | |
| 			{0x0003, false}
 | |
| 		};
 | |
| 
 | |
| 		int Error = 0;
 | |
| 
 | |
| 		for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int16>); i < n; ++i)
 | |
| 		{
 | |
| 			bool Result = glm::isPowerOfTwo(Data[i].Value);
 | |
| 			Error += Data[i].Return == Result ? 0 : 1;
 | |
| 		}
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| 
 | |
| 	int test_uint16()
 | |
| 	{
 | |
| 		type<glm::uint16> const Data[] =
 | |
| 		{
 | |
| 			{0x0001, true},
 | |
| 			{0x0002, true},
 | |
| 			{0x0004, true},
 | |
| 			{0x0000, true},
 | |
| 			{0x0000, true},
 | |
| 			{0x0003, false}
 | |
| 		};
 | |
| 
 | |
| 		int Error = 0;
 | |
| 
 | |
| 		for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint16>); i < n; ++i)
 | |
| 		{
 | |
| 			bool Result = glm::isPowerOfTwo(Data[i].Value);
 | |
| 			Error += Data[i].Return == Result ? 0 : 1;
 | |
| 		}
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| 
 | |
| 	int test_int32()
 | |
| 	{
 | |
| 		type<int> const Data[] =
 | |
| 		{
 | |
| 			{0x00000001, true},
 | |
| 			{0x00000002, true},
 | |
| 			{0x00000004, true},
 | |
| 			{0x0000000f, false},
 | |
| 			{0x00000000, true},
 | |
| 			{0x00000003, false}
 | |
| 		};
 | |
| 
 | |
| 		int Error = 0;
 | |
| 
 | |
| 		for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i)
 | |
| 		{
 | |
| 			bool Result = glm::isPowerOfTwo(Data[i].Value);
 | |
| 			Error += Data[i].Return == Result ? 0 : 1;
 | |
| 		}
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| 
 | |
| 	int test_uint32()
 | |
| 	{
 | |
| 		type<glm::uint> const Data[] =
 | |
| 		{
 | |
| 			{0x00000001, true},
 | |
| 			{0x00000002, true},
 | |
| 			{0x00000004, true},
 | |
| 			{0x80000000, true},
 | |
| 			{0x00000000, true},
 | |
| 			{0x00000003, false}
 | |
| 		};
 | |
| 
 | |
| 		int Error = 0;
 | |
| 
 | |
| 		for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint>); i < n; ++i)
 | |
| 		{
 | |
| 			bool Result = glm::isPowerOfTwo(Data[i].Value);
 | |
| 			Error += Data[i].Return == Result ? 0 : 1;
 | |
| 		}
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| 
 | |
| 	int test()
 | |
| 	{
 | |
| 		int Error = 0;
 | |
| 
 | |
| 		Error += test_int16();
 | |
| 		Error += test_uint16();
 | |
| 		Error += test_int32();
 | |
| 		Error += test_uint32();
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| }//isPowerOfTwo
 | |
| 
 | |
| namespace nextPowerOfTwo_advanced
 | |
| {
 | |
| 	template<typename genIUType>
 | |
| 	GLM_FUNC_QUALIFIER genIUType highestBitValue(genIUType Value)
 | |
| 	{
 | |
| 		genIUType tmp = Value;
 | |
| 		genIUType result = genIUType(0);
 | |
| 		while(tmp)
 | |
| 		{
 | |
| 			result = (tmp & (~tmp + 1)); // grab lowest bit
 | |
| 			tmp &= ~result; // clear lowest bit
 | |
| 		}
 | |
| 		return result;
 | |
| 	}
 | |
| 
 | |
| 	template<typename genType>
 | |
| 	GLM_FUNC_QUALIFIER genType nextPowerOfTwo_loop(genType value)
 | |
| 	{
 | |
| 		return glm::isPowerOfTwo(value) ? value : highestBitValue(value) << 1;
 | |
| 	}
 | |
| 
 | |
| 	template<typename genType>
 | |
| 	struct type
 | |
| 	{
 | |
| 		genType		Value;
 | |
| 		genType		Return;
 | |
| 	};
 | |
| 
 | |
| 	int test_int32()
 | |
| 	{
 | |
| 		type<glm::int32> const Data[] =
 | |
| 		{
 | |
| 			{0x0000ffff, 0x00010000},
 | |
| 			{-3, -4},
 | |
| 			{-8, -8},
 | |
| 			{0x00000001, 0x00000001},
 | |
| 			{0x00000002, 0x00000002},
 | |
| 			{0x00000004, 0x00000004},
 | |
| 			{0x00000007, 0x00000008},
 | |
| 			{0x0000fff0, 0x00010000},
 | |
| 			{0x0000f000, 0x00010000},
 | |
| 			{0x08000000, 0x08000000},
 | |
| 			{0x00000000, 0x00000000},
 | |
| 			{0x00000003, 0x00000004}
 | |
| 		};
 | |
| 
 | |
| 		int Error(0);
 | |
| 
 | |
| 		for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int32>); i < n; ++i)
 | |
| 		{
 | |
| 			glm::int32 Result = glm::nextPowerOfTwo(Data[i].Value);
 | |
| 			Error += Data[i].Return == Result ? 0 : 1;
 | |
| 		}
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| 
 | |
| 	int test_uint32()
 | |
| 	{
 | |
| 		type<glm::uint32> const Data[] =
 | |
| 		{
 | |
| 			{0x00000001, 0x00000001},
 | |
| 			{0x00000002, 0x00000002},
 | |
| 			{0x00000004, 0x00000004},
 | |
| 			{0x00000007, 0x00000008},
 | |
| 			{0x0000ffff, 0x00010000},
 | |
| 			{0x0000fff0, 0x00010000},
 | |
| 			{0x0000f000, 0x00010000},
 | |
| 			{0x80000000, 0x80000000},
 | |
| 			{0x00000000, 0x00000000},
 | |
| 			{0x00000003, 0x00000004}
 | |
| 		};
 | |
| 
 | |
| 		int Error(0);
 | |
| 
 | |
| 		for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint32>); i < n; ++i)
 | |
| 		{
 | |
| 			glm::uint32 Result = glm::nextPowerOfTwo(Data[i].Value);
 | |
| 			Error += Data[i].Return == Result ? 0 : 1;
 | |
| 		}
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| 
 | |
| 	int perf()
 | |
| 	{
 | |
| 		int Error(0);
 | |
| 
 | |
| 		std::vector<glm::uint> v;
 | |
| 		v.resize(100000000);
 | |
| 
 | |
| 		std::clock_t Timestramp0 = std::clock();
 | |
| 
 | |
| 		for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i)
 | |
| 			v[i] = nextPowerOfTwo_loop(i);
 | |
| 
 | |
| 		std::clock_t Timestramp1 = std::clock();
 | |
| 
 | |
| 		for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i)
 | |
| 			v[i] = glm::nextPowerOfTwo(i);
 | |
| 
 | |
| 		std::clock_t Timestramp2 = std::clock();
 | |
| 
 | |
| 		std::printf("nextPowerOfTwo_loop: %d clocks\n", static_cast<int>(Timestramp1 - Timestramp0));
 | |
| 		std::printf("glm::nextPowerOfTwo: %d clocks\n", static_cast<int>(Timestramp2 - Timestramp1));
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| 
 | |
| 	int test()
 | |
| 	{
 | |
| 		int Error(0);
 | |
| 
 | |
| 		Error += test_int32();
 | |
| 		Error += test_uint32();
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| }//namespace nextPowerOfTwo_advanced
 | |
| 
 | |
| namespace prevPowerOfTwo
 | |
| {
 | |
| 	template <typename T>
 | |
| 	int run()
 | |
| 	{
 | |
| 		int Error = 0;
 | |
| 
 | |
| 		T const A = glm::prevPowerOfTwo(static_cast<T>(7));
 | |
| 		Error += A == static_cast<T>(4) ? 0 : 1;
 | |
| 
 | |
| 		T const B = glm::prevPowerOfTwo(static_cast<T>(15));
 | |
| 		Error += B == static_cast<T>(8) ? 0 : 1;
 | |
| 
 | |
| 		T const C = glm::prevPowerOfTwo(static_cast<T>(31));
 | |
| 		Error += C == static_cast<T>(16) ? 0 : 1;
 | |
| 
 | |
| 		T const D = glm::prevPowerOfTwo(static_cast<T>(32));
 | |
| 		Error += D == static_cast<T>(32) ? 0 : 1;
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| 
 | |
| 	int test()
 | |
| 	{
 | |
| 		int Error = 0;
 | |
| 
 | |
| 		Error += run<glm::int8>();
 | |
| 		Error += run<glm::int16>();
 | |
| 		Error += run<glm::int32>();
 | |
| 		Error += run<glm::int64>();
 | |
| 
 | |
| 		Error += run<glm::uint8>();
 | |
| 		Error += run<glm::uint16>();
 | |
| 		Error += run<glm::uint32>();
 | |
| 		Error += run<glm::uint64>();
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| }//namespace prevPowerOfTwo
 | |
| 
 | |
| namespace nextPowerOfTwo
 | |
| {
 | |
| 	template <typename T>
 | |
| 	int run()
 | |
| 	{
 | |
| 		int Error = 0;
 | |
| 
 | |
| 		T const A = glm::nextPowerOfTwo(static_cast<T>(7));
 | |
| 		Error += A == static_cast<T>(8) ? 0 : 1;
 | |
| 
 | |
| 		T const B = glm::nextPowerOfTwo(static_cast<T>(15));
 | |
| 		Error += B == static_cast<T>(16) ? 0 : 1;
 | |
| 
 | |
| 		T const C = glm::nextPowerOfTwo(static_cast<T>(31));
 | |
| 		Error += C == static_cast<T>(32) ? 0 : 1;
 | |
| 
 | |
| 		T const D = glm::nextPowerOfTwo(static_cast<T>(32));
 | |
| 		Error += D == static_cast<T>(32) ? 0 : 1;
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| 
 | |
| 	int test()
 | |
| 	{
 | |
| 		int Error = 0;
 | |
| 
 | |
| 		Error += run<glm::int8>();
 | |
| 		Error += run<glm::int16>();
 | |
| 		Error += run<glm::int32>();
 | |
| 		Error += run<glm::int64>();
 | |
| 
 | |
| 		Error += run<glm::uint8>();
 | |
| 		Error += run<glm::uint16>();
 | |
| 		Error += run<glm::uint32>();
 | |
| 		Error += run<glm::uint64>();
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| }//namespace nextPowerOfTwo
 | |
| 
 | |
| namespace prevMultiple
 | |
| {
 | |
| 	template<typename genIUType>
 | |
| 	struct type
 | |
| 	{
 | |
| 		genIUType Source;
 | |
| 		genIUType Multiple;
 | |
| 		genIUType Return;
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	int run()
 | |
| 	{
 | |
| 		type<T> const Data[] =
 | |
| 		{
 | |
| 			{8, 3, 6},
 | |
| 			{7, 7, 7}
 | |
| 		};
 | |
| 
 | |
| 		int Error = 0;
 | |
| 		
 | |
| 		for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i)
 | |
| 		{
 | |
| 			T const Result = glm::prevMultiple(Data[i].Source, Data[i].Multiple);
 | |
| 			Error += Data[i].Return == Result ? 0 : 1;
 | |
| 		}
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| 
 | |
| 	int test()
 | |
| 	{
 | |
| 		int Error = 0;
 | |
| 
 | |
| 		Error += run<glm::int8>();
 | |
| 		Error += run<glm::int16>();
 | |
| 		Error += run<glm::int32>();
 | |
| 		Error += run<glm::int64>();
 | |
| 
 | |
| 		Error += run<glm::uint8>();
 | |
| 		Error += run<glm::uint16>();
 | |
| 		Error += run<glm::uint32>();
 | |
| 		Error += run<glm::uint64>();
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| }//namespace prevMultiple
 | |
| 
 | |
| namespace nextMultiple
 | |
| {
 | |
| 	static glm::uint const Multiples = 128;
 | |
| 
 | |
| 	int perf_nextMultiple(glm::uint Samples)
 | |
| 	{
 | |
| 		std::vector<glm::uint> Results(Samples * Multiples);
 | |
| 
 | |
| 		std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now();
 | |
| 
 | |
| 		for(glm::uint Source = 0; Source < Samples; ++Source)
 | |
| 		for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple)
 | |
| 		{
 | |
| 			Results[Source * Multiples + Multiple] = glm::nextMultiple(Source, Multiples);
 | |
| 		}
 | |
| 
 | |
| 		std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now();
 | |
| 
 | |
| 		std::printf("- glm::nextMultiple Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count()));
 | |
| 
 | |
| 		glm::uint Result = 0;
 | |
| 		for(std::size_t i = 0, n = Results.size(); i < n; ++i)
 | |
| 			Result += Results[i];
 | |
| 
 | |
| 		return Result > 0 ? 0 : 1;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T>
 | |
| 	GLM_FUNC_QUALIFIER T nextMultipleMod(T Source, T Multiple)
 | |
| 	{
 | |
| 		T const Tmp = Source - static_cast<T>(1);
 | |
| 		return Tmp + (Multiple - (Tmp % Multiple));
 | |
| 	}
 | |
| 
 | |
| 	int perf_nextMultipleMod(glm::uint Samples)
 | |
| 	{
 | |
| 		std::vector<glm::uint> Results(Samples * Multiples);
 | |
| 
 | |
| 		std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now();
 | |
| 
 | |
| 		for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple)
 | |
| 			for (glm::uint Source = 0; Source < Samples; ++Source)
 | |
| 		{
 | |
| 			Results[Source * Multiples + Multiple] = nextMultipleMod(Source, Multiples);
 | |
| 		}
 | |
| 
 | |
| 		std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now();
 | |
| 
 | |
| 		std::printf("- nextMultipleMod Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count()));
 | |
| 
 | |
| 		glm::uint Result = 0;
 | |
| 		for(std::size_t i = 0, n = Results.size(); i < n; ++i)
 | |
| 			Result += Results[i];
 | |
| 
 | |
| 		return Result > 0 ? 0 : 1;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T>
 | |
| 	GLM_FUNC_QUALIFIER T nextMultipleNeg(T Source, T Multiple)
 | |
| 	{
 | |
| 		if(Source > static_cast<T>(0))
 | |
| 		{
 | |
| 			T const Tmp = Source - static_cast<T>(1);
 | |
| 			return Tmp + (Multiple - (Tmp % Multiple));
 | |
| 		}
 | |
| 		else
 | |
| 			return Source + (-Source % Multiple);
 | |
| 	}
 | |
| 
 | |
| 	int perf_nextMultipleNeg(glm::uint Samples)
 | |
| 	{
 | |
| 		std::vector<glm::uint> Results(Samples * Multiples);
 | |
| 
 | |
| 		std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now();
 | |
| 
 | |
| 		for(glm::uint Source = 0; Source < Samples; ++Source)
 | |
| 		for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple)
 | |
| 		{
 | |
| 			Results[Source * Multiples + Multiple] = nextMultipleNeg(Source, Multiples);
 | |
| 		}
 | |
| 
 | |
| 		std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now();
 | |
| 
 | |
| 		std::printf("- nextMultipleNeg Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count()));
 | |
| 
 | |
| 		glm::uint Result = 0;
 | |
| 		for (std::size_t i = 0, n = Results.size(); i < n; ++i)
 | |
| 			Result += Results[i];
 | |
| 
 | |
| 		return Result > 0 ? 0 : 1;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T>
 | |
| 	GLM_FUNC_QUALIFIER T nextMultipleUFloat(T Source, T Multiple)
 | |
| 	{
 | |
| 		return Source + (Multiple - std::fmod(Source, Multiple));
 | |
| 	}
 | |
| 
 | |
| 	int perf_nextMultipleUFloat(glm::uint Samples)
 | |
| 	{
 | |
| 		std::vector<float> Results(Samples * Multiples);
 | |
| 
 | |
| 		std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now();
 | |
| 
 | |
| 		for(glm::uint Source = 0; Source < Samples; ++Source)
 | |
| 		for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple)
 | |
| 		{
 | |
| 			Results[Source * Multiples + Multiple] = nextMultipleUFloat(static_cast<float>(Source), static_cast<float>(Multiples));
 | |
| 		}
 | |
| 
 | |
| 		std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now();
 | |
| 
 | |
| 		std::printf("- nextMultipleUFloat Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count()));
 | |
| 
 | |
| 		float Result = 0;
 | |
| 		for (std::size_t i = 0, n = Results.size(); i < n; ++i)
 | |
| 			Result += Results[i];
 | |
| 
 | |
| 		return Result > 0.0f ? 0 : 1;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T>
 | |
| 	GLM_FUNC_QUALIFIER T nextMultipleFloat(T Source, T Multiple)
 | |
| 	{
 | |
| 		if(Source > static_cast<float>(0))
 | |
| 			return Source + (Multiple - std::fmod(Source, Multiple));
 | |
| 		else
 | |
| 			return Source + std::fmod(-Source, Multiple);
 | |
| 	}
 | |
| 
 | |
| 	int perf_nextMultipleFloat(glm::uint Samples)
 | |
| 	{
 | |
| 		std::vector<float> Results(Samples * Multiples);
 | |
| 
 | |
| 		std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now();
 | |
| 
 | |
| 		for(glm::uint Source = 0; Source < Samples; ++Source)
 | |
| 		for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple)
 | |
| 		{
 | |
| 			Results[Source * Multiples + Multiple] = nextMultipleFloat(static_cast<float>(Source), static_cast<float>(Multiples));
 | |
| 		}
 | |
| 
 | |
| 		std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now();
 | |
| 
 | |
| 		std::printf("- nextMultipleFloat Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count()));
 | |
| 
 | |
| 		float Result = 0;
 | |
| 		for (std::size_t i = 0, n = Results.size(); i < n; ++i)
 | |
| 			Result += Results[i];
 | |
| 
 | |
| 		return Result > 0.0f ? 0 : 1;
 | |
| 	}
 | |
| 
 | |
| 	template<typename genIUType>
 | |
| 	struct type
 | |
| 	{
 | |
| 		genIUType Source;
 | |
| 		genIUType Multiple;
 | |
| 		genIUType Return;
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	int test_uint()
 | |
| 	{
 | |
| 		type<T> const Data[] =
 | |
| 		{
 | |
| 			{ 3, 4, 4 },
 | |
| 			{ 6, 3, 6 },
 | |
| 			{ 5, 3, 6 },
 | |
| 			{ 7, 7, 7 },
 | |
| 			{ 0, 1, 0 },
 | |
| 			{ 8, 3, 9 }
 | |
| 		};
 | |
| 
 | |
| 		int Error = 0;
 | |
| 
 | |
| 		for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i)
 | |
| 		{
 | |
| 			T const Result0 = glm::nextMultiple(Data[i].Source, Data[i].Multiple);
 | |
| 			Error += Data[i].Return == Result0 ? 0 : 1;
 | |
| 			assert(!Error);
 | |
| 
 | |
| 			T const Result1 = nextMultipleMod(Data[i].Source, Data[i].Multiple);
 | |
| 			Error += Data[i].Return == Result1 ? 0 : 1;
 | |
| 			assert(!Error);
 | |
| 		}
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| 
 | |
| 	int perf()
 | |
| 	{
 | |
| 		int Error = 0;
 | |
| 
 | |
| 		glm::uint const Samples = 10000;
 | |
| 
 | |
| 		for(int i = 0; i < 4; ++i)
 | |
| 		{
 | |
| 			std::printf("Run %d :\n", i);
 | |
| 			Error += perf_nextMultiple(Samples);
 | |
| 			Error += perf_nextMultipleMod(Samples);
 | |
| 			Error += perf_nextMultipleNeg(Samples);
 | |
| 			Error += perf_nextMultipleUFloat(Samples);
 | |
| 			Error += perf_nextMultipleFloat(Samples);
 | |
| 			std::printf("\n");
 | |
| 		}
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| 
 | |
| 	int test()
 | |
| 	{
 | |
| 		int Error = 0;
 | |
| 
 | |
| 		Error += test_uint<glm::int8>();
 | |
| 		Error += test_uint<glm::int16>();
 | |
| 		Error += test_uint<glm::int32>();
 | |
| 		Error += test_uint<glm::int64>();
 | |
| 
 | |
| 		Error += test_uint<glm::uint8>();
 | |
| 		Error += test_uint<glm::uint16>();
 | |
| 		Error += test_uint<glm::uint32>();
 | |
| 		Error += test_uint<glm::uint64>();
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| }//namespace nextMultiple
 | |
| 
 | |
| namespace findNSB
 | |
| {
 | |
| 	template<typename T>
 | |
| 	struct type
 | |
| 	{
 | |
| 		T Source;
 | |
| 		int SignificantBitCount;
 | |
| 		int Return;
 | |
| 	};
 | |
| 
 | |
| 	template <typename T>
 | |
| 	int run()
 | |
| 	{
 | |
| 		type<T> const Data[] =
 | |
| 		{
 | |
| 			{ 0x00, 1,-1 },
 | |
| 			{ 0x01, 2,-1 },
 | |
| 			{ 0x02, 2,-1 },
 | |
| 			{ 0x06, 3,-1 },
 | |
| 			{ 0x01, 1, 0 },
 | |
| 			{ 0x03, 1, 0 },
 | |
| 			{ 0x03, 2, 1 },
 | |
| 			{ 0x07, 2, 1 },
 | |
| 			{ 0x05, 2, 2 },
 | |
| 			{ 0x0D, 2, 2 }
 | |
| 		};
 | |
| 
 | |
| 		int Error = 0;
 | |
| 
 | |
| 		for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i)
 | |
| 		{
 | |
| 			int const Result0 = glm::findNSB(Data[i].Source, Data[i].SignificantBitCount);
 | |
| 			Error += Data[i].Return == Result0 ? 0 : 1;
 | |
| 			assert(!Error);
 | |
| 		}
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| 
 | |
| 	int test()
 | |
| 	{
 | |
| 		int Error = 0;
 | |
| 
 | |
| 		Error += run<glm::uint8>();
 | |
| 		Error += run<glm::uint16>();
 | |
| 		Error += run<glm::uint32>();
 | |
| 		Error += run<glm::uint64>();
 | |
| 
 | |
| 		Error += run<glm::int8>();
 | |
| 		Error += run<glm::int16>();
 | |
| 		Error += run<glm::int32>();
 | |
| 		Error += run<glm::int64>();
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| }//namespace findNSB
 | |
| 
 | |
| int main()
 | |
| {
 | |
| 	int Error = 0;
 | |
| 
 | |
| 	Error += findNSB::test();
 | |
| 
 | |
| 	Error += isPowerOfTwo::test();
 | |
| 	Error += prevPowerOfTwo::test();
 | |
| 	Error += nextPowerOfTwo::test();
 | |
| 	Error += nextPowerOfTwo_advanced::test();
 | |
| 	Error += prevMultiple::test();
 | |
| 	Error += nextMultiple::test();
 | |
| 
 | |
| #	ifdef NDEBUG
 | |
| 		Error += nextPowerOfTwo_advanced::perf();
 | |
| 		Error += nextMultiple::perf();
 | |
| #	endif//NDEBUG
 | |
| 
 | |
| 	return Error;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| int main()
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif
 | 
