ES-DE/es-core/src/components/ImageComponent.cpp

524 lines
17 KiB
C++

// SPDX-License-Identifier: MIT
//
// EmulationStation Desktop Edition
// ImageComponent.cpp
//
// Handles images: loading, resizing, cropping, color shifting etc.
//
#include "components/ImageComponent.h"
#include "Log.h"
#include "Settings.h"
#include "ThemeData.h"
#include "resources/TextureResource.h"
#include "utils/CImgUtil.h"
Vector2i ImageComponent::getTextureSize() const
{
if (mTexture)
return mTexture->getSize();
else
return Vector2i::Zero();
}
Vector2f ImageComponent::getSize() const
{
return GuiComponent::getSize() * (mBottomRightCrop - mTopLeftCrop);
}
ImageComponent::ImageComponent(Window* window, bool forceLoad, bool dynamic)
: GuiComponent(window)
, mTargetIsMax(false)
, mTargetIsMin(false)
, mFlipX(false)
, mFlipY(false)
, mTargetSize(0, 0)
, mColorShift(0xFFFFFFFF)
, mColorShiftEnd(0xFFFFFFFF)
, mColorGradientHorizontal(true)
, mForceLoad(forceLoad)
, mDynamic(dynamic)
, mFadeOpacity(0)
, mFading(false)
, mRotateByTargetSize(false)
, mTopLeftCrop(0.0f, 0.0f)
, mBottomRightCrop(1.0f, 1.0f)
{
updateColors();
}
void ImageComponent::resize()
{
if (!mTexture)
return;
const Vector2f textureSize = mTexture->getSourceImageSize();
if (textureSize == Vector2f::Zero())
return;
if (mTexture->isTiled()) {
mSize = mTargetSize;
}
else {
// SVG rasterization is determined by height and rasterization is done in terms of pixels.
// If rounding is off enough in the rasterization step (for images with extreme aspect
// ratios), it can cause cutoff when the aspect ratio breaks.
// So we always make sure the resultant height is an integer to make sure cutoff doesn't
// happen, and scale width from that (you'll see this scattered throughout the function).
// It's important to use floorf rather than round for this, as we never want to round up
// since that can lead to the cutoff just described.
if (mTargetIsMax) {
mSize = textureSize;
Vector2f resizeScale((mTargetSize.x() / mSize.x()), (mTargetSize.y() / mSize.y()));
if (resizeScale.x() < resizeScale.y()) {
// This will be mTargetSize.x(). We can't exceed it, nor be lower than it.
mSize[0] *= resizeScale.x();
// We need to make sure we're not creating an image larger than max size.
mSize[1] = std::min(floorf(mSize[1] *= resizeScale.x()), mTargetSize.y());
}
else {
// This will be mTargetSize.y(). We can't exceed it.
mSize[1] = floorf(mSize[1] * resizeScale.y());
// For SVG rasterization, always calculate width from rounded height (see comment
// above). We need to make sure we're not creating an image larger than max size.
mSize[0] =
std::min((mSize[1] / textureSize.y()) * textureSize.x(), mTargetSize.x());
}
}
else if (mTargetIsMin) {
mSize = textureSize;
Vector2f resizeScale((mTargetSize.x() / mSize.x()), (mTargetSize.y() / mSize.y()));
if (resizeScale.x() > resizeScale.y()) {
mSize[0] *= resizeScale.x();
mSize[1] *= resizeScale.x();
float cropPercent = (mSize.y() - mTargetSize.y()) / (mSize.y() * 2);
crop(0, cropPercent, 0, cropPercent);
}
else {
mSize[0] *= resizeScale.y();
mSize[1] *= resizeScale.y();
float cropPercent = (mSize.x() - mTargetSize.x()) / (mSize.x() * 2);
crop(cropPercent, 0, cropPercent, 0);
}
// For SVG rasterization, always calculate width from rounded height (see comment
// above). We need to make sure we're not creating an image smaller than min size.
mSize[1] = std::max(floorf(mSize[1]), mTargetSize.y());
mSize[0] = std::max((mSize[1] / textureSize.y()) * textureSize.x(), mTargetSize.x());
}
else {
// If both components are set, we just stretch.
// If no components are set, we don't resize at all.
mSize = mTargetSize == Vector2f::Zero() ? textureSize : mTargetSize;
// If only one component is set, we resize in a way that maintains aspect ratio.
// For SVG rasterization, we always calculate width from rounded height (see
// comment above).
if (!mTargetSize.x() && mTargetSize.y()) {
mSize[1] = floorf(mTargetSize.y());
mSize[0] = (mSize.y() / textureSize.y()) * textureSize.x();
}
else if (mTargetSize.x() && !mTargetSize.y()) {
mSize[1] = floorf((mTargetSize.x() / textureSize.x()) * textureSize.y());
mSize[0] = (mSize.y() / textureSize.y()) * textureSize.x();
}
}
}
mSize[0] = floorf(mSize.x());
mSize[1] = floorf(mSize.y());
// mSize.y() should already be rounded.
mTexture->rasterizeAt(static_cast<size_t>(mSize.x()), static_cast<size_t>(mSize.y()));
onSizeChanged();
}
void ImageComponent::setImage(std::string path, bool tile)
{
// Always load bundled graphic resources statically, unless mForceLoad has been set.
// This eliminates annoying texture pop-in problems that would otherwise occur.
if (!mForceLoad && (path[0] == ':') && (path[1] == '/')) {
mDynamic = false;
}
if (path.empty() || !ResourceManager::getInstance()->fileExists(path)) {
if (mDefaultPath.empty() || !ResourceManager::getInstance()->fileExists(mDefaultPath))
mTexture.reset();
else
mTexture = TextureResource::get(mDefaultPath, tile, mForceLoad, mDynamic);
}
else {
mTexture = TextureResource::get(path, tile, mForceLoad, mDynamic);
}
resize();
}
void ImageComponent::setImage(const char* data, size_t length, bool tile)
{
mTexture.reset();
mTexture = TextureResource::get("", tile);
mTexture->initFromMemory(data, length);
resize();
}
void ImageComponent::setImage(const std::shared_ptr<TextureResource>& texture)
{
mTexture = texture;
resize();
}
void ImageComponent::setResize(float width, float height)
{
mTargetSize = Vector2f(width, height);
mTargetIsMax = false;
mTargetIsMin = false;
resize();
}
void ImageComponent::setMaxSize(float width, float height)
{
mTargetSize = Vector2f(width, height);
mTargetIsMax = true;
mTargetIsMin = false;
resize();
}
void ImageComponent::setMinSize(float width, float height)
{
mTargetSize = Vector2f(width, height);
mTargetIsMax = false;
mTargetIsMin = true;
resize();
}
void ImageComponent::cropLeft(float percent)
{
assert(percent >= 0.0f && percent <= 1.0f);
mTopLeftCrop.x() = percent;
}
void ImageComponent::cropTop(float percent)
{
assert(percent >= 0.0f && percent <= 1.0f);
mTopLeftCrop.y() = percent;
}
void ImageComponent::cropRight(float percent)
{
assert(percent >= 0.0f && percent <= 1.0f);
mBottomRightCrop.x() = 1.0f - percent;
}
void ImageComponent::cropBot(float percent)
{
assert(percent >= 0.0f && percent <= 1.0f);
mBottomRightCrop.y() = 1.0f - percent;
}
void ImageComponent::crop(float left, float top, float right, float bot)
{
cropLeft(left);
cropTop(top);
cropRight(right);
cropBot(bot);
}
void ImageComponent::uncrop()
{
// Remove any applied crop.
crop(0, 0, 0, 0);
}
void ImageComponent::cropTransparentPadding(float maxSizeX, float maxSizeY)
{
if (mSize == 0)
return;
std::vector<unsigned char> imageRGBA = mTexture.get()->getRawRGBAData();
if (imageRGBA.size() == 0)
return;
Vector2i imageSize = mTexture.get()->getSize();
cimg_library::CImg<unsigned char> imageCImg(imageSize.x(), imageSize.y(), 1, 4, 0);
int paddingCoords[4] = {};
// We need to convert our RGBA data to the CImg internal format as CImg does not interleave
// the pixels (as in RGBARGBARGBA).
Utils::CImg::convertRGBAToCImg(imageRGBA, imageCImg);
// This will give us the coordinates for the fully transparent areas.
Utils::CImg::getTransparentPaddingCoords(imageCImg, paddingCoords);
Vector2f originalSize = mSize;
float cropLeft = static_cast<float>(paddingCoords[0]) / static_cast<float>(imageSize.x());
float cropTop = static_cast<float>(paddingCoords[1]) / static_cast<float>(imageSize.y());
float cropRight = static_cast<float>(paddingCoords[2]) / static_cast<float>(imageSize.x());
float cropBottom = static_cast<float>(paddingCoords[3]) / static_cast<float>(imageSize.y());
crop(cropLeft, cropTop, cropRight, cropBottom);
// Cropping the image obviously leads to a reduction in size, so we need to determine
// how much to scale up after cropping to keep within the max size restrictions that
// were passed as arguments.
mSize.x() -= mSize.x() * (cropLeft + cropRight);
mSize.y() -= mSize.y() * (cropTop + cropBottom);
float scaleFactor = originalSize.y() / mSize.y();
if (scaleFactor * mSize.x() < maxSizeX)
scaleFactor = maxSizeX / mSize.x();
if (scaleFactor * mSize.y() < maxSizeY)
scaleFactor = maxSizeY / mSize.y();
if (scaleFactor * mSize.x() > maxSizeX)
scaleFactor = maxSizeX / mSize.x();
if (scaleFactor * mSize.y() > maxSizeY)
scaleFactor = maxSizeY / mSize.y();
setResize(mSize.x() * scaleFactor, mSize.y() * scaleFactor);
updateVertices();
}
void ImageComponent::setFlipX(bool flip)
{
mFlipX = flip;
updateVertices();
}
void ImageComponent::setFlipY(bool flip)
{
mFlipY = flip;
updateVertices();
}
void ImageComponent::setColorShift(unsigned int color)
{
mColorShift = color;
mColorShiftEnd = color;
updateColors();
}
void ImageComponent::setColorShiftEnd(unsigned int color)
{
mColorShiftEnd = color;
updateColors();
}
void ImageComponent::setColorGradientHorizontal(bool horizontal)
{
mColorGradientHorizontal = horizontal;
updateColors();
}
void ImageComponent::setOpacity(unsigned char opacity)
{
mOpacity = opacity;
updateColors();
}
void ImageComponent::setSaturation(float saturation)
{
mSaturation = saturation;
updateColors();
}
void ImageComponent::updateVertices()
{
if (!mTexture || !mTexture->isInitialized())
return;
// We go through this mess to make sure everything is properly rounded.
// If we just round vertices at the end, edge cases occur near sizes of 0.5.
const Vector2f topLeft = { 0, 0 };
const Vector2f bottomRight = mSize;
const float px = mTexture->isTiled() ? mSize.x() / getTextureSize().x() : 1.0f;
const float py = mTexture->isTiled() ? mSize.y() / getTextureSize().y() : 1.0f;
// clang-format off
mVertices[0] = { { topLeft.x(), topLeft.y() }, { mTopLeftCrop.x(), py - mTopLeftCrop.y() }, 0 };
mVertices[1] = { { topLeft.x(), bottomRight.y() }, { mTopLeftCrop.x(), 1.0f - mBottomRightCrop.y() }, 0 };
mVertices[2] = { { bottomRight.x(), topLeft.y() }, { mBottomRightCrop.x() * px, py - mTopLeftCrop.y() }, 0 };
mVertices[3] = { { bottomRight.x(), bottomRight.y() }, { mBottomRightCrop.x() * px, 1.0f - mBottomRightCrop.y() }, 0 };
// clang-format on
updateColors();
// Round vertices.
for (int i = 0; i < 4; i++)
mVertices[i].pos.round();
if (mFlipX) {
for (int i = 0; i < 4; i++)
mVertices[i].tex[0] = px - mVertices[i].tex[0];
}
if (mFlipY) {
for (int i = 0; i < 4; i++)
mVertices[i].tex[1] = py - mVertices[i].tex[1];
}
}
void ImageComponent::updateColors()
{
const float opacity = (mOpacity * (mFading ? mFadeOpacity / 255.0f : 1.0f)) / 255.0f;
const unsigned int color = Renderer::convertRGBAToABGR(
(mColorShift & 0xFFFFFF00) | static_cast<unsigned char>((mColorShift & 0xFF) * opacity));
const unsigned int colorEnd =
Renderer::convertRGBAToABGR((mColorShiftEnd & 0xFFFFFF00) |
static_cast<unsigned char>((mColorShiftEnd & 0xFF) * opacity));
mVertices[0].col = color;
mVertices[1].col = mColorGradientHorizontal ? colorEnd : color;
mVertices[2].col = mColorGradientHorizontal ? color : colorEnd;
mVertices[3].col = colorEnd;
}
void ImageComponent::render(const Transform4x4f& parentTrans)
{
if (!isVisible())
return;
Transform4x4f trans = parentTrans * getTransform();
Renderer::setMatrix(trans);
if (mTexture && mOpacity > 0) {
if (Settings::getInstance()->getBool("DebugImage")) {
Vector2f targetSizePos = (mTargetSize - mSize) * mOrigin * -1;
Renderer::drawRect(targetSizePos.x(), targetSizePos.y(), mTargetSize.x(),
mTargetSize.y(), 0xFF000033, 0xFF000033);
Renderer::drawRect(0.0f, 0.0f, mSize.x(), mSize.y(), 0xFF000033, 0xFF000033);
}
// An image with zero size would normally indicate a corrupt image file.
if (mTexture->isInitialized() && mTexture->getSize() != 0) {
// Actually draw the image.
// The bind() function returns false if the texture is not currently loaded. A blank
// texture is bound in this case but we want to handle a fade so it doesn't just
// 'jump' in when it finally loads.
fadeIn(mTexture->bind());
#if defined(USE_OPENGL_21)
if (mSaturation < 1.0) {
mVertices[0].shaders = Renderer::SHADER_DESATURATE;
mVertices[0].saturation = mSaturation;
}
#endif
Renderer::drawTriangleStrips(&mVertices[0], 4, trans);
}
else {
if (!mTexture) {
LOG(LogError) << "Image texture is not initialized";
}
else {
std::string textureFilePath = mTexture->getTextureFilePath();
if (textureFilePath != "") {
LOG(LogError) << "Image texture for file \"" << textureFilePath
<< "\" has zero size";
}
else {
LOG(LogError) << "Image texture has zero size";
}
}
mTexture.reset();
}
}
GuiComponent::renderChildren(trans);
}
void ImageComponent::fadeIn(bool textureLoaded)
{
if (!mForceLoad) {
if (!textureLoaded) {
// Start the fade if this is the first time we've encountered the unloaded texture.
if (!mFading) {
// Start with a zero opacity and flag it as fading.
mFadeOpacity = 0;
mFading = true;
updateColors();
}
}
else if (mFading) {
// The texture is loaded and we need to fade it in. The fade is based on the frame
// rate and is 1/4 second if running at 60 frames per second although the actual
// value is not that important.
int opacity = mFadeOpacity + 255 / 15;
// See if we've finished fading.
if (opacity >= 255) {
mFadeOpacity = 255;
mFading = false;
}
else {
mFadeOpacity = static_cast<unsigned char>(opacity);
}
updateColors();
}
}
}
void ImageComponent::applyTheme(const std::shared_ptr<ThemeData>& theme,
const std::string& view,
const std::string& element,
unsigned int properties)
{
using namespace ThemeFlags;
GuiComponent::applyTheme(theme, view, element,
(properties ^ ThemeFlags::SIZE) |
((properties & (ThemeFlags::SIZE | POSITION)) ? ORIGIN : 0));
const ThemeData::ThemeElement* elem = theme->getElement(view, element, "image");
if (!elem)
return;
Vector2f scale = getParent() ? getParent()->getSize() :
Vector2f(static_cast<float>(Renderer::getScreenWidth()),
static_cast<float>(Renderer::getScreenHeight()));
if (properties & ThemeFlags::SIZE) {
if (elem->has("size"))
setResize(elem->get<Vector2f>("size") * scale);
else if (elem->has("maxSize"))
setMaxSize(elem->get<Vector2f>("maxSize") * scale);
else if (elem->has("minSize"))
setMinSize(elem->get<Vector2f>("minSize") * scale);
}
if (elem->has("default"))
setDefaultImage(elem->get<std::string>("default"));
if (properties & PATH && elem->has("path")) {
bool tile = (elem->has("tile") && elem->get<bool>("tile"));
setImage(elem->get<std::string>("path"), tile);
}
if (properties & COLOR) {
if (elem->has("color"))
setColorShift(elem->get<unsigned int>("color"));
if (elem->has("colorEnd"))
setColorShiftEnd(elem->get<unsigned int>("colorEnd"));
if (elem->has("gradientType"))
setColorGradientHorizontal(
!(elem->get<std::string>("gradientType").compare("horizontal")));
}
}
std::vector<HelpPrompt> ImageComponent::getHelpPrompts()
{
std::vector<HelpPrompt> ret;
ret.push_back(HelpPrompt("a", "select"));
return ret;
}