mirror of
https://github.com/RetroDECK/ES-DE.git
synced 2024-11-22 14:15:38 +00:00
67040 lines
3.2 MiB
67040 lines
3.2 MiB
/*
|
|
#
|
|
# File : CImg.h
|
|
# ( C++ header file )
|
|
#
|
|
# Description : C++ Template Image Processing Toolkit.
|
|
# This file is the main component of the CImg Library project.
|
|
# ( http://cimg.eu )
|
|
#
|
|
# Project manager : David Tschumperlé
|
|
# ( http://tschumperle.users.greyc.fr/ )
|
|
#
|
|
# A complete list of contributors is available in file 'README.txt'
|
|
# distributed within the CImg package.
|
|
#
|
|
# Licenses : This file is 'dual-licensed', you have to choose one
|
|
# of the two licenses below to apply.
|
|
#
|
|
# CeCILL-C
|
|
# The CeCILL-C license is close to the GNU LGPL.
|
|
# ( http://cecill.info/licences/Licence_CeCILL-C_V1-en.html )
|
|
#
|
|
# or CeCILL v2.1
|
|
# The CeCILL license is compatible with the GNU GPL.
|
|
# ( http://cecill.info/licences/Licence_CeCILL_V2.1-en.html )
|
|
#
|
|
# This software is governed either by the CeCILL or the CeCILL-C license
|
|
# under French law and abiding by the rules of distribution of free software.
|
|
# You can use, modify and or redistribute the software under the terms of
|
|
# the CeCILL or CeCILL-C licenses as circulated by CEA, CNRS and INRIA
|
|
# at the following URL: "http://cecill.info".
|
|
#
|
|
# As a counterpart to the access to the source code and rights to copy,
|
|
# modify and redistribute granted by the license, users are provided only
|
|
# with a limited warranty and the software's author, the holder of the
|
|
# economic rights, and the successive licensors have only limited
|
|
# liability.
|
|
#
|
|
# In this respect, the user's attention is drawn to the risks associated
|
|
# with loading, using, modifying and/or developing or reproducing the
|
|
# software by the user in light of its specific status of free software,
|
|
# that may mean that it is complicated to manipulate, and that also
|
|
# therefore means that it is reserved for developers and experienced
|
|
# professionals having in-depth computer knowledge. Users are therefore
|
|
# encouraged to load and test the software's suitability as regards their
|
|
# requirements in conditions enabling the security of their systems and/or
|
|
# data to be ensured and, more generally, to use and operate it in the
|
|
# same conditions as regards security.
|
|
#
|
|
# The fact that you are presently reading this means that you have had
|
|
# knowledge of the CeCILL and CeCILL-C licenses and that you accept its terms.
|
|
#
|
|
*/
|
|
|
|
// Set version number of the library.
|
|
#ifndef cimg_version
|
|
#define cimg_version 320
|
|
|
|
/*-----------------------------------------------------------
|
|
#
|
|
# Test and possibly auto-set CImg configuration variables
|
|
# and include required headers.
|
|
#
|
|
# If you find that the default configuration variables are
|
|
# not adapted to your system, you can override their values
|
|
# before including the header file "CImg.h"
|
|
# (use the #define directive).
|
|
#
|
|
------------------------------------------------------------*/
|
|
|
|
// Include standard C++ headers.
|
|
// This is the minimal set of required headers to make CImg-based codes compile.
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <cstdarg>
|
|
#include <cstring>
|
|
#include <cmath>
|
|
#include <cfloat>
|
|
#include <climits>
|
|
#include <ctime>
|
|
#include <exception>
|
|
#include <algorithm>
|
|
#define cimg_str(x) #x
|
|
#define cimg_str2(x) cimg_str(x)
|
|
|
|
// Detect/configure OS variables.
|
|
//
|
|
// Define 'cimg_OS' to: '0' for an unknown OS (will try to minize library dependencies).
|
|
// '1' for a Unix-like OS (Linux, Solaris, BSD, MacOSX, Irix, ...).
|
|
// '2' for Microsoft Windows.
|
|
// (auto-detection is performed if 'cimg_OS' is not set by the user).
|
|
#ifndef cimg_OS
|
|
#if defined(unix) || defined(__unix) || defined(__unix__) \
|
|
|| defined(linux) || defined(__linux) || defined(__linux__) \
|
|
|| defined(sun) || defined(__sun) \
|
|
|| defined(BSD) || defined(__OpenBSD__) || defined(__NetBSD__) \
|
|
|| defined(__FreeBSD__) || defined (__DragonFly__) \
|
|
|| defined(sgi) || defined(__sgi) \
|
|
|| defined(__OSX__) || defined(__MACOSX__) || defined(__APPLE__) \
|
|
|| defined(__CYGWIN__)
|
|
#define cimg_OS 1
|
|
#elif defined(_MSC_VER) || defined(WIN32) || defined(_WIN32) || defined(__WIN32__) \
|
|
|| defined(WIN64) || defined(_WIN64) || defined(__WIN64__)
|
|
#define cimg_OS 2
|
|
#else
|
|
#define cimg_OS 0
|
|
#endif
|
|
#elif !(cimg_OS==0 || cimg_OS==1 || cimg_OS==2)
|
|
#error CImg Library: Invalid configuration variable 'cimg_OS'.
|
|
#error (correct values are '0 = unknown OS', '1 = Unix-like OS', '2 = Microsoft Windows').
|
|
#endif
|
|
#ifndef cimg_date
|
|
#define cimg_date __DATE__
|
|
#endif
|
|
#ifndef cimg_time
|
|
#define cimg_time __TIME__
|
|
#endif
|
|
|
|
// Disable silly warnings on some Microsoft VC++ compilers.
|
|
#ifdef _MSC_VER
|
|
#pragma warning(push)
|
|
#pragma warning(disable:4127)
|
|
#pragma warning(disable:4244)
|
|
#pragma warning(disable:4311)
|
|
#pragma warning(disable:4312)
|
|
#pragma warning(disable:4319)
|
|
#pragma warning(disable:4512)
|
|
#pragma warning(disable:4571)
|
|
#pragma warning(disable:4640)
|
|
#pragma warning(disable:4706)
|
|
#pragma warning(disable:4710)
|
|
#pragma warning(disable:4800)
|
|
#pragma warning(disable:4804)
|
|
#pragma warning(disable:4820)
|
|
#pragma warning(disable:4996)
|
|
|
|
#ifndef _CRT_SECURE_NO_DEPRECATE
|
|
#define _CRT_SECURE_NO_DEPRECATE 1
|
|
#endif
|
|
#ifndef _CRT_SECURE_NO_WARNINGS
|
|
#define _CRT_SECURE_NO_WARNINGS 1
|
|
#endif
|
|
#ifndef _CRT_NONSTDC_NO_DEPRECATE
|
|
#define _CRT_NONSTDC_NO_DEPRECATE 1
|
|
#endif
|
|
#endif
|
|
|
|
// Define correct string functions for each compiler and OS.
|
|
#if cimg_OS==2 && defined(_MSC_VER)
|
|
#define cimg_sscanf std::sscanf
|
|
#define cimg_snprintf cimg::_snprintf
|
|
#define cimg_vsnprintf cimg::_vsnprintf
|
|
#else
|
|
#include <stdio.h>
|
|
#if defined(__MACOSX__) || defined(__APPLE__)
|
|
#define cimg_sscanf cimg::_sscanf
|
|
#define cimg_snprintf cimg::_snprintf
|
|
#define cimg_vsnprintf cimg::_vsnprintf
|
|
#else
|
|
#define cimg_sscanf std::sscanf
|
|
#define cimg_snprintf snprintf
|
|
#define cimg_vsnprintf vsnprintf
|
|
#endif
|
|
#endif
|
|
|
|
// Include OS-specific headers.
|
|
#if cimg_OS==1
|
|
#include <sys/types.h>
|
|
#include <sys/time.h>
|
|
#include <sys/stat.h>
|
|
#include <unistd.h>
|
|
#include <dirent.h>
|
|
#include <fnmatch.h>
|
|
#elif cimg_OS==2
|
|
#ifndef NOMINMAX
|
|
#define NOMINMAX
|
|
#endif
|
|
#ifndef WIN32_LEAN_AND_MEAN
|
|
#define WIN32_LEAN_AND_MEAN
|
|
#endif
|
|
#include <windows.h>
|
|
#ifndef _WIN32_IE
|
|
#define _WIN32_IE 0x0400
|
|
#endif
|
|
#include <shlobj.h>
|
|
#include <process.h>
|
|
#include <io.h>
|
|
enum {FALSE_WIN = 0};
|
|
#endif
|
|
|
|
// Look for C++11 features.
|
|
#ifndef cimg_use_cpp11
|
|
#if __cplusplus>201100
|
|
#define cimg_use_cpp11 1
|
|
#else
|
|
#define cimg_use_cpp11 0
|
|
#endif
|
|
#endif
|
|
#if cimg_use_cpp11==1
|
|
#include <initializer_list>
|
|
#include <utility>
|
|
#endif
|
|
|
|
// Convenient macro to define pragma
|
|
#ifdef _MSC_VER
|
|
#define cimg_pragma(x) __pragma(x)
|
|
#else
|
|
#define cimg_pragma(x) _Pragma(#x)
|
|
#endif
|
|
|
|
// Define own datatypes to ensure portability.
|
|
// ( 'sizeof(cimg_ulong/cimg_long) = sizeof(void*)' ).
|
|
#define cimg_uint8 unsigned char
|
|
#if defined(CHAR_MAX) && CHAR_MAX==255
|
|
#define cimg_int8 signed char
|
|
#else
|
|
#define cimg_int8 char
|
|
#endif
|
|
#define cimg_uint16 unsigned short
|
|
#define cimg_int16 short
|
|
#define cimg_uint32 unsigned int
|
|
#define cimg_int32 int
|
|
#define cimg_float32 float
|
|
#define cimg_float64 double
|
|
|
|
#if cimg_OS==2
|
|
|
|
#define cimg_uint64 unsigned __int64
|
|
#define cimg_int64 __int64
|
|
#define cimg_ulong UINT_PTR
|
|
#define cimg_long INT_PTR
|
|
#ifdef _MSC_VER
|
|
#define cimg_fuint64 "%I64u"
|
|
#define cimg_fint64 "%I64d"
|
|
#else
|
|
#define cimg_fuint64 "%llu"
|
|
#define cimg_fint64 "%lld"
|
|
#endif
|
|
|
|
#else
|
|
|
|
#if UINTPTR_MAX==0xffffffff || defined(__arm__) || defined(_M_ARM) || ((ULONG_MAX)==(UINT_MAX))
|
|
#define cimg_uint64 unsigned long long
|
|
#define cimg_int64 long long
|
|
#define cimg_fuint64 "%llu"
|
|
#define cimg_fint64 "%lld"
|
|
#else
|
|
#define cimg_uint64 unsigned long
|
|
#define cimg_int64 long
|
|
#define cimg_fuint64 "%lu"
|
|
#define cimg_fint64 "%ld"
|
|
#endif
|
|
|
|
#if defined(__arm__) || defined(_M_ARM)
|
|
#define cimg_ulong unsigned long long
|
|
#define cimg_long long long
|
|
#else
|
|
#define cimg_ulong unsigned long
|
|
#define cimg_long long
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#ifndef cimg_max_buf_size
|
|
#if UINTPTR_MAX==0xffffffff
|
|
#define cimg_max_buf_size ((cimg_ulong)3*1024*1024*1024)
|
|
#else
|
|
#define cimg_max_buf_size ((cimg_ulong)16*1024*1024*1024)
|
|
#endif
|
|
#endif
|
|
|
|
// Configure filename separator.
|
|
//
|
|
// Filename separator is set by default to '/', except for Windows where it is '\'.
|
|
#ifndef cimg_file_separator
|
|
#if cimg_OS==2
|
|
#define cimg_file_separator '\\'
|
|
#else
|
|
#define cimg_file_separator '/'
|
|
#endif
|
|
#endif
|
|
|
|
// Configure verbosity of output messages.
|
|
//
|
|
// Define 'cimg_verbosity' to: '0' to hide library messages (quiet mode).
|
|
// '1' to output library messages on the console.
|
|
// '2' to output library messages on a basic dialog window (default behavior).
|
|
// '3' to do as '1' + add extra warnings (may slow down the code!).
|
|
// '4' to do as '2' + add extra warnings (may slow down the code!).
|
|
//
|
|
// Define 'cimg_strict_warnings' to replace warning messages by exception throwns.
|
|
//
|
|
// Define 'cimg_use_vt100' to allow output of color messages on VT100-compatible terminals.
|
|
#ifndef cimg_verbosity
|
|
#if cimg_OS==2
|
|
#define cimg_verbosity 2
|
|
#else
|
|
#define cimg_verbosity 1
|
|
#endif
|
|
#elif !(cimg_verbosity==0 || cimg_verbosity==1 || cimg_verbosity==2 || cimg_verbosity==3 || cimg_verbosity==4)
|
|
#error CImg Library: Configuration variable 'cimg_verbosity' is badly defined.
|
|
#error (should be { 0=quiet | 1=console | 2=dialog | 3=console+warnings | 4=dialog+warnings }).
|
|
#endif
|
|
|
|
// Configure OpenMP support.
|
|
// (http://www.openmp.org)
|
|
//
|
|
// Define 'cimg_use_openmp' to enable OpenMP support (requires OpenMP 3.0+).
|
|
//
|
|
// OpenMP directives are used in many CImg functions to get
|
|
// advantages of multi-core CPUs.
|
|
#if !defined(cimg_use_openmp)
|
|
#ifdef _OPENMP
|
|
#define cimg_use_openmp 1
|
|
#else
|
|
#define cimg_use_openmp 0
|
|
#endif
|
|
#else
|
|
#undef cimg_use_openmp
|
|
#define cimg_use_openmp 1
|
|
#endif
|
|
#if cimg_use_openmp!=0
|
|
#include <omp.h>
|
|
#define cimg_pragma_openmp(p) cimg_pragma(omp p)
|
|
#else
|
|
#define cimg_pragma_openmp(p)
|
|
#endif
|
|
|
|
// Configure the 'abort' signal handler (does nothing by default).
|
|
// A typical signal handler can be defined in your own source like this:
|
|
// #define cimg_abort_test if (is_abort) throw CImgAbortException("")
|
|
//
|
|
// where 'is_abort' is a boolean variable defined somewhere in your code and reachable in the method.
|
|
// 'cimg_abort_test2' does the same but is called more often (in inner loops).
|
|
#if defined(cimg_abort_test) && cimg_use_openmp!=0
|
|
|
|
// Define abort macros to be used with OpenMP.
|
|
#ifndef _cimg_abort_init_openmp
|
|
#define _cimg_abort_init_openmp unsigned int _cimg_abort_go_openmp = 1; cimg::unused(_cimg_abort_go_openmp)
|
|
#endif
|
|
#ifndef _cimg_abort_try_openmp
|
|
#define _cimg_abort_try_openmp if (_cimg_abort_go_openmp) try
|
|
#endif
|
|
#ifndef _cimg_abort_catch_openmp
|
|
#define _cimg_abort_catch_openmp catch (CImgAbortException&) { \
|
|
cimg_pragma_openmp(atomic) _cimg_abort_go_openmp&=0; \
|
|
}
|
|
#endif
|
|
#ifndef _cimg_abort_catch_fill_openmp
|
|
#define _cimg_abort_catch_fill_openmp \
|
|
catch (CImgException& e) { cimg_pragma(omp critical(abort)) CImg<charT>::string(e._message).move_to(is_error_expr); \
|
|
cimg_pragma_openmp(atomic) _cimg_abort_go_openmp&=0; }
|
|
#endif
|
|
#ifdef cimg_abort_test2
|
|
#ifndef _cimg_abort_try_openmp2
|
|
#define _cimg_abort_try_openmp2 _cimg_abort_try_openmp
|
|
#endif
|
|
#ifndef _cimg_abort_catch_openmp2
|
|
#define _cimg_abort_catch_openmp2 _cimg_abort_catch_openmp
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef _cimg_abort_init_openmp
|
|
#define _cimg_abort_init_openmp
|
|
#endif
|
|
#ifndef _cimg_abort_try_openmp
|
|
#define _cimg_abort_try_openmp
|
|
#endif
|
|
#ifndef _cimg_abort_catch_openmp
|
|
#define _cimg_abort_catch_openmp
|
|
#endif
|
|
#ifndef _cimg_abort_try_openmp2
|
|
#define _cimg_abort_try_openmp2
|
|
#endif
|
|
#ifndef _cimg_abort_catch_openmp2
|
|
#define _cimg_abort_catch_openmp2
|
|
#endif
|
|
#ifndef _cimg_abort_catch_fill_openmp
|
|
#define _cimg_abort_catch_fill_openmp
|
|
#endif
|
|
#ifndef cimg_abort_init
|
|
#define cimg_abort_init
|
|
#endif
|
|
#ifndef cimg_abort_test
|
|
#define cimg_abort_test
|
|
#endif
|
|
#ifndef cimg_abort_test2
|
|
#define cimg_abort_test2
|
|
#endif
|
|
|
|
// Configure display framework.
|
|
//
|
|
// Define 'cimg_display' to: '0' to disable display capabilities.
|
|
// '1' to use the X-Window framework (X11).
|
|
// '2' to use the Microsoft GDI32 framework.
|
|
#ifndef cimg_display
|
|
#if cimg_OS==0
|
|
#define cimg_display 0
|
|
#elif cimg_OS==1
|
|
#define cimg_display 1
|
|
#elif cimg_OS==2
|
|
#define cimg_display 2
|
|
#endif
|
|
#elif !(cimg_display==0 || cimg_display==1 || cimg_display==2)
|
|
#error CImg Library: Configuration variable 'cimg_display' is badly defined.
|
|
#error (should be { 0=none | 1=X-Window (X11) | 2=Microsoft GDI32 }).
|
|
#endif
|
|
|
|
// Include display-specific headers.
|
|
#if cimg_display==1
|
|
#include <X11/Xlib.h>
|
|
#include <X11/Xutil.h>
|
|
#include <X11/keysym.h>
|
|
#include <pthread.h>
|
|
#ifdef cimg_use_xshm
|
|
#include <sys/ipc.h>
|
|
#include <sys/shm.h>
|
|
#include <X11/extensions/XShm.h>
|
|
#endif
|
|
#ifdef cimg_use_xrandr
|
|
#include <X11/extensions/Xrandr.h>
|
|
#endif
|
|
#endif
|
|
#ifndef cimg_appname
|
|
#define cimg_appname "CImg"
|
|
#endif
|
|
|
|
// Configure OpenCV support.
|
|
// (http://opencv.willowgarage.com/wiki/)
|
|
//
|
|
// Define 'cimg_use_opencv' to enable OpenCV support.
|
|
//
|
|
// OpenCV library may be used to access images from cameras
|
|
// (see method 'CImg<T>::load_camera()').
|
|
#ifdef cimg_use_opencv
|
|
#ifdef True
|
|
#undef True
|
|
#define _cimg_redefine_True
|
|
#endif
|
|
#ifdef False
|
|
#undef False
|
|
#define _cimg_redefine_False
|
|
#endif
|
|
#ifdef Status
|
|
#undef Status
|
|
#define _cimg_redefine_Status
|
|
#endif
|
|
#include <cstddef>
|
|
#include <opencv2/opencv.hpp>
|
|
#if CV_MAJOR_VERSION>=3
|
|
#define _cimg_fourcc cv::VideoWriter::fourcc
|
|
#define _cimg_cap_prop_frame_width cv::VideoCaptureProperties::CAP_PROP_FRAME_WIDTH
|
|
#define _cimg_cap_prop_frame_height cv::VideoCaptureProperties::CAP_PROP_FRAME_HEIGHT
|
|
#define _cimg_cap_prop_frame_count cv::VideoCaptureProperties::CAP_PROP_FRAME_COUNT
|
|
#else
|
|
#define _cimg_fourcc CV_FOURCC
|
|
#define _cimg_cap_prop_frame_width CV_CAP_PROP_FRAME_WIDTH
|
|
#define _cimg_cap_prop_frame_height CV_CAP_PROP_FRAME_HEIGHT
|
|
#define _cimg_cap_prop_frame_count CV_CAP_PROP_FRAME_COUNT
|
|
#endif
|
|
#endif
|
|
|
|
// Configure LibPNG support.
|
|
// (http://www.libpng.org)
|
|
//
|
|
// Define 'cimg_use_png' to enable LibPNG support.
|
|
//
|
|
// PNG library may be used to get a native support of '.png' files.
|
|
// (see methods 'CImg<T>::{load,save}_png()'.
|
|
#ifdef cimg_use_png
|
|
extern "C" {
|
|
#include "png.h"
|
|
}
|
|
#endif
|
|
|
|
// Configure LibJPEG support.
|
|
// (http://en.wikipedia.org/wiki/Libjpeg)
|
|
//
|
|
// Define 'cimg_use_jpeg' to enable LibJPEG support.
|
|
//
|
|
// JPEG library may be used to get a native support of '.jpg' files.
|
|
// (see methods 'CImg<T>::{load,save}_jpeg()').
|
|
#ifdef cimg_use_jpeg
|
|
extern "C" {
|
|
#include "jpeglib.h"
|
|
#include "setjmp.h"
|
|
}
|
|
#endif
|
|
|
|
// Configure LibTIFF support.
|
|
// (http://www.libtiff.org)
|
|
//
|
|
// Define 'cimg_use_tiff' to enable LibTIFF support.
|
|
//
|
|
// TIFF library may be used to get a native support of '.tif' files.
|
|
// (see methods 'CImg[List]<T>::{load,save}_tiff()').
|
|
#ifdef cimg_use_tiff
|
|
extern "C" {
|
|
#define uint64 uint64_hack_
|
|
#define int64 int64_hack_
|
|
#include "tiffio.h"
|
|
#undef uint64
|
|
#undef int64
|
|
}
|
|
#endif
|
|
|
|
// Configure HEIF support
|
|
// (https://github.com/strukturag/libheif)
|
|
//
|
|
// Define 'cimg_use_heif' to enable HEIF support.
|
|
//
|
|
// HEIF library may be used to get a native support of '.heic' and '.avif' files.
|
|
// (see method 'CImg<T>::load_heif()').
|
|
#ifdef cimg_use_heif
|
|
#include <libheif/heif_cxx.h>
|
|
#endif
|
|
|
|
// Configure LibMINC2 support.
|
|
// (http://en.wikibooks.org/wiki/MINC/Reference/MINC2.0_File_Format_Reference)
|
|
//
|
|
// Define 'cimg_use_minc2' to enable LibMINC2 support.
|
|
//
|
|
// MINC2 library may be used to get a native support of '.mnc' files.
|
|
// (see methods 'CImg<T>::{load,save}_minc2()').
|
|
#ifdef cimg_use_minc2
|
|
#include "minc_io_simple_volume.h"
|
|
#include "minc_1_simple.h"
|
|
#include "minc_1_simple_rw.h"
|
|
#endif
|
|
|
|
// Configure Zlib support.
|
|
// (http://www.zlib.net)
|
|
//
|
|
// Define 'cimg_use_zlib' to enable Zlib support.
|
|
//
|
|
// Zlib library may be used to allow compressed data in '.cimgz' files
|
|
// (see methods 'CImg[List]<T>::{load,save}_cimg()').
|
|
#ifdef cimg_use_zlib
|
|
extern "C" {
|
|
#include "zlib.h"
|
|
}
|
|
#endif
|
|
|
|
// Configure libcurl support.
|
|
// (http://curl.haxx.se/libcurl/)
|
|
//
|
|
// Define 'cimg_use_curl' to enable libcurl support.
|
|
//
|
|
// Libcurl may be used to get a native support of file downloading from the network.
|
|
// (see method 'cimg::load_network()'.)
|
|
#ifdef cimg_use_curl
|
|
#include "curl/curl.h"
|
|
#endif
|
|
|
|
// Configure Magick++ support.
|
|
// (http://www.imagemagick.org/Magick++)
|
|
//
|
|
// Define 'cimg_use_magick' to enable Magick++ support.
|
|
//
|
|
// Magick++ library may be used to get a native support of various image file formats.
|
|
// (see methods 'CImg<T>::{load,save}()').
|
|
#ifdef cimg_use_magick
|
|
#include "Magick++.h"
|
|
#endif
|
|
|
|
// Configure FFTW3 support.
|
|
// (http://www.fftw.org)
|
|
//
|
|
// Define 'cimg_use_fftw3' to enable libFFTW3 support.
|
|
//
|
|
// FFTW3 library may be used to efficiently compute the Fast Fourier Transform
|
|
// of image data, without restriction on the image size.
|
|
// (see method 'CImg[List]<T>::FFT()').
|
|
#ifdef cimg_use_fftw3
|
|
extern "C" {
|
|
#include "fftw3.h"
|
|
}
|
|
#endif
|
|
|
|
// Configure LibBoard support.
|
|
// (http://libboard.sourceforge.net/)
|
|
//
|
|
// Define 'cimg_use_board' to enable Board support.
|
|
//
|
|
// Board library may be used to draw 3D objects in vector-graphics canvas
|
|
// that can be saved as '.ps' or '.svg' files afterwards.
|
|
// (see method 'CImg<T>::draw_object3d()').
|
|
#ifdef cimg_use_board
|
|
#include "Board.h"
|
|
#endif
|
|
|
|
// Configure OpenEXR support.
|
|
// (http://www.openexr.com/)
|
|
//
|
|
// Define 'cimg_use_openexr' to enable OpenEXR support.
|
|
//
|
|
// OpenEXR library may be used to get a native support of '.exr' files.
|
|
// (see methods 'CImg<T>::{load,save}_exr()').
|
|
#ifdef cimg_use_openexr
|
|
#if __GNUC__>=5
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wdeprecated"
|
|
#pragma GCC diagnostic ignored "-Wdeprecated-copy"
|
|
#pragma GCC diagnostic ignored "-Wshadow"
|
|
#endif
|
|
#include "ImfRgbaFile.h"
|
|
#include "ImfInputFile.h"
|
|
#include "ImfChannelList.h"
|
|
#include "ImfMatrixAttribute.h"
|
|
#include "ImfArray.h"
|
|
#if __GNUC__>=5
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
#endif
|
|
|
|
// Configure TinyEXR support.
|
|
// (https://github.com/syoyo/tinyexr)
|
|
//
|
|
// Define 'cimg_use_tinyexr' to enable TinyEXR support.
|
|
//
|
|
// TinyEXR is a small, single header-only library to load and save OpenEXR(.exr) images.
|
|
#ifdef cimg_use_tinyexr
|
|
#ifndef TINYEXR_IMPLEMENTATION
|
|
#define TINYEXR_IMPLEMENTATION
|
|
#endif
|
|
#include "tinyexr.h"
|
|
#endif
|
|
|
|
// Lapack configuration.
|
|
// (http://www.netlib.org/lapack)
|
|
//
|
|
// Define 'cimg_use_lapack' to enable LAPACK support.
|
|
//
|
|
// Lapack library may be used in several CImg methods to speed up
|
|
// matrix computations (eigenvalues, inverse, ...).
|
|
#ifdef cimg_use_lapack
|
|
extern "C" {
|
|
extern void sgetrf_(int*, int*, float*, int*, int*, int*);
|
|
extern void sgetri_(int*, float*, int*, int*, float*, int*, int*);
|
|
extern void sgetrs_(char*, int*, int*, float*, int*, int*, float*, int*, int*);
|
|
extern void sgesvd_(char*, char*, int*, int*, float*, int*, float*, float*, int*, float*, int*, float*, int*, int*);
|
|
extern void ssyev_(char*, char*, int*, float*, int*, float*, float*, int*, int*);
|
|
extern void dgetrf_(int*, int*, double*, int*, int*, int*);
|
|
extern void dgetri_(int*, double*, int*, int*, double*, int*, int*);
|
|
extern void dgetrs_(char*, int*, int*, double*, int*, int*, double*, int*, int*);
|
|
extern void dgesvd_(char*, char*, int*, int*, double*, int*, double*, double*,
|
|
int*, double*, int*, double*, int*, int*);
|
|
extern void dsyev_(char*, char*, int*, double*, int*, double*, double*, int*, int*);
|
|
extern void dgels_(char*, int*,int*,int*,double*,int*,double*,int*,double*,int*,int*);
|
|
extern void sgels_(char*, int*,int*,int*,float*,int*,float*,int*,float*,int*,int*);
|
|
}
|
|
#endif
|
|
|
|
// Check if min/max/PI macros are defined.
|
|
//
|
|
// CImg does not compile if macros 'min', 'max' or 'PI' are defined,
|
|
// because it redefines functions min(), max() and const variable PI in the cimg:: namespace.
|
|
// so it '#undef' these macros if necessary, and restore them to reasonable
|
|
// values at the end of this file.
|
|
#ifdef min
|
|
#undef min
|
|
#define _cimg_redefine_min
|
|
#endif
|
|
#ifdef max
|
|
#undef max
|
|
#define _cimg_redefine_max
|
|
#endif
|
|
#ifdef PI
|
|
#undef PI
|
|
#define _cimg_redefine_PI
|
|
#endif
|
|
|
|
/*------------------------------------------------------------------------------
|
|
#
|
|
# Define user-friendly macros.
|
|
#
|
|
# These CImg macros are prefixed by 'cimg_' and can be used safely in your own
|
|
# code. They are useful to parse command line options, or to write image loops.
|
|
#
|
|
------------------------------------------------------------------------------*/
|
|
|
|
// Macros to define program usage, and retrieve command line arguments.
|
|
#define cimg_usage(usage) cimg_library::cimg::option((char*)0,argc,argv,(char*)0,usage,false)
|
|
#define cimg_help(str) cimg_library::cimg::option((char*)0,argc,argv,str,(char*)0)
|
|
#define cimg_option(name,_default,usage) cimg_library::cimg::option(name,argc,argv,_default,usage)
|
|
|
|
// Macros to define and manipulate local neighborhoods.
|
|
#define CImg_2x2(I,T) T I[4]; \
|
|
T& I##cc = I[0]; T& I##nc = I[1]; \
|
|
T& I##cn = I[2]; T& I##nn = I[3]; \
|
|
I##cc = I##nc = \
|
|
I##cn = I##nn = 0
|
|
|
|
#define CImg_3x3(I,T) T I[9]; \
|
|
T& I##pp = I[0]; T& I##cp = I[1]; T& I##np = I[2]; \
|
|
T& I##pc = I[3]; T& I##cc = I[4]; T& I##nc = I[5]; \
|
|
T& I##pn = I[6]; T& I##cn = I[7]; T& I##nn = I[8]; \
|
|
I##pp = I##cp = I##np = \
|
|
I##pc = I##cc = I##nc = \
|
|
I##pn = I##cn = I##nn = 0
|
|
|
|
#define CImg_4x4(I,T) T I[16]; \
|
|
T& I##pp = I[0]; T& I##cp = I[1]; T& I##np = I[2]; T& I##ap = I[3]; \
|
|
T& I##pc = I[4]; T& I##cc = I[5]; T& I##nc = I[6]; T& I##ac = I[7]; \
|
|
T& I##pn = I[8]; T& I##cn = I[9]; T& I##nn = I[10]; T& I##an = I[11]; \
|
|
T& I##pa = I[12]; T& I##ca = I[13]; T& I##na = I[14]; T& I##aa = I[15]; \
|
|
I##pp = I##cp = I##np = I##ap = \
|
|
I##pc = I##cc = I##nc = I##ac = \
|
|
I##pn = I##cn = I##nn = I##an = \
|
|
I##pa = I##ca = I##na = I##aa = 0
|
|
|
|
#define CImg_5x5(I,T) T I[25]; \
|
|
T& I##bb = I[0]; T& I##pb = I[1]; T& I##cb = I[2]; T& I##nb = I[3]; T& I##ab = I[4]; \
|
|
T& I##bp = I[5]; T& I##pp = I[6]; T& I##cp = I[7]; T& I##np = I[8]; T& I##ap = I[9]; \
|
|
T& I##bc = I[10]; T& I##pc = I[11]; T& I##cc = I[12]; T& I##nc = I[13]; T& I##ac = I[14]; \
|
|
T& I##bn = I[15]; T& I##pn = I[16]; T& I##cn = I[17]; T& I##nn = I[18]; T& I##an = I[19]; \
|
|
T& I##ba = I[20]; T& I##pa = I[21]; T& I##ca = I[22]; T& I##na = I[23]; T& I##aa = I[24]; \
|
|
I##bb = I##pb = I##cb = I##nb = I##ab = \
|
|
I##bp = I##pp = I##cp = I##np = I##ap = \
|
|
I##bc = I##pc = I##cc = I##nc = I##ac = \
|
|
I##bn = I##pn = I##cn = I##nn = I##an = \
|
|
I##ba = I##pa = I##ca = I##na = I##aa = 0
|
|
|
|
#define CImg_2x2x2(I,T) T I[8]; \
|
|
T& I##ccc = I[0]; T& I##ncc = I[1]; \
|
|
T& I##cnc = I[2]; T& I##nnc = I[3]; \
|
|
T& I##ccn = I[4]; T& I##ncn = I[5]; \
|
|
T& I##cnn = I[6]; T& I##nnn = I[7]; \
|
|
I##ccc = I##ncc = \
|
|
I##cnc = I##nnc = \
|
|
I##ccn = I##ncn = \
|
|
I##cnn = I##nnn = 0
|
|
|
|
#define CImg_3x3x3(I,T) T I[27]; \
|
|
T& I##ppp = I[0]; T& I##cpp = I[1]; T& I##npp = I[2]; \
|
|
T& I##pcp = I[3]; T& I##ccp = I[4]; T& I##ncp = I[5]; \
|
|
T& I##pnp = I[6]; T& I##cnp = I[7]; T& I##nnp = I[8]; \
|
|
T& I##ppc = I[9]; T& I##cpc = I[10]; T& I##npc = I[11]; \
|
|
T& I##pcc = I[12]; T& I##ccc = I[13]; T& I##ncc = I[14]; \
|
|
T& I##pnc = I[15]; T& I##cnc = I[16]; T& I##nnc = I[17]; \
|
|
T& I##ppn = I[18]; T& I##cpn = I[19]; T& I##npn = I[20]; \
|
|
T& I##pcn = I[21]; T& I##ccn = I[22]; T& I##ncn = I[23]; \
|
|
T& I##pnn = I[24]; T& I##cnn = I[25]; T& I##nnn = I[26]; \
|
|
I##ppp = I##cpp = I##npp = \
|
|
I##pcp = I##ccp = I##ncp = \
|
|
I##pnp = I##cnp = I##nnp = \
|
|
I##ppc = I##cpc = I##npc = \
|
|
I##pcc = I##ccc = I##ncc = \
|
|
I##pnc = I##cnc = I##nnc = \
|
|
I##ppn = I##cpn = I##npn = \
|
|
I##pcn = I##ccn = I##ncn = \
|
|
I##pnn = I##cnn = I##nnn = 0
|
|
|
|
#define cimg_def2x2(img,x,y) \
|
|
int _n1##x = x<(img).width() - 1?x + 1:(img).width() - 1, \
|
|
_n1##y = y<(img).height() - 1?y + 1:(img).height() - 1
|
|
|
|
#define cimg_def3x3(img,x,y) \
|
|
cimg_def2x2(img,x,y); \
|
|
int _p1##x = x>1?x - 1:0, \
|
|
_p1##y = y>1?y - 1:0
|
|
|
|
#define cimg_def4x4(img,x,y) \
|
|
cimg_def3x3(img,x,y); \
|
|
int _n2##x = x<(img).width() - 2?x + 2:(img).width() - 1, \
|
|
_n2##y = y<(img).height() - 2?y + 2:(img).height() - 1
|
|
|
|
#define cimg_def5x5(img,x,y) \
|
|
cimg_def4x4(img,x,y); \
|
|
int _p2##x = x>2?x - 2:0, \
|
|
_p2##y = y>2?y - 2:0
|
|
|
|
#define cimg_def6x6(img,x,y) \
|
|
cimg_def5x5(img,x,y); \
|
|
int _n3##x = x<(img).width() - 3?x + 3:(img).width() - 1, \
|
|
_n3##y = y<(img).height() - 3?y + 3:(img).height() - 1
|
|
|
|
#define cimg_def7x7(img,x,y) \
|
|
cimg_def6x6(img,x,y); \
|
|
int _p3##x = x>3?x - 3:0, \
|
|
_p3##y = y>3?y - 3:0
|
|
|
|
#define cimg_def8x8(img,x,y) \
|
|
cimg_def7x7(img,x,y); \
|
|
int _n4##x = x<(img).width() - 4?x + 4:(img).width() - 1, \
|
|
_n4##y = y<(img).height() - 4?y + 4:(img).height() - 1
|
|
|
|
#define cimg_def9x9(img,x,y) \
|
|
cimg_def8x8(img,x,y); \
|
|
int _p4##x = x>4?x - 4:0, \
|
|
_p4##y = y>4?y - 4:0
|
|
|
|
#define cimg_def2x2x2(img,x,y,z) \
|
|
cimg_def2x2(img,x,y); \
|
|
int _n1##z = z<(img).depth() - 1?z + 1:(img).depth() - 1
|
|
|
|
#define cimg_def3x3x3(img,x,y,z) \
|
|
cimg_def2x2x2(img,x,y,z); \
|
|
int _p1##x = x>1?x - 1:0, \
|
|
_p1##y = y>1?y - 1:0, \
|
|
_p1##z = z>1?z - 1:0
|
|
|
|
#define cimg_get2x2(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(x,y,z,c), I[1] = (T)(img)(_n1##x,y,z,c), I[2] = (T)(img)(x,_n1##y,z,c), \
|
|
I[3] = (T)(img)(_n1##x,_n1##y,z,c)
|
|
|
|
#define cimg_get3x3(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p1##x,_p1##y,z,c), I[1] = (T)(img)(x,_p1##y,z,c), I[2] = (T)(img)(_n1##x,_p1##y,z,c), \
|
|
I[3] = (T)(img)(_p1##x,y,z,c), I[4] = (T)(img)(x,y,z,c), I[5] = (T)(img)(_n1##x,y,z,c), \
|
|
I[6] = (T)(img)(_p1##x,_n1##y,z,c), I[7] = (T)(img)(x,_n1##y,z,c), I[8] = (T)(img)(_n1##x,_n1##y,z,c)
|
|
|
|
#define cimg_get4x4(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p1##x,_p1##y,z,c), I[1] = (T)(img)(x,_p1##y,z,c), I[2] = (T)(img)(_n1##x,_p1##y,z,c), \
|
|
I[3] = (T)(img)(_n2##x,_p1##y,z,c), I[4] = (T)(img)(_p1##x,y,z,c), I[5] = (T)(img)(x,y,z,c), \
|
|
I[6] = (T)(img)(_n1##x,y,z,c), I[7] = (T)(img)(_n2##x,y,z,c), I[8] = (T)(img)(_p1##x,_n1##y,z,c), \
|
|
I[9] = (T)(img)(x,_n1##y,z,c), I[10] = (T)(img)(_n1##x,_n1##y,z,c), I[11] = (T)(img)(_n2##x,_n1##y,z,c), \
|
|
I[12] = (T)(img)(_p1##x,_n2##y,z,c), I[13] = (T)(img)(x,_n2##y,z,c), I[14] = (T)(img)(_n1##x,_n2##y,z,c), \
|
|
I[15] = (T)(img)(_n2##x,_n2##y,z,c)
|
|
|
|
#define cimg_get5x5(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p2##x,_p2##y,z,c), I[1] = (T)(img)(_p1##x,_p2##y,z,c), I[2] = (T)(img)(x,_p2##y,z,c), \
|
|
I[3] = (T)(img)(_n1##x,_p2##y,z,c), I[4] = (T)(img)(_n2##x,_p2##y,z,c), I[5] = (T)(img)(_p2##x,_p1##y,z,c), \
|
|
I[6] = (T)(img)(_p1##x,_p1##y,z,c), I[7] = (T)(img)(x,_p1##y,z,c), I[8] = (T)(img)(_n1##x,_p1##y,z,c), \
|
|
I[9] = (T)(img)(_n2##x,_p1##y,z,c), I[10] = (T)(img)(_p2##x,y,z,c), I[11] = (T)(img)(_p1##x,y,z,c), \
|
|
I[12] = (T)(img)(x,y,z,c), I[13] = (T)(img)(_n1##x,y,z,c), I[14] = (T)(img)(_n2##x,y,z,c), \
|
|
I[15] = (T)(img)(_p2##x,_n1##y,z,c), I[16] = (T)(img)(_p1##x,_n1##y,z,c), I[17] = (T)(img)(x,_n1##y,z,c), \
|
|
I[18] = (T)(img)(_n1##x,_n1##y,z,c), I[19] = (T)(img)(_n2##x,_n1##y,z,c), I[20] = (T)(img)(_p2##x,_n2##y,z,c), \
|
|
I[21] = (T)(img)(_p1##x,_n2##y,z,c), I[22] = (T)(img)(x,_n2##y,z,c), I[23] = (T)(img)(_n1##x,_n2##y,z,c), \
|
|
I[24] = (T)(img)(_n2##x,_n2##y,z,c)
|
|
|
|
#define cimg_get6x6(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p2##x,_p2##y,z,c), I[1] = (T)(img)(_p1##x,_p2##y,z,c), I[2] = (T)(img)(x,_p2##y,z,c), \
|
|
I[3] = (T)(img)(_n1##x,_p2##y,z,c), I[4] = (T)(img)(_n2##x,_p2##y,z,c), I[5] = (T)(img)(_n3##x,_p2##y,z,c), \
|
|
I[6] = (T)(img)(_p2##x,_p1##y,z,c), I[7] = (T)(img)(_p1##x,_p1##y,z,c), I[8] = (T)(img)(x,_p1##y,z,c), \
|
|
I[9] = (T)(img)(_n1##x,_p1##y,z,c), I[10] = (T)(img)(_n2##x,_p1##y,z,c), I[11] = (T)(img)(_n3##x,_p1##y,z,c), \
|
|
I[12] = (T)(img)(_p2##x,y,z,c), I[13] = (T)(img)(_p1##x,y,z,c), I[14] = (T)(img)(x,y,z,c), \
|
|
I[15] = (T)(img)(_n1##x,y,z,c), I[16] = (T)(img)(_n2##x,y,z,c), I[17] = (T)(img)(_n3##x,y,z,c), \
|
|
I[18] = (T)(img)(_p2##x,_n1##y,z,c), I[19] = (T)(img)(_p1##x,_n1##y,z,c), I[20] = (T)(img)(x,_n1##y,z,c), \
|
|
I[21] = (T)(img)(_n1##x,_n1##y,z,c), I[22] = (T)(img)(_n2##x,_n1##y,z,c), I[23] = (T)(img)(_n3##x,_n1##y,z,c), \
|
|
I[24] = (T)(img)(_p2##x,_n2##y,z,c), I[25] = (T)(img)(_p1##x,_n2##y,z,c), I[26] = (T)(img)(x,_n2##y,z,c), \
|
|
I[27] = (T)(img)(_n1##x,_n2##y,z,c), I[28] = (T)(img)(_n2##x,_n2##y,z,c), I[29] = (T)(img)(_n3##x,_n2##y,z,c), \
|
|
I[30] = (T)(img)(_p2##x,_n3##y,z,c), I[31] = (T)(img)(_p1##x,_n3##y,z,c), I[32] = (T)(img)(x,_n3##y,z,c), \
|
|
I[33] = (T)(img)(_n1##x,_n3##y,z,c), I[34] = (T)(img)(_n2##x,_n3##y,z,c), I[35] = (T)(img)(_n3##x,_n3##y,z,c)
|
|
|
|
#define cimg_get7x7(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p3##x,_p3##y,z,c), I[1] = (T)(img)(_p2##x,_p3##y,z,c), I[2] = (T)(img)(_p1##x,_p3##y,z,c), \
|
|
I[3] = (T)(img)(x,_p3##y,z,c), I[4] = (T)(img)(_n1##x,_p3##y,z,c), I[5] = (T)(img)(_n2##x,_p3##y,z,c), \
|
|
I[6] = (T)(img)(_n3##x,_p3##y,z,c), I[7] = (T)(img)(_p3##x,_p2##y,z,c), I[8] = (T)(img)(_p2##x,_p2##y,z,c), \
|
|
I[9] = (T)(img)(_p1##x,_p2##y,z,c), I[10] = (T)(img)(x,_p2##y,z,c), I[11] = (T)(img)(_n1##x,_p2##y,z,c), \
|
|
I[12] = (T)(img)(_n2##x,_p2##y,z,c), I[13] = (T)(img)(_n3##x,_p2##y,z,c), I[14] = (T)(img)(_p3##x,_p1##y,z,c), \
|
|
I[15] = (T)(img)(_p2##x,_p1##y,z,c), I[16] = (T)(img)(_p1##x,_p1##y,z,c), I[17] = (T)(img)(x,_p1##y,z,c), \
|
|
I[18] = (T)(img)(_n1##x,_p1##y,z,c), I[19] = (T)(img)(_n2##x,_p1##y,z,c), I[20] = (T)(img)(_n3##x,_p1##y,z,c), \
|
|
I[21] = (T)(img)(_p3##x,y,z,c), I[22] = (T)(img)(_p2##x,y,z,c), I[23] = (T)(img)(_p1##x,y,z,c), \
|
|
I[24] = (T)(img)(x,y,z,c), I[25] = (T)(img)(_n1##x,y,z,c), I[26] = (T)(img)(_n2##x,y,z,c), \
|
|
I[27] = (T)(img)(_n3##x,y,z,c), I[28] = (T)(img)(_p3##x,_n1##y,z,c), I[29] = (T)(img)(_p2##x,_n1##y,z,c), \
|
|
I[30] = (T)(img)(_p1##x,_n1##y,z,c), I[31] = (T)(img)(x,_n1##y,z,c), I[32] = (T)(img)(_n1##x,_n1##y,z,c), \
|
|
I[33] = (T)(img)(_n2##x,_n1##y,z,c), I[34] = (T)(img)(_n3##x,_n1##y,z,c), I[35] = (T)(img)(_p3##x,_n2##y,z,c), \
|
|
I[36] = (T)(img)(_p2##x,_n2##y,z,c), I[37] = (T)(img)(_p1##x,_n2##y,z,c), I[38] = (T)(img)(x,_n2##y,z,c), \
|
|
I[39] = (T)(img)(_n1##x,_n2##y,z,c), I[40] = (T)(img)(_n2##x,_n2##y,z,c), I[41] = (T)(img)(_n3##x,_n2##y,z,c), \
|
|
I[42] = (T)(img)(_p3##x,_n3##y,z,c), I[43] = (T)(img)(_p2##x,_n3##y,z,c), I[44] = (T)(img)(_p1##x,_n3##y,z,c), \
|
|
I[45] = (T)(img)(x,_n3##y,z,c), I[46] = (T)(img)(_n1##x,_n3##y,z,c), I[47] = (T)(img)(_n2##x,_n3##y,z,c), \
|
|
I[48] = (T)(img)(_n3##x,_n3##y,z,c)
|
|
|
|
#define cimg_get8x8(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p3##x,_p3##y,z,c), I[1] = (T)(img)(_p2##x,_p3##y,z,c), I[2] = (T)(img)(_p1##x,_p3##y,z,c), \
|
|
I[3] = (T)(img)(x,_p3##y,z,c), I[4] = (T)(img)(_n1##x,_p3##y,z,c), I[5] = (T)(img)(_n2##x,_p3##y,z,c), \
|
|
I[6] = (T)(img)(_n3##x,_p3##y,z,c), I[7] = (T)(img)(_n4##x,_p3##y,z,c), I[8] = (T)(img)(_p3##x,_p2##y,z,c), \
|
|
I[9] = (T)(img)(_p2##x,_p2##y,z,c), I[10] = (T)(img)(_p1##x,_p2##y,z,c), I[11] = (T)(img)(x,_p2##y,z,c), \
|
|
I[12] = (T)(img)(_n1##x,_p2##y,z,c), I[13] = (T)(img)(_n2##x,_p2##y,z,c), I[14] = (T)(img)(_n3##x,_p2##y,z,c), \
|
|
I[15] = (T)(img)(_n4##x,_p2##y,z,c), I[16] = (T)(img)(_p3##x,_p1##y,z,c), I[17] = (T)(img)(_p2##x,_p1##y,z,c), \
|
|
I[18] = (T)(img)(_p1##x,_p1##y,z,c), I[19] = (T)(img)(x,_p1##y,z,c), I[20] = (T)(img)(_n1##x,_p1##y,z,c), \
|
|
I[21] = (T)(img)(_n2##x,_p1##y,z,c), I[22] = (T)(img)(_n3##x,_p1##y,z,c), I[23] = (T)(img)(_n4##x,_p1##y,z,c), \
|
|
I[24] = (T)(img)(_p3##x,y,z,c), I[25] = (T)(img)(_p2##x,y,z,c), I[26] = (T)(img)(_p1##x,y,z,c), \
|
|
I[27] = (T)(img)(x,y,z,c), I[28] = (T)(img)(_n1##x,y,z,c), I[29] = (T)(img)(_n2##x,y,z,c), \
|
|
I[30] = (T)(img)(_n3##x,y,z,c), I[31] = (T)(img)(_n4##x,y,z,c), I[32] = (T)(img)(_p3##x,_n1##y,z,c), \
|
|
I[33] = (T)(img)(_p2##x,_n1##y,z,c), I[34] = (T)(img)(_p1##x,_n1##y,z,c), I[35] = (T)(img)(x,_n1##y,z,c), \
|
|
I[36] = (T)(img)(_n1##x,_n1##y,z,c), I[37] = (T)(img)(_n2##x,_n1##y,z,c), I[38] = (T)(img)(_n3##x,_n1##y,z,c), \
|
|
I[39] = (T)(img)(_n4##x,_n1##y,z,c), I[40] = (T)(img)(_p3##x,_n2##y,z,c), I[41] = (T)(img)(_p2##x,_n2##y,z,c), \
|
|
I[42] = (T)(img)(_p1##x,_n2##y,z,c), I[43] = (T)(img)(x,_n2##y,z,c), I[44] = (T)(img)(_n1##x,_n2##y,z,c), \
|
|
I[45] = (T)(img)(_n2##x,_n2##y,z,c), I[46] = (T)(img)(_n3##x,_n2##y,z,c), I[47] = (T)(img)(_n4##x,_n2##y,z,c), \
|
|
I[48] = (T)(img)(_p3##x,_n3##y,z,c), I[49] = (T)(img)(_p2##x,_n3##y,z,c), I[50] = (T)(img)(_p1##x,_n3##y,z,c), \
|
|
I[51] = (T)(img)(x,_n3##y,z,c), I[52] = (T)(img)(_n1##x,_n3##y,z,c), I[53] = (T)(img)(_n2##x,_n3##y,z,c), \
|
|
I[54] = (T)(img)(_n3##x,_n3##y,z,c), I[55] = (T)(img)(_n4##x,_n3##y,z,c), I[56] = (T)(img)(_p3##x,_n4##y,z,c), \
|
|
I[57] = (T)(img)(_p2##x,_n4##y,z,c), I[58] = (T)(img)(_p1##x,_n4##y,z,c), I[59] = (T)(img)(x,_n4##y,z,c), \
|
|
I[60] = (T)(img)(_n1##x,_n4##y,z,c), I[61] = (T)(img)(_n2##x,_n4##y,z,c), I[62] = (T)(img)(_n3##x,_n4##y,z,c), \
|
|
I[63] = (T)(img)(_n4##x,_n4##y,z,c);
|
|
|
|
#define cimg_get9x9(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p4##x,_p4##y,z,c), I[1] = (T)(img)(_p3##x,_p4##y,z,c), I[2] = (T)(img)(_p2##x,_p4##y,z,c), \
|
|
I[3] = (T)(img)(_p1##x,_p4##y,z,c), I[4] = (T)(img)(x,_p4##y,z,c), I[5] = (T)(img)(_n1##x,_p4##y,z,c), \
|
|
I[6] = (T)(img)(_n2##x,_p4##y,z,c), I[7] = (T)(img)(_n3##x,_p4##y,z,c), I[8] = (T)(img)(_n4##x,_p4##y,z,c), \
|
|
I[9] = (T)(img)(_p4##x,_p3##y,z,c), I[10] = (T)(img)(_p3##x,_p3##y,z,c), I[11] = (T)(img)(_p2##x,_p3##y,z,c), \
|
|
I[12] = (T)(img)(_p1##x,_p3##y,z,c), I[13] = (T)(img)(x,_p3##y,z,c), I[14] = (T)(img)(_n1##x,_p3##y,z,c), \
|
|
I[15] = (T)(img)(_n2##x,_p3##y,z,c), I[16] = (T)(img)(_n3##x,_p3##y,z,c), I[17] = (T)(img)(_n4##x,_p3##y,z,c), \
|
|
I[18] = (T)(img)(_p4##x,_p2##y,z,c), I[19] = (T)(img)(_p3##x,_p2##y,z,c), I[20] = (T)(img)(_p2##x,_p2##y,z,c), \
|
|
I[21] = (T)(img)(_p1##x,_p2##y,z,c), I[22] = (T)(img)(x,_p2##y,z,c), I[23] = (T)(img)(_n1##x,_p2##y,z,c), \
|
|
I[24] = (T)(img)(_n2##x,_p2##y,z,c), I[25] = (T)(img)(_n3##x,_p2##y,z,c), I[26] = (T)(img)(_n4##x,_p2##y,z,c), \
|
|
I[27] = (T)(img)(_p4##x,_p1##y,z,c), I[28] = (T)(img)(_p3##x,_p1##y,z,c), I[29] = (T)(img)(_p2##x,_p1##y,z,c), \
|
|
I[30] = (T)(img)(_p1##x,_p1##y,z,c), I[31] = (T)(img)(x,_p1##y,z,c), I[32] = (T)(img)(_n1##x,_p1##y,z,c), \
|
|
I[33] = (T)(img)(_n2##x,_p1##y,z,c), I[34] = (T)(img)(_n3##x,_p1##y,z,c), I[35] = (T)(img)(_n4##x,_p1##y,z,c), \
|
|
I[36] = (T)(img)(_p4##x,y,z,c), I[37] = (T)(img)(_p3##x,y,z,c), I[38] = (T)(img)(_p2##x,y,z,c), \
|
|
I[39] = (T)(img)(_p1##x,y,z,c), I[40] = (T)(img)(x,y,z,c), I[41] = (T)(img)(_n1##x,y,z,c), \
|
|
I[42] = (T)(img)(_n2##x,y,z,c), I[43] = (T)(img)(_n3##x,y,z,c), I[44] = (T)(img)(_n4##x,y,z,c), \
|
|
I[45] = (T)(img)(_p4##x,_n1##y,z,c), I[46] = (T)(img)(_p3##x,_n1##y,z,c), I[47] = (T)(img)(_p2##x,_n1##y,z,c), \
|
|
I[48] = (T)(img)(_p1##x,_n1##y,z,c), I[49] = (T)(img)(x,_n1##y,z,c), I[50] = (T)(img)(_n1##x,_n1##y,z,c), \
|
|
I[51] = (T)(img)(_n2##x,_n1##y,z,c), I[52] = (T)(img)(_n3##x,_n1##y,z,c), I[53] = (T)(img)(_n4##x,_n1##y,z,c), \
|
|
I[54] = (T)(img)(_p4##x,_n2##y,z,c), I[55] = (T)(img)(_p3##x,_n2##y,z,c), I[56] = (T)(img)(_p2##x,_n2##y,z,c), \
|
|
I[57] = (T)(img)(_p1##x,_n2##y,z,c), I[58] = (T)(img)(x,_n2##y,z,c), I[59] = (T)(img)(_n1##x,_n2##y,z,c), \
|
|
I[60] = (T)(img)(_n2##x,_n2##y,z,c), I[61] = (T)(img)(_n3##x,_n2##y,z,c), I[62] = (T)(img)(_n4##x,_n2##y,z,c), \
|
|
I[63] = (T)(img)(_p4##x,_n3##y,z,c), I[64] = (T)(img)(_p3##x,_n3##y,z,c), I[65] = (T)(img)(_p2##x,_n3##y,z,c), \
|
|
I[66] = (T)(img)(_p1##x,_n3##y,z,c), I[67] = (T)(img)(x,_n3##y,z,c), I[68] = (T)(img)(_n1##x,_n3##y,z,c), \
|
|
I[69] = (T)(img)(_n2##x,_n3##y,z,c), I[70] = (T)(img)(_n3##x,_n3##y,z,c), I[71] = (T)(img)(_n4##x,_n3##y,z,c), \
|
|
I[72] = (T)(img)(_p4##x,_n4##y,z,c), I[73] = (T)(img)(_p3##x,_n4##y,z,c), I[74] = (T)(img)(_p2##x,_n4##y,z,c), \
|
|
I[75] = (T)(img)(_p1##x,_n4##y,z,c), I[76] = (T)(img)(x,_n4##y,z,c), I[77] = (T)(img)(_n1##x,_n4##y,z,c), \
|
|
I[78] = (T)(img)(_n2##x,_n4##y,z,c), I[79] = (T)(img)(_n3##x,_n4##y,z,c), I[80] = (T)(img)(_n4##x,_n4##y,z,c)
|
|
|
|
#define cimg_get2x2x2(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(x,y,z,c), I[1] = (T)(img)(_n1##x,y,z,c), I[2] = (T)(img)(x,_n1##y,z,c), \
|
|
I[3] = (T)(img)(_n1##x,_n1##y,z,c), I[4] = (T)(img)(x,y,_n1##z,c), I[5] = (T)(img)(_n1##x,y,_n1##z,c), \
|
|
I[6] = (T)(img)(x,_n1##y,_n1##z,c), I[7] = (T)(img)(_n1##x,_n1##y,_n1##z,c)
|
|
|
|
#define cimg_get3x3x3(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p1##x,_p1##y,_p1##z,c), I[1] = (T)(img)(x,_p1##y,_p1##z,c), \
|
|
I[2] = (T)(img)(_n1##x,_p1##y,_p1##z,c), I[3] = (T)(img)(_p1##x,y,_p1##z,c), I[4] = (T)(img)(x,y,_p1##z,c), \
|
|
I[5] = (T)(img)(_n1##x,y,_p1##z,c), I[6] = (T)(img)(_p1##x,_n1##y,_p1##z,c), I[7] = (T)(img)(x,_n1##y,_p1##z,c), \
|
|
I[8] = (T)(img)(_n1##x,_n1##y,_p1##z,c), I[9] = (T)(img)(_p1##x,_p1##y,z,c), I[10] = (T)(img)(x,_p1##y,z,c), \
|
|
I[11] = (T)(img)(_n1##x,_p1##y,z,c), I[12] = (T)(img)(_p1##x,y,z,c), I[13] = (T)(img)(x,y,z,c), \
|
|
I[14] = (T)(img)(_n1##x,y,z,c), I[15] = (T)(img)(_p1##x,_n1##y,z,c), I[16] = (T)(img)(x,_n1##y,z,c), \
|
|
I[17] = (T)(img)(_n1##x,_n1##y,z,c), I[18] = (T)(img)(_p1##x,_p1##y,_n1##z,c), I[19] = (T)(img)(x,_p1##y,_n1##z,c), \
|
|
I[20] = (T)(img)(_n1##x,_p1##y,_n1##z,c), I[21] = (T)(img)(_p1##x,y,_n1##z,c), I[22] = (T)(img)(x,y,_n1##z,c), \
|
|
I[23] = (T)(img)(_n1##x,y,_n1##z,c), I[24] = (T)(img)(_p1##x,_n1##y,_n1##z,c), I[25] = (T)(img)(x,_n1##y,_n1##z,c), \
|
|
I[26] = (T)(img)(_n1##x,_n1##y,_n1##z,c)
|
|
|
|
// Macros to perform various image loops.
|
|
//
|
|
// These macros are simpler to use than loops with C++ iterators.
|
|
#define cimg_for(img,ptrs,T_ptrs) \
|
|
for (T_ptrs *ptrs = (img)._data, *_max##ptrs = (img)._data + (img).size(); ptrs<_max##ptrs; ++ptrs)
|
|
#define cimg_rof(img,ptrs,T_ptrs) for (T_ptrs *ptrs = (img)._data + (img).size() - 1; ptrs>=(img)._data; --ptrs)
|
|
#define cimg_foroff(img,off) for (cimg_ulong off = 0, _max##off = (img).size(); off<_max##off; ++off)
|
|
#define cimg_rofoff(img,off) for (cimg_long off = (cimg_long)((img).size() - 1); off>=0; --off)
|
|
|
|
#define cimg_for1(bound,i) for (int i = 0; i<(int)(bound); ++i)
|
|
#define cimg_forX(img,x) cimg_for1((img)._width,x)
|
|
#define cimg_forY(img,y) cimg_for1((img)._height,y)
|
|
#define cimg_forZ(img,z) cimg_for1((img)._depth,z)
|
|
#define cimg_forC(img,c) cimg_for1((img)._spectrum,c)
|
|
#define cimg_forXY(img,x,y) cimg_forY(img,y) cimg_forX(img,x)
|
|
#define cimg_forXZ(img,x,z) cimg_forZ(img,z) cimg_forX(img,x)
|
|
#define cimg_forYZ(img,y,z) cimg_forZ(img,z) cimg_forY(img,y)
|
|
#define cimg_forXC(img,x,c) cimg_forC(img,c) cimg_forX(img,x)
|
|
#define cimg_forYC(img,y,c) cimg_forC(img,c) cimg_forY(img,y)
|
|
#define cimg_forZC(img,z,c) cimg_forC(img,c) cimg_forZ(img,z)
|
|
#define cimg_forXYZ(img,x,y,z) cimg_forZ(img,z) cimg_forXY(img,x,y)
|
|
#define cimg_forXYC(img,x,y,c) cimg_forC(img,c) cimg_forXY(img,x,y)
|
|
#define cimg_forXZC(img,x,z,c) cimg_forC(img,c) cimg_forXZ(img,x,z)
|
|
#define cimg_forYZC(img,y,z,c) cimg_forC(img,c) cimg_forYZ(img,y,z)
|
|
#define cimg_forXYZC(img,x,y,z,c) cimg_forC(img,c) cimg_forXYZ(img,x,y,z)
|
|
|
|
#define cimg_rof1(bound,i) for (int i = (int)(bound) - 1; i>=0; --i)
|
|
#define cimg_rofX(img,x) cimg_rof1((img)._width,x)
|
|
#define cimg_rofY(img,y) cimg_rof1((img)._height,y)
|
|
#define cimg_rofZ(img,z) cimg_rof1((img)._depth,z)
|
|
#define cimg_rofC(img,c) cimg_rof1((img)._spectrum,c)
|
|
#define cimg_rofXY(img,x,y) cimg_rofY(img,y) cimg_rofX(img,x)
|
|
#define cimg_rofXZ(img,x,z) cimg_rofZ(img,z) cimg_rofX(img,x)
|
|
#define cimg_rofYZ(img,y,z) cimg_rofZ(img,z) cimg_rofY(img,y)
|
|
#define cimg_rofXC(img,x,c) cimg_rofC(img,c) cimg_rofX(img,x)
|
|
#define cimg_rofYC(img,y,c) cimg_rofC(img,c) cimg_rofY(img,y)
|
|
#define cimg_rofZC(img,z,c) cimg_rofC(img,c) cimg_rofZ(img,z)
|
|
#define cimg_rofXYZ(img,x,y,z) cimg_rofZ(img,z) cimg_rofXY(img,x,y)
|
|
#define cimg_rofXYC(img,x,y,c) cimg_rofC(img,c) cimg_rofXY(img,x,y)
|
|
#define cimg_rofXZC(img,x,z,c) cimg_rofC(img,c) cimg_rofXZ(img,x,z)
|
|
#define cimg_rofYZC(img,y,z,c) cimg_rofC(img,c) cimg_rofYZ(img,y,z)
|
|
#define cimg_rofXYZC(img,x,y,z,c) cimg_rofC(img,c) cimg_rofXYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in1(bound,i0,i1,i) \
|
|
for (int i = (int)(i0)<0?0:(int)(i0), _max##i = (int)(i1)<(int)(bound)?(int)(i1):(int)(bound) - 1; i<=_max##i; ++i)
|
|
#define cimg_for_inX(img,x0,x1,x) cimg_for_in1((img)._width,x0,x1,x)
|
|
#define cimg_for_inY(img,y0,y1,y) cimg_for_in1((img)._height,y0,y1,y)
|
|
#define cimg_for_inZ(img,z0,z1,z) cimg_for_in1((img)._depth,z0,z1,z)
|
|
#define cimg_for_inC(img,c0,c1,c) cimg_for_in1((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_inXY(img,x0,y0,x1,y1,x,y) cimg_for_inY(img,y0,y1,y) cimg_for_inX(img,x0,x1,x)
|
|
#define cimg_for_inXZ(img,x0,z0,x1,z1,x,z) cimg_for_inZ(img,z0,z1,z) cimg_for_inX(img,x0,x1,x)
|
|
#define cimg_for_inXC(img,x0,c0,x1,c1,x,c) cimg_for_inC(img,c0,c1,c) cimg_for_inX(img,x0,x1,x)
|
|
#define cimg_for_inYZ(img,y0,z0,y1,z1,y,z) cimg_for_inZ(img,x0,z1,z) cimg_for_inY(img,y0,y1,y)
|
|
#define cimg_for_inYC(img,y0,c0,y1,c1,y,c) cimg_for_inC(img,c0,c1,c) cimg_for_inY(img,y0,y1,y)
|
|
#define cimg_for_inZC(img,z0,c0,z1,c1,z,c) cimg_for_inC(img,c0,c1,c) cimg_for_inZ(img,z0,z1,z)
|
|
#define cimg_for_inXYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_inZ(img,z0,z1,z) cimg_for_inXY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_inXYC(img,x0,y0,c0,x1,y1,c1,x,y,c) cimg_for_inC(img,c0,c1,c) cimg_for_inXY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_inXZC(img,x0,z0,c0,x1,z1,c1,x,z,c) cimg_for_inC(img,c0,c1,c) cimg_for_inXZ(img,x0,z0,x1,z1,x,z)
|
|
#define cimg_for_inYZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_inC(img,c0,c1,c) cimg_for_inYZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_inXYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \
|
|
cimg_for_inC(img,c0,c1,c) cimg_for_inXYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
#define cimg_for_insideX(img,x,n) cimg_for_inX(img,n,(img)._width - 1 - (n),x)
|
|
#define cimg_for_insideY(img,y,n) cimg_for_inY(img,n,(img)._height - 1 - (n),y)
|
|
#define cimg_for_insideZ(img,z,n) cimg_for_inZ(img,n,(img)._depth - 1 - (n),z)
|
|
#define cimg_for_insideC(img,c,n) cimg_for_inC(img,n,(img)._spectrum - 1 - (n),c)
|
|
#define cimg_for_insideXY(img,x,y,n) cimg_for_inXY(img,n,n,(img)._width - 1 - (n),(img)._height - 1 - (n),x,y)
|
|
#define cimg_for_insideXYZ(img,x,y,z,n) \
|
|
cimg_for_inXYZ(img,n,n,n,(img)._width - 1 - (n),(img)._height - 1 - (n),(img)._depth - 1 - (n),x,y,z)
|
|
#define cimg_for_insideXYZC(img,x,y,z,c,n) \
|
|
cimg_for_inXYZ(img,n,n,n,(img)._width - 1 - (n),(img)._height - 1 - (n),(img)._depth - 1 - (n),x,y,z)
|
|
|
|
#define cimg_for_out1(boundi,i0,i1,i) \
|
|
for (int i = (int)(i0)>0?0:(int)(i1) + 1; i<(int)(boundi); ++i, i = i==(int)(i0)?(int)(i1) + 1:i)
|
|
#define cimg_for_out2(boundi,boundj,i0,j0,i1,j1,i,j) \
|
|
for (int j = 0; j<(int)(boundj); ++j) \
|
|
for (int _n1j = (int)(j<(int)(j0) || j>(int)(j1)), i = _n1j?0:(int)(i0)>0?0:(int)(i1) + 1; i<(int)(boundi); \
|
|
++i, i = _n1j?i:(i==(int)(i0)?(int)(i1) + 1:i))
|
|
#define cimg_for_out3(boundi,boundj,boundk,i0,j0,k0,i1,j1,k1,i,j,k) \
|
|
for (int k = 0; k<(int)(boundk); ++k) \
|
|
for (int _n1k = (int)(k<(int)(k0) || k>(int)(k1)), j = 0; j<(int)(boundj); ++j) \
|
|
for (int _n1j = (int)(j<(int)(j0) || j>(int)(j1)), i = _n1j || _n1k?0:(int)(i0)>0?0:(int)(i1) + 1; i<(int)(boundi); \
|
|
++i, i = _n1j || _n1k?i:(i==(int)(i0)?(int)(i1) + 1:i))
|
|
#define cimg_for_out4(boundi,boundj,boundk,boundl,i0,j0,k0,l0,i1,j1,k1,l1,i,j,k,l) \
|
|
for (int l = 0; l<(int)(boundl); ++l) \
|
|
for (int _n1l = (int)(l<(int)(l0) || l>(int)(l1)), k = 0; k<(int)(boundk); ++k) \
|
|
for (int _n1k = (int)(k<(int)(k0) || k>(int)(k1)), j = 0; j<(int)(boundj); ++j) \
|
|
for (int _n1j = (int)(j<(int)(j0) || j>(int)(j1)), i = _n1j || _n1k || _n1l?0:(int)(i0)>0?0:(int)(i1) + 1; \
|
|
i<(int)(boundi); ++i, i = _n1j || _n1k || _n1l?i:(i==(int)(i0)?(int)(i1) + 1:i))
|
|
#define cimg_for_outX(img,x0,x1,x) cimg_for_out1((img)._width,x0,x1,x)
|
|
#define cimg_for_outY(img,y0,y1,y) cimg_for_out1((img)._height,y0,y1,y)
|
|
#define cimg_for_outZ(img,z0,z1,z) cimg_for_out1((img)._depth,z0,z1,z)
|
|
#define cimg_for_outC(img,c0,c1,c) cimg_for_out1((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_outXY(img,x0,y0,x1,y1,x,y) cimg_for_out2((img)._width,(img)._height,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_outXZ(img,x0,z0,x1,z1,x,z) cimg_for_out2((img)._width,(img)._depth,x0,z0,x1,z1,x,z)
|
|
#define cimg_for_outXC(img,x0,c0,x1,c1,x,c) cimg_for_out2((img)._width,(img)._spectrum,x0,c0,x1,c1,x,c)
|
|
#define cimg_for_outYZ(img,y0,z0,y1,z1,y,z) cimg_for_out2((img)._height,(img)._depth,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_outYC(img,y0,c0,y1,c1,y,c) cimg_for_out2((img)._height,(img)._spectrum,y0,c0,y1,c1,y,c)
|
|
#define cimg_for_outZC(img,z0,c0,z1,c1,z,c) cimg_for_out2((img)._depth,(img)._spectrum,z0,c0,z1,c1,z,c)
|
|
#define cimg_for_outXYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) \
|
|
cimg_for_out3((img)._width,(img)._height,(img)._depth,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
#define cimg_for_outXYC(img,x0,y0,c0,x1,y1,c1,x,y,c) \
|
|
cimg_for_out3((img)._width,(img)._height,(img)._spectrum,x0,y0,c0,x1,y1,c1,x,y,c)
|
|
#define cimg_for_outXZC(img,x0,z0,c0,x1,z1,c1,x,z,c) \
|
|
cimg_for_out3((img)._width,(img)._depth,(img)._spectrum,x0,z0,c0,x1,z1,c1,x,z,c)
|
|
#define cimg_for_outYZC(img,y0,z0,c0,y1,z1,c1,y,z,c) \
|
|
cimg_for_out3((img)._height,(img)._depth,(img)._spectrum,y0,z0,c0,y1,z1,c1,y,z,c)
|
|
#define cimg_for_outXYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \
|
|
cimg_for_out4((img)._width,(img)._height,(img)._depth,(img)._spectrum,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c)
|
|
#define cimg_for_borderX(img,x,n) cimg_for_outX(img,n,(img)._width - 1 - (n),x)
|
|
#define cimg_for_borderY(img,y,n) cimg_for_outY(img,n,(img)._height - 1 - (n),y)
|
|
#define cimg_for_borderZ(img,z,n) cimg_for_outZ(img,n,(img)._depth - 1 - (n),z)
|
|
#define cimg_for_borderC(img,c,n) cimg_for_outC(img,n,(img)._spectrum - 1 - (n),c)
|
|
#define cimg_for_borderXY(img,x,y,n) cimg_for_outXY(img,n,n,(img)._width - 1 - (n),(img)._height - 1 - (n),x,y)
|
|
#define cimg_for_borderXYZ(img,x,y,z,n) \
|
|
cimg_for_outXYZ(img,n,n,n,(img)._width - 1 - (n),(img)._height - 1 - (n),(img)._depth - 1 - (n),x,y,z)
|
|
#define cimg_for_borderXYZC(img,x,y,z,c,n) \
|
|
cimg_for_outXYZC(img,n,n,n,n,(img)._width - 1 - (n),(img)._height - 1 - (n), \
|
|
(img)._depth - 1 - (n),(img)._spectrum - 1 - (n),x,y,z,c)
|
|
|
|
#define cimg_for_spiralXY(img,x,y) \
|
|
for (int x = 0, y = 0, _n1##x = 1, _n1##y = (img).width()*(img).height(); _n1##y; \
|
|
--_n1##y, _n1##x+=(_n1##x>>2) - ((!(_n1##x&3)?--y:((_n1##x&3)==1?(img)._width - 1 - ++x:\
|
|
((_n1##x&3)==2?(img)._height - 1 - ++y:--x))))?0:1)
|
|
|
|
#define cimg_for_lineXY(x,y,x0,y0,x1,y1) \
|
|
for (int x = (int)(x0), y = (int)(y0), _sx = 1, _sy = 1, _steep = 0, \
|
|
_dx=(x1)>(x0)?(int)(x1) - (int)(x0):(_sx=-1,(int)(x0) - (int)(x1)), \
|
|
_dy=(y1)>(y0)?(int)(y1) - (int)(y0):(_sy=-1,(int)(y0) - (int)(y1)), \
|
|
_counter = _dx, \
|
|
_err = _dx>_dy?(_dy>>1):((_steep=1),(_counter=_dy),(_dx>>1)); \
|
|
_counter>=0; \
|
|
--_counter, x+=_steep? \
|
|
(y+=_sy,(_err-=_dx)<0?_err+=_dy,_sx:0): \
|
|
(y+=(_err-=_dy)<0?_err+=_dx,_sy:0,_sx))
|
|
|
|
#define cimg_for2(bound,i) \
|
|
for (int i = 0, _n1##i = 1>=(bound)?(int)(bound) - 1:1; \
|
|
_n1##i<(int)(bound) || i==--_n1##i; \
|
|
++i, ++_n1##i)
|
|
#define cimg_for2X(img,x) cimg_for2((img)._width,x)
|
|
#define cimg_for2Y(img,y) cimg_for2((img)._height,y)
|
|
#define cimg_for2Z(img,z) cimg_for2((img)._depth,z)
|
|
#define cimg_for2C(img,c) cimg_for2((img)._spectrum,c)
|
|
#define cimg_for2XY(img,x,y) cimg_for2Y(img,y) cimg_for2X(img,x)
|
|
#define cimg_for2XZ(img,x,z) cimg_for2Z(img,z) cimg_for2X(img,x)
|
|
#define cimg_for2XC(img,x,c) cimg_for2C(img,c) cimg_for2X(img,x)
|
|
#define cimg_for2YZ(img,y,z) cimg_for2Z(img,z) cimg_for2Y(img,y)
|
|
#define cimg_for2YC(img,y,c) cimg_for2C(img,c) cimg_for2Y(img,y)
|
|
#define cimg_for2ZC(img,z,c) cimg_for2C(img,c) cimg_for2Z(img,z)
|
|
#define cimg_for2XYZ(img,x,y,z) cimg_for2Z(img,z) cimg_for2XY(img,x,y)
|
|
#define cimg_for2XZC(img,x,z,c) cimg_for2C(img,c) cimg_for2XZ(img,x,z)
|
|
#define cimg_for2YZC(img,y,z,c) cimg_for2C(img,c) cimg_for2YZ(img,y,z)
|
|
#define cimg_for2XYZC(img,x,y,z,c) cimg_for2C(img,c) cimg_for2XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in2(bound,i0,i1,i) \
|
|
for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1; \
|
|
i<=(int)(i1) && (_n1##i<(int)(bound) || i==--_n1##i); \
|
|
++i, ++_n1##i)
|
|
#define cimg_for_in2X(img,x0,x1,x) cimg_for_in2((img)._width,x0,x1,x)
|
|
#define cimg_for_in2Y(img,y0,y1,y) cimg_for_in2((img)._height,y0,y1,y)
|
|
#define cimg_for_in2Z(img,z0,z1,z) cimg_for_in2((img)._depth,z0,z1,z)
|
|
#define cimg_for_in2C(img,c0,c1,c) cimg_for_in2((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in2XY(img,x0,y0,x1,y1,x,y) cimg_for_in2Y(img,y0,y1,y) cimg_for_in2X(img,x0,x1,x)
|
|
#define cimg_for_in2XZ(img,x0,z0,x1,z1,x,z) cimg_for_in2Z(img,z0,z1,z) cimg_for_in2X(img,x0,x1,x)
|
|
#define cimg_for_in2XC(img,x0,c0,x1,c1,x,c) cimg_for_in2C(img,c0,c1,c) cimg_for_in2X(img,x0,x1,x)
|
|
#define cimg_for_in2YZ(img,y0,z0,y1,z1,y,z) cimg_for_in2Z(img,z0,z1,z) cimg_for_in2Y(img,y0,y1,y)
|
|
#define cimg_for_in2YC(img,y0,c0,y1,c1,y,c) cimg_for_in2C(img,c0,c1,c) cimg_for_in2Y(img,y0,y1,y)
|
|
#define cimg_for_in2ZC(img,z0,c0,z1,c1,z,c) cimg_for_in2C(img,c0,c1,c) cimg_for_in2Z(img,z0,z1,z)
|
|
#define cimg_for_in2XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in2Z(img,z0,z1,z) cimg_for_in2XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in2XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in2C(img,c0,c1,c) cimg_for_in2XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in2YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in2C(img,c0,c1,c) cimg_for_in2YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in2XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \
|
|
cimg_for_in2C(img,c0,c1,c) cimg_for_in2XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for3(bound,i) \
|
|
for (int i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(bound)?(int)(bound) - 1:1; \
|
|
_n1##i<(int)(bound) || i==--_n1##i; \
|
|
_p1##i = i++, ++_n1##i)
|
|
#define cimg_for3X(img,x) cimg_for3((img)._width,x)
|
|
#define cimg_for3Y(img,y) cimg_for3((img)._height,y)
|
|
#define cimg_for3Z(img,z) cimg_for3((img)._depth,z)
|
|
#define cimg_for3C(img,c) cimg_for3((img)._spectrum,c)
|
|
#define cimg_for3XY(img,x,y) cimg_for3Y(img,y) cimg_for3X(img,x)
|
|
#define cimg_for3XZ(img,x,z) cimg_for3Z(img,z) cimg_for3X(img,x)
|
|
#define cimg_for3XC(img,x,c) cimg_for3C(img,c) cimg_for3X(img,x)
|
|
#define cimg_for3YZ(img,y,z) cimg_for3Z(img,z) cimg_for3Y(img,y)
|
|
#define cimg_for3YC(img,y,c) cimg_for3C(img,c) cimg_for3Y(img,y)
|
|
#define cimg_for3ZC(img,z,c) cimg_for3C(img,c) cimg_for3Z(img,z)
|
|
#define cimg_for3XYZ(img,x,y,z) cimg_for3Z(img,z) cimg_for3XY(img,x,y)
|
|
#define cimg_for3XZC(img,x,z,c) cimg_for3C(img,c) cimg_for3XZ(img,x,z)
|
|
#define cimg_for3YZC(img,y,z,c) cimg_for3C(img,c) cimg_for3YZ(img,y,z)
|
|
#define cimg_for3XYZC(img,x,y,z,c) cimg_for3C(img,c) cimg_for3XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in3(bound,i0,i1,i) \
|
|
for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1; \
|
|
i<=(int)(i1) && (_n1##i<(int)(bound) || i==--_n1##i); \
|
|
_p1##i = i++, ++_n1##i)
|
|
#define cimg_for_in3X(img,x0,x1,x) cimg_for_in3((img)._width,x0,x1,x)
|
|
#define cimg_for_in3Y(img,y0,y1,y) cimg_for_in3((img)._height,y0,y1,y)
|
|
#define cimg_for_in3Z(img,z0,z1,z) cimg_for_in3((img)._depth,z0,z1,z)
|
|
#define cimg_for_in3C(img,c0,c1,c) cimg_for_in3((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in3XY(img,x0,y0,x1,y1,x,y) cimg_for_in3Y(img,y0,y1,y) cimg_for_in3X(img,x0,x1,x)
|
|
#define cimg_for_in3XZ(img,x0,z0,x1,z1,x,z) cimg_for_in3Z(img,z0,z1,z) cimg_for_in3X(img,x0,x1,x)
|
|
#define cimg_for_in3XC(img,x0,c0,x1,c1,x,c) cimg_for_in3C(img,c0,c1,c) cimg_for_in3X(img,x0,x1,x)
|
|
#define cimg_for_in3YZ(img,y0,z0,y1,z1,y,z) cimg_for_in3Z(img,z0,z1,z) cimg_for_in3Y(img,y0,y1,y)
|
|
#define cimg_for_in3YC(img,y0,c0,y1,c1,y,c) cimg_for_in3C(img,c0,c1,c) cimg_for_in3Y(img,y0,y1,y)
|
|
#define cimg_for_in3ZC(img,z0,c0,z1,c1,z,c) cimg_for_in3C(img,c0,c1,c) cimg_for_in3Z(img,z0,z1,z)
|
|
#define cimg_for_in3XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in3Z(img,z0,z1,z) cimg_for_in3XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in3XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in3C(img,c0,c1,c) cimg_for_in3XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in3YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in3C(img,c0,c1,c) cimg_for_in3YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in3XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \
|
|
cimg_for_in3C(img,c0,c1,c) cimg_for_in3XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for4(bound,i) \
|
|
for (int i = 0, _p1##i = 0, _n1##i = 1>=(bound)?(int)(bound) - 1:1, \
|
|
_n2##i = 2>=(bound)?(int)(bound) - 1:2; \
|
|
_n2##i<(int)(bound) || _n1##i==--_n2##i || i==(_n2##i = --_n1##i); \
|
|
_p1##i = i++, ++_n1##i, ++_n2##i)
|
|
#define cimg_for4X(img,x) cimg_for4((img)._width,x)
|
|
#define cimg_for4Y(img,y) cimg_for4((img)._height,y)
|
|
#define cimg_for4Z(img,z) cimg_for4((img)._depth,z)
|
|
#define cimg_for4C(img,c) cimg_for4((img)._spectrum,c)
|
|
#define cimg_for4XY(img,x,y) cimg_for4Y(img,y) cimg_for4X(img,x)
|
|
#define cimg_for4XZ(img,x,z) cimg_for4Z(img,z) cimg_for4X(img,x)
|
|
#define cimg_for4XC(img,x,c) cimg_for4C(img,c) cimg_for4X(img,x)
|
|
#define cimg_for4YZ(img,y,z) cimg_for4Z(img,z) cimg_for4Y(img,y)
|
|
#define cimg_for4YC(img,y,c) cimg_for4C(img,c) cimg_for4Y(img,y)
|
|
#define cimg_for4ZC(img,z,c) cimg_for4C(img,c) cimg_for4Z(img,z)
|
|
#define cimg_for4XYZ(img,x,y,z) cimg_for4Z(img,z) cimg_for4XY(img,x,y)
|
|
#define cimg_for4XZC(img,x,z,c) cimg_for4C(img,c) cimg_for4XZ(img,x,z)
|
|
#define cimg_for4YZC(img,y,z,c) cimg_for4C(img,c) cimg_for4YZ(img,y,z)
|
|
#define cimg_for4XYZC(img,x,y,z,c) cimg_for4C(img,c) cimg_for4XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in4(bound,i0,i1,i) \
|
|
for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
|
|
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2; \
|
|
i<=(int)(i1) && (_n2##i<(int)(bound) || _n1##i==--_n2##i || i==(_n2##i = --_n1##i)); \
|
|
_p1##i = i++, ++_n1##i, ++_n2##i)
|
|
#define cimg_for_in4X(img,x0,x1,x) cimg_for_in4((img)._width,x0,x1,x)
|
|
#define cimg_for_in4Y(img,y0,y1,y) cimg_for_in4((img)._height,y0,y1,y)
|
|
#define cimg_for_in4Z(img,z0,z1,z) cimg_for_in4((img)._depth,z0,z1,z)
|
|
#define cimg_for_in4C(img,c0,c1,c) cimg_for_in4((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in4XY(img,x0,y0,x1,y1,x,y) cimg_for_in4Y(img,y0,y1,y) cimg_for_in4X(img,x0,x1,x)
|
|
#define cimg_for_in4XZ(img,x0,z0,x1,z1,x,z) cimg_for_in4Z(img,z0,z1,z) cimg_for_in4X(img,x0,x1,x)
|
|
#define cimg_for_in4XC(img,x0,c0,x1,c1,x,c) cimg_for_in4C(img,c0,c1,c) cimg_for_in4X(img,x0,x1,x)
|
|
#define cimg_for_in4YZ(img,y0,z0,y1,z1,y,z) cimg_for_in4Z(img,z0,z1,z) cimg_for_in4Y(img,y0,y1,y)
|
|
#define cimg_for_in4YC(img,y0,c0,y1,c1,y,c) cimg_for_in4C(img,c0,c1,c) cimg_for_in4Y(img,y0,y1,y)
|
|
#define cimg_for_in4ZC(img,z0,c0,z1,c1,z,c) cimg_for_in4C(img,c0,c1,c) cimg_for_in4Z(img,z0,z1,z)
|
|
#define cimg_for_in4XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in4Z(img,z0,z1,z) cimg_for_in4XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in4XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in4C(img,c0,c1,c) cimg_for_in4XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in4YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in4C(img,c0,c1,c) cimg_for_in4YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in4XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \
|
|
cimg_for_in4C(img,c0,c1,c) cimg_for_in4XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for5(bound,i) \
|
|
for (int i = 0, _p2##i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(bound)?(int)(bound) - 1:1, \
|
|
_n2##i = 2>=(bound)?(int)(bound) - 1:2; \
|
|
_n2##i<(int)(bound) || _n1##i==--_n2##i || i==(_n2##i = --_n1##i); \
|
|
_p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i)
|
|
#define cimg_for5X(img,x) cimg_for5((img)._width,x)
|
|
#define cimg_for5Y(img,y) cimg_for5((img)._height,y)
|
|
#define cimg_for5Z(img,z) cimg_for5((img)._depth,z)
|
|
#define cimg_for5C(img,c) cimg_for5((img)._spectrum,c)
|
|
#define cimg_for5XY(img,x,y) cimg_for5Y(img,y) cimg_for5X(img,x)
|
|
#define cimg_for5XZ(img,x,z) cimg_for5Z(img,z) cimg_for5X(img,x)
|
|
#define cimg_for5XC(img,x,c) cimg_for5C(img,c) cimg_for5X(img,x)
|
|
#define cimg_for5YZ(img,y,z) cimg_for5Z(img,z) cimg_for5Y(img,y)
|
|
#define cimg_for5YC(img,y,c) cimg_for5C(img,c) cimg_for5Y(img,y)
|
|
#define cimg_for5ZC(img,z,c) cimg_for5C(img,c) cimg_for5Z(img,z)
|
|
#define cimg_for5XYZ(img,x,y,z) cimg_for5Z(img,z) cimg_for5XY(img,x,y)
|
|
#define cimg_for5XZC(img,x,z,c) cimg_for5C(img,c) cimg_for5XZ(img,x,z)
|
|
#define cimg_for5YZC(img,y,z,c) cimg_for5C(img,c) cimg_for5YZ(img,y,z)
|
|
#define cimg_for5XYZC(img,x,y,z,c) cimg_for5C(img,c) cimg_for5XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in5(bound,i0,i1,i) \
|
|
for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p2##i = i - 2<0?0:i - 2, \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
|
|
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2; \
|
|
i<=(int)(i1) && (_n2##i<(int)(bound) || _n1##i==--_n2##i || i==(_n2##i = --_n1##i)); \
|
|
_p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i)
|
|
#define cimg_for_in5X(img,x0,x1,x) cimg_for_in5((img)._width,x0,x1,x)
|
|
#define cimg_for_in5Y(img,y0,y1,y) cimg_for_in5((img)._height,y0,y1,y)
|
|
#define cimg_for_in5Z(img,z0,z1,z) cimg_for_in5((img)._depth,z0,z1,z)
|
|
#define cimg_for_in5C(img,c0,c1,c) cimg_for_in5((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in5XY(img,x0,y0,x1,y1,x,y) cimg_for_in5Y(img,y0,y1,y) cimg_for_in5X(img,x0,x1,x)
|
|
#define cimg_for_in5XZ(img,x0,z0,x1,z1,x,z) cimg_for_in5Z(img,z0,z1,z) cimg_for_in5X(img,x0,x1,x)
|
|
#define cimg_for_in5XC(img,x0,c0,x1,c1,x,c) cimg_for_in5C(img,c0,c1,c) cimg_for_in5X(img,x0,x1,x)
|
|
#define cimg_for_in5YZ(img,y0,z0,y1,z1,y,z) cimg_for_in5Z(img,z0,z1,z) cimg_for_in5Y(img,y0,y1,y)
|
|
#define cimg_for_in5YC(img,y0,c0,y1,c1,y,c) cimg_for_in5C(img,c0,c1,c) cimg_for_in5Y(img,y0,y1,y)
|
|
#define cimg_for_in5ZC(img,z0,c0,z1,c1,z,c) cimg_for_in5C(img,c0,c1,c) cimg_for_in5Z(img,z0,z1,z)
|
|
#define cimg_for_in5XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in5Z(img,z0,z1,z) cimg_for_in5XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in5XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in5C(img,c0,c1,c) cimg_for_in5XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in5YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in5C(img,c0,c1,c) cimg_for_in5YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in5XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \
|
|
cimg_for_in5C(img,c0,c1,c) cimg_for_in5XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for6(bound,i) \
|
|
for (int i = 0, _p2##i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(bound)?(int)(bound) - 1:1, \
|
|
_n2##i = 2>=(bound)?(int)(bound) - 1:2, \
|
|
_n3##i = 3>=(bound)?(int)(bound) - 1:3; \
|
|
_n3##i<(int)(bound) || _n2##i==--_n3##i || _n1##i==--_n2##i || i==(_n3##i = _n2##i = --_n1##i); \
|
|
_p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, ++_n3##i)
|
|
#define cimg_for6X(img,x) cimg_for6((img)._width,x)
|
|
#define cimg_for6Y(img,y) cimg_for6((img)._height,y)
|
|
#define cimg_for6Z(img,z) cimg_for6((img)._depth,z)
|
|
#define cimg_for6C(img,c) cimg_for6((img)._spectrum,c)
|
|
#define cimg_for6XY(img,x,y) cimg_for6Y(img,y) cimg_for6X(img,x)
|
|
#define cimg_for6XZ(img,x,z) cimg_for6Z(img,z) cimg_for6X(img,x)
|
|
#define cimg_for6XC(img,x,c) cimg_for6C(img,c) cimg_for6X(img,x)
|
|
#define cimg_for6YZ(img,y,z) cimg_for6Z(img,z) cimg_for6Y(img,y)
|
|
#define cimg_for6YC(img,y,c) cimg_for6C(img,c) cimg_for6Y(img,y)
|
|
#define cimg_for6ZC(img,z,c) cimg_for6C(img,c) cimg_for6Z(img,z)
|
|
#define cimg_for6XYZ(img,x,y,z) cimg_for6Z(img,z) cimg_for6XY(img,x,y)
|
|
#define cimg_for6XZC(img,x,z,c) cimg_for6C(img,c) cimg_for6XZ(img,x,z)
|
|
#define cimg_for6YZC(img,y,z,c) cimg_for6C(img,c) cimg_for6YZ(img,y,z)
|
|
#define cimg_for6XYZC(img,x,y,z,c) cimg_for6C(img,c) cimg_for6XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in6(bound,i0,i1,i) \
|
|
for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p2##i = i - 2<0?0:i - 2, \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
|
|
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
|
|
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3; \
|
|
i<=(int)(i1) && \
|
|
(_n3##i<(int)(bound) || _n2##i==--_n3##i || _n1##i==--_n2##i || i==(_n3##i = _n2##i = --_n1##i)); \
|
|
_p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, ++_n3##i)
|
|
#define cimg_for_in6X(img,x0,x1,x) cimg_for_in6((img)._width,x0,x1,x)
|
|
#define cimg_for_in6Y(img,y0,y1,y) cimg_for_in6((img)._height,y0,y1,y)
|
|
#define cimg_for_in6Z(img,z0,z1,z) cimg_for_in6((img)._depth,z0,z1,z)
|
|
#define cimg_for_in6C(img,c0,c1,c) cimg_for_in6((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in6XY(img,x0,y0,x1,y1,x,y) cimg_for_in6Y(img,y0,y1,y) cimg_for_in6X(img,x0,x1,x)
|
|
#define cimg_for_in6XZ(img,x0,z0,x1,z1,x,z) cimg_for_in6Z(img,z0,z1,z) cimg_for_in6X(img,x0,x1,x)
|
|
#define cimg_for_in6XC(img,x0,c0,x1,c1,x,c) cimg_for_in6C(img,c0,c1,c) cimg_for_in6X(img,x0,x1,x)
|
|
#define cimg_for_in6YZ(img,y0,z0,y1,z1,y,z) cimg_for_in6Z(img,z0,z1,z) cimg_for_in6Y(img,y0,y1,y)
|
|
#define cimg_for_in6YC(img,y0,c0,y1,c1,y,c) cimg_for_in6C(img,c0,c1,c) cimg_for_in6Y(img,y0,y1,y)
|
|
#define cimg_for_in6ZC(img,z0,c0,z1,c1,z,c) cimg_for_in6C(img,c0,c1,c) cimg_for_in6Z(img,z0,z1,z)
|
|
#define cimg_for_in6XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in6Z(img,z0,z1,z) cimg_for_in6XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in6XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in6C(img,c0,c1,c) cimg_for_in6XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in6YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in6C(img,c0,c1,c) cimg_for_in6YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in6XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \
|
|
cimg_for_in6C(img,c0,c1,c) cimg_for_in6XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for7(bound,i) \
|
|
for (int i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(bound)?(int)(bound) - 1:1, \
|
|
_n2##i = 2>=(bound)?(int)(bound) - 1:2, \
|
|
_n3##i = 3>=(bound)?(int)(bound) - 1:3; \
|
|
_n3##i<(int)(bound) || _n2##i==--_n3##i || _n1##i==--_n2##i || i==(_n3##i = _n2##i = --_n1##i); \
|
|
_p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, ++_n3##i)
|
|
#define cimg_for7X(img,x) cimg_for7((img)._width,x)
|
|
#define cimg_for7Y(img,y) cimg_for7((img)._height,y)
|
|
#define cimg_for7Z(img,z) cimg_for7((img)._depth,z)
|
|
#define cimg_for7C(img,c) cimg_for7((img)._spectrum,c)
|
|
#define cimg_for7XY(img,x,y) cimg_for7Y(img,y) cimg_for7X(img,x)
|
|
#define cimg_for7XZ(img,x,z) cimg_for7Z(img,z) cimg_for7X(img,x)
|
|
#define cimg_for7XC(img,x,c) cimg_for7C(img,c) cimg_for7X(img,x)
|
|
#define cimg_for7YZ(img,y,z) cimg_for7Z(img,z) cimg_for7Y(img,y)
|
|
#define cimg_for7YC(img,y,c) cimg_for7C(img,c) cimg_for7Y(img,y)
|
|
#define cimg_for7ZC(img,z,c) cimg_for7C(img,c) cimg_for7Z(img,z)
|
|
#define cimg_for7XYZ(img,x,y,z) cimg_for7Z(img,z) cimg_for7XY(img,x,y)
|
|
#define cimg_for7XZC(img,x,z,c) cimg_for7C(img,c) cimg_for7XZ(img,x,z)
|
|
#define cimg_for7YZC(img,y,z,c) cimg_for7C(img,c) cimg_for7YZ(img,y,z)
|
|
#define cimg_for7XYZC(img,x,y,z,c) cimg_for7C(img,c) cimg_for7XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in7(bound,i0,i1,i) \
|
|
for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p3##i = i - 3<0?0:i - 3, \
|
|
_p2##i = i - 2<0?0:i - 2, \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
|
|
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
|
|
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3; \
|
|
i<=(int)(i1) && \
|
|
(_n3##i<(int)(bound) || _n2##i==--_n3##i || _n1##i==--_n2##i || i==(_n3##i = _n2##i = --_n1##i)); \
|
|
_p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, ++_n3##i)
|
|
#define cimg_for_in7X(img,x0,x1,x) cimg_for_in7((img)._width,x0,x1,x)
|
|
#define cimg_for_in7Y(img,y0,y1,y) cimg_for_in7((img)._height,y0,y1,y)
|
|
#define cimg_for_in7Z(img,z0,z1,z) cimg_for_in7((img)._depth,z0,z1,z)
|
|
#define cimg_for_in7C(img,c0,c1,c) cimg_for_in7((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in7XY(img,x0,y0,x1,y1,x,y) cimg_for_in7Y(img,y0,y1,y) cimg_for_in7X(img,x0,x1,x)
|
|
#define cimg_for_in7XZ(img,x0,z0,x1,z1,x,z) cimg_for_in7Z(img,z0,z1,z) cimg_for_in7X(img,x0,x1,x)
|
|
#define cimg_for_in7XC(img,x0,c0,x1,c1,x,c) cimg_for_in7C(img,c0,c1,c) cimg_for_in7X(img,x0,x1,x)
|
|
#define cimg_for_in7YZ(img,y0,z0,y1,z1,y,z) cimg_for_in7Z(img,z0,z1,z) cimg_for_in7Y(img,y0,y1,y)
|
|
#define cimg_for_in7YC(img,y0,c0,y1,c1,y,c) cimg_for_in7C(img,c0,c1,c) cimg_for_in7Y(img,y0,y1,y)
|
|
#define cimg_for_in7ZC(img,z0,c0,z1,c1,z,c) cimg_for_in7C(img,c0,c1,c) cimg_for_in7Z(img,z0,z1,z)
|
|
#define cimg_for_in7XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in7Z(img,z0,z1,z) cimg_for_in7XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in7XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in7C(img,c0,c1,c) cimg_for_in7XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in7YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in7C(img,c0,c1,c) cimg_for_in7YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in7XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \
|
|
cimg_for_in7C(img,c0,c1,c) cimg_for_in7XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for8(bound,i) \
|
|
for (int i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(bound)?(int)(bound) - 1:1, \
|
|
_n2##i = 2>=(bound)?(int)(bound) - 1:2, \
|
|
_n3##i = 3>=(bound)?(int)(bound) - 1:3, \
|
|
_n4##i = 4>=(bound)?(int)(bound) - 1:4; \
|
|
_n4##i<(int)(bound) || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n4##i = _n3##i = _n2##i = --_n1##i); \
|
|
_p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i)
|
|
#define cimg_for8X(img,x) cimg_for8((img)._width,x)
|
|
#define cimg_for8Y(img,y) cimg_for8((img)._height,y)
|
|
#define cimg_for8Z(img,z) cimg_for8((img)._depth,z)
|
|
#define cimg_for8C(img,c) cimg_for8((img)._spectrum,c)
|
|
#define cimg_for8XY(img,x,y) cimg_for8Y(img,y) cimg_for8X(img,x)
|
|
#define cimg_for8XZ(img,x,z) cimg_for8Z(img,z) cimg_for8X(img,x)
|
|
#define cimg_for8XC(img,x,c) cimg_for8C(img,c) cimg_for8X(img,x)
|
|
#define cimg_for8YZ(img,y,z) cimg_for8Z(img,z) cimg_for8Y(img,y)
|
|
#define cimg_for8YC(img,y,c) cimg_for8C(img,c) cimg_for8Y(img,y)
|
|
#define cimg_for8ZC(img,z,c) cimg_for8C(img,c) cimg_for8Z(img,z)
|
|
#define cimg_for8XYZ(img,x,y,z) cimg_for8Z(img,z) cimg_for8XY(img,x,y)
|
|
#define cimg_for8XZC(img,x,z,c) cimg_for8C(img,c) cimg_for8XZ(img,x,z)
|
|
#define cimg_for8YZC(img,y,z,c) cimg_for8C(img,c) cimg_for8YZ(img,y,z)
|
|
#define cimg_for8XYZC(img,x,y,z,c) cimg_for8C(img,c) cimg_for8XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in8(bound,i0,i1,i) \
|
|
for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p3##i = i - 3<0?0:i - 3, \
|
|
_p2##i = i - 2<0?0:i - 2, \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
|
|
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
|
|
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
|
|
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4; \
|
|
i<=(int)(i1) && (_n4##i<(int)(bound) || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n4##i = _n3##i = _n2##i = --_n1##i)); \
|
|
_p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i)
|
|
#define cimg_for_in8X(img,x0,x1,x) cimg_for_in8((img)._width,x0,x1,x)
|
|
#define cimg_for_in8Y(img,y0,y1,y) cimg_for_in8((img)._height,y0,y1,y)
|
|
#define cimg_for_in8Z(img,z0,z1,z) cimg_for_in8((img)._depth,z0,z1,z)
|
|
#define cimg_for_in8C(img,c0,c1,c) cimg_for_in8((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in8XY(img,x0,y0,x1,y1,x,y) cimg_for_in8Y(img,y0,y1,y) cimg_for_in8X(img,x0,x1,x)
|
|
#define cimg_for_in8XZ(img,x0,z0,x1,z1,x,z) cimg_for_in8Z(img,z0,z1,z) cimg_for_in8X(img,x0,x1,x)
|
|
#define cimg_for_in8XC(img,x0,c0,x1,c1,x,c) cimg_for_in8C(img,c0,c1,c) cimg_for_in8X(img,x0,x1,x)
|
|
#define cimg_for_in8YZ(img,y0,z0,y1,z1,y,z) cimg_for_in8Z(img,z0,z1,z) cimg_for_in8Y(img,y0,y1,y)
|
|
#define cimg_for_in8YC(img,y0,c0,y1,c1,y,c) cimg_for_in8C(img,c0,c1,c) cimg_for_in8Y(img,y0,y1,y)
|
|
#define cimg_for_in8ZC(img,z0,c0,z1,c1,z,c) cimg_for_in8C(img,c0,c1,c) cimg_for_in8Z(img,z0,z1,z)
|
|
#define cimg_for_in8XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in8Z(img,z0,z1,z) cimg_for_in8XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in8XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in8C(img,c0,c1,c) cimg_for_in8XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in8YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in8C(img,c0,c1,c) cimg_for_in8YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in8XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \
|
|
cimg_for_in8C(img,c0,c1,c) cimg_for_in8XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for9(bound,i) \
|
|
for (int i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
|
|
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
|
|
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
|
|
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4; \
|
|
_n4##i<(int)(bound) || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n4##i = _n3##i = _n2##i = --_n1##i); \
|
|
_p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i)
|
|
#define cimg_for9X(img,x) cimg_for9((img)._width,x)
|
|
#define cimg_for9Y(img,y) cimg_for9((img)._height,y)
|
|
#define cimg_for9Z(img,z) cimg_for9((img)._depth,z)
|
|
#define cimg_for9C(img,c) cimg_for9((img)._spectrum,c)
|
|
#define cimg_for9XY(img,x,y) cimg_for9Y(img,y) cimg_for9X(img,x)
|
|
#define cimg_for9XZ(img,x,z) cimg_for9Z(img,z) cimg_for9X(img,x)
|
|
#define cimg_for9XC(img,x,c) cimg_for9C(img,c) cimg_for9X(img,x)
|
|
#define cimg_for9YZ(img,y,z) cimg_for9Z(img,z) cimg_for9Y(img,y)
|
|
#define cimg_for9YC(img,y,c) cimg_for9C(img,c) cimg_for9Y(img,y)
|
|
#define cimg_for9ZC(img,z,c) cimg_for9C(img,c) cimg_for9Z(img,z)
|
|
#define cimg_for9XYZ(img,x,y,z) cimg_for9Z(img,z) cimg_for9XY(img,x,y)
|
|
#define cimg_for9XZC(img,x,z,c) cimg_for9C(img,c) cimg_for9XZ(img,x,z)
|
|
#define cimg_for9YZC(img,y,z,c) cimg_for9C(img,c) cimg_for9YZ(img,y,z)
|
|
#define cimg_for9XYZC(img,x,y,z,c) cimg_for9C(img,c) cimg_for9XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in9(bound,i0,i1,i) \
|
|
for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p4##i = i - 4<0?0:i - 4, \
|
|
_p3##i = i - 3<0?0:i - 3, \
|
|
_p2##i = i - 2<0?0:i - 2, \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
|
|
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
|
|
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
|
|
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4; \
|
|
i<=(int)(i1) && (_n4##i<(int)(bound) || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n4##i = _n3##i = _n2##i = --_n1##i)); \
|
|
_p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i)
|
|
#define cimg_for_in9X(img,x0,x1,x) cimg_for_in9((img)._width,x0,x1,x)
|
|
#define cimg_for_in9Y(img,y0,y1,y) cimg_for_in9((img)._height,y0,y1,y)
|
|
#define cimg_for_in9Z(img,z0,z1,z) cimg_for_in9((img)._depth,z0,z1,z)
|
|
#define cimg_for_in9C(img,c0,c1,c) cimg_for_in9((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in9XY(img,x0,y0,x1,y1,x,y) cimg_for_in9Y(img,y0,y1,y) cimg_for_in9X(img,x0,x1,x)
|
|
#define cimg_for_in9XZ(img,x0,z0,x1,z1,x,z) cimg_for_in9Z(img,z0,z1,z) cimg_for_in9X(img,x0,x1,x)
|
|
#define cimg_for_in9XC(img,x0,c0,x1,c1,x,c) cimg_for_in9C(img,c0,c1,c) cimg_for_in9X(img,x0,x1,x)
|
|
#define cimg_for_in9YZ(img,y0,z0,y1,z1,y,z) cimg_for_in9Z(img,z0,z1,z) cimg_for_in9Y(img,y0,y1,y)
|
|
#define cimg_for_in9YC(img,y0,c0,y1,c1,y,c) cimg_for_in9C(img,c0,c1,c) cimg_for_in9Y(img,y0,y1,y)
|
|
#define cimg_for_in9ZC(img,z0,c0,z1,c1,z,c) cimg_for_in9C(img,c0,c1,c) cimg_for_in9Z(img,z0,z1,z)
|
|
#define cimg_for_in9XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in9Z(img,z0,z1,z) cimg_for_in9XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in9XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in9C(img,c0,c1,c) cimg_for_in9XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in9YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in9C(img,c0,c1,c) cimg_for_in9YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in9XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \
|
|
cimg_for_in9C(img,c0,c1,c) cimg_for_in9XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for2x2(img,x,y,z,c,I,T) \
|
|
cimg_for2((img)._height,y) for (int x = 0, \
|
|
_n1##x = (int)( \
|
|
(I[0] = (T)(img)(0,y,z,c)), \
|
|
(I[2] = (T)(img)(0,_n1##y,z,c)), \
|
|
1>=(img)._width?(img).width() - 1:1); \
|
|
(_n1##x<(img).width() && ( \
|
|
(I[1] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[3] = (T)(img)(_n1##x,_n1##y,z,c)),1)) || \
|
|
x==--_n1##x; \
|
|
I[0] = I[1], \
|
|
I[2] = I[3], \
|
|
++x, ++_n1##x)
|
|
|
|
#define cimg_for_in2x2(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in2((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_n1##x = (int)( \
|
|
(I[0] = (T)(img)(x,y,z,c)), \
|
|
(I[2] = (T)(img)(x,_n1##y,z,c)), \
|
|
x + 1>=(int)(img)._width?(img).width() - 1:x + 1); \
|
|
x<=(int)(x1) && ((_n1##x<(img).width() && ( \
|
|
(I[1] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[3] = (T)(img)(_n1##x,_n1##y,z,c)),1)) || \
|
|
x==--_n1##x); \
|
|
I[0] = I[1], \
|
|
I[2] = I[3], \
|
|
++x, ++_n1##x)
|
|
|
|
#define cimg_for3x3(img,x,y,z,c,I,T) \
|
|
cimg_for3((img)._height,y) for (int x = 0, \
|
|
_p1##x = 0, \
|
|
_n1##x = (int)( \
|
|
(I[0] = I[1] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[3] = I[4] = (T)(img)(0,y,z,c)), \
|
|
(I[6] = I[7] = (T)(img)(0,_n1##y,z,c)), \
|
|
1>=(img)._width?(img).width() - 1:1); \
|
|
(_n1##x<(img).width() && ( \
|
|
(I[2] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[5] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[8] = (T)(img)(_n1##x,_n1##y,z,c)),1)) || \
|
|
x==--_n1##x; \
|
|
I[0] = I[1], I[1] = I[2], \
|
|
I[3] = I[4], I[4] = I[5], \
|
|
I[6] = I[7], I[7] = I[8], \
|
|
_p1##x = x++, ++_n1##x)
|
|
|
|
#define cimg_for_in3x3(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in3((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = (int)( \
|
|
(I[0] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[3] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[6] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[1] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[4] = (T)(img)(x,y,z,c)), \
|
|
(I[7] = (T)(img)(x,_n1##y,z,c)), \
|
|
x + 1>=(int)(img)._width?(img).width() - 1:x + 1); \
|
|
x<=(int)(x1) && ((_n1##x<(img).width() && ( \
|
|
(I[2] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[5] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[8] = (T)(img)(_n1##x,_n1##y,z,c)),1)) || \
|
|
x==--_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], \
|
|
I[3] = I[4], I[4] = I[5], \
|
|
I[6] = I[7], I[7] = I[8], \
|
|
_p1##x = x++, ++_n1##x)
|
|
|
|
#define cimg_for4x4(img,x,y,z,c,I,T) \
|
|
cimg_for4((img)._height,y) for (int x = 0, \
|
|
_p1##x = 0, \
|
|
_n1##x = 1>=(img)._width?(img).width() - 1:1, \
|
|
_n2##x = (int)( \
|
|
(I[0] = I[1] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[4] = I[5] = (T)(img)(0,y,z,c)), \
|
|
(I[8] = I[9] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[12] = I[13] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[2] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[6] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[10] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[14] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
2>=(img)._width?(img).width() - 1:2); \
|
|
(_n2##x<(img).width() && ( \
|
|
(I[3] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[7] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[11] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[15] = (T)(img)(_n2##x,_n2##y,z,c)),1)) || \
|
|
_n1##x==--_n2##x || x==(_n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], \
|
|
I[4] = I[5], I[5] = I[6], I[6] = I[7], \
|
|
I[8] = I[9], I[9] = I[10], I[10] = I[11], \
|
|
I[12] = I[13], I[13] = I[14], I[14] = I[15], \
|
|
_p1##x = x++, ++_n1##x, ++_n2##x)
|
|
|
|
#define cimg_for_in4x4(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in4((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(int)(img)._width?(img).width() - 1:x + 1, \
|
|
_n2##x = (int)( \
|
|
(I[0] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[4] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[8] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[12] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[1] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[5] = (T)(img)(x,y,z,c)), \
|
|
(I[9] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[13] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[2] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[6] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[10] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[14] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
x + 2>=(int)(img)._width?(img).width() - 1:x + 2); \
|
|
x<=(int)(x1) && ((_n2##x<(img).width() && ( \
|
|
(I[3] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[7] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[11] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[15] = (T)(img)(_n2##x,_n2##y,z,c)),1)) || \
|
|
_n1##x==--_n2##x || x==(_n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], \
|
|
I[4] = I[5], I[5] = I[6], I[6] = I[7], \
|
|
I[8] = I[9], I[9] = I[10], I[10] = I[11], \
|
|
I[12] = I[13], I[13] = I[14], I[14] = I[15], \
|
|
_p1##x = x++, ++_n1##x, ++_n2##x)
|
|
|
|
#define cimg_for5x5(img,x,y,z,c,I,T) \
|
|
cimg_for5((img)._height,y) for (int x = 0, \
|
|
_p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=(img)._width?(img).width() - 1:1, \
|
|
_n2##x = (int)( \
|
|
(I[0] = I[1] = I[2] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[5] = I[6] = I[7] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[10] = I[11] = I[12] = (T)(img)(0,y,z,c)), \
|
|
(I[15] = I[16] = I[17] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[20] = I[21] = I[22] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[3] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[8] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[13] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[18] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[23] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
2>=(img)._width?(img).width() - 1:2); \
|
|
(_n2##x<(img).width() && ( \
|
|
(I[4] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[9] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[14] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[19] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[24] = (T)(img)(_n2##x,_n2##y,z,c)),1)) || \
|
|
_n1##x==--_n2##x || x==(_n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], \
|
|
I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], \
|
|
I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], \
|
|
I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \
|
|
I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], \
|
|
_p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x)
|
|
|
|
#define cimg_for_in5x5(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in5((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(int)(img)._width?(img).width() - 1:x + 1, \
|
|
_n2##x = (int)( \
|
|
(I[0] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[5] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[10] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[15] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[20] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[1] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[6] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[11] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[16] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[21] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[2] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[7] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[12] = (T)(img)(x,y,z,c)), \
|
|
(I[17] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[22] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[3] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[8] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[13] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[18] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[23] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
x + 2>=(int)(img)._width?(img).width() - 1:x + 2); \
|
|
x<=(int)(x1) && ((_n2##x<(img).width() && ( \
|
|
(I[4] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[9] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[14] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[19] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[24] = (T)(img)(_n2##x,_n2##y,z,c)),1)) || \
|
|
_n1##x==--_n2##x || x==(_n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], \
|
|
I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], \
|
|
I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], \
|
|
I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \
|
|
I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], \
|
|
_p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x)
|
|
|
|
#define cimg_for6x6(img,x,y,z,c,I,T) \
|
|
cimg_for6((img)._height,y) for (int x = 0, \
|
|
_p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=(img)._width?(img).width() - 1:1, \
|
|
_n2##x = 2>=(img)._width?(img).width() - 1:2, \
|
|
_n3##x = (int)( \
|
|
(I[0] = I[1] = I[2] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[6] = I[7] = I[8] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[12] = I[13] = I[14] = (T)(img)(0,y,z,c)), \
|
|
(I[18] = I[19] = I[20] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[24] = I[25] = I[26] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[30] = I[31] = I[32] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[3] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[9] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[15] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[21] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[27] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[33] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[4] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[10] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[16] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[22] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[28] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[34] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
3>=(img)._width?(img).width() - 1:3); \
|
|
(_n3##x<(img).width() && ( \
|
|
(I[5] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[11] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[17] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[23] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[29] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[35] = (T)(img)(_n3##x,_n3##y,z,c)),1)) || \
|
|
_n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n3## x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], \
|
|
I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], \
|
|
I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], \
|
|
I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \
|
|
I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
|
|
I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \
|
|
_p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x)
|
|
|
|
#define cimg_for_in6x6(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in6((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)x0, \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(int)(img)._width?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(int)(img)._width?(img).width() - 1:x + 2, \
|
|
_n3##x = (int)( \
|
|
(I[0] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[6] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[12] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[18] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[24] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[30] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[1] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[7] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[13] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[19] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[25] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[31] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[2] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[8] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[14] = (T)(img)(x,y,z,c)), \
|
|
(I[20] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[26] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[32] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[3] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[9] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[15] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[21] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[27] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[33] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[4] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[10] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[16] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[22] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[28] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[34] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
x + 3>=(int)(img)._width?(img).width() - 1:x + 3); \
|
|
x<=(int)(x1) && ((_n3##x<(img).width() && ( \
|
|
(I[5] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[11] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[17] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[23] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[29] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[35] = (T)(img)(_n3##x,_n3##y,z,c)),1)) || \
|
|
_n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n3## x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], \
|
|
I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], \
|
|
I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], \
|
|
I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \
|
|
I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
|
|
I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \
|
|
_p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x)
|
|
|
|
#define cimg_for7x7(img,x,y,z,c,I,T) \
|
|
cimg_for7((img)._height,y) for (int x = 0, \
|
|
_p3##x = 0, _p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=(img)._width?(img).width() - 1:1, \
|
|
_n2##x = 2>=(img)._width?(img).width() - 1:2, \
|
|
_n3##x = (int)( \
|
|
(I[0] = I[1] = I[2] = I[3] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[7] = I[8] = I[9] = I[10] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[14] = I[15] = I[16] = I[17] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[21] = I[22] = I[23] = I[24] = (T)(img)(0,y,z,c)), \
|
|
(I[28] = I[29] = I[30] = I[31] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[35] = I[36] = I[37] = I[38] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[42] = I[43] = I[44] = I[45] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[4] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[11] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[18] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[25] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[32] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[39] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[46] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[5] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[12] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[19] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[26] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[33] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[40] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[47] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
3>=(img)._width?(img).width() - 1:3); \
|
|
(_n3##x<(img).width() && ( \
|
|
(I[6] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[13] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[20] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[27] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[34] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[41] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[48] = (T)(img)(_n3##x,_n3##y,z,c)),1)) || \
|
|
_n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n3##x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], \
|
|
I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], \
|
|
I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], \
|
|
I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], \
|
|
I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], \
|
|
I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \
|
|
I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], \
|
|
_p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x)
|
|
|
|
#define cimg_for_in7x7(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in7((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p3##x = x - 3<0?0:x - 3, \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(int)(img)._width?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(int)(img)._width?(img).width() - 1:x + 2, \
|
|
_n3##x = (int)( \
|
|
(I[0] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[7] = (T)(img)(_p3##x,_p2##y,z,c)), \
|
|
(I[14] = (T)(img)(_p3##x,_p1##y,z,c)), \
|
|
(I[21] = (T)(img)(_p3##x,y,z,c)), \
|
|
(I[28] = (T)(img)(_p3##x,_n1##y,z,c)), \
|
|
(I[35] = (T)(img)(_p3##x,_n2##y,z,c)), \
|
|
(I[42] = (T)(img)(_p3##x,_n3##y,z,c)), \
|
|
(I[1] = (T)(img)(_p2##x,_p3##y,z,c)), \
|
|
(I[8] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[15] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[22] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[29] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[36] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[43] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[2] = (T)(img)(_p1##x,_p3##y,z,c)), \
|
|
(I[9] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[16] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[23] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[30] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[37] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[44] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[3] = (T)(img)(x,_p3##y,z,c)), \
|
|
(I[10] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[17] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[24] = (T)(img)(x,y,z,c)), \
|
|
(I[31] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[38] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[45] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[4] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[11] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[18] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[25] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[32] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[39] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[46] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[5] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[12] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[19] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[26] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[33] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[40] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[47] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
x + 3>=(int)(img)._width?(img).width() - 1:x + 3); \
|
|
x<=(int)(x1) && ((_n3##x<(img).width() && ( \
|
|
(I[6] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[13] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[20] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[27] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[34] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[41] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[48] = (T)(img)(_n3##x,_n3##y,z,c)),1)) || \
|
|
_n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n3##x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], \
|
|
I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], \
|
|
I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], \
|
|
I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], \
|
|
I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], \
|
|
I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \
|
|
I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], \
|
|
_p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x)
|
|
|
|
#define cimg_for8x8(img,x,y,z,c,I,T) \
|
|
cimg_for8((img)._height,y) for (int x = 0, \
|
|
_p3##x = 0, _p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
|
|
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
|
|
_n4##x = (int)( \
|
|
(I[0] = I[1] = I[2] = I[3] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[8] = I[9] = I[10] = I[11] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[16] = I[17] = I[18] = I[19] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[24] = I[25] = I[26] = I[27] = (T)(img)(0,y,z,c)), \
|
|
(I[32] = I[33] = I[34] = I[35] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[40] = I[41] = I[42] = I[43] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[48] = I[49] = I[50] = I[51] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[56] = I[57] = I[58] = I[59] = (T)(img)(0,_n4##y,z,c)), \
|
|
(I[4] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[12] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[20] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[28] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[36] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[44] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[52] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[60] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[5] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[13] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[21] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[29] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[37] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[45] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[53] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[61] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[6] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[14] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[22] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[30] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[38] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[46] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[54] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[62] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
4>=((img)._width)?(img).width() - 1:4); \
|
|
(_n4##x<(img).width() && ( \
|
|
(I[7] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[15] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[23] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[31] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[39] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[47] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[55] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[63] = (T)(img)(_n4##x,_n4##y,z,c)),1)) || \
|
|
_n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n4##x = _n3##x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], \
|
|
I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], \
|
|
I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \
|
|
I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \
|
|
I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \
|
|
I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
|
|
I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \
|
|
I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], \
|
|
_p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x)
|
|
|
|
#define cimg_for_in8x8(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in8((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p3##x = x - 3<0?0:x - 3, \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
|
|
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
|
|
_n4##x = (int)( \
|
|
(I[0] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[8] = (T)(img)(_p3##x,_p2##y,z,c)), \
|
|
(I[16] = (T)(img)(_p3##x,_p1##y,z,c)), \
|
|
(I[24] = (T)(img)(_p3##x,y,z,c)), \
|
|
(I[32] = (T)(img)(_p3##x,_n1##y,z,c)), \
|
|
(I[40] = (T)(img)(_p3##x,_n2##y,z,c)), \
|
|
(I[48] = (T)(img)(_p3##x,_n3##y,z,c)), \
|
|
(I[56] = (T)(img)(_p3##x,_n4##y,z,c)), \
|
|
(I[1] = (T)(img)(_p2##x,_p3##y,z,c)), \
|
|
(I[9] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[17] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[25] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[33] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[41] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[49] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[57] = (T)(img)(_p2##x,_n4##y,z,c)), \
|
|
(I[2] = (T)(img)(_p1##x,_p3##y,z,c)), \
|
|
(I[10] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[18] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[26] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[34] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[42] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[50] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[58] = (T)(img)(_p1##x,_n4##y,z,c)), \
|
|
(I[3] = (T)(img)(x,_p3##y,z,c)), \
|
|
(I[11] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[19] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[27] = (T)(img)(x,y,z,c)), \
|
|
(I[35] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[43] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[51] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[59] = (T)(img)(x,_n4##y,z,c)), \
|
|
(I[4] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[12] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[20] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[28] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[36] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[44] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[52] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[60] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[5] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[13] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[21] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[29] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[37] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[45] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[53] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[61] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[6] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[14] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[22] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[30] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[38] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[46] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[54] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[62] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
x + 4>=(img).width()?(img).width() - 1:x + 4); \
|
|
x<=(int)(x1) && ((_n4##x<(img).width() && ( \
|
|
(I[7] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[15] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[23] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[31] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[39] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[47] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[55] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[63] = (T)(img)(_n4##x,_n4##y,z,c)),1)) || \
|
|
_n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n4##x = _n3##x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], \
|
|
I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], \
|
|
I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \
|
|
I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \
|
|
I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \
|
|
I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
|
|
I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \
|
|
I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], \
|
|
_p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x)
|
|
|
|
#define cimg_for9x9(img,x,y,z,c,I,T) \
|
|
cimg_for9((img)._height,y) for (int x = 0, \
|
|
_p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
|
|
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
|
|
_n4##x = (int)( \
|
|
(I[0] = I[1] = I[2] = I[3] = I[4] = (T)(img)(_p4##x,_p4##y,z,c)), \
|
|
(I[9] = I[10] = I[11] = I[12] = I[13] = (T)(img)(0,_p3##y,z,c)), \
|
|
(I[18] = I[19] = I[20] = I[21] = I[22] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[27] = I[28] = I[29] = I[30] = I[31] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[36] = I[37] = I[38] = I[39] = I[40] = (T)(img)(0,y,z,c)), \
|
|
(I[45] = I[46] = I[47] = I[48] = I[49] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[54] = I[55] = I[56] = I[57] = I[58] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[63] = I[64] = I[65] = I[66] = I[67] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[72] = I[73] = I[74] = I[75] = I[76] = (T)(img)(0,_n4##y,z,c)), \
|
|
(I[5] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[14] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[23] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[32] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[41] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[50] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[59] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[68] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[77] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[6] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[15] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[24] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[33] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[42] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[51] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[60] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[69] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[78] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[7] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[16] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[25] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[34] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[43] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[52] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[61] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[70] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[79] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
4>=((img)._width)?(img).width() - 1:4); \
|
|
(_n4##x<(img).width() && ( \
|
|
(I[8] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[17] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[26] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[35] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[44] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[53] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[62] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[71] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[80] = (T)(img)(_n4##x,_n4##y,z,c)),1)) || \
|
|
_n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n4##x = _n3##x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], \
|
|
I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], \
|
|
I[16] = I[17], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], \
|
|
I[24] = I[25], I[25] = I[26], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], \
|
|
I[32] = I[33], I[33] = I[34], I[34] = I[35], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], \
|
|
I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[45] = I[46], I[46] = I[47], I[47] = I[48], \
|
|
I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[54] = I[55], I[55] = I[56], \
|
|
I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[63] = I[64], \
|
|
I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
|
|
I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
|
|
I[79] = I[80], \
|
|
_p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x)
|
|
|
|
#define cimg_for_in9x9(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in9((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p4##x = x - 4<0?0:x - 4, \
|
|
_p3##x = x - 3<0?0:x - 3, \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
|
|
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
|
|
_n4##x = (int)( \
|
|
(I[0] = (T)(img)(_p4##x,_p4##y,z,c)), \
|
|
(I[9] = (T)(img)(_p4##x,_p3##y,z,c)), \
|
|
(I[18] = (T)(img)(_p4##x,_p2##y,z,c)), \
|
|
(I[27] = (T)(img)(_p4##x,_p1##y,z,c)), \
|
|
(I[36] = (T)(img)(_p4##x,y,z,c)), \
|
|
(I[45] = (T)(img)(_p4##x,_n1##y,z,c)), \
|
|
(I[54] = (T)(img)(_p4##x,_n2##y,z,c)), \
|
|
(I[63] = (T)(img)(_p4##x,_n3##y,z,c)), \
|
|
(I[72] = (T)(img)(_p4##x,_n4##y,z,c)), \
|
|
(I[1] = (T)(img)(_p3##x,_p4##y,z,c)), \
|
|
(I[10] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[19] = (T)(img)(_p3##x,_p2##y,z,c)), \
|
|
(I[28] = (T)(img)(_p3##x,_p1##y,z,c)), \
|
|
(I[37] = (T)(img)(_p3##x,y,z,c)), \
|
|
(I[46] = (T)(img)(_p3##x,_n1##y,z,c)), \
|
|
(I[55] = (T)(img)(_p3##x,_n2##y,z,c)), \
|
|
(I[64] = (T)(img)(_p3##x,_n3##y,z,c)), \
|
|
(I[73] = (T)(img)(_p3##x,_n4##y,z,c)), \
|
|
(I[2] = (T)(img)(_p2##x,_p4##y,z,c)), \
|
|
(I[11] = (T)(img)(_p2##x,_p3##y,z,c)), \
|
|
(I[20] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[29] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[38] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[47] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[56] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[65] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[74] = (T)(img)(_p2##x,_n4##y,z,c)), \
|
|
(I[3] = (T)(img)(_p1##x,_p4##y,z,c)), \
|
|
(I[12] = (T)(img)(_p1##x,_p3##y,z,c)), \
|
|
(I[21] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[30] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[39] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[48] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[57] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[66] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[75] = (T)(img)(_p1##x,_n4##y,z,c)), \
|
|
(I[4] = (T)(img)(x,_p4##y,z,c)), \
|
|
(I[13] = (T)(img)(x,_p3##y,z,c)), \
|
|
(I[22] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[31] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[40] = (T)(img)(x,y,z,c)), \
|
|
(I[49] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[58] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[67] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[76] = (T)(img)(x,_n4##y,z,c)), \
|
|
(I[5] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[14] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[23] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[32] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[41] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[50] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[59] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[68] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[77] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[6] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[15] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[24] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[33] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[42] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[51] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[60] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[69] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[78] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[7] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[16] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[25] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[34] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[43] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[52] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[61] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[70] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[79] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
x + 4>=(img).width()?(img).width() - 1:x + 4); \
|
|
x<=(int)(x1) && ((_n4##x<(img).width() && ( \
|
|
(I[8] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[17] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[26] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[35] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[44] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[53] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[62] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[71] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[80] = (T)(img)(_n4##x,_n4##y,z,c)),1)) || \
|
|
_n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n4##x = _n3##x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], \
|
|
I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], \
|
|
I[16] = I[17], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], \
|
|
I[24] = I[25], I[25] = I[26], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], \
|
|
I[32] = I[33], I[33] = I[34], I[34] = I[35], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], \
|
|
I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[45] = I[46], I[46] = I[47], I[47] = I[48], \
|
|
I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[54] = I[55], I[55] = I[56], \
|
|
I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[63] = I[64], \
|
|
I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
|
|
I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
|
|
I[79] = I[80], \
|
|
_p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x)
|
|
|
|
#define cimg_for2x2x2(img,x,y,z,c,I,T) \
|
|
cimg_for2((img)._depth,z) cimg_for2((img)._height,y) for (int x = 0, \
|
|
_n1##x = (int)( \
|
|
(I[0] = (T)(img)(0,y,z,c)), \
|
|
(I[2] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[4] = (T)(img)(0,y,_n1##z,c)), \
|
|
(I[6] = (T)(img)(0,_n1##y,_n1##z,c)), \
|
|
1>=(img)._width?(img).width() - 1:1); \
|
|
(_n1##x<(img).width() && ( \
|
|
(I[1] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[3] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[5] = (T)(img)(_n1##x,y,_n1##z,c)), \
|
|
(I[7] = (T)(img)(_n1##x,_n1##y,_n1##z,c)),1)) || \
|
|
x==--_n1##x; \
|
|
I[0] = I[1], I[2] = I[3], I[4] = I[5], I[6] = I[7], \
|
|
++x, ++_n1##x)
|
|
|
|
#define cimg_for_in2x2x2(img,x0,y0,z0,x1,y1,z1,x,y,z,c,I,T) \
|
|
cimg_for_in2((img)._depth,z0,z1,z) cimg_for_in2((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_n1##x = (int)( \
|
|
(I[0] = (T)(img)(x,y,z,c)), \
|
|
(I[2] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[4] = (T)(img)(x,y,_n1##z,c)), \
|
|
(I[6] = (T)(img)(x,_n1##y,_n1##z,c)), \
|
|
x + 1>=(int)(img)._width?(img).width() - 1:x + 1); \
|
|
x<=(int)(x1) && ((_n1##x<(img).width() && ( \
|
|
(I[1] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[3] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[5] = (T)(img)(_n1##x,y,_n1##z,c)), \
|
|
(I[7] = (T)(img)(_n1##x,_n1##y,_n1##z,c)),1)) || \
|
|
x==--_n1##x); \
|
|
I[0] = I[1], I[2] = I[3], I[4] = I[5], I[6] = I[7], \
|
|
++x, ++_n1##x)
|
|
|
|
#define cimg_for3x3x3(img,x,y,z,c,I,T) \
|
|
cimg_for3((img)._depth,z) cimg_for3((img)._height,y) for (int x = 0, \
|
|
_p1##x = 0, \
|
|
_n1##x = (int)( \
|
|
(I[0] = I[1] = (T)(img)(_p1##x,_p1##y,_p1##z,c)), \
|
|
(I[3] = I[4] = (T)(img)(0,y,_p1##z,c)), \
|
|
(I[6] = I[7] = (T)(img)(0,_n1##y,_p1##z,c)), \
|
|
(I[9] = I[10] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[12] = I[13] = (T)(img)(0,y,z,c)), \
|
|
(I[15] = I[16] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[18] = I[19] = (T)(img)(0,_p1##y,_n1##z,c)), \
|
|
(I[21] = I[22] = (T)(img)(0,y,_n1##z,c)), \
|
|
(I[24] = I[25] = (T)(img)(0,_n1##y,_n1##z,c)), \
|
|
1>=(img)._width?(img).width() - 1:1); \
|
|
(_n1##x<(img).width() && ( \
|
|
(I[2] = (T)(img)(_n1##x,_p1##y,_p1##z,c)), \
|
|
(I[5] = (T)(img)(_n1##x,y,_p1##z,c)), \
|
|
(I[8] = (T)(img)(_n1##x,_n1##y,_p1##z,c)), \
|
|
(I[11] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[14] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[17] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[20] = (T)(img)(_n1##x,_p1##y,_n1##z,c)), \
|
|
(I[23] = (T)(img)(_n1##x,y,_n1##z,c)), \
|
|
(I[26] = (T)(img)(_n1##x,_n1##y,_n1##z,c)),1)) || \
|
|
x==--_n1##x; \
|
|
I[0] = I[1], I[1] = I[2], I[3] = I[4], I[4] = I[5], I[6] = I[7], I[7] = I[8], \
|
|
I[9] = I[10], I[10] = I[11], I[12] = I[13], I[13] = I[14], I[15] = I[16], I[16] = I[17], \
|
|
I[18] = I[19], I[19] = I[20], I[21] = I[22], I[22] = I[23], I[24] = I[25], I[25] = I[26], \
|
|
_p1##x = x++, ++_n1##x)
|
|
|
|
#define cimg_for_in3x3x3(img,x0,y0,z0,x1,y1,z1,x,y,z,c,I,T) \
|
|
cimg_for_in3((img)._depth,z0,z1,z) cimg_for_in3((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = (int)( \
|
|
(I[0] = (T)(img)(_p1##x,_p1##y,_p1##z,c)), \
|
|
(I[3] = (T)(img)(_p1##x,y,_p1##z,c)), \
|
|
(I[6] = (T)(img)(_p1##x,_n1##y,_p1##z,c)), \
|
|
(I[9] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[12] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[15] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[18] = (T)(img)(_p1##x,_p1##y,_n1##z,c)), \
|
|
(I[21] = (T)(img)(_p1##x,y,_n1##z,c)), \
|
|
(I[24] = (T)(img)(_p1##x,_n1##y,_n1##z,c)), \
|
|
(I[1] = (T)(img)(x,_p1##y,_p1##z,c)), \
|
|
(I[4] = (T)(img)(x,y,_p1##z,c)), \
|
|
(I[7] = (T)(img)(x,_n1##y,_p1##z,c)), \
|
|
(I[10] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[13] = (T)(img)(x,y,z,c)), \
|
|
(I[16] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[19] = (T)(img)(x,_p1##y,_n1##z,c)), \
|
|
(I[22] = (T)(img)(x,y,_n1##z,c)), \
|
|
(I[25] = (T)(img)(x,_n1##y,_n1##z,c)), \
|
|
x + 1>=(int)(img)._width?(img).width() - 1:x + 1); \
|
|
x<=(int)(x1) && ((_n1##x<(img).width() && ( \
|
|
(I[2] = (T)(img)(_n1##x,_p1##y,_p1##z,c)), \
|
|
(I[5] = (T)(img)(_n1##x,y,_p1##z,c)), \
|
|
(I[8] = (T)(img)(_n1##x,_n1##y,_p1##z,c)), \
|
|
(I[11] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[14] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[17] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[20] = (T)(img)(_n1##x,_p1##y,_n1##z,c)), \
|
|
(I[23] = (T)(img)(_n1##x,y,_n1##z,c)), \
|
|
(I[26] = (T)(img)(_n1##x,_n1##y,_n1##z,c)),1)) || \
|
|
x==--_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[3] = I[4], I[4] = I[5], I[6] = I[7], I[7] = I[8], \
|
|
I[9] = I[10], I[10] = I[11], I[12] = I[13], I[13] = I[14], I[15] = I[16], I[16] = I[17], \
|
|
I[18] = I[19], I[19] = I[20], I[21] = I[22], I[22] = I[23], I[24] = I[25], I[25] = I[26], \
|
|
_p1##x = x++, ++_n1##x)
|
|
|
|
#define cimglist_for(list,l) for (int l = 0; l<(int)(list)._width; ++l)
|
|
#define cimglist_rof(list,l) for (int l = (int)(list)._width - 1; l>=0; --l)
|
|
#define cimglist_for_in(list,l0,l1,l) \
|
|
for (int l = (int)(l0)<0?0:(int)(l0), _max##l = (unsigned int)l1<(list)._width?(int)(l1):(int)(list)._width - 1; \
|
|
l<=_max##l; ++l)
|
|
|
|
#define cimglist_apply(list,fn) cimglist_for(list,__##fn) (list)[__##fn].fn
|
|
|
|
// Macros used to display error messages when exceptions are thrown.
|
|
// You should not use these macros is your own code.
|
|
#define _cimgdisplay_instance "[instance(%u,%u,%u,%c%s%c)] CImgDisplay::"
|
|
#define cimgdisplay_instance _width,_height,_normalization,_title?'\"':'[',_title?_title:"untitled",_title?'\"':']'
|
|
#define _cimg_instance "[instance(%u,%u,%u,%u,%p,%sshared)] CImg<%s>::"
|
|
#define cimg_instance _width,_height,_depth,_spectrum,_data,_is_shared?"":"non-",pixel_type()
|
|
#define _cimglist_instance "[instance(%u,%u,%p)] CImgList<%s>::"
|
|
#define cimglist_instance _width,_allocated_width,_data,pixel_type()
|
|
|
|
/*------------------------------------------------
|
|
#
|
|
#
|
|
# Define cimg_library:: namespace
|
|
#
|
|
#
|
|
-------------------------------------------------*/
|
|
//! Contains <i>all classes and functions</i> of the \CImg library.
|
|
/**
|
|
This namespace is defined to avoid functions and class names collisions
|
|
that could happen with the inclusion of other C++ header files.
|
|
Anyway, it should not happen often and you should reasonably start most of your
|
|
\CImg-based programs with
|
|
\code
|
|
#include "CImg.h"
|
|
using namespace cimg_library;
|
|
\endcode
|
|
to simplify the declaration of \CImg Library objects afterwards.
|
|
**/
|
|
namespace cimg_library {
|
|
|
|
// Declare the four classes of the CImg Library.
|
|
template<typename T=float> struct CImg;
|
|
template<typename T=float> struct CImgList;
|
|
struct CImgDisplay;
|
|
struct CImgException;
|
|
|
|
// Declare cimg:: namespace.
|
|
// This is an incomplete namespace definition here. It only contains some
|
|
// necessary stuff to ensure a correct declaration order of the classes and functions
|
|
// defined afterwards.
|
|
namespace cimg {
|
|
|
|
// Define character sequences for colored terminal output.
|
|
#ifdef cimg_use_vt100
|
|
static const char t_normal[] = { 0x1b, '[', '0', ';', '0', ';', '0', 'm', 0 };
|
|
static const char t_black[] = { 0x1b, '[', '0', ';', '3', '0', ';', '5', '9', 'm', 0 };
|
|
static const char t_red[] = { 0x1b, '[', '0', ';', '3', '1', ';', '5', '9', 'm', 0 };
|
|
static const char t_green[] = { 0x1b, '[', '0', ';', '3', '2', ';', '5', '9', 'm', 0 };
|
|
static const char t_yellow[] = { 0x1b, '[', '0', ';', '3', '3', ';', '5', '9', 'm', 0 };
|
|
static const char t_blue[] = { 0x1b, '[', '0', ';', '3', '4', ';', '5', '9', 'm', 0 };
|
|
static const char t_magenta[] = { 0x1b, '[', '0', ';', '3', '5', ';', '5', '9', 'm', 0 };
|
|
static const char t_cyan[] = { 0x1b, '[', '0', ';', '3', '6', ';', '5', '9', 'm', 0 };
|
|
static const char t_white[] = { 0x1b, '[', '0', ';', '3', '7', ';', '5', '9', 'm', 0 };
|
|
static const char t_bold[] = { 0x1b, '[', '1', 'm', 0 };
|
|
static const char t_underscore[] = { 0x1b, '[', '4', 'm', 0 };
|
|
#else
|
|
static const char t_normal[] = { 0 };
|
|
static const char *const t_black = cimg::t_normal,
|
|
*const t_red = cimg::t_normal,
|
|
*const t_green = cimg::t_normal,
|
|
*const t_yellow = cimg::t_normal,
|
|
*const t_blue = cimg::t_normal,
|
|
*const t_magenta = cimg::t_normal,
|
|
*const t_cyan = cimg::t_normal,
|
|
*const t_white = cimg::t_normal,
|
|
*const t_bold = cimg::t_normal,
|
|
*const t_underscore = cimg::t_normal;
|
|
#endif
|
|
|
|
inline std::FILE* output(std::FILE *file=0);
|
|
inline void info();
|
|
|
|
//! Avoid warning messages due to unused parameters. Do nothing actually.
|
|
template<typename T>
|
|
inline void unused(const T&, ...) {}
|
|
|
|
// [internal] Lock/unlock a mutex for managing concurrent threads.
|
|
// 'lock_mode' can be { 0=unlock | 1=lock | 2=trylock }.
|
|
// 'n' can be in [0,31] but mutex range [0,15] is reserved by CImg.
|
|
inline int mutex(const unsigned int n, const int lock_mode=1);
|
|
|
|
inline unsigned int& exception_mode(const unsigned int value, const bool is_set) {
|
|
static unsigned int mode = cimg_verbosity;
|
|
if (is_set) { cimg::mutex(0); mode = value<4?value:4; cimg::mutex(0,0); }
|
|
return mode;
|
|
}
|
|
|
|
// Functions to return standard streams 'stdin', 'stdout' and 'stderr'.
|
|
inline FILE* _stdin(const bool throw_exception=true);
|
|
inline FILE* _stdout(const bool throw_exception=true);
|
|
inline FILE* _stderr(const bool throw_exception=true);
|
|
|
|
// Mandatory because Microsoft's _snprintf() and _vsnprintf() do not add the '\0' character
|
|
// at the end of the string.
|
|
#if cimg_OS==2 && defined(_MSC_VER)
|
|
inline int _snprintf(char *const s, const size_t size, const char *const format, ...) {
|
|
va_list ap;
|
|
va_start(ap,format);
|
|
const int result = _vsnprintf(s,size,format,ap);
|
|
va_end(ap);
|
|
return result;
|
|
}
|
|
|
|
inline int _vsnprintf(char *const s, const size_t size, const char *const format, va_list ap) {
|
|
int result = -1;
|
|
cimg::mutex(6);
|
|
if (size) result = _vsnprintf_s(s,size,_TRUNCATE,format,ap);
|
|
if (result==-1) result = _vscprintf(format,ap);
|
|
cimg::mutex(6,0);
|
|
return result;
|
|
}
|
|
|
|
// Mutex-protected version of sscanf, snprintf and vnsprintf.
|
|
// Used only MacOSX, as it seems those functions are not re-entrant on MacOSX.
|
|
#elif defined(__MACOSX__) || defined(__APPLE__)
|
|
inline int _sscanf(const char *const s, const char *const format, ...) {
|
|
cimg::mutex(6);
|
|
va_list args;
|
|
va_start(args,format);
|
|
const int result = std::vsscanf(s,format,args);
|
|
va_end(args);
|
|
cimg::mutex(6,0);
|
|
return result;
|
|
}
|
|
|
|
inline int _snprintf(char *const s, const size_t n, const char *const format, ...) {
|
|
cimg::mutex(6);
|
|
va_list args;
|
|
va_start(args,format);
|
|
const int result = std::vsnprintf(s,n,format,args);
|
|
va_end(args);
|
|
cimg::mutex(6,0);
|
|
return result;
|
|
}
|
|
|
|
inline int _vsnprintf(char *const s, const size_t size, const char* format, va_list ap) {
|
|
cimg::mutex(6);
|
|
const int result = std::vsnprintf(s,size,format,ap);
|
|
cimg::mutex(6,0);
|
|
return result;
|
|
}
|
|
#endif
|
|
|
|
//! Set current \CImg exception mode.
|
|
/**
|
|
The way error messages are handled by \CImg can be changed dynamically, using this function.
|
|
\param mode Desired exception mode. Possible values are:
|
|
- \c 0: Hide library messages (quiet mode).
|
|
- \c 1: Print library messages on the console.
|
|
- \c 2: Display library messages on a dialog window.
|
|
- \c 3: Do as \c 1 + add extra debug warnings (slow down the code!).
|
|
- \c 4: Do as \c 2 + add extra debug warnings (slow down the code!).
|
|
**/
|
|
inline unsigned int& exception_mode(const unsigned int mode) {
|
|
return exception_mode(mode,true);
|
|
}
|
|
|
|
//! Return current \CImg exception mode.
|
|
/**
|
|
\note By default, return the value of configuration macro \c cimg_verbosity
|
|
**/
|
|
inline unsigned int& exception_mode() {
|
|
return exception_mode(0,false);
|
|
}
|
|
|
|
inline unsigned int openmp_mode(const unsigned int value, const bool is_set) {
|
|
static unsigned int mode = 2;
|
|
if (is_set) { cimg::mutex(0); mode = value<2?value:2; cimg::mutex(0,0); }
|
|
return mode;
|
|
}
|
|
|
|
//! Set current \CImg openmp mode.
|
|
/**
|
|
The way openmp-based methods are handled by \CImg can be changed dynamically, using this function.
|
|
\param mode Desired openmp mode. Possible values are:
|
|
- \c 0: Never parallelize.
|
|
- \c 1: Always parallelize.
|
|
- \c 2: Adaptive parallelization mode (default behavior).
|
|
**/
|
|
inline unsigned int openmp_mode(const unsigned int mode) {
|
|
return openmp_mode(mode,true);
|
|
}
|
|
|
|
//! Return current \CImg openmp mode.
|
|
inline unsigned int openmp_mode() {
|
|
return openmp_mode(0,false);
|
|
}
|
|
|
|
#ifndef cimg_openmp_sizefactor
|
|
#define cimg_openmp_sizefactor 1
|
|
#endif
|
|
#define cimg_openmp_if(cond) if ((cimg::openmp_mode()==1 || (cimg::openmp_mode()>1 && (cond))))
|
|
#define cimg_openmp_if_size(size,min_size) cimg_openmp_if((size)>=(cimg_openmp_sizefactor)*(min_size))
|
|
#ifdef _MSC_VER
|
|
// Disable 'collapse()' directive for MSVC (supports only OpenMP 2.0).
|
|
#define cimg_openmp_collapse(k)
|
|
#else
|
|
#define cimg_openmp_collapse(k) collapse(k)
|
|
#endif
|
|
|
|
#if cimg_OS==2
|
|
// Disable parallelization of simple loops on Windows, due to noticed performance drop.
|
|
#define cimg_openmp_for(instance,expr,min_size) cimg_rof((instance),ptr,T) *ptr = (T)(expr);
|
|
#else
|
|
#define cimg_openmp_for(instance,expr,min_size) \
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size((instance).size(),min_size)) \
|
|
cimg_rof((instance),ptr,T) *ptr = (T)(expr);
|
|
#endif
|
|
|
|
// Display a simple dialog box, and wait for the user's response.
|
|
inline int dialog(const char *const title, const char *const msg,
|
|
const char *const button1_label="OK", const char *const button2_label=0,
|
|
const char *const button3_label=0, const char *const button4_label=0,
|
|
const char *const button5_label=0, const char *const button6_label=0,
|
|
const bool centering=false);
|
|
|
|
// Evaluate math expression.
|
|
inline double eval(const char *const expression,
|
|
const double x=0, const double y=0, const double z=0, const double c=0);
|
|
|
|
} // namespace cimg { ...
|
|
|
|
/*---------------------------------------
|
|
#
|
|
# Define the CImgException structures
|
|
#
|
|
--------------------------------------*/
|
|
//! Instances of \c CImgException are thrown when errors are encountered in a \CImg function call.
|
|
/**
|
|
\par Overview
|
|
|
|
CImgException is the base class of all exceptions thrown by \CImg (except \b CImgAbortException).
|
|
CImgException is never thrown itself. Derived classes that specify the type of errord are thrown instead.
|
|
These classes can be:
|
|
|
|
- \b CImgAbortException: Thrown when a computationally-intensive function is aborted by an external signal.
|
|
This is the only \c non-derived exception class.
|
|
|
|
- \b CImgArgumentException: Thrown when one argument of a called \CImg function is invalid.
|
|
This is probably one of the most thrown exception by \CImg.
|
|
For instance, the following example throws a \c CImgArgumentException:
|
|
\code
|
|
CImg<float> img(100,100,1,3); // Define a 100x100 color image with float-valued pixels
|
|
img.mirror('e'); // Try to mirror image along the (non-existing) 'e'-axis
|
|
\endcode
|
|
|
|
- \b CImgDisplayException: Thrown when something went wrong during the display of images in CImgDisplay instances.
|
|
|
|
- \b CImgInstanceException: Thrown when an instance associated to a called \CImg method does not fit
|
|
the function requirements. For instance, the following example throws a \c CImgInstanceException:
|
|
\code
|
|
const CImg<float> img; // Define an empty image
|
|
const float value = img.at(0); // Try to read first pixel value (does not exist)
|
|
\endcode
|
|
|
|
- \b CImgIOException: Thrown when an error occurred when trying to load or save image files.
|
|
This happens when trying to read files that do not exist or with invalid formats.
|
|
For instance, the following example throws a \c CImgIOException:
|
|
\code
|
|
const CImg<float> img("missing_file.jpg"); // Try to load a file that does not exist
|
|
\endcode
|
|
|
|
- \b CImgWarningException: Thrown only if configuration macro \c cimg_strict_warnings is set, and
|
|
when a \CImg function has to display a warning message (see cimg::warn()).
|
|
|
|
It is not recommended to throw CImgException instances by yourself,
|
|
since they are expected to be thrown only by \CImg.
|
|
When an error occurs in a library function call, \CImg may display error messages on the screen or on the
|
|
standard output, depending on the current \CImg exception mode.
|
|
The \CImg exception mode can be get and set by functions cimg::exception_mode() and
|
|
cimg::exception_mode(unsigned int).
|
|
|
|
\par Exceptions handling
|
|
|
|
In all cases, when an error occurs in \CImg, an instance of the corresponding exception class is thrown.
|
|
This may lead the program to break (this is the default behavior), but you can bypass this behavior by
|
|
handling the exceptions by yourself,
|
|
using a usual <tt>try { ... } catch () { ... }</tt> block, as in the following example:
|
|
\code
|
|
#define "CImg.h"
|
|
using namespace cimg_library;
|
|
int main() {
|
|
cimg::exception_mode(0); // Enable quiet exception mode
|
|
try {
|
|
... // Here, do what you want to stress CImg
|
|
} catch (CImgException& e) { // You succeeded: something went wrong!
|
|
std::fprintf(stderr,"CImg Library Error: %s",e.what()); // Display your custom error message
|
|
... // Do what you want now to save the ship!
|
|
}
|
|
}
|
|
\endcode
|
|
**/
|
|
struct CImgException : public std::exception {
|
|
#define _cimg_exception_err(etype,disp_flag) \
|
|
std::va_list ap, ap2; \
|
|
va_start(ap,format); va_start(ap2,format); \
|
|
int size = cimg_vsnprintf(0,0,format,ap2); \
|
|
if (size++>=0) { \
|
|
delete[] _message; \
|
|
_message = new char[(size_t)size]; \
|
|
cimg_vsnprintf(_message,(size_t)size,format,ap); \
|
|
if (cimg::exception_mode()) { \
|
|
std::fprintf(cimg::output(),"\n%s[CImg] *** %s ***%s %s\n",cimg::t_red,etype,cimg::t_normal,_message); \
|
|
if (cimg_display && disp_flag && !(cimg::exception_mode()%2)) try { cimg::dialog(etype,_message,"Abort"); } \
|
|
catch (CImgException&) {} \
|
|
if (cimg::exception_mode()>=3) cimg_library::cimg::info(); \
|
|
} \
|
|
} \
|
|
va_end(ap); va_end(ap2);
|
|
|
|
char *_message;
|
|
CImgException() { _message = new char[1]; *_message = 0; }
|
|
CImgException(const char *const format, ...):_message(0) { _cimg_exception_err("CImgException",true); }
|
|
CImgException(const CImgException& e):std::exception(e) {
|
|
const size_t size = std::strlen(e._message);
|
|
_message = new char[size + 1];
|
|
std::strncpy(_message,e._message,size);
|
|
_message[size] = 0;
|
|
}
|
|
~CImgException() throw() { delete[] _message; }
|
|
CImgException& operator=(const CImgException& e) {
|
|
const size_t size = std::strlen(e._message);
|
|
_message = new char[size + 1];
|
|
std::strncpy(_message,e._message,size);
|
|
_message[size] = 0;
|
|
return *this;
|
|
}
|
|
//! Return a C-string containing the error message associated to the thrown exception.
|
|
const char *what() const throw() { return _message; }
|
|
}; // struct CImgException { ...
|
|
|
|
// The CImgAbortException class is used to throw an exception when
|
|
// a computationally-intensive function has been aborted by an external signal.
|
|
struct CImgAbortException : public std::exception {
|
|
char *_message;
|
|
CImgAbortException() { _message = new char[1]; *_message = 0; }
|
|
CImgAbortException(const char *const format, ...):_message(0) { _cimg_exception_err("CImgAbortException",true); }
|
|
CImgAbortException(const CImgAbortException& e):std::exception(e) {
|
|
const size_t size = std::strlen(e._message);
|
|
_message = new char[size + 1];
|
|
std::strncpy(_message,e._message,size);
|
|
_message[size] = 0;
|
|
}
|
|
~CImgAbortException() throw() { delete[] _message; }
|
|
CImgAbortException& operator=(const CImgAbortException& e) {
|
|
const size_t size = std::strlen(e._message);
|
|
_message = new char[size + 1];
|
|
std::strncpy(_message,e._message,size);
|
|
_message[size] = 0;
|
|
return *this;
|
|
}
|
|
//! Return a C-string containing the error message associated to the thrown exception.
|
|
const char *what() const throw() { return _message; }
|
|
}; // struct CImgAbortException { ...
|
|
|
|
// The CImgArgumentException class is used to throw an exception related
|
|
// to invalid arguments encountered in a library function call.
|
|
struct CImgArgumentException : public CImgException {
|
|
CImgArgumentException(const char *const format, ...) { _cimg_exception_err("CImgArgumentException",true); }
|
|
}; // struct CImgArgumentException { ...
|
|
|
|
// The CImgDisplayException class is used to throw an exception related
|
|
// to display problems encountered in a library function call.
|
|
struct CImgDisplayException : public CImgException {
|
|
CImgDisplayException(const char *const format, ...) { _cimg_exception_err("CImgDisplayException",false); }
|
|
}; // struct CImgDisplayException { ...
|
|
|
|
// The CImgInstanceException class is used to throw an exception related
|
|
// to an invalid instance encountered in a library function call.
|
|
struct CImgInstanceException : public CImgException {
|
|
CImgInstanceException(const char *const format, ...) { _cimg_exception_err("CImgInstanceException",true); }
|
|
}; // struct CImgInstanceException { ...
|
|
|
|
// The CImgIOException class is used to throw an exception related
|
|
// to input/output file problems encountered in a library function call.
|
|
struct CImgIOException : public CImgException {
|
|
CImgIOException(const char *const format, ...) { _cimg_exception_err("CImgIOException",true); }
|
|
}; // struct CImgIOException { ...
|
|
|
|
// The CImgWarningException class is used to throw an exception for warnings
|
|
// encountered in a library function call.
|
|
struct CImgWarningException : public CImgException {
|
|
CImgWarningException(const char *const format, ...) { _cimg_exception_err("CImgWarningException",false); }
|
|
}; // struct CImgWarningException { ...
|
|
|
|
/*-------------------------------------
|
|
#
|
|
# Define cimg:: namespace
|
|
#
|
|
-----------------------------------*/
|
|
//! Contains \a low-level functions and variables of the \CImg Library.
|
|
/**
|
|
Most of the functions and variables within this namespace are used by the \CImg library for low-level operations.
|
|
You may use them to access specific const values or environment variables internally used by \CImg.
|
|
\warning Never write <tt>using namespace cimg_library::cimg;</tt> in your source code. Lot of functions in the
|
|
<tt>cimg:: namespace</tt> have the same names as standard C functions that may be defined in the global
|
|
namespace <tt>::</tt>.
|
|
**/
|
|
namespace cimg {
|
|
|
|
// Define traits that will be used to determine the best data type to work in CImg functions.
|
|
//
|
|
template<typename T> struct type {
|
|
static const char* string() {
|
|
static const char* s[] = { "unknown", "unknown8", "unknown16", "unknown24",
|
|
"unknown32", "unknown40", "unknown48", "unknown56",
|
|
"unknown64", "unknown72", "unknown80", "unknown88",
|
|
"unknown96", "unknown104", "unknown112", "unknown120",
|
|
"unknown128" };
|
|
return s[(sizeof(T)<17)?sizeof(T):0];
|
|
}
|
|
static bool is_float() { return false; }
|
|
static bool is_inf(const T) { return false; }
|
|
static bool is_nan(const T) { return false; }
|
|
static bool is_finite(const T) { return true; }
|
|
static T min() { return ~max(); }
|
|
static T max() { return (T)1<<(8*sizeof(T) - 1); }
|
|
static T inf() { return max(); }
|
|
static T cut(const double val) { return val<(double)min()?min():val>(double)max()?max():(T)val; }
|
|
static const char* format() { return "%s"; }
|
|
static const char* format_s() { return "%s"; }
|
|
static const char* format(const T& val) { static const char *const s = "unknown"; cimg::unused(val); return s; }
|
|
};
|
|
|
|
template<> struct type<bool> {
|
|
static const char* string() {
|
|
static const char *const s = "bool";
|
|
return s;
|
|
}
|
|
static bool is_float() { return false; }
|
|
static bool is_inf(const bool) { return false; }
|
|
static bool is_nan(const bool) { return false; }
|
|
static bool is_finite(const bool) { return true; }
|
|
static bool min() { return false; }
|
|
static bool max() { return true; }
|
|
static bool inf() { return max(); }
|
|
static bool is_inf() { return false; }
|
|
static bool cut(const double val) { return val<(double)min()?min():val>(double)max()?max():(bool)val; }
|
|
static const char* format() { return "%s"; }
|
|
static const char* format_s() { return "%s"; }
|
|
static const char* format(const bool val) { static const char* s[] = { "false", "true" }; return s[val?1:0]; }
|
|
};
|
|
|
|
template<> struct type<unsigned char> {
|
|
static const char* string() { static const char *const s = "uint8"; return s; }
|
|
static bool is_float() { return false; }
|
|
static bool is_inf(const unsigned char) { return false; }
|
|
static bool is_nan(const unsigned char) { return false; }
|
|
static bool is_finite(const unsigned char) { return true; }
|
|
static unsigned char min() { return 0; }
|
|
static unsigned char max() { return (unsigned char)-1; }
|
|
static unsigned char inf() { return max(); }
|
|
static unsigned char cut(const double val) {
|
|
return val<(double)min()?min():val>(double)max()?max():(unsigned char)val; }
|
|
static const char* format() { return "%u"; }
|
|
static const char* format_s() { return "%u"; }
|
|
static unsigned int format(const unsigned char val) { return (unsigned int)val; }
|
|
};
|
|
|
|
#if defined(CHAR_MAX) && CHAR_MAX==255
|
|
template<> struct type<char> {
|
|
static const char* string() { static const char *const s = "uint8"; return s; }
|
|
static bool is_float() { return false; }
|
|
static bool is_inf(const char) { return false; }
|
|
static bool is_nan(const char) { return false; }
|
|
static bool is_finite(const char) { return true; }
|
|
static char min() { return 0; }
|
|
static char max() { return (char)-1; }
|
|
static char inf() { return max(); }
|
|
static char cut(const double val) {
|
|
return val<(double)min()?min():val>(double)max()?max():(unsigned char)val; }
|
|
static const char* format() { return "%u"; }
|
|
static const char* format_s() { return "%u"; }
|
|
static unsigned int format(const char val) { return (unsigned int)val; }
|
|
};
|
|
#else
|
|
template<> struct type<char> {
|
|
static const char* string() { static const char *const s = "int8"; return s; }
|
|
static bool is_float() { return false; }
|
|
static bool is_inf(const char) { return false; }
|
|
static bool is_nan(const char) { return false; }
|
|
static bool is_finite(const char) { return true; }
|
|
static char min() { return ~max(); }
|
|
static char max() { return (char)((unsigned char)-1>>1); }
|
|
static char inf() { return max(); }
|
|
static char cut(const double val) { return val<(double)min()?min():val>(double)max()?max():(char)val; }
|
|
static const char* format() { return "%d"; }
|
|
static const char* format_s() { return "%d"; }
|
|
static int format(const char val) { return (int)val; }
|
|
};
|
|
#endif
|
|
|
|
template<> struct type<signed char> {
|
|
static const char* string() { static const char *const s = "int8"; return s; }
|
|
static bool is_float() { return false; }
|
|
static bool is_inf(const signed char) { return false; }
|
|
static bool is_nan(const signed char) { return false; }
|
|
static bool is_finite(const signed char) { return true; }
|
|
static signed char min() { return ~max(); }
|
|
static signed char max() { return (signed char)((unsigned char)-1>>1); }
|
|
static signed char inf() { return max(); }
|
|
static signed char cut(const double val) {
|
|
return val<(double)min()?min():val>(double)max()?max():(signed char)val; }
|
|
static const char* format() { return "%d"; }
|
|
static const char* format_s() { return "%d"; }
|
|
static int format(const signed char val) { return (int)val; }
|
|
};
|
|
|
|
template<> struct type<unsigned short> {
|
|
static const char* string() { static const char *const s = "uint16"; return s; }
|
|
static bool is_float() { return false; }
|
|
static bool is_inf(const unsigned short) { return false; }
|
|
static bool is_nan(const unsigned short) { return false; }
|
|
static bool is_finite(const unsigned short) { return true; }
|
|
static unsigned short min() { return 0; }
|
|
static unsigned short max() { return (unsigned short)-1; }
|
|
static unsigned short inf() { return max(); }
|
|
static unsigned short cut(const double val) {
|
|
return val<(double)min()?min():val>(double)max()?max():(unsigned short)val; }
|
|
static const char* format() { return "%u"; }
|
|
static const char* format_s() { return "%u"; }
|
|
static unsigned int format(const unsigned short val) { return (unsigned int)val; }
|
|
};
|
|
|
|
template<> struct type<short> {
|
|
static const char* string() { static const char *const s = "int16"; return s; }
|
|
static bool is_float() { return false; }
|
|
static bool is_inf(const short) { return false; }
|
|
static bool is_nan(const short) { return false; }
|
|
static bool is_finite(const short) { return true; }
|
|
static short min() { return ~max(); }
|
|
static short max() { return (short)((unsigned short)-1>>1); }
|
|
static short inf() { return max(); }
|
|
static short cut(const double val) { return val<(double)min()?min():val>(double)max()?max():(short)val; }
|
|
static const char* format() { return "%d"; }
|
|
static const char* format_s() { return "%d"; }
|
|
static int format(const short val) { return (int)val; }
|
|
};
|
|
|
|
template<> struct type<unsigned int> {
|
|
static const char* string() { static const char *const s = "uint32"; return s; }
|
|
static bool is_float() { return false; }
|
|
static bool is_inf(const unsigned int) { return false; }
|
|
static bool is_nan(const unsigned int) { return false; }
|
|
static bool is_finite(const unsigned int) { return true; }
|
|
static unsigned int min() { return 0; }
|
|
static unsigned int max() { return (unsigned int)-1; }
|
|
static unsigned int inf() { return max(); }
|
|
static unsigned int cut(const double val) {
|
|
return val<(double)min()?min():val>(double)max()?max():(unsigned int)val; }
|
|
static const char* format() { return "%u"; }
|
|
static const char* format_s() { return "%u"; }
|
|
static unsigned int format(const unsigned int val) { return val; }
|
|
};
|
|
|
|
template<> struct type<int> {
|
|
static const char* string() { static const char *const s = "int32"; return s; }
|
|
static bool is_float() { return false; }
|
|
static bool is_inf(const int) { return false; }
|
|
static bool is_nan(const int) { return false; }
|
|
static bool is_finite(const int) { return true; }
|
|
static int min() { return ~max(); }
|
|
static int max() { return (int)(~0U>>1); }
|
|
static int inf() { return max(); }
|
|
static int cut(const double val) { return val<(double)min()?min():val>(double)max()?max():(int)val; }
|
|
static const char* format() { return "%d"; }
|
|
static const char* format_s() { return "%d"; }
|
|
static int format(const int val) { return val; }
|
|
};
|
|
|
|
template<> struct type<cimg_uint64> {
|
|
static const char* string() { static const char *const s = "uint64"; return s; }
|
|
static bool is_float() { return false; }
|
|
static bool is_inf(const cimg_uint64) { return false; }
|
|
static bool is_nan(const cimg_uint64) { return false; }
|
|
static bool is_finite(const cimg_uint64) { return true; }
|
|
static cimg_uint64 min() { return 0; }
|
|
static cimg_uint64 max() { return (cimg_uint64)-1; }
|
|
static cimg_uint64 inf() { return max(); }
|
|
static cimg_uint64 cut(const double val) {
|
|
return val<(double)min()?min():val>(double)max()?max():(cimg_uint64)val; }
|
|
static const char* format() { return cimg_fuint64; }
|
|
static const char* format_s() { return cimg_fuint64; }
|
|
static cimg_uint64 format(const cimg_uint64 val) { return val; }
|
|
};
|
|
|
|
template<> struct type<cimg_int64> {
|
|
static const char* string() { static const char *const s = "int64"; return s; }
|
|
static bool is_float() { return false; }
|
|
static bool is_inf(const cimg_int64) { return false; }
|
|
static bool is_nan(const cimg_int64) { return false; }
|
|
static bool is_finite(const cimg_int64) { return true; }
|
|
static cimg_int64 min() { return ~max(); }
|
|
static cimg_int64 max() { return (cimg_int64)((cimg_uint64)-1>>1); }
|
|
static cimg_int64 inf() { return max(); }
|
|
static cimg_int64 cut(const double val) {
|
|
return val<(double)min()?min():val>(double)max()?max():(cimg_int64)val;
|
|
}
|
|
static const char* format() { return cimg_fint64; }
|
|
static const char* format_s() { return cimg_fint64; }
|
|
static long format(const long val) { return (long)val; }
|
|
};
|
|
|
|
template<> struct type<double> {
|
|
static const char* string() { static const char *const s = "float64"; return s; }
|
|
static bool is_float() { return true; }
|
|
static bool is_inf(const double val) {
|
|
#ifdef isinf
|
|
return (bool)isinf(val);
|
|
#else
|
|
return !is_nan(val) && (val<cimg::type<double>::min() || val>cimg::type<double>::max());
|
|
#endif
|
|
}
|
|
static bool is_nan(const double val) { // Custom version that works with '-ffast-math'
|
|
if (sizeof(double)==8) {
|
|
cimg_uint64 u;
|
|
std::memcpy(&u,&val,sizeof(double));
|
|
return ((unsigned int)(u>>32)&0x7fffffff) + ((unsigned int)u!=0)>0x7ff00000;
|
|
}
|
|
#ifdef isnan
|
|
return (bool)isnan(val);
|
|
#else
|
|
return !(val==val);
|
|
#endif
|
|
}
|
|
static bool is_finite(const double val) {
|
|
#ifdef isfinite
|
|
return (bool)isfinite(val);
|
|
#else
|
|
return !is_nan(val) && !is_inf(val);
|
|
#endif
|
|
}
|
|
static double min() { return -DBL_MAX; }
|
|
static double max() { return DBL_MAX; }
|
|
static double inf() {
|
|
#ifdef INFINITY
|
|
return (double)INFINITY;
|
|
#else
|
|
return max()*max();
|
|
#endif
|
|
}
|
|
static double nan() {
|
|
#ifdef NAN
|
|
return (double)NAN;
|
|
#else
|
|
const double val_nan = -std::sqrt(-1.); return val_nan;
|
|
#endif
|
|
}
|
|
static double cut(const double val) { return val; }
|
|
static const char* format() { return "%.17g"; }
|
|
static const char* format_s() { return "%g"; }
|
|
static double format(const double val) { return val; }
|
|
};
|
|
|
|
template<> struct type<float> {
|
|
static const char* string() { static const char *const s = "float32"; return s; }
|
|
static bool is_float() { return true; }
|
|
static bool is_inf(const float val) {
|
|
#ifdef isinf
|
|
return (bool)isinf(val);
|
|
#else
|
|
return !is_nan(val) && (val<cimg::type<float>::min() || val>cimg::type<float>::max());
|
|
#endif
|
|
}
|
|
static bool is_nan(const float val) { // Custom version that works with '-ffast-math'
|
|
if (sizeof(float)==4) {
|
|
unsigned int u;
|
|
std::memcpy(&u,&val,sizeof(float));
|
|
return (u&0x7fffffff)>0x7f800000;
|
|
}
|
|
#ifdef isnan
|
|
return (bool)isnan(val);
|
|
#else
|
|
return !(val==val);
|
|
#endif
|
|
}
|
|
static bool is_finite(const float val) {
|
|
#ifdef isfinite
|
|
return (bool)isfinite(val);
|
|
#else
|
|
return !is_nan(val) && !is_inf(val);
|
|
#endif
|
|
}
|
|
static float min() { return -FLT_MAX; }
|
|
static float max() { return FLT_MAX; }
|
|
static float inf() { return (float)cimg::type<double>::inf(); }
|
|
static float nan() { return (float)cimg::type<double>::nan(); }
|
|
static float cut(const double val) { return (float)val; }
|
|
static float cut(const float val) { return (float)val; }
|
|
static const char* format() { return "%.9g"; }
|
|
static const char* format_s() { return "%g"; }
|
|
static double format(const float val) { return (double)val; }
|
|
};
|
|
|
|
template<> struct type<long double> {
|
|
static const char* string() { static const char *const s = "float128"; return s; }
|
|
static bool is_float() { return true; }
|
|
static bool is_inf(const long double val) {
|
|
#ifdef isinf
|
|
return (bool)isinf(val);
|
|
#else
|
|
return !is_nan(val) && (val<cimg::type<long double>::min() || val>cimg::type<long double>::max());
|
|
#endif
|
|
}
|
|
static bool is_nan(const long double val) {
|
|
#ifdef isnan
|
|
return (bool)isnan(val);
|
|
#else
|
|
return !(val==val);
|
|
#endif
|
|
}
|
|
static bool is_finite(const long double val) {
|
|
#ifdef isfinite
|
|
return (bool)isfinite(val);
|
|
#else
|
|
return !is_nan(val) && !is_inf(val);
|
|
#endif
|
|
}
|
|
static long double min() { return -LDBL_MAX; }
|
|
static long double max() { return LDBL_MAX; }
|
|
static long double inf() { return max()*max(); }
|
|
static long double nan() { const long double val_nan = -std::sqrt(-1.L); return val_nan; }
|
|
static long double cut(const long double val) { return val; }
|
|
static const char* format() { return "%.17g"; }
|
|
static const char* format_s() { return "%g"; }
|
|
static double format(const long double val) { return (double)val; }
|
|
};
|
|
|
|
#ifdef cimg_use_half
|
|
template<> struct type<half> {
|
|
static const char* string() { static const char *const s = "float16"; return s; }
|
|
static bool is_float() { return true; }
|
|
static bool is_inf(const long double val) {
|
|
#ifdef isinf
|
|
return (bool)isinf(val);
|
|
#else
|
|
return !is_nan(val) && (val<cimg::type<half>::min() || val>cimg::type<half>::max());
|
|
#endif
|
|
}
|
|
static bool is_nan(const half val) { // Custom version that works with '-ffast-math'
|
|
if (sizeof(half)==2) {
|
|
short u;
|
|
std::memcpy(&u,&val,sizeof(short));
|
|
return (bool)((u&0x7fff)>0x7c00);
|
|
}
|
|
return cimg::type<float>::is_nan((float)val);
|
|
}
|
|
static bool is_finite(const half val) {
|
|
#ifdef isfinite
|
|
return (bool)isfinite(val);
|
|
#else
|
|
return !is_nan(val) && !is_inf(val);
|
|
#endif
|
|
}
|
|
static half min() { return (half)-65504; }
|
|
static half max() { return (half)65504; }
|
|
static half inf() { return max()*max(); }
|
|
static half nan() { const half val_nan = (half)-std::sqrt(-1.); return val_nan; }
|
|
static half cut(const double val) { return (half)val; }
|
|
static const char* format() { return "%.9g"; }
|
|
static const char* format_s() { return "%g"; }
|
|
static double format(const half val) { return (double)val; }
|
|
};
|
|
#endif
|
|
|
|
template<typename T, typename t> struct superset { typedef T type; };
|
|
template<> struct superset<bool,unsigned char> { typedef unsigned char type; };
|
|
template<> struct superset<bool,char> { typedef char type; };
|
|
template<> struct superset<bool,signed char> { typedef signed char type; };
|
|
template<> struct superset<bool,unsigned short> { typedef unsigned short type; };
|
|
template<> struct superset<bool,short> { typedef short type; };
|
|
template<> struct superset<bool,unsigned int> { typedef unsigned int type; };
|
|
template<> struct superset<bool,int> { typedef int type; };
|
|
template<> struct superset<bool,cimg_uint64> { typedef cimg_uint64 type; };
|
|
template<> struct superset<bool,cimg_int64> { typedef cimg_int64 type; };
|
|
template<> struct superset<bool,float> { typedef float type; };
|
|
template<> struct superset<bool,double> { typedef double type; };
|
|
template<> struct superset<unsigned char,char> { typedef short type; };
|
|
template<> struct superset<unsigned char,signed char> { typedef short type; };
|
|
template<> struct superset<unsigned char,unsigned short> { typedef unsigned short type; };
|
|
template<> struct superset<unsigned char,short> { typedef short type; };
|
|
template<> struct superset<unsigned char,unsigned int> { typedef unsigned int type; };
|
|
template<> struct superset<unsigned char,int> { typedef int type; };
|
|
template<> struct superset<unsigned char,cimg_uint64> { typedef cimg_uint64 type; };
|
|
template<> struct superset<unsigned char,cimg_int64> { typedef cimg_int64 type; };
|
|
template<> struct superset<unsigned char,float> { typedef float type; };
|
|
template<> struct superset<unsigned char,double> { typedef double type; };
|
|
template<> struct superset<signed char,unsigned char> { typedef short type; };
|
|
template<> struct superset<signed char,char> { typedef short type; };
|
|
template<> struct superset<signed char,unsigned short> { typedef int type; };
|
|
template<> struct superset<signed char,short> { typedef short type; };
|
|
template<> struct superset<signed char,unsigned int> { typedef cimg_int64 type; };
|
|
template<> struct superset<signed char,int> { typedef int type; };
|
|
template<> struct superset<signed char,cimg_uint64> { typedef cimg_int64 type; };
|
|
template<> struct superset<signed char,cimg_int64> { typedef cimg_int64 type; };
|
|
template<> struct superset<signed char,float> { typedef float type; };
|
|
template<> struct superset<signed char,double> { typedef double type; };
|
|
template<> struct superset<char,unsigned char> { typedef short type; };
|
|
template<> struct superset<char,signed char> { typedef short type; };
|
|
template<> struct superset<char,unsigned short> { typedef int type; };
|
|
template<> struct superset<char,short> { typedef short type; };
|
|
template<> struct superset<char,unsigned int> { typedef cimg_int64 type; };
|
|
template<> struct superset<char,int> { typedef int type; };
|
|
template<> struct superset<char,cimg_uint64> { typedef cimg_int64 type; };
|
|
template<> struct superset<char,cimg_int64> { typedef cimg_int64 type; };
|
|
template<> struct superset<char,float> { typedef float type; };
|
|
template<> struct superset<char,double> { typedef double type; };
|
|
template<> struct superset<unsigned short,char> { typedef int type; };
|
|
template<> struct superset<unsigned short,signed char> { typedef int type; };
|
|
template<> struct superset<unsigned short,short> { typedef int type; };
|
|
template<> struct superset<unsigned short,unsigned int> { typedef unsigned int type; };
|
|
template<> struct superset<unsigned short,int> { typedef int type; };
|
|
template<> struct superset<unsigned short,cimg_uint64> { typedef cimg_uint64 type; };
|
|
template<> struct superset<unsigned short,cimg_int64> { typedef cimg_int64 type; };
|
|
template<> struct superset<unsigned short,float> { typedef float type; };
|
|
template<> struct superset<unsigned short,double> { typedef double type; };
|
|
template<> struct superset<short,unsigned short> { typedef int type; };
|
|
template<> struct superset<short,unsigned int> { typedef cimg_int64 type; };
|
|
template<> struct superset<short,int> { typedef int type; };
|
|
template<> struct superset<short,cimg_uint64> { typedef cimg_int64 type; };
|
|
template<> struct superset<short,cimg_int64> { typedef cimg_int64 type; };
|
|
template<> struct superset<short,float> { typedef float type; };
|
|
template<> struct superset<short,double> { typedef double type; };
|
|
template<> struct superset<unsigned int,char> { typedef cimg_int64 type; };
|
|
template<> struct superset<unsigned int,signed char> { typedef cimg_int64 type; };
|
|
template<> struct superset<unsigned int,short> { typedef cimg_int64 type; };
|
|
template<> struct superset<unsigned int,int> { typedef cimg_int64 type; };
|
|
template<> struct superset<unsigned int,cimg_uint64> { typedef cimg_uint64 type; };
|
|
template<> struct superset<unsigned int,cimg_int64> { typedef cimg_int64 type; };
|
|
template<> struct superset<unsigned int,float> { typedef float type; };
|
|
template<> struct superset<unsigned int,double> { typedef double type; };
|
|
template<> struct superset<int,unsigned int> { typedef cimg_int64 type; };
|
|
template<> struct superset<int,cimg_uint64> { typedef cimg_int64 type; };
|
|
template<> struct superset<int,cimg_int64> { typedef cimg_int64 type; };
|
|
template<> struct superset<int,float> { typedef float type; };
|
|
template<> struct superset<int,double> { typedef double type; };
|
|
template<> struct superset<cimg_uint64,char> { typedef cimg_int64 type; };
|
|
template<> struct superset<cimg_uint64,signed char> { typedef cimg_int64 type; };
|
|
template<> struct superset<cimg_uint64,short> { typedef cimg_int64 type; };
|
|
template<> struct superset<cimg_uint64,int> { typedef cimg_int64 type; };
|
|
template<> struct superset<cimg_uint64,cimg_int64> { typedef cimg_int64 type; };
|
|
template<> struct superset<cimg_uint64,float> { typedef double type; };
|
|
template<> struct superset<cimg_uint64,double> { typedef double type; };
|
|
template<> struct superset<cimg_int64,float> { typedef double type; };
|
|
template<> struct superset<cimg_int64,double> { typedef double type; };
|
|
template<> struct superset<float,cimg_uint64> { typedef double type; };
|
|
template<> struct superset<float,cimg_int64> { typedef double type; };
|
|
template<> struct superset<float,double> { typedef double type; };
|
|
|
|
#ifdef cimg_use_half
|
|
template<> struct superset<half,unsigned short> { typedef float type; };
|
|
template<> struct superset<half,short> { typedef float type; };
|
|
template<> struct superset<half,unsigned int> { typedef float type; };
|
|
template<> struct superset<half,int> { typedef float type; };
|
|
template<> struct superset<half,cimg_uint64> { typedef float type; };
|
|
template<> struct superset<half,cimg_int64> { typedef float type; };
|
|
template<> struct superset<half,float> { typedef float type; };
|
|
template<> struct superset<half,double> { typedef double type; };
|
|
#endif
|
|
|
|
template<typename t1, typename t2, typename t3> struct superset2 {
|
|
typedef typename superset<t1, typename superset<t2,t3>::type>::type type;
|
|
};
|
|
|
|
template<typename t1, typename t2, typename t3, typename t4> struct superset3 {
|
|
typedef typename superset<t1, typename superset2<t2,t3,t4>::type>::type type;
|
|
};
|
|
|
|
template<typename t1, typename t2> struct last { typedef t2 type; };
|
|
|
|
#define _cimg_Tt typename cimg::superset<T,t>::type
|
|
#define _cimg_Tfloat typename cimg::superset<T,float>::type
|
|
#define _cimg_tfloat typename cimg::superset<t,float>::type
|
|
#define _cimg_Ttfloat typename cimg::superset2<T,t,float>::type
|
|
#define _cimg_Ttdouble typename cimg::superset2<T,t,double>::type
|
|
|
|
// Define variables used internally by CImg.
|
|
#if cimg_display==1
|
|
struct X11_static {
|
|
unsigned int nb_wins;
|
|
pthread_t *events_thread;
|
|
pthread_cond_t wait_event;
|
|
pthread_mutex_t wait_event_mutex;
|
|
CImgDisplay **wins;
|
|
Display *display;
|
|
unsigned int nb_bits;
|
|
bool is_blue_first;
|
|
bool is_shm_enabled;
|
|
bool byte_order;
|
|
|
|
#ifdef cimg_use_xrandr
|
|
XRRScreenSize *resolutions;
|
|
Rotation curr_rotation;
|
|
unsigned int curr_resolution;
|
|
unsigned int nb_resolutions;
|
|
#endif
|
|
X11_static():nb_wins(0),events_thread(0),display(0),
|
|
nb_bits(0),is_blue_first(false),is_shm_enabled(false),byte_order(false) {
|
|
#ifdef __FreeBSD__
|
|
XInitThreads();
|
|
#endif
|
|
wins = new CImgDisplay*[1024];
|
|
pthread_mutex_init(&wait_event_mutex,0);
|
|
pthread_cond_init(&wait_event,0);
|
|
|
|
#ifdef cimg_use_xrandr
|
|
resolutions = 0;
|
|
curr_rotation = 0;
|
|
curr_resolution = nb_resolutions = 0;
|
|
#endif
|
|
}
|
|
|
|
~X11_static() {
|
|
delete[] wins;
|
|
/*
|
|
if (events_thread) {
|
|
pthread_cancel(*events_thread);
|
|
delete events_thread;
|
|
}
|
|
if (display) { } // XCloseDisplay(display); }
|
|
pthread_cond_destroy(&wait_event);
|
|
pthread_mutex_unlock(&wait_event_mutex);
|
|
pthread_mutex_destroy(&wait_event_mutex);
|
|
*/
|
|
}
|
|
}; // struct X11_static { ...
|
|
#if defined(cimg_module)
|
|
X11_static& X11_attr();
|
|
#elif defined(cimg_main)
|
|
X11_static& X11_attr() { static X11_static val; return val; }
|
|
#else
|
|
inline X11_static& X11_attr() { static X11_static val; return val; }
|
|
#endif
|
|
|
|
#elif cimg_display==2
|
|
struct Win32_static {
|
|
HANDLE wait_event;
|
|
Win32_static() { wait_event = CreateEvent(0,FALSE_WIN,FALSE_WIN,0); }
|
|
}; // struct Win32_static { ...
|
|
#if defined(cimg_module)
|
|
Win32_static& Win32_attr();
|
|
#elif defined(cimg_main)
|
|
Win32_static& Win32_attr() { static Win32_static val; return val; }
|
|
#else
|
|
inline Win32_static& Win32_attr() { static Win32_static val; return val; }
|
|
#endif
|
|
#endif
|
|
#define cimg_lock_display() cimg::mutex(15)
|
|
#define cimg_unlock_display() cimg::mutex(15,0)
|
|
|
|
struct Mutex_static {
|
|
#if cimg_OS==1 && (defined(cimg_use_pthread) || cimg_display==1)
|
|
pthread_mutex_t mutex[32];
|
|
Mutex_static() { for (unsigned int i = 0; i<32; ++i) pthread_mutex_init(&mutex[i],0); }
|
|
void lock(const unsigned int n) { pthread_mutex_lock(&mutex[n]); }
|
|
void unlock(const unsigned int n) { pthread_mutex_unlock(&mutex[n]); }
|
|
int trylock(const unsigned int n) { return pthread_mutex_trylock(&mutex[n]); }
|
|
#elif cimg_OS==2
|
|
HANDLE mutex[32];
|
|
Mutex_static() { for (unsigned int i = 0; i<32; ++i) mutex[i] = CreateMutex(0,FALSE_WIN,0); }
|
|
void lock(const unsigned int n) { WaitForSingleObject(mutex[n],INFINITE); }
|
|
void unlock(const unsigned int n) { ReleaseMutex(mutex[n]); }
|
|
int trylock(const unsigned int) { return 0; }
|
|
#else
|
|
Mutex_static() {}
|
|
void lock(const unsigned int) {}
|
|
void unlock(const unsigned int) {}
|
|
int trylock(const unsigned int) { return 0; }
|
|
#endif
|
|
}; // struct Mutex_static { ...
|
|
#if defined(cimg_module)
|
|
Mutex_static& Mutex_attr();
|
|
#elif defined(cimg_main)
|
|
Mutex_static& Mutex_attr() { static Mutex_static val; return val; }
|
|
#else
|
|
inline Mutex_static& Mutex_attr() { static Mutex_static val; return val; }
|
|
#endif
|
|
|
|
#if defined(cimg_use_magick)
|
|
struct Magick_static {
|
|
Magick_static() {
|
|
Magick::InitializeMagick("");
|
|
}
|
|
}; // struct Magick_static { ...
|
|
static Magick_static _Magick_static;
|
|
#endif
|
|
|
|
#if defined(cimg_use_fftw3) && !defined(cimg_use_fftw3_singlethread)
|
|
struct FFTW3_static {
|
|
FFTW3_static() {
|
|
fftw_init_threads();
|
|
}
|
|
}; // struct FFTW3_static { ...
|
|
static FFTW3_static _FFTW3_static;
|
|
#endif
|
|
|
|
#if cimg_display==1
|
|
// Define keycodes for X11-based graphical systems.
|
|
const unsigned int keyESC = XK_Escape;
|
|
const unsigned int keyF1 = XK_F1;
|
|
const unsigned int keyF2 = XK_F2;
|
|
const unsigned int keyF3 = XK_F3;
|
|
const unsigned int keyF4 = XK_F4;
|
|
const unsigned int keyF5 = XK_F5;
|
|
const unsigned int keyF6 = XK_F6;
|
|
const unsigned int keyF7 = XK_F7;
|
|
const unsigned int keyF8 = XK_F8;
|
|
const unsigned int keyF9 = XK_F9;
|
|
const unsigned int keyF10 = XK_F10;
|
|
const unsigned int keyF11 = XK_F11;
|
|
const unsigned int keyF12 = XK_F12;
|
|
const unsigned int keyPAUSE = XK_Pause;
|
|
const unsigned int key1 = XK_1;
|
|
const unsigned int key2 = XK_2;
|
|
const unsigned int key3 = XK_3;
|
|
const unsigned int key4 = XK_4;
|
|
const unsigned int key5 = XK_5;
|
|
const unsigned int key6 = XK_6;
|
|
const unsigned int key7 = XK_7;
|
|
const unsigned int key8 = XK_8;
|
|
const unsigned int key9 = XK_9;
|
|
const unsigned int key0 = XK_0;
|
|
const unsigned int keyBACKSPACE = XK_BackSpace;
|
|
const unsigned int keyINSERT = XK_Insert;
|
|
const unsigned int keyHOME = XK_Home;
|
|
const unsigned int keyPAGEUP = XK_Page_Up;
|
|
const unsigned int keyTAB = XK_Tab;
|
|
const unsigned int keyQ = XK_q;
|
|
const unsigned int keyW = XK_w;
|
|
const unsigned int keyE = XK_e;
|
|
const unsigned int keyR = XK_r;
|
|
const unsigned int keyT = XK_t;
|
|
const unsigned int keyY = XK_y;
|
|
const unsigned int keyU = XK_u;
|
|
const unsigned int keyI = XK_i;
|
|
const unsigned int keyO = XK_o;
|
|
const unsigned int keyP = XK_p;
|
|
const unsigned int keyDELETE = XK_Delete;
|
|
const unsigned int keyEND = XK_End;
|
|
const unsigned int keyPAGEDOWN = XK_Page_Down;
|
|
const unsigned int keyCAPSLOCK = XK_Caps_Lock;
|
|
const unsigned int keyA = XK_a;
|
|
const unsigned int keyS = XK_s;
|
|
const unsigned int keyD = XK_d;
|
|
const unsigned int keyF = XK_f;
|
|
const unsigned int keyG = XK_g;
|
|
const unsigned int keyH = XK_h;
|
|
const unsigned int keyJ = XK_j;
|
|
const unsigned int keyK = XK_k;
|
|
const unsigned int keyL = XK_l;
|
|
const unsigned int keyENTER = XK_Return;
|
|
const unsigned int keySHIFTLEFT = XK_Shift_L;
|
|
const unsigned int keyZ = XK_z;
|
|
const unsigned int keyX = XK_x;
|
|
const unsigned int keyC = XK_c;
|
|
const unsigned int keyV = XK_v;
|
|
const unsigned int keyB = XK_b;
|
|
const unsigned int keyN = XK_n;
|
|
const unsigned int keyM = XK_m;
|
|
const unsigned int keySHIFTRIGHT = XK_Shift_R;
|
|
const unsigned int keyARROWUP = XK_Up;
|
|
const unsigned int keyCTRLLEFT = XK_Control_L;
|
|
const unsigned int keyAPPLEFT = XK_Super_L;
|
|
const unsigned int keyALT = XK_Alt_L;
|
|
const unsigned int keySPACE = XK_space;
|
|
const unsigned int keyALTGR = XK_Alt_R;
|
|
const unsigned int keyAPPRIGHT = XK_Super_R;
|
|
const unsigned int keyMENU = XK_Menu;
|
|
const unsigned int keyCTRLRIGHT = XK_Control_R;
|
|
const unsigned int keyARROWLEFT = XK_Left;
|
|
const unsigned int keyARROWDOWN = XK_Down;
|
|
const unsigned int keyARROWRIGHT = XK_Right;
|
|
const unsigned int keyPAD0 = XK_KP_0;
|
|
const unsigned int keyPAD1 = XK_KP_1;
|
|
const unsigned int keyPAD2 = XK_KP_2;
|
|
const unsigned int keyPAD3 = XK_KP_3;
|
|
const unsigned int keyPAD4 = XK_KP_4;
|
|
const unsigned int keyPAD5 = XK_KP_5;
|
|
const unsigned int keyPAD6 = XK_KP_6;
|
|
const unsigned int keyPAD7 = XK_KP_7;
|
|
const unsigned int keyPAD8 = XK_KP_8;
|
|
const unsigned int keyPAD9 = XK_KP_9;
|
|
const unsigned int keyPADADD = XK_KP_Add;
|
|
const unsigned int keyPADSUB = XK_KP_Subtract;
|
|
const unsigned int keyPADMUL = XK_KP_Multiply;
|
|
const unsigned int keyPADDIV = XK_KP_Divide;
|
|
|
|
#elif cimg_display==2
|
|
// Define keycodes for Windows.
|
|
const unsigned int keyESC = VK_ESCAPE;
|
|
const unsigned int keyF1 = VK_F1;
|
|
const unsigned int keyF2 = VK_F2;
|
|
const unsigned int keyF3 = VK_F3;
|
|
const unsigned int keyF4 = VK_F4;
|
|
const unsigned int keyF5 = VK_F5;
|
|
const unsigned int keyF6 = VK_F6;
|
|
const unsigned int keyF7 = VK_F7;
|
|
const unsigned int keyF8 = VK_F8;
|
|
const unsigned int keyF9 = VK_F9;
|
|
const unsigned int keyF10 = VK_F10;
|
|
const unsigned int keyF11 = VK_F11;
|
|
const unsigned int keyF12 = VK_F12;
|
|
const unsigned int keyPAUSE = VK_PAUSE;
|
|
const unsigned int key1 = '1';
|
|
const unsigned int key2 = '2';
|
|
const unsigned int key3 = '3';
|
|
const unsigned int key4 = '4';
|
|
const unsigned int key5 = '5';
|
|
const unsigned int key6 = '6';
|
|
const unsigned int key7 = '7';
|
|
const unsigned int key8 = '8';
|
|
const unsigned int key9 = '9';
|
|
const unsigned int key0 = '0';
|
|
const unsigned int keyBACKSPACE = VK_BACK;
|
|
const unsigned int keyINSERT = VK_INSERT;
|
|
const unsigned int keyHOME = VK_HOME;
|
|
const unsigned int keyPAGEUP = VK_PRIOR;
|
|
const unsigned int keyTAB = VK_TAB;
|
|
const unsigned int keyQ = 'Q';
|
|
const unsigned int keyW = 'W';
|
|
const unsigned int keyE = 'E';
|
|
const unsigned int keyR = 'R';
|
|
const unsigned int keyT = 'T';
|
|
const unsigned int keyY = 'Y';
|
|
const unsigned int keyU = 'U';
|
|
const unsigned int keyI = 'I';
|
|
const unsigned int keyO = 'O';
|
|
const unsigned int keyP = 'P';
|
|
const unsigned int keyDELETE = VK_DELETE;
|
|
const unsigned int keyEND = VK_END;
|
|
const unsigned int keyPAGEDOWN = VK_NEXT;
|
|
const unsigned int keyCAPSLOCK = VK_CAPITAL;
|
|
const unsigned int keyA = 'A';
|
|
const unsigned int keyS = 'S';
|
|
const unsigned int keyD = 'D';
|
|
const unsigned int keyF = 'F';
|
|
const unsigned int keyG = 'G';
|
|
const unsigned int keyH = 'H';
|
|
const unsigned int keyJ = 'J';
|
|
const unsigned int keyK = 'K';
|
|
const unsigned int keyL = 'L';
|
|
const unsigned int keyENTER = VK_RETURN;
|
|
const unsigned int keySHIFTLEFT = VK_SHIFT;
|
|
const unsigned int keyZ = 'Z';
|
|
const unsigned int keyX = 'X';
|
|
const unsigned int keyC = 'C';
|
|
const unsigned int keyV = 'V';
|
|
const unsigned int keyB = 'B';
|
|
const unsigned int keyN = 'N';
|
|
const unsigned int keyM = 'M';
|
|
const unsigned int keySHIFTRIGHT = VK_SHIFT;
|
|
const unsigned int keyARROWUP = VK_UP;
|
|
const unsigned int keyCTRLLEFT = VK_CONTROL;
|
|
const unsigned int keyAPPLEFT = VK_LWIN;
|
|
const unsigned int keyALT = VK_LMENU;
|
|
const unsigned int keySPACE = VK_SPACE;
|
|
const unsigned int keyALTGR = VK_CONTROL;
|
|
const unsigned int keyAPPRIGHT = VK_RWIN;
|
|
const unsigned int keyMENU = VK_APPS;
|
|
const unsigned int keyCTRLRIGHT = VK_CONTROL;
|
|
const unsigned int keyARROWLEFT = VK_LEFT;
|
|
const unsigned int keyARROWDOWN = VK_DOWN;
|
|
const unsigned int keyARROWRIGHT = VK_RIGHT;
|
|
const unsigned int keyPAD0 = 0x60;
|
|
const unsigned int keyPAD1 = 0x61;
|
|
const unsigned int keyPAD2 = 0x62;
|
|
const unsigned int keyPAD3 = 0x63;
|
|
const unsigned int keyPAD4 = 0x64;
|
|
const unsigned int keyPAD5 = 0x65;
|
|
const unsigned int keyPAD6 = 0x66;
|
|
const unsigned int keyPAD7 = 0x67;
|
|
const unsigned int keyPAD8 = 0x68;
|
|
const unsigned int keyPAD9 = 0x69;
|
|
const unsigned int keyPADADD = VK_ADD;
|
|
const unsigned int keyPADSUB = VK_SUBTRACT;
|
|
const unsigned int keyPADMUL = VK_MULTIPLY;
|
|
const unsigned int keyPADDIV = VK_DIVIDE;
|
|
|
|
#else
|
|
// Define random keycodes when no display is available.
|
|
// (should rarely be used then!).
|
|
const unsigned int keyESC = 1U; //!< Keycode for the \c ESC key (architecture-dependent)
|
|
const unsigned int keyF1 = 2U; //!< Keycode for the \c F1 key (architecture-dependent)
|
|
const unsigned int keyF2 = 3U; //!< Keycode for the \c F2 key (architecture-dependent)
|
|
const unsigned int keyF3 = 4U; //!< Keycode for the \c F3 key (architecture-dependent)
|
|
const unsigned int keyF4 = 5U; //!< Keycode for the \c F4 key (architecture-dependent)
|
|
const unsigned int keyF5 = 6U; //!< Keycode for the \c F5 key (architecture-dependent)
|
|
const unsigned int keyF6 = 7U; //!< Keycode for the \c F6 key (architecture-dependent)
|
|
const unsigned int keyF7 = 8U; //!< Keycode for the \c F7 key (architecture-dependent)
|
|
const unsigned int keyF8 = 9U; //!< Keycode for the \c F8 key (architecture-dependent)
|
|
const unsigned int keyF9 = 10U; //!< Keycode for the \c F9 key (architecture-dependent)
|
|
const unsigned int keyF10 = 11U; //!< Keycode for the \c F10 key (architecture-dependent)
|
|
const unsigned int keyF11 = 12U; //!< Keycode for the \c F11 key (architecture-dependent)
|
|
const unsigned int keyF12 = 13U; //!< Keycode for the \c F12 key (architecture-dependent)
|
|
const unsigned int keyPAUSE = 14U; //!< Keycode for the \c PAUSE key (architecture-dependent)
|
|
const unsigned int key1 = 15U; //!< Keycode for the \c 1 key (architecture-dependent)
|
|
const unsigned int key2 = 16U; //!< Keycode for the \c 2 key (architecture-dependent)
|
|
const unsigned int key3 = 17U; //!< Keycode for the \c 3 key (architecture-dependent)
|
|
const unsigned int key4 = 18U; //!< Keycode for the \c 4 key (architecture-dependent)
|
|
const unsigned int key5 = 19U; //!< Keycode for the \c 5 key (architecture-dependent)
|
|
const unsigned int key6 = 20U; //!< Keycode for the \c 6 key (architecture-dependent)
|
|
const unsigned int key7 = 21U; //!< Keycode for the \c 7 key (architecture-dependent)
|
|
const unsigned int key8 = 22U; //!< Keycode for the \c 8 key (architecture-dependent)
|
|
const unsigned int key9 = 23U; //!< Keycode for the \c 9 key (architecture-dependent)
|
|
const unsigned int key0 = 24U; //!< Keycode for the \c 0 key (architecture-dependent)
|
|
const unsigned int keyBACKSPACE = 25U; //!< Keycode for the \c BACKSPACE key (architecture-dependent)
|
|
const unsigned int keyINSERT = 26U; //!< Keycode for the \c INSERT key (architecture-dependent)
|
|
const unsigned int keyHOME = 27U; //!< Keycode for the \c HOME key (architecture-dependent)
|
|
const unsigned int keyPAGEUP = 28U; //!< Keycode for the \c PAGEUP key (architecture-dependent)
|
|
const unsigned int keyTAB = 29U; //!< Keycode for the \c TAB key (architecture-dependent)
|
|
const unsigned int keyQ = 30U; //!< Keycode for the \c Q key (architecture-dependent)
|
|
const unsigned int keyW = 31U; //!< Keycode for the \c W key (architecture-dependent)
|
|
const unsigned int keyE = 32U; //!< Keycode for the \c E key (architecture-dependent)
|
|
const unsigned int keyR = 33U; //!< Keycode for the \c R key (architecture-dependent)
|
|
const unsigned int keyT = 34U; //!< Keycode for the \c T key (architecture-dependent)
|
|
const unsigned int keyY = 35U; //!< Keycode for the \c Y key (architecture-dependent)
|
|
const unsigned int keyU = 36U; //!< Keycode for the \c U key (architecture-dependent)
|
|
const unsigned int keyI = 37U; //!< Keycode for the \c I key (architecture-dependent)
|
|
const unsigned int keyO = 38U; //!< Keycode for the \c O key (architecture-dependent)
|
|
const unsigned int keyP = 39U; //!< Keycode for the \c P key (architecture-dependent)
|
|
const unsigned int keyDELETE = 40U; //!< Keycode for the \c DELETE key (architecture-dependent)
|
|
const unsigned int keyEND = 41U; //!< Keycode for the \c END key (architecture-dependent)
|
|
const unsigned int keyPAGEDOWN = 42U; //!< Keycode for the \c PAGEDOWN key (architecture-dependent)
|
|
const unsigned int keyCAPSLOCK = 43U; //!< Keycode for the \c CAPSLOCK key (architecture-dependent)
|
|
const unsigned int keyA = 44U; //!< Keycode for the \c A key (architecture-dependent)
|
|
const unsigned int keyS = 45U; //!< Keycode for the \c S key (architecture-dependent)
|
|
const unsigned int keyD = 46U; //!< Keycode for the \c D key (architecture-dependent)
|
|
const unsigned int keyF = 47U; //!< Keycode for the \c F key (architecture-dependent)
|
|
const unsigned int keyG = 48U; //!< Keycode for the \c G key (architecture-dependent)
|
|
const unsigned int keyH = 49U; //!< Keycode for the \c H key (architecture-dependent)
|
|
const unsigned int keyJ = 50U; //!< Keycode for the \c J key (architecture-dependent)
|
|
const unsigned int keyK = 51U; //!< Keycode for the \c K key (architecture-dependent)
|
|
const unsigned int keyL = 52U; //!< Keycode for the \c L key (architecture-dependent)
|
|
const unsigned int keyENTER = 53U; //!< Keycode for the \c ENTER key (architecture-dependent)
|
|
const unsigned int keySHIFTLEFT = 54U; //!< Keycode for the \c SHIFTLEFT key (architecture-dependent)
|
|
const unsigned int keyZ = 55U; //!< Keycode for the \c Z key (architecture-dependent)
|
|
const unsigned int keyX = 56U; //!< Keycode for the \c X key (architecture-dependent)
|
|
const unsigned int keyC = 57U; //!< Keycode for the \c C key (architecture-dependent)
|
|
const unsigned int keyV = 58U; //!< Keycode for the \c V key (architecture-dependent)
|
|
const unsigned int keyB = 59U; //!< Keycode for the \c B key (architecture-dependent)
|
|
const unsigned int keyN = 60U; //!< Keycode for the \c N key (architecture-dependent)
|
|
const unsigned int keyM = 61U; //!< Keycode for the \c M key (architecture-dependent)
|
|
const unsigned int keySHIFTRIGHT = 62U; //!< Keycode for the \c SHIFTRIGHT key (architecture-dependent)
|
|
const unsigned int keyARROWUP = 63U; //!< Keycode for the \c ARROWUP key (architecture-dependent)
|
|
const unsigned int keyCTRLLEFT = 64U; //!< Keycode for the \c CTRLLEFT key (architecture-dependent)
|
|
const unsigned int keyAPPLEFT = 65U; //!< Keycode for the \c APPLEFT key (architecture-dependent)
|
|
const unsigned int keyALT = 66U; //!< Keycode for the \c ALT key (architecture-dependent)
|
|
const unsigned int keySPACE = 67U; //!< Keycode for the \c SPACE key (architecture-dependent)
|
|
const unsigned int keyALTGR = 68U; //!< Keycode for the \c ALTGR key (architecture-dependent)
|
|
const unsigned int keyAPPRIGHT = 69U; //!< Keycode for the \c APPRIGHT key (architecture-dependent)
|
|
const unsigned int keyMENU = 70U; //!< Keycode for the \c MENU key (architecture-dependent)
|
|
const unsigned int keyCTRLRIGHT = 71U; //!< Keycode for the \c CTRLRIGHT key (architecture-dependent)
|
|
const unsigned int keyARROWLEFT = 72U; //!< Keycode for the \c ARROWLEFT key (architecture-dependent)
|
|
const unsigned int keyARROWDOWN = 73U; //!< Keycode for the \c ARROWDOWN key (architecture-dependent)
|
|
const unsigned int keyARROWRIGHT = 74U; //!< Keycode for the \c ARROWRIGHT key (architecture-dependent)
|
|
const unsigned int keyPAD0 = 75U; //!< Keycode for the \c PAD0 key (architecture-dependent)
|
|
const unsigned int keyPAD1 = 76U; //!< Keycode for the \c PAD1 key (architecture-dependent)
|
|
const unsigned int keyPAD2 = 77U; //!< Keycode for the \c PAD2 key (architecture-dependent)
|
|
const unsigned int keyPAD3 = 78U; //!< Keycode for the \c PAD3 key (architecture-dependent)
|
|
const unsigned int keyPAD4 = 79U; //!< Keycode for the \c PAD4 key (architecture-dependent)
|
|
const unsigned int keyPAD5 = 80U; //!< Keycode for the \c PAD5 key (architecture-dependent)
|
|
const unsigned int keyPAD6 = 81U; //!< Keycode for the \c PAD6 key (architecture-dependent)
|
|
const unsigned int keyPAD7 = 82U; //!< Keycode for the \c PAD7 key (architecture-dependent)
|
|
const unsigned int keyPAD8 = 83U; //!< Keycode for the \c PAD8 key (architecture-dependent)
|
|
const unsigned int keyPAD9 = 84U; //!< Keycode for the \c PAD9 key (architecture-dependent)
|
|
const unsigned int keyPADADD = 85U; //!< Keycode for the \c PADADD key (architecture-dependent)
|
|
const unsigned int keyPADSUB = 86U; //!< Keycode for the \c PADSUB key (architecture-dependent)
|
|
const unsigned int keyPADMUL = 87U; //!< Keycode for the \c PADMUL key (architecture-dependent)
|
|
const unsigned int keyPADDIV = 88U; //!< Keycode for the \c PADDDIV key (architecture-dependent)
|
|
#endif
|
|
|
|
const double PI = 3.14159265358979323846; //!< Value of the mathematical constant PI
|
|
|
|
// Define a 10x13 binary font (small sans).
|
|
static const char *const data_font_small[] = {
|
|
" UwlwnwoyuwHwlwmwcwlwnw[xuwowlwmwoyuwRwlwnxcw Mw (wnwnwuwpwuypwuwoy"
|
|
"ZwnwmwuwowuwmwnwnwuwowuwfwuxnwnwmwuwpwuypwuwZwnwnwtwpwtwow'y Hw cwnw >{ jw %xdxZwdw_wexfwYwkw 7yowoyFx=w "
|
|
"ry qw %wuw !xnwkwnwoyuwfwuw[wkwnwcwowrwpwdwuwoxuwpwkwnwoyuwRwkwnwbwpwNyoyoyoyoy;wdwnxpxtxowG|!ydwnwuwowtwow"
|
|
"pxswqxlwnxnxmwDwoyoxnyoymwp{oyq{pyoy>ypwqwpwp{oyqzo{q{pzrwrwowlwqwswpwnwqwsxswpypzoyqzozq}swrwrwqwtwswswtxsxswq"
|
|
"ws}qwnwkwnydwew_wfwdwkwmwowkw(w0wmwmwGwtwdxQw swuwnwo{q{pynwp|rwtwtwqydwcwcwcwmwmxgwqwpwnzpwuwpzoyRzoyoyexnynwd"
|
|
"z\\xnxgxrwsxrwsyswowmwmwmwmwmwmwo}ryp{q{q{q{nwmwnwmwozqxswpyoyoyoyoyeyuwswrwrwrwrwrwrwrwrwqwrwmwtwnwmwnwuwpwuyp"
|
|
"wuwoyZwmwnwuwowuwmwqwkwuwowuwoxnwuxowmwnwuwpwuypwuwZwmwnwuwowuwnwowmwtw\\wuwuwqwswqwswqwswqwswEwqwtweypzr~qyIw "
|
|
"rwswewnwuwowuwozswtwuwqwtwmwnwlwowuwuwowOxpxuxqwuwowswqwswoxpwlwjwqwswqwsw<wrwowrwuwqwrwqwswrwswpwmwmwrwswrwowl"
|
|
"wqwtwownxsxsxswqwswqwswqwswrwswqwrwowpwrwrwqwtwswswswswqwswmwpwmwlwoxuxSw_wfwdwYwkw(w0wmwmwGwtwoxnwNw uwswpwuwp"
|
|
"wmwmwswq{rwrwrwtwtwrwswfydwdyZwnwtwrwqwrwswowowdwrwqxuwSwrwfwuwnwlwnw[yuw[wowtwgwswqwswqwswewuwowuwowuwowuwowuw"
|
|
"nwowuwowswqwmwmwmwjwmwnwmwowswrxswqwswqwswqwswqwswqwswrwrwqwswrwrwrwrwrwrwrwrwqwswqzpwtw #w DwPwtwtwswqwswuwuwu"
|
|
"wswswuwswqwGwqxtwf{qzr~r{qzqwrwpxowtwrw rzcwnwuwq}rwuwqwtwuwqwtwmwnwlwnynwOwowswowkwmwpwuwpwmwjwpwswqwswowmwjwi"
|
|
"wjxswsytwrwuwqwrwrwmwrwqwmwnwmwrwowlwqwuwnwnxsxswuwtwrwqwrwswrwqwswswqwjwpwrwqwswrwtwtwqwuwowuwmwowmwlwpxsx]ypz"
|
|
"oyozpypzozqznwmwowtwnwqzuyrzoypzozqwuxoypzpwswrwrwrwtwtwswrwrwrwq{owmwmwQyuwqwtwmwoxnypzqxswowowswqwswqwtxr|rwt"
|
|
"wtwqyp{q{qwswpwuwownwnwqwsxuwuxswrwrwtwtwswqwrwmwuwuwnwnwowtwpwuwuwewnzpwn{pwuwnwnxgwtxtwrwtwowtw_wuytwgynwmwlw"
|
|
"gwswpyuw[wowtwqwtwpwtwpwtwowuwmwnwuwowuwowuwowuwowuwowuwqxuwpwlwmwmwmwjwmwnwmwowrwswuwtwrwqwswqwswqwswqwswqwrwt"
|
|
"wqwswuwswrwrwrwrwrwrwrwpwuwpwswqwuwnyoyoyoyoyoyqyuyqyoyoyoyoymwqwjwmwnypzoyoyoyoyoynwnzqwswqwswqwswqwswrwrwqzqw"
|
|
"rw^}s}swtwtwswtwtwswtwtwK}rwuwe{s~t~s}rwtwqwrwpxowtwrw qwawewtwpwuwpxuwpycwlwnynwOwowswowkwpypwtwpzpzmwoypwsw[y"
|
|
"r}rymwrwtwtwtwrwuwq{qwmwrwq{q{rwm|owlwqxmwnwuwuwuwswuwtwrwqwrwswrwqwswswqylwpwrwqwswrwuwuwuwpwmwmwnwmwlwMwqwswq"
|
|
"wmwswqwswpwnwswqwswowmwowuwmwqwswswswswqwswqwswqwswqxnwswpwnwswrwrwrwtwtwrwtwqwrwmwqxlwlx]xuxrwtyqwuwlwpwtwpwmw"
|
|
"swqwtxpxowswrwqwswtwuxrwtwqwtwtwrwswrwswnwo{pwuwnxpwnwqwswtwtwswrwrwtwtwswuyuwswjwkwowpwrwowcwowuwnwnwswqxuxowo"
|
|
"wtwhwuwrwrzpwtwq}jwuwtwuw_}qyoxfwswpyuwowdyoxowtwryuwqyuwqyuwmwnwuwowuwowuwowuwowuwowuwqwt{twl{q{q{q{nwmwnwmwpz"
|
|
"twswuwtwrwqwswqwswqwswqwswqwqxpwtwtwswrwrwrwrwrwrwrwowowswqwuwkwmwmwmwmwmwowswswmwswqwswqwswqwswnwqwjwmwowswqws"
|
|
"wqwswqwswqwswqwswqwswgwtxqwswqwswqwswqwswrwrwqwswrwrw^wtwtwswqwswuwuwuwswuwswswqwHwowuwf}t~s|r}swrwrwrwqwtwpwtw"
|
|
"r~#zcwewtwoynwuxtwtwswgwlwowuwuwr}gyexowswowlwlwrwswlwqwswowowswpz^yayqwqwtwtwuwrwswrwrwrwmwrwqwmwnwsyswrwowlwq"
|
|
"wuwnwnwuwuwuwswtwuwrwqwrzqwqwszmyowpwrwpwuwqwuwuwuwpwmwmwnwlwmwPzqwswqwmwswq{pwnwswqwswowmwoxlwqwswswswswqwswqw"
|
|
"swqwswqwlxnwnwswqwtwqwuwuwuwqxowtwmwnwmwmwoytwiwtwtwswswpwtxqzpwswpxowswpwuwowuwpwswrwtwtwswtwtwrwtwqwtwtwrwswr"
|
|
"wswnwowswqwswowownwqwswtwtwswrwqwuwuwrwuyuwt~pwq~pwq~pwcwowuwozpwswowewswiwuwrwiwtwjwjwuytw\\wRwswoxuwHwtwpwswq"
|
|
"wtxqwswqxowswqwswqwswqwswqwswqwswrwtwpwlwmwmwmwjwmwnwmwowrwswtwuwrwqwswqwswqwswqwswqwqxpwtwtwswrwrwrwrwrwrwrwow"
|
|
"owswqwtwozpzpzpzpzpzr~swm{q{q{q{nwqwjwmwowswqwswqwswqwswqwswqwswqwswr}rwuwuwqwswqwswqwswqwswqwtwpwswqwtw\\wuwuw"
|
|
"qwswqwswqwswqwswJ}qxf}t~rzp{rwrwrwrwqwtwpwtwrw qwawg}owuwpwuwtwuwswuwfwlwmwmwPwnwswowmwkwr|mwqwswowowswmw^yo}oy"
|
|
"qwqwszq{rwrwrwmwrwqwmwnwqwswrwowlwqwtwownwtwtwswtwuwrwqwrwnwqwswtwkwowpwrwpwuwqwuwuwuwqwuwnwnwmwlwmwQwswqwswqwm"
|
|
"wswqwlwnwswqwswowmwowuwmwqwswswswswqwswqwswqwswqwjwownwswqwtwqwuwuwuwqxowtwnwmwmwmwpwtyhwtwtwswswpwswqwtwpwswqw"
|
|
"mwswpwuwpwtwpwswrwtwtwswtwtwrwtwqwtwtwrwswrwswnwowswqwswpwnwnwqwsxuwuxswrwpyqwqwswjwkwqwuwuwrwrwqwuwuwewowuwnwn"
|
|
"wswq{ownxuwiwtxtwrzpwtwkwjwuwtwuw\\wRwswnwuwSzpwtwowtxqwrwrwtxrxn{q{q{q{q{q{s{pwlwmwmwmwjwmwnwmwowrwswtwuwrwqws"
|
|
"wqwswqwswqwswqwrwtwqwuwswswrwrwrwrwrwrwrwowozpwswqwswqwswqwswqwswqwswqwswswswowmwmwmwmwjwqwjwmwowswqwswqwswqwsw"
|
|
"qwswqwswqwswgwuwuwqwswqwswqwswqwswqwtwpwswqwtw[yoyoyoyoyGwmwdwuwuwpxnxnyqwrwqwtwpwtwoxpw rwswSwuwmwuwpwuwtwuxsw"
|
|
"ewlwcwPwnxuxownwnwswnwlwqwswowowswnwZygygwkwswrwrwqwswrwswpwmwmwrwswrwowlwqwswpwnwqwswsxqwswqwmwswrwswqwrwowpxt"
|
|
"xowowswqwswowowlwlwmwQwswqwswqwmwswqwswpwnwswqwswowmwowtwnwqwswswswswqwswqwswqwswqwmwswpwnwswpxowswqwtwoxnwlwmw"
|
|
"mw[xuxrwtxpwswqwtwpwswqwmwswpypwtwpwswrwtwtwsxuwuxrwtwqwtwtwrwswrwswnwnwuwpwswqwmwmwswq{rwrwowowswqwkwlwoypwtwo"
|
|
"ydwowuwnwn{owmwlwgwrwfwtw^wrw6wswnwuwJwtwowtzswrwrwtzswmwswqwswqwswqwswqwswqwswswswowswqwmwmwmwjwmwnwmwowswrwsx"
|
|
"qwswqwswqwswqwswqwswrwrwqwswrxtxrxtxrxtxrxtxowowmwswqwswqwswqwswqwswqwswqwswswtxowmwswqwswqwswqwswnwqwjwmwowswq"
|
|
"wswqwswqwswqwswqwswqwswowoxtwqwswqwswqwswqwswpxowswpx Wwlwbwnxcwpwrwqzpwtwoxo|!ydwfwtwozpwsxszuxgxnxcwmwcwoxmyp"
|
|
"{q{pymwpzoyowmypymwmwjwiwkwowrwrwqws{oyqzo{qwlzrwrwowlwqwrwq{rwqwswsxpypwlyqwrwqznwoznwowswrxsxpwp}qwkwnwPzqzoy"
|
|
"ozpyowmzqwswowmwowswowqwswswswswpypzozqwlynxozpxowswrwrwpwn{owmwmwQxuxqzoxnyoypwswowpwrwqzpxuxq{qwtxq{qzpylwoyq"
|
|
"}r{qwnyuypwpwrwownydwcwcwcwnzq{rwqwpwmwkwgzHz]}U|owuw@wqwswrytwqwqyqwqwswqwswqwswqwswqwswqwuwr{ryp{q{q{q{nwmwnw"
|
|
"mwozqwsxpyoyoyoyoygwuypzpzpzpznwowmwuypzpzpzpzpzpzryuzryoyoyoyoymwqwjwmwnypwswpyoyoyoyoyfzozpzpzpzpwnzow \\w"
|
|
"OwnwXw[w SwGz kx0x lxdx gw[w=wiw*wbyowoyGwKwowewawcwow YwOwoz Ewjwuwdw 7w 9w Iwnwlw \\w 0|*y[x=wiw,"
|
|
"xWw=wKwowewawcwow Yw hwVx 8w 9w Jxmwnxp" };
|
|
|
|
// Define a 26x32 font (normal sans).
|
|
static const char *const data_font_normal[] = {
|
|
" #{}~}a{|y~f{|y~}f{|}|x{}|j{|y}y{|y}g{}y~}|2y~|a{}~}f{}y~|"
|
|
"gy}|yy}|i{}~}a{}~}f{}y~}gy}|yx}N{|}|x{}|hy~|ay~|fx~|g{}y~|y{}~j{|y~|yy~}5{}~}a{}~}f{}y~}gy~}yy~}e{|y~ "
|
|
" 2{}~}c{|y~f{|y~}~}h{}w~y}~|j{}y~y{}y~h{}~y}y~|2y~|c{}~}f{"
|
|
"}~y}~|hy~}yy~}hy~|c{|~}f{|~y}~|hy~}y{}y~O{}w~y}~|gy~|cy~|fy~|}~|i{|~y}y~}~}j{|y~|yy~}4{}~|c{}~}f{}~|}~}hy~}yy~}"
|
|
"ey~| g{|}y~} J{}~|dy~|fy~y{}~|i{~}{|}y~}i{}y~y{}y"
|
|
"~i{|~}x{~}2{|y~d{|~}f{|~}yy~hy~}yy~}gy~cy~f{|~}y{}~|iy~}y{}y~P{|~}{|}y~|ey~d{}~|fy~x{}~|j{}~y{|}~}i{|y}|yy}|3{}"
|
|
"~|e{}~}f{}~|y{|~|iy}|yx}f{}~| fy~y}~} k{|y~| /{|y~| y{}"
|
|
"~} Xy|e{|}|f{|}wy|5{|~|x{}~1{|}|ey|ey|wy|M{|}|e{|}|fy|wy| g{|}|3{|y~|_{}~}g{|y~2{}~|y{}~|5{|y~^y~}g{}y~N{|"
|
|
"}|^{|}|g{|}| s{}~}_{|y~|gy~} Z{}~}_{|y~|gy~} )y}| -{|y~ Jy}|yy}| "
|
|
"X{}y~ 4{|~}y{|~} P{| n{|y~`{|y~fx~}3{}~x{|~|4{}~}`{}~}g{|x~}N{}~}`{|y~|gx~| sy~|`y~|g{}x~| Z{}~}`y~}g{}"
|
|
"x~|I{}y~ 1{|x~|oi| r{|~|O{|d{|y}|j{|y}|u{|y}|h{| \"{|}x~}|Ny~}g{|y~y{|~}g{|~}x{|~}i{|~l{|}y~}|s{|~}l{|}x~}|e"
|
|
"{|y~by~g{}~}b{~} S{|y~i{|}x~}|i{|y}x~|i{|y}x~y}i{|y}w~}|d{}x~kq~|i{|}w~}|m{}o~k{|}x~y}h{|}x~}| B{|}w~}L{|x~j{|s"
|
|
"~y}g{|}w~}|o{|s~y}|k{|o~n{|p~j{|}w~y}|o{|y~|ry~}k{|y~|e{|y~|j{|y~|t{|x~n{|y~|i{|x~}r{|x~}s{|x~|sy~}l{|}x~y}|l{|"
|
|
"s~}|i{|}x~y}|m{|s~}|hy}w~y}|ok~}r{}y~r{|y~|r{}y~|p{}y~vy~}t{|x~sy~}ux~rx~q{}y~|r{}y~|r{|l~l{}v~hy~|c{|v~|f{|}|L"
|
|
"{}~}M{}y~@{}~}O{|}w~R{}y~`{|y~d{|y~h{}y~`{|y~ ay}y~}h{}~}h{}y~y} Wy}x~}|O{|y}w~}| xx~} I{|}x~}f{|x~i{|o~m{|"
|
|
"o~m{|y}x~}|f{}y~k{|m~}r{|y~|w{}y~vy~}n{|}x~y}|My}Iy}|J{}~| q{|}x~y}T{}y~r{}~}R{}w~}|j{|y~}yy~}O{|}w~} \\{|t~}h{"
|
|
"|}y~}M{|}x~}|h{|}x~}|e{|y~L{|}t~|7y}y~}f{|}x~}Uy|y}|py}p{|n{|t{|}w~}r{|y~P{|x~e{|x~e{|x~e{|x~e{|x~f{}v~|jk~|o{|"
|
|
"}w~}|m{|o~n{|o~n{|o~n{|o~j{|y~|e{|y~|e{|y~|e{|y~|k{|s~y}|m{|x~|sy~}l{|}x~y}|i{|}x~y}|i{|}x~y}|i{|}x~y}|i{|}x~y}"
|
|
"|O{|}x~y}|y{|~}s{}y~r{|y~|q{}y~r{|y~|q{}y~r{|y~|q{}y~r{|y~|q{}y~|r{}y~|p{|y~|b{|}x~}|h{}~}b{|y~|g{}~|}~|h{|y~}|"
|
|
"{}~iy~}yy~}i{}~|y{}~|3{}~}b{|~}fy~{}~|i{|y~|{|y~}iy~|ay~}g{}~}y~gy~}yy~}i{|y~}wy|j{|y~}y{}~hy~|b{}~}g{|~}|~}h{|"
|
|
"}y~}{|~}j{}y~y{}y~|4y~|b{}~}g{|~}{y~h{}y~y{|y~|f{|y~|k{}y~by~}y{}y~ ev~o{}k~} r{}~O{|~e{}v~l{}v~w{}w~}j{}~ Y{}"
|
|
"o~ S{|s~}Oy~}g{|y~y{|~}g{}~|x{}~|i{|~m{|y~y}y~|ty~l{}t~}f{|y~c{}~}fy~b{~} S{}~}j{}t~}kt~|j{}r~|l{|r~}f{|w~kq~|"
|
|
"j{}s~|n{}p~}m{|r~|l{|s~| D{}s~|i{|y}y~y}|hw~|k{|p~|k{|q~}q{|p~}|m{|o~n{|p~l{|p~}q{|y~|ry~}k{|y~|e{|y~|j{|y~|u{|"
|
|
"x~m{|y~|i{|w~|sw~}s{|w~sy~}n{}r~}m{|q~}l{}r~}n{|q~}k{|q~|pk~}r{}y~r{|y~|r{|y~}py~}v{}y~t{}x~|u{|y~|u{|y~}t{}y~|"
|
|
"py~}s{|y~}q{|l~l{}w~}h{}~}c{|v~|gw~}L{}~|N{}y~@{}~}P{|u~R{}y~`{|y~d{|y~h{}y~`{|y~ e{}y~ {}w~}h{}~}h{}v~ Ys~}Q"
|
|
"{|r~| yv~ K{}t~|hw~|j{|o~m{|o~n{}r~|h{}y~k{|m~}r{|y~|w{}y~vy~}p{}r~}O{}x~Jy~|K{}x~|/{~|f{}t~}Ty~|t{|y~|Ss~j{|y"
|
|
"~}yy~}i{|}v~}|j{}~w}y~ v{|}v~}|k{|t~}i{|y~}x~N{}~}|}y~|i{|y}y|}~}fy~|N{|u~y}y~|8{|~y}~}g{|y~x}y~W{|w~}q{}~}s{}x"
|
|
"~}q{|y~t{|}x|}~}s{}~|Pw~|fw~|fw~|fw~|fw~|fw~|j{|k~|q{|q~}o{|o~n{|o~n{|o~n{|o~j{|y~|e{|y~|e{|y~|e{|y~|k{|o~|o{|w"
|
|
"~sy~}n{}r~}l{}r~}l{}r~}l{}r~}l{}r~}R{}r~}|y~|s{}y~r{|y~|q{}y~r{|y~|q{}y~r{|y~|q{}y~r{|y~|py~}s{|y~}o{|y~|cs~}h{"
|
|
"}~}cy~|g{|~}yy~i{|y~}w~}iy~}yy~}hy~y}~}1y~|d{|y~f{}~|{|~}i{|y~|{|y~}i{|y~b{}~}g{|~}{|~}hy~}yy~}h{|y~y}y~}|k{|y~"
|
|
"}y~}~}h{|y~c{|~}fy~y{|~|i{}~}v~|j{}y~y{}y~|4{|y~c{|~}fy~y{|~}i{}y~y{|y~|fy~|j{}y~by~}y{}y~ f{|y~{}~|p{|k~| r{~"
|
|
"}Oy~}g{}u~}n{}t~y{}u~}l{}y~} \\{}m~ T{|x~}|{y|y~|Py~}g{|y~y{|~}gy~|xy~|i{|~my~|y{|y~u{}~}m{}y~}|y{|y}f{|y~d{|y"
|
|
"~e{}~}hy|x{~}x{| Wy~|k{|y~}|{|}y~}lx~y}y~|jx~}x|}x~|m{|~}v|x~}gv~ky~s|j{}x~w|}~|nr|}y~|mx~}|{y|x~|mx~y|{|}y~| E"
|
|
"y~}x|}x~k{}q~|k{|w~}k{|y~u|}x~l{}x~}v|}y~|r{|y~u|y}x~}n{|y~q|n{|y~r|m{}x~}v|}x~|r{|y~|ry~}k{|y~|e{|y~|j{|y~|v{|"
|
|
"x~l{|y~|i{|w~}t{|w~}s{|w~}ty~}o{}x~}|{y|}x~n{|y~v|}x~|n{}x~}|{y|}x~o{|y~v|}x~}m{|x~}v|}~|pt|y~}u|q{}y~r{|y~|qx~"
|
|
"q{|y~|v{|y~|u{}x~|u{}y~|t{}y~|v{|y~}o{|y~|tx~op|}y~}l{}~}e{|y~`{|y~|h{}v~}L{}~|O{}y~@{}~}Py~}|O{}y~`{|y~d{|y~h{"
|
|
"}y~`{|y~ e{}y~ !{|y~}e{}~}e{|y~| [{}y~|x{}y~|jy}~y}|ix~|w{|}| w{}y~| M{}y~|y{|}y~i{|w~}ix~r|m{|y~q|p{|w~}x|}x"
|
|
"~}l{|y}x~y}|n{|y~q|y~}r{|y~|w{}y~vy~}q{}x~}|{y|}x~Q{}v~Ky~|L{}v~|0{~|g{|y~}|y{|y}T{}y~t{}~}i{}~}h{}y~|x{|}P{}~y"
|
|
"}x|y}~}k{|v{}~| x{}~y}x|y}~}Qy~x{|~}J{|y~cy~g{}~|Mt~y{}~|5{|~}gy~|x{}~}U{|~}r{|y~r{}y|~}qy~|ny~t{|~}P{|w~}g{|w~"
|
|
"}g{|w~}g{|w~}g{|w~}fw~}j{}y~y|y~}r|q{}x~}v|}y~|p{|y~q|n{|y~q|n{|y~q|n{|y~q|j{|y~|e{|y~|e{|y~|e{|y~|k{|y~}u|}x~}"
|
|
"p{|w~}ty~}o{}x~}|{y|}x~n{}x~}|{y|}x~n{}x~}|{y|}x~n{}x~}|{y|}x~n{}x~}|{y|}x~T{}x~}|{y|v~|r{}y~r{|y~|q{}y~r{|y~|q"
|
|
"{}y~r{|y~|q{}y~r{|y~|p{|y~|tx~n{|y~|d{}y~|x{}y~|h{}~|e{}~|f{~}x{|~}j{|}xx}hy}|yy}|h{|}y~}/y~dy~|g{|~}x{|~|j{|y}"
|
|
"|yy}|h{|~}d{|~}f{}~x{}~|iy}|yy}|iy|w~|h{}~y{|}~}f{|~}e{|~}f{}~|x{}~|j{}|y{|y}|i{|y}y{|y}2{|~}dy~f{}~|x{}~|j{|y}"
|
|
"y{|y}|g{}~|i{}y~by}|y{|y}5{|}w~}|i{|}w~}|i{|}w~}|i{|}w~}|i{|}w~}|f{}~}{y|ny~}q{}y~ r{|~O{}x~|hs~|p{|s~y|s~|n{|w"
|
|
"~} ^{}y~}| Ix~|u{}|Py~}g{|y~y{|~}gy~wy~k{|}v~y}|s{|y~w{}~|w{|y~ly~}_{|y~d{}~}dy~|iy~}y{~}{|y~|hy}| o{|y~jx~v{}"
|
|
"y~l{|x{|y~|j{}|u{|x~d{}y~|i{}~|}y~ky~|d{|y~}]{}y~m{|y~|v{|y~}n{}y~|v{}y~ E{}u{}y~|n{|x~}|w{|}y~}|m{}y~}y~k{|y~|"
|
|
"u{|y~}n{}y~}s{|~|r{|y~|t{|x~|o{|y~|e{|y~|f{}y~}r{}~|r{|y~|ry~}k{|y~|e{|y~|j{|y~|w{}y~}k{|y~|i{|y~}y~t{}~}y~}s{|"
|
|
"v~ty~}p{}y~}t{}y~}o{|y~|v{|x~o{}y~}t{}y~}p{|y~|v{|x~mx~r{|iy~}k{}y~r{|y~|q{|y~|r{}y~u{|y~|uy~}~}u{}y~rx~vx~m{}y"
|
|
"~u{}y~|e{|y~}k{}~}dy~|a{|y~|i{}y~|{}y~| y{}y~@{}~}Py~|N{}y~0{}y~`{|y~ e{}y~ !{|y~d{}~}dy~} [y~}v{}~}ju~}jy~| n"
|
|
"{}y~ N{|y~|v{}~}j{}y~}y~i{|y~}e{|y~|gx~}t{}y~}o{|}q~|p{|y~|ry~}r{|y~|w{}y~vy~}r{}y~}t{}y~}S{}t~Ly~|M{}t~|1{~|g"
|
|
"{}y~Ly~|v{|y~|i{}~}hy~}L{|y~|t{|y~|g{|~} {{|y~|t{|y~|T{|~|wy~f{}~|ay~ey|y~7{}t~y{}~|5{|~}h{|~}vy~U{|~}r{}~|p{|~"
|
|
"}r{|~}my~ty~O{}y~}y~g{}y~}y~g{}y~}y~g{}y~}y~g{}y~}y~g{|y~}y~jy~}yy~}i{}y~}s{|~|p{|y~|e{|y~|e{|y~|e{|y~|a{|y~|e{"
|
|
"|y~|e{|y~|e{|y~|k{|y~|t{|x~}q{|v~ty~}p{}y~}t{}y~}p{}y~}t{}y~}p{}y~}t{}y~}p{}y~}t{}y~}p{}y~}t{}y~}V{}y~}t{}x~q{}"
|
|
"y~r{|y~|q{}y~r{|y~|q{}y~r{|y~|q{}y~r{|y~|o{}y~u{}y~|n{|y~|e{|y~|v{}~} A{|}|ey|e{}|wy|Py~}y|y~} ?{}~}h{}y~ p"
|
|
"{}r~|l{}r~|l{}r~|l{}r~|l{}r~|h{}~}k{}y~qy~}1{|~}dy}P{}v~|is~|p{|r~}s~}nu~|h{|w}|k{|y}sy}|jx}|j{|y}t{|y}o{}y~| "
|
|
"H{|y~|Gy~}g{|y~y{|~}h{|~}x{|~}l{}r~}s{|~}w{}~}w{}~|ly~}_{|y~dy~|d{}~}h{|y~|~y}~}|g{}~| o{}~}k{|y~|uy~}i{|y~|a{}"
|
|
"y~|e{|y~}j{|~}{}y~ky~|dy~}]{|y~}m{}y~tx~ny~}u{|y~|,{|X{|X{|y~|o{}y~|q{}y~my~}|y~|l{|y~|ty~}o{|x~p{|r{|y~|s{|x~o"
|
|
"{|y~|e{|y~|g{|x~p{|q{|y~|ry~}k{|y~|e{|y~|j{|y~|x{}y~}j{|y~|i{|y~|y~|uy~|y~}s{|y~|y~}uy~}q{|x~r{}y~|p{|y~|u{}y~|"
|
|
"q{|x~r{}y~|q{|y~|u{}y~|ny~}_y~}k{}y~r{|y~|py~}s{|y~}ty~}v{|y~|y~uy~}r{|y~}x{}y~|ly~}w{|y~}e{|x~j{}~}d{}~}a{|y~|"
|
|
"j{}y~|x{}y~| {{}y~@{}~}Py~|N{}y~0{}y~`{|y~ e{}y~ !{}y~d{}~}d{}~} \\{|y~u{}y~j{}x|}y~|kx~| o{|y~| O{}~}u{|y~jy"
|
|
"~}|y~|i{|y~}f{|y~|h{}y~|rx~|q{|w~y}y~y}x~}q{|y~|ry~}r{|y~|w{}y~vy~}s{|x~r{}y~|U{}y~|y~}x~My~|N{}y~|y~|x~|2{~|gy"
|
|
"~}g{|p{}m{}y~v{}~}h{}~}h{}~}L{~}xy|}y|x{}~l{|}u~ {{~}p{}~T{|~|wy~f{}~|b{}~}g{}w~|7{}t~y{}~|5{|~}h{}~|v{}~|V{|~}"
|
|
"s{|~}o{|~}ry~n{|}~|u{}~}Oy~}|y~|hy~}|y~|hy~}|y~|hy~}|y~|hy~}|y~|hy~}|y~|l{}y~|yy~}j{|x~p{|p{|y~|e{|y~|e{|y~|e{|"
|
|
"y~|a{|y~|e{|y~|e{|y~|e{|y~|k{|y~|rx~q{|y~|y~}uy~}q{|x~r{}y~|r{|x~r{}y~|r{|x~r{}y~|r{|x~r{}y~|r{|x~r{}y~|q{|}q{|"
|
|
"}p{|x~s{}x~|r{}y~r{|y~|q{}y~r{|y~|q{}y~r{|y~|q{}y~r{|y~|ny~}w{|y~}m{|s~}|l{|y~u{|y~ 8{|w{|y~} _{} G{}y~ r{|"
|
|
"x~|w{|}y~|o{|x~|w{|}y~|o{|x~|w{|}y~|o{|x~|w{|}y~|o{|x~|w{|}y~|i{}~|jy~|s{|y~|1y~}d{~|Q{|t~is~|p{}i~}os~j{|s~|m{"
|
|
"|y~sy~|jw~j{|y~|u{}y~p{|y~| Gx~Fy~}g{|y~y{|~}h{}~}x{}~}m{|y~}{|~x{|}s{|~}w{}~}x{|~}ky~}_{|y~e{|y~c{|y~f{}x~}|e"
|
|
"{}~| oy~|k{}y~t{}y~i{|y~|a{|y~|dy~|jy~|{}y~ky~|e{|y~|]{}y~|m{}y~ty~}o{|y~|ty~}/{|}~}Xy~}|[{|y~|p{}y~|o{}y~o{|y~"
|
|
"|{y~}l{|y~|ty~}o{}y~|f{|y~|r{}y~|p{|y~|e{|y~|g{}y~|e{|y~|ry~}k{|y~|e{|y~|j{|y~|y{}y~}i{|y~|i{|y~|}~}v{|y~{y~}s{"
|
|
"|y~|}y~uy~}q{}y~|qx~p{|y~|u{}y~|q{}y~|qx~q{|y~|u{}y~|o{|y~|_y~}k{}y~r{|y~|p{}y~s{}y~|t{}y~v{|~}{y~|w{|y~|q{}y~|"
|
|
"{|y~}k{|y~|xx~dx~|j{}~}d{|y~a{|y~|k{}y~|v{}y~|9{|y}x~y}j{}y~y{}x~}|h{|}x~y}|j{}x~}|{}~}k{|}x~}|j{|s~|i{}x~}|{}~"
|
|
"}n{}y~y{}x~}|h{|y~d{|y~h{}y~u{|y~}j{|y~m{}y~y{}x~}w{|}y~}|p{}y~y{}x~}|i{|}x~}|k{}y~y{}x~}|i{}x~}|{}~}k{}y~y{}x~"
|
|
"k{|}w~y}|k{|r~l{}~}t{}~}oy~}s{}y~r{}~}v{}y~}v{}~}r{|y~|u{|y~|oy~}s{}y~n{}p~h{}y~d{}~}d{}~} t{}x~}|y{|~}n{|y~u{}"
|
|
"~}e{}y~k{|w~y}|g{|}w~y}l{}y~y{}x~}|n{}~}|s{}y~iy~}i{}~}t{}~}p{|y~|r{}y~n{|y}y{}y~}lm~p{}y~x{|y~x{|y~|k{}w~}|j{|"
|
|
"}q~|q{}n~ny~|ty~|l{|y~|{y~}h{|y~}g{|y~|hy~}q{|y~}qx~}y{}y~y{|x~|r{|y~|ry~}r{|y~|w{}y~vy~}s{}y~|qx~V{|y~|{y~y|y~"
|
|
"}Ny~|O{|y~|{y~|{y~}Ny~}e{|}w~}|jy~}h{|y~r{}~}my~|x{|y~|h{}~}h{|y~}Ny}x{}u~|yy}n{}y~w}y~ y}y{}v~}|xy}T{~}x{|~}f{"
|
|
"}~|c{|~}fx|y}|Q{}~}t{}~}ns~y{}~|5{|~}h{}~|v{}~|V{|~}sy~n{|~}s{}~|p{}x~}u{|y~f{|y~|h{|y~|{y~}i{|y~|{y~}i{|y~|{y~"
|
|
"}i{|y~|{y~}i{|y~|{y~}i{|y~|{y~}ly~}xy~}j{}y~|d{|y~|e{|y~|e{|y~|e{|y~|a{|y~|e{|y~|e{|y~|e{|y~|k{|y~|r{|y~}r{|y~|"
|
|
"}y~uy~}q{}y~|qx~r{}y~|qx~r{}y~|qx~r{}y~|qx~r{}y~|qx~qy~}s{|y~}q{}y~|t{}~}x~r{}y~r{|y~|q{}y~r{|y~|q{}y~r{|y~|q{}"
|
|
"y~r{|y~|n{|y~|xx~l{|q~}m{}y~w{|w~l{|y}x~y}i{|y}x~y}i{|y}x~y}i{|y}x~y}i{|y}x~y}i{|y}x~y}n{|y}x~y}w{|}x~}|l{|}x~y"
|
|
"}|j{|}x~}|h{|}x~}|h{|}x~}|h{|}x~}|g{|y~d{|y~d{|y~d{|y~e{|}v~|l{}y~y{}x~}|i{|}x~}|h{|}x~}|h{|}x~}|h{|}x~}|h{|}x~"
|
|
"}|g{|x~f{|}x~}|{}~|o{}~}t{}~}n{}~}t{}~}n{}~}t{}~}n{}~}t{}~}oy~}s{}y~n{}y~y{}x~}|my~}s{}y~;y~}xy~|y{|y~|py~}s{|y"
|
|
"~|py~}s{|y~|py~}s{|y~|py~}s{|y~|j{}~|j{}y~sy~}1y~}d{|~Q{|s~}j{}t~o{|i~}p{}s~}kx~}y|}x~m{|y~sy~|k{|w~|jy~}uy~}py"
|
|
"~} Fy~}Fy~}g{|y~y{|~}m{|k~}q{}y~y{|~n{|~}w{}~|xy~j{}y~|`{|y~e{}~}by~|g{|x~}d{}~| p{|y~jy~}t{}y~i{|y~|a{|y~|e{|"
|
|
"y~|k{}~}y{}y~ky~|{|g{}y~\\x~l{|y~|v{|y~|o{|y~|tx~i{}y~d{}y~a{|}w~}Xv~}|^x~p{|y~l{}~}p{}y~y{|y~|m{|y~|ty~}ox~e{|"
|
|
"y~|qy~}p{|y~|e{|y~|gx~d{|y~|ry~}k{|y~|e{|y~|j{|y~|{}y~}h{|y~|i{|y~y|y~v{}~}{y~}s{|y~|{y~}vy~}qx~p{}y~|q{|y~|u{|"
|
|
"y~|qx~p{}y~|r{|y~|u{}y~|ny~}_y~}k{}y~r{|y~|p{|y~|ty~}s{}y~|w{}~|{}~|w{|y~|py~}{x~i{}y~y{}y~|e{}y~|i{}~}cy~|b{|y"
|
|
"~|l{}y~|t{}y~|;{|r~|l{}y~|t~|j{}s~|m{|t~|}~}l{}s~|l{|s~|k{|t~|}~}n{}y~|t~|i{|y~d{|y~h{}y~v{}y~}i{|y~m{}y~|t~y{}"
|
|
"u~}q{}y~|t~|l{|s~}l{}y~|t~|l{|t~|}~}k{}y~|v~l{|r~k{|s~}l{}~}t{}~}o{}y~sy~}r{|y~v{}x~vy~}q{}y~|w{|y~}n{}y~sy~}n{"
|
|
"|p~h{}y~d{}~}d{}~} v{|t~|{}~|n{|y~u{}~}e{|y~|k{|t~|j{}s~|m{}y~|t~|o{}x~|ty~}ix~i{}~}t{}~}py~}q{|y~|p{|y~}{}v~|n"
|
|
"m~p{}y~x{|y~x{|y~|ls~|l{|o~|q{}n~o{|y~|t{}~}l{}y~y{}y~|h{}y~}h{|y~|i{|y~|p{}y~r{}y~|x{}y~x{|x~r{|y~|ry~}r{|y~|w"
|
|
"{}y~vy~}sx~p{}y~|p{}b{}|yy~|{|}b{}|hy~|i{|}s{}|ly|yy~|y{}My~}g{|r~k{|y~|gx~|}x~}|}y~|m{}y~xy~}g{}~}g{}x~|Q{|~|y"
|
|
"y~}|yx|y{|~|p{|~}w{|y~gy|w{|<{|~|y{}~}x|y~|y{|~|U{}y~y}y~e{}~|d{|y~a{}~Q{}~}t{}~}n{}t~y{}~|5{|~}h{}~|v{}~|m{|v{"
|
|
"|k{|~}t{}~|n{|~}t{|~}ox|}y~v{}~|f{|y~|h{}y~y{|y~|j{}y~y{|y~|j{}y~y{|y~|j{}y~y{|y~|j{}y~y{|y~|j{}y~y{}y~m{|y~|xy"
|
|
"~}jx~c{|y~|e{|y~|e{|y~|e{|y~|a{|y~|e{|y~|e{|y~|e{|y~|k{|y~|qx~r{|y~|{y~}vy~}qx~p{}y~|sx~p{}y~|sx~p{}y~|sx~p{}y~"
|
|
"|sx~p{}y~|r{|y~}u{|x~px~t{}~}{}y~|s{}y~r{|y~|q{}y~r{|y~|q{}y~r{|y~|q{}y~r{|y~|m{}y~y{}y~|l{|y~v|}x~}n{}y~x{}y~|"
|
|
"k{|r~|l{|r~|l{|r~|l{|r~|l{|r~|l{|r~|q{|r~|{}s~n{}s~|l{}s~|k{}s~|k{}s~|k{}s~|i{|y~d{|y~d{|y~d{|y~g{|r~l{}y~|t~|l"
|
|
"{|s~}k{|s~}k{|s~}k{|s~}k{|s~}h{|x~h{|q~|n{}~}t{}~}n{}~}t{}~}n{}~}t{}~}n{}~}t{}~}o{}y~sy~}n{}y~|t~|n{}y~sy~}<{}~"
|
|
"}wy~|x{|y~q{}~}q{|y~q{}~}{~}w{|~y|y~q{}~}t{|~y|y~q{}~}q{|y~j{}~|j{|y~|u{|y~|<q|}y~w|p{|y}uy}Qq~}k{|u~}o{|i~|q{|"
|
|
"q~}m{}y~uy~}n{|y~sy~|k{}w~|j{}y~v{|y~|q{|y~ H{}o~My~}fy|xy|m{|k~}q{}~}y{|~n{|y~wy~|y{}~|ix~_y|ey~|by~}i{|}~}~}"
|
|
"y~}f{}~| p{|~}jy~}t{|y~|j{|y~|a{}y~f{|}y~}k{|y~x{}y~kt~}|ky~}{|w~}|e{|y~|kx~|x{|y~}n{|y~|tx~i{}y~d{}y~d{|}v~}|q"
|
|
"k|p{|}w~}|a{}y~|p{}~|w{|}y~}|{y|xy~|qy~}xy~}m{|y~|u{|y~|p{|y~}e{|y~|qx~p{|y~|e{|y~|h{|y~}d{|y~|ry~}k{|y~|e{|y~|"
|
|
"j{|y~|}y~}g{|y~|i{|y~|{y~|wy~|{y~}s{|y~|{}y~vy~}r{|y~}p{|y~|q{|y~|u{}y~|r{|y~}p{|y~|r{|y~|u{}y~mx~}`y~}k{}y~r{|"
|
|
"y~|oy~}u{|y~|s{|y~|wy~|{|~}w{}y~o{|v~|hy~}|y~}e{}y~}h{}~}c{}~}b{|y~|m{}y~|r{|y~|<{|}y|x{|}y~l{}w~|y{|x~|lx~}|yy"
|
|
"|}|mx~|y{|}x~}mx~y|y{|x~iy~|h{|x~|y{|}x~}n{}w~|y{|x~i{|y~d{|y~h{}y~w{}y~|h{|y~m{}w~|y{|y~}|~}|{|}y~|r{}w~|y{|x~"
|
|
"lx~|y{|}y~}m{}w~|y{|x~|mx~|y{|}x~}k{}w~w|ly~}|xy|}i{}y~g{}~}t{}~}o{|y~|u{|y~|r{|y~|ww~vy~|px~wx~m{|y~|u{|y~|f{|"
|
|
"y~}h{}y~d{}~}d{}~}6{|}x~|x{}x~|o{|y~}|{|}y~{y~m{|y~v{|y~|dy~|l{}~}x{|x~|l{}y~}|yy|}|m{}w~|y{|x~n{|}~}u{|y~|j{|x"
|
|
"~|j{}~}t{}~}q{|y~|py~}q{|x~y|y~y|x~ny|y~}w|}y~}|p{}y~x{|y~x{|y~|mx~|y{|x~|n{|x~|x{}x~y|pu|y~}v|o{|y~s{}y~ly~}xy"
|
|
"~}g{}y~|i{|y~|i{}y~o{}y~|sx~w{}y~w{}y~|s{|y~|ry~}r{|y~|w{}y~w{|y~}t{|y~}p{|y~|qy~}_y~|`{|y~|iy~|j{|y~}u{|y~|iy~"
|
|
"|Jy~}h{|x~y|~|{|}k{|y~|fp~|ky~}{|y~f{}~}h{}~y}y~}|Sy}y{}~}qy}p{|~}w{|y~h{|~|x{}~<y}x{}~}x{|~}xy}T{|}y~}d{}~|e{|"
|
|
"~}`{}~|R{}~}t{}~}n{}t~y{}~|5{|~}h{|~}vy~l{|~|xy}l{|~}u{|~}m{|~}ty~|k{}~|x{|~}e{|y~|hy~}xy~}jy~}xy~}jy~}xy~}jy~}"
|
|
"xy~}jy~}xy~}jy~}xy~|n{}y~wy~}k{|y~}c{|y~|e{|y~|e{|y~|e{|y~|a{|y~|e{|y~|e{|y~|e{|y~|k{|y~|q{}y~r{|y~|{}y~vy~}r{|"
|
|
"y~}p{|y~|t{|y~}p{|y~|t{|y~}p{|y~|t{|y~}p{|y~|t{|y~}p{|y~|q{|y~}w{|x~p{|y~}u{|~}y{|y~|s{}y~r{|y~|q{}y~r{|y~|q{}y"
|
|
"~r{|y~|q{}y~r{|y~|ly~}|y~}k{|y~|ux~n{}y~y{|y~|j{|}y|x{|}y~l{|}y|x{|}y~l{|}y|x{|}y~l{|}y|x{|}y~l{|}y|x{|}y~l{|}y"
|
|
"|x{|}y~q{|}y|x{|}v~|x{|y~}px~}|yy|}|mx~y|y{|x~lx~y|y{|x~lx~y|y{|x~lx~y|y{|x~i{|y~d{|y~d{|y~d{|y~gx~|x{|y~}m{}w~"
|
|
"|y{|x~lx~|y{|}y~}lx~|y{|}y~}lx~|y{|}y~}lx~|y{|}y~}lx~|y{|}y~}i{|x~hx~|y{|}y~}m{}~}t{}~}n{}~}t{}~}n{}~}t{}~}n{}~"
|
|
"}t{}~}o{|y~|u{|y~|n{}w~|y{|x~|o{|y~|u{|y~|={|y~vy~|w{}~|s{|y~o{}~|s{|y~{}y~}y{|y~}{}~|s{|y~t{|y~}{}~|s{|y~o{}~|"
|
|
"ky~|iy~}u{}y~;k~}qw~u{~|R{}p~|k{}w~}mi~q{|o~|ny~|u{}y~n{|y~sy~|ky~}y~}j{|y~|w{}y~p{}~} Hx}y~t}|My~}M{|y~x{|~}l"
|
|
"{}y~y{|~m{}~}y{}~}y{|~}i{|w~I{|y~|b{}y~j{}~}|{~}{|y~|h{}~| p{}~|jy~}t{|y~|j{|y~|b{|y~}j{}u~}jy~|x{}y~kr~}ly~y}t"
|
|
"~}f{}y~i{}t~|ly~}u{|x~|j{}y~d{}y~f{}v~}|nk~}n{|}w~}|e{}y~|p{|~}w{|u~y}~x{|~}r{|y~|x{}y~m{|y~|xy|}y~}o{|y~|e{|y~"
|
|
"|q{}y~p{|y~r|m{|y~s|o{|y~|d{|y~q|y~}k{|y~|e{|y~|j{|v~}f{|y~|i{|y~|{}~}x{|~}yy~}s{|y~|yy~}wy~}r{|y~|p{|y~}q{|y~|"
|
|
"ux~q{|y~|p{|y~}r{|y~|v{|y~}m{|v~}y|ey~}k{}y~r{|y~|o{}y~u{}y~qy~}x{|y~y{|y~wy~}n{}x~}g{|v~e{|y~}g{}~}c{|y~b{|y~|"
|
|
" o{}~}m{}x~ux~m{}y~|f{}y~u{}y~}n{}y~|uy~}jy~|h{}y~u{}y~}n{}x~v{|y~|j{|y~d{|y~h{}y~x{}y~|g{|y~m{}x~v{}x~|vy~}r{}"
|
|
"x~v{|y~|n{}y~|v{}y~|n{}x~ux~n{}y~u{}y~}k{}x~h{|y~a{}y~g{}~}t{}~}ny~}u{}y~py~|x{|y~}~|x{|y~o{|y~}y{}y~|l{}~}u{}~"
|
|
"}ex~g{}y~d{}~}d{}~}6y~y}y~|{}y~}y~}p{}y~vy~}y~m{|y~x{|}x~c{}~}m{|y~u{}y~l{}~}e{}x~v{|y~|n{|y~u{}~}i{}x~}j{}~}t{"
|
|
"}~}q{}y~o{}y~q{}y~|{|y~y{|y~}my~|w{|y~|o{}y~x{|y~x{|y~|n{}y~ux~n{}y~u{}y~|iy~|j{|n~m{|y~|x{}y~f{}y~|j{|y~|i{}y~"
|
|
"o{|y~|t{|y~}w{}y~w{|y~}s{|y~|ry~}qy~}w{}y~w{|y~|t{|y~|{r~y|y~}rx~|_y~|_{}y~|jy~|k{|x~s{}y~|jy~|Jx|h{}y~|y{~|h{|"
|
|
"y~|f{|y~}|y{}y~|n{|u~{u~|j{}~}i{|~}y{|}y~}T{~|yy~p{|~p{|~}wx~i{|y~|y{}y~ok|X{~|x{}~}x{|~}x{|~?k~}m{}~}_y~|R{}~}"
|
|
"t{}~}mt~y{}~|ix|J{|~}gy~|x{}~}l{|y~|y{}~}m{|~}uy~|u{|t{|~}u{}~}j{}~|xy~cy|h{|y~|x{}y~k{|y~|x{}y~k{|y~|x{}y~k{|y"
|
|
"~|x{}y~k{|y~|x{}y~k{|y~|x{}y~ny~}wy~}r|t{|y~|c{|y~r|m{|y~r|m{|y~r|m{|y~r|i{|y~|e{|y~|e{|y~|e{|y~|k{|y~|q{}y~|s{"
|
|
"|y~|yy~}wy~}r{|y~|p{|y~}t{|y~|p{|y~}t{|y~|p{|y~}t{|y~|p{|y~}t{|y~|p{|y~}p{|y~}y{|x~o{|y~|v{|y~wy~}s{}y~r{|y~|q{"
|
|
"}y~r{|y~|q{}y~r{|y~|q{}y~r{|y~|l{|v~j{|y~|u{}y~|o{}y~y{|y~`{}~}d{}~}d{}~}d{}~}d{}~}d{}~}i{}x~u{|y~|r{}y~|f{}y~|"
|
|
"uy~}n{}y~|uy~}n{}y~|uy~}n{}y~|uy~}j{|y~d{|y~d{|y~d{|y~h{}y~|v{|y~|n{}x~v{|y~|n{}y~|v{}y~|n{}y~|v{}y~|n{}y~|v{}y"
|
|
"~|n{}y~|v{}y~|n{}y~|v{}y~|ix|i{}y~|w{|x~|n{}~}t{}~}n{}~}t{}~}n{}~}t{}~}n{}~}t{}~}n{}~}u{}~}m{}x~ux~n{}~}u{}~}<{"
|
|
"|~}vy~|w{|~}s{|~}o{|~}s{|~}y{}y~}|y~}y{|~}s{|~}u{|y~}y{|~}s{|~}o{|~}ky~|i{}y~uy~};k~}q{|{y~|w{}~R{|n~o{}o~}|r{|"
|
|
"k~}qm~|oy~|u{|y~n{|y~sy~|l{|y~|}y~iy~}wy~}p{}~} F{|y~|Fy~}M{}~}x{}~}l{|y~}y|~lu~xy~|xx}|q{|y~|x~ty|S{|y~a{}y~j"
|
|
"{}|x{~}x{}|h{}~| py~j{|y~|t{|y~|j{|y~|bx~i{}v~}|k{}~}w{}y~k{}y|x{|x~}mw~}|y{|x~|gy~}h{}u~}l{}y~|v{}x~|jx|dx|i{|"
|
|
"}w~}|kk~}l{|}v~}|i{}y~|o{}~|wy~}x{}x~wy~rx~w{|y~|n{|q~|n{|y~|e{|y~|q{}y~|q{|p~}n{|q~o{|y~|tu|q{|m~}k{|y~|e{|y~|"
|
|
"j{|v~e{|y~|i{|y~|yy~xy~|yy~}s{|y~|y{}y~|xy~}r{|y~|oy~}q{|y~|w{|x~}q{|y~|oy~}r{|y~v|}y~}k{|}t~}gy~}k{}y~r{|y~|o{"
|
|
"|y~}vy~}q{}y~x{|~}xy~|y{|y~|n{|x~e{}x~|ex~f{}~}by~|c{|y~| o{|y~m{}y~|u{|y~|ny~}ey~}u{|y~}ny~|t{}y~jy~|hy~}u{|y~"
|
|
"}n{}y~|u{}~}j{|y~d{|y~h{}y~y{}y~|f{|y~m{}y~|v{|x~u{}y~r{}y~|u{}~}ny~}ty~}n{}y~|u{|y~|oy~}u{|y~}k{}y~|h{|y~a{}y~"
|
|
"g{}~}t{}~}n{}y~uy~}p{}~}x{}~}|~}x{}~}n{|y~y|y~}k{|y~uy~|f{}y~f{}~}d{}~}d{}y~7{}~x{|y~|~}x{}~py~}v{}x~}m{|y~{|v~"
|
|
"|i{}y~}|{}~}my~|ty~}m{}~}e{}y~|u{}~}my~|vy~|j{|y~}y~j{}~}t{}~}qx~o{|y~|ry~}y{|y~x{}y~my~|w{|y~|o{}y~x{|y~x{|y~|"
|
|
"ny~|u{|y~|oy~}ty~}iy~|j{|n~mx~w{|y~|g{|y~}j{|y~|i{}y~o{|y~|t{|y~|w{}y~vy~}s{|y~|ry~}qx~w{}y~w{}y~|t{|y~|{r~|{y~"
|
|
"}sx~|^y~|^{}y~|ky~|l{|x~q{}y~|ky~|5{|y~|x{~|h{|y~|f{}~}v{|~}mw}v~w}|j{}~}i{}~|w{|y~}U{~y{|y~p{|~ox~y}~}y~j{}y~|"
|
|
"y{}y~nk~}Y{~w{}~}y{|}~|x{|~?k~}n{}y~v|ix}|}y~}Q{}~}t{}~}m{|u~y{}~|iy~}Ly|}~}y|i{|y~x}y~j{}y~|y{}y~n{|~}v{|~}v{|"
|
|
"y~}u{|~}v{|y~y{}w~}wx|{|}y~x{}~|uy~}Wx~w{|y~|lx~w{|y~|lx~w{|y~|lx~w{|y~|lx~w{|y~|l{}y~w{|y~|p{}y~|wo~t{|y~|c{|p"
|
|
"~}n{|p~}n{|p~}n{|p~}j{|y~|e{|y~|e{|y~|e{|y~|mq~u{}y~|s{|y~|y{}y~|xy~}r{|y~|oy~}t{|y~|oy~}t{|y~|oy~}t{|y~|oy~}t{"
|
|
"|y~|oy~}o{|y~}|x~n{|y~|vy~|wy~}s{}y~r{|y~|q{}y~r{|y~|q{}y~r{|y~|q{}y~r{|y~|k{}x~|j{|y~|u{|y~|o{}y~y{|y~|a{|y~d{"
|
|
"|y~d{|y~d{|y~d{|y~d{|y~i{|y~|t{}~}ry~}ey~|t{}y~ny~|t{}y~ny~|t{}y~ny~|t{}y~j{|y~d{|y~d{|y~d{|y~hy~}ty~}n{}y~|u{}"
|
|
"~}ny~}ty~}ny~}ty~}ny~}ty~}ny~}ty~}ny~}ty~}Ty~}w{|~}y~}n{}~}t{}~}n{}~}t{}~}n{}~}t{}~}n{}~}t{}~}n{|y~uy~|m{}y~|u{"
|
|
"|y~|o{|y~uy~|<{}~u|y~}w|{y~s{}~n|{y~s{}~|x{}w~}wy~s{}~|v{|y~}wy~s{}~|vy~}vy~ky~|i{|y~|w{|y~|4{|y~}i{}~}w{~}Rm~}"
|
|
"qk~|r{}l~q{|m~|p{|y~sy~|o{|y~sy~|l{}y~{|y~|j{}y~x{|y~|p{}i~ V{|y~|F{}~}M{}~|x{}~|k{}v~}|m{|y}|x{}~}y{|v~}s{|y~"
|
|
"|{|x~v{|y~S{}y~a{|y~e{~}jt|y~}u| w{|~}j{|y~|t{|y~|j{|y~|cx~|hw|}y~|m{|y~v{}y~cx~|nx~}ux~h{|y~|j{|y~}|{y|x~m{|x~"
|
|
"|y{|}w~|={}w~}|E{|}v~|l{|y~|ny~w{}~}v{}y~wy~s{|y~|vy~}n{|q~}|o{|y~|e{|y~|q{}y~p{|p~}n{|q~o{|y~|u{|u~}r{|m~}k{|y"
|
|
"~|e{|y~|j{|y~}x~f{|y~|i{|y~|y{}~|{|y~xy~}s{|y~|xy~}xy~}r{|y~|oy~}q{|q~}p{|y~|oy~}r{|r~}h{|y}u~|iy~}k{}y~r{|y~|n"
|
|
"x~w{|y~|q{}y~x{}~|x{}~|y{|y~|nw~|ey~}e{}y~|f{}~}b{}~}c{|y~| v{|y}t~m{}y~sy~|o{|y~|f{|y~|ty~}o{|y~|t{|y~jy~|i{|y"
|
|
"~|ty~}n{}y~t{}~}j{|y~d{|y~h{}y~{x~|e{|y~m{}y~ty~}u{|y~r{}y~t{}~}o{|y~|t{}y~n{}y~sy~|p{|y~|ty~}k{}y~g{|y~}b{}y~g"
|
|
"{}~}t{}~}n{|y~|w{|y~o{|y~x{}~y|y~xy~}m{}w~}iy~|w{}y~f{}y~|g{|y~|d{}~}d{|y~}jy}y~}|t{|}X{~}w{|y~}v{~|r{|y~|v{|x~"
|
|
"|m{|y~{|v~}|ku~|y~}n{|y~|t{}y~m{|y~}f{}y~t{}~}m{}y~w{}y~i{}y~{y~}k{}~}t{}~}qy~}ny~}s{|y~|y{|y~x{|y~my~|w{|y~|o{"
|
|
"}y~x{|y~x{|y~|o{|y~sy~|p{|y~|t{}y~iy~|j{|y~s|}y~n{|y~}vy~}gx~|j{|y~|i{}y~o{|y~|t{|y~|w{}y~vy~}s{|y~|ry~}q{}y~|x"
|
|
"{}y~x{|y~}s{|y~|{r|yy~}tx~}l|ly~|mk|x~|ly~|m{|x~o|x~|ly~|5{}y~w{~|j{}r~}ky~|uy~i{|x~}e{}~}i{}~}v{|y~V{|~y{|y~o{"
|
|
"~|o{}x~|{y}k{}y~|y{}~}mk~}Z{|~w{}u~|v{~|@t|y~}t|n{}t~i{|}x~y}P{}~}t{}~}k{|}x~y{}~|iy~}Lt~|i{|}x~}h{|y~|y{}y~|rt"
|
|
"~|yy~ux~}wt~|y{}~|{|~}y|}y~x{}v~}|y{|y~u{}y~}m{|y}i{|y~|vy~}m{|y~|vy~}m{|y~|vy~}m{|y~|vy~}m{|y~|vy~}ly~|vy~}py~"
|
|
"}vo~t{|y~|c{|p~}n{|p~}n{|p~}n{|p~}j{|y~|e{|y~|e{|y~|e{|y~|m{}s~}u{}y~|s{|y~|xy~}xy~}r{|y~|oy~}t{|y~|oy~}t{|y~|o"
|
|
"y~}t{|y~|oy~}t{|y~|oy~}n{|v~m{|y~|wy~|vy~}s{}y~r{|y~|q{}y~r{|y~|q{}y~r{|y~|q{}y~r{|y~|jy~}i{|y~|u{}y~|o{}y~xx~|"
|
|
"i{|y}t~k{|y}t~k{|y}t~k{|y}t~k{|y}t~k{|y}t~p{|y}t~s{|y~s{|y~|f{|y~|t{|y~o{|y~|t{|y~o{|y~|t{|y~o{|y~|t{|y~j{|y~d{"
|
|
"|y~d{|y~d{|y~i{|y~|t{}~}n{}y~t{}~}o{|y~|t{}y~o{|y~|t{}y~o{|y~|t{}y~o{|y~|t{}y~o{|y~|t{}y~pk~}q{|y~|w{~}{}y~n{}~"
|
|
"}t{}~}n{}~}t{}~}n{}~}t{}~}n{}~}t{}~}my~|w{}y~l{}y~sy~|ny~|w{}y~;{}~|}p~{y~s{}~|}p~{y~s{}~|w{}x~vy~s{}~|w{|y~}vy"
|
|
"~s{}~|vy~}vy~ky~|h{}~}w{}y~3y~}h{|y~x{|~|S{|l~r{}k~}qm~|p{}o~}o{|y~sy~|o{|y~sy~|ly~}yy~}j{|y~|y{|y~o{}i~ X{|y}"
|
|
"y~u}K{}~}My~|xy~i{|}u~}i{|y~y{|y~|{|y~|t{}~}x{|x~w{|y~S{}y~a{|y~|f{~}jk~} x{}~}iy~}t{|y~|j{|y~|d{}y~|b{}y~|ny~|"
|
|
"v{}y~c{|y~}nx~|u{}y~|ix~j{|y~|v{|y~}m{|t~y}y~|=x~}?{|x~}l{}y~m{~}wy~|v{|y~w{}~s{}y~u{}y~n{|y~|v{|}y~|p{|y~|e{|y"
|
|
"~|q{}y~p{|y~|e{|y~|h{|y~|u{|u~}r{|y~|ry~}k{|y~|e{|y~|j{|y~|}x~g{|y~|i{|y~|y{|y~{}~}xy~}s{|y~|x{|y~|yy~}r{|y~|p{"
|
|
"|y~}q{|s~}|o{|y~|p{|y~}r{|q~|ey|w~iy~}k{}y~r{|y~|n{|y~|x{}y~p{|y~|yy~|x{}~}y{}y~n{}v~ey~}f{}y~|e{}~}b{|~}c{|y~|"
|
|
" w{}q~m{}y~sy~}o{|y~e{|y~s{}~}o{|n~jy~|i{|y~s{}~}n{}y~t{}~}j{|y~d{|y~h{}v~c{|y~m{}y~ty~|u{|y~r{}y~t{}~}o{|y~s{}"
|
|
"y~n{}y~sy~}p{|y~s{}~}k{}y~f{}w~}|f{}y~g{}~}t{}~}m{}~}w{}~}o{|y~|yy~yy~xy~|lw~h{}y~wy~}g{}y~|i{}w~}c{}~}c{|w~}o{"
|
|
"|s~}w|}~}X{~|vy~|vy}r{|y~tx~l{|y~w{|}x~|m{}y~x{}x~|n{|y~s{}y~l{|}v~j{}y~t{}~}m{|y~|xy~}j{|y~|{}y~k{}~}t{}~}qy~}"
|
|
"vy~|vy~}s{|y~x{|y~x{|y~|ny~|w{|y~|o{}y~x{|y~x{|y~|o{|y~sy~}p{|y~s{}y~iy~|j{|y~s{}y~n{}y~u{}y~h{}y~|i{|y~|i{}y~|"
|
|
"p{}y~s{|y~}w{}y~w{|y~}s{|y~|ry~}px~x{}y~x{}y~|s{|y~|p{|y~}u{}h~ly~|m{}h~ly~|mg~ly~|J{}~}i{}y~w{~|j{}r~}ky~ty~|i"
|
|
"x~d{}~}i{}y~|vy~|W{|~y{|y~o{~|X{}y~xy~}^{|~}Z{|~w{}~}|}~}u{~|9{}~| v{}~}t{}~}hy~y{}~|iy~} s{|y~}y{}y~|st|y{}~|v"
|
|
"{}~|~}wt|y{|~}sy~|wx|v{}~|vy}|~}m{|y~i{}y~u{}y~m{}y~u{}y~m{}y~u{}y~m{}y~u{}y~m{}y~u{}y~m{}y~u{}y~q{|y~|vy~}k{|y"
|
|
"~|c{|y~|e{|y~|e{|y~|e{|y~|a{|y~|e{|y~|e{|y~|e{|y~|k{|y~|q{}y~|s{|y~|x{|y~|yy~}r{|y~|p{|y~}t{|y~|p{|y~}t{|y~|p{|"
|
|
"y~}t{|y~|p{|y~}t{|y~|p{|y~}m{}x~|m{|y~|x{}~|v{|y~}s{}y~r{|y~|q{}y~r{|y~|q{}y~r{|y~|q{}y~r{|y~|jy~}i{|y~|ux~n{}y"
|
|
"~x{|x~}k{}q~l{}q~l{}q~l{}q~l{}q~l{}q~q{}f~s{|y~e{|n~o{|n~o{|n~o{|n~j{|y~d{|y~d{|y~d{|y~i{|y~s{}y~n{}y~t{}~}o{|y"
|
|
"~s{}y~o{|y~s{}y~o{|y~s{}y~o{|y~s{}y~o{|y~s{}y~pk~}q{|y~wy~y{}y~n{}~}t{}~}n{}~}t{}~}n{}~}t{}~}n{}~}t{}~}m{}y~wy~"
|
|
"}l{}y~sy~}n{}y~wy~};{}~|}q~}{y~s{}~|}q~}{y~s{}~|x{|w~}wy~s{}~|x{|y~}uy~s{}~|vy~}vy~ky~g{|y~|xy~|4{}y~fy~|yy}R{|"
|
|
"l~ri~po~|n{}p~n{|y~sy~|o{|y~sy~|m{|y~|y{}y~iy~}y{}~}o{}~} H{}r~}K{}~}N{|y~x{|y~f{|~}w~j{}~|y{}~}x{|y~ty~|w{|x~"
|
|
"x{}~}S{}y~a{|y~|f{|ik~}T{}u~|Ly~|iy~}t{|y~|j{|y~|e{}y~|`y~}o{}~}u{}y~by~}nx~t{|y~|j{|y~}jy~}t{}y~k{}x~}|{}y~<v~"
|
|
"}|hk|g{|}w~}l{}~}n{|~}wy~ty~wy~sy~}t|y~|o{|y~|t{}y~p{|y~}e{|y~|qx~p{|y~|e{|y~|h{|y~}py~}r{|y~|ry~}k{|y~|e{|y~|j"
|
|
"{|y~|{}y~}h{|y~|i{|y~|xy~|y~|xy~}s{|y~|wy~}yy~}r{|y~}p{|y~|q{|y~w|k{|y~}p{|y~|r{|y~|w{}x~bx~|jy~}k{}y~r{|y~|my~"
|
|
"}xy~}oy~}{|y~w{|y~yy~}o{|y~}{y~}fy~}g{|y~}d{}~}ay~c{|y~| x{}y~}|w{|y~m{}y~sy~}o{|y~e{}y~s{}~}o{|n~jy~|i{}y~s{}~"
|
|
"}n{}y~t{}~}j{|y~d{|y~h{}w~}c{|y~m{}y~ty~|u{|y~r{}y~t{}~}o{}y~s{}y~n{}y~sy~}p{}y~s{}~}k{}y~e{|u~}h{}y~g{}~}t{}~}"
|
|
"m{|y~wy~|ny~}{|~}y{}~|{|y~k{}y~}h{|y~|y{|y~|h{|y~}h{}w~|c{}~}c{|}x~}oy~}x|}r~|X{~|v{}~|v{~}r{}y~ty~}l{|y~t{}y~n"
|
|
"{|y~|wx~|n{|y~s{}y~l{|u~j{}y~t{}~}ly~}y{|y~|j{}y~y{|y~|l{}~}t{}~}r{|y~}vy~|vy~}s{}y~x{|y~x{|y~|ny~|w{|y~|o{}y~x"
|
|
"{|y~x{|y~|o{}y~sy~}p{|y~s{}y~iy~|j{|y~|t{}y~ny~}u{|y~|j{|y~}h{|y~|i{|y~}px~ry~}w{}y~w{}y~|s{|y~|ry~}p{|x~|{}y~y"
|
|
"{}y~}r{|y~}p{|y~|u{|h~ly~|m{}h~ly~|m{}h~ly~|J{}~}i{}y~w{~|h{|y~|fy~|uy~mv}x~v}|Tx~|wy~U{~|yy~|q{|~or}ly~}xy~|^{"
|
|
"|~}Y{~|x{}~}y{}~}w{|~8{}~| v{}~}t{}~}hy~y{}~| yr}h{}~}y{|y~|k{|~}v{|~y|~}ny~r{}~|p{|~}v{|~{|~}m{|y~iy~}t|y~|ny~"
|
|
"}t|y~|ny~}t|y~|ny~}t|y~|ny~}t|y~|ny~}t|y~|r{}y~u|y~}k{|y~}c{|y~|e{|y~|e{|y~|e{|y~|a{|y~|e{|y~|e{|y~|e{|y~|k{|y~"
|
|
"|q{}y~r{|y~|wy~}yy~}r{|y~}p{|y~|t{|y~}p{|y~|t{|y~}p{|y~|t{|y~}p{|y~|t{|y~}p{|y~|n{|w~}m{|y~}y{}~}u{|y~|s{}y~r{|"
|
|
"y~|q{}y~r{|y~|q{}y~r{|y~|q{}y~r{|y~|jy~}i{|y~|w{|x~}n{}y~v{}x~|n{}y~}|w{|y~m{}y~}|w{|y~m{}y~}|w{|y~m{}y~}|w{|y~"
|
|
"m{}y~}|w{|y~m{}y~}|w{|y~r{}y~}|w{|n~s{|y~e{|n~o{|n~o{|n~o{|n~j{|y~d{|y~d{|y~d{|y~i{|y~s{}y~n{}y~t{}~}o{}y~s{}y~"
|
|
"o{}y~s{}y~o{}y~s{}y~o{}y~s{}y~o{}y~s{}y~pk|p{}y~x{}~|y{}y~n{}~}t{}~}n{}~}t{}~}n{}~}t{}~}n{}~}t{}~}m{|y~|y{|y~|l"
|
|
"{}y~sy~}n{|y~|y{|y~|;{|~}vy~|w{|~}s{|~}o{|~}s{|~}y{}y~}|y~}y{|~}s{|~}y{}y~}u{|~}s{|~}vy|v{|~}ky~fy~}y{}y~9k~}n{"
|
|
"}y~y{~|R{}l~ri~p{|q~}lq~m{|y~sy~|o{|y~sy~|m{}y~x{|y~|j{}y~yy~}o{|y~ Ey~}E{|Qj~j{|~y{|y~}l{|~}xy~|wy~u{|y~|v{|x"
|
|
"~{|y~R{}y~a{|y~K{}~|M{}u~|M{|y~hy~}t{}y~i{|y~|f{}y~|_{}y~o{}n~}ey~}n{}y~t{|y~|j{}y~|jy~}t{|y~|e{}y~;{|}v~}jk~}k"
|
|
"{|}v~}j{}~}n{|~}wy~ty~wy~t{|o~}o{|y~|t{|y~|px~e{|y~|qy~}p{|y~|e{|y~|gx~py~}r{|y~|ry~}k{|y~|e{|y~|j{|y~|y{}y~}i{"
|
|
"|y~|i{|y~|x{}w~wy~}s{|y~|w{|y~|{y~}qx~p{}y~|q{|y~|gx~p{}y~|r{|y~|v{|y~}c{|y~}jy~}k{}y~r{|y~|m{}y~y{}y~|o{}y~{|~"
|
|
"}vy~{|y~|ox~y{|y~|gy~}h{|x~c{}~}a{}~|d{|y~| xy~|u{|y~m{}y~sy~}o{|y~e{|y~s{}~}o{|y~_y~|i{|y~s{}~}n{}y~t{}~}j{|y~"
|
|
"d{|y~h{}y~|y~}d{|y~m{}y~ty~|u{|y~r{}y~t{}~}o{|y~s{}y~n{}y~sy~}p{|y~s{}~}k{}y~b{|}w~i{}y~g{}~}t{}~}ly~|y{}y~m{}~"
|
|
"}{}~}y{|~}{}~}l{|w~|h{}~}y{}y~h{|y~}d{}y~|d{}~}d{|y~}|m{}t{|}x~}|V{~}w{|x~v{~|r{|y~ty~|l{|y~t{|y~|o{}y~v{}y~m{|"
|
|
"y~s{}y~m{}y~}f{}y~t{}~}l{|y~y{}~}iy~|xy~}l{}~}t{}~}qy~}vy~}vy~}s{|y~x{|y~x{|y~|ny~|w{|y~|o{}y~x{|y~x{|y~|o{}y~s"
|
|
"y~}p{|y~s{}y~iy~|j{|y~|ty~}o{|y~|ty~}k{|x~g{|y~|hx~q{|y~}r{}y~|x{}y~x{|x~r{|y~|ry~}o{}x~}x~}x~}px~p{}y~|t{}y~}]"
|
|
"y~|^{|x~oy|yy~|y{|o{}y~|q{|x~oy|yy~|y{|M{}~}i{}y~w{~|h{|y~|f{}~}v{}~}n{|n~|S{}x~|{}~}Uy}y{}~}qy}p{|r~ky~}y{|y~}"
|
|
"_{|~}Yy}x{}~}xy~|xy}8{}~| v{}~}t{}~}hy~y{}~| {{|r~iy~}y{|y~}jy~|w{|~|{|~}o{}~|s{|y~oy~v{|~|{|~}m{|y~j{|o~}o{|o~"
|
|
"}o{|o~}o{|o~}o{|o~}o{|o~}s{|p~}jx~c{|y~|e{|y~|e{|y~|e{|y~|a{|y~|e{|y~|e{|y~|e{|y~|k{|y~|qx~r{|y~|w{|y~|{y~}qx~p"
|
|
"{}y~|sx~p{}y~|sx~p{}y~|sx~p{}y~|sx~p{}y~|o{|x~|y~}my~}{}~}t{}y~|s{}y~r{|y~|q{}y~r{|y~|q{}y~r{|y~|q{}y~r{|y~|jy~"
|
|
"}i{|q~}m{}y~u{|x~|oy~|u{|y~my~|u{|y~my~|u{|y~my~|u{|y~my~|u{|y~my~|u{|y~ry~|u{|y~h{|y~e{|y~d{|y~d{|y~d{|y~_{|y~"
|
|
"d{|y~d{|y~d{|y~i{|y~s{}y~n{}y~t{}~}o{|y~s{}y~o{|y~s{}y~o{|y~s{}y~o{|y~s{}y~o{|y~s{}y~U{|y~y{}~|x{}y~n{}~}t{}~}n"
|
|
"{}~}t{}~}n{}~}t{}~}n{}~}t{}~}l{}~}y{}y~k{}y~sy~}m{}~}y{}y~:{|y~vy~|w{}~|s{|y~o{}~|s{|y~{|y~}y{|y~}{}~|s{|y~{|y~"
|
|
"}t{}~|s{|y~o{}~|ky~f{}y~yy~}9k~}n{|y~y|~Q{|u~|y}u~r{}t~y}s~o{|s~}k{|s~|m{|y~sy~|ny~sy~ly~}wy~}j{|y~y|y~|ny~| F"
|
|
"x~ uj~j{|~x{}y~ly~wy~|wy~u{|y~|u{|x~}~}R{|y~a{}y~K{}~| r{}~}h{}y~t{}y~i{|y~|g{}y~|^{}y~o{}n~}ey~}n{}y~t{|y~|jy~"
|
|
"}iy~}t{|y~|ey~}8{|}w~}|mk~}n{|}v~}|hx}m{~}wy~|v{|y~x{|~}t{}n~|p{|y~|t{|y~}p{}y~|f{|y~|r{}y~|p{|y~|e{|y~|g{}y~|q"
|
|
"y~}r{|y~|ry~}k{|y~|e{|y~|j{|y~|x{}y~}j{|y~|i{|y~|x{|x~}wy~}s{|y~|vy~}{y~}q{}y~|qx~p{|y~|g{}y~|qx~q{|y~|u{}y~|d{"
|
|
"|y~}jy~}k{|y~|s{}y~|m{|y~|{y~}n{}y~{}~}v{}~y|y~|p{}y~|x{}y~gy~}hx~|c{}~}a{|~}d{|y~| y{|y~t{}y~m{}y~sy~|o{|y~|f{"
|
|
"|y~|ty~}o{|y~|`y~|i{|y~|ty~}n{}y~t{}~}j{|y~d{|y~h{}y~{|x~e{|y~m{}y~ty~|u{|y~r{}y~t{}~}o{|y~|t{}y~n{}y~sy~|p{|y~"
|
|
"|ty~}k{}y~_{|y~}j{}y~g{}~}ty~}l{}y~yy~}m{|y~{y~|y{|y~{y~}m{|y~y}y~h{|y~yy~|hx~by~}d{}~}d{}y~7{}~|y{|~}|~}x{}~q{"
|
|
"|y~|v{|y~}l{|y~t{|y~|o{}~}v{}~}m{|y~|t{}y~my~|e{}y~t{}~}ky~|{y~|j{}y~w{}y~l{}~}ty~}qy~}vy~}vy~}s{|y~|y{|y~x{}y~"
|
|
"my~|w{|y~|o{|y~x{|y~x{|y~|o{}y~sy~|p{|y~|t{}~}iy~|iy~}ty~|o{}y~s{}y~|lx~|g{|y~|h{|y~}rx~px~|y{}y~y{|x~|r{|y~|ry"
|
|
"~}n{|r~}o{}y~|qx~r{}y~}^y~|_{|x~o{|y~|{y~|{}~}o{}y~|s{|x~o{|y~|{y~|{}~}Ny~}i{}y~w{~|h{|y~|f{|y~}|{|}y~|h{}y~L{|"
|
|
"v~}T{|~xy~}|yx|x{~|U{}y~y{|y~}`{|~}Y{|~x{}~}x{|y~x{~|8{}~| v{}~}ty~}hy~y{}~| `{|y~}y{|y~|j{}~}v{~}y{|~}p{|y~ry~"
|
|
"|p{}~|v{~}y{|~}mx~j{}n~|p{}n~|p{}n~|p{}n~|p{}n~|p{}n~s{}p~}j{}y~|d{|y~|e{|y~|e{|y~|e{|y~|a{|y~|e{|y~|e{|y~|e{|y"
|
|
"~|k{|y~|r{|y~}r{|y~|vy~}{y~}q{}y~|qx~r{}y~|qx~r{}y~|qx~r{}y~|qx~r{}y~|qx~o{|x~y{|y~}n{}y~}~}sx~r{|y~|s{}y~|q{|y"
|
|
"~|s{}y~|q{|y~|s{}y~|q{|y~|s{}y~|jy~}i{|s~}|l{}y~sy~}p{|y~t{}y~n{|y~t{}y~n{|y~t{}y~n{|y~t{}y~n{|y~t{}y~n{|y~t{}y"
|
|
"~s{|y~t{}y~|i{|y~|f{|y~|e{|y~|e{|y~|e{|y~|`{|y~d{|y~d{|y~d{|y~i{|y~|t{}y~n{}y~t{}~}o{|y~|t{}y~o{|y~|t{}y~o{|y~|"
|
|
"t{}y~o{|y~|t{}y~o{|y~|t{}y~ix|j{|y~|}~}w{}y~n{}~}ty~}n{}~}ty~}n{}~}ty~}n{}~}ty~}l{|y~yy~|k{}y~sy~|m{|y~yy~|9{}~"
|
|
"}wy~|x{|y~q{}~}q{|y~q{}~}{~}w{|~y|y~q{}~}{~}t{|y~q{}~}q{|y~k{|y~f{|y~y|y~|9x|}y~}q|m{}~x}P{}w~}{}{v~|r{|t~y|}u~"
|
|
"|n{}u~}i{|u~}l{|y~sy~|ny~|u{|y~ly~|w{}y~iy~y}y~m{|y~| G{|y~| ry~|xy~|f{|~x{}y~m{}~|wy~|wy~ty~}t{|w~Q{|y~|b{}y~"
|
|
"K{}~| ry~|h{|y~|uy~}i{|y~|h{}y~|]x~ns|x~y|e{|y~}n{|y~|u{}y~|k{|y~|iy~}t{}y~e{}y~4{|}w~}|U{|}v~}|Ty~w{}~}v{}y~xy"
|
|
"~sy~}ry~}p{|y~|t{|y~}p{|x~p{|r{|y~|s{|x~o{|y~|e{|y~|g{|x~qy~}r{|y~|ry~}k{|y~|e{|y~|j{|y~|w{}y~}k{|y~|i{|y~|wx~|"
|
|
"wy~}s{|y~|v{|y~|y~}q{|x~r{}y~|p{|y~|g{|y~}r{}y~|q{|y~|u{|y~}d{|y~}jy~}k{|y~}sx~ky~}|y~|n{|y~|y~|v{}~y}y~p{|y~}w"
|
|
"{|y~}hy~}i{}y~|b{}~}a{|y~d{|y~| y{|y~tx~m{}y~|u{|y~|ny~}ey~}u{|y~}ny~}`y~|hy~}u{|y~}n{}y~t{}~}j{|y~d{|y~h{}y~y{"
|
|
"|x~f{|y~m{}y~ty~|u{|y~r{}y~t{}~}ny~}ty~}n{}y~|u{|y~|oy~}u{|y~}k{}y~^{}~}j{|y~g{}y~u{|y~}l{|y~y|y~|ly~|y~wy~|y~|"
|
|
"mx~yy~}hy~y|y~hx~a{}y~d{}~}d{}~}6u~y{}y~}y~|py~|v{}y~}l{|y~t{|y~|o{}~}vy~|ly~}ty~}n{|y~|e{}y~t{}~}k{}~y}y~iy~}v"
|
|
"y~|m{}y~ty~}qx~w{|x~w{|y~|ry~}y{|y~x{}~}my~|w{|y~|o{|y~x{|y~x{|y~n{}y~|u{|y~|oy~}ty~}iy~|i{}y~u{|y~ny~}s{|y~}m{"
|
|
"}y~|f{|y~|g{}y~|t{}y~|p{|w~y}y~y}x~}q{|y~|ry~}ly}x~y}|n{|x~r{}y~|q{}y~}_y~|`{|x~mx~|y~|}y~|n{}y~|u{|x~mx~|y~|}y"
|
|
"~|Ny~}i{|y~|x{~|h{|y~|fp~|i{}y~d{}~}d{|x~|S{~}x{}u~|y{}~S{}y~xy~}a{|~}X{~}y{|~|w{}~|{}~7y| u{}y~ty~}hy~y{}~| a{"
|
|
"|y~}y{|y~|j{|y~v{}~x{|~}p{}~|s{}~|p{|y~v{}~x{|~}n{}y~|jy~}ry~}py~}ry~}py~}ry~}py~}ry~}py~}ry~}py~}ry~}ty~}ty~}j"
|
|
"{|x~p{|p{|y~|e{|y~|e{|y~|e{|y~|a{|y~|e{|y~|e{|y~|e{|y~|k{|y~|rx~q{|y~|v{|y~|y~}q{|x~r{}y~|r{|x~r{}y~|r{|x~r{}y~"
|
|
"|r{|x~r{}y~|r{|x~r{}y~|p{|x~w{|y~}o{|w~s{}y~|r{|y~}sx~p{|y~}sx~p{|y~}sx~p{|y~}sx~iy~}i{|y~w|h{}y~s{}~}p{|y~tx~n"
|
|
"{|y~tx~n{|y~tx~n{|y~tx~n{|y~tx~n{|y~tx~s{|y~tx~}hy~}ey~}dy~}dy~}dy~}`{|y~d{|y~d{|y~d{|y~hy~}ty~}n{}y~t{}~}ny~}t"
|
|
"y~}ny~}ty~}ny~}ty~}ny~}ty~}ny~}ty~}j{|x~iy~}~}vy~}n{}y~u{|y~}n{}y~u{|y~}n{}y~u{|y~}n{}y~u{|y~}ky~y|y~j{}y~|u{|y"
|
|
"~|ly~y|y~7y~}xy~|y{|y~|py~}s{|y~|py~}s{|y~|py~}s{|y~|py~}s{|y~|k{|y~ey~y}y~6{|y~}b{|x~|O{}y~}y{}{|}y~|p{|w~}{|}"
|
|
"{}w~}l{}v~g{}w~}k{|y~sy~|n{}y~uy~}m{|y~v{|y~|j{}w~}l{}y~| Gx~|u{}|Px|O{|y~x{|y~j{|w{|~x{}~}n{|y~v{}~|x{|y~t{}y"
|
|
"~}t{}x~Py~|by~}K{}~|dx|Jx|f{|y~fx~v{}y~h{|y~|i{}y~|f{|s{}y~}f{}y~l{|t{|x~l{}y~ux~j{}y~h{}y~|v{|x~f{|y~}hx|dx|a{"
|
|
"}v~}Xv~}|bx|m{}~|x{|y~}x{|x~{|y~|t{|y~|r{}y~p{|y~|t{}y~|o{}y~}s{|~|r{|y~|t{|x~|o{|y~|e{|y~|f{}y~}ry~}r{|y~|ry~}"
|
|
"k{|y~|e{|y~|j{|y~|v{}y~}l{|y~|i{|y~|oy~}s{|y~|uv~}p{}y~}t{}y~}o{|y~|f{}y~}t{}y~}p{|y~|t{}y~|o{}r{}y~|jy~}j{}y~|"
|
|
"u{|y~}k{}y~}y~ly~}y~u{|w~}px~u{|y~|iy~}j{}y~}a{}~}`y~|e{|y~| y{|y~|v{}x~m{}x~ux~m{}y~|f{}y~u{}y~}n{}y~|ay~|h{}y"
|
|
"~u{}y~}n{}y~t{}~}j{|y~d{|y~h{}y~x{|x~g{|y~m{}y~ty~|u{|y~r{}y~t{}~}n{}y~|v{}y~|n{}x~ux~n{}y~u{}y~}k{}y~^y~}j{|y~"
|
|
"g{|y~|v{}y~}ky~y}y~kw~}w{}w~m{}y~|y{|y~}i{}~}y~}i{}y~|a{}y~d{}~}d{}~}5{}y~}w{|y~}|o{}y~w{|w~l{|y~}u{}y~n{}~}w{}"
|
|
"y~k{}y~|v{}y~|my~|e{}y~t{}~}k{|w~}j{}y~u{}~}m{}y~|v{}y~}q{}y~|x{}~}~|x{}y~q{}y~|{|y~y{|y~|my~|w{|y~|ny~}y{|y~x{"
|
|
"}y~n{}x~ux~n{}y~|v{}y~|iy~|i{|y~}vy~}o{|y~|rx~n{|y~}e{|y~|fx~|v{}y~}n{|}q~|p{|y~|ry~}j{}y~j{}y~}t{}y~}o{}~}_y~|"
|
|
"`{|y~ks~|l{}~|u{|y~ks~|My~}hx~x{~|h{|y~|gx~|}x~}|}y~|j{}y~d{}~}c{|x~S{|~}xy|}y|x{}~|R{}~|x{}~a{|}|X{|~}p{}~| /{"
|
|
"}y~|v{}y~}hy~y{}~| a{|~|x{}~|i{}~|vr~|s{|~}s{}~|o{}~|vr~|q{}y~}j{|y~|r{}y~q{|y~|r{}y~q{|y~|r{}y~q{|y~|r{}y~q{|y"
|
|
"~|r{}y~q{|y~|r{}y~u{|y~|ty~}i{}y~}s{|~|p{|y~|e{|y~|e{|y~|e{|y~|a{|y~|e{|y~|e{|y~|e{|y~|k{|y~|t{|x~}q{|y~|uv~}p{"
|
|
"}y~}t{}y~}p{}y~}t{}y~}p{}y~}t{}y~}p{}y~}t{}y~}p{}y~}t{}y~}p{|x~u{|y~}o{}y~}t{}y~}p{}y~|u{|y~}o{}y~|u{|y~}o{}y~|"
|
|
"u{|y~}o{}y~|u{|y~}iy~}i{|y~|e{}y~sy~}p{|y~|v{}x~n{|y~|v{}x~n{|y~|v{}x~n{|y~|v{}x~n{|y~|v{}x~n{|y~|v{}x~s{|y~|v{"
|
|
"}w~|i{}y~|f{}y~|e{}y~|e{}y~|e{}y~|a{|y~d{|y~d{|y~d{|y~h{}y~|v{}y~|n{}y~t{}~}n{}y~|v{}y~|n{}y~|v{}y~|n{}y~|v{}y~"
|
|
"|n{}y~|v{}y~|n{}y~|v{}y~|j{|x~i{}y~}v{}y~|n{|y~|v{}y~}n{|y~|v{}y~}n{|y~|v{}y~}n{|y~|v{}y~}k{}~}y~}j{}x~ux~k{}~}"
|
|
"y~}7{|y~}|{y|{|}y~|o{|y~}|w{|}y~|o{|y~}|w{|}y~|o{|y~}|w{|}y~|o{|y~}|w{|}y~|j{|y~e{|w~|6y~}`x~I{|~hx|y{|}yw|jw~|"
|
|
"f{}x~j{|y~sy~|mx~w|x~l{}~}uy~}j{}w~|k{}y~}| I{|x~}|{y|y~|Py~}O{|~}x{|~}j{}~|y{|~{|}y~|n{}~|v{|y~x{}~}sx~}|y{|}"
|
|
"u~Q{}~}by~|K{}~|d{}y~Jy~}f{}~}f{|y~}|{|}y~}kw|y~w|m{}y~}s|my~}w|}w~e{}y~ly~}w|}x~}l{|x~|y{|x~|jy~}h{|x~}|{y|x~|"
|
|
"m{~}w|}y~}g{}y~d{}y~_{|}y~}Xy~}|_y~}m{|~}w{|u~y}w~|sx~q{|y~|q{|y~t|}y~}m{}x~}v|}y~|r{|y~u|y}x~}n{|y~q|n{|y~|e{}"
|
|
"x~}v|}x~}r{|y~|ry~}k{|y~|e{|y~|j{|y~|u{}y~}m{|y~q|r{|y~|oy~}s{|y~|u{|w~}o{}x~}|{y|}x~n{|y~|e{}x~}|{y|}x~o{|y~|t"
|
|
"{|y~}oy~}x|{y|x~}iy~}j{|x~}w|}x~j{|w~}l{}x~}tw~|q{}y~|t{}y~iy~}k{|x~o|l{}~}`{}~}e{|y~| xx~|y{|}w~m{}w~|y{|x~|lx"
|
|
"~}|yy|}|mx~|y{|}x~}m{}y~}|x{|}~}jy~|h{|x~|y{|}x~}n{}y~t{}~}j{|y~d{|y~h{}y~w{|x~h{|y~m{}y~ty~|u{|y~r{}y~t{}~}mx~"
|
|
"|y{|}y~}m{}w~|y{|x~|mx~|y{|}x~}k{}y~g{}~}|x{|}y~|j{|y~}gx~|y{|}x~}k{}w~}k{}x~}w{|x~}n{|y~|w{}y~|j{|w~|j{}y~|`{}"
|
|
"y~d{}~}d{}~} w{|y~}|{|y~}y~}m{|x~}|y{|}y~}n{|~}x{|y~|jx~|y{|}y~}l{}y~}|x{|y}m{}y~t{}~}jw~|jy~}u{|y~|n{}x~}|{|}w"
|
|
"~y|s{|x~|{|y~|~}|{}y~}px~y|y~|}y~}ly~|vy~}n{}y~|{|y~y{}y~|n{}w~|y{|x~|mx~|y{|}y~}h{}y~|i{}y~}y{|x~nx~q|}y~|ox~r"
|
|
"|m{|y~|iw|x~}x{}y~}w|o{|y}x~y}|n{|y~|ry~}j{}y~i{}x~}|{y|}x~m{|^y~|_{|iu~|j{|s{|iu~|Ly~}h{|y~}|{~|{|}mx|y~}t|o{|"
|
|
"y~r{}~}j{}y~d{}~}b{|y~|S{|~}r{}~|Py|w{}:{|~}r{}~|=k|!{}x~}|{|}w~y|jy~y{}~| ay|w{}h{|~}uv|}~}|ry~s{}~|o{|~}uv|}~"
|
|
"}|q{|y~}ix~q{|y~|rx~q{|y~|rx~q{|y~|rx~q{|y~|rx~q{|y~|r{}y~q{|y~|vx~sy~}r|q{}x~}v|}y~|p{|y~q|n{|y~q|n{|y~q|n{|y~"
|
|
"q|j{|y~|e{|y~|e{|y~|e{|y~|k{|y~}u|}x~}p{|y~|u{|w~}o{}x~}|{y|}x~n{}x~}|{y|}x~n{}x~}|{y|}x~n{}x~}|{y|}x~n{}x~}|{y"
|
|
"|}x~ox~s{|y~}pv~}|{y|}x~o{|x~}w|}x~n{|x~}w|}x~n{|x~}w|}x~n{|x~}w|}x~hy~}i{|y~|e{}y~{x|y{|}y~|ox~|y{|}w~mx~|y{|}"
|
|
"w~mx~|y{|}w~mx~|y{|}w~mx~|y{|}w~mx~|y{|}w~rx~|y{|}y~|}y~}|x{|}~}qx~}|yy|}|m{}y~}|x{|}~}m{}y~}|x{|}~}m{}y~}|x{|}"
|
|
"~}m{}y~}|x{|}~}j{|y~d{|y~d{|y~d{|y~gx~|y{|}y~}m{}y~t{}~}mx~|y{|}y~}lx~|y{|}y~}lx~|y{|}y~}lx~|y{|}y~}lx~|y{|}y~}"
|
|
"i{|x~i{|x~|y{|}y~}lx~|y{|}x~}mx~|y{|}x~}mx~|y{|}x~}mx~|y{|}x~}k{|w~|j{}w~|y{|x~|k{|w~|6{|q~|m{|q~|m{|q~|m{|q~|m"
|
|
"{|q~|i{|y~dw~5{}~_{}~}I{}~c{}~d{|y~|dy~|j{|y~sy~|m{|s~|ly~}u{}~}j{|w~i{}m~ S{|s~}Oy~}O{}~|x{}~|j{}q~}n{|~}t{}y"
|
|
"~}x~q{}s~}{|y~}R{|y~c{|y~J{}~|dx~Jy~}fy~|e{}t~}k{}q~}no~|nq~}d{}y~lq~|j{|s~|j{|y~|g{|r~|ls~}f{}y~dx~\\y|X{}|]y~"
|
|
"}ly~|w{|}y~}|{}~}|r{|y~}py~}q{|p~}k{|q~}q{|p~}|m{|o~|o{|y~|d{|p~}q{|y~|ry~}k{|y~|e{|y~|j{|y~|t{}y~}n{|o~r{|y~|o"
|
|
"y~}s{|y~|t{}x~}n{}r~}m{|y~|d{}r~}n{|y~|s{}y~|pp~}hy~}i{|r~}hw~|l{}x~}tw~|r{|y~}s{|y~}jy~}k{}l~|m{}~}`{|y~e{|y~|"
|
|
" x{|t~}|y~m{}y~|t~|j{}s~|m{|t~|}~}l{}r~}jy~|g{|t~|}~}n{}y~t{}~}j{|y~d{|y~h{}y~v{|x~i{|y~m{}y~ty~|u{|y~r{}y~t{}~"
|
|
"}m{|s~}l{}y~|t~|l{|t~|}~}k{}y~g{}r~}h{}u~k{|t~|}~}k{|w~|k{|x~|w{|x~|ny~}u{}y~iw~io~h{}y~d{}~}d{}~} v{}t~{}x~}o{"
|
|
"|q~}ly~}y|y~}i{|s~}j{}s~}m{}y~t{}~}j{}x~j{}y~sy~}n{}~}t~}x~}r{|u~|{t~o{|q~ky~|vw~}ot~}x~}m{}y~|t~|l{|s~}g{|v~j{"
|
|
"}t~|o{|k~}p{|o~|n{|y~|is~y{|t~}l{}y~k{|y~|ry~}j{}y~h{}r~}Ny~|Kw~|Lw~|Ky~}g{|r~n{|o~}n{|p{|i{}y~d{}~}ay~|R{|y~}y"
|
|
"|{y|}y~| a{|y~}y|{y|}y~|<k~}\"{}~}t~}x~}jy~y{}~| Gy~o{|~}r{}~|ty~|ny~o{|~}q{|y~}i{|y~}py~}s{|y~}py~}s{|y~}py~}s"
|
|
"{|y~}py~}s{|y~}py~}s{|y~}py~}w{|y~|so~}q{|q~}o{|o~|o{|o~|o{|o~|o{|o~|k{|y~|e{|y~|e{|y~|e{|y~|k{|o~|o{|y~|t{}x~}"
|
|
"n{}r~}l{}r~}l{}r~}l{}r~}l{}r~}n{|~q{|~p{}~y|r~}m{|r~}l{|r~}l{|r~}l{|r~}gy~}i{|y~|e{}y~{}t~}n{|t~}|y~m{|t~}|y~m{"
|
|
"|t~}|y~m{|t~}|y~m{|t~}|y~m{|t~}|y~r{|s~|y{}r~|p{}s~|l{}r~}l{}r~}l{}r~}l{}r~}j{|y~d{|y~d{|y~d{|y~fs~}l{}y~t{}~}m"
|
|
"{|s~}k{|s~}k{|s~}k{|s~}k{|s~}Rq~}k{|t~|}~}m{|t~|}~}m{|t~|}~}m{|t~|}~}jw~i{}y~|t~|iw~3{|}w~}|i{|}w~}|i{|}w~}|i{|"
|
|
"}w~}|i{|}w~}|g{|~}d{}y~} r{|~|Iy~|dy~|d{|}cy|i{|y}sy}|k{}w~}k{|y~|u{|y~ix~}gy}p~ Q{|}x~}|Ny~}Oy~wy~h{|y}v~}|my"
|
|
"~r{|x~}o{|}w~}|x{}y~}Ry~|d{}~}J{}~|dy~}Jy~}g{|y~c{|}x~}|j{}q~}no~|m{|}w~y}|c{}y~l{|y}w~y}f{}w~}hx~dy}x~y}|k{|}w"
|
|
"~}|e{}y~dy~} ry~}l{|y~c{}y~|p{}y~q{|r~}|h{|}w~}|o{|s~y}|k{|o~|o{|y~|b{|}w~y}|o{|y~|ry~}k{|y~|e{|y~|j{|y~|s{}y~}"
|
|
"o{|o~r{|y~|oy~}s{|y~|t{|x~}l{|}x~y}|l{|y~|b{|}v~}m{|y~|ry~}o{|y}w~y}|gy~}g{|}w~}|g{|x~k{|x~|t{}x~qx~q{}y~|ky~}k"
|
|
"{}l~|m{}~}_y~|f{|y~| v{}x~}|{|y~m{}y~{|}x~}|h{|}x~y}|j{}x~}|{}~}k{|}w~y}|iy~|e{}x~}|{}~}n{}y~t{}~}j{|y~d{|y~h{}"
|
|
"y~u{|x~j{|y~m{}y~ty~|u{|y~r{}y~t{}~}k{|}x~}|k{}y~{|}x~}|i{}x~}|{}~}k{}y~f{|y}w~}|fy}w~j{|}x~}y{}~}jx~}ix~ux~|o{"
|
|
"}y~t{|y~}j{|y~}io~h{}y~d{}~}d{}~} u{|}x~}|y{}y~}o{|y~|}w~}|k{|v~}f{|}x~}|h{|}w~y}|m{}y~t{}~}j{|y~|jy~}s{}y~n{}~"
|
|
"}{}x~}y{}~}|q{|}y~}|x{}x~}l{}v~}|jy~|v{|}y~}n{}s~|l{}y~{|}x~}|i{|}x~}|e{|}x~i{|}x~}m{}j~p{|o~|n{|y~|is~y{|t~}l{"
|
|
"}y~k{|y~|ry~}j{}y~f{|}x~y}|My~|Jy~|Jy~|Jy~}f{|}u~}n{|o~}O{}y~d{}~}h{}|w{}y~O{|}v~}| ]{|}v~}|:k~}\"{}~}{}x~}y{}~"
|
|
"}|jy~y{}~| H{}~|o{|~|s{|~}t{|t~|t{}~|o{|~|q{}y~h{}y~|p{}y~s{}y~|p{}y~s{}y~|p{}y~s{}y~|p{}y~s{}y~|p{}y~s{}y~|p{}"
|
|
"y~w{}y~ro~}o{|}w~}|m{|o~|o{|o~|o{|o~|o{|o~|k{|y~|e{|y~|e{|y~|e{|y~|k{|s~y}|m{|y~|t{|x~}l{|}x~y}|i{|}x~y}|i{|}x~"
|
|
"y}|i{|}x~y}|i{|}x~y}|U{|~}x{|}x~y}|j{|}w~}|i{|}w~}|i{|}w~}|i{|}w~}|fy~}i{|y~|e{}y~{|}w~}|k{}x~}|{|y~k{}x~}|{|y~"
|
|
"k{}x~}|{|y~k{}x~}|{|y~k{}x~}|{|y~k{}x~}|{|y~p{}x~}|v{|}w~y}|n{|}x~y}|j{|}w~y}|j{|}w~y}|j{|}w~y}|j{|}w~y}|i{|y~d"
|
|
"{|y~d{|y~d{|y~e{|}x~}|k{}y~t{}~}k{|}x~}|h{|}x~}|h{|}x~}|h{|}x~}|h{|}x~}|R{}~|{|}x~}|i{|}x~}y{}~}l{|}x~}y{}~}l{|"
|
|
"}x~}y{}~}l{|}x~}y{}~}j{|y~}i{}y~{|}x~}|h{|y~} e{|~} V{| .{|~ p{}~}dy~|1{|y~2{}~} U{|y~ ^{}~} ){|y~| {"
|
|
"}y~} 6{}~}_{}~}f{|y~| -y~}6{|y~ A{}y~Z{}~} j{|y~I{}y~d{}~}d{}~} \\{|y~a{|}y|*{}~}j{|y~|O{}~}F{|y~K{|}y~y|j{}"
|
|
"y~ Ry~}c{|~| r{}~}h{}t~|K{| U{| '{}~}^y~y{}~|O{|~| wy|cy}|st|sy|ay~} ^{|~| 9{| Y{|~| 8y| Q{|y~h{}"
|
|
"y~`{|y~ d{|~} c{|~ oy~e{}~}0{}~}2y~| U{}~} ]{}y~|r{|y} 7{}y~ y{}y~| 7{}~}_{|y~f{|y~| .{|y~|6{|y~ "
|
|
"A{}y~Z{}~} j{}~}I{|y~d{}~}dy~} \\{|y~ g{}~}j{|y~|O{}~}F{|y~J{|y~h{}y~ Ry~}b{~| r{}~}h{|y}x~}| ){}~}^y~y{"
|
|
"}~|N{}~ 'y~} ]y~ p{~} g{}~}h{}y~`{}~} h{|}|{}~} c{|~ o{}~}fy~/{}~ c{}~ [{}y~}|v{|}y~} "
|
|
" 7x~ x{}y~| 8{}v~M{|v~| .{}y~5{}~} A{}y~Z{}~} k{|y~|I{|y~}e{}~}e{|y~| \\{|y~ g{}~}j{|y~|O{}~}F{|y~J{|y~h{}y"
|
|
"~ Ry~}b{~| r{}~} i{}~}*{}~| (x~uy| e{}~| q{}~ h{|y~|h{}y~a{|y~| h{|y~|y~| c{|~ ny~"
|
|
"g{}~} M{|}q~| 9y|}y~| 1{}w~}M{|v~| 6y}|x{|}y~|6{|y~} A{}y~Z{}~} l{|x~G{}w~}h{}~}h{}w~} [{|y~ g{}~}j{"
|
|
"|y~|O{}~}F{|y~J{|y~h{}y~ Ry~}b{~| r{}~} i{}~}-x}y~ '{}x~w|y~| e{}~| qy~ i{|x~g{}y~b{|x~ f"
|
|
"{}w~ e{|y}w~}| 8{|w~} ({|n~} m{}s~}7{|w~ @{}y~Z{}~} nv~|F{|y}~}h{}~}h{}~y}| Z{|y~ g{}~}j{"
|
|
"|y~|O{}~}F{|y~J{|y~h{}y~ Rx| W{}~} i{}~}-{}y~}| &{}s~| i{|~y}y~ t{|~y}y~ kv~|g{}y~dv~| ex"
|
|
"} s{|y~}| '{|n~} m{|y}w~}|6{|y~} ?{}y~Z{}~} nx~}|-{}~} B{|y~ g{}~}j{|y~|O{}~}F{|y~J{|y~"
|
|
"h{}y~ q{}~} -{|}x~}| f{}y~}| t{|x~}| kx~}|f{}y~dx~}| "
|
|
" :{}~} I{" };
|
|
|
|
// Define a 52x64 font (large sans).
|
|
static const char *const data_font_large[] = {
|
|
" "
|
|
" -{| "
|
|
" [{|x}|Dw}|Pw}| @{}v~} C{|w}|Ew}|Pv}| xv|Ev|Pu| kv|Dw|P{|v} 6{|w}|E{|x}|P{"
|
|
"|w}| pw}| "
|
|
" G{|w~}F{}w~P{}v~}Q{}w~}|w{|x~X{|v~vv~|U{|r~| D{}w~F{}w~P{}u~S{|v~|wv~}V{}w~|G{|w~|Q{"
|
|
"|u~|Sv~}w{}w~}\"{|}x~}|v{|x~W{}w~|F{}w~Q{|u~}Q{}x~}|v{|x~X{}w~}w{|v~ G{}w~F{}w~|Q{}u~Rv~|w{}w~}O{}w~ "
|
|
" "
|
|
" E{|w~|H{}w~P{}t~}Ss~}|y{}x~X{|v~vv~|V{|p~ Cw~}H{|w~|Q{|t~}T{|v~|wv~}U{}w~Gw~}Q{|s~|Tv~}w{}w~}#{|s~}|{|x~"
|
|
"}V{}w~|H{}w~Ps~}St~}w{}y~}X{}w~}w{|v~ Fw~}H{|w~|Q{|t~}Sv~|w{}w~}P{|w~| "
|
|
" D{|w~|J{|w~|Q{|x~}{w~|U"
|
|
"{}l~}X{|v~vv~|Vw~}x{}x~} D{|w~|J{|w~|Q{|w~{}x~}U{|v~|wv~}T{}x~}Iw~}Pw~y|w~Tv~}w{}w~}#k~|U{}w~I{|w~|Q{}x~|{}x~|U"
|
|
"{}r~|{|x~}X{}w~}w{|v~ Ew~|Iw~}Pw~|}x~}Tv~|w{}w~}Q{|w~| M{| "
|
|
" q{}w~Jw~|Q{|x~}xw~Ux~}y{|}t~}W{|v~vv"
|
|
"~|W{|x~|v{|x~| D{|w~|Kw~}Pw~x{}x~|V{|v~|wv~}S{}x~}K{}x~}P{}x~|y{|x~}Uv~}w{}w~}${|x~|y{|s~}S{}x~}K{|w~|Q{}x~}xw~"
|
|
"Ux~}{|}r~W{}w~}w{|v~ E{|w~|K{}x~}Pw~|y{}x~|Uv~|w{}w~}Qw~| O{}v~} "
|
|
" s{}x~}L{}x~|Pw~vw~W{|x~v{|}w~}"
|
|
"V{|v~vv~|W{}y~}tx~} C{|w~L{}x~}P{}x~|w{}x~|W{|v~|wv~}R{}x~|M{}x~}P{}x~|w{|x~}Vv~}w{}w~}${|x~v{|}w~|Q{}x~}Lw~|Q{"
|
|
"|x~}vw~W{|x~w{|t~|W{}w~}w{|v~ D{|w~L{|x~}P{}x~|w{}x~|Vv~|w{}w~}R{}x~} P{|r~| Y{}w~| "
|
|
" A{}x~|N{}x~}P"
|
|
"{}x~u{|x~}\"v|vv|V{}y~}t{}y~} B{}x~}N{|x~}P{}x~|u{}x~Vv|vv|P{}x~|O{|x~}P{}x~|u{|x~}Wv|uv| D{}x~|N{}x~|Q{|x~}tx~"
|
|
"}X{|x~u{|}y~}|Vu|vv| C{|x~}N{|w~P{|x~|u{}x~Vv|vu|S{|x~} Op~| Zv~| "
|
|
" ;v~ u{|v~ 6{|y}|N{|y}|P{|x}s{|x} I"
|
|
"{}y~}t{}y~} Aw|Nw|Ow|sw| Qw|Nw|Pw|rx| 5{|x}N{|x}O{|y}|s{|y}| {{|y}| Dv|@v|Rv| C{}x~}x{|w~ Hu|@v|Rw| yv}@v}R"
|
|
"{|w} lv|@v|Rv| 8v}@v}|S{|w} m{}w~| E{|y~x}| ;{|w~} "
|
|
" vv~| J{}y~}t{}y~} e{}w~}B{|w~}Rv~| Dx~|v{|x~| H"
|
|
"v~A{}w~|S{|w~} {{|w~}B{}w~|S{|v~| Ay|sx|Y{}w~|B{|w~}Rv~ 8{|w~}B{|w~}Rv~| o{|w~} ?y}~}| *x~ J{"
|
|
"|y~| b{}x~|T{|x~} L{|q~} y{}q~| H{|w~} xw~} `{|w~| {{|}t~)w~}Cv~Lv~Tw~}Dv~ G"
|
|
"{|x}w~}Tw~|U{|v~y}| 1{|y}v~y}| cv~y} p{|y}x~y}| {{v|vv| 3{}w~| I{|x~|v{|x~| "
|
|
" %{| 5{|y}w~y}|U{}w~|Cv~R{}v~}Q{|}y~}|ux~|Y{|v~|wv~}W{|x~t{}y~} H{|w~}C{}w~|Ru~|S{}w~}w{|v~W{}w~|D{|w~}R"
|
|
"t~S{|v~vv~|X{|v~}K{}w~}ux~X{}w~C{|w~}R{}v~}Q{|}y~}|ux~|Y{|v~vv~| J{|w~}D{|w~}R{}u~Rv~|w{}w~}N{|w~}Zw~}Hv~}w{}w~"
|
|
"} N{|u~} ,{|y~} Ix|Tx|kw| Ru| 6{|y~|Yv|fx}|Zu| o{|w~Rw~|Hx| Xu| vt|Ns| =t| xt|Ot| [u| ds| kr|"
|
|
" Qt| ut| ts| S{|q~} y{}q~| G{}w~| yw~} `{|w~|!{}q~)w~}Cv~Lv~Tw~}Dv~ I{|r~}Tw~|U{|r~} 5{|}o~| yr| "
|
|
" ps~} t{|p~| kt| is| s{|y} r{|x}| rx}| bt| lu|S{|v~vv~|!{|y}w~y}| :{|l~|Qx| u{|y}w~}|Q{|x}w~y}|K{|w~| "
|
|
" 9y|y}w~|O{|y}w~}|)y|x}dw~|hy|x}dw~|ly|x}y~y}|e{}x~| 6w~}x{}x~} us| lt|Nt|Nt|Nt|Nt| ut|p{}~| 9{|}o~|V{"
|
|
"}w~D{}w~R{|t~|S{|u~}vx~|Y{|v~|wv~}W{}y~}t{|x~ G{|w~}E{|w~}R{}t~S{}w~}w{|v~V{}w~E{|w~}R{}t~}T{|v~vv~|W{|v~}s{|y}"
|
|
"X{}u~}w{|x~Ww~}Dv~R{|t~|S{|u~}w{|x~X{|v~vv~| I{}w~|Ew~}R{|t~}Sv~|w{}w~}Nw~}Yw~}Hv~}w{}w~} O{|s~|cW} i{}y~|"
|
|
"\"{|}L{|u~}|Z{|}v~}|p{}u~}V{|} /g| ({}r~}| v~}R{}x~}vw~}R{|x}|t{|x}|V{|y~|\\{|}t~|i{}x~|]{}q~}|O{}x~}Iw~|R{|"
|
|
"w~Hx~ *{|w~V{|}s~}|Sy|y}v~}T{|}q~}|V{|y}p~}|L{|u~}\\{|g~}T{}q~y}|_{}c~}[{|}q~}|U{|}r~}| b{|}q~| w{}v~}X{}k~y"
|
|
"}|R{|y}p~}|b{}m~x}y|W{}c~|`{}e~Y{|}o~}|a{}w~}hv~|Y{}w~}M{}w~}W{}w~}k{|u~}b{}w~}V{}t~|h{}t~|h{}u~}jv~^{|}p~}|Z{}"
|
|
"m~y}|U{|}p~}|\\{}m~y}y|S{|}o~}y|bZ~g{|v~h{}w~}i{|v~|d{|v~|rv~|l{|v~}kv~|p{|v~|i{}v~g{}v~fv~}g\\~]{|q~}Uw~}I{}q~"
|
|
"|P{|w}| w{}w~ yw~} `{|w~|\"o~)w~}Cv~Lv~Tw~}Dv~ J{|q~}Tw~|U{|q~} 7{}l~}\"y}p~y} sr~} v{}n~}R{}v~}V{"
|
|
"}c~|_{}d~}^{|}p~}|R{|v~Y{}^~|iv~}r{|v~qv~}a{|}p~}| x{}x~} s{}w~ s{}w~| f{|}r~}|-{}w~|i{|v~({|q~}|W{|v~vv~|Ty|u"
|
|
"}y|U{|}o~| ly|u}y|U{|l~|T{|}v~}| {|}p~|T{}p~}|N{|w~} yy|}m~} N{|r~|P{}q~|0{|y}t~|f{}x~}l{|y}t~|f{}x~}l{}p~}h{}"
|
|
"x~}%{}v~}N{}v~}N{}v~}N{}v~}N{}v~}Q{|p~W{}\\~}b{|y}p~}|^{}c~|a{}c~|a{}c~|a{}c~|X{}w~}M{}w~}M{}w~}M{}w~}Z{|m~x}y|"
|
|
"Z{}u~}jv~^{|}p~}|V{|}p~}|V{|}p~}|V{|}p~}|V{|}p~}|\"{|}q~y}t{}x~|i{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}g{}"
|
|
"v~fv~}c{}w~}J{|l~}Vw~}F{}w~|R{}x~|w~Ss~}x{|x~X{|v~|wv~}W{}y~}t{|x~ F{|w~|Fw~}R{|x~y}x~}T{}w~}w{|v~U{}x~}Fw~}R{|"
|
|
"w~{w~|U{|v~vv~|V{}v~|x{|}v~Y{|s~}x{}x~W{|w~}F{}w~Qw~|w~Ss~}x{|x~X{|v~vv~| H{}w~F{}w~Qw~|}x~|Tv~|w{}w~}O{}w~Xw~}"
|
|
"Hv~}w{}w~} P{|q~c{}Y~} ix~!y~|N{}r~}\\{}r~}s{|q~|Y{|y~} 5{|}e~} *{}m~|\"v~}R{}x~}vw~}Rw~|tw~|V{|y~|]{}q"
|
|
"~}k{|w~^{|l~|Q{}x~}J{}w~P{}x~}Ix~ *{}x~}W{}n~|Zy|}p~}W{|}k~}Z{}i~|Nt~}\\{|g~}V{}l~|`{}c~}\\{}l~|X{}n~} e{|l~"
|
|
"|Ty|y}u~y}|Rt~X{}g~}V{|}j~}d{}g~}|Z{}c~|`{}e~\\{|}i~}|d{}w~}hv~|Y{}w~}M{}w~}W{}w~}l{|u~}a{}w~}V{}t~}i{|s~|h{}t~"
|
|
"|kv~`{|k~}|\\{}i~}|Z{|k~}|^{}i~}|W{|h~}dZ~g{|v~h{}w~}hv~}d{}v~q{}w~}l{}u~kv~|o{}v~j{|v~|fv~}h{}v~f\\~]{|v~u}U{}"
|
|
"w~Iu}v~|Qt~| w{}x~} {{w~} `{|w~|#{}o~)w~}Cv~Lv~Tw~}Dv~ Ov| s~x}|Tw~|U{|x}s~| 9{}j~}%{}j~| uq~| x{}l"
|
|
"~}St~V{}c~|_{}d~}`{|}k~|T{|v~Y{}^~|iv~}r{|v~qv~}c{|k~}| {}v~} t{}w~ t{}u~| i{|l~-v~i{}w~|Xw}|R{|l~X{|v~vv~|W{|"
|
|
"}o~}|X{|m~| p{|}o~}|X{|l~|U{}r~}!{|n~}U{}n~|Ow~} {{|}j~} N{|r~|R{|n~}1{|r~|g{|w~k{|r~|g{|w~k{}n~iw~$t~Nt~Nt~Nt"
|
|
"~Nt~P{|r~V[~}d{|}j~}`{}c~|a{}c~|a{}c~|a{}c~|X{}w~}M{}w~}M{}w~}M{}w~}Z{|g~}|]{}t~|kv~`{|k~}|Z{|k~}|Z{|k~}|Z{|k~}"
|
|
"|Z{|k~}|&{|k~}w{|w~|i{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}fv~}h{}v~b{}w~}K{}j~}W{|w~|H{|w~|R{|x~}{|x~}U{|"
|
|
"x~}|w~}|{}x~X{|v~|wv~}W{|x~t{}y~} E{}w~G{}x~}Qw~|{}x~|U{}w~}w{|v~Tw~}H{}w~Q{}x~|{|x~}U{|v~vv~|U{}v~|}t~}Y{}x~|{"
|
|
"}w~y|x~}V{|w~|H{|w~|R{}x~|{|x~}U{}x~}|w~}{|x~}X{|v~vv~| G{}x~}H{|w~|R{}x~|yw~Tv~|w{}w~}P{|w~|Xw~}Hv~}w{}w~} "
|
|
"P{}w~y|w~|d{|Y~| j{|y~}\"{}x~Oo~}_{|o~}u{|o~}Zw~| 8{}b~} ,{|j~}#v~}R{}x~}vw~}Rw~sw~U{|y~|^{}o~}lw~|_{}k~|Q"
|
|
"{}x~}Jw~|P{|w~|Jx~ *w~|Xk~|[m~}X{}h~}[{}h~}P{}t~}\\{|g~}X{|j~|`{}c~}^{|i~}[{|j~ gi~|X{|}l~}|V{}t~|Y{}e~|Y{}f"
|
|
"~}f{}d~}\\{}c~|`{}e~]{}e~}|f{}w~}hv~|Y{}w~}M{}w~}W{}w~}m{|u~|`{}w~}V{}s~|j{}s~|h{}t~}kv~b{|g~}]{}g~}]{|g~}_{}g~"
|
|
"}Y{}f~dZ~g{|v~h{}w~}h{}v~dv~}q{}w~}lt~|m{|v~mv~}kv~}e{|v~|j{|v~|f\\~]{|w~}O{|w~|D{|w~|Rr~| ww~} w~} `{|w~|${|v~"
|
|
"}|#w~}Cv~Lv~Tw~}Dv~ Ov~ !{|v~}Nw~|O{|v~} :{|u~}|w{|}v~|'{}i~| r{|}v~} y{}v~}|x{|}v~}U{}t~|W{}c~|_{}d"
|
|
"~}a{}g~|V{|v~Y{}^~|iv~}r{|v~qv~}e{|g~}\"{}t~} u{}w~ u{}s~| >y~}P{|k~-{|w~}k{|w~}Ww~|S{|k~X{|v~vv~|Y{|}k~}|Z{|y~"
|
|
"}y|xy|}w~| s{|}k~}|Z{|l~|V{}p~}\"{|y~}|w{|}w~|V{|}|u{|v~P{}x~} {{}h~} N{|~y}y|}x~|S{|v~}|y{|}w~}2{|w~y}x~|g{}x"
|
|
"~|k{|w~y}x~|g{}x~|kx}|w{|}w~}k{}x~}%{}t~|P{}t~|P{}t~|P{}t~|P{}t~|P{}t~}W{|[~}e{}f~}b{}c~|a{}c~|a{}c~|a{}c~|X{}w"
|
|
"~}M{}w~}M{}w~}M{}w~}Z{|d~}|`{}t~}kv~b{|g~}]{|g~}]{|g~}]{|g~}]{|g~}){|g~|{|w~|h{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f"
|
|
"{|v~h{}w~}f{|v~|j{|v~|b{}w~}L{|u~}|w{|}v~|W{|w~|Iw~}Qw~x{}x~|V{}y~}x{}s~|X{|v~|wv~}Vx~}v{|x~| D{}x~}I{}w~Q{}x~|"
|
|
"xw~U{}w~}w{|v~T{|w~|J{|w~Q{|x~}x{|x~|V{|v~vv~|T{}q~}|Wx~|x{}s~T{|w~I{|w~|R{|x~}x{}x~|Vx~}x{}s~|X{|v~vv~| Fw~}J{"
|
|
"|w~|R{|x~}x{|x~}Uv~|w{}w~}Q{|w~|Ww~}Hv~}w{}w~} Pw~}y{|x~}cY~ i{}y~|#{|w~}Qm~|`m~}w{|m~|\\{}v~| ;{}`~} -"
|
|
"{|r~x}t~}$v~}R{}x~}vw~}S{|w~t{|x~}U{|y~|_{|w~}w{}w~|n{}x~}_{|t~w}u~|Q{}x~}K{}w~N{}x~}Jx~ +{|w~Xs~y}s~|\\m~}X{}"
|
|
"f~\\{}g~}R{|s~}\\{|g~}Y{|i~|`{}c~|_{|s~w}s~}]{|s~x}s~ hr~}r~|[{|f~}Xs~}Y{}d~|\\{|c~}g{}b~|^{}c~|`{}e~_{|a~|g{"
|
|
"}w~}hv~|Y{}w~}M{}w~}W{}w~}n{|u~|_{}w~}V{}s~}jr~|h{}s~|lv~c{|p~}q~}^{}f~}_{|p~}q~}`{}e~[{}q~}p~dZ~g{|v~h{}w~}h{|"
|
|
"v~|f{|v~p{|v~m{|t~}m{}w~}m{|v~|m{}v~c{}v~jv~}e\\~]{|w~}Nw~}D{|w~|Sp~| ww~|!w~} `{|w~|${}w~}!w~}Cv~Lv~Tw~}Dv~ "
|
|
" Ov~ !{}w~}Mw~|N{|v~ :{}v~|s{|v~V{|t}|V{|t~s}w~| p{|v~ {{|v~|t{|v~|Vs~}W{}c~|_{}d~}c{|d~|W{|v~Y{}^~|iv~"
|
|
"}r{|v~qv~}f{|p~}q~}${}r~} v{}w~ v{}q~| ?y~}Ps~x}u~,v~k{}w~|Ww~|Su~}v|}w~X{|v~vv~|Z{}v~}y|wy|}v~}[{|}q{}x~} t{}"
|
|
"v~}y|wy|}v~}&{}w~|x{|w~}#y|r{}x~}Kw~|R{|w~ {{}p~}v|x~} H{}x~|S{}w~t{}w~|3x|x{}x~|h{|x~}j{|}|x{}x~|h{|x~}`{|w~l{"
|
|
"|w~$s~}Ps~}Ps~}Ps~}Ps~}Pr~W{}[~}g{|c~}c{}c~|a{}c~|a{}c~|a{}c~|X{}w~}M{}w~}M{}w~}M{}w~}Z{|b~}a{}s~|lv~c{|p~}q~}_"
|
|
"{|p~}q~}_{|p~}q~}_{|p~}q~}_{|p~}q~}+{|p~}q~}w~|g{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}e{}v~jv~}a{}w~}Lu~r{"
|
|
"|v~V{|w~J{}x~}Q{}x~|w{}x~Vx~|w{}u~}Vv|vv|U{}x~}x|}w~ Bw~|K{|w~|R{|x~}w{|x~}Vu|vv|S{|w~K{|w~|Qx~}v{}x~Uv|vv|T{|}"
|
|
"t~}|Tx~|w{|u~|S{}x~}Jw~}Qw~vw~Vx~|w{}u~}Vv|vv| Dw~|Kw~|Qw~v{}x~|Vv|vv|Pw~|Vw~}Hv|uv| G{|t}|P{|t}|P{|t}|P{|t}|P{"
|
|
"|t}|Lw~|xw~c{|[~} iy~}\"u~|S{|l~a{}l~|x{}l~]{}t~ ={|^~} .{|u~}|u{|}w~}$v~}R{}x~}vw~}S{}x~}t{}x~}Xy|y}y~y}x"
|
|
"|cw~}u{}w~o{|w~^u~}t{|}y~|Q{}x~}Kw~|N{|w~|T{}sx~s{} 4{}x~}Y{}v~}|v{}u~\\m~}X{}v~y}|wy|s~]{}x~}x|v{|}t~}Sr~}\\{"
|
|
"|v~k|Z{|t~}|v{|y}y~|`h|u~^t~|u{|}u~|^u~}|v{|}v~} iv~y|v{|t~]{|o~y}p~|[{|r~|Z{}w~}q|}s~]{|s~}|t{|}u~}g{}w~}r|y"
|
|
"}q~}_{}w~}h|_{}w~}j|`{|s~}|s{|}t~|g{}w~}hv~|Y{}w~}M{}w~}W{}w~}o{}u~|^{}w~}V{}r~k{|r~|h{}r~lv~d{|t~}|uy|s~_{}w~}"
|
|
"s|y}t~}a{|t~}|uy|s~a{}w~}s|y}s~]{}u~}|ty|}v~dn|}v~}n|g{|v~h{}w~}gv~}f{}w~}ov~|n{|t~}mv~|l{}v~|o{|v~|bv~}l{}v~dc"
|
|
"|u~}]{|w~}N{}w~D{|w~|T{}o~| x{|w~!w~} `{|w~|${}w~ w~} >w~}Dv~ Ov~ !{}w~|Mw~|M{}w~ :v~|q{}w~|Xp~}X{}v~|p{|"
|
|
"}| o{}w~| v~|r{|v~W{|r~|X{}v~}i|^{}w~}h|d{|s~}y|xy|}s~}[{|y}u~y}y|]{}w~}h|v~|iv~}r{|v~qv~}g{|t~}|uy|s~&{}p"
|
|
"~} w{}w~ w{}o~| @y~}Q{}v~}|u{|}y~,{|w~}m{|w~}Vw~|T{|v~|s{|}~({|w~}|o{|}w~|P{}x~| w{|w~}|o{|}w~|(x~}tw~ rw~K{}x"
|
|
"~|Rw~ {{}o~}w{|x~} H{}x~|T{|w~r{}x~}-{}x~|hw~|d{}x~|hw~|_{}x~|mw~|%{|r~|R{|r~|R{|r~|R{|r~|R{|r~|R{}r~|Y{|v~|y{|"
|
|
"v~}h|h{|s~}|t{|}u~}c{}w~}h|`{}w~}h|`{}w~}h|`{}w~}h|W{}w~}M{}w~}M{}w~}M{}w~}Z{|v~r|x}q~b{}r~lv~d{|t~}|uy|s~a{|t~"
|
|
"}|uy|s~a{|t~}|uy|s~a{|t~}|uy|s~a{|t~}|uy|s~-{|t~}|u{|}q~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}dv~}l{}v~`"
|
|
"{}w~}M{|v~p{}w~|V{}x~}L{}x~}Q{|x~|ux~}Wx~|v{|w~} {{}q~| Aw~|Lw~|Qw~u{}x~| y{|x~}Lw~|Q{}x~tx~}#{|}r~}Rx~u{|}y~}|"
|
|
"Q{}x~}L{}x~}Q{}x~|v{|x~}Wx~|v{}w~} j{|w~L{}x~}Q{}x~|u{}x~ x{}x~}Uw~} b{|}p~}|V{|}p~}|V{|}p~}|V{|}p~}|V{|}p~}|"
|
|
"P{|w~|xx|av~|fv~| j{|y~|#{}t~Sk~|c{|k~}y{|k~}_{|s~} ?{}t~}y| u{|u~|p{}y~}$v~}R{}x~}vw~}Sw~|tw~|[{|}m~}|h{"
|
|
"|w~sw~|p{}x~|_{}v~|q{|}|Q{}x~}L{}w~Lw~}U{}y~|ux~u{|y~}U{|x}| `w~|Z{|v~}s{|v~}]w~y}y|{}w~}X{}x~|p{|u~|^y}|n{|u~"
|
|
"|U{}x~y}w~}\\{|w~}K{|u~}o{}|Mv~|_{}v~}q{|u~_{}v~}r{|v~| jy~}|qu~|_{}t~}y|s{|}t~}\\{}w~}w~}Z{}w~}o{|u~}_{|t~|n"
|
|
"{|}x~}g{}w~}n{|}t~}`{}w~}L{}w~}P{|t~}m{|}w~|g{}w~}hv~|Y{}w~}M{}w~}W{}w~}p{}u~|]{}w~}V{}w~}w~|l{}r~|h{}r~|mv~e{|"
|
|
"u~}|p{|t~`{}w~}q{|}u~|c{|u~}|p{|t~b{}w~}p{}u~|_{|u~|n{|}y~W{|v~|Z{|v~h{}w~}g{|v~fv~|o{}w~}n{}x~}w~mv~|kv~}ov~}a"
|
|
"{|v~|n{|v~|M{}v~}\\{|w~}N{|w~|E{|w~|U{}v~}{|u~| x{|x~}\"w~} `{|w~|$v~ w~} >w~}Dv~ Ov~ !v~Lw~|M{}w~| <{|w~"
|
|
"}p{|w~}Xn~|Zv~ _{|v~ !{|w~}p{}w~}X{}w~}w~}W{}v~|M{}w~}R{|t~|p{|t~|_{|}l~}|`{}w~}hv~|iv~}r{|v~qv~}h{|u~}|p{|"
|
|
"t~({}n~} x{}w~ x{}m~| Ay~}R{|v~}p{}+{}w~|nv~Uw~|T{}w~| x{|w~|k{|w~|Q{|x~| x{|w~|k{|w~|*{|x~rx~|R{|w}Fw~Kw~|S{}"
|
|
"x~| {|n~}w{|x~} H{}x~|T{}x~}qw~|.{}x~|i{}x~}c{}x~|i{}x~}^{}x~|n{}x~}${}w~}w~}R{}w~}w~}R{}w~}w~}R{}w~}w~}R{}w~}w"
|
|
"~}Rv~|w~}Y{}w~}x{|v~U{|t~|n{|}x~}c{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~n{|}s~c{}r~|mv~e{|u~}|p{|"
|
|
"t~c{|u~}|p{|t~c{|u~}|p{|t~c{|u~}|p{|t~c{|u~}|p{|t~/{|u~}|p{}t~}e{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}d{|v"
|
|
"~|n{|v~|`{}w~}M{}w~}ow~}U{}x~|N{|w~Px~}t{|x~|Xx|sy| w{}s~| @{|w~M{}x~|Q{}x~|tw~ x{}x~}N{}x~|Q{|x~|t{|x~|&{}t~}v"
|
|
"~} t{}x~|N{|x~}Q{|x~}t{}x~|Xx|sy| g{|x~}N{|x~}Q{|x~}sx~} {{|x~}Tw~} d{|j~|Z{|j~|Z{|j~|Z{|j~|Z{|j~|R{|w~Z{}w~}"
|
|
"g{}w~} Ay|J{}y~#{|s~}Tk~}c{}j~|{}j~_q~| A{}u~} q{}v~|n{}~}$v~}R{}x~}vw~}Sw~t{|w~\\{|h~|i{}x~}s{}x~}q{|x~}^"
|
|
"v~|C{}x~}Lw~}L{}w~V{|v~|wx~w{|v~|V{}w~ a{|w~Yv~}q{|v~|^{}y|u{}w~}Xy}|m{|u~M{|v~}V{|w~|}w~}\\{|w~}Ku~|?{|v~^u~o"
|
|
"{}v~|a{|v~}p{}v~ j{~|nv~}`u~}|l{|}u~]v~{v~Z{}w~}mu~_u~}j{|y~}g{}w~}l{|}u~}a{}w~}L{}w~}Q{|u~}i{|}y~|g{}w~}hv~|"
|
|
"Y{}w~}M{}w~}W{}w~}q{}u~|\\{}w~}V{}w~|w~}lw~|v~|h{}q~mv~f{|u~}m{|u~}a{}w~}o{}v~}d{|u~}m{|u~}c{}w~}o{|u~_{}v~|j{|"
|
|
"W{|v~|Z{|v~h{}w~}fv~|h{}v~n{}w~}nw~|w~|o{|v~j{|v~}q{}v~_{}v~nv~}M{|u~[{|w~}Mw~}E{|w~|V{}v~}x{|u~| vw~} `{|w~|$"
|
|
"w~} w~} >w~}Dv~ Ov~ !v~Lw~|M{}w~| <{}w~|ow~}Xm~|[v~ ^v~| \"v~|p{|v~Xv~{v~V{}v~|N{}w~}Ru~}l{}u~|b{|g~}"
|
|
"|b{}w~}hv~|iv~}r{|v~qv~}i{|u~}m{|u~}*{}l~} y{}w~ y{}k~| By~}R{}v~ y{|w~}o{|w~}Uw~|T{}w~ x{|x~}g{}x~|R{|x~} y{|"
|
|
"x~}g{}x~|+{}y~}r{}y~}R{}w~Fx~}M{|}w~ Mm~}w{|x~} H{}x~|Tw~p{}x~|.{}x~|j{|w~b{}x~|j{|w~]w~n{|w~#v~{v~Rv~{v~Rv~{v~"
|
|
"Rv~{v~Rv~{v~S{|w~}{}w~|Zv~|x{|v~Uu~}j{|y~}c{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~k{}t~d{}q~mv~f{|"
|
|
"u~}m{|u~}e{|u~}m{|u~}e{|u~}m{|u~}e{|u~}m{|u~}e{|u~}m{|u~}1{|u~}m{|u~}e{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w"
|
|
"~}c{}v~nv~}_{}w~}Mv~n{}w~Tw}N{|x}P{|x}r{|x} F{|}x~}| ={|x}|O{|x}|Px}|s{|x}| xw|Nw|Pw|rw|'{|v~}|y{|v~} tw}Nw}P{|"
|
|
"x}rx}| 6w|Nw|Ox|rw| Nw~} e{}h~}\\{}h~}\\{}h~}\\{}h~}\\{}h~}S{|w~Z{|v~gv~| Ay~}L{|y~}${|q~}V{|j~ci~}|i~|a{}p~|"
|
|
"Oy|Uw|jw|Vu|Wv|kw|b{}v~} p{|v~|l{|}$v~}R{}x~}vw~}T{|x~}t{|x~}]{|g~|i{}x~|s{|w~qw~|^v~B{}x~}M{|w~|L{|w~}V{|}"
|
|
"w~}xx~x{}w~}|U{}w~ a{}w~Z{|v~o{}w~}U{}w~}X{|j{}v~|M{}v~Vw~}{}w~}\\{|w~}L{|v~|>v~}_{|v~|nv~}a{}v~nv~| \\{}w~}"
|
|
"b{|u~|h{|}v~|`{|w~}{}w~|[{}w~}m{|v~|a{}v~}gy}g{}w~}j{}u~|b{}w~}L{}w~}Q{}v~}f{|~|g{}w~}hv~|Y{}w~}M{}w~}W{}w~}r{}"
|
|
"u~|[{}w~}V{}w~y|w~m{|w~{v~|h{}w~}v~|nv~f{}v~}ju~|b{}w~}nu~d{}v~}ju~|d{}w~}n{}v~|`v~}D{|v~|Z{|v~h{}w~}f{}w~}hv~}"
|
|
"n{|v~o{|w~{}x~}o{}w~}i{}v~|s{|v~|^v~}p{}v~M{|u~|[{|w~}M{}x~}E{|w~|W{}v~|v{|u~| ww~} `{|w~|$w~} w~} >w~}Dv~ "
|
|
"Ov~ !v~Lw~|M{|w~| <{}w~|ow~}Xy~}w|}t~[v~| _{}w~} #{|w~}n{}w~|Z{|w~}{}w~|Vu~|O{}w~}S{}v~}j{}u~c{}d~|c{}w~"
|
|
"}hv~|iv~}r{|v~qv~}i{}v~}ju~|,{}v~y}w~|v~} {{}w~ {{}v~y}w~|u~| Cy~}R{}w~}R{|ey|_{}w~|pv~Tw~|T{}w~ y{|x~}e{}x~|\\"
|
|
"{|}p~} {{|x~}e{}x~|,{}y~}r{}y~}R{}w~G{}x~|Rq~| N{|m~}w{|x~} H{}x~|U{|w~p{|x~}.{}x~|j{}x~|b{}x~|j{}x~|_{|w~|n{}"
|
|
"x~|${|w~}{}w~|T{|w~}{}w~|T{|w~}{}w~|T{|w~}{}w~|T{|w~}{}w~|T{}w~|{|w~}[{|v~w{|v~V{}v~}gy}c{}w~}M{}w~}M{}w~}M{}w~"
|
|
"}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~j{|u~}e{}w~}v~|nv~f{}v~}ju~|f{}v~}ju~|f{}v~}ju~|f{}v~}ju~|f{}v~}ju~|c{}d{}|d{}v~}"
|
|
"k{}u~|f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}bv~}p{}v~^{}m~y}|Yv~o{|}w~ Py~}|u{|v~} 2w~} f{"
|
|
"}u~}x|{x|}t~^{}u~}x|{x|}t~^{}u~}x|{x|}t~^{}u~}x|{x|}t~^{}u~}x|{x|}t~T{|w~Yv~|i{|v~ A{}x~}M{}y~|$o~|W{|j~ch~}i~}"
|
|
"b{}n~T{|}t~y}|Zw~}kw~}X{}u~|X{}w~|m{}w~|d{|v~| ov~}j{|$v~}R{}x~}vw~}T{}x~}t{}x~}]u~}|{|y~|y{|y}x~|iw~|rw~r{"
|
|
"}x~}]v~B{}x~}Mv~Jv~T{|}w~|{x~{|w~}|S{}w~ aw~}Z{}w~}o{|v~U{}w~}Ev~}M{|v~W{}w~y{}w~}\\{|w~}Lv~}>{|v~|_{|v~m{}w~}"
|
|
"av~|n{|v~ 8{|y}6{|~|4{}v~c{|v~}d{|v~`{}w~|{|w~}[{}w~}lv~|b{|v~}e{|g{}w~}i{}u~b{}w~}L{}w~}R{|v~}dy|g{}w~}hv~|Y{}"
|
|
"w~}M{}w~}W{}w~}s{}u~Y{}w~}V{}w~|{w~|nw~}{v~|h{}w~y|v~nv~g{|v~}i{|u~b{}w~}n{|v~|f{|v~}i{|u~d{}w~}n{|v~|a{|v~C{|v"
|
|
"~|Z{|v~h{}w~}f{|v~|j{|v~|mv~|p{|w~{|x~}ov~|hv~}sv~}]{|v~|r{|v~|Mu~|Z{|w~}M{|w~E{|w~|X{}v~|t{|u~| xw~} `{|w~|$w"
|
|
"~} w~} >w~}Dv~ Ov~ !w~}Lw~|M{|w~| <v~nw~}X{|s{}v~}\\{}v~| `{|v~ #{}w~|n{|w~}Z{}w~|{|w~}Uu~|P{}w~}T{|u"
|
|
"~h{}v~}f{|r~y}v~}r~}d{}w~}hv~|iv~}r{|v~qv~}j{|v~}i{|u~-{}v~}{}w~{|v~} {}w~ {}v~}{}w~{|u~ Cy~}Rv~|S{}~}g{|y~|_v~"
|
|
"q{}w~|Tw~|T{}w~| {{x~}t{|y}u~}|u{}x~^{}m~} {{x~}wq}y|s{}x~,{}y~}r{}y~}R{}w~H{|x~}Qs~} L{}m~}w{|x~} H{}x~|U{|x~"
|
|
"}p{|x~}.{}x~|k{|x~}a{}x~|k{|w~cx}u~|n{|x~}#{}w~|{|w~}T{}w~|{|w~}T{}w~|{|w~}T{}w~|{|w~}T{}w~|{|w~}Tv~xv~[v~}w{|v"
|
|
"~W{|v~}e{|c{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~i{|u~|f{}w~y|v~nv~g{|v~}i{|u~g{|v~}i{|u~g{|v~}i{"
|
|
"|u~g{|v~}i{|u~g{|v~}i{|u~d{}y~f{}y~|f{|v~}k{|s~f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}b{|v~|r{|v~|^{}i~}|"
|
|
"\\v~q{}t~| F{}v~| C{~| mw~} gu~}p{}u~|au~}p{}u~|au~}p{}u~|au~}p{}u~|au~}p{}u~|V{|w~Y{}w~}i{}w~} B{"
|
|
"}w~}Mx~${}n~W{|k~}d{|U~}c{|m~}W{|n~}[w~}kw~}Xt~}X{|w~}mv~cv~| o{|v~| mv~}R{}x~}vw~}Tw~|tw~|^{}v~|x{|y~|u{|~"
|
|
"|iw~|rw~s{|w~\\v~B{}x~}N{|w~}J{}w~|S{|n~|Q{}w~ b{|w~|Zv~|nv~|V{}w~}E{}w~}M{|v~X{|w~|y{}w~}\\{|w~}M{|v~={}v~^{|"
|
|
"v~m{}w~}b{|v~lv~| <{|}x~}6{|x~}|7{}w~}cv~|b{|w~}b{|v~xv~[{}w~}l{}w~}bu~|P{}w~}h{}v~}c{}w~}L{}w~}Ru~M{}w~}hv~|Y{"
|
|
"}w~}M{}w~}W{}w~}t{}u~X{}w~}V{}w~|{}x~}o{|w~|{v~|h{}w~|{v~}ov~gu~|h{}v~|c{}w~}mv~}fu~|h{}v~|e{}w~}mv~}a{|v~C{|v~"
|
|
"|Z{|v~h{}w~}ev~}j{}v~l{}w~}p{}x~}{|w~ov~|h{|v~}u{}v~[{}v~rv~}M{}v~}Y{|w~}Lw~|F{|w~|Y{}v~|qu~| Kt|Uw~}uu|Mt|Ru|u"
|
|
"{|w~|Wt|Ow~}Mu|Tw~}uu| Jw~}Dv~Tu|mv|Vu|Pt|Ku|Qu|Bv|Us|Rv~ !w~}Lw~|M{|w~| iv|Sv~o{|w~}N{}v~\\{|t~}|Is|Mu| u{}"
|
|
"w~| Zt| Lv~|n{|v~[{|v~xv~Tu~P{}w~}T{}v~|gu~g{|t~}|y{|v~x{}t~}e{}w~}hv~|iv~}r{|v~qv~}ju~|h{}v~|/{}v~}y{}w~y{|v"
|
|
"~}!{}w~!{}v~}y{}w~y{|u~ F{|}y~}x|V{|v~S{}x~}i{|w~|`{}w~|rw~}Sw~|T{|v~|!{}y~}u{|n~}v{}y~}a{|k~} {}y~}vn~}t{}y~}"
|
|
"-{}y~}r{}y~}R{}w~I{|w~Pt~}| L{}m~}w{|x~} H{}x~|U{|x~}p{|w~.{}x~|kw~|a{}x~|kw~|ct~}lw~|${|v~xv~U{|v~xv~U{|v~xv~U"
|
|
"{|v~xv~U{|v~xv~U{|w~}x{}w~|]{|v~v{|v~Wu~|L{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~h{|v~}f{}w~|{v~}o"
|
|
"v~gu~|h{}v~|hu~|h{}v~|hu~|h{}v~|hu~|h{}v~|hu~|h{}v~|f{}w~h{}w~|gu~|l{|r~|g{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~"
|
|
"h{}w~}a{}v~rv~}]{}g~}]w~}s{|r~|Xt|Nt|Nt|Nt|Nt|Nt|Xt|lu|Ut|Pt|Nt|Nt|Nt| 0{}v~|Pu|Pt|Nt|Nt|Nt|Nt| ut|t{}y~} nw"
|
|
"~}uu| t{}w~}|wv|v{}v~b{}w~}|m{}v~b{}w~}|m{}v~b{}w~}|m{}v~b{}w~}|m{}v~V{|w~Xv~iv~| C{|v~M{|y~}%{}m~}Wk~}d{|U~}d"
|
|
"{|k~}Y{}k~|]w~}kw~}Y{|s~X{|v~n{|w~}d{}w~} n{}w~} lv~}R{}x~}vw~}U{|w~t{|w~]v~|w{|y~|`w~|rw~s{}x~|\\v~|C{}x~}"
|
|
"N{}w~|J{|w~}Q{|r~|O{}w~ b{}w~Z{|v~m{}w~}V{}w~}E{}w~}M{|v~Xw~}x{}w~}\\{|w~}M{}w~}=v~}^{|v~m{}w~}b{|v~lv~} ?{|}u"
|
|
"~}6{|u~}|:{}w~}d{}w~|`{|w~}c{}w~|x{}w~}\\{}w~}l{}w~}c{|v~}O{}w~}gu~c{}w~}L{}w~}S{|v~}M{}w~}hv~|Y{}w~}M{}w~}W{}w"
|
|
"~}uu~}W{}w~}V{}w~|{|w~|p{}w~yv~|h{}w~|{|v~ov~h{|v~}fu~c{}w~}mv~}g{|v~}fu~e{}w~}mv~}a{|v~C{|v~|Z{|v~h{}w~}e{}v~j"
|
|
"v~|l{}w~}pw~|yw~|q{|v~f{}v~|w{|v~|Zv~}t{}v~M{}v~}X{|w~}L{}x~}F{|w~|Z{}v~|o{}v~| P{|}q~}|Xw~}w{}s~}|S{|}q~}|X{}s"
|
|
"~}|x{|w~|Z{|}r~}|W{}k~}W{}s~}|x{|w~|`w~}w{|s~}|Rv~Lv~Tw~}n{|v~}Xv~_w~}w{}s~}r{|s~}cw~}w{|s~}|V{|}r~}|Yw~}w{}s~}"
|
|
"|V{}s~}|x{|w~|Zw~}w{}t~|Y{}o~}|Z{}i~]{|w~|m{}w~|c{|v~iv~i{}w~|pu~ow~}hv~}m{|v~|d{|v~iv~`d~Uw~}Lw~|M{|w~| l{|s~"
|
|
"}|u{}x~}av~o{|w~}M{}w~|\\{}q~}|P{}o~}|\\w~}w{|s~}|^x~y}hv~W{}w~}X{|w~|m{}w~|d{}w~}h{}w~}]{|y}w{|}x~}|]_~|dv~t{}"
|
|
"w~t{|w~}[{|q~}|U{|y}i~}f{|`~b{|v~lv~|\\{}w~|x{}w~}U{|u~Q{}w~}U{|v~}f{|v~|ht~|w{|v~v{}u~}f{}w~}hv~|iv~}r{|v~qv~}"
|
|
"k{|v~}fu~/{|w~}x{}w~x{|w~}I{|T{}w~S{|i{|\\w~}x{}w~x{|w~|!v~}O{|}p~}|Y{|v~T{|v~}k{|v~}_v~s{}w~|Sw~|Su~|#{|x~u{}l"
|
|
"~ux~|bv~}y|v{|x~} !{|x~ul~|ux~|.{|x~|t{|x~|R{}w~J{|w~|L{|}x~}&{|w~|m{}w~|a{}m~}w{|x~} H{}x~|U{|x~}p{|w~.{}x~|l{"
|
|
"}x~}`{}x~|l{}x~}br~|o{}x~}Qv~|S{}w~|x{}w~}V{}w~|x{}w~}V{}w~|x{}w~}V{}w~|x{}w~}V{}w~|x{}w~}V{}w~|x{|w~}]{}w~}v{|"
|
|
"v~X{|v~}K{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~gu~|g{}w~|{|v~ov~h{|v~}fu~i{|v~}fu~i{|v~}fu~i{|v~}"
|
|
"fu~i{|v~}fu~g{|u~j{}v~}h{|v~}l{|w~}v~}g{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}`v~}t{}v~\\{}f~}^w~}t{}v~}y|Y"
|
|
"{|}q~}|U{|}q~}|U{|}q~}|U{|}q~}|U{|}q~}|U{|}q~}|_{|}q~}|r{|}r~}[{|}q~}|W{|}r~}|T{|}r~}|T{|}r~}|T{|}r~}|Qv~Lv~Lv~"
|
|
"Lv~O{|y}w~}u~|\\w~}w{|s~}|V{|}r~}|T{|}r~}|T{|}r~}|T{|}r~}|T{|}r~}|Q{}u~Q{|}r~}|x{}x~}b{|w~|m{}w~|a{|w~|m{}w~|a{"
|
|
"|w~|m{}w~|a{|w~|m{}w~|c{|v~iv~aw~}w{}s~}|^{|v~iv~ W{}w~}u{}w~u{}w~}d{}w~}j{}w~}d{}w~}j{}w~}d{}w~}j{}w~}d{}w~}j{"
|
|
"}w~}W{}w~X{}w~}k{|v~ C{|v~|M{}y~|&{|k~}X{}l~|cU~}di~|[{}i~|^w~}kw~}Y{}s~|Xv~|o{}w~|dw~} mv~| lv~}R{}x~}vw~}"
|
|
"^{}Z~f{|w~}v{|y~|`w~|rw~t{|x~}[{}w~}C{}x~}Nv~Hv~O{}v~}M{}w~ bw~}Z{}w~}m{|v~V{}w~}E{}w~}M{|v~Y{}w~w{}w~}\\{|w~}"
|
|
"Mv~|>{|v~]{|v~m{}w~}b{|w~}l{}w~}W{|v}M{}v~D{}r~}6{|r~}|>{|v~|e{}w~|^{|w~|dv~w{|v~\\{}w~}lv~|c{}v~N{}w~}g{}v~|d{"
|
|
"}w~}L{}w~}S{}v~L{}w~}hv~|Y{}w~}M{}w~}W{}w~}vu~}V{}w~}V{}w~|yw~}pw~}yv~|h{}w~|y{}w~}pv~h{}v~e{}v~|d{}w~}mv~}g{}v"
|
|
"~e{}v~|f{}w~}mv~}a{|v~C{|v~|Z{|v~h{}w~}dv~|l{|v~k{|v~q{|w~x{}x~}q{}w~}e{}v~wv~}Y{|v~|v{|v~|N{|v~}W{|w~}L{|w~F{|"
|
|
"w~|[{}v~l{}v~ S{|}k~|Zw~}y{|o~}V{|k~|\\{|o~}y{|w~|\\{|m~}X{}k~}Y{|o~}y{|w~|`w~}y{|o~}Sv~Lv~Tw~}o{|v~}Wv~_w~}y{|"
|
|
"o~|v{|o~|ew~}y{|o~}Y{|}n~}|[w~}y{|o~}Y{|o~}y{|w~|Zw~}y{|r~|[{}j~[{}i~]{|w~|m{}w~|b{}w~|k{|w~}i{|w~}q{|u~|q{|w~|"
|
|
"h{|v~|o{|v~}b{}w~|k{|w~}`d~Uw~}Lw~|M{|w~| n{|o~}vw~|av~o{}w~|M{|v~[{|o~}|U{}k~}]w~}y{|o~}_u~|k{|w~}Wu~X{|w~|m{"
|
|
"}w~|dv~|h{|v~_{}x~}x{}s~}__~|dv~t{}w~t{|w~}\\{}n~}Y{|}e~}f{|`~b{|w~}l{}w~|\\v~w{|v~T{|u~R{}w~}U{}v~dv~}i{}u~u{|"
|
|
"v~u{|u~|g{}w~}hv~|iv~}r{|v~qv~|k{}v~e{}v~|c{~}I{|y~}w{}w~w{|y~}I{}~|U{}w~T{}~|k{}~|\\y~}w{}w~w{|y~| v~}P{}k~Z{|"
|
|
"v~S{|v~}x{|}v~}|y{|v~}^{|w~}u{|w~}Rw~|S{|u~}${}y~|v{}v~}|wy|}y~u{|y~}c{|x~}r{|x~}Q{|q{| W{}y~|uw~vy|v~u{|y~}-w~"
|
|
"|v{|w~Q{}w~K{|w~|I{|w~'{|w~|m{}w~|a{}m~}w{|x~} H{}x~|U{|x~}p{|x~}]{|q{|X{}x~|m{|w~_{}x~|m{|w~]{|}w~}q{|w~Pv~|Sv"
|
|
"~w{|v~Vv~w{|v~Vv~w{|v~Vv~w{|v~Vv~w{|v~W{|v~vv~^{|v~|v{|v~X{}v~J{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z"
|
|
"{|v~g{|v~}g{}w~|y{}w~}pv~h{}v~e{}v~|j{}v~e{}v~|j{}v~e{}v~|j{}v~e{}v~|j{}v~e{}v~|g{|u~l{}v~}g{}v~kw~}{}v~g{|v~h{"
|
|
"}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}`{|v~|v{|v~|\\{}w~}s|y}t~}_w~}u{|v~|Y{|}k~|Z{|}k~|Z{|}k~|Z{|}k~|Z{|}k~|Z{|"
|
|
"}k~|d{|}k~|v{|m~}_{|k~|[{|m~}W{|m~}W{|m~}W{|m~}Rv~Lv~Lv~Lv~Q{|}l~\\w~}y{|o~}Y{|}n~}|X{|}n~}|X{|}n~}|X{|}n~}|X{|"
|
|
"}n~}|S{}u~S{|}n~}{|x~}a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|b{}w~|k{|w~}aw~}y{|o~}^{}w~|k{|w~} X{|w~}"
|
|
"t{}w~t{|w~}f{|w~}h{|w~}f{|w~}yy|p{|}y{|w~}f{|w~}ly|y{|w~}f{|w~}h{|w~}X{}x~}X{|v~kv~| Cv~|Lx~&{|i~|Y{|m~}bU~|e{}"
|
|
"h~\\{|u~}|xy|}u~^w~}kw~}Yr~}X{}w~}ov~d{}w~ lv~| lv~}R{}x~}vw~}^{}Z~f{|w~|v{|y~|`w~|s{|w~tw~|[{|v~|D{}x~}Nw~"
|
|
"}H{}w~|Q{|t~|N{}w~ c{|w~|Zv~|lv~|W{}w~}E{}w~}M{}w~}Z{|w~|w{}w~}\\{|w~}N{|v~={}w~}\\v~|nv~|b{}w~}l{}v~W{}v~M{}v"
|
|
"~G{|}p~|6{|o~}@u~e{|w~|\\{}w~e{|w~}v{}w~|]{}w~}m{|v~|cv~}N{}w~}g{|v~}d{}w~}L{}w~}Sv~}L{}w~}hv~|Y{}w~}M{}w~}W{}w"
|
|
"~}x{|u~}U{}w~}V{}w~|y{}w~q{|w~|yv~|h{}w~|y{|v~pv~hv~}e{|v~}d{}w~}mv~}gv~}e{|v~}f{}w~}mv~}a{|v~|D{|v~|Z{|v~h{}w~"
|
|
"}d{}w~}l{}w~}jv~|r{|w~x{|x~}qv~|e{|v~}y{}v~W{}v~vv~}N{|u~V{|w~}Kw~|G{|w~|\\{}w~}j{}v~ T{}i~}[w~}{}m~}X{}j~|]{}m"
|
|
"~}{|w~|]{}j~Y{}k~}Z{}m~}{|w~|`w~}{|l~Tv~Lv~Tw~}p{}v~}Vv~_w~}{|m~|x{|m~|fw~}{|m~}[{|j~|\\w~}{}m~}[{}m~}{|w~|Zw~}"
|
|
"{|q~|\\{}i~[{}i~]{|w~|m{}w~|b{|w~}k{}w~|hw~}q{|u~}q{}w~|g{}v~ov~}a{|w~}k{}w~|`d~Uw~}Lw~|M{|w~| Gy|l{|Z{}m~}x{|w"
|
|
"~`v~p{|v~Kv~Z{|m~|X{}j~}]w~}{|l~`t~|l{}w~|X{|u~}Y{|w~|m{}w~|e{}v~f{}w~}b{|v~}y{|q~}`_~|dv~t{}w~t{|w~}^{|k~}[{|c"
|
|
"~}f{|`~b{}w~}l{}w~}]{|w~}vv~|T{|v~}S{}w~}Uv~}d{}v~j{|u~t{|v~t{|u~g{}w~}hv~|iv~}r{|v~r{|v~|kv~}e{|v~}dx~}I{|}v{}"
|
|
"w~v{|}I{}x~|V{}w~U{}x~|m{}x~|\\{|v{}w~vy| {{v~}R{|i~Z{|v~R{|v~}|q~}|v~}\\v~u{}w~Qw~|R{|t~|'{|y~}v{}w~}p{|t{}y~|"
|
|
"d{}x~|r{|x~}Ry}r{|~ X{|y~}tw~sw~|u{}y~|.{|w~}x|}w~|Q{}w~L{|w~|G{|x~}({|w~|m{}w~|a{}m~}w{|x~} H{}x~|U{|w~p{|x~}]"
|
|
"{~|r{|}Y{}x~|mw~|_{}x~|m{}x~|[{|w~|r{}x~|Pv~|T{|w~}v{}w~|X{|w~}v{}w~|X{|w~}v{}w~|X{|w~}v{}w~|X{|w~}v{}w~|X{}w~}"
|
|
"v{}w~}_{}w~}u{|v~Xv~}J{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~fu~g{}w~|y{|v~pv~hv~}e{|v~}jv~}e{|v~}"
|
|
"jv~}e{|v~}jv~}e{|v~}jv~}e{|v~}f{|u~n{}v~}fv~}l{}x~}y{|v~|h{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}_{}v~vv~}["
|
|
"{}w~}q{|}u~|`w~}uv~W{}i~}[{}i~}[{}i~}[{}i~}[{}i~}[{}i~}e{}i~}x{}k~}a{}j~|\\{}j~Y{}j~Y{}j~Y{}j~Sv~Lv~Lv~Lv~R{}j~"
|
|
"}]w~}{|m~}[{|j~|Z{|j~|Z{|j~|Z{|j~|Z{|j~|T{}u~T{|f~`{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|b{|w~}k{}w~|a"
|
|
"w~}{}m~}_{|w~}k{}w~| Xw~}s{}w~s{}w~fw~}f{}w~fw~}y{|y~|r{|y~}y{}w~fw~}l{|y~}y{}w~fw~}f{}w~X{}x~}Wv~|m{|v~ C{}w~}"
|
|
"[{|}|o{|y~|&g~|Y{}n~|b{}V~e{|g~}]v~}r{|v~}_w~}kw~}Z{|r~}X{|v~p{|w~}dw~} pw|v~l| {{v~}R{}x~}vw~}^{}Z~f{|w~|v"
|
|
"{|y~|`{}x~}s{|x~}u{}x~}Y{}v~|E{}x~}O{|w~}H{}w~|S{|}r~}|P{}w~ c{|w~Yv~|lv~|W{}w~}Ev~|N{|v~|Zw~}v{}w~}\\{|w~}|}v"
|
|
"~y}|X{}w~}>{|v~|\\{}w~}o{|v~a{}w~}l{}v~W{}v~M{}v~J{|}p~}|2{|}p~}|D{}v~|e{}x~}p{|}w~}|vx|uw~|f{}w~|v{|w~}]{}w~}m"
|
|
"{}v~c{|v~|N{}w~}fv~}d{}w~}L{}w~}T{|v~|L{}w~}hv~|Y{}w~}M{}w~}W{}w~}y{|u~}T{}w~}V{}w~|y{|w~|r{}x~}xv~|h{}w~|x{}w~"
|
|
"}qv~i{|v~|dv~}d{}w~}mv~}h{|v~|dv~}f{}w~}n{|v~|`u~D{|v~|Z{|v~h{}w~}d{|v~m{|v~|j{}w~}r{}x~}x{|w~qv~|d{}v~y|v~|Vv~"
|
|
"}x{}v~Mu~|V{|w~}K{}x~}G{|w~|]{}w~}h{|v~ U{}u~v}s~}\\w~}|v~w}t~}Zr~v}v~|^{}t~w}v~}|w~|^{}t~v}t~Zv}v~s}[{}t~w}v~}"
|
|
"|w~|`w~}|u~x}t~}Uv~Lv~Tw~}q{}v~|Uv~_w~}|v~x}s~y{|v~x}s~fw~}|u~x}t~}]{|s~x}s~|]w~}|v~w}t~}]{|t~w}v~}|w~|Zw~}|t~}"
|
|
"x~|]{}t~u}u~[{|x}v~q}]{|w~|m{}w~|av~kv~g{}w~q{}t~qv~e{}v~q{}v~_v~|m{|v~_d~Uw~}Lw~|M{|w~| J{|}v~}r{}v~}|_{}u~w}u"
|
|
"~|y{}x~}`v~q{|v~}K{}w~|\\{}w~}p~}Z{}s~w}u~}]w~}|u~x}t~}as~m{|v~W{}t~Y{|w~|m{}w~|ev~|f{|v~c{|u~}yn~a_~|dv~t{}w~t"
|
|
"{|w~}_{|t~w}t~}]{|b~}f{|`~b{}w~|l{}w~}]{}w~|v{|w~}S{|v~}T{}w~}Uv~|d{|v~|k{}v~|t{|v~s{}v~|h{}w~}hv~|i{}w~}r{|v~r"
|
|
"{|v~|l{|v~|dv~}ev~}C{}w~C{}v~|W{}w~V{}v~n{|v~|W{}w~ sv~}S{|s~}y~x}v~Z{|v~Q{|e~}[{|w~}w{|w~}Qw~|R{}r~|){}y~|w{|w"
|
|
"~}g{|y~}dw~q{}x~}S{}~}s{}y~ X{}y~|tw~s{}x~}u{|y~}-{}p~}P{}w~M{|w~|F{|x~}({|w~|m{}w~|a{}m~}w{|x~} H{}x~|Tw~p{}x~"
|
|
"|]y~}s{|y~Z{}x~|n{|x~}^{}x~|n{|w~Y{|x~}s{|x~}Ov~|T{}w~|v{|w~}X{}w~|v{|w~}X{}w~|v{|w~}X{}w~|v{|w~}X{}w~|v{|w~}Xv"
|
|
"~u{|v~_v~|u{|v~Y{|v~|J{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~f{}v~g{}w~|x{}w~}qv~i{|v~|dv~}k{|v~|d"
|
|
"v~}k{|v~|dv~}k{|v~|dv~}k{|v~|dv~}e{|u~p{}v~}f{|v~|m{}w~wv~}h{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}^v~}x{}v"
|
|
"~Z{}w~}o{}v~}`w~}v{|w~|W{}u~v}s~}\\{}u~v}s~}\\{}u~v}s~}\\{}u~v}s~}\\{}u~v}s~}\\{}u~v}s~}f{}u~v}s~}{s~w}t~}cr~v}"
|
|
"v~|]{}t~v}t~[{}t~v}t~[{}t~v}t~[{}t~v}t~Tv~Lv~Lv~Lv~S{}h~|^w~}|u~x}t~}]{|s~x}s~|\\{|s~x}s~|\\{|s~x}s~|\\{|s~x}s~"
|
|
"|\\{|s~x}s~|U{}u~U{|s~x}q~|`{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|av~|m{|v~`w~}|v~w}t~}_v~|m{|v~ X{|w~"
|
|
"r{}w~rw~}h{|w~dw~}h{|w~y{|w~|t{|w~}yw~}h{|w~l{|w~}yw~}h{|w~dw~}Y{}x~}W{}w~}m{}w~} Xg|}v~s|e{|}x~}o{}y~&{}f~Y{|o"
|
|
"~}a{|V~f{|e~}_{|w~}p{|v~_w~}kw~}Z{}w~}v~Wv~|q{}w~}e{|w~ pc~} {{v~}R{|x}|v{|x}|^{}Z~f{|w~|v{|y~|`{|w~s{}x~}v"
|
|
"{|w~Wu~|F{|x}|O{}w~|H{|w~}U{|}w~|x~|w~}|R{}w~ c{}x~}Yv~|lv~|W{}w~}F{|v~N{|v~}Z{}w~u{}w~}\\{|k~}Z{}w~}x{|}u~y}|"
|
|
"L{}v~Zv~|pv~}a{|v~l{}v~|X{}v~M{}v~M{|}p~}|,{|}p~}|H{}v~|e{|w~q{|q~}y{}x~|v{|x~}fv~tv~]{}w~}n{}v~|c{|v~|N{}w~}f{"
|
|
"}v~d{}w~}L{}w~}T{}v~|L{}w~}hv~|Y{}w~}M{}w~}W{}w~}{|u~}S{}w~}V{}w~|xw~}rw~|xv~|h{}w~|x{|v~|rv~i{|v~|d{}v~d{}w~}n"
|
|
"{|v~|h{|v~|d{}v~f{}w~}n{}v~|`{}v~}|F{|v~|Z{|v~h{}w~}cv~|n{}v~i{}w~}rw~|ww~|s{|v~b{}q~}U{|v~|{|v~|N{}v~|U{|w~}K{"
|
|
"|w~G{|w~|^{}w~}f{|v~ V{}y~}|r{|u~|]r~|u{|u~}\\{}u~}s{|}y~|_{|u~|u{|}s~|_{}v~}|t{}v~}Vw~}T{|u~|u{|}s~|`r~|u{|u~|"
|
|
"Vv~Lv~Tw~}ru~|Tv~_r~|v{|}v~}{w~|u{}v~}gr~|u{|u~|^u~}|v{|}u~]r~|u{|u~|_{|u~|u{|}s~|Zr~}|v{|\\v~}|r{|}y~Wv~S{|w~|"
|
|
"m{}w~|a{}w~|m{|w~}g{}w~|rs~qw~}dv~}s{|v~|_{}w~}m{}w~|Nu~Uw~}Lw~|M{|w~| K{}r~u{|r~}a{|v~}|v{}v~yw~|`v~r{|u~|K{|w"
|
|
"~|]{}w~|xy|}t~}[u~}|s{|}~}]r~|u{|u~|ay|v~|n{}w~|X{|s~|Z{|w~|m{}w~|f{|v~dv~|e{|u~}|{|v~y|}v~}bx}u~q}u~x}|dv~t{}w"
|
|
"~t{|w~}_u~|u{|u~|_{|u~}|v{|}t~v}f{|q}u~p}b{}w~|l{|v~]v~tv~R{}v~}U{}w~}V{|v~|cv~}l{|v~}s{|v~s{|v~}h{}w~}hv~|i{}v"
|
|
"~r{|v~r{|v~|l{|v~|d{}v~fu~|C{}w~C{|u~|X{}w~W{}v~}m{}v~|X{}w~ sv~}T{|u~}|yy~}x{|}y~Z{|v~P{|g~}Y{}w~|xv~Pw~|T{|v~"
|
|
"}u~}*x~v{}w~ex~dw~qw~}U{|x~}t{}x~ Xx~sw~s{}x~}tx~,{|r~|O{}w~N{|w~|Dw~({|w~|m{}w~|a{|m~}w{|x~} H{}x~|T{}x~}qw~|]"
|
|
"x~}t{|x~|\\{}x~|nw~]{}x~|nw~|Xw~sw~|Ov~|Tv~tv~Xv~tv~Xv~tv~Xv~tv~Xv~tv~Y{|w~}tv~|a{|v~t{|v~Y{|v~|J{}w~}M{}w~}M{}"
|
|
"w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~f{|v~|h{}w~|x{|v~|rv~i{|v~|d{}v~k{|v~|d{}v~k{|v~|d{}v~k{|v~|d{}v~k{|v~|d{"
|
|
"}v~d{|u~r{}v~}e{|v~|n{}w~v{}v~h{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}^{|v~|{|v~|Z{}w~}nu~`w~}v{}w~V{}y~}|r"
|
|
"{|u~|]{}y~}|r{|u~|]{}y~}|r{|u~|]{}y~}|r{|u~|]{}y~}|r{|u~|]{}y~}|r{|u~|g{}y~}|r{|o~}|u{|}v~}e{}u~}s{|}y~|^{}v~}|"
|
|
"t{}v~}]{}v~}|t{}v~}]{}v~}|t{}v~}]{}v~}|t{}v~}Uv~Lv~Lv~Lv~T{}u~}|v{|}v~}^r~|u{|u~|^u~}|v{|}u~\\u~}|v{|}u~\\u~}|v"
|
|
"{|}u~\\u~}|v{|}u~\\u~}|v{|}u~U{}u~Uu~}|u{}u~|_{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{}w~}m{}w~|`r~|u{"
|
|
"|u~|`{}w~}m{}w~| Xw~|r{}w~r{|w~hw~|d{|w~hw~|yu~|v{|u~y{|w~hw~|m{|u~y{|w~hw~|d{|w~Y{}x~}Vv~mv~| XZ~}g{}t~oy~}'{}"
|
|
"e~}Y{}p~_W~|fc~|`v~n{}w~|`w~}kw~}Zv~|}w~|X{}w~}qv~|e{}x~} q{|c~| {{v~} y{|x~}t{}x~}]{|w~}v{|y~|_w~|u{|w~|vw"
|
|
"~|Wt~ p{}w~|H{|v~V{}w~}yx~y{}w~}S{}w~ cw~|Z{|v~k{}w~}W{}w~}Fv~}Qy|u~}Z{|w~|u{}w~}\\{|i~|\\v~|y{}p~}|Nv~}Z{|v~|"
|
|
"s{|v~}`{|v~lu~|X{}v~M{}v~P{|}p~}|b{|Z~}b{|}p~}|L{}v~}d{}x~|r{|n~{}x~|uw~|h{}w~}t{}w~|^{}w~}q{|}u~}b{}v~M{}w~}f{"
|
|
"}v~d{}w~}L{}w~}T{}v~K{}w~}hv~|Y{}w~}M{}w~}W{}w~}|u~}R{}w~}V{}w~|x{|w~s{}w~wv~|h{}w~|w{}w~}rv~i{}v~c{}v~d{}w~}n{"
|
|
"}v~|h{}v~c{}v~f{}w~}o{|u~_{|t~}|H{|v~|Z{|v~h{}w~}c{}v~nv~}i{|v~s{|w~|w{}x~}s{}w~}b{|q~S{}v~|v~}N{}v~}T{|w~}K{|w"
|
|
"~|H{|w~| s{}|m{}w~}]t~}q{}v~|^{}v~}ny|_u~q{}t~|`{|v~|q{|v~|Ww~}Tu~q{|t~|`t~}r{|v~}Vv~Lv~Tw~}t{|u~Rv~_t~}r{}v~}"
|
|
"y~}r{}v~gt~}r{|v~}_{}v~|r{|v~}^s~q{}v~_{}v~|r{}t~|Zs~T{|w~}m{|Wv~S{|w~|m{}w~|a{|w~}mv~|g{|w~}s{|s~|s{|w~|d{|v~|"
|
|
"u{|v~}]v~mv~N{}v~Tw~}Lw~|M{|w~| L{}p~w{|p~}bv~}s{}w~y|w~_v~wx|}t~}J{|w~}^{}w~r{}u~|]{|v~|Ot~}r{|v~}_{|v~nv~W{}s"
|
|
"~}Z{|w~|m{}w~|f{}w~}d{}w~}eu~}x{|w~|x{}v~|`{|w~}q{|w~}`v~t{}w~t{|w~}`{}v~q{}v~_u~}r{|v~}V{|w~}Wv~|l{|v~^{}w~}t{"
|
|
"}w~|R{}v~}V{}w~}V{|v~bv~}l{|v~|s{|v~r{}v~h{}w~}hv~|i{}v~r{|v~r{}v~k{}v~c{}v~gu~|B{}w~B{|u~|Y{}w~X{}v~}k{}v~|Y{}"
|
|
"w~ sv~}Tu~|wy~}u{|Z{|v~O{|u~}|x{|}v~}_{|p~}y{|p~}Ww~|Tw~}y{|t~|,y~}vw~|e{}y~dw~|s{}w~}V{|w~}u{}w~ Xy~}sw~s{}x~}"
|
|
"t{}y~*y}x~}|[m|}w~l|^{}w~C{|x~}({|w~|m{}w~|`m~}w{|x~} H{}x~|T{|w~|s{}x~}\\w~}u{|w~|]{}x~|o{}x~}]{}x~|o{}x~}Ww~t"
|
|
"{}x~}Nv~|U{}w~}t{}w~|Z{}w~}t{}w~|Z{}w~}t{}w~|Z{}w~}t{}w~|Z{}w~}t{}w~|Z{}w~|t{|w~}av~}t{|v~Y{}v~I{}w~}M{}w~}M{}w"
|
|
"~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~f{|v~|h{}w~|w{}w~}rv~i{}v~c{}v~k{}v~c{}v~k{}v~c{}v~k{}v~c{}v~k{}v~c{}v~c{|"
|
|
"u~t{}v~}d{}v~n{|w~|v{|v~h{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}]{}v~|v~}Y{}w~}n{|v~|aw~}vv~V{}|m{}w~}]{}|m"
|
|
"{}w~}]{}|m{}w~}]{}|m{}w~}]{}|m{}w~}]{}|m{}w~}g{}|m{}r~|q{|v~|g{}v~}ny|_{|v~|q{|v~|_{|v~|q{|v~|_{|v~|q{|v~|_{|v~"
|
|
"|q{|v~|Vv~Lv~Lv~Lv~U{|v~}q{|v~|_t~}r{|v~}_{}v~|r{|v~}^{}v~|r{|v~}^{}v~|r{|v~}^{}v~|r{|v~}^{}v~|r{|v~}V{}u~V{}v~"
|
|
"|r{|v~}_{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|`v~mv~_s~q{}v~_v~mv~ X{|w~q{}w~q{}x~|j{|w~b{}x~|j{|w~wu~"
|
|
"|x{|u~|x{}x~|j{|w~m{|u~|x{}x~|j{|w~b{}x~|Z{}x~}V{}w~|o{|v~ WZ~}gx~}w~|q{}y~|({|c~}_v|{}r~u|d{}X~f{}b~|b{|w~}mw~"
|
|
"}`w~}kw~}[{|v~{}w~}X{|w~}r{|v~d{}x~| q{}c~ yv~} y{}x~}t{}x~}\\v~}w{|y~|_{}w~|vw~}v{|x~}X{|r~ qv~Fv~X{}w~}|x"
|
|
"x~x{|}w~}U{}w~ d{|w~Y{|v~k{}w~}W{}w~}G{}v~|Xm~}Y{}x~}t{}w~}\\{|h~}]v~y|l~}P{|v~|Y{|u~u|}v~}_{|v~|n{|u~|X{}v~M{"
|
|
"}v~R{|o~}|`{|Z~}_{|}p~}|P{}v~}cw~r{|l~}x~|u{|x~|hv~|t{|v~^{}e~}a{}v~M{}w~}f{|v~|e{}d~|_{}g~|d{}v~K{}^~|Y{}w~}M{"
|
|
"}w~}W{}p~|Q{}w~}V{}w~|ww~|tw~}wv~|h{}w~|vv~|sv~i{}v~c{|v~|e{}w~}o{|u~g{}v~c{|v~|g{}w~}p{|u~|^{}q~y}|M{|v~|Z{|v~"
|
|
"h{}w~}c{|v~|p{|v~gv~|t{|w~v{|x~}sv~|a{|s~|Rq~}N{}v~}S{|w~}Jw~}H{|w~| bv~|^t~ov~}^v~}P{|v~|p{}u~|`v~|o{|v~Ww~}U"
|
|
"{|v~o{}u~|`u~}p{|v~Vv~Lv~Tw~}u{|v~}Qv~_u~}pt~}pv~|hu~}p{|v~`{|v~|p{|v~|_t~ov~}a{|v~|p{}u~|Zt~S{}w~Gv~S{|w~|m{}w"
|
|
"~|`v~|o{|v~ev~s{|x~y}x~}s{}w~|c{}v~uv~}\\{}w~|o{|w~}O{}v~|U{|w~}Lw~|M{|w~} M{|x~}x|}w~}xv~}x|}x~|d{}v~qw~y}x~}_"
|
|
"v~x{}q~}I{|w~}_{|w~|q{|u~]{}w~|Nu~}p{|v~^{}w~|p{|w~}X{|q~Z{|w~|m{}w~|fv~|d{|v~f{|v~}w{}w~|wu~`{|w~}q{|w~}`v~t{}"
|
|
"w~t{|w~}a{|v~ov~}a{|v~}p{}v~|W{|w~}Wv~}l|}v~^v~|t{|v~Q{}v~}W{}w~}V{|v~b{}w~}l{}v~r{|v~r{}v~|i{}w~}hv~|i{|v~|s{|"
|
|
"v~r{}v~k{}v~xi~}y{|v~|iu~|A{}w~A{|u~|Z{}w~Y{}v~}i{}v~|Z{}w~ sv}|U{}v~|vy~}S{|v~O{|w~}s{|v~_{|o~|{o~}Ww~|U{}x~}v"
|
|
"{}u~}.{|y~|w{|w~d{|y~|e{}w~t{}v~}W{|v~|v{}w~}cY|8{|y~|sw~sw~|t{|y~| `{|Z~}_{}x~}C{|w~}({|w~|m{}w~|`{|n~}w{|x~} "
|
|
"H{}x~|Sv~|u{}w~|\\{}v~v{|v~|^{}x~|p{|w~\\{}x~|p{|w~W{|x~}u{|w~Mv}|Uv~|t{|v~Zv~|t{|v~Zv~|t{|v~Zv~|t{|v~Zv~|t{|v~"
|
|
"Zv~rv~b{|v~s{|c~l{}v~I{}d~|`{}d~|`{}d~|`{}d~|W{}w~}M{}w~}M{}w~}M{}w~}Z{|v~ev~}h{}w~|vv~|sv~i{}v~c{|v~|l{}v~c{|v"
|
|
"~|l{}v~c{|v~|l{}v~c{|v~|l{}v~c{|v~|c{|u~v{}v~}c{}v~o{|w~|u{|v~|i{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}\\q~"
|
|
"}X{}w~}mv~}aw~}vv~Ev~|Mv~|Mv~|Mv~|Mv~|Mv~|Ws~|o{}w~}gv~}Ov~|o{|v~_v~|o{|v~_v~|o{|v~_v~|o{|v~Vv~Lv~Lv~Lv~Uv~}o{}"
|
|
"w~}_u~}p{|v~`{|v~|p{|v~|`{|v~|p{|v~|`{|v~|p{|v~|`{|v~|p{|v~|`{|v~|p{|v~|Wt|W{|v~|q{}u~|`{|w~|m{}w~|a{|w~|m{}w~|"
|
|
"a{|w~|m{}w~|a{|w~|m{}w~|`{}w~|o{|w~}_t~ov~}`{}w~|o{|w~} X{}x~}q{}w~q{|x~}j{}x~}b{|x~}j{}x~}vu~|yu~|w{|x~}j{}x~}"
|
|
"mu~|w{|x~}j{}x~}b{|x~}Z{}x~}V{|v~o{}w~} WZ~}g{}|yw~}qx~'a~|c{|}t~}k~}|fY~}g{}`~b{|w~|m{}w~`w~}kw~}[{|w~}{|v~Wv~"
|
|
"r{}w~}dw~| lv~| kv~| yw~|tw~|\\{}v~}|y{|y~|^v~}y|}v~uw~X{|p~ rv~Fv~Xw~|vx~v{|w~U{}w~ d{}x~}Y{|v~k{}w~}W{}w"
|
|
"~}H{|v~}Wo~}|Y{|w~|t{}w~}\\{|v~x}|x}s~}^v~|j~}Q{}w~}V{}l~}]v~}n{}u~}X{}v~M{|v}U{|}p~}|]{|Z~}\\{}o~|S{}v~}c{|x~}"
|
|
"rv~}|w{|}t~|tx~}i{|v~rv~|_{}h~}|_v~}M{}w~}f{|v~|e{}d~|_{}g~|dv~}K{}^~|Y{}w~}M{}w~}W{}q~|P{}w~}V{}w~|w{}w~u{|w~|"
|
|
"wv~|h{}w~|v{}w~}sv~iv~}c{|v~|e{}w~}p{|u~|gv~}c{|v~|g{}w~}sy|}u~}\\{}m~}|Q{|v~|Z{|v~h{}w~}bv~}p{}w~}g{}w~}t{}x~}"
|
|
"v{|w~sv~|`{}u~}Q{|r~|O{|u~R{|w~}J{}w~H{|w~| b{|w~}^u~|o{|v~_{}v~Ov~}nu~|a{}w~}m{}w~|Xw~}Uv~|nu~|`u~nv~|Wv~Lv~T"
|
|
"w~}v{}v~}Pv~_u~o{}u~|p{}w~}hu~nv~|a{}w~}n{}w~}_u~|o{|v~a{}w~}nu~|Zu~|S{}w~Gv~S{|w~|m{}w~|`{}w~}o{}w~}e{}w~s{}x~"
|
|
"}|w~sv~a{}v~w{}v~[{|w~}ov~|P{}v~|T{|w~}Lw~|M{|w~}:{|4x~|v{|w~}{}x~}u{}x~dv~}q{}s~|_v~x{}r~}S{|y}~y}|w{|w~}_w~}o"
|
|
"{|v~}^{}w~Mu~nv~|_{|w~}pv~|X{}w~}v~|[{|w~|m{}w~|g{|v~bv~|g{}v~v{}w~v{|v~|a{|w~}q{|w~}`v~t{}w~t{|w~}a{}w~|o{|v~a"
|
|
"{}v~nv~}W{|w~}W`~_{|v~rv~|Q{}v~|X{}w~}V{|v~b{}w~}lu~r{|v~r{|v~|i{}w~}hv~|hv~}s{|v~rv~}kv~}xi~}y{|v~|ju~|@{}w~@{"
|
|
"|u~|[{}w~Z{}v~}g{}v~|[{}w~ Gv~}uy~}S{|v~Ow~}q{|w~|`{|n~}o~}Ww~|Uw~|t{}u~|0{|y~|w{|x~}d{|y~|e{|v~}w|t~}X{|v~|vv~"
|
|
"}c{|Z~}8{|y~|sw~t{}w~s{|y~| `{|Z~}`{}x~}M{|~}|v{|}v~'{|w~|m{}w~|_{}o~}w{|x~}Vv}| s{}x~|S{|v~}|{y|}w~}Z{}v~|w{|v"
|
|
"~}_{}x~|pw~|o{}w~m{}x~|p{}x~|vy|}w~y}|g{|w~|u{}x~|o{}w~3{|v~rv~|\\{|v~rv~|\\{|v~rv~|\\{|v~rv~|\\{|v~rv~|\\{}w~}"
|
|
"r{}w~|c{}w~}s{|c~lv~}I{}d~|`{}d~|`{}d~|`{}d~|W{}w~}M{}w~}M{}w~}M{}w~}_{}i~}nv~}h{}w~|v{}w~}sv~iv~}c{|v~|lv~}c{|"
|
|
"v~|lv~}c{|v~|lv~}c{|v~|lv~}c{|v~|b{|u~x{}v~}bv~}p{|w~}t{|v~|i{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}\\{|r~|"
|
|
"X{}w~}mv~}aw~}v{}w~}F{|w~}M{|w~}M{|w~}M{|w~}M{|w~}M{|w~}W{|u~}m{}w~h{}v~O{}w~}m{}w~|a{}w~}m{}w~|a{}w~}m{}w~|a{}"
|
|
"w~}m{}w~|Wv~Lv~Lv~Lv~V{}v~n{|v~_u~nv~|a{}w~}n{}w~}`{}w~}n{}w~}`{}w~}n{}w~}`{}w~}n{}w~}`{}w~}n{}w~},{}w~}q{}t~}`"
|
|
"{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|`{|w~}ov~|_u~|o{|v~`{|w~}ov~| X{}x~|q{}w~q{|w~j{}x~|b{|w~j{}x~|u"
|
|
"u~|u~|v{|w~j{}x~|nu~|v{|w~j{}x~|b{|w~Zw~}Uv~|q{|v~ VZ~}c{}w~r{|y~}({}`~d{}^~|h{|Z~g{|_~}c{}w~l{|w~`w~}kw~}[{}w~"
|
|
"|yv~|X{}w~|sv~|dV~} 2v~| k{}w~| {{|w~t{|w~Zs~y}y~|^{|o~|v{}x~}rx|e{|v~y}u~n{|w~},{|v~Fv~|Y{|~}tx~t{}~|U{}w~ "
|
|
" dw~|Y{|v~k{}w~}W{}w~}Hu~Vp~}|Y{|w~}s{}w~}\\{|~}|q{}t~|`{|q~}|xy|t~|Rv~|U{|}p~|[{}v~|ot~} V{|}p~}|Z{|Z~}Z{|}p~}"
|
|
"|W{}v~|b{}x~|s{}w~|s{|u~|tw~i{}w~}r{}w~}_{}g~}|`v~}M{}w~}f{|v~|e{}d~|_{}g~|dv~}K{}^~|Y{}w~}M{}w~}W{}q~O{}w~}V{}"
|
|
"w~|w{|w~|v{}w~vv~|h{}w~|uv~|tv~iv~}c{|v~|e{}w~}sy|s~fv~}c{|v~|g{}f~}Z{}k~}S{|v~|Z{|v~h{}w~}b{|v~pv~|g{}w~}tw~|u"
|
|
"w~|u{|v~_{}u~O{}t~|O{|u~|R{|w~}J{|w~|I{|w~| aw~}^v~}m{}w~}`v~|P{|v~m{}v~|av~l{|w~}Xw~}V{|v~m{|v~|`v~}n{}w~|Wv~"
|
|
"Lv~Tw~}w{}v~}Ov~_v~}o{|v~}o{|w~}hv~}n{}w~|av~|n{|v~|`u~mv~|bv~m{}v~|Zv~}R{}w~Gv~S{|w~|m{}w~|`{|v~ov~d{}w~|tw~|{"
|
|
"w~|u{|w~}`v~}y{|v~|Z{}w~|q{|v~P{}v~|Sv~|Lw~|Lv~|W{|y}w~}|iy}5{|y~}sw~|x~}s{}y~|f{|v~|ps~^v~x{}q~}|W{|r~|y{|w~}`"
|
|
"{}w~m{}v~^{}w~Mv~}n{}w~|^{}w~q{|v~Wv~y|w~}[{|w~|m{}w~|g{}v~b{}w~}h{|v~|v{}w~u{}w~}a{|w~}q{|w~}`v~t{}w~t{|w~}av~"
|
|
"mv~|c{|v~|n{|v~W{|w~}W`~_{}w~}r{}w~}Q{|v~}X{}w~}V{|v~b{}w~}lv~}r{|v~r{|v~|i{}w~}hv~|h{}v~s{|v~s{|v~|kv~}xi~}y{|"
|
|
"v~|ku~|?{}w~?{|u~|\\{}w~[{}v~}e{}v~|\\{}w~ H{}v~ty~}S{|v~P{|w~o{}w~_s|}r~s|Vw~|V{|w~r{|u~0{|y~v{}x~}d{|y~|d{}o~"
|
|
"|x~}Y{}v~v{|v~|b{|Z~}8{|y~rw~u}v~|s{|y~| `{|Z~}a{}l~|X{|m~|'{|w~|m{}w~|^o~}w{|x~}W{|v~| xm~}W{|n~}X{|v~|vv~}e{}"
|
|
"n~}v{}x~}o{|v~m{}x~|q{|w~w{|o~|t{|~}y|w{|}v~u{|x~}o{|v~3{}w~}r{}w~}\\{}w~}r{}w~}\\{}w~}r{}w~}\\{}w~}r{}w~}\\{}w"
|
|
"~}r{}w~}\\v~|r{|w~}cv~|s{|c~lv~}I{}d~|`{}d~|`{}d~|`{}d~|W{}w~}M{}w~}M{}w~}M{}w~}_{}i~}nv~}h{}w~|uv~|tv~iv~}c{|v"
|
|
"~|lv~}c{|v~|lv~}c{|v~|lv~}c{|v~|lv~}c{|v~|a{|u~|}v~}av~}pw~}s{|v~|i{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}["
|
|
"{}t~|W{}w~}mv~}aw~}v{}v~|Fw~}Lw~}Lw~}Lw~}Lw~}Lw~}Vu~l{|w~|iv~|Ov~l{|w~}av~l{|w~}av~l{|w~}av~l{|w~}Wv~Lv~Lv~Lv~V"
|
|
"v~|mv~|`v~}n{}w~|av~|n{|v~|av~|n{|v~|av~|n{|v~|av~|n{|v~|av~|n{|v~|-v~|r{|x~}v~`{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{"
|
|
"}w~|a{|w~|m{}w~|_{}w~|q{|v~^u~mv~|`{}w~|q{|v~ Ww~p{}w~pw~jw~yd|yw~jw~t{|p~|tw~jw~nu~|tw~jw~pv~}qw~Zw~|U{}w~}q{}"
|
|
"w~} F{}w~}W{|w~|s{}y~|){|_~}f{}\\~|h{}\\~|g{}^~c{}w~l{|w~|aw~}kw~}[v~x{}w~}X{|w~}t{|v~cV~} 2v~| k{}w~| {{|x~"
|
|
"}t{|x~}Z{|o~}y|`{|}r~|v{|w~t{}u~}|hv~}y{}u~o{|w~|,{|v~F{}w~|X{|sx~s{|T{}w~ e{|w~X{|v~k{}w~}W{}w~}Iu~|Vm~|[{}w~"
|
|
"r{}w~}L{}u~`{|r~|s{|u~S{}v~V{|}m~}|\\u~p{}t~} Y{|}p~}|VY|W{|}p~}|[{|v~|aw~rw~}q{|v~|t{}x~iv~q{|v~_{}e~}av~}M{}w"
|
|
"~}f{|v~|e{}d~|_{}g~|dv~}m{}n~|h{}^~|Y{}w~}M{}w~}W{}q~}P{}w~}V{}w~|vw~}vw~}vv~|h{}w~|u{}v~tv~iv~}bv~|e{}e~|fv~}b"
|
|
"v~|g{}g~}X{|}k~}U{|v~|Z{|v~h{}w~}av~|r{|v~f{|v~u{|w~|u{}x~}u{}w~}`{|t~|O{}v~}Nu~|Q{|w~}Iw~}I{|w~| a{}w~^v~|m{|"
|
|
"w~}a{|v~O{|w~}lv~|b{|w~}kv~Xw~}V{|w~}lv~|`v~|n{|w~}Wv~Lv~Tw~}x{}v~|Nv~_v~|nv~|nv~hv~|n{|w~}b{|v~lv~|`v~}m{|w~}c"
|
|
"{|w~}m{|v~|Zv~|R{}w~|Hv~S{|w~|m{}w~|_{}w~|q{|w~}d{|w~}u{|w~y{}x~|u{|w~|`{|v~y|v~}Y{|w~}q{}w~|Q{|v~}S{}v~Kw~|L{}"
|
|
"w~}Y{|p~}|n{|y~}5{}y~r{|t~qy~}f{}v~ot~}^v~x{}o~}Y{}p~|{|w~|`w~}lv~|_{|w~}Nv~|n{|w~}^{|w~|r{}w~|X{}w~}yv~[{|w~|m"
|
|
"{}w~|gv~}b{}v~h{|v~u{}w~u{|v~a{|w~}q{|w~}`v~t{}w~t{|w~}b{|w~}m{|w~}c{|v~lv~|X{|w~}W`~_v~|r{|v~Qu~W{}w~}V{|v~b{}"
|
|
"w~}lv~}r{|v~qv~|i{}w~}hv~|h{|v~|t{|v~s{}v~jv~}xi~}xv~|lu~[|]{}w~\\\\|u~|]{}w~\\{}v~}c|u~|]{}w~ H{}w~}ty~}X{}g~|"
|
|
"[{}x~}nw~Vs~|Nw~|V{}x~}pv~}1{}y~v{}x~}d{|y~}c{}r~}{|x~}Z{}w~}v{|v~|a{|Z~}8{}y~rn~}q{|y~} `{|Z~}a{}l~|X{|o~}|&{|"
|
|
"w~|m{}w~|]{}q~}w{|x~}W{|v~| xm~}V{|}q~|V{|v~|v{}w~}fm~}vw~o{|u~rm~}vw~|w{}n~|u{|m~|uw~|p{|u~3v~q{|v~\\v~q{|v~\\"
|
|
"v~q{|v~\\v~q{|v~\\v~q{|v~]{|v~pv~|e{}w~}r{|c~lv~}I{}d~|`{}d~|`{}d~|`{}d~|W{}w~}M{}w~}M{}w~}M{}w~}_{}i~}nv~}h{}w"
|
|
"~|u{}v~tv~iv~}bv~|lv~}bv~|lv~}bv~|lv~}bv~|lv~}bv~|`{|p~}`v~}q{}x~}qv~|i{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}"
|
|
"w~}Z{}v~}V{}w~}mv~}aw~}uu~}G{}w~L{}w~L{}w~L{}w~L{}w~L{}w~V{}w~}kw~}j{|v~O{|w~}kv~b{|w~}kv~b{|w~}kv~b{|w~}kv~Wv~"
|
|
"Lv~Lv~Lv~W{|v~l{}w~}`v~|n{|w~}b{|v~lv~|b{|v~lv~|b{|v~lv~|b{|v~lv~|b{|v~lv~|.{|v~r{|w~{}w~|a{|w~|m{}w~|a{|w~|m{}"
|
|
"w~|a{|w~|m{}w~|a{|w~|m{}w~|_{|w~}q{}w~|^v~}m{|w~}`{|w~}q{}w~| Ww~yd~|{w~jw~yd~|{w~jw~s{|r~|sw~jw~ou~|sw~jw~pv~}"
|
|
"qw~Zw~|U{|v~qv~| G{}w~}Uw~}sx~({}^~g{}Z~g]~}f{|_~|cw~}l{|w~|aw~}kw~}\\{|v~x{|v~Wv~t{}w~}cV~} 2v~| k{}w~| {{}"
|
|
"x~}t{}x~}Y{|}m~}`{|}w~}|tw~|v{|q~}j{}v~w{}u~p{}w~|,{|w~}F{}w~|Ox~Z{|Z~} t{}x~}X{|v~k{}w~}W{}w~}J{}v~|Ut|}t~}]{"
|
|
"|w~|r{}w~}K{}v~|a{|s~p{|v~}Tv~}W{}i~}]{}u~|t{|}s~} Z{|q~}| e{|}q~}\\v~}`x~}s{}w~ov~|t{}x~|k{|w~}p{}w~|`{}w~}p|}"
|
|
"t~|cv~}M{}w~}f{|v~|e{}w~}i|^{}w~}l|cv~}m{}n~|h{}w~}h|v~|Y{}w~}M{}w~}W{}w~}u~}Q{}w~}V{}w~|v{}w~w{|w~uv~|h{}w~|tv"
|
|
"~|uv~iv~}c{|v~|e{}f~|ev~}c{|v~|g{}i~}S{|}m~}V{|v~|Z{|v~h{}w~}a{}w~}rv~}ev~|v{|w~t{|w~uv~|`r~O{|v~|O{}v~}P{|w~}I"
|
|
"{}w~I{|w~| a{}w~^v~|lv~a{}w~}O{}w~|lv~|b{|w~|k{}w~Xw~}V{}w~|lv~|`v~m{|w~}Wv~Lv~Tw~}yu~|Mv~_v~mv~mv~hv~m{|w~}b{"
|
|
"}w~}l{}w~}`v~|m{|v~c{}w~|lv~|Zv~Q{}v~|Iv~S{|w~|m{}w~|_{|w~}q{}w~|cv~u{}x~}y{}x~}u{}w~^{}q~}Wv~qv~Q{|v~}Uy|}v~|K"
|
|
"w~|L{|u~}|^{|k~}|s{|}x~}5y~}q{}v~|q{}y~f{}w~}o{}u~|^v~ty|}s~[{|u~y}v~y|w~|a{|w~}l{}w~}^{}w~|Ov~m{|w~}]w~}rv~Wv~"
|
|
"|y{}w~}\\{|w~|m{}w~|gv~|b{|v~h{}w~}u{}w~tv~a{|w~}q{|w~}`v~t{}w~t{|w~}b{}w~|m{|v~c{}w~}l{}w~}X{|w~}W`~`{|w~}pv~|"
|
|
"S{}v~|W{}w~}V{|v~bv~}lv~}r{|v~r{|v~|i{}w~}hv~|gu~t{|v~t{|v~}jv~}xh|y{|v~|mT~]{}w~]T~|^{}w~]{}U~|^{}w~ Hv~|ty~}X"
|
|
"{}g~|[w~|nw~|W{}u~}Mw~|V{}w~ov~1{|y~v{}x~}d{|y~|ay}x~y}ww|[{}w~}v{|v~|`{|Z~}8{|y~ro~o{|y~| Q{}w~R{}l~|V{|y}v~y}"
|
|
"|${|w~|m{}w~|\\{|}s~}w{|x~}W{|v~| xm~}T{|y}w~}|S{|v~|v{}w~}gm~}w{}x~}oy~y}x~rm~}w{}x~}v{}~}y|w{|v~u{|o~}t{}x~}o",
|
|
"t~^v|V{|w~}p{}w~|^{|w~}p{}w~|^{|w~}p{}w~|^{|w~}p{}w~|^{|w~}p{}w~|^{}w~}p{}w~}ev~|r{|v~h|lv~}I{}w~}i|_{}w~}i|_{}"
|
|
"w~}i|_{}w~}i|V{}w~}M{}w~}M{}w~}M{}w~}_v}u~r}nv~}h{}w~|tv~|uv~iv~}c{|v~|lv~}c{|v~|lv~}c{|v~|lv~}c{|v~|lv~}c{|v~|"
|
|
"_{|r~}_v~}r{}w~q{|v~|i{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}Z{|v~|V{}w~}mv~}aw~}u{|t~|I{}w~L{}w~L{}w~L{}w~"
|
|
"L{}w~L{}w~V{}w~|kv~j{}w~}O{|w~|k{}w~b{|w~|k{}w~b{|w~|k{}w~b{|w~|k{}w~Wv~Lv~Lv~Lv~W{}w~}l{|w~}`v~m{|w~}b{}w~}l{}"
|
|
"w~}b{}w~}l{}w~}b{}w~}l{}w~}b{}w~}l{}w~}b{}w~}l{}w~}eY|f{}w~}rw~y{|w~}a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|"
|
|
"m{}w~|^v~qv~]v~|m{|v~_v~qv~ Vw~yd~|{}x~|kw~yd~|{}x~|kw~r{|t~|r{}x~|kw~pu~|r{}x~|kw~pv~}q{}x~|[w~|T{}w~|s{|v~ G{"
|
|
"}v~T{}w~t{|y~}(]~|i{|Y~}h{|_~}d{|a~}bw~}kw~|aw~}kw~}\\{}w~}wv~|Xv~|u{}w~|cV~} 2v~| k{}w~| {{w~|tw~|W{|}m~}T{"
|
|
"}x~}v{|o~}l{|v~|v{}u~q{}w~+{|w~}F{}w~|Ox~Z{|Z~}+m| ww~|X{|v~k{}w~}W{}w~}K{}v~}K{|}v~}^w~}q{}w~}Ju~a{|t~|o{}v~U{"
|
|
"|v~|X{}u~}|wy|u~}]t~}y|{y|}q~} Z{|t~}| _{|}t~}\\v~`{|x~}s{}x~}o{|w~|t{}x~|kv~|p{|w~}`{}w~}n{|u~cv~}M{}w~}f{|v~|"
|
|
"e{}w~}L{}w~}Tv~}m{}n~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}|u~}R{}w~}V{}w~|v{|w~|x{}x~}uv~|h{}w~|t{|v~uv~iv~}c{|v~|e{}h~"
|
|
"}cv~}c{|v~|g{}h~}Qy|y}p~W{|v~|Z{|v~h{}w~}a{|v~s{|v~|e{}w~}v{}x~}t{|w~uv~|a{}r~}P{|v~|P{}v~}O{|w~}I{|w~|J{|w~| "
|
|
"n{|y}l~^v~kv~a{}w~|Ov~|l{}w~|b{}w~|k{}w~|Yw~}Vv~|l{}w~|`v~m{|w~}Wv~Lv~Tw~}|u~Kv~_v~mv~mv~hv~m{|w~}b{}w~|l{|v~`v"
|
|
"~kv~c{}w~|l{}w~|Zv~Pu~}|Kv~S{|w~|m{}w~|^v~qv~b{}w~u{}x~|y{|w~uv~]{}r~V{}w~|s{|w~}R{|v~}X{|q~}Jw~|K{|q~}c{}g~}w|"
|
|
"}u~}5y~}pw~}p{}y~fv~|o{}u~]v~p{|t~\\v~}w{|w~}w~|a{}w~|l{|w~}]{}w~}y|Rv~m{|w~}]{}w~s{}w~}X{}w~}x{|v~\\{|w~|m{}w~"
|
|
"|h{|v~|b{|v~|i{}w~|u{}w~tv~|b{|w~}q{|w~}`v~t{}w~t{|w~}bv~kv~c{}w~|l{|w~}X{|w~}Wv~jv~`v~|p{}w~}T{}v~|V{}w~}V{|v~"
|
|
"|cv~|lv~}r{|v~r{|v~|i{}w~}hv~|g{}v~}u{|v~tu~|jv~}c{|v~|n{|T~]{}w~]T~}^{}w~]T~}^{}w~ I{|v~sy~}X{}g~|[w~m{}x~|Vu~"
|
|
"|#{|w~|p{|w~|2{|y~|w{|x~}d{|y~|3v~}v{}v~|Aw~}8{|y~|sw~x{|w~}p{|y~| Q{}w~ p{|w~|m{}w~|Y{|}v~}w{|x~}W{|v~| jv~}"
|
|
"v{}v~|W{|w~o{}y~{}x~r{}n~}x{|w~uy|rw~|ty|t}|s{|w~o{}y~|}x~^{}w~|Wv~|p{|w~}^v~|p{|w~}^v~|p{|w~}^v~|p{|w~}^v~|p{|"
|
|
"w~}^v~|p{|v~f{|v~q{|v~Yv~}I{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~ev~}h{}w~|t{|v~uv~iv~}c{|v~|lv~}"
|
|
"c{|v~|lv~}c{|v~|lv~}c{|v~|lv~}c{|v~|^{|t~}^v~}s{}w~p{|v~|i{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}Z{|v~|V{}w"
|
|
"~}n{|v~|aw~}t{}t~}W{|y}l~Y{|y}l~Y{|y}l~Y{|y}l~Y{|y}l~Y{|y}l~c{|y}l~j{}w~j{}w~|O{}w~|k{}w~|c{}w~|k{}w~|c{}w~|k{}"
|
|
"w~|c{}w~|k{}w~|Xv~Lv~Lv~Lv~W{}w~|l{|v~`v~m{|w~}b{}w~|l{|v~b{}w~|l{|v~b{}w~|l{|v~b{}w~|l{|v~b{}w~|l{|v~f{|Z~}f{}"
|
|
"w~|s{}x~|y{|w~}a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|^{}w~|s{|w~}]v~kv~_{}w~|s{|w~} Vw~yd~|{}x~|kw~yd"
|
|
"~|{}x~|kw~qt~|r{}x~|kw~qu~|q{}x~|kw~pv~}q{}x~|[w~|T{|w~}s{}w~} H{|v~|T{|w~|u{}y~({|]~}i{}X~g{|`~b{}b~aw~}kw~}aw"
|
|
"~}kw~}\\v~|w{}w~}X{}w~}uv~bw~}Z| 5x|v~}p| v{}w~| {|w~t{|w~S{|}n~|Vw~uv~|y{|}w~}m{}w~}t{}u~rw~}+{|w~}F{}w~|Ox"
|
|
"~Z{|Z~},{|m~ x{|w~|X{|v~k{}w~}W{}w~}L{}v~}H{}v~}`{}w~p{}w~}J{}v~`t~n{|v~|V{}v~X{}v~}q{}v~}^{|j~|v~| Z{|t~| ]{|}"
|
|
"u~}]{|w~}`{|x~|sw~|o{|w~|t{}x~|l{|v~nv~`{}w~}lv~}dv~}M{}w~}f{|v~|e{}w~}L{}w~}Tv~}m{}n~|h{}w~}hv~|Y{}w~}M{}w~}W{"
|
|
"}w~}{|t~S{}w~}V{}w~|u{}x~}y{|w~|uv~|h{}w~|sv~|vv~iv~}c{|v~|e{}k~}|av~}c{|v~|g{}w~}t|y}u~}M{|}s~}X{|v~|Z{|v~h{}w"
|
|
"~}`v~}t{}v~d{}w~}vw~|sw~|w{|v~a{|v~}v~|Q{|v~|Q{|u~N{|w~}Hw~|J{|w~| p{}h~|_v~k{}w~|bv~|Ov~k{}w~|bv~j}v~|Yw~}Vv~"
|
|
"k{}w~|`w~}m{|w~}Wv~Lv~Tq~}Jv~_w~}mv~mv~hw~}m{|w~}bv~|l{|v~`v~kv~|dv~k{}w~|Zv~P{}r~}y|Pv~S{|w~|m{}w~|^{}w~|s{|w~"
|
|
"}b{|w~|vw~|xw~|w{|w~}\\s~|Uv~sv~|Ru~W{|s~}|Iw~|I{|}t~}d{|u~}w|}g~}5{|y~|p{|x~|p{}y~fv~|o{|v~}]v~n{}v~|^{}w~|ts~"
|
|
"`v~|l{|v~\\{}p~}Xw~}m{|w~}]{|w~|tv~|Xv~|wv~|]{|w~|m{}w~|h{|v~|q{}x~}q{|v~|iv~|u{}w~t{}w~|b{|w~}q{|w~}`v~t{}w~t{"
|
|
"|w~}bv~kv~|dv~|l{|v~X{|w~}Wv~|l{|v~a{|v~nv~U{|v~}U{}w~}Uv~}d{|v~|l{}v~r{|v~r{|v~|i{}w~}hv~|fu~|v{|v~u{}v~}iv~}c"
|
|
"{|v~|n{|T~]{}w~]T~}^{}w~]T~}^{}w~ rw|V{|w~}sy~}X{|w}u~q}Zw~m{}x~|V{}v~\"{|v~ow~|2{|y~|w{|w~d{|y~|4{}w~}v{|v~?w~"
|
|
"}8{|y~|sw~vw~}q{|y~| Q{}w~ p{|w~|m{}w~|Ux~}w{|x~}W{|v~| i{}w~|v{|v~Ww~|p{|y~|{}x~`{}x~|j{|x~}bw~|p{|y~}{}x~^{"
|
|
"}w~|X{|v~nv~_{|v~nv~_{|v~nv~_{|v~nv~_{|v~nv~_{|w~}nv~|g{}w~}q{|v~Yv~}I{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}"
|
|
"M{}w~}Z{|v~ev~}h{}w~|sv~|vv~iv~}c{|v~|lv~}c{|v~|lv~}c{|v~|lv~}c{|v~|lv~}c{|v~|]{}u~|^v~}t{|w~|p{|v~|i{|v~h{}w~}"
|
|
"f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}Z{|v~|V{}w~}n{}v~|aw~}s{|s~|[{}h~|\\{}h~|\\{}h~|\\{}h~|\\{}h~|\\{}h~|f{}h~j}v~"
|
|
"jv~|Ov~j}v~|cv~j}v~|cv~j}v~|cv~j}v~|Xv~Lv~Lv~Lv~Wv~|l{|v~`w~}m{|w~}bv~|l{|v~bv~|l{|v~bv~|l{|v~bv~|l{|v~bv~|l{|v"
|
|
"~f{|Z~}fv~|t{}x~|wv~a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|]v~sv~|]v~kv~|_v~sv~| Vw~yd~|{w~jw~yd~|{w~j"
|
|
"w~rr~|sw~jw~ru~|pw~jw~pv~}qw~Zw~|Sv~sv~ H{|v~|Rw~}uy~}({|]~}i{}X~|g{}b~|a{}d~|aw~}kw~}aw~}kw~}]{|v~v{|v~X{|v~v{"
|
|
"|w~}b{}x~} pf~ v{|w~ {{|w~t{|x~}P{|y~}r~W{}x~|v{}w~u{}w~mv~r{}u~t{|w~|+{|v~F{}w~|Ox~Z{|Z~},{|m~ x{}w~W{|v~k"
|
|
"{}w~}W{}w~}M{}v~}F{}v~a{|w~|p{}w~}Iv~|au~}mv~}Vv~|Y{|v~}o{|v~|]{}m~|{v~| Z{|r~}| c{|}r~}]{|w~}`{|x~|sw~|nw~|t{}"
|
|
"x~k{}w~}n{}w~}a{}w~}l{|v~|e{}v~M{}w~}f{}v~d{}w~}L{}w~}T{}v~mr|v~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}y{|t~T{}w~}V{}w~|u"
|
|
"{|w~y{}w~tv~|h{}w~|s{|v~vv~i{}v~c{|v~|e{}w~}r|]{}v~c{|v~|g{}w~}q{}v~}K{|t~|Y{|v~|Z{|v~h{}w~}`{}v~tv~|d{|v~w{|w~"
|
|
"|s{}x~}w{}w~}av~}{}v~Q{|v~|R{|u~M{|w~}H{}x~}J{|w~| r{|f~|_w~}k{}w~|bv~|Ov~k{}w~|b`~|Yw~}Vv~k{}w~|`w~}m{|w~}Wv~"
|
|
"Lv~Tq~Iv~_w~}mv~mv~hw~}m{|w~}bv~jv~`v~k{}w~|dv~k{}w~|Zw~}O{}o~}|Sv~S{|w~|m{}w~|^{|w~}s{}w~|b{|w~}w{|w~w{}x~}w{|"
|
|
"w~|\\{|u~}T{}w~|u{|w~}Ru~V{|s~}|Iw~|J{|}s~}d{|w~|s{|}k~|3y~}p{|x~}p{}y~fv~mv~|]v~m{}v~_{|w~}rt~`v~jv~Z{}r~}Xw~}"
|
|
"m{|w~}\\w~}u{|w~}X{|w~}v{}w~}]{|w~|m{}w~|h{|v~|q{}x~}pv~|iv~t{}w~t{}w~|b{|w~}q{|w~}`v~t{}w~t{|w~}bv~k{}w~|dv~jv"
|
|
"~X{|w~}W{}w~|l{|v~a{}w~}n{}w~}W{|u~T{}w~}U{}w~}d{}v~k{}v~|s{|v~r{}v~h{}w~}hv~|f{|u~|w{|v~v{}u~h{}v~c{|v~|n{|T~]"
|
|
"{}w~]T~|^{}w~]{}U~}^{}w~ s{|w~V{|w~}sy~}S{|v~Pw~|nw~|V{|w~}!{}v~|q{}x~|1y~}vw~|e{}y~ci|]{}w~u{|w~|?w~}7y~}sw~v{"
|
|
"|w~|r{}y~ P{}w~ p{|w~|m{}w~|Ux~}w{|x~}W{|v~| Fi|U{|w~|u{}w~X{}x~}p{|y~}y{}x~a{|w~i{|x~}c{}x~}p{|y~}y{}x~^{}w~|"
|
|
"X{}w~}n{}w~}`{}w~}n{}w~}`{}w~}n{}w~}`{}w~}n{}w~}`{}w~}n{}w~}`{}w~|n{}w~}h{|v~p{|v~Y{}v~I{}w~}M{}w~}M{}w~}M{}w~}"
|
|
"D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~f{|v~|h{}w~|s{|v~vv~i{}v~c{|v~|l{}v~c{|v~|l{}v~c{|v~|l{}v~c{|v~|l{}v~c{|v~|^{}s~|_"
|
|
"{}v~u{|w~|o{|v~|i{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}Z{|v~|V{}w~}o{|u~`w~}q{}t~|^{|f~|^{|f~|^{|f~|^{|f~|"
|
|
"^{|f~|^{|f~|h{|P~jv~|O`~|c`~|c`~|c`~|Xv~Lv~Lv~Lv~Wv~jv~`w~}m{|w~}bv~jv~bv~jv~bv~jv~bv~jv~bv~jv~f{|Z~}fv~|u{}x~}"
|
|
"vv~a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|]{}w~|u{|w~}\\v~k{}w~|_{}w~|u{|w~} Uw~yq}w~r}yw~jw~yd|yw~jw~"
|
|
"sp~|tw~jw~su~|ow~jw~pv~}qw~Zw~|S{}w~}u{|w~} Hv~|Q{}w~|w{|y~|({|\\~iW~|f{}d~|_e~|`w~}kw~}aw~}kw~|]{}w~}uv~Wv~|w{"
|
|
"}w~|b{}x~} q{|g~| v{|w~({}Z~X{|y~|{|}u~}Y{|w~uw~|tw~}o{|w~}q{}u~u{}w~*{|v~F{}w~|*m|}w~l|,{|m~ xw~}W{|v~k{}w"
|
|
"~}W{}w~}N{}v~}Dv~|bw~}o{}w~}Iv~|au~|m{}w~}W{|v~X{}v~m{}v~\\{|p~}xv~| Y{}p~}| i{|}p~}|]{}w~}`{|x~|sw~mw~|t{}x~kv"
|
|
"~}n|}v~a{}w~}kv~}e{}v~M{}w~}f{}v~d{}w~}L{}w~}T{}v~dv~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}x{|t~U{}w~}V{}w~|tw~|{w~}tv~|"
|
|
"h{}w~|rv~}wv~i{}v~c{}v~d{}w~}T{}v~c{}v~f{}w~}p{}v~|Ju~}Y{|v~|Z{|v~h{}w~}_v~|v{|v~bv~|x{|w~r{}w~wv~|b{}v~xv~}R{|"
|
|
"v~|Ru~|M{|w~}H{|w~J{|w~| s{|q~t}v~|_w~}k{}w~|bv~Nv~k{}w~|b`~|Yw~}Vv~k{}w~|`w~}m{|w~}Wv~Lv~Tp~Jv~_w~}mv~mv~hw~}"
|
|
"m{|w~}bv~jv~`w~}k{}w~|dv~k{}w~|Zw~}N{|m~|Uv~S{|w~|m{}w~|]v~t{|v~`v~w{}x~}w{|x~}w{}w~[{|u~|T{|w~}u{}w~|S{}v~|V{|"
|
|
"x}t~}Jw~|K{|s~y}|d{|y~}n{|}p~}1y~}p{}w~p{}y~fv~mv~\\v~lv~|`{}w~|r{|v~}`v~jv~\\{|p~}Xw~}m{|w~}\\{}w~u{}w~|Xv~|v{"
|
|
"|v~]{|w~|m{}w~|h{|v~p{}w~pv~}iv~t{}w~t{}w~|b{|w~}q{|w~}`v~t{}w~t{|w~}bw~}k{}w~|dv~jv~X{|w~}W{}w~|l{|w~}av~|n{|v"
|
|
"~Wu~|T{}w~}U{}v~dv~}k{|v~}s{|v~s{|v~}h{}w~}hv~|e{}u~|x{|v~w{}u~|h{}v~c{}v~l{|u~}\\|]{}w~][|u~|]{}w~\\{}v~}c|u~}"
|
|
"]{}w~ s{|w~V{|w~}sy~}S{|v~P{}x~}o{|w~`{|a~}+u~|rw~|1y~}v{}w~ex~d{|j~}]{}w~}v{|v~|@w~}7y~}sw~u{}w~rx~ P{}w~ p{|"
|
|
"w~|m{}w~|Ux~}w{|x~} w{|j~}V{|v~|v{}w~}Xw~oy~}x{}x~aw~|i{|x~|cw~ox~x{}x~^{}w~|Xv~}n|}v~`v~}n|}v~`v~}n|}v~`v~}n|"
|
|
"}v~`v~}n|}v~a{|b~h{}v~p|}v~Y{}v~I{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~f{|v~|h{}w~|rv~}wv~i{}v~c{"
|
|
"}v~k{}v~c{}v~k{}v~c{}v~k{}v~c{}v~k{}v~c{}v~^{}q~|`{}v~v{|w~}n{}v~h{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}Z{"
|
|
"|v~|V{}w~}p{|u~|`w~}p{|t~}`{|q~t}v~|_{|q~t}v~|_{|q~t}v~|_{|q~t}v~|_{|q~t}v~|_{|q~t}v~|i{|q~t}`~|kv~N`~|c`~|c`~|"
|
|
"c`~|Xv~Lv~Lv~Lv~Wv~jv~`w~}m{|w~}bv~jv~bv~jv~bv~jv~bv~jv~bv~jv~f{|Z~}fv~u{|x~}uv~a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m"
|
|
"{}w~|a{|w~|m{}w~|]{|w~}u{}w~|\\w~}k{}w~|_{|w~}u{}w~| U{}x~|q{}w~q{|w~j{}x~|b{|w~j{}x~|uu~|u~|v{|w~j{}x~|uu~|o{|"
|
|
"w~j{}x~|qv}|r{|w~[{|w~|S{|v~uv~| TZ~}a{|w~}wx~'{|\\~iW~|ee~|^{|g~}_w~}kw~}aw~}kw~|]v~|u{}w~|X{}w~}wv~|b{|w~| "
|
|
" r{}g~ u{|w~({}Z~X{|y~|w{}v~|Zw~|v{|w~s{|w~o{|w~}p{}u~vw~})v~Fv~| w{}w~ x{|m~ y{|w~|Vv~|lv~|W{}w~}O{}v~}C{}w~}"
|
|
"c{|w~n|}w~}v|N{}w~}au~l{|v~Wv~}Xv~}m{|v~|[{|y}w~y}|x{|v~ V{|}p~}|XY|X{|}q~}|Z{}w~}`{|x~|sw~mw~|tw~l{|b~|b{}w~}k"
|
|
"{}v~e{|v~|N{}w~}fv~}d{}w~}L{}w~}T{|v~|ev~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}w{|t~V{}w~}V{}w~|t{}w~|w~|tv~|h{}w~|r{|v~"
|
|
"wv~i{|v~|d{}v~d{}w~}T{|v~|d{}v~f{}w~}o{}v~J{|u~Y{|v~|Z{|v~h{}w~}_{}w~}v{}w~}b{}w~}x{}x~}r{|w~wv~b{|v~|x{|v~|S{|"
|
|
"v~|S{}v~|L{|w~}Gw~|K{|w~| t{|u~}|q{}w~|_v~k{}w~|bv~Nv~k{}w~|b`~|Yw~}Vv~k{}w~|`w~}m{|w~}Wv~Lv~Tw~}|u~Kv~_w~}mv~"
|
|
"mv~hw~}m{|w~}bv~jv~`w~}k{}w~|dv~k{}w~|Zw~}L{|}o~}Vv~S{|w~|m{}w~|]{}w~}u{}w~}`{}w~|xw~|w{|w~wv~\\{|s~Sv~uv~S{}v~"
|
|
"|O{}v~}Kw~|L{|v~}|_{|~|j{|y}x~y}|/x~q{|v~}qx~fv~m{}x~}\\v~l{}w~|`v~pv~}`v~jv~]n~}Xw~}m{|w~}\\{|w~|vv~X{|v~t{}w~"
|
|
"|^{|w~|m{}w~|h{|v~p{}w~pv~|iv~t{}w~t{}w~|b{|w~}q{|w~}`v~t{}w~t{|w~}bw~}k{}w~|dv~jv~X{|w~}W{}w~}l{}w~}b{|v~lv~|Y"
|
|
"{}v~|S{}w~}U{|v~}f{|v~|ju~|t{|v~s{}v~|h{}w~}hv~|dt~}y{|v~y{|t~|g{|v~|d{}v~k{|u~|?{}w~>u~|b{|v{}w~[{}v~|e{}v~}\\"
|
|
"{}w~ s{|w~V{|w~}sy~}S{|v~P{|w~o{}x~}`{|a~}+{|u~}|u{|w~0{}y~v{|w~}g{|y~}d{|j~}\\{}v~|w{|v~}Aw~}7{}y~sw~tw~}t{|y~"
|
|
"} P{}w~ p{|w~|m{}w~|Ux~}w{|x~} w{|j~}W{|v~|vv~}X{}x~|p{}y~|x{}x~b{}x~}hw~c{}x~}p{}y~|x{}x~^v~X{|b~|b{|b~|b{|b"
|
|
"~|b{|b~|b{|b~|b{}b~}id~Y{|v~|J{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~f{}v~g{}w~|r{|v~wv~i{|v~|d{}v"
|
|
"~k{|v~|d{}v~k{|v~|d{}v~k{|v~|d{}v~k{|v~|d{}v~_{}v~}u~|a{|v~|ww~}m{}v~h{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w"
|
|
"~}Z{|v~|V{}w~}sy|s~_w~}n{}u~|b{|u~}|q{}w~|`{|u~}|q{}w~|`{|u~}|q{}w~|`{|u~}|q{}w~|`{|u~}|q{}w~|`{|u~}|q{}w~|j{|u"
|
|
"~}|q{}a~|kv~N`~|c`~|c`~|c`~|Xv~Lv~Lv~Lv~Wv~jv~`w~}m{|w~}bv~jv~bv~jv~bv~jv~bv~jv~bv~jv~.v~v{|w~tv~a{|w~|m{}w~|a{"
|
|
"|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|\\v~uv~[w~}k{}w~|^v~uv~ T{}x~}q{}w~q{|x~}j{}x~}b{|x~}j{}x~}vu~|{|u~|w{|x~}j{}"
|
|
"x~}vu~|n{|x~}j{}x~}b{|x~}[{|w~Qv~|w{|v~ SZ~}`v~x{|y~}'{|]~}iW~|e{|g~}\\{}i~}^w~}kw~}aw~}l{|w~|^{|v~t{|w~}X{|v~x"
|
|
"{|v~`w~} m{|v~ jw|({}Z~X{|y~|v{}w~}[{}x~}u{}x~}s{|w~o{}w~}o{}u~x{|w~|)v~Fv~ v{}w~ g{}w~Uv~|lv~|W{}w~}P{}v~"
|
|
"}B{|v~c{|_~|O{}w~}a{}v~l{|v~X{|v~|Y{|v~|lv~|N{|v~ S{|}p~|[{|Z~}[{|}p~}|X{}w~}`{|x~|sw~|nw~|u{|x~}l{}b~}b{}w~}k{"
|
|
"|v~e{|v~}N{}w~}g{|v~}d{}w~}L{}w~}T{|v~}ev~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}v{|t~W{}w~}V{}w~|t{|r~sv~|h{}w~|q{}w~}xv"
|
|
"~i{|v~}dv~}d{}w~}T{|v~}dv~}f{}w~}nv~}J{}v~Y{|v~|Z{|v~|i{}w~}_{|v~vv~|b{}w~}xw~|qw~|y{|v~bv~}v{}v~S{|v~|T{}v~}K{"
|
|
"|w~}G{}x~}K{|w~| tv~}n{}w~|_v~kv~|bv~|Ov~k{}w~|bv~Bw~}Vv~k{}w~|`w~}m{|w~}Wv~Lv~Tw~}{|u~|Mv~_w~}mv~mv~hw~}m{|w~"
|
|
"}bv~|kv~`v~k{}w~|dv~k{}w~|Zw~}Iy|}q~Wv~S{|w~|m{}w~|]{|v~uv~_{|w~|xw~uw~|y{|w~}\\r~}T{|w~|w{}w~}T{}v~|M{|v~Kw~|L"
|
|
"{}w~} O{}y~|rt~|s{|y~}fv~|nw~}\\v~l{|w~}`w~}p{}w~|`v~|kv~^u~}|Qw~}m{|w~}[w~}w{}w~}X{}w~|t{|w~}^{|w~|m{}w~|h{|v~"
|
|
"pv~pv~|iv~t{}w~t{}w~|b{|w~}q{|w~}`v~t{}w~t{|w~}bv~k{}w~|dv~|l{|v~X{|w~}W{|w~}l{}w~|b{}w~}l{}w~}Z{|v~}R{}w~}T{}v"
|
|
"~f{}v~i{|u~t{|v~t{|u~g{}w~}hv~|cr~}v~}s~}f{|v~}dv~}j{|u~|@{}w~?u~|b{}~|w{}w~vy~a{}v~|g{}v~}b{}~|w{}w~vy} {{}w~|"
|
|
"W{|w~}sy~}S{|v~Ow~}q{|w~|`{|a~}){}u~}vw~}0{|y~}v{}w~}p{|t{}y~|d{|j~}[{|v~|vv~}Bw~}7{|y~}tw~t{|w~|u{}y~| P{}w~ "
|
|
"p{|w~|m{}w~|Ux~}w{|x~} w{|j~}X{}v~v{|v~}X{|w~p{|y~|w{}x~bw~h{}x~|d{|w~p{|y~}w{}x~^v~X{}b~}b{}b~}b{}b~}b{}b~}b{"
|
|
"}b~}b`~j{}d~Y{|v~}J{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~fv~}g{}w~|q{}w~}xv~i{|v~}dv~}k{|v~}dv~}k"
|
|
"{|v~}dv~}k{|v~}dv~}k{|v~}dv~}`{}v~|{|u~|b{|v~}x{}x~}lv~}h{|v~|i{}w~}f{|v~|i{}w~}f{|v~|i{}w~}f{|v~|i{}w~}Z{|v~|V"
|
|
"{}e~|_w~}m{|u~bv~}n{}w~|`v~}n{}w~|`v~}n{}w~|`v~}n{}w~|`v~}n{}w~|`v~}n{}w~|jv~}n{}w~Tv~|Ov~Lv~Lv~Lv~Av~Lv~Lv~Lv~"
|
|
"Wv~|l{|v~`w~}m{|w~}bv~|kv~bv~|kv~bv~|kv~bv~|kv~bv~|kv~.v~vw~|u{|v~a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}"
|
|
"w~|\\{|w~|w{}w~}[v~k{}w~|^{|w~|w{}w~} T{|w~q{}w~q{}x~|j{|w~b{}x~|j{|w~wu~|x{|u~|x{}x~|j{|w~wu~|m{}x~|j{|w~b{}x~"
|
|
"|[{|w~Q{|w~}w{}w~} SZ~}`{}w~|y{}y~|'{|n~y}~|n~}i{}k~x}k~c{|i~}Z{}j~]w~}kw~}a{}w~l{|w~|^{}w~}sv~Wv~|y{}w~}`{}w~|"
|
|
" mv~| o{}Z~X{|y~|v{|w~}\\{|w~t{}x~|rw~|p{}w~}n{}u~yw~}(v~|Gv~ v{}w~ gw~}U{}w~}m{|v~V{}w~}Q{}v~}A{|v~c{|_~"
|
|
"|O{}w~}a{}v~l{|v~X{}v~X{|v~k{}w~}N{}w~} Q{|}p~}|^{|Z~}^{|}p~}|U{}w~}`{|x~}sw~|o{|w~|u{}x~|l`~b{}w~}k{|v~|eu~N{}"
|
|
"w~}g{}v~|d{}w~}L{}w~}Su~ev~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}u{|t~X{}w~}V{}w~|ss~}sv~|h{}w~|q{|v~|yv~hu~e{|v~|d{}w~}"
|
|
"Su~e{|v~|f{}w~}n{}v~|K{|v~|Z{|v~|Yv~|i{}w~}^v~|x{}v~a{|v~y{|w~|q{}x~}y{}w~}c{}v~tv~}T{|v~|U{|v~}J{|w~}G{|w~K{|w"
|
|
"~| u{|v~m{}w~|_v~kv~a{}w~|O{}w~|l{}w~|bv~|Cw~}V{}w~|l{}w~|`w~}m{|w~}Wv~Lv~Tw~}y{|u~|Nv~_w~}mv~mv~hw~}m{|w~}bv~"
|
|
"|l{|v~`v~kv~cv~|l{}w~|Zw~}D{|}u~}Xv~S{|w~|m{}w~|\\{}w~|w{|w~}^w~}y{|w~u{}x~}y{}w~|]{}q~|Tv~wv~|U{|v~}K{}w~|Lw~|"
|
|
"Lv~ N{|x~s{}x~{w~|tx~|fv~|o{|v~\\v~l{|w~}a{|w~|p{}w~_{}w~|l{|v~_{}v~|Ow~}m{|w~}[{}w~|xv~X{|v~rv~|_{|w~|m{}w~|h{"
|
|
"|v~|qv~pv~|iv~|u{}w~t{}w~|b{|w~}q{|w~}`v~t{}w~t{|w~|bv~kv~c{}w~|l{|v~X{|w~}Vv~l{}w~|bv~|l{|v~[{|v~}Q{}w~}T{|v~}"
|
|
"h{|v~|hu~}u{|v~u{|u~|g{}w~}hv~|b{}f~|du~e{|v~|i{|u~|A{}w~@u~|b{}x~|x{}w~ww~a{}v~|i{}v~}b{}x~|x{}w~w{}y~} {}w~|W"
|
|
"{|v~sy~}S{|v~O{|w~}s{}w~}^q|}v~q|'{}t~|{|w~}.x~u{}v~}|wy|}y~tx~/{|v~|v{}w~}Cw~}6x~tw~s{}w~ux~ O{}w~ p{|w~|m{}w"
|
|
"~|Ux~}w{|x~} B{}w~}v{|v~|Ww~|q{|y~}v{}x~c{}x~|i{}x~}cw~|q{|y~}v{}x~_{|v~X`~b`~b`~b`~b`~c{|`~|kc~Xu~J{}w~}M{}w~"
|
|
"}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~g{|v~}g{}w~|q{|v~|yv~hu~e{|v~|ju~e{|v~|ju~e{|v~|ju~e{|v~|ju~e{|v~|a{}"
|
|
"v~|x{|u~|bu~y{}w~l{|v~|gv~|i{}w~}ev~|i{}w~}ev~|i{}w~}ev~|i{}w~}Z{|v~|V{}f~|^w~}l{|v~|d{|v~m{}w~|a{|v~m{}w~|a{|v"
|
|
"~m{}w~|a{|v~m{}w~|a{|v~m{}w~|a{|v~m{}w~|k{|v~m{}w~T{}w~|Ov~|Mv~|Mv~|Mv~|Bv~Lv~Lv~Lv~W{}w~|l{|v~`w~}m{|w~}bv~|l{"
|
|
"|v~bv~|l{|v~bv~|l{|v~bv~|l{|v~bv~|l{|v~.v~|x{}x~|t{|v~a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|[v~wv~|[v"
|
|
"~kv~\\v~wv~| Sw~|r{}w~r{|w~hw~|d{|w~hw~|yu~|v{|u~y{|w~hw~|yu~|m{|w~hw~|d{|w~Z{|w~Pv~wv~| SZ~}_w~}yx~%n~{|~{|o~|"
|
|
"i{|l~}|}|l~}b{}j~Xk~|]w~}kw~}a{}w~l{}w~]v~|s{}w~|X{}w~}yv~|_w~} mv~} g{}x~}t{}x~}O{|y~|uw~}\\{}x~|t{}x~|rw"
|
|
"~|p{|w~}m{}u~}w~|({}w~|H{|w~} v{}w~ h{|w~|U{}w~}m{|v~V{}w~}R{}v~}@{|v~c{|_~|Ov~|a{|v~l{}w~}Xv~}X{|v~k{}w~}Nv~|"
|
|
" N{|}p~}|a{|Z~}a{|}p~}|R{|w}|_x~}s{}x~}o{}w~|v{|w~l{}`~|c{}w~}k{|v~|e{}v~|O{}w~}gu~c{}w~}L{}w~}S{}v~|fv~|h{}w~}"
|
|
"hv~|Y{}w~}M{}w~}W{}w~}t{|t~Y{}w~}V{}w~|s{}t~rv~|h{}w~|p{}w~}yv~h{}v~|f{}v~c{}w~}S{}v~|f{}v~e{}w~}mv~}K{|v~|Z{|v"
|
|
"~|Yv~|iv~|^{}w~}xv~}`v~|{|w~p{}w~yv~|d{|v~|t{|v~|U{|v~|V{|u~I{|w~}Fw~|L{|w~| u{}w~|mv~|_v~|m{|v~a{}w~}O{}w~|lv"
|
|
"~|b{}w~|Cw~}V{}w~|lv~|`w~}m{|w~}Wv~Lv~Tw~}x{|u~|Ov~_w~}mv~mv~hw~}m{|w~}b{}w~|l{|w~}`v~kv~c{}w~|lv~|Zw~}B{|u~Xv~"
|
|
"S{|w~|m{}w~|\\{|w~}w{}w~|^v~y{}x~}u{|x~}y{}w~]{|v~|}v~T{}w~|y{|w~}U{|v~}J{|w~}Lw~|M{|w~} Mx~}v{|w~|{|w~|v{}x~e{"
|
|
"}w~|o{}v~\\v~l{|w~}a{|w~|pw~}_{}w~|l{|w~}_v~Mw~}m{|w~}[{|w~}y{|w~}X{}w~|r{}w~}_{|w~|m{}w~|h{|v~|qv~|r{|v~|i{}w~"
|
|
"|u{}w~tv~|b{|w~}q{|w~}`v~t{}w~t{}w~|bv~kv~c{}w~|l{|w~}X{|w~}Vv~lv~b{}v~jv~|\\u~P{}w~}S{}v~|iu~g{|t~|w{|v~v{}u~}"
|
|
"f{}w~}hv~|a{}h~|c{}v~|f{}v~g{|u~|B{}w~Au~|b{}v~|y{}w~xu~a{}v~|k{}v~}b{}v~|y{}w~x{}w~}!{}w~|Vv~sy~}S{|v~O{|u~}y|"
|
|
"{y|u~}T{|w~}Lw}|P{|}p~}-{|y~}u{}l~u{}y~|.{|v~|v{}w~}Dw~}6{|y~}uw~rw~}w{}y~| O{}w~ p{|w~|m{}w~|Ux~}w{|x~} C{}w"
|
|
"~}v{|v~|W{}x~}px~u{}x~d{|w~i{}x~}c{}x~}px~u{}x~_{}w~}Y{}`~|d{}`~|d{}`~|d{}`~|d{}`~|d{}w~}j|}w~}l{|c~X{}v~|K{}w~"
|
|
"}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~gu~|g{}w~|p{}w~}yv~h{}v~|f{}v~i{}v~|f{}v~i{}v~|f{}v~i{}v~|f{}v~"
|
|
"i{}v~|f{}v~a{}v~|v{|u~|c{}v~|}w~|l{}v~fv~|iv~|ev~|iv~|ev~|iv~|ev~|iv~|Z{|v~|V{}h~}\\w~}k{}w~|d{}w~|mv~|a{}w~|mv"
|
|
"~|a{}w~|mv~|a{}w~|mv~|a{}w~|mv~|a{}w~|mv~|k{}w~|mv~|U{}w~}O{}w~|M{}w~|M{}w~|M{}w~|Bv~Lv~Lv~Lv~W{}w~}l{}w~}`w~}m"
|
|
"{|w~}b{}w~|l{|w~}b{}w~|l{|w~}b{}w~|l{|w~}b{}w~|l{|w~}b{}w~|l{|w~}.{}w~|y{}x~|s{|w~}a{|w~|m{}w~|a{|w~|m{}w~|a{|w"
|
|
"~|m{}w~|a{|w~|m{}w~|[{}w~|y{|w~}Zv~kv~\\{}w~|y{|w~} R{|w~r{}w~rw~}h{|w~dw~}h{|w~y{|w~|t{|w~}yw~}h{|w~y{|w~|lw~}"
|
|
"h{|w~dw~}Z{|w~P{}w~|y{|w~} Rs}v~g}|_{}w~{|y~}%{|p~|{|~yp~}g{}m~{}~{}m~|a{}l~|X{|m~}\\w~}kw~}a{|w~|mv~]v~r{}w~}X"
|
|
"{|v~{|v~^{}w~} n{}v~ gw~|tw~|O{|y~|uw~}]{|x~}sw~|rw~|p{|v~l{}r~}'{|w~}H{|w~} v{}w~ h{|w~T{|v~m{}w~}V{}w~}"
|
|
"S{}v~}?{|v~c{|_~|Ov~|`v~|m{}w~}Y{|v~W{|v~k{}w~}O{|v~ J{|}p~}|d{|Z~}d{|}p~}|-w~s{|w~ov~|v{}x~|lv~|j{|v~c{}w~}k{}"
|
|
"v~cv~}O{}w~}h{}v~|c{}w~}L{}w~}Rv~}fv~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}rt~Z{}w~}V{}w~|ru~}rv~|h{}w~|p{|v~|{v~h{|v~}g"
|
|
"{|v~}c{}w~}Rv~}g{|v~}e{}w~}m{|v~|L{|v~|Z{|v~|Y{}w~}j{|v~|^{|v~|{|v~_{}w~}{}x~}p{|w~yv~cv~}r{}v~U{|v~|W{|u~|I{|w"
|
|
"~}F{}x~}L{|w~| u{}w~|n{|v~|_v~}m{}w~}a{|w~}O{|w~}m{|v~|b{}w~}Cw~}V{|w~}m{|v~|`w~}m{|w~}Wv~Lv~Tw~}vu~|Pv~_w~}mv"
|
|
"~mv~hw~}m{|w~}b{|w~}l{}w~}`v~|m{|w~}c{|w~}lv~|Zw~}@v~|Yv~S{|w~}mv~|[v~wv~]{}w~|{w~|u{|w~yw~}]v~}y{}v~U{|w~}y{}w"
|
|
"~|V{|v~}I{|w~}Lw~|M{|w~} M{|w~x}v~}x{}v~x}w~|e{}w~}ou~|]v~l{|w~|a{|w~p{}w~|_{|w~}l{}w~}`{|w~}Mw~}m{|w~}Zv~y{}w~"
|
|
"|Y{|v~q{|v~_{|w~}m{}w~|gv~|r{|v~|r{|v~h{}w~}u{}w~tv~a{|w~}q{|w~}`v~t{}w~t{}w~|bv~|m{|w~}c{|w~}l{}w~}X{|w~}V{}w~"
|
|
"|n{|w~}bv~}j{}v~]{}v~|P{}w~}Ru~j{}v~|f{|t~}|y{|v~x{|t~}e{}w~}hv~|`{|}l~}`v~}g{|v~}f{|u~|C{}w~Bu~|`u~|{}w~yu~|`{"
|
|
"}v~|m{}v~}a{|u~|{}w~y{}v~}!{}w~|Vv~|ty~}S{|v~P{|g~}U{|w~}Lw~|N{|r~}+{}y~|u{|}o~}v{|y~}+v~}v{}v~Ew~}5{}y~|vw~r{|"
|
|
"w~|y{|y~} N{}w~ p{|w~}m{}w~|Ux~}w{|x~} Dv~}v{}v~|W{|w~p{}y~|u{}x~dw~|j{}w~c{|w~p{}y~|u{}x~`{}v~|Yv~|j{|v~dv~|"
|
|
"j{|v~dv~|j{|v~dv~|j{|v~dv~|j{|v~dv~|j{|v~l{}w~}n{|v~Wv~}K{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~h{"
|
|
"|v~}f{}w~|p{|v~|{v~h{|v~}g{|v~}i{|v~}g{|v~}i{|v~}g{|v~}i{|v~}g{|v~}i{|v~}g{|v~}b{}v~|t{|u~|cq~|l{|v~}f{}w~}j{|v"
|
|
"~|e{}w~}j{|v~|e{}w~}j{|v~|e{}w~}j{|v~|Z{|v~|V{}k~}|Zw~}k{}w~}d{}w~|n{|v~|a{}w~|n{|v~|a{}w~|n{|v~|a{}w~|n{|v~|a{"
|
|
"}w~|n{|v~|a{}w~|n{|v~|k{}w~|n{|v~}U{|w~}O{}w~}M{}w~}M{}w~}M{}w~}Bv~Lv~Lv~Lv~W{|v~lv~|`w~}m{|w~}b{|w~}l{}w~}b{|w"
|
|
"~}l{}w~}b{|w~}l{}w~}b{|w~}l{}w~}b{|w~}l{}w~}Xt|X{}w~}{}x~}r{}w~}a{|w~}mv~|a{|w~}mv~|a{|w~}mv~|a{|w~}mv~|[{|w~}y"
|
|
"{}w~|Zv~|m{|w~}\\{|w~}y{}w~| Qw~}s{}w~s{}w~fw~}f{}w~fw~}y{|y~|r{|y~}y{}w~fw~}y{|y~|l{}w~fw~}f{}w~Y{|w~P{|v~y{}w"
|
|
"~| Kv~}J{|w~|}y~|${}r~}y{}~y{|q~f{|n~|{}~yn~}_m~|V{|o~}[w~}kw~}`w~}n{|w~}^{|w~}r{|v~Wv~{}w~}]v~| o{|v~| hw"
|
|
"~t{|w~N{|y~|uw~}]w~|s{}x~|rw~|ov~|l{}s~&{|w~}H{}w~| v{}w~ h{}x~}Sv~|nv~|V{}w~}T{}v~}>{}w~}Q{}w~}J{}v~_{}w~}mv~"
|
|
"}Y{}w~}Vv~|lv~|Ov~} G{|}p~}|0{|}o~}*{}x~rw~}q{}v~|w{}w~l{|v~hv~|d{}w~}ku~c{}v~}P{}w~}i{}u~b{}w~}L{}w~}R{}v~|gv~"
|
|
"|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}qt~[{}w~}V{}w~|r{}v~|rv~|h{}w~|o{}w~}{v~g{}v~|hu~|c{}w~}R{}v~|hu~|e{}w~}lv~}L{}v~Y"
|
|
"{|v~|Y{}v~j{}v~\\{}w~}{}w~}_{|v~{w~|ow~y|v~d{}v~pv~}V{|v~|Wu~|H{|w~}F{|w~L{|w~| u{}w~m{}v~|_u~mv~|a{|v~Nv~|n{}"
|
|
"v~|b{|v~Cw~}Uv~|n{}v~|`w~}m{|w~}Wv~Lv~Tw~}uu~|Qv~_w~}mv~mv~hw~}m{|w~}b{|v~lv~|`v~}m{}w~}c{|v~m{|v~|Zw~}@{}w~|Yv"
|
|
"~S{|w~}mv~|[{}w~|y{|w~}]{|w~}{w~sw~y|w~}^{}w~}wv~}U{}w~yv~Uv~}Gw~}Lw~|M{|w~| L{|q~}v{}q~|d{|w~}p{|u~|]v~l{}w~|a"
|
|
"{|w~pv~^{|v~lv~|`{|w~|Mw~}m{|w~}Z{}w~y|v~X{}w~}pv~|`{|w~}mv~|gv~}r{|v~}r{}v~h{|v~u{}w~u{|w~}a{|w~}q{|w~}`{}w~|u"
|
|
"{}w~tv~av~}m{}w~}c{|v~lv~|X{|w~}V{|w~}n{}w~|c{|v~i{|v~|_{}v~}O{}w~}R{|v~}l{}v~|d{|r~y}v~y}s~}d{}w~}hv~|]{|}s~y}"
|
|
"|^{}v~|hu~|e{|v~}C{}w~C{}v~|^u~|}w~{}v~|^{}v~n{|v~}_{|u~|}w~{}v~} {}w~|V{}w~}ty~}S{|v~Q{}e~}V{|w~}Lw~|L{|t~*{|x"
|
|
"~|t{|y}u~}|u{|x~|*{}w~|v{|v~Fw~}5{|x~|ww|qw|y{|x~| >{|w~}mv~|Ux~}w{|x~} Ev~}v{|v~U{}x~|q{|y~}t{}x~e{}x~}j{}w"
|
|
"~b{}x~|q{|y~}t{}x~a{}v~}Y{|v~hv~|f{|v~hv~|f{|v~hv~|f{|v~hv~|f{|v~hv~|f{}v~hv~|n{|v~|n{|v~W{}v~}L{}w~}M{}w~}M{}w"
|
|
"~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~i{|u~|f{}w~|o{}w~}{v~g{}v~|hu~|h{}v~|hu~|h{}v~|hu~|h{}v~|hu~|h{}v~|hu~|c{}"
|
|
"v~|r{|u~|d{}s~|ku~|f{}v~j{}v~d{}v~j{}v~d{}v~j{}v~d{}v~j{}v~Y{|v~|V{}w~}r|Vw~}k{|w~|d{}w~m{}v~|a{}w~m{}v~|a{}w~m"
|
|
"{}v~|a{}w~m{}v~|a{}w~m{}v~|a{}w~m{}v~|k{}w~m{}u~U{|v~O{|v~M{|v~M{|v~M{|v~Bv~Lv~Lv~Lv~Vv~|n{|v~_w~}m{|w~}b{|v~lv"
|
|
"~|b{|v~lv~|b{|v~lv~|b{|v~lv~|b{|v~lv~|X{}u~X{|v~|x~}qv~|a{|w~}mv~|a{|w~}mv~|a{|w~}mv~|a{|w~}mv~|Z{}w~yv~Yv~}m{}"
|
|
"w~}[{}w~yv~ P{|w~}t{}w~t{|w~}f{|w~}h{|w~}f{|w~}yy|p{|}y{|w~}f{|w~}yy|l{|w~}f{|w~}h{|w~}Y{|w~Ov~y|v~ K{}w~}Hw~}y"
|
|
"~}\"{}t~}x{}~x{|s~d{|p~}y{}~y{|p~}]o~|T{}p~Zw~}kw~}`{}w~|o{}w~|^{}w~|qv~|X{}w~|v~|]{|v~| o{}v~j{} {|x~}t{|"
|
|
"x~}N{|y~|v{}w~}^{}x~}r{}x~}rw~|o{}v~k{}u~|%v~Hv~ u{}w~ hw~|S{}v~o{}v~U{}w~}U{}v~}>{|v~}Q{}w~}Ju~_{|v~n{|v~|Z{|"
|
|
"v~|Vv~}m{|v~|P{}v~ C{}o~}4{|o~}|({|x~}s{}w~}s{}u~|x{}w~|l{}w~}h{}w~}d{}w~}l{|v~}bu~|g{|}g{}w~}j{}u~|b{}w~}L{}w~"
|
|
"}R{|u~|hv~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}pt~\\{}w~}V{}w~|r{|v}qv~|h{}w~|nv~|v~g{|u~|j{}v~}b{}w~}R{|u~i{}v~}d{}w~}"
|
|
"l{|v~|M{}v~Y{|v~|Y{|v~|kv~}\\{|v~{v~|_{|v~|w~|o{}x~y}w~}e{|v~|p{|v~|W{|v~|X{}v~}G{|w~}F{|w~|M{|w~| u{}w~|nu~|_"
|
|
"u~}o{}v~_v~}O{}w~}o{|u~|av~}Dw~}U{}w~}o{|u~|`w~}m{|w~}Wv~Lv~Tw~}t{}v~|Rv~_w~}mv~mv~hw~}m{|w~}av~|n{|v~_u~mv~|bv"
|
|
"~|n{}v~|Zw~}@{}w~|Yv~Rv~n{}v~|[{|w~}y{}w~|\\w~}|x~}s{}x~y}w~|_{}v~v{|v~|V{|w~y}w~}Vu~Fw~}Lw~|M{|w~| K{|s~}t{}s~"
|
|
"|bv~p{}u~}]v~|mv~`{|w~q{}w~}]v~}n{}v~_{|w~|Mw~}m{|w~}Yw~y}w~|Xv~o{|w~}`{|v~n{|v~|g{}v~r{}u~rv~}gv~|v{}w~uv~|a{|"
|
|
"w~}q{|w~}`{|w~}u{}w~u{|v~au~mv~|bv~}n{}v~Vv~Uv~nv~b{}w~}hv~}`{|v~}N{}w~}Q{|v~}n{}v~}b{|c~}c{}w~}hv~|Z{|v~Z{|u~|"
|
|
"j{}v~}c{|w~B{}w~B{}x~|\\u~}w~}v~|\\{}x~|m{}x~}]{|u~}w~}v~} {{v~|V{|v~|uy~}S{|v~R{}v~y|q~}|u~W{|w~}Lw~|J{}u~*{|x"
|
|
"~|e{|x~|({}x~}u{|w~F{|x}|4{|x~|e{|x~| ={|v~n{|v~|Ux~}w{|x~} Ew~|u{|x~}U{|x~}p{}j~}iw~j{}w~b{|x~}p{}j~}f{}v~}"
|
|
"X{}w~}h{}w~}f{}w~}h{}w~}f{}w~}h{}w~}f{}w~}h{}w~}f{}w~}h{}w~}fv~}h{}w~}n{}w~}m{|v~Vu~|g{|}c{}w~}M{}w~}M{}w~}M{}w"
|
|
"~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~j{|u~}e{}w~|nv~|v~g{|u~|j{}v~}g{|u~|j{}v~}g{|u~|j{}v~}g{|u~|j{}v~}g{|u~|j{}v~}c{"
|
|
"}v~|p{|u~|e{|t~}k{}v~}e{|v~|kv~}d{|v~|kv~}d{|v~|kv~}d{|v~|kv~}Y{|v~|V{}w~}Mw~}k{}w~|d{}w~|nu~|a{}w~|nu~|a{}w~|n"
|
|
"u~|a{}w~|nu~|a{}w~|nu~|a{}w~|nu~|k{}w~|nt~|Uv~}Ov~}Mv~}Mv~}Mv~}Cv~Lv~Lv~Lv~V{}v~nv~}_w~}m{|w~}av~|n{|v~`v~|n{|v"
|
|
"~`v~|n{|v~`v~|n{|v~`v~|n{|v~W{}u~Wr~q{|v~_v~n{}v~|`v~n{}v~|`v~n{}v~|`v~n{}v~|Z{|w~y}w~}Yu~mv~|[{|w~y}w~} O{}w~}"
|
|
"u{}w~u{}w~}d{}w~}j{}w~}d{}w~}j{}w~}d{}w~}j{}w~}d{}w~}j{}w~}X{}w~O{|w~y}w~} L{}w~}G{}u~|!{|}x~}|w{}~v{}w~}b{|r~|"
|
|
"x{}~w{}s~|\\{|q~}Rq~|Zw~}kw~}`{|v~p{|v~]v~p{}w~}X{|q~[{}v~} p{|v~}ly}$v}|\"{}x~}t{}x~}Yy}|s{|y~|w{|v~|_{|w~"
|
|
"q{}x~}s{|w~n{|v~}l{|u~}%{}w~|Iw~} u{}w~L{}w~} tv}|P{|w~R{|v~|pv~}U{}w~}V{}v~}={}v~|Q{}w~}K{}v~|^v~|o{}v~Y{}v~U{"
|
|
"}v~m{}v~P{|v~}U{|v}M{}w~}F{|}q~}6{|q~}|G{|w}|^w~ru~y|x{|}t~y|}v~|kv~|h{|v~d{}w~}m{|u~|b{|u~|i{|~}g{}w~}l{|}u~}a"
|
|
"{}w~}L{}w~}Q{}u~|iv~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}ot~]{}w~}V{}w~|bv~|h{}w~|n{}q~f{}u~k{}u~a{}w~}Q{}u~k{|u~c{}w~}"
|
|
"kv~}c{|}h{|v~}Y{|v~|X{}v~l{}v~|[v~}v~]v~}w~n{}r~|ev~}n{}v~W{|v~|Y{}v~}F{|w~}Ew~}M{|w~| u{}w~|o{}u~|_t~|q{|v~}_"
|
|
"{|v~|P{|v~}pt~|a{|v~|Ew~}U{|v~|pt~|`w~}m{|w~}Wv~Lv~Tw~}s{}v~|Sv~_w~}mv~mv~hw~}m{|w~}a{}v~nv~}_u~}o{}v~a{}v~o{|u"
|
|
"~|Zw~}@{}w~|Y{}w~|Sv~|p{|u~|Zv~{|v~[v~}x~}s{|r~_{|v~|u{}v~Uq~V{}v~|Fw~}Lw~|M{|w~| I{|y}~y}|r{|}x~}|`{}w~}qs~]u~"
|
|
"n{|v~`{|w~r{|v~\\{|v~nv~}_{|w~}Mw~}m{|w~}Y{}r~X{}w~}nv~`{|v~|o{}v~|g{|v~|st~|t{|v~|g{}v~v{}w~v{|v~`{|w~}q{|w~}_"
|
|
"v~|v{}w~uv~}au~}o{}v~a{|v~nv~}Vv~U{|w~}p{}w~}bv~|h{|v~`u~M{}w~}P{|u~|q{}v~}_{}g~}|b{}w~}hv~|Z{|v~Y{}u~k{}u~a{|y"
|
|
"~A{}w~A{}~|Zl~|Z{}~|k{}~}[{|l~} yv~}Uv~}uy~}S{|v~S{}v~|x{|y}x~}|wu~X{|w~}Lw~|I{|v~}*{}x~|g{|x~}&{}y~}t{|x~ T{}x"
|
|
"~|g{|x~} <{|v~|o{}v~|Ux~}w{|x~} Ex~|t{|y~}Tw~|p{}j~}j{}x~|k{}x~}aw~|p{}j~}g{}v~}Wv~|h{|v~fv~|h{|v~fv~|h{|v~f"
|
|
"v~|h{|v~fv~|h{|v~g{|v~g{|v~|ov~|m{|v~V{|u~|i{|~}c{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~k{}t~d{}w~"
|
|
"|n{}q~f{}u~k{}u~e{}u~k{}u~e{}u~k{}u~e{}u~k{}u~e{}u~k{}u~c{}v~|n{|u~|e{}u~|l{}u~c{}v~l{}v~|c{}v~l{}v~|c{}v~l{}v~"
|
|
"|c{}v~l{}v~|Y{|v~|V{}w~}Mw~}kv~c{}w~|o{}u~|a{}w~|o{}u~|a{}w~|o{}u~|a{}w~|o{}u~|a{}w~|o{}u~|a{}w~|o{}u~|k{}w~|o{"
|
|
"}s~U{|v~|P{|v~|N{|v~|N{|v~|N{|v~|Dv~Lv~Lv~Lv~Uv~}p{}v~^w~}m{|w~}a{}v~nv~}`{}v~nv~}`{}v~nv~}`{}v~nv~}`{}v~nv~}W{"
|
|
"}u~W{}t~|qv~}_v~|p{|u~|`v~|p{|u~|`v~|p{|u~|`v~|p{|u~|Yq~Xu~}o{}v~Yq~ M{}w~}|w{}x~}v{}v~b{}w~}|m{}v~b{}w~}|m{}v~"
|
|
"b{}w~}|m{}v~b{}w~}|m{}v~W{}x~}Nq~| M{|v~F{|u~ py~|V{|}y~y}|vy~|w{|y}y~y}Y{|s~}Q{|s~|Yw~}kw~}_{}v~|s{}v~|^{|w~}p"
|
|
"{|v~X{|r~}Z{}u~} q{}v~}o{|y~}$v~}\"w~|tw~|Y{}y~}|u{|y~|x{|u~^{}x~|q{|w~s{}x~}mu~}n{|s~}&{|w~|J{|w~| u{}w~L{"
|
|
"}v~ u{|v~|P{}x~}Q{}v~|r{}v~T{}w~}W{}v~}O{}|k{}v~}P{}w~}]{}|l{}u~]{|v~|q{}v~|Yv~}U{|v~}o{}v~}Q{|v~}T{}v~M{}v~C{|"
|
|
"}t~}6{|t~}|D{}w~}^{}x~|s{|m~y}q~|k{|v~fv~|e{}w~}n{|u~}`{}u~|l{|}y~}g{}w~}n{|}t~}`{}w~}L{}w~}P{}u~}jv~|h{}w~}hv~"
|
|
"|Y{}w~}M{}w~}W{}w~}nt~^{}w~}V{}w~|bv~|h{}w~|mq~e{}u~|n{}u~|a{}w~}P{}u~|n{}u~|c{}w~}k{|v~|d{|y~}k{|u~|Y{|v~|X{|u"
|
|
"~n{|u~Z{}r~}]{}s~}n{|r~e{}v~lv~}X{|v~|Z{|u~E{|w~}E{}w~M{|w~| u{|v~p{|t~|_s~|s{|u~]u~|P{}v~}s{|s~|`u~|k{|Ww~}T{"
|
|
"}v~}s{|s~|`w~}m{|w~}Wv~Lv~Tw~}r{}v~}Tv~_w~}mv~mv~hw~}m{|w~}`v~}p{}v~|_t~|q{|v~|`v~}q{|t~|Zw~}Q{|kv~|Y{}w~}S{}v~"
|
|
"pt~|Z{}w~y}w~}[{}s~|rs~}_v~}s{}w~}V{}s~}W{}v~|Ew~}Lw~|M{|w~| r{|v~|s{}s~}^u~}ov~|_w~|s{}w~|[v~}pu~]v~|Nw~}m{|w"
|
|
"~}Y{|s~}Xv~m{}w~|a{|u~p{|u~|fv~}t{}x~}x~}t{}v~ev~}w{}w~w{|v~}`{|w~}q{|w~}_{}v~|w{}w~v{}v~`t~|q{|v~|`v~}p{}v~U{}"
|
|
"w~|Uv~|r{|v~b{|v~fv~|bu~|M{}w~}O{|u~}t{|u~}\\{|k~}|`{}w~}hv~|Z{|v~X{}u~|n{}u~|`{|@{}w~@{|Xn~|X{|i{|Y{|n~} xv~}U"
|
|
"{|v~}vy~}S{|v~T{|v~|jv~}Y{|w~}Lw~|H{|v~|*{}x~}i{}x~}${}~}s{|y~ S{}x~}i{}x~} ;{|u~p{|u~|Ux~}w{|x~} Ey~|s{|~}T"
|
|
"{}x~}o{}j~}k{|w~k{}x~}a{}x~}o{}j~}h{}v~}W{|v~fv~|h{|v~fv~|h{|v~fv~|h{|v~fv~|h{|v~fv~|h{}w~}f{}w~}p{|v~l{|v~U{}u"
|
|
"~|l{|}y~}c{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~n{|}s~c{}w~|mq~e{}u~|n{}u~|d{}u~|n{}u~|d{}u~|n{}u"
|
|
"~|d{}u~|n{}u~|d{}u~|n{}u~|d{}v~|l{|u~|et~|n{}u~|c{|u~n{|u~b{|u~n{|u~b{|u~n{|u~b{|u~n{|u~X{|v~|V{}w~}Mw~}x{|p{}v"
|
|
"~c{|v~p{|t~|a{|v~p{|t~|a{|v~p{|t~|a{|v~p{|t~|a{|v~p{|t~|a{|v~p{|t~|k{|v~p{|q~j{|gu~|Pu~|k{|_u~|k{|_u~|k{|_u~|k{"
|
|
"|Vv~Lv~Lv~Lv~U{|v~}r{}v~}^w~}m{|w~}`v~}p{}v~|_v~}p{}v~|_v~}p{}v~|_v~}p{}v~|_v~}p{}v~|W{}u~Vu~|q{}v~|_{}v~pt~|`{"
|
|
"}v~pt~|`{}v~pt~|`{}v~pt~|Y{}s~}Xt~|q{|v~|Y{}s~} Lu~}p{}u~|au~}p{}u~|au~}p{}u~|au~}p{}u~|au~}p{}u~|W{}x~}N{}s~} "
|
|
"M{|v~|Ev~} py~|Jy~|M{}t~O{|u~}Xw~}kw~}_{|t~}w|}u~}]{}w~}ov~|Xr~|Y{}t~}y| tt~|r{}x~}$v~}\"w~t{|w~X{}v~}y|y{|"
|
|
"y~y|}t~|_{|x~}ow~}tw~|m{|t~|r{|}q~}&w~}J{}w~ t{}w~L{}v~ u{|v~|Pw~|Pu~|t{}v~|\\s|}w~}r|a{}v~}Nx~}|p{}t~O{}w~}]{}"
|
|
"y~}|q{}t~|\\{}v~|s{}u~Y{|v~|T{}u~|r{}u~|_{~}|r{|}u~|T{}v~M{}v~@{|}w~}6{|w~}|A{}w~}^{|w~r{|o~}{}s~}iv~}f{}w~}e{}"
|
|
"w~}q|y}s~|_{}t~|p{|}w~}g{}w~}r|y}q~}_{}w~}g|`{}w~}O{}t~}o{|}u~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}mt~_{}w~}h|i{}w~|bv~"
|
|
"|h{}w~|m{}r~dt~}|r{|t~|`{}w~}Ot~}q{|t~}b{}w~}jv~}d{|w~}|p{|}u~}X{|v~|W{}u~|q{}u~|Z{|r~|]{|s~|mr~f{|v~|l{|v~|Y{|"
|
|
"v~|[{|u~}b|^{|w~}E{|w~|N{|w~| tv~}r{}s~|_w~y}x~}|w{|}u~|]{|u~|p{|}|^t~y|x{|}w~}w~|`{|u~|n{|y~|Xw~}St~y|x{|}w~}"
|
|
"w~|`w~}m{|w~}Wv~Lv~Tw~}q{}v~}Uv~_w~}mv~mv~hw~}m{|w~}`{}v~}r{}v~}^s~}s{|v~}_{}v~}s{|s~|Zw~}Qy~}|o{}w~}X{|v~}|U{|"
|
|
"v~}s{|s~|Z{|q~Z{|s~qs~|`{}w~}qv~}Vs~|X{}v~|Dw~}Lw~|M{|w~| qu~|u{}w~|v~}_s~|s{|u~^{}w~t{}w~}Z{|v~}|t{|}v~|]{}v~"
|
|
"|ny|^w~}m{|w~}Xs~|Y{}w~}m{|w~}a{|t~|s{}t~}f{}v~}v{|w~{w~|v{}v~}e{}v~}x{}w~x{}u~_{|w~}q{|w~}^u~}|y{}w~x{}u~}`s~}"
|
|
"s{|v~}_{|v~}|t{|}v~|U{|v~}|W{|v~|t{|v~|bu~f|v~}c{}v~}h|_{}w~}Vs}t~}v{}t~s}`{|y}t~y}|]{}w~}hv~|Z{|v~Wt~}|r{|t~|#"
|
|
"{}w~ vp~| {|p~} wv~}T{}v~}wy~}v{}~Z{|v~S{}x~|hx~}X{|w~}Lw~|G{}w~}){|w~|m{|w~|\"{|}q{} R{|w~|m{|w~| XY| ${|u~}r{"
|
|
"|t~}Ux~}w{|x~} E{}qy|T{|w~c{}x~gw~|lw~}a{|w~c{}x~e{}v~}Vv~}f{}w~}hv~}f{}w~}hv~}f{}w~}hv~}f{}w~}hv~}f{}w~}hv~|f"
|
|
"{|v~pv~}l{|v~}h|h{}t~|p{|}w~}c{}w~}g|a{}w~}g|a{}w~}g|a{}w~}g|X{}w~}M{}w~}M{}w~}M{}w~}Z{|v~r|x}q~b{}w~|m{}r~dt~}"
|
|
"|r{|t~|bt~}|r{|t~|bt~}|r{|t~|bt~}|r{|t~|bt~}|r{|t~|d{|v~|j{|v~}f{}s~}|r{|t~|a{}u~|q{}u~|a{}u~|q{}u~|a{}u~|q{}u~"
|
|
"|a{}u~|q{}u~|X{|v~|V{}w~}Mw~}xy~}y|wy|u~|bv~}r{}s~|`v~}r{}s~|`v~}r{}s~|`v~}r{}s~|`v~}r{}s~|`v~}r{}s~|jv~}r{}w~}"
|
|
"|u~|o{|}y~g{|u~|p{|}|_{|u~|n{|y~|`{|u~|n{|y~|`{|u~|n{|y~|`{|u~|n{|y~|Wv~Lv~Lv~Lv~T{}u~}|x{|}u~}]w~}m{|w~}`{}v~}"
|
|
"r{}v~}^{}v~}r{}v~}^{}v~}r{}v~}^{}v~}r{}v~}^{}v~}r{}v~}V{}u~V{|v~}r{}v~}^{|v~}s{|s~|`{|v~}s{|s~|`{|v~}s{|s~|`{|v"
|
|
"~}s{|s~|Xs~|Xs~}s{|v~}Ws~| K{}u~}x|{x|}t~^{}u~}x|{x|}t~^{}u~}x|{x|}t~^{}u~}x|{x|}t~^{}u~}x|{x|}t~U{}x~}N{|s~| M"
|
|
"{|w~|D{}w~| q{|y~}K{|y~}L{}v~|N{}v~Ww~}kw~}^{|j~}\\v~|o{}w~}X{}s~W{|^~} -s~}v|}v~}$v~}#{|w~t{|x~}X{}e~|^w~|o"
|
|
"{|w~|v{}w~k{|s~}v|}t~y}v~}'{}w~Jw~} t{}w~L{}v~ u{|v~|Q{|w~O{|u~}w|}u~}\\{|e~|ab~`u~w}|x}r~|O{}w~}]{}v~w}|x}s~}Z"
|
|
"t~}w|}t~X{}w~}S{|t~y}v|}t~}^v~y}y|y}s~|S{}v~M{}v~={|}~}6{|y~}|?{}w~}]w~}q{}r~|y{}u~}h{|v~|f{|v~e{}c~|]{}s~y}v|y"
|
|
"}t~}g{}b~|^{}c~}`{}w~}N{}r~y}v|y}r~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}lt~`{}d~}i{}w~|bv~|h{}w~|lr~cr~}v|}s~}_{}w~}Ns~"
|
|
"y}v|}s~}a{}w~}j{|v~|e{|s~}u|}r~W{|v~|Vs~}v|y}t~|Xs~}\\{|s~|m{}t~}fv~}j{}v~Y{|v~|[{}\\~}^{|w~}Dw~}N{|w~| t{}u~y"
|
|
"|x{|}w~y}w~|_w~}{k~|[{|t~}|wy|}x~|^{|k~y|w~|_{|t~}|vy|y}w~|Xw~}S{|k~y|w~|`w~}m{|w~}Wv~Lv~Tw~}p{}v~}Vv~_w~}mv~mv"
|
|
"~hw~}m{|w~}_{}u~}|x{|}u~}]w~y}w~y|yy|}u~|^{}u~}|x{|}w~}w~|Zw~}Qv~}y|v{|}u~|Wm~[{}u~}w|}v~}w~|Y{}s~}Yt~}q{}t~|a{"
|
|
"}v~p{|v~|W{}t~W{}d~Uw~}Lw~|M{|w~| q{|u~}|y{|}v~{|s~br~}y|yy|}u~|^{|w~}v{}v~X{}u~}y|{y|}u~}\\{|t~}|vy|y}y~}^w~}"
|
|
"m{|w~}X{}t~Xv~|lv~|b{|s~}v|}q~x}hu~}|{y|w~}{}w~}|{|}u~c{}u~}|}w~|}t~|_{|w~}q{|v~}_{|s~}v~}s~}_w~y}w~y|yy|}u~|^{"
|
|
"}u~}y|{y|}u~}S{}r~}Z{}v~}|x{|}v~}b{|Z~c{}c~}_{}w~}Vk~v{}l~|^{|v~Y{}w~}hv~|Z{|v~Vr~}v|}s~|\"{}w~ ur~| y{|r~} vv~"
|
|
"}St~}y|y~}{y|}x~`{}b~}a{}~|f{~}W{|w~}Lw~|G{|w~}({|v~}|s{|}v~| E{|v~}|s{|}v~| X{|Z~} ${|s~}y|{y|}q~}|}Xx~}w{|x~"
|
|
"} l{}x~|c{}x~h{}x~}m{|w~|`{}x~|c{}x~f{|v~}V{|v~|f{|v~i{|v~|f{|v~i{|v~|f{|v~i{|v~|f{|v~i{|v~|f{|v~i{|v~dv~|r{|"
|
|
"v~k{|b~g{}s~y}v|y}t~}c{}c~}a{}c~}a{}c~}a{}c~}X{}w~}M{}w~}M{}w~}M{}w~}Z{|b~}a{}w~|lr~cr~}v|}s~}`r~}v|}s~}`r~}v|}"
|
|
"s~}`r~}v|}s~}`r~}v|}s~}b{|x~|h{|x~}f{}o~}v|}s~}_s~}v|y}t~|_s~}v|y}t~|_s~}v|y}t~|_s~}v|y}t~|W{|v~|V{}w~}Mw~}xk~}"
|
|
"a{}u~y|x{|}w~y}w~|`{}u~y|x{|}w~y}w~|`{}u~y|x{|}w~y}w~|`{}u~y|x{|}w~y}w~|`{}u~y|x{|}w~y}w~|`{}u~y|x{|}w~y}w~|j{}"
|
|
"u~y|x{|}u~y{|t~}|vy|}v~f{|t~}|wy|}x~|^{|t~}|vy|y}w~|_{|t~}|vy|y}w~|_{|t~}|vy|y}w~|_{|t~}|vy|y}w~|Wv~Lv~Lv~Lv~S{"
|
|
"}j~}\\w~}m{|w~}_{}u~}|x{|}u~}\\{}u~}|x{|}u~}\\{}u~}|x{|}u~}\\{}u~}|x{|}u~}\\{}u~}|x{|}u~}U{}u~V{}t~}|x{|}u~}\\{"
|
|
"}u~}w|}v~}w~|_{}u~}w|}v~}w~|_{}u~}w|}v~}w~|_{}u~}w|}v~}w~|X{}t~Ww~y}w~y|yy|}u~|W{}t~ I{}h~}\\{}h~}\\{}h~}\\{}h~"
|
|
"}\\{}h~}T{}x~}Ms~ K{|y~}C{|w~ p{}x~K{}x~Kw~|L{}x~|Ww~}kw~}]{|l~}\\{|v~n{|w~}X{|s~U{}`~} -{|h~|$v~}#{}x~}t{}x"
|
|
"~}X{|}g~|^{}x~}m{}w~}y|}v~|j{|g~}y{}v~}({|w~|L{|w~| t{}w~L{}v~ u{|v~|Q{}x~}N{}k~}[{|e~|ab~`e~|N{}w~}]{}g~}Y{|i~"
|
|
"|Xv~|R{|g~}]i~|R{}v~M{}v~;y|5{|<{}w~}]{|w~|p{|v}|w{|x}|e{}v~dv~}f{}e~}|[{}d~|g{}d~}\\{}c~}`{}w~}M{}c~}|g{}w~}hv"
|
|
"~|Y{}w~}M{}w~}W{}w~}kt~a{}d~}i{}w~|bv~|h{}w~|l{|s~b{}f~|^{}w~}M{}f~|`{}w~}iv~}e{|c~V{|v~|Uf~}W{}t~|[s~l{}t~|g{}"
|
|
"v~hv~}Z{|v~|[{}\\~}^{|w~}D{}w~N{|w~| sj~{}w~|_w~}{|m~|Y{}i~|]{|m~|{|w~|^{|f~|Xw~}R{|m~|{}w~|`w~}m{|w~}Wv~Lv~Tw"
|
|
"~}o{}v~}Wv~_w~}mv~mv~hw~}m{|w~}^h~\\w~}{k~|\\k~y|w~|Zw~}Qg~}V{|n~Zk~{}w~|Y{|s~|Y{}u~}q{|t~a{|v~|o{}v~W{|u~|W{}d"
|
|
"~Uw~}Lw~|M{|w~| p{|l~|ys~be~}\\{}v~x}u~V{}j~}Z{|h~}^w~}m{|w~}X{|u~|Y{|w~}k{}w~}b{|w~}m~|s~h{|m~xm~|b{}g~|^{|w~"
|
|
"}pr~a{|f~}^w~}{k~|\\{}j~}R{|r~}Y{}l~}a{}Z~}d{}c~}_{}w~}Vk~v{}l~|^{|v~Y{}w~}hv~|Z{|v~U{}f~|!{}w~ tt~| w{|t~} uv~"
|
|
"}R{}i~`{}b~}`{|?{|w~}Lw~|Fw~}&{}t~w}t~} A{}t~w}t~} V{|Z~} ${|w~}m~|s~Xx~}w{|x~} m{|x~}b{}x~hw~lk~k{|x~}b{}x~"
|
|
"fv~}U{}v~dv~}j{}v~dv~}j{}v~dv~}j{}v~dv~}j{}v~dv~}j{}w~}d{}w~}r{}w~}k{|b~f{}d~|c{}c~}a{}c~}a{}c~}a{}c~}X{}w~}M{}"
|
|
"w~}M{}w~}M{}w~}Z{|d~}|`{}w~|l{|s~b{}f~|^{}f~|^{}f~|^{}f~|^{}f~|`{|~|f{|~}f{|w~|}f~|]f~}]f~}]f~}]f~}V{|v~|V{}w~}"
|
|
"Mw~}xl~}_j~{}w~|_j~{}w~|_j~{}w~|_j~{}w~|_j~{}w~|_j~{}w~|ii~w{|f~e{}i~|]{|f~|^{|f~|^{|f~|^{|f~|Wv~Lv~Lv~Lv~R{}l~"
|
|
"}[w~}m{|w~}^h~Zh~Zh~Zh~Zh~){|f~Zk~{}w~|^k~{}w~|^k~{}w~|^k~{}w~|X{|u~|Ww~}{k~|V{|u~| H{|j~|Z{|j~|Z{|j~|Z{|j~|Z{|"
|
|
"j~|S{}x~}M{}u~} I{}Ax~} pw~|Lw~|L{|y~|Jy~|Vw~}kw~}[{}o~|[{}w~}mv~Wt~}T{|}b~} +{}l~}\"v~}#w~|tw~|U{|}l~}]{|w~"
|
|
"ko~|h{|j~}|w{}u~({}w~L{}w~ s{}w~Lv~| u{|v~|Qw~}M{|m~}Z{|e~|ab~`g~}|M{}w~}]{}h~|W{|k~W{}v~P{|i~|\\k~}P{}v~Mv~| "
|
|
"i{}w~}\\{}w~Jv~}d{}v~f{}g~}|X{|}h~}e{}g~}|Z{}c~}`{}w~}L{|}g~}|e{}w~}hv~|Y{}w~}M{}w~}W{}w~}jt~b{}d~}i{}w~|bv~|h{"
|
|
"}w~|ks~a{|i~}\\{}w~}L{|i~}^{}w~}i{|v~|e{}f~}U{|v~|T{}i~|Ut~Z{}u~}l{|t~g{|v~|h{|v~|[{|v~|[{}\\~}^{|w~}D{|w~N{|w~"
|
|
"| s{|l~|{}w~|_w~}x{}q~}|W{|j~|[{}p~|y{|w~|]{|g~|Xw~}P{}q~}|y{}w~|`w~}m{|w~}Wv~Lv~Tw~}n{|v~}Xv~_w~}mv~mv~hw~}m{"
|
|
"|w~}]{}l~}[w~}{|m~|Zm~|{|w~|Zw~}Qh~|T{|o~Z{|m~|{}w~|Xs~X{}u~|pu~}av~}m{}w~}Wu~V{}d~Uw~}Lw~|M{|w~| o{|n~|w{}u~b"
|
|
"f~}Z{}p~}T{}l~}X{|i~}^w~}m{|w~}Wu~Xv~|k{|v~b{|w~y|o~|{}t~g{|o~|x{|o~}`{}i~|]{|w~}p{}s~_{}j~}|]w~}{|m~|Z{}l~}P{|"
|
|
"s~}X{}n~}`X~d{}c~}_{}w~}Vk~v{}l~|^{|v~Y{}w~}hv~|Z{|v~T{|i~} {{}w~ sv~| u{|v~} tv~}Q{}j~`{}b~}#{|w~}Lw~|G{|w~}${"
|
|
"}m~} ={}m~} T{|Z~} ${|w~y|o~|{}t~Xx~}w{|x~} mw~|b{}x~i{}x~|lk~kw~|b{}x~g{|v~Tv~}d{}v~jv~}d{}v~jv~}d{}v~jv~}d"
|
|
"{}v~jv~}d{}v~k{|v~|d{|v~rv~|k{|b~e{|}h~}a{}c~}a{}c~}a{}c~}a{}c~}X{}w~}M{}w~}M{}w~}M{}w~}Z{|g~}|]{}w~|ks~a{|i~}["
|
|
"{|i~}[{|i~}[{|i~}[{|i~}/{|w~|y{|i~}Z{}i~|[{}i~|[{}i~|[{}i~|U{|v~|V{}w~}Mw~}xm~|^{|l~|{}w~|_{|l~|{}w~|_{|l~|{}w~"
|
|
"|_{|l~|{}w~|_{|l~|{}w~|_{|l~|{}w~|i{|l~}u{|g~d{|j~|\\{|g~|]{|g~|]{|g~|]{|g~|Wv~Lv~Lv~Lv~Q{|}p~}|Zw~}m{|w~}]{}l~"
|
|
"}X{}l~}X{}l~}X{}l~}X{}l~}){|w~}l~}Y{|m~|{}w~|^{|m~|{}w~|^{|m~|{}w~|^{|m~|{}w~|Wu~Vw~}{|m~|Tu~ E{|}p~}|V{|}p~}|V"
|
|
"{|}p~}|V{|}p~}|V{|}p~}|Qw~}Lu~| i{}y~| q{|w~}M{|w~}K{|}I{|}Uw~}kw~}Y{|y}w~y}|Yv~|m{}w~|X{}u~|Q{|}e~} *{|}p~"
|
|
"}|!v~}#w~t{|w~Py|x}y~x}y|[w~|j{}r~|e{|n~}|t{}u~){|w~|N{|w~| s{}w~Lv~ t{|v~|R{|w~|L{|}p~|Y{|e~|ab~`y|}l~}|K{}w~}"
|
|
"]{|}k~|S{}o~|Vv~}N{|m~}Z{}n~}|O{}v~Mv~ h{}w~}[v~L{|v~|d{|v~|g{}k~y}y|T{|}m~}|c{}m~x}y|W{}c~}`{}w~}J{|}k~}|c{}w"
|
|
"~}hv~|Y{}w~}M{}w~}W{}w~}it~c{}d~}i{}w~|bv~|h{}w~|k{|t~_{|m~}|[{}w~}J{|l~|]{}w~}h{}w~}c{|}k~}|T{|v~R{|}m~|S{}v~}"
|
|
"Z{|u~|kt~gv~}f{}v~[{|v~|[{}\\~}^{|w~}Cw~|O{|w~| q{}p~}x{}w~|_v}vy}w~y}|S{}m~}Xy}w~y}|w{|w}|[{|l~}|Vw~}N{|}w~y}"
|
|
"|w{}w~|`v}lw}|Wv~Lv~Tv}m{|u}Yv}_w~}mv~mv~hw~}m{|w~}\\{|n~|Zw~}x{}q~}W{}q~}|y{|w~|Zw~}Q{|}l~}P{|y}s~X{}q~}x{}w~|"
|
|
"X{}u~}X{|u~o{}v~|b{}w~}kv~}X{}w~}V{}d~Uv~Lw~|M{|w~| n{|}q~}u{|}w~bv~{}o~}|X{|r~|R{|}p~}|U{}l~}|^w~}m{|w~}W{}w~"
|
|
"}Xw}|i{|w}b{|w~|{|q~|y{|t~f{|q~|v{|q~|^{|l~}[{|w~}os~]{|}o~}|[w~}x{}q~}W{|}p~}|M{|}v~}W{|p~|`{|X~|e{}c~}_{}w~}V"
|
|
"k~v{}l~|^{|v~Y{}w~}hv~|Z{|v~R{|m~}| y{}w~ rx~| s{|x~} sv~}P{|}n~}|`{}b~}#{|w~}Lw~|Ty|pv~|\"y|}u~}y| 9y|}u~}y| "
|
|
"R{|Z~} ${|w~|{|q~|y{|t~Xx~}w{|x~} y}| q{}x~}aw}j{|w~kk~l{}x~}aw}gv~}U{|v~|d{|v~|l{|v~|d{|v~|l{|v~|d{|v~|l{|v~|"
|
|
"d{|v~|l{|v~|d{|v~|l{|v}bv}|t{}w~}j{|b~c{|}m~}|_{}c~}a{}c~}a{}c~}a{}c~}X{}w~}M{}w~}M{}w~}M{}w~}Z{|m~x}y|Z{}w~|k{"
|
|
"|t~_{|m~}|X{|m~}|X{|m~}|X{|m~}|X{|m~}|.w~}v{|}n~}|X{|}m~|X{|}m~|X{|}m~|X{|}m~|S{|v~|V{}w~}Mv|wy|}u~y}|Z{}p~}x{}"
|
|
"w~|]{}p~}x{}w~|]{}p~}x{}w~|]{}p~}x{}w~|]{}p~}x{}w~|]{}p~}x{}w~|g{}o~|r{|l~}|a{}m~}Y{|l~}|Y{|l~}|Y{|l~}|Y{|l~}|U"
|
|
"v~Lv~Lv~Lv~O{|y}v~y}|Xw~}m{|w~}\\{|n~|V{|n~|V{|n~|V{|n~|V{|n~|(w~|{|n~|V{}q~}x{}w~|\\{}q~}x{}w~|\\{}q~}x{}w~|\\"
|
|
"{}q~}x{}w~|W{}w~}Vw~}x{}q~}R{}w~} B{|t}|P{|t}|P{|t}|P{|t}|P{|t}|Nw~} 3{|~} ;f| '{|y}w~}y| 8{|y~|X{|x~}"
|
|
"h{|}w~}|ay|y}w~y}| rw~}N{}w~ ?{|w~| D{}w~I{|y}w~y}|%b|\\{|x}u~y}|!y|y}u~y}y|O{|y}w~y}| {{y|}u~y}|Vy|y}v~}y| u{|"
|
|
"w~| B{|v~| 1{|y}u~y}| o{|x}u~y}y| Fv~| 7y|y}v~y}| {{y|y}q~|#y|y}u~y}y| {{|y}v~y}y| a{|w~}C{}x~}O{|w~| oy}"
|
|
"v~}|vv|!{|}t~y}|!{|y}t~y}|Sv|Av~\"v|Lv~ Rv|mv|mv|hv|lv|Z{|y}u~}|Xw~}v{|}w~y}|T{|}w~y}|w{|w~|Zv|Ny|y}u~y}| {{|y}"
|
|
"w~}|uw|W{|u}|Wv}|o{|v}av|ju|Xv~| sv~Lw~|M{}w~| ly|}v~}|Uv~yy|}v~y}|S{|y}~y}|N{|y}v~y}|Qy|y}v~x}|[v|m{|w~}W{|w~"
|
|
"|#{|w~|x{|}w~}|v{|}y~y}c{|y}x~y}ry}x~y}|Z{|y}s~}y|G{}w~}|Zy|v~}|Ww~}v{|}w~y}|T{|y}v~y}| x{|y}w~}| Ry|y}v~y}|"
|
|
" Zy| rv~}M{|y}u~}|]`| Iw~|T{|y~}|u{|u~ 5{|w~|x{|}w~}|v{|}x~}Wx~}w{|x~} {}y~} r{|y}|Kw~|L{|y}|Hv~| E"
|
|
"{|y}u~y}| qy|y}v~y}|Sy|y}v~y}|Sy|y}v~y}|Sy|y}v~y}|Sy|y}v~y}|+{|y~}r{|y}v~y}|R{|y}v~y}y|S{|y}v~y}y|S{|y}v~y"
|
|
"}y|S{|y}v~y}y| oy}v~}|vv|Zy}v~}|vv|Zy}v~}|vv|Zy}v~}|vv|Zy}v~}|vv|Zy}v~}|vv|d{|}v~y}|n{|y}u~y}y|\\{|}t~y}|U{|y}"
|
|
"t~y}|T{|y}t~y}|T{|y}t~y}|T{|y}t~y}|Rv|Lv|Lv|Lv|!v|lv|Z{|y}u~}|R{|y}u~}|R{|y}u~}|R{|y}u~}|R{|y}u~}|'{}x~|w{|y}u~"
|
|
"}|S{|y}w~}|uw|Z{|y}w~}|uw|Z{|y}w~}|uw|Z{|y}w~}|uw|Vv~|Vw~}v{|}w~y}|Qv~| Mw~| K{|y~| e{|w~Nw~"
|
|
"| ?{}w~ Cw~} .{}w~ @{|v~|d{}| Kv~| !u~| J{|w~}C{|w~O{|w~| 9w~} Iv~ bw~}9{|w~| X{|v~ rv"
|
|
"~Lw~|M{}w~| <v~ S{|w~}W{|w~|#{|w~| j{}w~ s{}w~Uw~} )v~}Iy~} gw~|T{|u~y}s~| 5{|w~|Ax~}w{|x~} {"
|
|
"{x~| 0{|v~ ?{}y~} R{|} 5x~| O{|y~} &{|v~Uw~}D{|v~ Lw~| K{|y~| d"
|
|
"{}x~}P{}w~ >w~| D{|w~| .w~| ?{|v~}g{|x~| M{|v~ {|u~| K{|w~}Bw~|P{|w~| :{}w~} Iw~} bw~}9{"
|
|
"|w~| X{}w~| r{}w~|Mw~|Mv~ ;v~ S{|w~}W{|w~|#{|w~| j{}w~ s{}w~Uw~} )v~}Iy~} gw~|T{|l~| 4{|w~"
|
|
"|Ax~}w{|x~} {{}y~} /v~| ?x~| f{|x~ M{} %{}w~|Uw~}D{}w~| Lw~| K"
|
|
"{|y~| d{|w~Pw~| ?{|w~ C{}w~ .{|w~ ={|u~}|l{|u~| N{}v~ {{|u~| L{|q~}H{}x~}V{}q~| :v~| Iw~}"
|
|
" bw~}9{|w~| Xv~ q{}w~}Mw~|N{|v~ ;v~ S{|w~}W{|w~|#{|w~| j{}w~ s{}w~Uw~} )v~}Iy~} gw~|T{|}o~}| "
|
|
" 3{|w~|Ax~}w{|x~} {{|x~| 0v~}m{} N{|x~ e{}y~} Rv~Tw~}Dv~ S{}x~x{|w~| "
|
|
" K{|y~| c{}x~}R{}x~} >{|x~| Cw~} .{|x~| ;{}t~}|sy|}t~| N{|v~} y{|u~| M{|q~}H{|w~V"
|
|
"{}q~| ;{}v~ I{|w~} bw~}9{|w~| Y{}w~} q{|v~}|Ow~|P{|}v~} ;v~ S{|w~}W{|w~|#{|w~| j{}w~ s{}w~Uw~} "
|
|
" )v~}Iy~} gw~|Q{|y}v~y}| 1{|w~|Ax~}w{|x~} yx~| 0{}v~|p{|~} N{|x~| f{|x~ "
|
|
" S{}w~}Tw~}E{}w~} S{}x~|y{|w~ J{|y~| bw~|Sw~| >{}y~} K{}y~} 9{|p~x}q~}| N{|u~"
|
|
"| x{|u~ M{|q~} y{}q~| K{|}|p{|u~| I{}w~| bw~}9{|w~| Z{|v~ o{}q~}Tw~|U{|p~ :v~ S{|w~}W{|w~|#{|"
|
|
"w~| j{}w~ s{}w~Uw~} )v~}Iy~} gw~| W{|w~|Aw|vx| y{|x~} 0{|u~|s{}x~} N{|x~| "
|
|
" f{|x~| U{|v~Sw~}F{|v~ R{|x~}y{}w~ J{|y~| b{|x}|T{|x}| w{}g~}| Q"
|
|
"x|y}u~} v{|u~ N{|p} yp}| K{|x~}y|wy|}u~} J{|}v~ aw~}9{|w~| \\{|}v~} nq~}Tw~|U{|q~| :v~ S{|w~}"
|
|
"W{|w~|#{|w~| j{}w~ s{}w~Uw~} )v~}Iy~} gw~| W{|w~| :{|}w|}w~| /t~y}x|y}v~} U{|}|x{|w~| "
|
|
" f{}x~| W{|}v~}Sw~}H{|}v~} Qq~| J{|y} *{|}l~}| O{}q"
|
|
"~ tt| `{|i~} Lr~| aw~}9{|w~| `{}q~ l{}s~}Tw~|U{|s~}| 9v~ S{|w~}W{|w~|#{|w~| j{}w~ s{}w~Uw~"
|
|
"} )v~}Iy~} gw~| W{|w~| :{|q~ .{|i~} U{|q~ ly}w|}w~| [{}q~Rw~}"
|
|
"L{}q~ P{}r~ M{|y}u~y}y| L{}r~| R{|j~} Ks~} `w~}9{|w~| "
|
|
" `{}r~| jy|v}|Tw~|U{|u}| 6v~ S{|w~}W{|w~|#{|w~| j{}w~ s{}w~Uw~} )v~}Iy}| gw~| W{|w~| :{|r~| "
|
|
" -{|k~}| U{|r~} l{}r~} Z{}r~|Rw~}L{}r~| O{}t~ "
|
|
" k{}t~} -{|`}| `{|}m~}| Jt~} _w~}9{|w~| `{}s~| :w~| cv~ S{|w~}W{|w~|#{|w~| j{}w~ s{}"
|
|
"w~Uw~} )v~} d{|w~| 9y}w~y} ){}o~}| S{|}u~}| k{}r~ Y{}s~|Qw~"
|
|
"}L{}s~| M{}w~} j{}w~}| +{}`~} ]{|x}v~y}| Gw~y} ]w~}9{|w~"
|
|
"| `{}v~}| 8w~| cv~ S{|w~}W{|w~|#{|w~| j{}w~ s{}w~Uw~} g{|w~| 8{|}v~y}| Ly| "
|
|
" g{|y}w~}| X{}v~}|Ow~}L{}v~}| Iy| "
|
|
"l{}`~} Ww~| "
|
|
" L{}`~} Ww}| "
|
|
" r{" };
|
|
|
|
// Define a 104x128 binary font (huge sans).
|
|
static const char *const data_font_huge[] = {
|
|
" "
|
|
" "
|
|
" "
|
|
" "
|
|
" "
|
|
" "
|
|
" "
|
|
" "
|
|
" FY AY "
|
|
"'Z ;W @Y @Y 'Z Y @Y (Z :Y ?Y (Z 0Y ?Y (Z >X "
|
|
" "
|
|
" "
|
|
" "
|
|
" "
|
|
" )X AX '\\ )XAV 7YDY -] BY BY '[ +YEY 2X AY (\\ -YDY 'XAU 3Y AY (\\ )XAV 8YD"
|
|
"Y LY AY (\\ ,YEY #Y "
|
|
" "
|
|
" "
|
|
" "
|
|
" (X CX '^ +[CU 6ZEY .` C"
|
|
"X CY '] -ZEZ 2X CY (^ .ZEZ )[CU 2Y CY (] *[CU 7ZEZ LY CY (] -ZEZ %Y "
|
|
" "
|
|
" "
|
|
" "
|
|
" "
|
|
" 'Y EY '^ ,^FV 6ZEY /b CX DX '_ .ZEZ 2Y DX '_ /ZEZ +_FV 1X CX (_ ,^FV 7ZEZ "
|
|
" KX CX (_ .ZEZ &Y "
|
|
" "
|
|
" "
|
|
" "
|
|
" %Y GY '` .aHV 6ZEY 1e DY FX"
|
|
" 'a /ZEZ 1Y FX '` /ZEZ +aHV 0X EX '` .aHV 7ZEZ JX EX (a /ZEZ &X "
|
|
" "
|
|
" "
|
|
" "
|
|
" "
|
|
" #X GX 'XNX 0dKW 6ZEY 1f DY HX &WMX 0ZEZ 0X GX 'XMW 0ZEZ ,dLX /X GX 'WMX 0dLX 7ZEZ"
|
|
" IX GX 'WMX 0ZEZ 'X :T "
|
|
" "
|
|
" "
|
|
" "
|
|
" ;X IX 'XLX 1o 5ZEY 2ZLY "
|
|
" CX IX &WKW 0ZEZ /X HX (XLX 1ZEZ ,o .Y HX (WKX 1o 6ZEZ IY IY (WKW 0ZEZ (X <Z "
|
|
" "
|
|
" "
|
|
" "
|
|
" "
|
|
" =X KX 'XJX 3WKd 5ZEY 3XGX CX JX 'WIW 1ZEZ .X JX (XJX 2ZEZ -WKd -X "
|
|
"IX (WIW 2WKd 6ZEZ HX IX (WIW 1ZEZ )X =^ "
|
|
" "
|
|
" "
|
|
" "
|
|
" >X MX &WH"
|
|
"W 3VHa 4ZEY 3WDW CX LX 'WGW 2ZEZ -X LX 'WHW 2ZEZ -VHa +X KX (XHW 3VHa 5ZEZ GX KX (WGW 2ZEZ )X "
|
|
" ?b "
|
|
" "
|
|
" "
|
|
" "
|
|
" ?W MW &WFW 4VF^ 3ZEY 4WBV BW MX 'WEW 3ZEZ ,W M"
|
|
"X 'WFW 3ZEZ -VF^ )X MX 'WFW 4VF^ 4ZEZ FX MX 'WFW 3ZEZ *X ?d "
|
|
" "
|
|
" "
|
|
" "
|
|
" "
|
|
" ?W X 'WDW 5UC[ 2ZEY 4VAV AW X &WDW 4ZEZ +W NW 'WDW 4ZEZ -UC[ 'W MW 'WDW 5UC[ 3ZEZ "
|
|
"EW MW 'WDW 4ZEZ +X ?f "
|
|
" "
|
|
" "
|
|
" "
|
|
" @X \"X 'WBW 6UAW 0ZEY 4V@V B"
|
|
"X !W &WBV 4ZEZ +X !W 'WBW 5ZEZ .VAW $W W 'WBW 6UAW 1ZEZ DW W 'WBV 4ZEZ +W >f "
|
|
" "
|
|
" "
|
|
" "
|
|
" "
|
|
" ?X #W 'W@W U?V AX #W &W@V NX #W &V@W 9W \"W 'W@V .W "
|
|
"\"W 'W@V !W >XHX "
|
|
" 3Y "
|
|
" "
|
|
" "
|
|
" 6W $W &V>V U?V @W $W &W>V "
|
|
" NW $X 'V>V 8W $X (W>V /X $W 'W>V #W >XFX "
|
|
" 5Z "
|
|
" "
|
|
" ,Z "
|
|
" GZ "
|
|
" #U?V NY 7Z ,X CVCW MY "
|
|
" 7Z ,X $Z 7Z ,X >Z 6Y ,X 4Z 7Y +W 7Y @Z "
|
|
" "
|
|
" +Z "
|
|
" "
|
|
" HY \"U?V "
|
|
" MY 8Y ,Y CVBV LY 9Z ,Y #Z 9Z ,Z >Z 8Y ,Y 3Y 8Z ,Y 9Y "
|
|
" ?Z "
|
|
" *Y "
|
|
" "
|
|
" IY !U?V "
|
|
" LY :Y ,[ $R>U ,V@V MZ :Y +Z #Y 9Y +Z ?R"
|
|
">U 8Y 9Y +Z %S?U HY :Z ,[ ;Y ?[ "
|
|
" "
|
|
" )Y "
|
|
" 8U "
|
|
" 9Y V@U JY <Y"
|
|
" +[ 'XAU ,V@V LY ;Y +\\ #Y ;Y +\\ CXAU 7Y ;Z ,\\ )XAV HY ;Y +[ <Z "
|
|
" ?U ;T $W /W "
|
|
" 8e !f LY Y LX "
|
|
" L] :Y <Y NX 0X >Y @Y /X 0Y K` .X "
|
|
" ^ =ZEY @Y "
|
|
" NVAV <P -X +Y =Y +] )[CU 7YDY 4V@V KY ="
|
|
"Y +] ,YDY 5Y =Y *] .YDY 5[ M[CU 6Y <Y ,] *[CV 7YDY Y =Y +] ,YEZ !Y =Y FYDY 8X "
|
|
" EU :T %W .X "
|
|
" 9e !f KY !Y LY \"a :Y "
|
|
"<Y NX 0X >Y E^ /X 0_ %f 1] 'c "
|
|
" @ZEZ AY MV"
|
|
"CW <R 4a .Y >X *^ +]DU 7ZEZ 5U>U JY ?Y *^ -YEZ 4Y "
|
|
" ?Y *^ .ZEZ 5[ ]DU 5Y >Y +^ ,]DU 6ZEZ Y ?Y +_ .ZEZ \"Y <Y FYEZ :[ FU "
|
|
" 7Y -T 7W#W <Y 9X -W DU KY HZ \"\\ 4Z M[ \""
|
|
"Y LZ +\\ 8] >Z G[ G\\ @e !f JX !Y "
|
|
"LY %d :Y <Y NX 0X >Y Ha /X 0b *j L] D_ "
|
|
" +g A[ LY 8Z -ZEZ \"Y 1o )V FX NZ FY "
|
|
"%Y ,X NX*Z NW 3WEW H\\ #[ !Z \"[ \"[ \"[ G[7T 8g 0Y "
|
|
"@Y +_ ,_FV 7ZEZ 5U>U IY @Y +` .YEZ 3X ?X *` /ZEZ 4[:P 8_FV 4X ?Y +` ._EU 6ZEZ NX @Y *_ .ZEZ #Y ;Y"
|
|
" FYEZ ;] GU <b 1T :]'X @b >W ,X "
|
|
" FV a \"d -g >d (d +b %b 4f Bg Ie \"e \"h "
|
|
" Ge !f IX \"Y LY &e :Y <Y NX 0X >Y Jc /X 0c "
|
|
" -n $g I` .j >a ;e HU .U +b Ac 2ZEZ 'b "
|
|
" 5o -] Na (c KY .Y #_ 8Y!W'Y\"X.c$X 3XGX Mf -e +d "
|
|
",e ,e ,e \"e=V ;k 1Y BY +XNW .aGV 7ZEZ 5V@V HX AY +XNW .YEZ 3Y AY *WNW /ZEZ 4\\>T 9`GV 3"
|
|
"X AY +XNW .`GV 6ZEZ NY AX *XNW /ZEZ $Y :Y FYEZ <_ IU (Q LZ 4Z2Z 1Q "
|
|
" &g %Z +XCX MT <a)W Ah $X HX +X GV GX 3e )_ /j 4n L] ?y /i C~S =i 0g "
|
|
" +g L\\ 8t (m Ks 2~R E} <o HZ(Z :Z \"Z 4Z,] LZ 2_'_(^-Z Ck :q 0k ?q *n J~d'Z(Z*Z LZ=Z.\\.Z7Z(Z([$Z'~^"
|
|
" @e 3X Ff )\\ MY #Y LY (g :Y <Y NX 0X >Y Kd /X 0e 0p "
|
|
" (m Lb 1m ,\\ 5~S E~R Ah 'Z :~]+[;Z;Z Ik LW DX DW /i ?Y(Y 4h 5ZEZ"
|
|
" ,\\ ,h 7\\ -o .` $f -h NY No %_ %c @_\"X-_\"W0h&W .\\ $\\ \"\\ #\\ #\\ )g 5~a Lm D~S I~S "
|
|
"H~R H~R 6Z !Z !Z \"Z :r 8^,Y Bk 2k 2k 2k 2k (kAX+Z(Z#Z(Z$Z(Z$Y'Y&[%[ MZ Im 1X CY *WMX /bHV 7ZEZ 5V@V G"
|
|
"X CY *WLW /YEZ 2Y CY *WLW 0ZEZ 3[AW :bHV 3Y BX *WLW 0bHV 6ZEZ MY CX *XMX 0ZEZ $X 9Y FYEZ "
|
|
" =a M~i 7U (Q N_ 9_8_ 3R )k 'Z +XCX +X@X 4T >e,X Cl &X IX *X GV "
|
|
" GX 5i 0d 2p ;u !^ ?y 2o F~S @n 4j /l N\\ 8x .r Nx 7~R E} >t KZ(Z :Z \"Z 4Z-] KZ 2_'_(^-Z"
|
|
" Ep =t 5o Au 1u N~d'Z(Z)Z MZ<Z/\\/Z5Z*['[&Z&~^ @e 3X Ff )] MY $Y LY )h :Y <Y NX 0X >Y "
|
|
" Le /X 0e 1r +r c 3o -\\ 5~S E~R Dn *Z :~]+[;Z;Z Ko "
|
|
" Y EX EY 2m @Y)Y 6l 7ZEZ 0e 2k >e 1o 0c 'j /i X !r (b 'g Eb\"W0c#X0i(W -"
|
|
"\\ $] #\\ $] #\\ (f 6~b r F~S I~S H~R H~R 6Z !Z !Z \"Z :w =^,Y Ep 6p 7p 7o 7p ,oDY+Z(Z#Z(Z$Z(Z$Y'Y%Z%Z LZ Kp"
|
|
" 1X DX *WKW /WMYJV 6ZEZ 5V@V GY EY *WKX 0YEZ 1Y EY *XKW 1ZEZ 2[EZ :WMZKV 1Y DX *WKX 1WLYKW 6ZEZ L"
|
|
"Y EY *WKW 0ZEZ %X 8Y FYEZ >c M~h 7T (S !a <b:b 6S %| $o "
|
|
")Z +XCX +W?W 3T ?g.X Dp (X IX )X HV HY 6l 7i 5t <v #_ ?y 3p F~S Aq 8n 3p (Y $^ 9z 2v!{ :"
|
|
"~R E} Az NZ(Z :Z \"Z 4Z.] JZ 2`)`(_.Z Gt ?w :s Cx 5x!~d'Z(Z)Z N[<Z/\\/Z5[,[%Z'[&~^ @e 2X Gf *_ MX $Y "
|
|
"LY )h :Y <Y NX 0X >Y >X 8f /X 0f 3t -s c "
|
|
" 4q /^ 6~S E~R Fr ,Z :~]+[;Z;Z Ms #[ FX F[ 4n @Y*Y 6m 7ZEZ 3k 5l Bk 4o 1f )k 0k #"
|
|
"X #u (b (i Fb#X0c#W/k+X .^ %] $^ %] $^ (d 5~b\"v H~S I~S H~R H~R 6Z !Z !Z \"Z :{ A_-Y Gt :t ;t ;s ;t "
|
|
" 0sGY*Z(Z#Z(Z$Z(Z$Y'Y$Z'[ LZ Ls 2X FX *WIW 1WJc 6ZEZ 4VBV EY FX *XJW 0YEZ 0X EX )WJW 1ZEZ 1[I^ <WJc 0"
|
|
"X EX )WJW 2WJZNW 5ZEZ KX FY *WIW 1ZEZ &X 7Y FYEZ ?d M~h 8U )T #e ?d=e 8U "
|
|
" *~Q &r *Z +XCX +W?W 3T @i/W Dq (X JX (X HV HX 7o <m 7x >x %_ ?y 5r F~S Ct :p"
|
|
" 6s /e *^ 9| 6z#~ =~R E} B}!Z(Z :Z \"Z 4Z/\\ HZ 2`)`(_.Z Iw @y >w Ez 9z!~d'Z(Z)[ Z;Z0]/Z4Z,Z$[(Z%~^ "
|
|
"@e 2X Gf +a MX %Y LY *i :Y <Y NX 0X >Y >Y 9f /X 0g 5v "
|
|
" 0u d 6_K_ 0^ 6~S E~R Gu .Z :~]+[;Z;Z w &] GX G] 6U &o ?Y+Y 7X )n 7ZEZ "
|
|
"6p 7m Eo 6o 2h *l 1l %X #v (b )k Gb$X/c$X/l,W -^ &_ %^ &_ %^ 'b 4~b$z J~S I~S H~R H~R 6Z !Z "
|
|
"!Z \"Z :~ D_-Y Hw =v >w >w >w 4wIX)Z(Z#Z(Z$Z(Z$Y'Y$[)[ KZ Mt 1X HX )WHW 2VHb 6ZEZ 4WDW DX GX )WHW 1YE"
|
|
"Z /X GX )WHW 2ZEZ 0[M` ;VHb /X GY *WHW 3VHb 5ZEZ JX GX )WHW 2ZEZ 'Y 7Y FYEZ ?e M~f "
|
|
" 7U )U %g Bh@g :W .~T 't +Z +XCX ,X@X 3T Ak1X Er (X JX 'X IV HX 8q"
|
|
" =m 7y ?y '` ?y 6s F~S Dv <r 8u 4m /_ 9~ :~%~Q ?~R E} D~Q\"Z(Z :Z \"Z 4Z0\\ GZ 2`*a(`/Z Jz Bz Az F{ "
|
|
";{!~d'Z(Z(Z Z;Z0^0Z3Z.[#[*Z$~^ @X %X :Y ,c MX &Y LY +^ .Y <Y NX 0X >Y >Y "
|
|
" :] %X &] 5]C\\ 1v Nc 7\\D\\ 1_ 6~S E~R Iy 0Z :~]+[;Z;Z!y (_ H"
|
|
"X H_ 7U 'p ?Y,Y 6X *o 7ZEZ 8t 9YH] Ht 9o 3i *XG[ 1VE[ &Y %x (b *[I[ Hb$W.c%X.VE[-X "
|
|
" ._ &_ %_ '_ %_ '` 4~c%} L~S I~S H~R H~R 6Z !Z !Z \"Z :~Q F`.Y Jz @z Az Ay Az 7zKX(Z(Z#Z(Z$Z(Z$Y'Y#[*Z JZ Na"
|
|
"J_ 2X IX )WGW 2VG` 5ZEZ 4XFX CX IX )WFW 2YEZ .X IX )WFW 3ZEZ /j 8VG` -X HX *WFW 4VG` 4ZEZ IX IX "
|
|
")WGW 2ZEZ 'X 6Y FYEZ ?XKX M~f 7T )W 'i DiAi ;X 1~V (w -Z "
|
|
"+XCX ,X@X 3T AZI[2W Es (X KX &X IV HX 9s >m 7z @z )a ?y 7t F~R Dx >t 9v 8s 2` :~P <~Q&~S"
|
|
" A~R E} E~T$Z(Z :Z \"Z 4Z2] FZ 2a+a(`/Z K| C{ C} H| =|!~d'Z(Z(Z!Z9Z1^1Z2[0[!Z+[$~^ @X $X ;Y -e MX 'Y "
|
|
"LY +[ +Y <Y NX 0X >Y >Y :[ #X #Z 6\\?[ 2v F\\ "
|
|
" 8Z@[ 2` 7~S E~R J{ 1Z :~]+[;Z;Z#} +` HX Ia 8U (q >Y-Y 6X +p 7ZEZ 9bMb ;U@Y JbMb :"
|
|
"n 3ZIZ +T@Y 2R>Y 'X %y (XLV +ZEZ IXMW%X.YMW%W-R>Y.W -` '_ &` '_ &` '` 4~c'~R N~S I~S H~R H~R 6Z !Z "
|
|
"!Z \"Z :~S Ha/Y K| B| C| D} D| 9|MX'Z(Z#Z(Z$Z(Z$Y'Y\"Z+[ JZ N]B\\ 2X JX *WEW 3UE_ 5ZEZ 3YJY AX JW )WE"
|
|
"W 2YEZ -X KX (WFW 3ZEZ .f 5UE_ ,X JX )WFW 4VF_ 4ZEZ HX KX )WEW 3ZEZ (X 5Y FYEZ @YJW M~"
|
|
"e 7U *X (j EkCk =Y 3~X )x -Z +XCX ,W?X 3T BYEY3X Ft (X KX %X JV "
|
|
" IX 9u ?m 7{ A{ *a ?y 8u F~R Ez @v :v :w 4` :~Q >~S'~U C~R E} G~V$Z(Z :Z \"Z 4Z3] EZ 2a+a(a0Z M~P D"
|
|
"| E~P I} ?}!~d'Z(Z'Z\"Z9Z1^1Z1Z0Z [,Z#~^ @X $X ;Y .g MW 'Y LY +Y )Y <Y NX 0X >Y "
|
|
" >Y :Z \"X \"Z 7[=Z 3aE[ E[ 9Z>[ 3` 7~S E~R L~ 2Z :~]+[;Z;Z$"
|
|
"~P -b IX Jc 9U )r >Y.Y 5X ,]DX 7ZEZ ;\\>\\ <R;X M]>\\ 0XDX ,R=Y MX (X %hEW (SG"
|
|
"V ,YAY JSHW%W-SGW&X GX/W ,` (a '` (a '` (a 5~d(~S N~S I~S H~R H~R 6Z !Z !Z \"Z :~T Ia/Y L~P F~P F~P F~P F~P"
|
|
" <~X&Z(Z#Z(Z$Z(Z$Y'Y\"[-[ IZ \\>Z 1X LX )VCW 4UD] 4ZEZ 2f ?X LX )WDW 3YEZ ,W KX )WDW 4ZEZ -b 2UD] *W"
|
|
" KX )WDW 5UD] 3ZEZ GW LX (VCW 4ZEZ )X 4Y FYEZ @XIX M~d 7U *Y *l GmDl ?[ "
|
|
" 6~Z *`C\\ -Z +XCX ,W?W 2T CYCY5X E]CZ (X LX $X JV IX 9]E^ @m 7aGb B^Ec ,b ?y "
|
|
"9aF[ F~R E_C_ B_E^ ;]E_ ={ 7b ;~R @cBb'~V D~R E} HeBc$Z(Z :Z \"Z 4Z4] DZ 2b-b(a0Z NbCb E} GbCb J~ Aa"
|
|
"B_!~d'Z(Z'Z#[9Z2_1Z0Z2[ N[.Z\"~^ @X $X ;Y /i MW (Y LY ,Y (Y <Y NX 0X >Y >Y "
|
|
" :Y !X !Y 8[;Z 1\\ 0\\:U D[ ;Z<Z 4b 8~S E~R M~R 4Z :~]+[;Z;Z%bCb "
|
|
"/d JX Ke :U )]BW =Y/Y 5X ,[?U 3Z8[ &W NZ7Z 2XBW EX LW )X %iEW KV -Y?Y @W&X"
|
|
"!W&W EW0X -b )a (b )a 'a )a 5~d)dCb N~S I~S H~R H~R 6Z !Z !Z \"Z :~V Kb0Y MbCb HbCb HbCb HbCb HbCb >bCh%Z(Z"
|
|
"#Z(Z$Z(Z$Y'Y![.Z HZ Z;Z 1X NX )WBV 5VBZ $e >W MX )WBW !X MX )WBW #` /UBZ (W MX )WBW 6UBZ "
|
|
" 9X MW (WCW MX 3Y GXHW M~d 8U *[ +m HnFn A] 9~\\ +^=Y"
|
|
" -Z +XCX -X@X 2U DXAX5W E\\=V (X LX #X .R@V?Q ,X :\\A\\ @m 7\\>_ CY<_ -c ?y :^=V F~Q E]>^ D]@] "
|
|
" <Z@^ @~P 9b ;Z=d Aa;^'Z>j E~R E| Ha8^$Z(Z :Z \"Z 4Z5] CZ 2b-b(b1Z `<_ FZ@d I`=` K[@d C_:Z ~b&Z(Z'Z#Z8Z2`"
|
|
"2Z0[4[ LZ/[\"~^ @X #X <Y 0\\N] NX )Y LY ,Y (Y ;X NX 0X >Y >Y ;Z "
|
|
"!X !Y 8Z9Y 6d 4[5R CZ ;Y:Z 5b 8~R D~Q MbAb 8` =~]+[;Z;Z&`=` 1f KX Lg "
|
|
" ;U *\\=T =Y0Y 4X ,Z;R 5Z3Y &W !Y3Y 3W@W EW LX *W %jEW KV -X=X @W'X W'X EX1W ,b "
|
|
"*b (b )b )b )b 7ZH~R)a:] N~R H~R G~R H~R 6Z !Z !Z \"Z :Z>j Lb0Y N_<` J`<_ J`=` J`=` J`=` @`=e%Z(Z#Z(Z$Z(Z$Y'Y"
|
|
" Z/[ HZ !Z9Y 0W X )WAW 6VAW \"d <W X (VAW X X (V@V &a .VAW &X NW (V@V 6UAW 6X X )WAW "
|
|
" NW 2Y N\\ #[ \"\\ #\\ #[ MXHW L~b 7U +\\ ,n IoGp C_ ;~] ,]:X -Z "
|
|
"+XCX -X@X 8c LX@X7X E[:T (X MX \"X /TAVAT .X :\\?\\ Am 7Y9] CT4] .c ?Y J]8S Z E\\;\\ E]=[ "
|
|
" <W;\\ B~T ;b ;Z7_ C_5['Z7e GZ MZ '`3[$Z(Z :Z \"Z 4Z6] BZ 2b-b(b1Z!_8^ GZ;` K_9_ LZ:` D]5W 3Y 9Z(Z&Z$Z7Z3`3Z."
|
|
"Z4Z JZ0Z \\ ?X #X <Y 1\\L] NX *Y LY ,Y (Y 8X >Y >Y ;Y X !Y "
|
|
" 8Y8Y 6f 6Z2P BY <Z9Z 7c 7\\ Z (`;` >j BZ(Z+[;Z;Z'_9_ 3h LX Mi <"
|
|
"U *[:R <Y2Z 4X -Z8P 6Y/X 'W #Y/Y 6W>V EW KW +W %kEW KV .X;W @W'W NW(X CW2X -c *c )b "
|
|
"*c )c +c 7ZHZ 2_5[ NZ !Z Z !Z >Z !Z !Z \"Z :Z7d Mc1Y ^8_ K^8^ L_8^ L_9_ L^8_ B_9b$Z(Z#Z(Z$Z(Z$Y'Y [1[ GZ !Z"
|
|
"8Y 0W !W (V?W I` :X !W (V?W X \"X (W@W *d EX !W (W@W 0X \"X (V?W !W 1Y #d ,"
|
|
"e +d +d ,e #XHW LZ#Z 7U +] -o KqHp C_ <c 2]7V -Z +XCX -W?X <l#X?X7W E[7R "
|
|
"(X MX \"Y 0VCVCV .X :[<[ B\\IZ 7V5] DQ0] 0XNZ ?Y K\\4Q !Z E\\9\\ F\\;[ =U8[ DdAc =d <Z5^ "
|
|
"E^1Y'Z3b HZ MZ (_/Y$Z(Z :Z \"Z 4Z7] AZ 2c/c(c2Z!]4] HZ9^ L^5^ MZ8^ E\\0T 3Y 9Z(Z&Z%Z6Z3`3Z-Z6[ J[2Z \\ >X #X "
|
|
" <Y 2\\J] NW *Y LY ,X 'Y 8X >Y >Y ;Y X X 9Z7X 6g 7Y"
|
|
" #Z =Y8Z 7d 7[ Z )_7_ Bp EZ(Z+[;Z;Z(^5^ 5j MX Nk =U +[7P <Z3Y 3X -Y "
|
|
" MX+W 'V $X+X 7V=W FW KW ,W $kEW KV .X;X AW(X NW(W BW2W ,d +c *d +c *d +c 7ZHZ 3^0X NZ !"
|
|
"Z Z !Z >Z !Z !Z \"Z :Z3a Nc1Y!^5] L]4] N^5^ N^5^ N^5] C^5_#Z(Z#Z(Z$Z(Z$Y'Y N[2Z FZ \"Z7Y /W #W (W>V H^"
|
|
" 8X #W (W>V NW \"W (W>W .h EW \"X )W>W 0W #X (V=V \"W 0Y &j 1i 0j 1j 1i &X <Z#Y "
|
|
" 7U +_ /p KrJr Ea >` .\\5U -Z +XCX -W?W =r'X>W8X EZ ;X NY !X 1XDVDX 2X "
|
|
" &X ;[;[ BWDZ 7T2\\ \"\\ 1XMZ ?Y L\\ 2Z E[7[ G\\9[ >S5[ F`7` ?YNY <Z3\\ F]-W'Z0` IZ MZ )^+W$"
|
|
"Z(Z :Z \"Z 4Z8] @Z 2YNX/XNY(c2Z\"]2] IZ7] N]2] MZ6] G\\-R 3Y 9Z(Z&[&Z6Z4XNW3Z-[8[ HZ3[ !\\ =X #X <Y 3\\H] N"
|
|
"W +Y LY ,X 'Y 8X >Y >Y ;Y X Y :Y6Y 7i 9Y \"Y "
|
|
" >Y6Y 7YNY 6[ !Z *^3] Dt GZ(Z+[;Z;Z)]2] 6l NX m >U +Z !Y4Z 3X -Y NW(W (W "
|
|
" &X)X 8V<V +X DW LW ,W $lEW KV .W9W AW(W MW)X CW2W +YNY ,YNZ +YNY ,ZNY +YNY +YNY 9ZGZ 4^.W NZ !Z"
|
|
" Z !Z >Z !Z !Z \"Z :Z1` d2Y\"]2] N]2] ]2]!^2]!]2] E]2]\"Z(Z#Z(Z$Z(Z$Y'Y MZ3[ FZ \"Z6X .V $W 'V<V GZ "
|
|
" 5W $W 'V<V NW $W 'V<V 2m EW #W (V<V /W $W (W=W #W 0Y (n 6o 5n 5n 6n (X ;Z%Z "
|
|
" 7U ,a 0q LrJr Fc A_ ,\\2S -Z +XCX .X@X ?u(W=X:X DY :X NX Y 2ZFVFZ 2X "
|
|
"'X :Z9[ CR?Z 7R/\\ \"[ 1XMZ ?Y L[ 2[ F[5Z G[7Z >R4[ G^1^ AZNY <Z2[ G]*U'Z.^ IZ MZ )](U$Z(Z :Z \"Z"
|
|
" 4Z9] ?Z 2YNX0YNY(d3Z#]0] JZ6\\ N\\/\\ NZ5\\ G[ <Y 9Z(Z%Z&Z6Z4XNX4Z,Z8Z FZ4Z [ <X \"X =Y 4\\F] #Y "
|
|
"LY -Y 'Y 8X >Y >Y ;Y X Y :Y6Y 7j :Y \"Y "
|
|
" >Y6Z 9YMY 5[ \"Z *]1] Hy IZ(Z+[;Z;Z)\\/\\ 8n X !o ?U ,[ Y5Y 2X -Y W&W )W 'W%W 9V"
|
|
"<V +X DW LW )mEW KV /X9X BW)X MW)W BW3X ,YMY ,YMY ,ZNZ -YMY +YNZ -YMY 9ZGZ 5]*U NZ !Z Z !Z >Z "
|
|
"!Z !Z \"Z :Z/_!d2Y#]0]!]0]\"]0\\!\\/\\\"]0] F\\0]#Z(Z#Z(Z$Z(Z$Y'Y M[5[ EZ \"Y5X +P "
|
|
" %_K[ CY *r 9q 8r 9r 9q *X ;Z%Z >Q JT ,b 0q MsKs Ge "
|
|
"C^ *[0R -Z +XCX .X@X @v)X=X:W CY :X Y NX 1[HVH[ 1X 'X ;Z7Z 0Z 7P,[ ![ 3XLZ ?Y M["
|
|
" 1Z EZ4[ I[5Z ?P1Z I^-] BYLY =Z1[ H\\(T'Z-^ JZ MZ *\\$S$Z(Z :Z \"Z 4Z:] >Z 2YMX1XMY(YNZ4Z$].\\ JZ5"
|
|
"\\!\\-\\ Z4[ GZ ;Y 9Z(Z%Z'Z4Z5XNX5Z*Z:[ F[6Z [ ;X \"X =Y 5\\C[ #Y LY -Y 'Y 8X >Y "
|
|
" >Y ;Y X Y :Y6Y 7k ;Y \"Z @Z5Y 9YLY 5[ #Z +\\.] J| KZ"
|
|
"(Z+[;Z;Z*\\-\\ :p !X \"q @U ,Z NY6Y 1X -X W#V *W (W#W :U;V +X DW LW )mEW KV"
|
|
" /X9X BW*X LW*X BW3W +YLY -YMY ,YLY -YMY ,YLY -YMZ ;ZFZ 5\\'S NZ !Z Z !Z >Z !Z !Z \"Z :Z-^\"e3Y#\\.]#].\\"
|
|
"#\\-\\#\\-\\#\\-\\ H\\.]$Z(Z#Z(Z$Z(Z$Y'Y L[6Z DZ \"Y5Y /[G[ "
|
|
" DY +u =u <u ;u =u ,X :Y&Z >S LU ,c 1q MtLt Hf E] )[.Q "
|
|
" -Z +XCX .W?X Bx)X=X;X DZ :X X MY 0ZIVIZ /X 'X ;Z7[ 1Z AZ ![ 4XKZ ?Y MZ 0Z EZ3Z I[5Z "
|
|
"Z J])\\ CYLY =Z1[ I\\%R'Z+] KZ MZ +\\\"R$Z(Z :Z \"Z 4Z;] =Z 2YMX1XMY(YNZ4Z$\\,\\ KZ4[\"\\+[ Z4\\ I[ ;Y 9Z(Z$Z"
|
|
"(Z4Z5WLW5Z*[<[ DZ7[ !\\ ;X \"X =Y 6\\A[ $Y LY -Y 'Y 8X >Y >Y "
|
|
" ;Y X Y :Y6Y 7l <Y !Y @Y4Z :YLY 4[ $Z ,\\,] M~Q MZ(Z+[;Z;Z+\\+\\ <r \"X"
|
|
" #s AU ,Z MY7Y 1X -Y \"W!V :f (V!W ;U;V +X EX MW (mEW KV /W7W BW*W KW+X BW3X "
|
|
" +YLY .YKY -YLY .YKY -YLY .ZLY ;ZFZ 6\\%R NZ !Z Z !Z >Z !Z !Z \"Z :Z,^#YNZ3Y$\\,\\#\\,\\$\\,\\%\\+\\%\\,\\ MP"
|
|
" NP N\\-]$Z(Z#Z(Z$Z(Z$Y'Y KZ7[ Dq :Z4X /XC[ EY "
|
|
" -x @x >x ?x @x -X :Z'Z ?U MU -e 2q MtLt Ig E[ 'Z,P -Z +XCX .W?W By)"
|
|
"X<W;W CZ :X X MY .ZKVKZ -X (Y <Z5Z 1Z A[ !Z 4XKZ ?Y N[ 1Z DZ3Z IZ3Y NY K\\%[ EYKZ >Z0Z"
|
|
" J\\#Q'Z*\\ KZ MZ +[ Q$Z(Z :Z \"Z 4Z<] <Z 2YMY3XLY(YMZ5Z%\\*\\ LZ4[\"[*\\!Z3[ IZ :Y 9Z(Z$Z)[4Z6XLW5Z)Z<Z BZ8Z"
|
|
" !\\ :X !X >Y 7[>[ %Y LY -Y 'Y 8X >Y >Y ;Y X Y ;Y"
|
|
"5Y 7UH_ <Z \"Z AY3Y ;YKZ 4[ %Z ,[*\\ N~S NZ(Z+[;Z;Z+[*\\ =\\NXM[ #X $\\MXN\\ "
|
|
" BU ,Z *P DY8Y 0X -Y #W NV @k )V NV <V;V +X EW NY )nEW KV /W7W BW+X KW+W CY4X +YKZ /"
|
|
"YKY .ZLZ /YKY .ZKY /YKY <ZEZ 7\\#Q NZ !Z Z !Z >Z !Z !Z \"Z :Z+]#YMZ4Y%\\*\\%\\*\\&\\*[%[)[%[*\\ R!R [-_%Z(Z#Z"
|
|
"(Z$Z(Z$Y'Y K[9[ Ct =Y3X /U@[ \"Q EY .z B{ "
|
|
"B{ Az B{ /X :Z'Y >V U -g 4r NvNu Ji *\\ 5X.X 6\\ 7Z1Z M[ '[ 8Z +XCX /X@X C`MTL_)W;"
|
|
"W<X CY 9X !Y LX ,ZMVMZ +X (X ;Z5Z 1Z A[ !Z 5XJZ ?Y NZ 0Z DY2Z J[3Z )Q Q JZ M[!Z FYJY >Z0Z "
|
|
"J[ 'Z)\\ LZ MZ ,\\ \"Z(Z :Z \"Z 4Z=] ;Z 2YLX3XLY(YMZ5Z%[([ LZ3[$\\)\\\"Z3[ IZ :Y 9Z(Z$Z)Z3Z6XLX6Z(Z>[ B[:Z !"
|
|
"\\ 9X !X >Y 8[<[ &Y LY -Y 'Y 8X >Y >Y ;Y X Y ;Y5Y "
|
|
"7RB] =\\ $Z BY2Y ;YJY 3[ &Z -[(\\!~U Z(Z+[;Z;Z,\\)\\ ?\\MXL[ $X %\\LXM\\ CU"
|
|
" ,Y *Q\"R DY9Y 0X -Y #V=_?V Cm *V LV <U;V +X FX \"[ (nEW KV /W7W BW+W JW,X F[3W *YJY 0Z"
|
|
"KZ /YJY /YKZ /YJY /YJY =ZEZ 7[!P NZ !Z Z !Z >Z !Z !Z \"Z :Z*]$YMZ4Y%[([%[(['\\)\\'\\)\\'\\)[!T#T\"\\-`&Z(Z#Z("
|
|
"Z$Z(Z$Y'Y J[:Z Bw @Y6[ .Q<[ #S GY /`Da E`C"
|
|
"` DaD` C`Da E`C` 0X 9Y(Z ?X !U .h 4r NvNu Kk .c 9X.X 7^ 7Y1Y M[ &Z 7Z +XCX /X@X C\\"
|
|
"ITFY)W;W=X BY 9X !X KY +YNVNZ *X (X ;Z4Z 2Z @Z !Z 6YJZ ?Y Z /Z DY2Z JZ1Y ,T T MZ N[ NZ HZJ"
|
|
"Y >Z0Z K[ &Z(\\ MZ MZ ,[ !Z(Z :Z \"Z 4Z>] :Z 2YLX3XLY(YLZ6Z&['\\ MZ3[$['[\"Z2Z IZ :Y 9Z(Z#Z*Z2Z7XLX7Z'[@[ @Z;"
|
|
"[ ![ 8X !X >Y 9[:[ 'Y LY -Y 'Y 8X >Y >Y ;Y X Y ;Y"
|
|
"5Y %\\ =] %Y BY2Z =ZJY 3\\ 'Z .\\'[#cLZLb!Z(Z+[;Z;Z,['[ @\\LXK[ %X &\\KXL\\ "
|
|
" DU -Z +S$T EY:Y /X -Z %V?fBU Eo +VEg=V =V<V +X GX *b &nEW KV /W7W BW,X JW,W Nb2X +ZJY "
|
|
"0YIY /YJY 0YIY /YJZ 1YIY =ZEZ 8\\ NZ !Z Z !Z >Z !Z !Z \"Z :Z)\\$YLZ5Y&\\'['['\\(['['['['['[#V%V#[-a&Z(Z#Z(Z$"
|
|
"Z(Z$Y'Y IZ;Z Ay BY9^ G[ %U HY 0]<^ G^=^ F"
|
|
"^<] E]<^ G^=^ 1X 9Z)Z @Z \"U .i 5r NvNu Lm 2h ;X.X 7^ 7Y1Y N[ &[ 7Z +XCX /W?X D[GTC"
|
|
"V)W;W=W AZ :X \"Y KY *j (X (X <Z3Z 2Z @Z !Z 6XIZ ?Y Z 0Z DZ2Z JZ1Z 0W V Y NZ KZ IYIZ ?Z0Z "
|
|
"K[ &Z(\\ MZ MZ -[ Z(Z :Z \"Z 4Z?\\ 8Z 2YKX5XKY(YLZ6Z&[&[ MZ3[%[&\\#Z2[ JZ :Y 9Z(Z#Z+Z1Z7WJW7Z&Z@Z >Z<Z ![ 7X"
|
|
" X ?Y :[8[ \"\\ 3YBZ \\ ,ZAY 4\\ &Y \"Z 0YAZ \"X >Y .Y3Y 3Z '\\ MZ )Z ;Z 2^ +Y ;Y "
|
|
"X Y 6Y /Y5Y $[ =` G^ !Z IZ M\\ #Y2Z =YIZ 3\\ (Z .[%[%aIZI`\"Z(Z+[;Z;Z-[%[ B\\KXJ["
|
|
" &X '\\JXK\\ H\\ 1Z ,U&V EY;Y /X ,Z 'V@jDV Gp +UDj?V >V<V +X GW )` $nEW KV /W7W "
|
|
"BW-X IW-X N`0W *YIZ 1YIY 0YHY 1YIY 0ZIY 1YIZ ?ZDZ 8[ MZ !Z Z !Z >Z !Z !Z \"Z :Z(\\%YLZ5Y&[&['[&[)\\&[)[%[)"
|
|
"[&[$X'X%[-b&Z(Z#Z(Z$Z(Z$Y'Y I[=[ Az CY;` 5\\ $] $\\ \"\\ #\\ $] 8\\/[ 3\\ '\\ #\\ \"[ \"[ \"[ &Z &[ !["
|
|
" #\\ #[ ![ G[@W IYBZ J]8] I\\7\\ H]8] I]8] I\\7\\ 2X 8Y*Z @Z \"U .k 5q N~o Mm 4l =X"
|
|
".X 7^ 7Z3Z NZ %Z 6Z +XCX /W?W D[FT@S)W;W>X AZ :X \"Y JX (f &X )X ;Z3Z 2Z @Z !Z 7"
|
|
"XHZ ?Y !Z /Z CY1Y JZ1Z 2Y Y $Z Z HY JYHY ?Z/Y L[ %Z'\\ NZ MZ -[ Z(Z :Z \"Z 4Z@\\ 7Z 2YKX5XKY(YKZ7Z'["
|
|
"$[ NZ2Z%[%[#Z2[ JZ :Y 9Z(Z#[,Z1Z8XJW7Z%ZB[ >[>Z !\\ 7X X ?Y ;[6[ (e 7YE` (e 3aEY 8c 2r 5`DX GYEa (X NX "
|
|
"0X1Z 8Y FXD`9` YD` -c 9XD` /aEX :XD] 6g 7t BX0Y LY)Y+X6Z6X)Z/Z NX)Y I} 2Y X Y 9_>W KY5Y #[ =c h >XD` "
|
|
"AT#X 5Y 6X0X LY'Y ?RCW ?~Y!X?X?X ;d 'r!~W KZ1Y =YHY 2\\ )Z /[$[%_GZG_#Z(Z+[;Z;Z-[%[ C\\JXI[ 'X (\\IXJ\\ "
|
|
" (Y d 5Z -W(X FY<Y .X ,[ (UAmDV Iq ,VDl@U >V=W +X HX )^ ,Y1Y HnEW KV 0X7W BW-W HW.X M^/X )"
|
|
"Y +YHY 2YHZ 1YHY 2ZHY 1YHY 2ZHY ?ZDZ 9[ LZ !Z Z !Z >Z !Z !Z \"Z :Z'[%YKZ6Y'\\%[)[$[*[%[)[%[)[%[%Y)Z&[.d'Z(Z#"
|
|
"Z(Z$Z(Z$Y'Y H[>Z @{ DY=b ;f -f -f ,e -f -f Ae7c ;e /b )c *c *c 'Y NX NX X E[ >XD` -c )c *b *c )c '\\ &bDX L"
|
|
"X0X GX0X GX0X GX0X KY)X KYE` ?Y*Y 8[4\\ K[3[ J\\4[ I[4\\ K[3[ 3X 8Z+Z AZ !U /m 6q N~o No 6o ?X.X 8_ "
|
|
"6Y3Z Z $Z 6Z +XCX 0X@X DZET>Q)W;W>W ?Y :X \"X IY 'b $X )X ;Z2Y 2Z @Z !Z 8YHZ ?Y "
|
|
"!Z 0[ CY1Y JZ1Z 5\\ \\ 'Z!Z FY LZHZ @Z/Y L[ %Z&[ NZ MZ .[ NZ(Z :Z \"Z 4ZA\\ 6Z 2YKX6YKY(YKZ7Z'[$[ NZ"
|
|
"2Z&[#Z#Z2[ JZ :Y 9Z(Z\"Z,Z1Z8XJX8Z%[D[ <Z?[ \"\\ 6X X ?Y <[4[ -l :YGd ,k 9eGY :h 5r 8eGY GYGe +Y NX 0X3"
|
|
"\\ 8Y FYGd=c!YGe 2h ;YGd 3eGX ;YG` 9m :t BY1Y LZ+Z+Y7[7Y*[1Z MY+Z J~ 2Y X Y <eAW KY5Y \"Z <f 'o CYFd D"
|
|
"Y(Y 5Y 6Y1Y MY'Z CUE\\ B~Y!Y@X@Y =h 0z\"~W KY0Y >ZHY 1\\ *Z /[#['^EZE^$Z(Z+[;Z;Z.[#Z C[IXH[ (X ([HXI[ ("
|
|
"Z $k 9Z .Y*Z FY=Y .X ,\\ *UAnCU J^CW -VCmAV ?W>V *X IX (a /Y1Y HnEW KV 0X7W BW.X HW.W La3X "
|
|
"(Y ,ZHY 2YGY 2ZHZ 3YGY 1YHZ 3YGY @ZCZ 9[ LZ !Z Z !Z >Z !Z !Z \"Z :Z'\\&YJY6Y'[$[)[$[*[$[+[#[+[$[&[+\\([.e'Z("
|
|
"Z#Z(Z$Z(Z$Y'Y GZ?Z ?| EY>c >l 4l 3l 2l 3l 4l Gl=h @k 5h /h /h /h )Y Y NX Y E[ ?XFd 1g .h /h /h /h )\\ )hHX "
|
|
"LY0X HY0X GX0X GX0Y LZ+Y KYGd AY*Y 9[EXD[ M[1[ L[1[ K[1[ M[1[ 4X 8Z+Y A[ !T /n 6q N~o q 8q @X.X 8` 7"
|
|
"Y3Y Z $Z 5Z +XCX 0X@X DYDT EW;W?X ?Y :X #Y IY %^ \"X )X <Z1Z 3Z @Z !Z 8XGZ ?Y !Z"
|
|
" 0Z BY2Z JY0Z 8_ _ *Z!Y DX LYFY @Z/Y M[ $Z&[ NZ MZ .[ NZ(Z :Z \"Z 4ZB\\ 5Z 2YJX7XJY(YJZ8Z([#[ NZ2Z&["
|
|
"#[$Z2[ JZ :Y 9Z(Z\"Z-Z/Z9XJX9Z#ZDZ :Z@Z \"\\ 5X NX @Y =[1Z 1q <YIh 0o =hHY <l 7r 9hIY GYHg ,Y NX 0X4\\ "
|
|
"7Y FYIg@g#YHh 6l =YIh 7hHX ;YHa ;q <t BY1Y KY+Y*Y8\\8Y([3[ MY+Y I~ 2Y X Y =gCX KY6Z !Z <i -q CYHh F[*Y"
|
|
" 5Z 7Y1Y NZ&Y EWG` D~Y!Y@X@Y >k 5}\"~W KY0Z ?YGZ 1[ *Z /Z\"[(]CZD^%Z(Z+[;Z;Z.[#[ CYHXGY 'X 'YGXHY 'Z &o"
|
|
" ;Z /[,[ FZ?Y -X +\\ +UBoBU LZ>W -UBnAU >W@W *X JX 'c 1Y1Y HnEW KV /W7W BW.W GW/X Lc5W 'Y ,"
|
|
"YFY 4ZGY 2YFY 3YGZ 3YFY 3YGZ AZCZ 9Z KZ !Z Z !Z >Z !Z !Z \"Z :Z&[&YJZ7Y'[#[*Z\"Z+[#[+[#[+[#[&[-\\'[/YM[(Z(Z#"
|
|
"Z(Z$Z(Z$Y'Y G[A[ ?} FY?] :p 8q 8q 7q 8q 8p LqAl Do 9l 3l 3l 3l +Y Y NX Y #i @XHh 5k 2l 3l 3k 2l +\\ +lKX KY0"
|
|
"X HY0X GX0X GX0Y KY,Z KYIh CZ,Z :ZCXC[ [/[ N[.Z MZ.[ [/[ 5X 7Y,Z AZ !U /o 7p M~n s :s AX.X 8` 7Z4Y Y"
|
|
" #Z 5Z +XCX 0W?X EYCT EW;W@X >Z ;X #Y HX #Z X *X ;Z1Z 3Z @Z !Z 9XFZ ?Y \"Z /Z "
|
|
"BY2Z KZ0[ <b a -[\"Y BX MYFY @Z0Z M[ $Z%[ Z MZ .Z MZ(Z :Z \"Z 4ZD] 4Z 2YJX7XJY(YJZ8Z([\"[ Z2Z&Z\"[$Z2"
|
|
"[ JZ :Y 9Z(Z!Z.Z/Z9WHW9Z\"ZF[ :[BZ \"\\ 4X NX @Y >[/Z 4t =YJj 3q >kJY >o 8r ;kJY GYJk .Y NX 0X5\\ 6Y FY"
|
|
"JiBi$YJk 8o ?YJj 9kJX ;YJc <r <t BY1Y KZ-Z)X8\\8Y'Z4[ LZ,Y I~ 2Y X Y ?jDX KY6Y Z ;k 1r CYIj G]-Z 5Z 7"
|
|
"Y1Y NZ&Z HYHb E~Y!Y@X@Y @n 8~P\"~W KY0Z ?YFY 0[ +Z 0[!Z)]BZB]&Z(Z+[;Z;Z.Z\"[ LQ GWGXFW HQ /X /Q*Q @WFXGW &Z"
|
|
" (q ;Z .[BVB[ DY@Z -X *] .UC^EXBU LX<W .VBWC[AU ?WAW )X KX %c 2Y1Y HnEW KV /W7W BW/X GW/W J"
|
|
"c7X 'Y ,YFY 4YFZ 3YFY 4YEY 3YFY 4ZFY AYBZ :[ KZ !Z Z !Z >Z !Z !Z \"Z :Z&[&YIZ8Y([\"[+[\"[,[\"Z+Z!Z,[\"[%[/\\"
|
|
"&Z/YL[(Z(Z#Z(Z$Z(Z$Y'Y F[BZ >Z@d GY@\\ :t ;t <u ;t ;t ;t tDn Gr <o 6o 6o 6o ,Y Y NX Y &l @XIj 8o 5o 6n 6o 5o"
|
|
" -\\ ,nLW JY0X HY0X GX0X GX0Y KY,Y JYJj CY,Y :ZBXBZ!Z+Z Z,Z Z,Z!Z+Z 6X 7Z-Z BZ U 0q 7o M~n s ;u BX."
|
|
"X 9a 6Y5Z!Y \"Z 5Z +XCX C~d&YCT EW;W@W =[ <X #Y HY $Z X *X ;Z1Z 3Z @Z !Z :YFZ ?"
|
|
"Y \"Z 0Z AZ3Z KZ0[ 5Z \"[ ?e d 0Z\"Y AY YEZ AZ0Z MZ #Z%[ Z MZ /[ MZ(Z :Z \"Z 4ZE] 3Z 2YJY9XIY(YIZ9Z(Z![ "
|
|
"Z2Z'[!Z$Z2[ JZ :Y 9Z(Z!Z/[/Z:XHW9Z\"[H[ 8ZC[ \"[ 3X NX @Y ?[-Z 5v ?YKm 6r ?mKY ?q 9r <mKY GYKm /Y NX 0X"
|
|
"6[ 4Y FYKkEl%YKm ;r @YKl ;mKX ;YKd >t <t BY1Y JY-Y(Y9]9Y&Z5Z JY-Y H~ 2Y X Y @lFX JY6Y NY 9k 4s CYJl H"
|
|
"^.Y 4[ 8Y1Y NY$Y J[Ie G~Y!Y@X@Y Ap ;~R\"~W KY0Z @YEZ 0[ ,Z 0Z [*\\AZA\\&Z(Z+[;Z;Z/[![ NS GUFXEU HS 0X 0S,S @U"
|
|
"EXFU %Z )r ;Z -[G^G[ CZAY ,X )] /UC[>TAU NX;W )P9P =UAWAYAU >XDX )X LX HY 3Y1Y HnEW KV /W7W "
|
|
"AP9P 9W0X FW0X ?Y8W &Y -YEZ 5YEY 4ZFZ 5YEY 4ZEY 5YEY BZBZ :[ KZ !Z Z !Z >Z !Z !Z \"Z :Z%['YIZ8Y([!Z+Z![,Z![-"
|
|
"[![-[!Z$[1\\&[/XJZ(Z(Z#Z(Z$Z(Z$Y'Y EZCZ =Z;` HYA[ 8u <u =v <v =u <u!uGr Js =r 9r 9r 9r .Y Y NX Y (o AXJl :q "
|
|
"7q 9r 9q 7q .\\ -y IY0X HY0X GX0X GX0Y KZ-Y JYKl DY-Z ;ZAXAZ\"Y)Y!Z*Z\"Z*Z\"Y)Y 6X 7Z-Y BZ NT 0s 8o"
|
|
" L~m!u =w CX.X 9b 7Y5Y Y \"Z 5Z +XCX C~d&YCT EX<WAX <Z <X #X GY &^ \"X *X ;Z0Y 3Z"
|
|
" @Z !Y 9XEZ ?Y \"Z 0Z AZ3Y JZ/Z 5Z \"[ Ag g 4[\"X ?X YDY AZ0Z MZ #Z%[ Z MZ /[ MZ(Z :Z \"Z 4ZF] 2Z 2YIX9"
|
|
"XIY(YIZ9Z(Z Z Z2Z'[![%Z2[ JZ :Y 9Z(Z!Z/Z.Z:XHX:Z!ZHZ 6ZDZ \"\\ 3X NY AY @Z*Z 6w @YLo 9t @oLY At :r =oLY "
|
|
"GYLo 0Y NX 0X7[ 3Y FYLmGn&YLo =t AYLo >oLX ;YLe ?u <t BY1Y JY-Y(Y9]9X%[7Z IZ.Y H~ 2Y X Y AnGX JY7Z N"
|
|
"Z 9k 6t CYKn I^/Z 5\\ 8Y1Y Z$Z L\\Jg H~Y!Y@X@Y Br =~S\"~W LZ/Y @YDY /[ -Z 0Z NZ+\\@Z@\\'Z(Z*Z;Z;Z/[![ U GSEXDS"
|
|
" HU 1X 1U.U @SDXES $Z +t ;Z ,[JbJ[ AYBY +X (^ 2UCZ9QAU NW:W *Q:Q >VAW?XAU ?ZHY (X MX EX 4Y1Y HnE"
|
|
"W KV /W7W AQ:Q :W0W EW1X <X:X &Y -YDY 6ZEZ 5YDY 6ZEZ 5YDY 5YEZ CZBZ :Z JZ !Z Z !Z >Z !Z !Z \"Z :Z%['YHZ"
|
|
"9Y(Z Z+Z Z-[![-[![-Z [$[3\\%[0XI[)Z(Z#Z(Z$Z(Z$Y'Y E[E[ =Z9^ HYBZ 6v =v >w =w >v =v\"vIt Lt >t ;t ;t ;t /Y Y N"
|
|
"X Y *r BXKn <s :t ;t ;s :t /\\ /{ IY0X HY0X GX0X GX0Y JY.Z JYLo FZ.Y :Y@X?Y$Y'Y#YIP5PIY\"Y.PIY$Y'Y 7X 6Z/Z"
|
|
" CZ NU 1u 8m K~m\"w ?^C] CX.X 9b 7Z6Y X \"Z 4Z +XCX C~d&XBT EX=XAW ;[ =X $Y GY ("
|
|
"b $X +X :Y/Z 4Z @Z \"Z :XDZ ?Y \"Y 0[ @Y4Z JZ/Z 5Z \"[ Dj j 8[\"X =X\"ZDY AZ0Z N[ #Z$[!Z MZ /Z L"
|
|
"Z(Z :Z \"Z 4ZG] 1Z 2YIX:YIY(YHZ:Z)[ [!Z2Z'Z [%Z2[ J[ ;Y 9Z(Z Z0Z-Z;XHX;Z NZJ[ 6[FZ \"\\ 2X MX AY AZ(Z 7x"
|
|
" AYMq ;u AqMY Bv ;r >qMY GYMp 0Y NX 0X8[ 2Y FYMoIp'YMq ?v BYMp ?qMX ;YMf ?u <t BY1Y JZ/Z(Y:^:Y$[9[ HY/Z H~ 2Y "
|
|
" X Y BpHX JY7Z MY ;o 9u CYLp J_0Y 4\\ 8Y1Y Y#Z M]Jh I~Y!Y@X@Y Ct ?~T\"~W LZ/Y AZDY .[ .Z 1[ NZ+[?Z?['Z"
|
|
"(Z*Z;Z;Z/Z NZ!W GQDXCQ HW 2X 2W0W @QCXDQ #Z ,u ;Z +[MfM[ ?YCY +X '_ 4UDZ'U W:W +R;R >U@W?XAU >j (X "
|
|
" NX CX 5Y1Y HnEW KV /W7W AR;R ;W1X EW1W :X<X %Y .ZDY 6YCY 5YDZ 7YCY 5YDZ 7ZDY DZAZ ;[ JZ !Z Z !Z >Z "
|
|
"!Z !Z \"Z :Z$Z'YHZ9Y)[ [-[ [.[ Z-Z NZ-Z [#[5\\$Z0XH[)Z(Z#Z(Z$Z(Z$Y'Y D[FZ <Z7] IYBY 5w >w ?x >x ?w >w#wKv Nu ?v"
|
|
" =v =v =v 0Y Y NX Y +s BXLp >u <v =v =u <v 0\\ 0{ HY0X HY0X GX0X GX0Y JZ/Y IYMp EY.Y ;Y?X?Y%Y%Y$YJR7RIY$"
|
|
"Y.RJY%Y%Y 8X 6Z/Y CZ MU 2v 8m K~m#y @[>\\ DX.X :c 7Z7Z!Y \"Z 4Z +XCX C~d&XBT DW=XB"
|
|
"X :[ >X $Y FY +f &X +X ;Z/Z 4Z AZ !Z ;YDZ ?YFP -Z?Q BZ ?Z5Z JZ/Z 5Z \"[ Gj Ii ;[\"X1Q,W\"YCZ BZ1"
|
|
"Z MZ \"Z$[!Z MZ /Z LZ(Z :Z \"Z 4ZH] 0Z 2YHX;XHY(YHZ:Z)Z N[!Z2Z([ NZ%Z2Z I[ ;Y 9Z(Z Z1Z,Z;XGW;Z N[L[ 4[H[ #\\"
|
|
" 1X MX AY BZ&Z 8^Ga AYN[H_ <cI\\ B`I[MY CaH_ <r ?`H[NY GYNr 1Y NX 0X9[ 1Y FYNqJp'YMq @aJa CYN[H_ A`I[MX "
|
|
";YNg @`E[ <t BY1Y IY/Y&X:^:Y#Z:[ GY/Y G~ 2Y X Y JW5V B`M_JX IY8Z LY =r ;cL_ CYM^Na J`1Y 5^ 9Y1Y!Z\"Z ^K"
|
|
"j J~Y!Y@X@Y D_I` A~U\"~W LY.Y AYCZ .[ /Z 1Z MZ,\\?Z?\\(Z(Z*Z;Z<[/Z NZ\"Y ;X ;Y 3X 3Y2Y 3X EZ -hM[ ;Z *~Q >"
|
|
"YDY *X )b 6UDY%U V9W ,S<S >U@W>W@T =h 'X X AW 5Y1Y HnEW KV /X9X AS<S <W1W DW2X 9W<W $Y .YCZ 7Y"
|
|
"CY 6YBY 7YCY 6ZCY 7YCZ EZAZ ;[ JZ !Z Z !Z >Z !Z !Z \"Z :Z$Z'YGZ:Y)[ NZ-[ [.Z N[.Z NZ.[ NZ\"[7\\$[1XFZ)Z(Z#Z("
|
|
"Z$Z(Z$Y'Y CZGZ ;Z6\\ IYCY 4^Ga ?^Ga @_Hb ?^Ga ?^Ga ?^Ga$^GaMaI`!bH\\ @aI` ?aI` ?aI` ?aI` 1Y Y NX Y ,u CXM^Nb"
|
|
" @aKa >aJa ?aJa ?aKa =`Ja 1\\ 0`Ic GY0X HY0X GX0X GX0Y IY0Z IYN[H_ FZ0Z <Y>X>Y&X#X%YJT9TIY&Y.TJY&X#X 8X 5Y0"
|
|
"Z CZ ;P4U 1w 9l J~m#z B[;[ EX.X :d 7Y7Y X )~Q #Z +XCX C~d&XBT DW=XCX 9\\ ?X $Y FY "
|
|
"-j (X +X ;Z/Z 4Z AZ \"Z :XCZ ?YM_ 5ZE^ IZ >Y6Z IZ0[ 5Z \"[ Jj Ci ?\\\"X6\\2X#YBY BZ1Z MZ \"Z$[!Z "
|
|
"MZ 0[ LZ(Z :Z \"Z 4ZI] /Z 2YHX;XHY(YGZ;Z)Z N[!Z3[([ NZ%Z2Z H[ <Y 9Z(Z NZ2Z,Z<XFW;Z MZLZ 2ZHZ #\\ 0X MX AY C"
|
|
"Z$Z 9Y>^ BcB] >_?W C^CYNY C]A] 4Y /]Bc GYNYD^ 2Y NX 0X;\\ 0Y FYNXC\\KYD](YNYC] A]B^ DcB] C^CYNX ;YNZDQ A\\"
|
|
";V 5Y .Y1Y IY/Y&Y;_;Y\"Z;Z FZ0Y $[ 2Y X Y M];\\ F]E[JX IY9[ LY >ZKf =]=V CYNYC] K`2Z 5^ 9Y1Y!Z\"Z!^JZM^"
|
|
" K~Y!Y@X@Y E]C^ CaHl\"~W LY.Z BYBY .\\ 0Z 1Z M[-[>Z>[(Z(Z*Z;Z<[0[ N[$[ <X <[ 4X 4[4[ 4X EZ ._KUHV ;Z )~ <Y"
|
|
"EY *X *e 8UDY$T!W:X .U=T ?U?W>W@U =f &X !X @W 5Y1Y HnEW KV /X9X AT=T =W2X DW2W 8W=X $Y .YBY 8ZC"
|
|
"Z 7YBY 8ZCZ 7YBY 8ZBY FZ@Z ;Z IZ !Z Z !Z >Z !Z !Z \"Z :Z$[(YGZ:Y)[ NZ-Z MZ.Z N[/[ N[/[ NZ![9\\#[2YFZ)Z(Z#Z(Z"
|
|
"$Z(Z$Y'Y C[I[ ;Z5\\ JYCY 4X=^ @X=] @Y=] ?Y>^ @X=^ @X=^%X=l@\\\"_?W A]@\\ @]@\\ @^A\\ @^A\\ 1Y Y NX Y -w DXNY"
|
|
"C] A^C^ ?^C^ A^B] @^C^ ?^C^ 2\\ 1^C_ FY0X HY0X GX0X GX0Y IY0Y HcB] FY0Y ;X=X=Y(Y#Y'YJV;VIX&X.VJY(Y#Y 9W 4Z1"
|
|
"Z DZ =S4U 2y 9j I~l#{ BZ9Z EX.X :d 7Z8Y!Y *~R #Z +XCX C~d'YBT DX?XBW 7\\ @X $Y FY "
|
|
"/ZNVNZ *X ,X :Z/Z 4Z AZ #Z :XBZ ?o 9ZGc MZ =Z8[ HY0\\ 6Z \"[ Li >j C\\\"X8aGVBW$ZBZ CZ2Z LZ \"Z#Z!"
|
|
"Z MZ 0[ LZ(Z :Z \"Z 4ZJ] .Z 2YHX<YHY(YFY;Z)Z MZ!Z3[([ N[&Z3[ H] >Y 9Z(Z NZ2Z,Z<XFX<Z LZN[ 2[JZ \"[ /X LX B"
|
|
"Y DZ\"Z :U7\\ Ca>\\ @^:T C\\?b D\\=\\ 5Y 0\\>a Ga?\\ 2Y NX 0X<\\ /Y Fa@\\MX@[(b@\\ B]?\\ Da?] D\\?a ;b 1Z6"
|
|
"S 5Y .Y1Y IZ1Z&Y;_;X![=Z DY1Y #[ 2Y X Y `>` I\\B[KX IY:\\ LY ?ZDa ?\\7R Cb?\\ F[3Y 5_ 9Y1Y\"Z Y!]IYJ] L"
|
|
"~Y!Y@X@Y F\\?\\ D^Ai\"~W LY.Z CZBZ .\\ 1Z 1Z LZ.[=Z>[(Z(Z*Z;Z<[0[ N[%\\ <X <\\ 5X 5\\4\\ 5X EZ /^IUFT ;Z ("
|
|
"| ;YFY )X +h :TDY#U\"W:X /V?V ?U?W>XAU <c $X \"X ?X 6Y1Y HnEW KV .W9W @U>V ?W3X CW3X 8X>W #Y /Z"
|
|
"BZ 9YAY 8ZBZ 9YAY 8ZBZ 9YAY FZ@Z ;Z IZ !Z Z !Z >Z !Z !Z \"Z :Z$[(YFZ;Y)Z MZ-Z MZ/[ MZ/[ N[/Z M[![;\\\"[3YE[*"
|
|
"Z(Z#Z(Z$Z(Z$Y'Y B[JZ :Z4[ JYCX 3U8\\ @U8\\ AV8\\ @U7\\ AU7[ @U8\\%U8h=\\$]9T B\\=\\ B\\=\\ B\\=\\ B\\<[ 2Y Y "
|
|
"NX Y .x Da?\\ C]?] A]?] B\\?] B]?] A]?] 3\\ 2]?] FY0X HY0X GX0X GX0Y IZ1Y Ha?] GY1Z <X<X<X(X!X'XJX=XJY(X.X"
|
|
"JX(X!X 9W 4Z1Y >~d W5T 2{ 9i H~k$} DZ7Z FX.X :d 7Z9Z!X )~R #Z 0~d&XBT DX?XCX 6\\ "
|
|
" =Y EY 0ZMVMZ +X ,X :Z/Z 4Z B[ %\\ :XBZ ?q ;YHg Z <Z:[ GZ1\\ 6Z \"[ i M~c Nj G\\!W9eIVBX%Y@Y CZ3[ M"
|
|
"[ \"Z#Z!Z MZ 0Z KZ(Z :Z \"Z 4ZK] -Z 2YGX=XGY(YFZ<Z*[ MZ!Z3[(Z M[&Z3[ H^ ?Y 9Z(Z NZ3Z*Z=XFX=Z Kf 0[L[ #\\ /X "
|
|
" LX BY JS4[ C`<\\ A\\5Q D[;` E[9Z 5Y 1\\<` G`<Z 2Y NX 0X=\\ .Y F_=[MV=[)`<[ D\\<\\ E`<[ E[;_ ;` 0Z3Q 5"
|
|
"Y .Y1Y HY1Y%Y<`<Y [?[ DZ2Y $[ 1Y X Y !cBc J[?YLX HY<] JX @Y?_ @[ '`<[ EZ4Z 5` :Y1Y\"Z Z#\\GYI\\ EZ:Z IY@"
|
|
"X@Y FZ;[ E]>\\ 0Z 6Y.Z CYAZ -\\ 2Z 1Z LZ.[=Z=[)Z(Z*Z;Z<Z/Z LZ&\\ ;X ;\\ 6X 6\\2\\ 6X EZ /\\GUCQ ;Z 'z 9YGY"
|
|
" )X -ZN_ ;TDX\"U\"W;Y 0W@W ?T>W>X@T ;a #X #X =W 6Y1Y GmEW KV .X;X @W@W @W3W BW4X 6W?X #Y /Y@Y :"
|
|
"ZAY 8Y@Y 9YAZ 9Y@Y 9YAZ GZ@Z ;Z IZ !Z Z !Z >Z !Z !Z \"Z :Z#Z(YFZ;Y)Z M[/[ MZ/[ MZ/Z LZ/Z M[ [=\\!Z3YD[*Z(Z#Z"
|
|
"(Z$Z(Z$Y'Y AZKZ 9Z4[ JYDY 3R3[ AR3[ BS3Z @S4[ AS4[ AR3[&R3e:[&]6R C\\:[ D\\:[ D\\:[ D\\:[ 3Y Y NX Y /_B] E_<"
|
|
"[ C[;[ B\\<\\ C\\<\\ C[;\\ C\\<\\ 3\\ 3\\<\\ FY0X HY0X GX0X GX0Y HY2Z H`<[ FY2Y ;X<X<X)X NX)YKZ?ZJX(X/ZKX)X"
|
|
" NX ;X 3Y2Z >~d#Z6U 3} :h G~k%~P EY5Y FX.X ;ZNY 6Y9Z!X *~R \"Z 0~d&YCT CXAXBW 5] "
|
|
" >Y EY 2ZKVKZ -X ,X :Z/Z 4Z BZ &] :XAZ ?s =YJk #[ ;[=[ FZ1\\ 6Z \"[ #j L~d Ki J\\!X:hKVAW%Y@Y CZ5\\ L"
|
|
"[ \"Z#Z!Z MZ 0Z KZ(Z :Z \"Z 4ZL] ,Z 2YGX=XGY(YEZ=Z*[ M[\"Z4['Z LZ&Z4[ F` BY 9Z(Z MZ4Z*Z=XEW=Z Jd .ZLZ #\\ .X"
|
|
" LX BY JQ1[ D_:[ B\\ ([9_ F[7Z 6Y 1[:_ G^9Z 3Y NX 0X>\\ -Y F^;b;Z)_:Z D[:\\ F_:[ G[9^ ;_ /Y EY .Y1Y "
|
|
"HY2Z$Y=a=Y NZ@[ BY3Z %[ 0Y X Y \"eCd L[>YLX HY>^ IY AY=] @Z &_:Z DY4Y 5a :Y1Y\"Z Z$\\GYG\\ EY9Y IY@X@Y G"
|
|
"Z9[ G\\;[ 0Y 5Y.Z DZ@Y ,\\ 3Z 1Z LZ.Z<Z=[)Z(Z*Z;Z<Z/Z LZ'\\ :X :\\ 7X 7\\0\\ 7X EZ 0\\FU -Z &x 8YHY (X -YK"
|
|
"_ >UDX!T\"X<Y 1XAX ?T>W>X@U :] !X $X <W 6Y1Y GmEW KV .Y=X ?XAX AW4X BW4W 5W@X \"Y 0Z@Y :Y@Z 9Y@"
|
|
"Y :Z@Y 9Y@Z ;Z@Y HZ?Z <[ IZ !Z Z !Z >Z !Z !Z \"Z :Z#Z(YEZ<Y*[ M[/[ M[0Z LZ/Z LZ/Z M[ N[?\\ Z3XBZ*Z(Z#Z(Z$Z(Z"
|
|
"$Y'Y @ZM[ 9Z3[ KYDY 3P0Z AP0Z BQ0Z AQ0Z BP0Z AP0Z&P0b7Z'\\2P CZ7Z DZ7Z DZ7Z DZ7Z 3Y Y NX Y 0]<Z E^:Z D[9[ C["
|
|
":\\ E\\:[ D[9[ C[:\\ 4\\ 3[9[ GY0X HY0X GX0X GX0Y HZ3Y G_:[ GY2Y <X;X;X*X NX)XJ[A\\JX*X/[JX*X NX ;X 3Z3Z "
|
|
" >~d&^7U 4~ 9f E~i%~R GY4Y FX.X ;ZNZ 7Y9Y!X )~R \"Z NW?W BYCT CYBXCX 6_ ?Y EZ 5ZI"
|
|
"VIZ /X ,X :Z.Y 4Z C[ )_ :YAZ ?t >YKn %Z 9\\A\\ EZ1\\ 6Z \"[ &j I~d Hi N\\ W:jLVAW&Z@Z DZ8^ KZ !Z#[\"Z "
|
|
" MZ 0Z KZ(Z :Z \"Z 4ZM] +Z 2YGY?XFY(YEZ=Z*Z L[\"Z4['Z LZ&Z4[ Fc EY 9Z(Z MZ5Z)Z>XDW=Z Ic .[NZ #\\ -X KX CY "
|
|
" )Z D^8[ D\\ '[8^ FZ5Z 7Y 2[8^ G]8Z 3Y NX 0X?[ +Y F]9`9Y)^9Z E[8[ F^8Z GZ8^ ;^ .Y EY .Y1Y GY3Y#Y=WNX=Y M"
|
|
"ZAZ AY3Y %[ /Y X Y #gEf N[<YMX HYBb IY BY;] BZ %^8Z DY5Y 5b ;Y1Y#Z NZ$[FYF[ EY9Y IY@X@Y HZ8[ H\\9[ 1Y 5Y"
|
|
".Z DZ@Z ,\\ 4Z 2[ LZ.Z<Z<Z)Z(Z*[<Z<Z/Z LZ(\\ 9X 9\\ 8X 8\\.\\ 8X EZ 1\\EU -Z %^E] EhIg 6X .YI_ ?UEX T!W="
|
|
"Z 2YBY @U>W>W?U 7W <~d BX ;W 6Y1Y GmEW KV -X=X ?YBY BW4W AW5X 5W@W !Y 0Y?Z ;Y?Y :Z@Z ;Y?Y :Z?Y ;Y"
|
|
"?Y HZ?Z <[ IZ !Z Z !Z >Z !Z !Z \"Z :Z#Z(YEZ<Y*[ LZ/[ M[0Z LZ/Z LZ0[ LZ M[A\\ NZ4XAZ*Z(Z#Z(Z$Z(Z$Y'Y @[NZ 8Z3"
|
|
"[ KYDY AZ !Y Y Z !Z !Z 5`5Z([ %Z5Z FZ5Z FZ5Z FZ5Z 4Y Y NX Y 1\\:[ F]8Z F[7[ E[8[ E[8[ E[8[ E[8[ 4\\ 4[9\\"
|
|
" GY0X HY0X GX0X GX0Y GY4Z G^8Z GZ4Z <X;X:W+X LX*WH[C\\IX*X0[HW+X LX <X 2Y4Z =~d(`7T 4~Q 9e E~i%~R GY3"
|
|
"Y GX.X ;YMZ 7Z;Z!X *~R !Z X@X BZDT BXCYDX 6` ?Y DY 7[HVH[ 1X -X 9Z.Y 4Z D[ 7"
|
|
"m 9X@Z ?v AZLp &Z 8^H_ DZ1\\ 6Z \"[ (i F~d Ei #\\ NW;lMV@W'Y>Y D~P JZ !Z#[\"~Q Dy Z K~] :Z \"Z 4ZN] *Z 2YFX?XF"
|
|
"Y(YDZ>Z*Z L[\"Z5\\([ LZ&Z5\\ Eg JY 9Z(Z MZ5Z)Z>XDX>Z Ib ,f $\\ ,X KX CY (Y D]6Z D[ '[7^ GZ4Z 7Y 2Z6] "
|
|
"G]7Z 4Y NX 0X@[ *Y F]8^8Z*]7Z FZ6[ G]6Z I[7] ;] -X DY .Y1Y GY3Y#Y=WNX=X L[CZ ?Y4Y &[ .X NX Y $iGh Z:XNX"
|
|
" GYHg HY CY8\\ CY $]7Z DY6Y 4b ;Y1Y#Z MZ&[EYE[ FY9Y IY@X@Y HZ7[ I[7[ 2Y 5~V DY>Y +\\ 5Z 2Z KZ/[<Z<[*Z(Z)Z<Z<Z/"
|
|
"ZIuIZ)\\ 8X 8\\ 9X 9\\,\\ 9X EZ 1[DU -Z $Z@[ EhJh 6X /YF_ ATDX U\"X?[ 3ZCZ @U>W>W?U K~d CX ;X "
|
|
" 6Y1Y FlEW KV -Y?Y ?ZCZ CW5X AW5W 5XAX !Y 0Y>Y <Z?Z ;Y>Y <Z?Z ;Y>Y ;Y?Z JZ>~Q3[ I~Q G~Q F~Q G~Q 5Z !Z !Z "
|
|
"\"Z :Z#Z(YDZ=Y*[ LZ/Z L[0Z L[0Z LZ0[ LZ L[C\\ N[5X@Z*Z(Z#Z(Z$Z(Z$Y'Y ?e 7Z3[ KYDY @Y Y !Z Y Y Y 4_4Y)[ %Z3"
|
|
"Y GZ3Y FZ4Y FZ4Y 4Y Y NX Y 1[8Z F\\7Z F[7[ EZ6[ G[6[ G[6Z EZ6[ <Z9^ HY0X HY0X GX0X GX0Y GY4Y F]6Z GY4Y "
|
|
" ;W:X:X,X LX+XG[E\\GW*W0[GX,X LX <X 2Z5Z =~d(`8U 4~R 9c D~h%~T HX2Y GX.X <ZLY 6Y;Z!X *~"
|
|
"R !Z X@X BZDT BZGZCW 6b @Y DY 8ZFVFZ 2X -X 9Z.Y 4Z DZ 7l 8X?Z ?w BZMr ([ 7s C[3] 6Z \"[ +i C~d"
|
|
" Cj '\\ NW;nNV@W(Z>Y D~ IZ !Z#[\"~Q Dy![ K~] :Z \"Z 4h )Z 2YFX@YFY(YDZ>Z*Z KZ\"Z5\\([ LZ&Z6\\ Ck Y 9Z(Z LZ6Z("
|
|
"Z?XDX?Z G` *d #[ +X KX CY 'Y E]6[ F[ &Z5] GY2Y 7Y 3Z4\\ G\\6Z 4Y NX 0XA[ )Y F\\7]6Y*\\5Y G[5Z G\\5Z I"
|
|
"Z5\\ ;] -X DY .Y1Y GZ5Z#Y>XMW>Y K[E[ ?Y5Y &[ .Y NX Y $XIZHZIY!Z:XNX GYHf GY DY6[ CY $\\5Y CX6Y 5c ;Y1Y#"
|
|
"Z MZ&[EYDZ FY9Y IY@X@Y IZ5Z IZ5Z 2Y 5~V EZ>Y *[ 5Z 2Z KZ/[<Z<[*Z(Z)Z<Z=[0[IuIZ*\\ 7X 7\\ :X :\\*\\ :X L["
|
|
"CU -Z %Z>Z EiKh 6X /XC^ BTDX U\"YA\\ 4ZCZ N~d &U>W?X>T K~d EY :W 5Y1Y EkEW KV ,YAY =ZCZ DW6X @W6"
|
|
"X 5W@W 'Z>Y <Y=Y <Z>Z =Y=Y ;Y>Z =Z>Y JZ>~Q3Z H~Q G~Q F~Q G~Q 5Z !Z !Z \"Z :Z#[)YDZ=Y*[ LZ/Z KZ0Z L[1[ LZ0[ L"
|
|
"Z K[E\\ M[6Y@Z*Z(Z#Z(Z$Z(Z$Y'Y >d 7Z2Z KYDY @Y Y Y NY Y !Y 4^3Z*Z $Z3Z HZ3Z HZ3Z HZ2Y 5Y Y NX Y 2[6Z G"
|
|
"\\6Y FZ5[ G[5Z GZ5[ GZ5[ G[5Z =[:_ HY0X HY0X GX0X GX0Y GZ5Y F\\5Z GY5Z <X:X:X,W JW+XF[G\\FX,X1[FX,W JW <X "
|
|
"2Z5Y <~d'UNY9U 5~T H[LaM[!~g&~V JY1X GX.X <ZLZ 7Y;Y X Z 3Z W?X AZET A\\M\\CX 7d "
|
|
" BZ DY 8XDVDX 2X -X 9Z.Y 4Z E[ 7j 7Y?Z ?x CZNt )Z 5p @Z3] 6Z \"[ .i @~d @i *\\ MW<^Ib@W(Y=Z E| GZ !Z"
|
|
"\"Z\"~Q Dy![ K~] :Z \"Z 4f 'Z 2YEXAXEY(YCZ?Z*Z KZ\"Z6\\'[ LZ&Z8] An $Y 9Z(Z LZ7Z'Z?XDX?Z F_ *c #\\ +X JX DY "
|
|
" 'Y E\\4Z FZ %Z4\\ HZ1Y 8Y 3Z4\\ G[4Y 4Y NX 0XC\\ (Y F[6]6Y*[4Y GZ4[ H\\4Z JY4\\ ;\\ ,X DY .Y1Y FY5Y!Y?"
|
|
"XMX?Y JZF[ >Z6Y &[ .Y NX Y %WEYJYEX#Z8a GYHe FY DX4[ DY $\\5Y CY8Z 5d <Y1Y$Z LZ'[DYD[ GY9Y IY@X@Y IY4Z J"
|
|
"[5[ 3Y 6~W EY=Z *[ 6Z 2Z KZ/Z;Z<[*Z(Z)Z<Z=Z/[IuI[,\\ 6X 6\\ ;X ;\\(\\ ;X LZBU -Z %Y<Z FjMi 6X 0X@] CTD"
|
|
"W NU!ZE^ 5ZCZ M~d &T=W@X=T K~d FY :X 5Y1Y EkEW 3Z CV +ZEZ ;ZCZ EW6W ?W7XA]\"XAX 'Y=Z =Y=Y <Y<Y =Y="
|
|
"Y <Z=Y =Y=Z KY=~Q3Z H~Q G~Q F~Q G~Q 5Z !Z !Z \"Z Ew5[)YCZ>Y*Z KZ/Z KZ0Z L[1[ L[1[ LZ J[G\\ L[7Y?Z*Z(Z#Z(Z$Z(Z$"
|
|
"Y'Y >c 6Z2Z KYDY ?Y X NX NY Y Y 4\\1Y+[ %Z1Y HY1Y HY1Y HY1Y 5Y Y NX Y 3[5Z G[5Z HZ3Z GZ4[ HZ4Z HZ3Z GZ"
|
|
"4[ >Z9` IY0X HY0X GX0X GX0Y FY6Z F\\4Z GY6Y ;W9X9W-X JX,WD[I\\DW,W1[DW-X JX =X 1Y6Z <~d'RKY:U 5~U J"
|
|
"~T$~g'~X KY1X GX.X <YKZ 7Z<Y W NZ 3Y NW?W @\\GT @jCW 7f CZ DY 7VCVCV 1X .X "
|
|
"8Z.Y 4Z F[ 6h 5X>Z ?y DgF` *Z 2k >Z4^ 6Z \"[ 1j >~d =i -[ LW=\\C_?W)Y<Y Ez EZ !Z\"Z\"~Q Dy![ K~] :Z \"Z 4e &Z"
|
|
" 2YEXAXEY(YCZ?Z*Z KZ\"Z8^'[ L['Z:_ @p 'Y 9Z(Z KZ8Z'Z@XBW?Z F^ (b $\\ *X JX DY &X E[2Y FZ &Z3\\ HY0Y 8Y"
|
|
" 3Y2[ G[4Y 4Y NX 0XD\\ 'Y F[5[5Y*[4Y HZ2Z H[3Z KZ3[ ;[ ,Y DY .Y1Y FY5Y!Y?WLX?Y J[GZ <Y7Z '[ -Y NX Z 'WC"
|
|
"YKXBV#Z8` FYHc +YCY EY4[ DY $[4Z CX8Y 5e <Y1Y$Z KZ([DYCZ GY9Y IY@X@Y IY3Z KZ3Z 3Y 6~W EY<Y )[ 7Z 2Z KZ/Z;Z;Z*Z("
|
|
"Z)[=Z=Z/[IuI[-\\ 5X 5\\ <X <\\&\\ <X LZBU -Z &Y:Y FjNj 6X 0X?] EUEX NU!s 6ZCZ L~d &T=WAY=T K~d GX"
|
|
" 9Y 5Y1Y DjEW 3Z CV *]M] 9ZCZ FW7X5X3W7WCc%XBX5Y JY<Y >Z=Z =Y<Y >Z=Z =Y<Y >Z=Z LZ=~Q3Z H~Q G~Q F~Q G~Q"
|
|
" 5Z !Z !Z \"Z Ew5[)YCZ>Y*Z KZ/Z KZ0Z KZ1[ L[1Z KZ I[I\\ K[8Y>[+Z(Z#Z(Z$Z(Z$Y'Y =a 5Z2Z KYDY ?Y Y X MX Y Y"
|
|
" 4\\1Y+Z $Y0Y IZ1Y IZ1Y IZ0X 5Y Y NX Y 3Z3Y GZ3Y HZ3Z HZ2Z IZ2Z IZ3Z GZ3Z >Z:a IY0X HY0X GX0X GX0Y FZ7Y E["
|
|
"3Z GY6Y ;W9X9W-W HW,WC[K\\CW,W2[CW-W HW =X 1Z7Z <~d NX:U 5~V M~X%~e&~Y LX0Y HX.X =ZJY 6Y=Z W "
|
|
" NZ 3Y X@X ?]IT ?hCW 7h2X ;Y CY 7TAVAT 1X .X 8Z.Y 4Z G\\ 6g 5X=Z ?X?a EeB^ +Z /f ;[5"
|
|
"^ 4i ;~d :i 1[ LW<Z?]?W*Z<Z Fx CZ !Z\"Z\"~Q Dy![ K~] :Z \"Z 4e &Z 2YEXBYEY(YBZ@Z*Z KZ\"Z9^&[ L['[Ad >r *Y "
|
|
"9Z(Z KZ8Z'Z@XBX@Y D\\ &` $\\ )X JX DY &X E[2Z HZ %Z3\\ IZ/X 8Y 4Z2[ GZ3Y 4Y NX 0XE\\ &Y FZ4[5Y*[4Z IZ"
|
|
"2Z H[2Y KY2[ ;[ +X DY .Y1Y FZ7Z!Y?WLX?X H[IZ ;Y7Y '[ ,Y NX NY *Q NV@WLW?U#Z8` FYHd .^FY EX2[ DX $[3Y CX8Y"
|
|
" 5YMY <Y1Y$Z KZ(ZCYCZ GY9Y IY@X@Y JY2Z L[3Z 3Y 6~W FZ<Z )[ 8Z 2Z KZ/Z;Z;Z*Z(Z)[=Z>[/[IuI[.\\ 4X 4\\ =X =\\$\\"
|
|
" =X MZAU -Z &X8Y G~W 6X 0W<\\ FUEX MT iNW 8[D[ K~d &T=WE\\<T K~d HX NQ<Y 4Y1Y CiEW 3Z CV )k 7"
|
|
"ZC[ HW7W5Y3W8XFh>Q<YAW5Z KZ<Z ?Y;Y >Z<Z ?Y;Y >Z<Z ?Z<Y LZ=~Q3Z H~Q G~Q F~Q G~Q 5Z !Z !Z \"Z Ew5[)YBZ?Y*Z KZ/"
|
|
"Z KZ0Z KZ1[ L[1Z KZ H[K\\ J[8X=[+Z(Z#Z(Z$Z(Z$Y'Y <` 5Z2Z KYDZ ?X Y Y NX NX NX 4[/Y,Z $Y/Y JY/Y JY/Y JY/Y "
|
|
"6Y Y NX Y 3Z3Z HZ3Y IZ1Z IZ2Z IZ2Z JZ1Z IZ2Z ?Z:b IY0X HY0X GX0X GX0Y EY8Z E[2Y GZ8Z ;W9X9X.W HW-XB[M"
|
|
"\\BW,W3[BX.W HW =X 0Y8Z ;~d NY;U 6~X!~[%~c&~Z LX0Y HX.X =ZJZ 7Y=Y N~l 4Z 3Y X@X ?`L"
|
|
"T >eBX<U\"[M\\4Y ;Y CZ 7Q?V?Q 0X .X 8Y-Z 5Z H\\ 5j 9Y=Z ?T9_ Ec>] ,Z 1j <[7_ 7i 8~d 7i 5[ KW=Z="
|
|
"\\?W*Y:Y F{ FZ !Z\"Z\"~Q Dy![1j&~] :Z \"Z 4e &Z 2YDXCXDY(YBZ@Z*Z KZ\"Z<a&Z K['} <s ,Y 9Z(Z KZ9Z%ZAXBXAZ E] &_ $"
|
|
"\\ (X JY EY &Y F[2Z HZ %Y1[ IY.Y 9Y 4Z1Z GZ3Z 5Y NX 0XF\\ %Y FZ4Z3Y+Z2Y IZ1Z I[2Z LY1Z ;[ +X DY .Y1Y "
|
|
"EY7Y NX@XKW@Y G[K[ :Y8Y ([ ,Z NX NY /[(R NU?XNW=U%Z7_ EYHg 3bHY FY1Z DX $Z2Y CY:Y 5ZMZ =Y1Y$Z KZ)[CYBY GY9Y"
|
|
" IY@X@Y JY1Y LZ1Z 4Y 6~W FY;Z *[ 7Z 2Z KZ/Z;Z;Z*Z(Z(Z=Z>[/[IuI[/\\ 3X 3\\ >X >\\\"\\ >X MZAU -Z 'X6X 5c "
|
|
"%X 1X;\\ GUEX MT NgMW 9[D[ J~d &T=m;T K~d In 4TA[ 4Y1Y BhEW 3Z DX )i 5[D[ IX9W5Z3W8WFj?TA[BX5Z KY"
|
|
";Z @Z;Z ?Y:Y @Z;Z ?Z;Y ?Y;Z NZ<~Q3Z H~Q G~Q F~Q G~Q 5Z !Z !Z \"Z Ew5[)YAY?Y*Z KZ/Z KZ1[ KZ1[ L[1Z KZ G[M\\ IZ8"
|
|
"X<[+Z(Z#Z(Z$Z(Z$Y'Y <_ 4Z2Z KYD[ @X NX Y NY X NX 3Z/Y-Z $Z/Y KZ/Y KZ/Y KZ/Y 6Y Y NX Y 4Z2Z HZ3Y IZ1Z I"
|
|
"Z1Z JY1Z JZ1Z IZ1Z @Z;XNZ JY0X HY0X GX0X GX0Y EY8Y D[2Z GY8Y ;X9X8W.W HW-W@hAW-X4[@W.W:[:W =X 0Z9Z I"
|
|
"[ 7Y<U 6~Y\"~^'~c'~\\ MX/X HX.X =YIZ 7Z>Y ~m 4Z 3Y W?X >g =cAW?]'[K\\5Y ;Y CZ %V M"
|
|
"X /X 7Y-Z 5Z H[ 4l ;X<Z ?Q4^ Fb<] .[ 3o ?[7_ :i 5j 9[ JW=Y;[?W+Z:Y F~ IZ !Z\"Z\"~Q Dy![2l'~] :Z "
|
|
"\"Z 4f 'Z 2YDXCXDY(YAZAZ*Z KZ\"~%Z K['| 9s .Y 9Z(Z JZ:Z%ZAXBXAZ E] %] #[ 'X IX EY &Y FZ0Y HY %Z1[ IY.Y"
|
|
" 9Y 4Y0Z GZ2Y 5Y NX 0XG[ #Y FZ4Z3Y+Z2Y JZ0Z IZ0Y MZ1Z ;Z *Y EY .Y1Y EY8Z NYAXKXAY FZL[ 9Y9Y ([ +Y MX NZ 4b,"
|
|
"S U=`=U%Z6^ EYHi 6dIY FY1Z DY %Z2Y BX:Y 5ZLY =Y1Y%[ KZ)ZBYBZ HY9Y IY@X@Y JY1Z MZ1Z 4Y 6~W GZ:Y +\\ 7Z 2Z KZ/Z"
|
|
";Z;Z*Z(Z([>Z>Z.[IuI[0\\ 2X 2\\ ?X ?\\ \\ ?X MY@U 8y ;X6X 4a $X 1X9[ HUEX MT MeLW :[D[ I~d &T=l:T "
|
|
"K~d Io 5m 3Y1Y AgEW 3Z Nl 2g 3[D[%lDX5Z>mDXFk@mAW5[ LZ:Y @Y:Z ?Y:Y @Z:Y ?Y:Z AZ:Y NZ<~Q3Z H~Q G~Q F~Q G"
|
|
"~Q 5Z !Z !Z \"Z Ew5[)YAZ@Y*Z KZ/Z KZ1[ KZ1[ L[1Z K[ Gh HZ9X;[+Z(Z#Z(Z$Z(Z$Y'Y ;] 3Z2Z KYC[ AX NX Y NY Y X"
|
|
" 3Y.Y-Z $Y.Y KY.Y KY.Y KY.Y 6Y Y NX Y 4Z1Y HY2Y IZ1Z IY0Z KZ0Z KZ1Z IY0Z @Y;XMZ JY0X HY0X GX0X GX0Y DY9Y D"
|
|
"Z0Y GY9Z ;W8X8W.W HW-W?f?W.W4[?W.W:[:W =X 0Z9Y HZ 5X<U 6~Z$~`'~a&~\\ NY/X HX.X =YHY 7Z?Z ~m "
|
|
" 4Z 3Y W?W <i >_@XAa*[I\\6Y ;Y CZ %V MX /X 7Y-Z 5Z I[ 3n >X;Z ] G`9\\ .Z 4s @[9` "
|
|
" =i /i ;Z IV=Y9Z>V+Z:Z G~P JZ !Z\"Z\"~Q Dy!Z1l'~] :Z \"Z 4g (Z 2YDYEXCY(YAZAZ*Z KZ\"}$Z K['z 5r /Y 9Z(Z JZ;Z"
|
|
"$ZAW@WAZ F_ %\\ $[ &X IX EY &Y FZ0Y IZ %Y/Z IY.Y 9Y 4Y0Z GY1Y 5Y NX 0XH[ \"Y FY3Z3Y+Z2Y JZ0Z IZ0Y MY0"
|
|
"Z ;Z *Z FY .Y1Y DY9Y MYAWJXAY F[MZ 8Z:Y )[ +Z MX N[ 7g1U U<^;U&Z6^ EYHj 9gJY FX/Y CY &Z2Y BY<Z 6ZKZ >Y1Y%Z"
|
|
" J[*ZBYBZ HY9Y IY@X@Y KY0Z MY/Y 4Y 6~W GZ:Z ,[ 6Z 2Z KZ/Z;Z;Z*Z(Z([>Z?[.ZHuI[1\\ 1X 1\\ @X @\\ M\\ @X NZ"
|
|
"@U 8y ;W4X 5` #X 1X8Z HUEX MT LbJW ;ZC[ H~d &T=j8U L~d Io 5l 2Y1Y @fEW 3Z Nl 0c 0[CZ&lDW5[>mEXE\\N^"
|
|
"AlAX6\\ LZ:Z AY9Y @Z:Z AY9Y @Z:Z AY9Z!Z;~Q3Z H~Q G~Q F~Q G~Q 5Z !Z !Z \"Z Ew5[)Y@ZAY*Z KZ/Z KZ1[ KZ1[ L[1Z K"
|
|
"[ Ff GZ:X:[+Z(Z#Z(Z$Z(Z$Y'Y :\\ 3Z2Z KYC\\ BY X NX NY Y X 3Y-X-Y #Y-X KY-X KY-X KY-X 6Y Y NX Y 5Z0Y HY"
|
|
"2Y IY/Y JZ0Z KZ0Z KY/Z KZ/Y AZ;WKY JY0X HY0X GX0X GX0Y DY:Z DZ0Y FY:Y :WK~KW.WK}KW-W>d>W.W5[>W.W:[:W =X /"
|
|
"Y:Z IZ 4Y=T 6~[%~b'~_%~\\ NY/X HX.X >ZHY 6Y?Y N~m 4Z 3Y !X@X ;l @[>WBe,ZG\\7Y ;Y"
|
|
" CZ %V ;~c LX 7Y-Z 5Z J\\ 2n @Y;Z N\\ G`8\\ /Z 5u A\\<b ?i *i ?Z IW=X8Z>V+Y8Y G~R LZ !Z\"Z\"~Q"
|
|
" Dy![2l'~] :Z \"Z 4h )Z 2YCXEXCY(Y@ZBZ*Z KZ\"|#Z K['x 0q 1Y 9Z(Z IZ<Z$ZBX@XBY F` %[ $\\ &X IX EY &Y FZ"
|
|
"0Z JZ %Y/Z JY,X 9Y 5Z0Z GY1Y 5Y NX 0XI[ !Y FY3Z3Y+Y1Y JZ/Y IZ0Y MY/Y ;Z *[ GY .Y1Y DY9Y MYBXIWBY Dg 7Y;Z *[ +"
|
|
"[ MX M[ :l6W T:\\:U&Y5] DYHk :hKY GY/Z DZ 'Z2Y BY<Y 5ZKZ >Y1Y%Z IZ*YAYBZ HY9Y IY@X@Y KY/Y MY/Y 4Y 6~W GY9Z "
|
|
"-[ 5Z 2[ LZ/Z;Z;Z*Z(Z'[?Z?[.[IuI[2~n BX B~n AX A~m AX NZ@U 8y <X4X 4_ #X 1X7Z IUEX MT J^HW <ZCZ F~d &T="
|
|
"g5T -X ,o 5k 1Y1Y >dEW 3Z Nl ._ ,ZCZ'lEX6\\>mEWDVCZBkAX6] LY8Y BZ9Z AY8Y BZ9Z AY8Y BZ9Z!Z;~Q3Z H~Q "
|
|
"G~Q F~Q G~Q 5Z !Z !Z \"Z Ew5[)Y@ZAY*Z KZ/Z KZ1[ KZ1[ L[1Z KZ Ee FZ;Y:[+Z(Z#Z(Z$Z(Z$Y'Y :[ 2Z2Z KYB\\ CY X NX"
|
|
" NY Y Y 4Y-Y.Y #Y-X KY-X KY-Y LY-Y 7Y Y NX Y 5Z0Z IY2Y JZ/Z KZ/Y KY/Z KY/Z KZ/Y#~d$Z<WJY JY0X HY0X GX0X G"
|
|
"X0Y DZ;Y CZ0Y FY:Y :WK~KW/WJ}JW.W=b=W.W6[=W/W9[9W >X /Z;Z JZ 2X>U 6~\\'~c&~^$~Z MY/X HX.X >YGZ 7Z@Y "
|
|
"N~m 4Z 3Y !X@X :n 'WBg.ZE\\8X :Y CZ %V <~e NX 6Y-Y 4Z K\\ #a AX:Z M\\ H_6[ 0Z"
|
|
" 6aI` A]?c ?f $f ?Z IW>Y7Y>V,Z8Z HZ8` MZ !Z\"Z\"Z MZ 1[2l'Z(Z :Z \"Z 4ZN] *Z 2YCXFYCY(Y@ZBZ*Z KZ\"{\"Z "
|
|
"K['v +o 2Y 9Z(Z IZ<Z#YBX@XCZ Fa %Z %\\ %X HX FY 6i FZ0Z JZ %Y/Z JY,X 9Y 5Z/Y GY1Y 5Y NX 0XK\\ Y FY3Z"
|
|
"3Y+Y1Y JY.Y IY/Z NY/Y ;Z *\\ HY .Y1Y DZ;Z LXBXIWBY Ce 6Y;Y )[ -\\ LX L\\ >q:X !U:[9U&Y5] DY?d =jLX FY/Z C[ "
|
|
")Y1Y AX=Z 6ZIY >Y1Y%Z IZ*YAYAY HY9Y IY@X@Y KY/Y NZ/Z 5Y 5Y-Y HZ8Y .[ 4Z 1Z LZ/Z;Z;Z*Z(Z'[?Z@[-[ L[3~o BX B~o BX"
|
|
" B~o BX NZ@U 8y <X4X 4^ \"X 1X6Y IUEX MT GW *ZCZ E~d &T=g5T -X ,o 5i /Y1Y <bEW 3Z Nl *W 'ZCZ(l",
|
|
"EW6]>mFXDS?YBi?W5] CY 4Z8Y BY7Y BZ8Z CY7Y AY8Z CZ8Y!Y:Z <Z HZ !Z Z !Z >Z !Z !Z \"Z Ew5[)Y?ZBY*Z KZ/Z KZ1[ KZ"
|
|
"1[ L[1Z KZ Dc E[=Y9[+Z(Z#Z(Z$Z(Z$Y'Y 9Z 2Z2Z KYB^ &i 0i 1i /i 0i 0i Ej-Y/Z $Z-Y MZ-Y MZ-Y LY-Y 7Y Y NX Y 5Y/"
|
|
"Z IY1X JZ/Z KZ/Z LY.Y LZ/Z KZ/Z$~d$Z=WIZ KY0X HY0X GX0X GX0Y CY<Z CY/Z GZ<Z :WK~KW/WJ}JW.W<`<W.W7[<W/W9[9W "
|
|
">X .Y;Y JZ 1Y?U 6~\\(~e'~]\"~X LX.X HX.X >YFY 7ZAZ N~m 4Z 3Y !W?X 9p +XCi0ZC\\9X "
|
|
" :Y CZ %V <~e NX 6Z.Y 4Z L\\ M^ CY:Z L[ H^4Z 0Z 7^A^ C_Ce ?c Mc @Z HW>X6Y>V,Y7Z HZ5^ NZ !Z\""
|
|
"Z\"Z MZ 1[2l'Z(Z :Z \"Z 4ZM] +Z 2YBXGXBY(Y?ZCZ*Z KZ\"z![ LZ&w 'k 3Y 9Z(Z IZ=Z\"ZCX@XCZ Gc &Z &\\ $X HX FY "
|
|
" >q FY.Y JY $Y/Z JY,X 9Y 5Y.Y GY1Y 5Y NX 0XL\\ NY FY3Z3Y+Y1Y JY.Z JY/Z NY/Y ;Y (^ KY .Y1Y CY;Y KYCXIXCY "
|
|
"Bc 4Y<Y *[ 2a KX La Du?Z !U9Z8T'Z5] DY9^ >\\IYMX FY/Z B\\ +Y1Y AY>Y 5ZIZ ?Y1Y%Z IZ*YAYAY HY9Y IY@X@Y KY/Y NZ"
|
|
"/Z 5Y 5Y-Y HZ8Z 0\\ 4Z 1Z LZ/Z;Z;Z*Z(Z&[@Z@[-[ L[4~p BX B~o BX B~p CX NY?U 8y <W2W 3] \"X 1Y7Y IUEX MT "
|
|
" JZCZ 8X &T=WIZ6T -X ,o 3e -Y1Y :`EW 3Z Nl (ZCZ)lFW5UNV>mFWCQ;XAe>X6UNW CY 4Y7Z DZ7Y BZ8Z CY7Z CZ7"
|
|
"Y CY7Z#Z:Z <Z HZ !Z Z !Z >Z !Z !Z \"Z :Z#[)Y?ZBY*Z KZ/Z KZ0Z KZ1[ L[1Z KZ Ca D[>Y8[+Z(Z#Z(Z$Z(Z$Y'Y 9Z 2Z3[ "
|
|
"KYA^ /q 9r 9q 7q 8q 9r Mq,Y/Z $Y,Y MY,Y MY,Y MZ-Y 7Y Y NX Y 5Y.Y IY1X JZ/Z KY.Z LY.Y LZ/Z KY.Z$~d$Y=XIZ KY0X"
|
|
" HY0X GX0X GX0Y CY<Y BY/Z FY<Y 9WK~KW/WJ}JW.W;^;W.W8[;W/W9[9W >X .Y<Z K[ 1Y@U 6~](~f'~[ ~V KX.Y IX.X"
|
|
" ?ZFY 6YAZ N~m 4Z 3Y !W?W 6p -WCk1ZB\\;Y :Y CZ %V <~e NX 6Z.Y 4Z M\\ J] EY9Z "
|
|
" L[ H^4[ 2[ 8\\<\\ BbKi ?` Ha @Z HV=X5X>W-Y6Y HZ2\\ Z !Z\"Z\"Z MZ 1[2l'Z(Z :Z \"Z 4ZL] ,Z 2YBXGXBY(Y?Z"
|
|
"CZ*Z KZ\"x N[ LZ&x #f 3Y 9Z(Z HZ>Z\"ZCW>WCZ Hd &Z &[ #X HX FY At FY.Y JY $Y/Z JY,Y :Y 5Y.Y GY1Y 5Y NX"
|
|
" 0XM\\ MY FY3Y2Y+Y1Y JY.Z JY.Y Z/Y ;Y (b Y .Y1Y CY;Y KYCWHXCY Bb 3Y=Y *[ 6e JX Ke KzF^ !U9Y7T'Z4[ CY7] @[E"
|
|
"XNX GZ.Y Ai 9Y1Y AY>Y 5YHZ ?Y1Y&[ IZ+ZAYAY HY9Y IY@X@Y KY/Y NZ.Y 5Y 5Y-Y IZ6Y 0[ 3Z 1Z LZ/Z;Z;Z*Z(Z&\\AZA[,[ L["
|
|
"4~p BX B~o BX C~q CX NY?U 8y <W2W 3\\ )Y6Y JUEX NU KZCZ 7X &T=WGY7T -X J^ *Y1Y 7]EW 3Z "
|
|
" 8ZCZ 4X6UMV GX-X=^;W6UMW CY 4Y6Y DZ7Z CY6Y DZ7Z CY6Y DZ7Z#Z:Z <Z HZ !Z Z !Z >Z !Z !Z \"Z :Z#[)Y>ZCY*Z K"
|
|
"Z/Z KZ0Z L[1[ L[1Z KZ B_ C[>X7[+Z(Z#Z(Z$Z(Z$Y'Y 9Z 2Z3[ KY@_ 5u <u <t :t <u <u!t,Y/Y #Y,Y MY,Y MY,Y MY,Y 7Y Y "
|
|
" NX Y 6Z.Y IX0X JY-Y KY.Z MZ.Y LZ.Y KY.Z$~d$Y>XHZ KY0X HY0X GX0X GX0Y BY=Y BY.Y FY=Z 9WK~KW/WJ}JW.W:\\:W.W"
|
|
"9[:W/W9[9W >X .Z=Y JZ /X@U 6~^*~g&~Y N~V KX.Y IX.X ?ZFZ 7ZBY L~l 4Z 3Y \"X@X 3n /X"
|
|
"CZIZ2Z@\\<Y :Y BY %V <~e Y 6Z.Y 4Z N\\ G\\ FX8Z K[ I]2Z 2Z 8\\9[ BsNZ ?] B^ @Y GV=W4X>W.Z6"
|
|
"Z IZ1[ Z !Z#[\"Z MZ 1[2l'Z(Z :Z \"Z 4ZK] -Z 2YBXHYBY(Y>ZDZ*Z KZ\"v L[ LZ&z !c 4Y 9Z(Z HZ>Z\"ZDX>XDY Ge 'Z '[ "
|
|
"\"X GX GY Dw FY.Y JY %Z/Z J~W :Y 5Y.Y GY1Y 5Y NX 0XN\\ LY FY3Y2Y+Y1Y JY.Z JY.Y Z/Y ;Y 'e $Y .Y1Y CZ=Z"
|
|
" KYDXGWDY @a 3Z>Y +[ 5d IX Ic L~d !U8X7T'Z4[ CY5\\ AZCa GY-Y @h 9Y1Y @X?Z 6ZGY ?Y1Y&[9X9Z+ZAYAZ IY9Y IY@X@Y "
|
|
"KY/Z Y-Y 5Y 5Y.Z IZ6Z 2[ 2Z 1Z M[/Z;Z<[*Z(Z%[AZB\\,[ LZ3~p BX B~o BX C~q CX NY?U 8y <W2W 2[ (Y7Y ITDW "
|
|
"NU M[CZ 6X &T=WFY8T -X EY1Y 1WEW 3Z 7ZC[ 6W6ULV HX+W JX7ULW CY 5Z6Z EY5Y DZ6Z EY5Y DZ6Z E"
|
|
"Z6Y$Z9Z <Z HZ !Z Z !Z >Z !Z !Z \"Z :Z#[)Y>ZCY*Z KZ/Z KZ0Z L[1[ L[1[ LZ A] B[?X6Z*Z(Z#Z(Z$Z(Z$Y'Y 9Z 2Z3[ KY?"
|
|
"_ 8w ?x ?w =w >w >w$~u/Y #~W M~W M~W M~W 7Y Y NX Y 6Z.Y IX0X JY-Y KY.Z MZ.Z MY-Y KY-Y$~d$Y?XFY KY0X HY0X GX0"
|
|
"X GX0Y BY>Z BY.Y EY>Y 8WK~KW/WJ}JW.W;]:W.W:[9W/W9[9W >X -Y>Z KZ .YAU 6~^*~g%~W L~T JX.Y IX.X ?YEZ 7Z"
|
|
"CZ L~k :y KY \"X@X 0m 1WCYEY3Y>\\=X 9Y BY %V <~e =l X 5Z.Y 4Z \\ E[ GY8Z JZ I]"
|
|
"2Z 2Z 8[7[ BqMZ ?^ C^ @Y GV=W4X>V-Y5Z IZ0[!Z !Z#[\"Z MZ 1[2l'Z(Z :Z \"Z 4ZJ] .Z 2YAXIXAY(Y=YDZ*Z L[\"s"
|
|
" I[ LZ&[Cc Na 5Y 9Z(Z HZ?Z YDX>XEZ Hg (Z (\\ \"X GX GY Fy FY.Y KZ %Z/Z J~W :Y 5Y.Y GY1Y 5Y NX 0e KY"
|
|
" FY3Y2Y+Y1Y KZ.Z JY.Y Y.Y ;Y &h (Y .Y1Y BY=Y IXDXGWDY ?_ 1Y?Z ,[ 4b GX Ga L~c T6V6T'Z4[ CY4\\ CZ@_ GY-Y >f "
|
|
"9Y1Y @Y@Y 5YFZ @Y1Y&Z8X9[,ZAYAZ IY9Y IY@X@Y KX.Z Y-Y 5Y 5Y.Z IY5Z 3[ 1Z 1Z M[/[<Z<[*Z(Z%\\BZC\\+[ LZ3~p BX B~o "
|
|
"BX C~q CX DX 4Z?U -Z (W2W 2Z 'Z7X ITDX U MZCZ 5X &U>WEY9T -X EY1Y 1WEW 3Z 6ZCZ 7X7"
|
|
"UKV HW*W KX6ULW CY 5Y5Z FZ5Z EY4Y FZ5Z EZ5Y EY5Z%Z9Z <Z HZ !Z Z !Z >Z !Z !Z \"Z :Z#Z(Y=ZDY*[ LZ/Z KZ0Z L[0Z "
|
|
"LZ0[ LZ A] B[@X5Z*Z(Z#Z(Z$Z(Z$Y'Y 9Z 2Z4[ JY>` <y @y Ay ?y @y @y%~v/Y #~W M~W M~W M~W 7Y Y NX Y 6Z.Y IX0X JY"
|
|
"-Y KY-Y MZ.Z MY-Y KY-Y$~d$Y?WEY KY0X HY0X GX0X GX0Y BZ?Y AY.Y EY>Y 8WK~KW/WJ}JW.W<_;W.W;[8W/W9[9W >X -Z?Z "
|
|
" LZ -YBU 5~^*~h%~U J~R IX.Y IX.X @ZDY 6YCZ LW 'y JY \"W?X ,j 3WCYCY4Y=\\>X 9Y CZ"
|
|
" %V <~e =l X 5Z.Y 4Z !\\ C[ IY7Z JZ I]2Z 3[ 9[5[ BoLZ ?a Ia @Y HW>X3W>V.Z4Y IZ/Z!Z !Z#[\"Z MZ 0"
|
|
"Z Z'Z(Z :Z \"Z 4ZI] /Z 2YAXIXAY(Y=ZEZ*Z L[\"o DZ LZ&Z<^ M_ 5Y 9Z(Z GZ@Z ZEX>XEZ I[MZ (Z )\\ !X GX GY "
|
|
"Gz FY.Y KZ %Y-Y J~W :Y 5Y.Y GY1Y 5Y NX 0c IY FY3Y2Y+Y1Y KZ.Z JY.Y Y.Y ;Y %j +Y .Y1Y BY=Y IYEXGXEY >] 0Y?Y ,[ "
|
|
"3` EX E_ L\\Cx NT6V6T'Z4Z BY2Z CY>^ GY-Y ;c 9Y1Y @YAZ 6ZEY @Y1Y&Z8X9[,ZAYAZ IY9Y IY@X@Y KX.Z Y-Y 5Y 5Y.Z JZ"
|
|
"4Y 4\\ 1Z 1[ NZ.[<Z<Z)Z(Z$\\CZD]*Z LZ3~p BX B~o BX C~q CX DX 4Z?U -Z (W2W 2Z 'Z7X ITDX U MYBY 4X &U>"
|
|
"WDX:U -X EY1Y 1WEW 3Z 5YBY 7W6UKV IX*W KW6UKW CY 6Z4Y FZ5Z FZ4Z GZ4Y EY4Z GZ4Y%Y8Z <[ IZ !Z "
|
|
" Z !Z >Z !Z !Z \"Z :Z#Z(Y=ZDY*[ LZ/Z L[0Z L[0Z LZ0[ LZ B_ BZAY5Z*Z(Z#Z(Z$Z(Z$Y'Y 9Z 2Z5\\ JY=` ?{ B{ Bz @z B{ "
|
|
"B{'~x/Y #~W M~W M~W M~W 7Y Y NX Y 6Z.Y IX0X JY-Y LZ-Y MZ.Z MY-Y KY-Y$~d$Y@WDY KY0X HY0X GX0X GX0Y AY@Z AY.Y "
|
|
"DY@Z 8WK~KW/WJ}JW.W=a<W.W<[7W/W9[9W >X ,Y?Y LZ +XBU 6~_+~i%~U I~P HX.Y IX.X @ZDZ 7YCY KX "
|
|
" (y JY \"W?W (h 5XCXAX5Z<\\@Y 9Y CZ $T ;~e =l X 5Z/Z 4Z \"\\ AZ IX6Z JZ I\\1[ 4Z 8Z3Z AmKZ"
|
|
" ?d d AZ HW>X3W>V.Z4Z JZ.Z\"[ \"Z#[\"Z MZ 0Z Z'Z(Z :Z \"Z 4ZH] 0Z 2YAYKX@Y(Y<ZFZ*[ M[\"Z /Z LZ&Z:\\ K"
|
|
"^ 6Y 9Z(Z GZAZ NZEW<WEZ IZL[ )Z *\\ X FX HY H{ FY.Y KZ %Y-Y K~X :Y 5Y.Y GY1Y 5Y NX 0c IY FY3Y2Y+Y1Y"
|
|
" KZ-Y JY.Y Y-X ;Y $l .Y .Y1Y AY?Y HYEWFXEX =\\ .Y@Y -[ 2b GX Ga LY=s LT6W7T'Z4Z BY2Z DY=^ GY-Z =d 9Y1Y ?XAY"
|
|
" 5YDZ AY1Y&Z8X9[,ZAYAZ IY9Y IY@X@Y KX.Z Y-Y 5Y 5Y.Z JZ4Z 5[ 0Z 0Z NZ-Z<Z<Z)Z(Z#\\DZD\\)Z LZ3~p BX B~o BX B~p CX"
|
|
" DX 4Z?U -Z (W2W 2Z &[9X IUEX T s AXAY 4X &U>WCX;U -X EY1Y 1WEW 3Z Is 0YAX 8W6UJV IW)W"
|
|
" LX7UJW CY 6Z4Z GY3Y FZ4Z GY3Y FZ4Z GY3Z'Z8Z <[ IZ !Z Z !Z >Z !Z !Z \"Z :Z#Z(Y<ZEY*[ M[/[ M[0Z LZ/Z LZ/Z LZ "
|
|
"Ca CZBY4Z*Z(Z#Z(Z$Z(Z$Y'Y 9Z 2Z5\\ JY<` A| C| C{ A{ C| C|(~y/Y #~W M~W M~W M~W 7Y Y NX Y 6Y-Z JX0X JY-Y LZ-Y"
|
|
" MZ.Z MY-Y KY-Y$~d$YAWCY KY0X HY0X GX0X GX0Y AY@Y @Y.Y DY@Y 7WK~KW/XK}KX.W>c=W.W=[6W/X:[:X >X ,Y@Z M[ "
|
|
"+YCT 5~`,~i$~S H~P HX.Y IX.X @YCZ 7ZDY KX )y HX #X@X (TNc 6WCX@X5Y:\\AX 8Y CZ :~e"
|
|
" =l !X 4Z/Z 4Z #\\ @[ KY6Z IZ I[0Z 4Z 9Z2[ @jJZ ?f %g AZ HW>X3W>V.Y2Y JZ.Z\"[ \"Z#Z!Z MZ 0Z Z'Z(Z"
|
|
" :Z \"Z 4ZG] 1Z 2Y@XKX@Y(Y<ZFZ*[ MZ!Z /Z LZ&Z8[ K] 6Y 9Z(Z FZBZ NZFX<XFY I[KZ )Z +\\ NX FX HY I| FY."
|
|
"Y KZ %Y-Y K~X :Y 5Y.Y GY1Y 5Y NX 0d JY FY3Y2Y+Y1Y KZ-Y JY.Y Y-X ;Y #m 0Y .Y1Y AY?Y HYFXEWFY =\\ .YAY ,[ 2d I"
|
|
"X Ic LW8n JU7W7T'Y2Y BY1Z EY<\\ FY-Z @g 9Y1Y ?YBY 6ZDZ AY1Y&Z8X8Z,Y@YAZ IY9Y IY@X@Y LY-Y Y-Y 5Y 5Y.Z JY3Z 6["
|
|
" /Z 0Z [-[=Z=[)Z(Z#]EZE\\(Z LZ2~o BX B~n AX A~n BX DX 4Z?U -Z (X4X H~W <\\:W HUDX!T s AZCZ 5X %T>WBX<U"
|
|
" -X EY1Y 1WEW \"s 1ZCZ 9X7UIV JX)W LW7UIW CY 6Y2Y HZ3Z GY2Y HZ3Z GY2Y HZ3Z'Z8Z <[ IZ !Z Z !Z"
|
|
" >Z !Z !Z \"Z :Z#Z(Y<ZEY)Z M[/[ M[0[ MZ/Z LZ/Z M[ Dc DZCY3Z*Z(Z#Z(Z$Z(Z$Y'Y 9Z 2Z6\\ IY:` D} D} D| B| D} D})~z"
|
|
"/Y #~W M~W M~W M~W 7Y Y NX Y 6Y-Z JX0X JY-Y LZ-Y MY-Z MY-Y LZ-Y$~d%ZBXCY KY0X HY0X GX0X GX0Y @YAY @Y.Y DYAZ "
|
|
" 7W8X8W.W HW-W?e>W.W>[5W.W:[:W =W +ZAY LZ *YDU 5~`,~i#~Q F} GX.Y IX.X AZBY 7ZEZ KX "
|
|
")y HX 6~e 9TJ_ 7XCX?X6Y9\\BX 8Y CZ KX Nl !X 4Z/Z 4Z $\\ >Z LY5Z IZ I[0Z 5Z 8Z1Z >fHY =h "
|
|
" +i @Z HW>X3W?W/Z2Z KZ.[#[ \"Z#Z!Z MZ 0Z Z'Z(Z :Z \"Z 4ZF] 2Z 2Y@XLY@Y(Y;ZGZ*[ MZ!Z /Z M[&Z7[ K\\ 6Y 9Z(Z FZ"
|
|
"BZ MYFX<XGZ J[IZ *Z +[ MX FX HY Jb>Y FY.Y KZ %Y-Y K~X :Y 5Y.Y GY1Y 5Y NX 0e KY FY3Y2Y+Y1Y KZ-Y JY.Y"
|
|
" Y-X ;Y !m 2Y .Y1Y AZAZ GYGXEXGY >] .ZBY -[ 1e JX Ke LU4k IU8Y8T'Y2X AY0Y EX:[ FY-Z Ah 9Y1Y >XCZ 6YBY AY1Y&"
|
|
"Z8X8Z,Y@YAZ IY9Y IY@X@Y LY-Y Y-Y 5Y 5Z/Y JZ2Z 8[ .Z 0[!Z,[=Z=[)Z(Z\"]FZG]'Z M[1] 1X 1\\ @X @\\ L\\ AX DX 4"
|
|
"Z?U -Z (X4X H~W ;\\;W GTDX\"U s A[D[ 6X %T>WBX<T ,X EY1Y 1WEW \"s 2[D[ 9W7UHV KX(W MX7UI"
|
|
"W CY 7Z2Z IZ3Z HZ2Z IZ3Z HZ2Z IZ3Z(Z7Z ;Z IZ !Z Z !Z >Z !Z !Z \"Z :Z$[(Y;ZFY)Z M[/[ MZ/[ MZ/Z M[/Z M[ Ee EZC"
|
|
"X3[*Z(Z#Z(Z$Z(Z$Y(Z 9Z 2Z8^ IY9` Fb=Y Eb=Y Eb=X Cb>Y Eb=Y Eb=Y*b=~V/Y #~W M~W M~W M~W 7Y Y NX Y 6Y-Z JX0X JY"
|
|
"-Y LZ-Y MY-Z MY-Y LZ-Y CZCXBY KY0X HY0X GX0X GX0Y @YBZ @Y.Y CYBY 6W8X8W.W HW-W@g@X.W?[4W.W:[:W =W *YBZ "
|
|
" MZ (XDU 5~`,~i\"~ D{ FX.Y IX.X AZBZ 7YEY IX +y GX 6~e 9TG] 8WBW>X6Y8\\DY 8Y CZ "
|
|
" KX Nl !X 4Z/Z 4Z %\\ =Z LX4Z IZ I[0Z 5Z 9Z0Z <bFY ;i 1i =Z HW>X3W?W/~S KZ-Z\"Z \"Z#Z!Z MZ 0[!Z"
|
|
"'Z(Z :Z \"Z 4ZE] 3Z 2Y?XMX?Y(Y;ZGZ)Z MZ!Z /[ N[&Z6[ K\\ 7Y 9Z(Z FZCZ LZGX<XGZ JZH[ +Z ,\\ MX FY IY K"
|
|
"]8Y FY.Y KZ %Y-Y K~X :Y 5Y.Y GY1Y 5Y NX 0f LY FY3Y2Y+Y1Y KZ-Y JY.Y Y-X ;Y Mk 3Y .Y1Y @YAY FYGWDXGY >^ .YCZ ."
|
|
"[ )_ KX L_ ES/e FU8Z9T'Z3X AY0Y FY:[ FY-Z Cj 9Y1Y >XCY 6ZBZ BY1Y&Z8X9[,Y@YAZ IY9Y IY@X@Y LY-Y Y-Y 5Y 5Z/Y J"
|
|
"Z2Z 9\\ .Z /Z!Z,\\>Z>[(Z(Z!]GZH^'[ N[0\\ 1X 2\\ ?X ?[ M\\ @X DX 4Z?U -Z 'W4W G~W :]>X GTDY#U s @[D[ 7"
|
|
"X %U?WAX>U ,X EY1Y 1WEW \"s 3ZC[ 9X7UHV KW(W MX7UHW CY 7~S J~S H~S I~S I~S I~S)} ;Z IZ !Z Z"
|
|
" !Z >Z !Z !Z \"Z :Z$[(Y;ZFY)Z MZ-Z MZ/[ N[/[ N[/Z MZ Eg F[EX2[*Z(Z#Z(Z$Z(Z$Y(Z 9Z 2Z9^ HY7_ G]8Y F^8Y F^8X D]8"
|
|
"Y E]8Y F^8Y+^8~V/Y #~W M~W M~W M~W 7Y Y NX Y 6Y-Z JX0X JY-Y LZ-Y MY-Z MY-Y LZ-Y BYDXAY KY0X HY0X GX0X GX0Y"
|
|
" @ZCY ?Y.Y CYBY 5W9X8W.W HW-WAiAW,WA[3W.W9Y9W >X *ZCZ 6~d IYET 4~`,~i!| By EX.Y IX.X AYAZ 7ZFY IX "
|
|
" Z 3X 6~e 9TF\\ 9WBX=W7Z7\\EX 7Y CZ KX Nl \"X 3Z/Z 4Z &\\ ;Z M~Z %Z I[0Z 6[ 9Z/"
|
|
"Y 8ZCZ 8i 6~d 5i ;Z HW>X3W?W0~T KZ-Z\"Z \"Z$[!Z MZ 0[!Z'Z(Z :Z \"Z 4ZD] 4Z 2Y?XMX?Y(Y:ZHZ)Z N[!Z /[ NZ%Z6["
|
|
" J[ 7Y 9Z(Y DZDZ LZGW:WGZ K[GZ +Z -\\ LX EX IY L\\6Y FY.Y KZ %Y-Y K~W 9Y 5Y.Y GY1Y 5Y NX 0XM\\ MY "
|
|
"FY3Y2Y+Y1Y KZ.Z JY.Y Y-X ;Y Ji 4Y .Y1Y @YAY FYGWDXGX >` /YCY .[ $\\ LX M\\ AR+` CT9[:U'Z3X AY0Y FY9Z FY-Z "
|
|
"D` .Y1Y >YEZ 6YAZ BY1Y&Z8X9[,ZAYAZ IY9Y IY@X@Y LY.Z Y-Y 5Y 5Z/Y KZ1Z 9[ -Z /Z\"[+[>Z>[(Z(Z ^IZJ_&[ NZ.\\ 2X 3"
|
|
"\\ >X >[ \\ ?X DX 4Z?U -Z 'X6X G~W 9^@X GUDY$T Ns ?[CZ 8X %U?WAY?U ,X EY1Y 1WEW \"s 4"
|
|
"ZCZ 7W7UGV LX)X MW7UGW CY 8~T J~T I~S J~T I~T K~T*~ ;Z IZ !Z Z !Z >Z !Z !Z \"Z :Z$[(Y:ZGY)[ NZ-Z N[.Z N[/[ N"
|
|
"[/[ NZ Fi G[FX1Z)Z(Z#Z(Z$Z(Z$Z)Z 9Z 2Z<a HY5^ I[5Y F[5Y G\\5X E\\6Y F\\6Y F[5Y+[5~V/Y #~V L~V L~W M~W 7Y Y NX"
|
|
" Y 6Y-Z JX0X JY-Y LZ-Y MZ.Z MY-Y KY-Y BYDW@Y KY0X HY0X GX0X GX0Y ?YDZ ?Y.Y BYDY 4W9X9X.W HW-XC\\L[BW,WB["
|
|
"3X.W HW >X )YCY 5~d IYFU 4~`,~i!{ @x EX.Y IX.X AY@Y 7ZGZ IX Z 3X 6~e 9TD[ ;XBX=X8"
|
|
"Z6\\GY 7Y CY JX Nl \"X 2Y/Z 4Z '\\ :Z M~Z %Z I[0Z 6Z 8Z/Z \"Z 5i 9~d 8i 8Z HW>X3W?W0~U LZ-Z\"[ "
|
|
"#Z$[!Z MZ /Z!Z'Z(Z :Z \"Z 4ZC] 5Z 2Y?XNY?Y(Y:ZHZ)[ [!Z .Z NZ%Z5[ K[ 7Y 9Z(Y DZDY KZHX:XHY K[EZ ,Z .\\ KX EX"
|
|
" IY LZ4Y FY.Y KZ %Z.Y KZ <Y 5Y.Y GY1Y 5Y NX 0XL\\ NY FY3Y2Y+Y1Y KZ.Z JY.Y Y.Y ;Y Ff 5Y .Y1Y @ZCZ FY"
|
|
"HXCWHY ?b /YDY /[ ![ MX M[ @Q%W ?T9\\;U'Z3X AY0Z GX8Z FY-Z E\\ )Y1Y =XEY 6Z@Y BY1Y&Z9Y9[,ZAYAZ IY9Y IY@X@Y "
|
|
"LY.Z Y-Y 5Y 4Y/Y KZ0Z ;[ ,Z /[#Z*\\?Z?\\(Z(Z N`LZL`$Z NZ-\\ 3X 4\\ JPCXCP J[\"\\ >X DX 4Z?U -Z 'X6X G~W "
|
|
"8^BX FUDY%U Ns =ZCZ 9X $U@W@X?T +X EY1Y 1WEW \"s 5ZCZ 7W7UFV LW(W MX8UFW CY 8~U K~T J~U K~"
|
|
"T J~U K~T*~ ;[ JZ !Z Z !Z >Z !Z !Z \"Z :Z$Z'Y9YGY)[ [-[ [.Z N[.Z NZ.[ NZ G\\L[ GZGX0Z)Z(Z#Z(Z$Z(Y#Z)Z 9Z 2~ "
|
|
"GY4] J[4Y G[4Y G[4X EZ4Y FZ4Y G[4Y,[4X 1Y #Y Y Y Y 9Y Y NX Y 6Y-Z JX0X JY-Y LZ-Y MZ.Z MY-Y KY-Y BYEW?Y"
|
|
" KY0X HY0X GX0X GX0Y ?YDY >Y.Y BYDY 4W9X9W-X JX,WD\\J[CW,WC[2W-X JX >X )YDZ 5~d HXFU 4~_+~i z @w DX.Y"
|
|
" IX.X BZ@Y 6YGZ IY Y @~e 9TCZ ;WAX=X8Y4\\HX 6Y CY JX Mj !X 2Y/Y 3Z (\\ 9Z"
|
|
" M~Z %Z I[0Z 6Z 8Z/Z \"Z 2i <~d ;i 5Z HW>X3W@W/~U LZ-[#[ #Z$Z Z MZ /Z!Z'Z(Z :Z \"Z 4ZB] 6Z 2Y>a>Y(Y9ZIZ)[ "
|
|
"Z Z .Z [%Z4Z JZ 7Y 9Z)Z DZEZ JYHX:XIZ KZD[ -Z /\\ JX EX IY MZ3Y FY.Y JY %Z/Z JY <Y 5Y.Y GY1Y 5Y NX"
|
|
" 0XK\\ Y FY3Y2Y+Y1Y KZ.Z JY.Y Y.Y ;Y Bc 6Y .Y1Y ?YCY DYIXCXIY @c /YEY /[ NZ MX N[ *U;^=U&Z4Y AY/Y HY7X"
|
|
" EY-Y E[ 'Y1Y =YFY 6Z@Z CY1Y&Z9Y9Z+ZAYAZ IY9Y IY@X@Y LZ/Z Y-Y 5Y 4Y0Z KZ0Z <[ +Z .Z$[)\\@Z@\\'Z(Z M~Q#Z [,\\ 4"
|
|
"X 5\\ JRDXDR J[$\\ KQCXDQ #Y 4Z?U -Z &X8X F~W 7_EY EUDY&U Ns <ZCZ :X $U@W?XAU +X EY1Y 1WEW "
|
|
" \"s 6ZCZ 7X8UEV MX)X MW7UFW DZ 8~U L~V K~U L~V K~U K~U+~ :Z JZ !Z Z !Z >Z !Z !Z \"Z :Z%['Y9ZHY(Z [-[ Z"
|
|
"-[ Z-Z [-Z [ H\\J[ HZHY1[)Z(Z#Z(Z$Z(Y#Z)Z 9Z 2} FY2\\ KZ3Y GZ3Y GY3Y FZ3Y GZ3Y GZ3Y,Z3X 1Y #Y Y Y Y 9Y Y "
|
|
"NX Y 6Y-Z JX0X JY-Y KY.Z MZ.Z MY-Y KY-Y BYFX?Y KY0X HY0X GX0X GX0Y >YEY >Y.Y BYEZ 4X:X9W,W JW+WE\\H[EX,X"
|
|
"E[1W,W JW =X )ZEY 4~d HYHU 2~^+~i Nx >u CX.Y IX.X BY?Z 7ZHY GX Z A~e 9TCZ <XAW<"
|
|
"X8Z4\\JY 6Z DY JX 4X 1Z0Y 3Z )\\ 8Z M~Z %Z I[0Z 7Z 7Z/Z \"Y /i >~d >i 2Z GV>X3W@W0~V LZ-[\"Z "
|
|
"#Z%[ Z MZ /[\"Z'Z(Z :Z \"Z 4ZA] 7Z 2Y>a>Y(Y9ZIZ(Z Z Z .[![%Z4[ KZ 7Y 9Z)Z CZFZ JZIX:XIZ L[CZ -Z /[ IX DX J"
|
|
"Y MY2Y FY.Y JY %Z/Z JY <Y 5Y.Y GY1Y 5Y NX 0XJ\\ !Y FY3Y2Y+Y1Y JY.Z JY.Y Z/Y ;Y ?a 7Y .Y1Y ?YCY DYIWBX"
|
|
"IY @d /YFY 0[ LY MX NZ )U<VNW=U&Z4Y AY/Y HY8Y EZ.Y F[ &Y1Y =YGZ 7Z>Y CY1Y&Z9Y9Z+ZAYAY HY9Y IY@X@Y LZ/Y N"
|
|
"Y-Y 5Y 4Y0Z LZ.Y =[ *Z .[%Z(]AZA]'Z(Z L~\"[![+\\ 5X 6\\ JTEXET J[&\\ KSDXES $Y 3Y?U -Z &Y:Y F~W 5_GX DU"
|
|
"CZ9QAU DZCZ ;X $VAW?YBU +X EY1Y 1WEW DZCZ 6W7UEV NX)X MX8UEW DY 8~V L~V L~W M~V K~V M~V"
|
|
",~P :Z JZ !Z Z !Z >Z !Z !Z \"Z :Z%['Y8ZIY(Z Z+Z Z-[![-[![-[![ I\\H[ I[JY0[(Y(Z#Z(Z$Z)Z#Z)Z 9Z 2| EY1\\ LY2Y "
|
|
"HZ2Y HZ3Y FY2Y GY2Y GY2Y-Z2X 1Y #Y Y Y Y 9Y Y NX Y 6Z.Y IX0X JY-Y KY.Z MZ.Z MY-Y KY.Z BYGX?Z KY1Y HY0X"
|
|
" GX0X GX0Y >YFZ >Y.Y AYFY 2W:X:X,W JW+XG\\F[FW+XF[1X,W JW =X (YEY 4~d GXHU 2kNRMk*tNq Mv <s BX.Y IY/X"
|
|
" BY>Y 7ZIZ GY !Z A~e 9TBY <W@W;W8Z3\\KX 5Z DY JX 4X 1Z1Z 3Z *\\ 7Z M~Z %"
|
|
"Z HZ0Z 7Z 7Y.Z #Z ,i A~d Aj 0Z GV=W4X@W0~W MZ-[\"[ $Z%[ Z MZ /[\"Z'Z(Z :Z \"Z 4Z@] 8Z 2Y>`=Y(Y8ZJZ([\"[ Z "
|
|
".[!Z$Z3Z KZ 7Y 9Z)Z CZGZ IZIW8WIZ M[AZ .Z 0\\ IX DX JY MY2Y FY.Y JY $Y/Z JY <Y 5Z/Y GY1Y 5Y NX 0XI"
|
|
"\\ \"Y FY3Y2Y+Y1Y JY.Z JY.Y NY/Y ;Y ;] 7Y .Y1Y >YEY CYIWBXIX @f 0YGZ 0[ LZ NX NY 'U>WMW?V&Z4Y AY/Y HY8Y"
|
|
" EZ.Y FZ %Y1Y <XGY 6Z>Y CY1Y&[:Z:Z+ZAYAY HY9Y IY@X@Y LZ/Y NZ.Y 5Y 4Y0Y KZ.Z ?\\ *Z -['['\\AZB]&Z(Z K|![!Z)\\ 6"
|
|
"X 7\\ JVFXFV J[(\\ KUEXFU %Y 3Y?U -Z %Y<Y /Z M`KY BUC[=SAU CZCZ <X #UAW>XCU *X EY1Y 1WEW"
|
|
" F[CZ 6X8UDV NW)X MX8UDW DY 8~W N~W L~W M~V L~W M~W-~P :[ KZ !Z Z !Z >Z !Z !Z \"Z :Z%['Y8ZIY([\"[+["
|
|
"\"[,Z![-[!Z,[!Z I\\F[ J[KY/Z'Z)Z#Z)Z#Z)Z#Z)Z 9Z 2{ DY0[ MY1Y HY1Y HY2Y FY2Y HZ2Y HY1Y-Y2Y 1Z $Y Y Y Z :Y Y"
|
|
" NX Y 6Z.Y IX0X JZ.Y KY.Z MZ.Y LZ.Y KY.Z BYHX>Z KY1Y HY1Y GX0X GX0Y =YGY =Y.Y AYFY 2X;X:W+X LX*WH\\D[HX"
|
|
"*WG[0W+X LX =X (YFZ 4~d GYIU 2jLQLj*pNRNq Lt :q AX.Y IY0Y CZ>Y 6YIZ FX !Z A~e 9T"
|
|
"BZ >W?W;W8Z2\\MY 4Y DY JX 4X 1Z1Z 3Z +\\ 6Z M~Z %Z HZ0Z 8[ 7Y.Z #Z )i D~d Ci -Z GV=W4XAW/~W M"
|
|
"Z-[\"[ $Z&[ NZ MZ .Z\"Z'Z(Z :Z \"Z 4Z?] 9Z 2Y=_=Y(Y8ZJZ([\"[ Z -Z\"[$Z3[ L[ 8Y 9Z)Z BZHZ IZJX8XJY LZ@[ /Z 1\\"
|
|
" HX DX JY NY1Y FZ0Z JY $Y/Z JY <Y 5Z0Z GY1Y 5Y NX 0XH\\ #Y FY3Y2Y+Y1Y JY.Y IY/Z NY/Y ;Y 9\\ 8Y .Y1"
|
|
"Y >YEY BXJXAWJY A[N[ 1YGY 0[ JY NX NY 'V@WLX@U$Y5[ BY/Y HX7X DZ.Y FY $Y1Y <YIZ 6Y=Z DY1Y&[:Z:Z*YAYAY HY9"
|
|
"Y IY@X@Y LZ/Y NZ/Z 5Y 3Y1Y KY-Z ?[ )Z -[([%]CZC]%Z(Z Jy M[#[(\\ 7X 8\\ JXGXGX J[*\\ KWFXGW &Y 3Y?U -Z %Z>Z "
|
|
"/Z K_MZ BUC]BVBU A[D[ >X #VBW=XDU *X EY1Y 1WEW G[D[ 5W8UCV X*X LW8UCW EZ 8~W N~X M"
|
|
"~W N~X M~W N~X.~Q :[ KZ !Z Z !Z >Z !Z !Z \"Z :Z&[&Y7ZJY([\"[+[\"[,[\"Z+[#[+Z\"[ J\\D[ JZKX/['Z*[#[*Z#Z)Z#Z)Z"
|
|
" 9Z 2z CY/Z MY1Y HY2Z HY2Y GY1Y HY1Y HY1Y-Y2Z 2Z $Z !Z !Z !Z :Y Y NX Y 6Z.Y IX0X JZ/Z KY.Z LY.Y LZ/Z KY.Z "
|
|
" BYHW=Z KY1Y GX1Y GX1Y GX0Y =YHZ =Y/Z @YHY 1X;X;X*W LW)XJ\\B[IX*XI[0X*W LW <X (ZGY 3~d GYJU 1iKQKi*pN"
|
|
"RMo Jr 9q AX.Y HX0Y CZ>Z 7ZJY EY !Z 1X@X &TAY ?X?W;W8Z1\\NX 3Y DY JX 5Y 0"
|
|
"Y1Z 3Z ,\\ 5Z M~Z %Z HZ0Z 8Z 6Y.Z #Z &i G~d Fi )X FV=X5XAW0~Y NZ-[!Z $Z&[ NZ MZ .[#Z'Z(Z :Z \"Z 4Z>] :Z 2"
|
|
"Y=_=Y(Y7ZKZ'Z#[ NZ -[#[$Z2[ M[ 8Y 9Z)Z BZHZ HYJX8XKZ M[?Z /Z 2\\ GX CX KY NY1Y FZ0Z JZ %Y/Z JZ =Y 4"
|
|
"Y0Z GY1Y 5Y NX 0XG\\ $Y FY3Y2Y+Y1Y JZ/Y IZ0Y MY/Y ;Y 8[ 8Y .Y1Y >ZGZ BYKXAXKY B[LZ 0YHY 1[ IY NX Z &VB"
|
|
"XKXBV$Y5[ BY/Y HX8Y CY/Z GY #Y1Y <YIY 6Z<Y DY1Y%Z:Z:Z*YAYAY HY9Y IY@X@Y LZ/Y NZ/Z 5Y 3Y2Z LZ,Z A[ (Z ,[)[%^DZD^"
|
|
"%Z(Z Iw L[#['\\ 8X 9\\ JZHXHZ J[,\\ KYGXHY 'Y 3Z@U -Z $[B[ .Z NW $j @UCpBU @[D[ ?X \"UBW=XEU )X "
|
|
" EY1Y 1WEW H[D[ 5W8UBV W*X LX8UCW F[ 9~Y ~X N~Y ~X N~Y ~X.~Q 9[ LZ !Z Z !Z >Z !Z !Z \"Z :Z&[&"
|
|
"Y7ZJY'[#Z)Z#[+[#[+[#[+[#[ K\\B[ K[MX.['Z*Z!Z*Z#Z)Z#Z)Z 9Z 2x AY.Z NY2Z HY2Z IY1Y GY1Y HY1Y HY2Z-X1Z 2Z $Z !Z !Z"
|
|
" !Z :Y Y NX Y 5Y/Z IX0X JZ/Z KZ/Y KY.Y LZ/Z KZ/Y AYIW<Y IX1Y GX1Y GX1Y GY2Z =YHY <Z0Y ?YHY 0X<X;X*X N"
|
|
"X)XJ[@[KX(XK[/X*X NX <X 'YHZ 3~d FXJU 0hKQKh(nMRMo Jq 7o @X.Y HX0X BY=Z 7ZKZ DY \"Z "
|
|
" 1W?X &TAY ?W>W;W8Z0e 3Y EZ JX 5X /Z2Y 2Z -\\ 4Z M~Z %Z HZ0Z 8Z 6Z/Z $Z #j J~d Ii CW>X6Y"
|
|
"BX0~Y NZ-[![ %Z'\\ NZ MZ -Z#Z'Z(Z :Z \"Z 4Z=] ;Z 2Y<]<Y(Y7ZKZ'[$[ NZ -[$[#Z1Z M[ 8Y 8Z*Z BZIZ GZKX8XKZ N[>[ 0"
|
|
"Z 3\\ FX CX KY NY2Z FZ0Y IZ %Y/Z JZ =Y 4Y0Z GY1Y 5Y NX 0XF\\ %Y FY3Y2Y+Y1Y JZ/Y IZ0Y MY/Y ;Y 7Z 8Y"
|
|
" .Y2Z =YGY AYKW@XKY BZJZ 1YIY 1[ HY NX Y %WEYIYFW#Y5[ BY/Y HX8Y CY/Z GY #Y1Y ;XIY 6Y;Z EY1Y%Z:Z:Z*ZBYBZ "
|
|
"HY9Y IY@X@Y LZ/Y MY/Z 4Y 4Y2Y KZ,Z B[ 'Z +[+[#_FZF_$Z(Z Gt JZ$[%\\ 9X :\\ J\\IXI[ I\\/\\ K[HXI[ (Y 3Z@U -Z "
|
|
"%^F^ /Z X \"f >VBnCU >[D[ @X \"VCW<XGV )X EY1Y 1WEW I[D[ 5X8UBV!W)X LW8UBW FZ 8~Y!~Z"
|
|
" ~Y!~Z ~Y ~Y0~R 9[ LZ !Z Z !Z >Z !Z !Z \"Z :Z'[%Y6ZKY'[$[)[$[*[$[*[%[*[$[ K\\@[ Le.[&Z*Z!Z*Z\"Z*Z#Z*[ 9Z 2v "
|
|
"?Y.Z NY2Z HX1Z IY1Y GY1Y HY2Z HX1Z.Y1Z 1Y #Y Y Y Y :Y Y NX Y 5Y/Z IX0X IY/Z KZ/Y KY/Z KY/Z KZ/Y 7\\ 7ZKW"
|
|
";Y IX1Y GX1Y GY2Y GY2Z <YIY <Z0Y ?YIZ 0X<X<X)X Y(XJY>YJX(XJY/X)X Y <X 'ZIZ 3~d FYKT /gJQJg(nMRLm Hp 6"
|
|
"m ?X.Y HY1X CZ<Y 6YKZ DY \"Z 1W?W %TAY @X>W;W7Y/c 2Y EY IX 5X /Z3Z 2Z .\\"
|
|
" 3Z M~Z &Z FY1Z 8[ 6Z/Z $Z i L~d Li @W>Y7YBW0Z*Y NZ-[![ %Z'[ MZ MZ -[$Z'Z(Z :Z \"Z 4Z<] <Z 2Y<]<Y(Y6ZL"
|
|
"Z'[%[ MZ ,[%[#Z1[ N[ 8Y 8Z+[ AZJZ GZKW6WKZ NZ<[ 1Z 3[ EX CX KY NY2Z FZ0Y IZ %Z1[ IY =Y 4Z1Z GY1Y 5Y"
|
|
" NX 0XE\\ &Y FY3Y2Y+Y1Y JZ0Z IZ0Y MZ1Z ;Y 6Y 8Y .Y2Z =YGY AYKW?WKX B[J[ 1YJY 2[ GY NX Y $ZL[H[JY#Y6\\ "
|
|
"BY0Y GX8X BZ0Z GY #Y1Y ;YKZ 7Z:Y EY2Z%Z:Z:Z*ZBYBZ HY9Y IY@X@Y L[1Z MY/Y 3Y 4Z3Y LZ+Z C\\ 'Z +[,[!_GZG_#Z(Z Fq H"
|
|
"[%[$\\ :X ;\\ H\\JXJ\\ H\\1\\ J\\IXJ\\ (Y 3Z@U -Z &x 0Z X c <UAmDV =[CZ AX !VDW<YHU (X E"
|
|
"Y1Y 1WEW JZCZ 3W8UAV\"X*X LX9UAW G[ 9Z*Y!Z+Z Y*Y!Z+Z Y*Z\"Z+Z0Z3Z 8[ MZ !Z Z !Z >Z !Z !Z \"Z :Z(\\%"
|
|
"Y6ZKY&[%[)\\&[)[%[)[%[)[%[ L\\>[ Ld.[&Z*Z!Z*Z\"Z+[\"Z+Z 8Z 2s <Y-Y NX1Z IY1Z IY2Z GY2Z HY2Z HX1Z.Y1Z 1Z $Y Y "
|
|
"Z !Z ;Y Y NX Y 5Y/Z IX0X IY/Y JZ0Z KZ0Z KY/Y IY0Z 7\\ 6YLX<Z IX1Y GY2Y GY2Y GY2Z <YJZ <Z0Y >YJY .X=X=Y("
|
|
"X!X'YJW<WJX&XJW/Y(X!X ;X &YIY #[ LYLU .fJQJf&lLRLm Gn 4k >X.Y HY2Y CZ<Z 7YKY BY #[ "
|
|
" 3X@X %TAY @W=W;W7Z0b 1Y EY IX 5X /Z3Z 2Z /\\ 2Z )Z JZ FZ2Z 8Z 5Z/Z %Z Ki :j >W=X8ZC"
|
|
"W/Z*Z Z-Z N[ &Z(\\ MZ MZ -\\%Z'Z(Z :Z \"Z 4Z;] =Z 2Y<]<Y(Y6ZLZ&[&[ MZ ,\\'[\"Z0Z NZ 7Y 8Z+Z @ZJY FZLX6XLY N[;"
|
|
"Z 1Z 4\\ EX BX LY NY2Z F[2Z HZ %Y1[ IZ >Y 4Z2[ GY1Y 5Y NX 0XD\\ 'Y FY3Y2Y+Y1Y IY0Z IZ1Z MZ1Z ;Y 6Y"
|
|
" 8Y .Y2Z =ZIZ @XLX?WLY C[H[ 2YKZ 3[ EX NX Y $hFh\"Z7\\ BY0Y GX9Y BZ1Z FX \"Y1Y ;YKY 6Y9Y EY2Z%Z;[:Z*ZBYB"
|
|
"Y GY9Y IY@XAZ L[1Y LZ1Z 3Y 3Y3Y LZ*Z D[ &Z *[-[ aJZJa\"Z(Z Cl F\\'[\"\\ ;X <\\ F\\KXK\\ F\\3\\ H\\JXK\\ 'Y "
|
|
"2ZAU -Z 'z 1Z X Na ;V@jDV :ZCZ BX UDW;XIU 'X EY2Z 1WEW KZCZ 3X9U@V\"W*X LX9VAW H[ "
|
|
"8Z*Z\"Y)Y!Z*Z\"Z*Y!Z*Z\"Z*Z1Z3Z 8[ MZ !Z Z !Z >Z !Z !Z \"Z :Z(\\%Y5ZLY&[&['[&[([&[)\\'\\)[&[ L\\<[ Mc.[$Z,[!"
|
|
"[,[\"Z+Z!Z+Z 8Z 2n 7Y-Y NX1Z IY2[ IY2Z GY2Z HY2Z IY2[.Y2\\ 2Z $Z !Z !Z !Z ;Y Y NX Y 5Z0Y HX0X IZ1Z IY0Z KZ0"
|
|
"Y JZ1Z IZ1Z 7\\ 6YMX;Z IY3Z GY2Y GY2Y GY2Z ;YKY ;Z1Z >YJY .Y>X=X'Y#Y&XIU:UJY&YJU.X'Y#Y ;X &YJZ #Z JXLU"
|
|
" -dIQId%kKRKk El 2j >X.Y HY2Y CY;Z 7ZMZ BZ #Z 3X@X %TAX @W<W;W7Z/a 0Y FY IX "
|
|
" 6X -Z4Z 2Z 0\\ 2[ )Z JZ FZ2Z 8Z 5Z/Z %Z Hi @j :V=Y9ZDX/Z*Z Z-Z N\\ 'Z)\\ LZ MZ ,[%Z'Z(Z :Z \"Z"
|
|
" 4Z:] >Z 2Y;[;Y(Y5ZMZ&\\([ LZ +['[\"Z0[ Z 7Y 8[,Z ?YKZ EYLX6XLY [:[ 2Z 5\\ DX BX LY NY3[ F[2Z HZ %Y1"
|
|
"[ IZ >Y 3Y2[ GY1Y 5Y NX 0XC\\ (Y FY3Y2Y+Y1Y IZ2Z H[2Z LY1Z ;Y 6Z 9Y .Y2Z <YIY ?YMX?XMY CZFZ 2YKY 3[ DY X "
|
|
"Y #gEf!Z7\\ BY0Y GX9Y BZ1Z FX \"Y1Y :XLZ 7Z9Z FY2Z%Z;\\<[)ZCYCZ GY9Y IZAXAZ L[1Y LZ1Z 3Y 3Y4Y KZ*Z E[ %Z )["
|
|
"/[ MdNZNd!Z(Z Ag B['[!\\ <X =\\ D\\LXL\\ D[4\\ F\\KXL\\ &Z 3ZAU -Z (| 2Z X L^ 9V?fBU 8ZCZ CX V JV "
|
|
" CY2Z 1WEW LZCZ 2W9V@V#X+X KW8U@W I[ 7Z*Z#Z)Z\"Z)Y#Z)Z\"Z)Y#Z)Z2Z2Z 7[ NZ !Z Z !Z >Z !Z"
|
|
" !Z \"Z :Z)\\$Y5ZLY%[(\\'\\(['\\(['['['[(\\ M\\:[ Ma-[$Z,Z NZ,Z![,Z!Z,[ 8Z 2Z #Y-Y NX2[ IY2[ IY2Z GY3[ HX2[ IY2"
|
|
"[.Y2\\ 2Z $Z !Z !Z Y ;Y Y NX Y 5Z1Z HX0X IZ1Z IZ1Z JZ2Z JZ1Z IZ1Z 7\\ 6c:Z IY3Z GY3Z GY3Z GY3[ ;YKY ;[2Z ="
|
|
"YLY ,Y?X>Y&Y%Y%YIS8SJY$YJS.Y&Y%Y :X &ZKY #Z IYNU ,cISIb#jKRJi Cj 1i =X.Y GY4Y BY:Y 7ZMZ AZ "
|
|
" $[,P )W?X %TBY AX<W;W7[/_ /Y FY IX 6X -Z5Z 1Z 1\\ 1Z (Z K[ EY2Z 9Z 4Z0[ &[ F"
|
|
"j Ei 7W=Y;[EX/Z(Z!Z.[ M[!P'Z*] LZ MZ ,\\&Z'Z(Z :Z \"Z 4Z9] ?Z 2Y;[;Y(Y4YMZ%[)\\ LZ +\\)[!Z/Z Z 7Y 7Z-[ ?Z"
|
|
"LZ EZMX6XMZ Z8[ 3Z 6\\ CX BX LY NY3[ F[2Y GZ %Z3\\ HZ ?Y 3Z4\\ GY1Y 5Y NX 0XB\\ )Y FY3Y2Y+Y1Y IZ2Z "
|
|
"H[2Y KZ3[ ;Y 6Z 9Y .Z4[ <YIY ?YMW>XMY DZDZ 2YLY 3[ DY X Y \"eCd NY8^ CY0Y GX:Y @Z2Z FX \"Y1Y :YMY 6Y7Y "
|
|
"FY2Z%[<\\<Z(ZCYCZ GY9Y HYAXAY K\\3Z KZ2Z 3Y 3Z5Y LZ)Z F[ $Z ([1[ K~U Z(Z ;[ <\\)[ N[ <X <Z B\\MXM\\ BZ3Z D\\L"
|
|
"XM\\ %Z 3ZAU -Z )~ 3Z X J] 9V>a@V 7YBY CX NV LV BZ3Z 1WEW LYBY 2W8U?V#W+X KX9U"
|
|
"?W J[ 7Z(Y#Z)Z#Z(Z$Z)Z\"Y(Z$Z(Y2Z2Z 7\\\"P NZ !Z Z !Z >Z !Z !Z \"Z :Z*\\#Y4ZMY%\\)[%[)\\&[)\\'\\)\\'\\)[ M\\8"
|
|
"[ N`-[#Z,Z NZ,Z Z-[![-[ 8Z 2Z #Y-Y NX2[ IY2[ IY3[ GY3[ HY3[ HX2[.Y3^ 2Z $Z !Z !Z !Z <Y Y NX Y 4Z2Z HX0X HZ2"
|
|
"Z IZ2Z IZ2Z IZ2Z IZ2Z 6\\ 5a:Z HY3Z GY3Z GY3Z GY3[ ;YLY :[2Y <YLY ,Y?X?Y$Y'Y#YIQ6QIY$YIQ.Y$Y'Y 9X %YLZ "
|
|
"$Z HYNU +aHSH`!hJRIg Bi /g <X.Y GY4Y CZ:Y 6YMY @[ $Z-Q )W?W $TBY AW;W<X6Z.] .Y GY"
|
|
" HX 6X -Z5Z 1Z 2\\ 0Z (Z L[ DZ4Z 8Z 4[1Z %Z Bj Ki 4W=Z=\\GY.Z(Z!Z.[ M\\#Q'Z+] KZ MZ +\\'Z"
|
|
"'Z(Z :Z \"Z 4Z8] @Z 2Y:Y:Y(Y4ZNZ%\\*[ KZ *\\+\\!Z/[ \"[ 7Y 7Z-Z >ZMZ DZMW4WMZ![7Z 3Z 7\\ BX AX MY NY3"
|
|
"[ F\\4Z FZ &Z3\\ HZ ?Y 3Z4\\ GY1Y 5Y NX 0X@[ *Y FY3Y2Y+Y1Y HZ3Z H\\4Z KZ3[ ;Y 5Y 9Y -Y4[ ;YKY >YNX=WNY D[D[ "
|
|
"3YMY 3[ CY X Y !cAb MZ9^ CZ2Z GX:Y @Z3Z EX \"Y1Y :YMY 7Z7Y FZ4[$Z<\\<Z(ZCYCY FY9Y HYAXBZ K\\3Z KZ3Z 2Y 2"
|
|
"Y6Z LZ(Z H\\ $Z (\\3[ I~R MZ(Z :Z ;\\+\\ MY ;X ;X @\\NXN\\ @X1X B\\MXN\\ $Z 2ZBU -Z *~Q 4Z X I] :W9U;V "
|
|
" 5XAX CX MV NV AZ3Z 1WEW LXAX 2X8s+W,Y JW8t#\\ 7Z(Z%Z'Y#Z(Z$Y'Z$Z(Z$Z(Z4Z1Z 6[#Q NZ !"
|
|
"Z Z !Z >Z !Z !Z \"Z :Z+]#Y4ZMY$[*\\%\\*[%\\+\\%\\+\\%\\+\\ N\\6[ N^-\\#[.[ N[.[ [.Z NZ-Z 7Z 2Z #Y-Y NY4\\ IY3"
|
|
"\\ IY3[ GY3[ HY4\\ HX3\\.Y3^ 2Z $Z !Z !Z !Z <Y Y NX Y 4Z3Z GX0X HZ3Z GZ3Z IZ3[ IZ3Z GZ3Z 6\\ 5`9Z HY4[ GY4["
|
|
" GZ5[ GZ5\\ :YMY :\\4Z ;XMZ +Y@X@Y#Z)Z\"Y(Y\"Y(Y#Z)Z 9X %ZMZ %Z F_ )^GSG^ NfIRHe @g -e ;X.Y GZ6Z CY9"
|
|
"Z 7ZNY ?[ %[/R *X@X $TBY BX;X=X6[.] /Y GY HX 7X +Z7Z 0Z 3\\ 0[ (Z L[ DZ4"
|
|
"Z 9[ 3Z2[ &Z >i i 2W<Z?]HZ.Y'Z!Z/\\ L\\&S'Z,] JZ MZ *\\(Z'Z(Z :Z \"Z 4Z7] AZ 2Y JY(Y3e$\\,\\ KZ )\\-"
|
|
"\\ Z.Z \"[ 7Y 7[/[ =ZNZ DZNX4XNY![6[ 4Z 7[ AX AX MY NY4\\ F\\4Z F[ &Z5] H[ @Y 2Z6] GY1Y 5Y NX 0X?[ +"
|
|
"Y FY3Y2Y+Y1Y HZ4Z G\\4Z JZ5\\ ;Y 6Y 8Y -Y5\\ ;YKY =XNX=WNY E[B[ 3YNY 4[ BY X Y N_=_ LZ:_ CZ2Y FX;Y >Z4"
|
|
"Z EY #Y1Y 9XNZ 7Y6Z GZ4[$Z=]=['ZDYDZ FY9Y HZBXBZ K]5Z J[5[ 2Y 2Z7Y L[(Z H[ #Z '\\5[ F~ LZ(Z :Z :\\-\\ KW :X :"
|
|
"V >r >V/V @s #Z 2[CU -Z +[MeL[ 5Z X G\\ :W!V 3W@W 7V!W AZ4[ 1WEW LW@W 1W7s,X-"
|
|
"Y JX8t$\\ 7Z'Z%Z'Z$Z'Y%Z'Z$Z'Y%Z'Z4Z1Z 6\\&S NZ !Z Z !Z >Z !Z !Z \"Z :Z,]\"Y3ZNY$\\,\\#\\,\\$\\,\\$\\-\\$\\,"
|
|
"\\ N\\4[ ]-\\![/Z LZ/[ N[/[ N[/[ 7Z 2Z #Y-Y NY4\\ HY5] IY4\\ GY4\\ HY4\\ HY4\\.Z5` 2Z $Z !Z !Z !Z =Y Y NX Y "
|
|
"3Z4Z GX0X H[5[ GZ4Z GZ4Z H[5[ GZ4[ 6\\ 5_9[ HZ5[ GZ5[ FY5[ FY5\\ :YNZ :\\4Z ;YNY )YAXAZ\"Z+Z!Z*Y Y*Z\"Z+Z 8"
|
|
"X $YMY %[ F^ '\\FSF\\ LcGRGc >f ,c :X.Y FZ7Y BY8Y 7e >[ %[1S -Y 'X@X ;Q:TCZ CX:X=X"
|
|
"5[.] /Y HY HX NZ GZ 'X +[8Z 0Z 4\\ 0[ 'Z M\\ CZ6[ 9Z 2[3[ '[ 0Y Y ?f f BX DW=\\C_J[.Z&Z\"Z0\\ "
|
|
"J\\(T'Z._ JZ MZ *])Z'Z(Z :Z \"Z 4Z6] BZ 2Y JY(Y3e#\\.\\ JZ )]/\\ NZ.[ NQ'[ 6Y 6[0[ =ZNZ CYNX4XNY!Z4[ 5Z 8[ @X"
|
|
" AX MY NY5] F]6Z DZ &Z5] G[ AY 2[8^ GY1Y 5Y NX 0X>[ ,Y FY3Y2Y+Y1Y H[6[ G]6Z IZ5\\ ;Y 6Y 8Y -Z6\\ ;Z"
|
|
"MZ =b=b EZ@Z 3d 5[ AY X Y L[:\\ IZ;` D[4Z FX<Z >Z5[ EY #Y1Y 9c 7Z5Y GZ5\\$[>^>['[EYE[ FY9Y HZBXCZ J]5Z "
|
|
"IZ5Z 1Y 1Y8Z LZ&Z J[ \"Z &\\8] E| KZ(Z :Z :]/] JU 9X 9T <p <T-T >q \"Z 1ZCU -Z ,[JaI[ 6Z X F\\ :W#V 1"
|
|
"V?V 7W#W @[5[ 1WEW LV?V 1X7s,W-Y JX7t%\\ 6Z&Z&Z'Z%Z&Z&Z'Z%Z&Z&Z&Y4Y0Z 5\\(T NZ !Z Z "
|
|
"!Z >Z !Z !Z \"Z :Z.^!Y3e#\\.\\!\\.\\#].\\#]/]#\\.\\ N\\2[ ]/]![0[ L[0[ M[0[ N\\1[ 6Z 2Z #Y-Y NY5] HY5] IZ6] GY"
|
|
"5] HY5] HY5]-Y5a 3[ %[ \"[ \"[ \"[ >Y Y NX Y 3Z5[ GX0X GZ5Z F[6[ G[6[ GZ5Z F[5Z 5\\ 4^9Z FY6\\ FY6\\ FY6\\ "
|
|
"FY6] 9c 9]6Z :d )[CXBZ Z-Z NZ-[ [-Z Z-Z 7X $YNZ %Z D] $VCSDW G`FSG` ;d +c :X.Y F[9Z CZ8Y 6d =\\ "
|
|
" '\\3T -Z (W?X ;S<TDZ BW8W=W4\\1` 0Y HY HX NZ GZ 'X *Z9Z /Z 5\\ 0\\ 'Z N\\ B[8[ 8Z"
|
|
" 2\\5[ '[ /Z \"[ >d c @Z EW<_Ks-Z&Z\"Z1] J^,V'Z/_ IZ MZ )]*Z'Z(Z :Z \"Z 4Z5] CZ 2Y JY(Y2d#]0\\ IZ (]1] NZ-"
|
|
"Z NS*\\ 6Y 6[1[ <e Bc4c\"[3Z 5Z 9\\ @X AX MY NZ6] F^8[ D[ &Z7^ G[ AY 1[:_ GY1Y 5Y NX 0X=[ -Y FY3Y2Y"
|
|
"+Y1Y G[7Z F]7[ HZ7] ;Y 6Y 7Y .Z7] :YMY <a<a EZ>Z 4c 5[ @Y X Y HS3V FZ<a D\\5Z FX<Y =[7[ DZ $Y1Y 9c 7Y4"
|
|
"Z H[6\\#Z?WNV>Z%ZEYF[ EY9Y GZCXD[ J^7Z H[7[ 1Y 1Z:Z KZ&Z K[ !Z %];] Bx IZ(Z :Z 9]1] HS 8X 8R :n :R+R <o !Z "
|
|
"1[DU -Z -[F\\F[ 7Z X E\\ :W&W /U>U 6W%W ?[6\\ 1WEW LU>U 0W6s-X.X HW6t&\\ 5Z&Z'Z"
|
|
"%Z&Z&Z'Z%Z&Z&Z&Z&Z6Z0Z 4],V NZ !Z Z !Z >Z !Z !Z \"Z :Z0`!Y2d\"\\0]!]0\\!]0\\!]1]!]1] \\0[ ]1] N[2\\ L\\2[ L\\"
|
|
"2[ L[1[ 6Z 2Z #Y.Y MZ7^ HY6^ HY6] GZ6] HZ7^ HZ7^-Y6c 3[ %[ \"[ \"[ \"[ ?Y Y NX Y 3[7[ FX0X G[7[ E[7[ FZ7[ F"
|
|
"[7[ E[7[ 5\\ 4]9[ FZ8] FZ8] FZ8] FZ7] 9c 9]7[ 9b '[DXD[ N[/Z LZ/[ M[0[ N[/Z 6X $d %Z C\\ ?S 2\\ETD"
|
|
"\\ 9b )a 9X.Y E[<[ BY7Z 7c ;\\ '\\5U -Z (W?W :U>TE[ CX8X?X3\\3b 1Y IY GX NZ GZ ("
|
|
"X )[;[ /Z 5[ %Q-\\ &Z BQ/] AZ9\\ 9Z 0[6\\ (\\ /Z \"[ ;a ` =Z EX<nNd,Z$Y\"Z2] H^.W'Z2a HZ MZ (^,Z'Z(Z :Z \""
|
|
"Z 4Z4] DZ 2Y JY(Y2d\"]3^ IZ ']3] MZ-[ U-] 6Y 5\\4\\ ;d Bb2b#[2[ 6Z :\\ ?X @X NY MZ8^ F^8Z B[ '[9_ F[,"
|
|
"P 7Y 1\\<` GY1Y 5Y NX 0X<[ .Y FY3Y2Y+Y1Y G[8[ F^9[ G[9^ ;Y *Q/Z 7Y -Z9^ :YMY <a;` F[>[ 4b 6[ ?Y X Y "
|
|
"FZ=b E]7Z EX=Z <[9\\ D[ %Y1Y 8a 6Y3Y H\\8]#[@WNW@[%[FYG\\ EY9Y G[DXD[ J_9[ G[9[ /Y 1Z;Z LZ%Z L\\ !Z $]=\\ >t GZ"
|
|
"(Z :Z 8]3] FQ 7X 7P 8l 8P)P :m Z 0[EU -Z .[?P?[ 8Z X D[ 9W(W -T<S 5X)X >\\8] 1WEW "
|
|
" LS<T 0W5s-W.X HX6t'\\ 5Z$Y'Z%Z'[%Z(Z%Z&Z%Z(Z%Z6Z0Z 4^.W NZ !Z Z !Z >Z !Z !Z \"Z :Z2a Y2d\"^3] N]3^ ]3"
|
|
"] N]3] N]3] \\.[!^3] M\\4\\ J\\4\\ K\\4\\ L\\4\\ 5Z 2Z #Y.Y MZ8_ HZ8_ HZ8^ FZ8^ HZ8_ HZ8_-Z8e-Q)\\ &\\-Q G\\-Q "
|
|
"G\\-Q G\\-Q 5Y Y NX Y 2[9\\ FX0X F[9[ D\\9[ E[8[ E[9[ D\\9[ 4\\ 3[9[ EZ9^ FZ9^ FZ9^ F[9^ 9b 8^9[ 8b &[2["
|
|
" L\\3\\ K[2[ K[2[ L\\3\\ 6X #c &Z B\\ ?S /UATAT 4a '_ 8X.Y E\\>\\ BY6Y 7c :] (\\7V "
|
|
"-Z )X@X :W@TF[ BW7X?X3]6e 1X IY GX NZ GZ (X ([=[ .Z 6[ $S1^ &Z BS3^ @\\<\\ 8Z 0]9] FR6] .Z \"[ 8^ "
|
|
" ^ ;Z DW;lMc+Z$Z#Z4_ G_2Y'Z5c GZ MZ '^/\\'Z(Z :Z \"Z 4Z3] EZ 2Y JY(Y1c!^6^ HZ '^6^ LZ,Z X1] 5Y 5]6\\ :c Ab2a"
|
|
"\"Z0[ 7Z ;\\ >X @X NY MZ:` F_:[ B\\3P D[;` E\\1S 7Y 0\\>a GY1Y 5Y NX 0X;\\ 0Y FY3Y2Y+Y1Y F[:[ E_;\\ "
|
|
"F[;_ ;Y *S1Y 6Z .[;_ :e ;`;` G[<[ 5a 6[ >Y X Y F[?YNY F_:[ DX?Z :[;\\ B[ &Y1Y 8a 7Z3Y H]:^#\\BXNWA[#["
|
|
"GYH\\ DY9Y F\\FXF\\ I`;[ F\\;\\ /Z 2[=Z KZ$Z N\\ Z #^A] :n DZ(Z :Z 7]5] +X Mj (k NZ 0\\FUBP ;Z /[,[ "
|
|
"9Z X CZ 8X+W *R;R 4X+X =]:^ 1WEW LR;R /X5s.W.X GW5t(\\ 4Z$Z(Z%Z'Z$Z(Z$Y'Z$Z(Z$Z"
|
|
"8Z/Z 3_2Y NZ !Z Z !Z >Z !Z !Z \"Z :Z5c NY1c!^6^ L^6^ M^6^ M]5] M^6^ \\,[#a7^ K\\6] I\\6\\ J]6\\ J\\6] 5Z 2Z #"
|
|
"Y/Z LZ:` H[:` H[:_ FZ:` GZ:` GZ:`-[:YN\\0S(\\4Q C\\0S F\\0S F\\0S F\\0S 5Y Y NX Y 1[:[ EX0X F\\;\\ C\\;[ C[:"
|
|
"[ D\\;\\ C\\;\\ 4\\ 3[:\\ DZ;_ EZ;_ EZ;_ EZ;` 8a 8_;\\ 7a %\\6\\ J\\5\\ I\\6\\ I\\6\\ J\\5\\ 5X #c 'Z "
|
|
"@[ @T JT _ %] 7X.Y D^D^ BZ6Y 6b 9_ *];X -Z )X@X :ZCTH] CX7YAX1^:h 2Y JY GX NZ"
|
|
" GZ (X (\\?\\ .Z 7\\ $W7_ %Z BV8` ?\\>] 9[ /];] ET9] -Z \"[ 5[ [ 8Z DX;jLb*Z$Z#Z7a E`7\\'Z9f FZ MZ &`4^"
|
|
"'Z(Z :Z \"Z 4Z2] FZ 2Y JY(Y1c _:_ GZ &_9^ KZ,[![6^ 4Y 4]9] 8b @a2a#[/Z 7Z ;[ =X @X NY M[<a Fa>\\ @]7R"
|
|
" D\\=a E]4U 7Y /]Bc GY1Y 5Y NX 0X:\\ 1Y FY3Y2Y+Y1Y E\\>] E`=\\ E\\=` ;Y *U5[ 6[ /\\>a 9c :_:` GZ:Z 4` 6[ >Y "
|
|
"X Y E[AYMZ G`<[ CX@Z 9\\=\\ A\\3Q EY1Y 7` 7Y2Z I^<_\"[BWMXC\\#]IYI\\ CY9Y F]GXG] Ia=\\ E\\=\\ .[ 2[?Z J"
|
|
"Z$Z N[ NZ \"^C^ 7g @Z(Z :Z 7_9_ +X Lh &i MZ /]HUDR ;Z .Y*Y 8Z X BZ 8Y/X (Q:Q 2X/Y "
|
|
" <^<` 2WEW LQ:Q .W MV(X/X GX NW\"\\ 3Z$Z)Z#Z(Z$Z)Z#Z(Z$Z)Z#Z8Z/Z 2`7\\ NZ !Z Z !Z >Z !Z !Z \"Z :"
|
|
"Z9f MY0b _:_ J_:_ K_:_ L_9_ L_9^ N[*[$c:^ J^:^ H^:^ I^:] H]9] 4Z 2Z #YIP7[ L[<a G[<a G[=a F[<a G[<a G[<a,[=ZL\\"
|
|
"4V'\\7S B\\4V E]5V E]5V E]5V 5Y Y NX Y 1\\=\\ DX0X E\\=\\ A\\=\\ C]>] C\\=\\ A\\=\\ 3\\ 2\\=\\ C[=` E[=` E[="
|
|
"` E[=a 8a 8`=\\ 6` #]:] H]9] G]:] G]:] H]9] 4W !a 'Z ?Z ?U KT N] $] 7X.Y Cv AZ6Z 7a 7a "
|
|
" -_?Z -Z )W?X :^GTK_ CX5XAX0_>k 3Y JX FX NZ GZ )Y ']C] ?} I~S IZ=b %Z BZ>a =]B^ 8Z ._?^ DX"
|
|
"@_ ,Z \"[ 3Y X 5Z CW:gJ`)Z\"Z$~T Cb=_'~W E~S FZ %b:a'Z(Z :Z \"Z 4Z1] G~Q)Y JY(Y0b N`>` FZ %a?` JZ+Z!^<a 4Y "
|
|
"3_>_ 8b @a2a$[.[ 8Z <~` AX ?X Y L\\@c Fb@] ?^<U C]Ac D^9X 7Y /aI[NY GY1Y 5Y NX 0X9\\ 2Y FY3Y2Y+Y1Y E]"
|
|
"@] Db@\\ C]Ab ;Y *X9\\ 5] 1\\Ac 9c :_:_ GZ9[ 5` 7[ =Y X Y E]DZM[ Hb@] BXB[ 8]A^ @]8T EY1Y 7_ 7Z1Y I`@"
|
|
"b#]EXLXE\\!]JYK^ CY9Y E_JXJ_ HcA] C]A] ,] 4[B\\ K~c!~T FZ 3oDo A[ :Z(Z :Z 6a?a *X Kf $g LZ .^JUGU H~U"
|
|
" JW(W 7Z X AY 7Z3Y &P9P 1Y3Y <~d 3`@b 2WEW LP9P .X MV(W/X GX MW#\\ 3Z\"Z*Z#Z)Z\"Z*"
|
|
"Z#Z)[#Z*Z#Z9Z.~T+b=_ N~T J~T I~S I~S 7Z !Z !Z \"Z :~V KY0b N`>` H`>` I`>` Ja?a Ja?` LY(Y$f?` H_>_ F_>_ G_>_ H_>"
|
|
"_ 3Z 2Z #YIS;[ K\\?c G\\?c G\\?b E\\@c F\\@c G\\?c,\\?[L^9Y'^<V B_:Y E_:Y E_:Y D^:Y 5Y Y NX Y 0]@] DX0X D]A]"
|
|
" @]@] A]@] A]A^ A]@] 2\\ 2]@] B]Ab E]Ab D\\Ab D\\Ac 7_ 7b@\\ 5` \"_@_ F_?_ E_@_ E_@_ F_?_ 3W !a 'Z ?Z "
|
|
" ?U KT M\\ #[ 6X.Y Bu AY5Z 7a 6f 2aE] -Z )W?W 9~ BW4YCY/bFp 3X KY FX NZ GZ "
|
|
")X %^G^ >} I~S I~ $Z B| ;^F_ 7Z -aEa Dv +Z \"[ 0V U 2Z CX9dI^'Z\"Z$~S AfGd'~U C~S FZ $gGg&Z(Z :Z \"Z 4Z0] H"
|
|
"~Q)Y JY(Y0b McGd EZ $dGc IZ+[\"cEd 3Y 3cGc 7a ?`1a$Z,[ 9Z =~a AX ?X Y L^DZNY FYNZF_ =`CY B^EZNY CaB] 7"
|
|
"Y .qMY GY1Y 5Y NX 0X8\\ 3Y FY3Y2Y+Y1Y D_F_ CYNYE_ B^EZNX ;Y *]A^ 4k >^G[NY 8a 9_9^ H[8[ 5^ 6~P 2Y X Y "
|
|
" D^H[La NfH` AYD[ 6^E_ ?`?X EY1Y 7_ 7Y0Y IcFk(]HZLZI^ `Nk BY9Z E~Q GYNZE^ B_E_ ,e ;]G] J~c!~T FZ 3oDo @Z :Z(Z :"
|
|
"Z 5dGd )X Jd \"e KZ -`MUKY H~U IU&U 6Z X AY 5Z7Z LZ7Z ;~d 3cFk 8WEW "
|
|
" BW LV)X0X FW LW$\\ 2Z\"Z+[#Z)Z\"Z*Z\"Z*Z\"Z*Z\"Z:Z.~T*fGd N~T J~T I~S I~S 7Z !Z !Z \"Z :~U JY/a MdGc FcGd GcGd"
|
|
" HdGd HdGc JW&W$kGc FbFb DbFb FcFb FcGc 3Z 2Z #YIWB] I^DZNY F]D[NY F]D[NX E^DZNY F^DZNY F^E[NY+]D]J`@]&`BY AaA]"
|
|
" DaA] DaA] DaA] 5Y Y NX Y /_F_ CX0X D_E_ ?_F_ ?_F_ @_E_ ?_F_ 7aF_ @^FZMX D^FZMX D_GZMX D_G[NY 7_ 7YNYE_ 4^"
|
|
" dLd CdMd BdLd CdLd DeMd 2X !` %X =Y ?U LV MZ !Y 5X.Y As AZ4Y 6` 5~] )x -Z "
|
|
"*X@X 9} BX3YFZ-{L] 4Y LY FX NZ GZ )X $t >} I~S I} #Z B{ :v 7[ ,{ Cu *Z \"[ -S S 0Z BW8aG[%[\"Z$~R"
|
|
" ?~S'~T B~S FZ #~V%Z(Z :Z \"Z 4Z/] I~Q)Y JY(Y/a L~ DZ #~ HZ*Z\"~R 2Y 2} 5` ?`0_$[+Z 9Z =~a AX ?X Y KsN"
|
|
"Y FYNr ;u AqMY B{ 7Y -oLY GY1Y 5Y NX 0X7\\ 4Y FY3Y2Y+Y1Y Cv BYNr ArMX ;Y *y 2j >qMY 8a 8^9^ I[6Z 5^ 6~P 2Y X "
|
|
" Y CpK` N} ?YF[ 5w =x EY1Y 6] 7Z0Z J~Y(nJm M{ AY9\\ F~ FYMq @w *d ;r J~d!~T FZ 3oDo @Z :Z(Z :Z 4~ 'X "
|
|
" Ib c JZ ,u H~U HS$S 5Z X AY 4\\>\\ I]>\\ :~d 3~Y 8WEW CW KV)W0X FX LW"
|
|
"$[ 2[\"Z+Z!Z*Z\"Z+Z!Z*Z!Z,Z!Z:Z.~T)~S N~T J~T I~S I~S 7Z !Z !Z \"Z :~T IY/a L~ D~ E~ F~ E~ HU$U$~X D| B| D} D} "
|
|
"2Z 2Z #YIr HrMY FsMY FsMX DsNY ErMY FsMY+uH|%v @| C| C| C| 5Y Y NX Y .v BX0X Cw =w >v >w =w 8{ ?qMX CqMX C"
|
|
"qMX CqMY 6] 6YNr 3^ My Ay @y @z Ay 1X _ $V <X ?V LV LX NW 4X.Y @p ?Z4Z 7_ 2~[ "
|
|
" (v ,Z *X@X 9| AW1[K[+yJ] 5Y LX EX NZ GZ )X #r =} I~S I| \"Z Bz 8t 6Z *y Bt )Z \"[ *P P -Z BX"
|
|
"6[DX\"Z Z%~Q <~P&~R @~S FZ \"~T$Z(Z :Z \"Z 4Z.] J~Q)Y JY(Y/a K| CZ !{ GZ*[#~Q 1Y 1{ 4_ =_0_%[*[ :Z =~a AX >X !"
|
|
"Y JqMY FYMp 9t ApLY Az 7Y ,mKY GY1Y 5Y NX 0X6\\ 5Y FY3Y2Y+Y1Y Bt AYMp ?pLX ;Y *x 1j =oLY 8a 8]8^ IZ4Z 6"
|
|
"] 5~P 2Y X Y CoI_ N} ?[K] 3u ;w EY1Y 6] 7Y.Y JvM_'mJm Ly @Y9b K| EYLp ?u (c :p I~e\"~T FZ 3oDo @Z :Z(Z"
|
|
" :Z 2{ &X H` Ma IZ +t H~U GQ\"Q 4Z X AY 2aLb FaKa 8~d 3YNlN_ 8WEW "
|
|
"DX KV*W0o-W KW%[ 1Z Z,Z!Z+Z Z,Z!Z+Z Z,Z!Z;Z-~T'~P M~T J~T I~S I~S 7Z !Z !Z \"Z :~R GY.` K| B| C{ B{ B{ FS\"S$YM"
|
|
"{ Bz @z B{ B{ 1Z 2Z #YIq GqLY EqLY EqLX CqMY ErMY EqLY*sF{$u ?{ B{ B{ B{ 5Y Y NX Y -t AX0X Bu ;u <t <u ;u "
|
|
"8{ >pLX CpLX CpLX BoLY 6] 6YMp 1] Lv >w =v =v >w 0X _ #T ;X ?W MV LW LV 4X.Y ?n >Y3Z 7_ 1~Z "
|
|
" 't +Z *W?X 8y @X1j)vG] 5X MY EX NZ GZ *X !p <} I~S Iz Z By 6r 5Z )w As (Z \"[ "
|
|
" 5Z AX HZ Z%~ 9|$~P >~S FZ ~P\"Z(Z :Z \"Z 4Z-] K~Q)Y JY(Y.` Jy AZ x EZ)Z#~P 0Y /x 3_ =_0_%Z([ ;Z =~a AX "
|
|
">X !Y JpLY FYLn 7s @nKY @y 7Y +kJY GY1Y 5Y NX 0X5\\ 6Y FY3Y2Y+Y1Y Ar @YLn =nKX ;Y *w /i <mKY 7_ 7]8] IZ"
|
|
"3[ 6\\ 5~P 2Y X Y BmH_ N{ <k 0r 9v EY1Y 6] 8Z.Z KYNkM_&kHk Jw ?Y8a Jy CYKn =s &b 9n H~e\"~T FZ 3oDo @Z"
|
|
" :Z(Z :Z 1y %X G^ K_ HZ *s H~U *Z X AY 1t Bs 6~d 3YNkM_ 8WEW DW "
|
|
"JV+X0o.X KW%Z 0Z Z-Z NZ,Z Z-[ Z,Z Z-[ Z<Z-~T&| K~T J~T I~S I~S 7Z !Z !Z \"Z :~P EY.` Iy @y @y @y @y DQ Q$YKy @x"
|
|
" >x ?x @y 0Z 2Z #YIp EoKY DoKY DoKX BoLY DpLY DoKY)qCy#t =y @y @y @y 5Y Y NX Y ,r @X0X As 9s :r :s 9s 7z <"
|
|
"nKX BnKX BnKX BnKY 6] 6YLn 0\\ Jt ;s :t ;t ;s .X N] !R 9V >W NX LU KU 3X.Y >l =Y2Y 7_ /~X "
|
|
" %p )Z *W?W 4u @X/i(tE] 6Y NX DX NZ GZ *X m :} I~S Iy NZ Bw 2o 5Z 'u @r 'Z \"Z "
|
|
" 4Z AY J[ Z%} 6x\"} <~S FZ N| Z(Z :Z \"Z 4Z,] L~Q)Y JY(Y.` Hv @Z Mu DZ)[$~ /Y .u 0^ =^/_&['Z ;Z =~a AX >X"
|
|
" !Y InKY FYKl 5r ?lJY >w 7Y )hIY GY1Y 5Y NX 0X4\\ 7Y FY3Y2Y+Y1Y @p ?YKl ;lJX ;Y *v -h ;kJY 7_ 7]7\\ J[2"
|
|
"[ 7\\ 5~P 2Y X Y AkE] Nz :i .p 7u EY1Y 5[ 7Y,Y KYMiL_%iGj Hu >Y8a Hv BYJl :p $a 7k H~f\"~T FZ 3oDo @Z "
|
|
":Z(Z :Z /u #X F\\ I] GZ )r H~U *Z X AY /p >o 4~d 3YMiK^ 8WEW EX "
|
|
"JV+W/o/X JW&Z 0[ Z-Z NZ-[ [.Z NZ,Z NZ.Z NZ=Z,~T$x I~T J~T I~S I~S 7Z !Z !Z \"Z :| BY-_ Hv <v =v =u =v BXHu =v"
|
|
" <v =u <u .Z 2Z #YIo CmJY CmJY CmJX BnKY CmJY CmJY(oAx!r <x ?x ?x ?x 5Y Y NX Y +p ?X0X ?p 7p 7p 7p 7p 6WNp"
|
|
" 9lJX AlJX AlJX AlJY 5[ 5YKl /\\ Hp 8q 7p 7p 8q -X N] NP 9V ?Y X KS IS 2X.Y <h <Z2Y 6^ -~V "
|
|
" $n (Z +X@X 1o =W-f$pB] 6X NX DX Z FZ *X Nk 9} I~S Iw LZ Bv 0m 4Z %q >p %Z \"Z "
|
|
" 4Z @X JZ MZ&{ 3u z 9~S FZ Lx MZ(Z :Z \"Z 4Z+] M~Q)Y JY(Y-_ Fr >Z Lr BZ(Z!y -Y -s /] <^.]&[&[ <Z =~a AX "
|
|
" =X \"Y GjIY FYJj 2p =iIY =u 6Y 'dGY GY1Y 5Y NX 0X3\\ 8Y FY3Y2Y+Y1Y >m >YJj 8iIX ;Y *u *f :iIY 7_ 6\\7"
|
|
"\\ K[0Z 6Z 4~P 2Y X Y ?hC\\ NYMm 8f +m 3s EY1Y 5[ 8Z,Y KYLgJ^$gEh Fs =Y8a Fr @YIi 7m !` 6i G~g#~T FZ 3o"
|
|
"Do @Z :Z(Z :Z .s \"X EZ G[ FZ 'p H~U *Z X AY ,k :k 2~d 3YLgJ^ 8WEW "
|
|
" EW IV,X/o/W IW&Z 0Z MZ/[ NZ-Z MZ.Z N[.Z MZ.Z MZ>Z,~T\"t G~T J~T I~S I~S 7Z !Z !Z \"Z :y ?Y-_ Fr 8r 9r :s :r "
|
|
" AXEr :r 8r :s :s -Z 2Z #YIn AkIY BkIY BkIX @jIY BkIY BkIY'l=t Mq :t ;t ;t ;t 3Y Y NX Y *m =X0X >m 3m 5n 5m"
|
|
" 3m 6XLm 7iHX @iHX @jIX @jIY 5[ 5YJj -Z El 3k 2l 3l 4l *X N\\ 5U ?Y Y KR HQ 1X.Y 9b 9Y1Z 7"
|
|
"] )~S \"j &Z +X@X -h ;X+c!l?\\ 6X Y DX Z FZ +X Kh 8} I~S Fr JZ As ,i 3[ $n ;m "
|
|
"#Z \"Y 3Z ?X KZ MZ&x -p Mu 4~S FZ Js JZ(Z :Z \"Z 4Z*] N~Q)Y JY(Y-_ Dn <Z Jn @Z([ Nt +Y +o ,\\ ;].]&Z$"
|
|
"[ =Z =~a AX =X \"Y FhHY FYHf .m ;gHY ;p 3Y %`EY GY1Y 5Y NX 0X2\\ 9Y FY3Y2Y+Y1Y =j <YHf 5gHX ;Y (q &d 9"
|
|
"fGY 6] 5[6\\ KZ.Z 7Z 4~P 2Y X Y >gB[ NYLj 5d (j 0q EY1Y 5Z 7Y+Z LYKdG]\"dBd Bo ;Y7` Dn >YHg 4i L^ 4e "
|
|
"E~g#~T FZ 3oDo @Z :Z(Z :Z ,n NX DX EY EZ %m G~U *Z X BZ )e 4e /~d 3YKeH] 8"
|
|
"WEW FW HV,W.o0X IW'Z /Z MZ/Z LZ.Z MZ/[ MZ.Z MZ/[ MZ>Y+~T p E~T J~T I~S I~S 7Z !Z !Z \"Z :u ;Y,^ Dn 4"
|
|
"n 5n 6o 6n @XBm 5n 4n 6o 6o +Z 2Z #YIl =gGY AhGY AhGX ?hHY @hHY @gGY%i:o Hm 7p 6o 6p 7p 1Y Y NX Y (i ;X0X "
|
|
"<i 0j 1j 1j 1j 5XIi 3fGX >fGX >fGX >fGY 4Y 4YHf +Z Bg /g .g -g /g (X M[ 5T ?Z !Z JP 'X.Y 5"
|
|
"[ 6Y0Y 7] &~P Ne $Z +W?X '] 6W)a Mh<\\ 7Y !X CX Y EZ +X Id 6} I~S Cm HZ =l 'e "
|
|
"1Z i 6h !Z #Z 3Z ?Y M[ M['s &k Jo .~S FZ Gm GZ(Z :Z \"Z 4Z)] ~Q)Y JY(Y,^ Bi 9Z Gl AZ'Z Jm (Y (i )\\ "
|
|
";].]'[#Z =Z =~a AX =X \"Y DdFY FYFb *h 6cFY 8j 0Y \"YAY GY1Y 5Y NX 0X1\\ :Y FY3Y2Y+Y1Y ;f :YFb 1cFX ;Y"
|
|
" $k ` 7cFY 6] 5[5Z KZ-[ 8Y 3~P 2Y X Y ;b=X NYJe 0` $e +l BY1Y 4Y 7Y*Y LYIaE[ b@a >k 9Y6_ Ah ;YFc 0e "
|
|
"FZ 2a D~i$~T FZ 3oDo @Z :Z(Z :Z )i LX CV CW DZ #h D~U *Z X -R9Z #[ *[ *~d 3"
|
|
"YIaE\\ 8WEW GX HV-W-o0W HW'Z 0Z L[0Z LZ/[ LZ0Z LZ/[ LZ0Z LZ?Z+~T Lj B~T J~T I~S I~S 7Z !Z !Z \"Z :o "
|
|
"5Y,^ Ai /h 0i 0i 0i >W?i 1j 0j 1j 1i (Z 2Z #YGh 9cEY ?dEY ?dEX =dFY >dFY >cEY#d5j Ch 1j 1j 1j 1j -Y Y NX Y"
|
|
" &e 9X0X :e ,f -f -e ,f 4XFe 0cEX <bEX <bEX <bEY 4Y 4YFb )Z ?` (a '` '` (a %X 'T "
|
|
" L{ K_ 0T 4X&[ Ga AX \"Y :Y EX G_ Ie #e !_ c /a EY "
|
|
" EY Hc ?e FZ +b Ni )d Nc (X =Y #Y A^ J^ %a /] N"
|
|
"c ;Y NX *` 7YD^ ,]CX 1c ^ /Y DY X Y 8] 1YF] *\\ N` %c DY 4Y *YG\\A"
|
|
"X J\\;] 9e A^ =` 7YC] *_ G[ >a NU CZ N` 9X -T<[ "
|
|
" LYG]BX 5WEW %U HW NX MX GZ (d +b (b )b )a )b 9V;a "
|
|
")c *c *c *c =a 4_ &^ %^ $^ &_ &_ :_/c <b +c *c *c *c 3_ K_ &` '` '_ &` 1WB_ *] $] $^ %^ NZ "
|
|
"4YD^ 'Y 6Q HQ GQ FQ HQ LX &S DQ )T 4W Q :Q"
|
|
" 9Y #X :Y EX ?Q 8R ?R @Q @R MQ =Y DY @R -Q <Z "
|
|
" #R >RM] !R <R X <X #Y ;Q <Q GR !Q @Q 2Y MX #R 0Y=Q Q=X 'Q "
|
|
" @Q *Z DY X Y ;Y <P AQ CQ ;Y 4Y *YAQ8P @Q0Q -Y 8X 7Y 3Y=Q LQ "
|
|
" JQ 4Z IU 3X -W@[ KYAQ8P 1WEW $U IV MW LW FZ "
|
|
" V KQ GR HQ GQ GQ 0T2Q HR GR HR HQ ,Q %Q GP GQ FQ GQ "
|
|
"GP *P NQ ,V MQ GR HR HR #Q =Q FQ HR HQ FQ *V:Q LQ GQ GQ GQ GY 3Y=Q !Y "
|
|
" 9X MT +X #X :Y EX "
|
|
" 5X BZ 7Y 7] 8X <X #Y "
|
|
" HY MX 0Y 'X MY CY X Y ;Y 8Y 4Y *Y 1Y E"
|
|
"X 3Y CZ IU 3X -\\I_ KY 8WEW $V"
|
|
" %Z NU 0R #V "
|
|
" )T <Z 3Y =Y 8X "
|
|
" MT +X $X 9X DX 6Y AZ NR "
|
|
" =Z 6\\ 8X <X #Y HY MX 0Y '"
|
|
"X NZ CY X X :Y 8Y 4Y *Y 1Y EX 3Y "
|
|
" CZ IU 3X -q JY 8WEW #V &Z NV "
|
|
" 0V (R "
|
|
" <Y 2Y =Y 8X MT *X "
|
|
"%X 9X EY 6X @[!T >Z 5\\ "
|
|
" 9X ;X $Y HY NY 0Y 'X NY BY X !Y "
|
|
":Y 8Y 4Y *Y 1Y EX 3Y CZ IU 3X -p "
|
|
" IY 8WEW #V &Z MV "
|
|
" 0U 'P ;Y 2Y >Z 8X "
|
|
" MT *X &X 9X DX "
|
|
" 5X ?\\%W ?Z 4\\ :X ;X $Y "
|
|
" IZ NY 0Y 'X NY BZ !X !Y :Y 8Y 4Y *Y 1Y EX 3Y "
|
|
" CZ IU 3X -o HY 8WEW \"V "
|
|
" 'Z LU 0V "
|
|
" CZ 2Y >Y 7X "
|
|
" MT )X 'X 9X DX 5W <\\(X ?"
|
|
"Z 3\\ ;Y <X $Y IY MY 0Y 'X "
|
|
" Z AY !X !Y :Y 8Y 4Y *Y 1Y EX 3Y CZ I"
|
|
"U 3X -n GY 8WEW \"V '[3Q <V "
|
|
" 0V DY 1Y "
|
|
"?Z 7X MT )X (X 8W "
|
|
" CX 6X ;],[ AZ 1\\ <e"
|
|
" GX 2f JZ MY 0Y 'X Y @Z \"X \"Z :Y 8"
|
|
"Y 4Y *Y 1Y EX 3Y CZ IU 3X ,k "
|
|
" EY 8WEW !V 'Z4R <V "
|
|
" 0V EZ 1Y ?Y ARGX "
|
|
" MT (X )X 8W DX 5W "
|
|
" 9^1^ AZ 0\\ =e GX 2f KZ LY"
|
|
" 0Y 'X !Z @[ #X #Z 9Y 8Y 4Y *Y 1Y EX 3Y "
|
|
" CZ IU 3X )f CY 8WEW !V '[7T "
|
|
" ;V 1V "
|
|
" EY 0Y ?Y FWGW "
|
|
" LT 'W *X 8W CX 5W 8`7` A[ "
|
|
" /\\ >e GX 2f KZ LY 0Y 'X !Y >"
|
|
"\\ %X &] 9Y 8Y 4Y *Y 1Y EX 3Y CZ IU 3"
|
|
"X $^ @Y 8WEW !V '\\:V ;V "
|
|
" 1W GZ 0Y @Z "
|
|
" FWHX LT 'X +W 7W "
|
|
" V 5b?c A[ -\\ ?e !f "
|
|
" <P2\\ MY /Y 'X \"Z >f /X 0g 9Y 8Y 4Y *Y "
|
|
" 1Y EX 3Y CZ IU 3X 5Y "
|
|
" NV &\\=X ;V "
|
|
"1W GY /Y AZ EWHX "
|
|
" LT &W ,X 7V V 3~T "
|
|
" A] ,\\ @e !f <R5\\ LY /Y "
|
|
"'X #Z =f /X 0f 8Y 8Y 4Y *Y 1Y EX 3Y "
|
|
" CZ IU 3X 5Y NW '^B[ <W "
|
|
" 1W "
|
|
" HZ /Y AZ DWIX LT &X -"
|
|
"W 6U NV 1~P B_ *\\ "
|
|
" Ae !f <U:] LZ /Y 'X #Z <e /X 0e 7Y "
|
|
" 8Y 4Y *Y 1Y EX 3Y CZ IU 3X "
|
|
" 5Y X &aJ_ <W "
|
|
" 2X IZ .Y BZ CWJY "
|
|
" LT %X /X "
|
|
" 7| Hf )\\ Be !f <X?_ N[ "
|
|
" .Y 'X %[ :d /X 0e 7Y 8Y 4Y *Y 1Y EX 3Y "
|
|
" CZ IU 3X 5Y -PDX %v "
|
|
" JQDX ?QEY "
|
|
" J[ .Y D\\ CXLY "
|
|
" KT 7x Fe "
|
|
" -_Me %b .Y 'X /e 9c /X 0c "
|
|
"5Y 8Y 4Y *Y 1Y EX 3Y CZ IU 3X "
|
|
" 5Y -d $u Je "
|
|
" ?d $d -Y Ne Ad "
|
|
" KT "
|
|
" 5s Cd ,v %b -"
|
|
"Y 'X 0e 6a /X 0b 4Y 8Y 4Y *Y 1Y EX 3Y "
|
|
" CZ IU 3X 5Y -d #t Jd "
|
|
" >d "
|
|
" %e -Y Nd @c "
|
|
" (m @c "
|
|
" +u $b -Y 'X 0d 2^ /X 0_ 1Y 8Y 4Y *Y "
|
|
" 1Y EX 3Y CZ IT 2X 5Y "
|
|
"-c !q Hd >c "
|
|
" $d ,Y Nd ?b "
|
|
" %g ="
|
|
"b *t #a ,Y 'X 0d "
|
|
" ,X /X 0Y +Y 8Y 4Y *Y 1Y EX 3Y CZ '"
|
|
"X 5Y -c Nm Fc "
|
|
" =c $c +Y Nc "
|
|
" >a "
|
|
" M\\ 8a \"~Y 1"
|
|
"r !` +Y 'X 0c 1X 1Y 8Y 4Y *Y 1Y EX 3Y "
|
|
" CZ &W 5Y -b Lj "
|
|
" Db <b "
|
|
" #b *Y Nb <_ "
|
|
" (_ "
|
|
" ~Y 1q _ *Y 'X 0b 0X 1Y "
|
|
" 8Y 4Y *Y 1Y EX 3Y CZ "
|
|
" 3Y -` He A` "
|
|
" :` !a )Y Na :] "
|
|
" "
|
|
" '] M~Y .l M] (Y 'X "
|
|
" 0` .X 1Y 8Y 4Y *Y 1Y EX 3Y "
|
|
" KY *Z B^ 9Z "
|
|
" 5Z M` (Y N` "
|
|
" 8Z "
|
|
" %X H~Y "
|
|
" *d I[ &Y 'X 0^ ,X 1Y 8Y 4Y *Y 1Y EX 3Y"
|
|
" KY "
|
|
" "
|
|
" H^ &Y N] 3V "
|
|
" "
|
|
" B~Y #X CU !X &X /Y (X 1"
|
|
"Y 7X 4X )X 0Y EX 2X "
|
|
" KY "
|
|
" HZ \"X MY "
|
|
" "
|
|
" J~Y "
|
|
" 9X "
|
|
" "
|
|
" "
|
|
" "
|
|
" 3~Y "
|
|
" 9X "
|
|
" "
|
|
" "
|
|
" "
|
|
" 3~Y "
|
|
" 9X "
|
|
" "
|
|
" "
|
|
" '" };
|
|
|
|
// Define a 40x38 'danger' color logo (used by cimg::dialog()).
|
|
static const unsigned char logo40x38[4576] = {
|
|
177,200,200,200,3,123,123,0,36,200,200,200,1,123,123,0,2,255,255,0,1,189,189,189,1,0,0,0,34,200,200,200,
|
|
1,123,123,0,4,255,255,0,1,189,189,189,1,0,0,0,1,123,123,123,32,200,200,200,1,123,123,0,5,255,255,0,1,0,0,
|
|
0,2,123,123,123,30,200,200,200,1,123,123,0,6,255,255,0,1,189,189,189,1,0,0,0,2,123,123,123,29,200,200,200,
|
|
1,123,123,0,7,255,255,0,1,0,0,0,2,123,123,123,28,200,200,200,1,123,123,0,8,255,255,0,1,189,189,189,1,0,0,0,
|
|
2,123,123,123,27,200,200,200,1,123,123,0,9,255,255,0,1,0,0,0,2,123,123,123,26,200,200,200,1,123,123,0,10,255,
|
|
255,0,1,189,189,189,1,0,0,0,2,123,123,123,25,200,200,200,1,123,123,0,3,255,255,0,1,189,189,189,3,0,0,0,1,189,
|
|
189,189,3,255,255,0,1,0,0,0,2,123,123,123,24,200,200,200,1,123,123,0,4,255,255,0,5,0,0,0,3,255,255,0,1,189,
|
|
189,189,1,0,0,0,2,123,123,123,23,200,200,200,1,123,123,0,4,255,255,0,5,0,0,0,4,255,255,0,1,0,0,0,2,123,123,123,
|
|
22,200,200,200,1,123,123,0,5,255,255,0,5,0,0,0,4,255,255,0,1,189,189,189,1,0,0,0,2,123,123,123,21,200,200,200,
|
|
1,123,123,0,5,255,255,0,5,0,0,0,5,255,255,0,1,0,0,0,2,123,123,123,20,200,200,200,1,123,123,0,6,255,255,0,5,0,0,
|
|
0,5,255,255,0,1,189,189,189,1,0,0,0,2,123,123,123,19,200,200,200,1,123,123,0,6,255,255,0,1,123,123,0,3,0,0,0,1,
|
|
123,123,0,6,255,255,0,1,0,0,0,2,123,123,123,18,200,200,200,1,123,123,0,7,255,255,0,1,189,189,189,3,0,0,0,1,189,
|
|
189,189,6,255,255,0,1,189,189,189,1,0,0,0,2,123,123,123,17,200,200,200,1,123,123,0,8,255,255,0,3,0,0,0,8,255,255,
|
|
0,1,0,0,0,2,123,123,123,16,200,200,200,1,123,123,0,9,255,255,0,1,123,123,0,1,0,0,0,1,123,123,0,8,255,255,0,1,189,
|
|
189,189,1,0,0,0,2,123,123,123,15,200,200,200,1,123,123,0,9,255,255,0,1,189,189,189,1,0,0,0,1,189,189,189,9,255,
|
|
255,0,1,0,0,0,2,123,123,123,14,200,200,200,1,123,123,0,11,255,255,0,1,0,0,0,10,255,255,0,1,189,189,189,1,0,0,0,2,
|
|
123,123,123,13,200,200,200,1,123,123,0,23,255,255,0,1,0,0,0,2,123,123,123,12,200,200,200,1,123,123,0,11,255,255,0,
|
|
1,189,189,189,2,0,0,0,1,189,189,189,9,255,255,0,1,189,189,189,1,0,0,0,2,123,123,123,11,200,200,200,1,123,123,0,11,
|
|
255,255,0,4,0,0,0,10,255,255,0,1,0,0,0,2,123,123,123,10,200,200,200,1,123,123,0,12,255,255,0,4,0,0,0,10,255,255,0,
|
|
1,189,189,189,1,0,0,0,2,123,123,123,9,200,200,200,1,123,123,0,12,255,255,0,1,189,189,189,2,0,0,0,1,189,189,189,11,
|
|
255,255,0,1,0,0,0,2,123,123,123,9,200,200,200,1,123,123,0,27,255,255,0,1,0,0,0,3,123,123,123,8,200,200,200,1,123,
|
|
123,0,26,255,255,0,1,189,189,189,1,0,0,0,3,123,123,123,9,200,200,200,1,123,123,0,24,255,255,0,1,189,189,189,1,0,0,
|
|
0,4,123,123,123,10,200,200,200,1,123,123,0,24,0,0,0,5,123,123,123,12,200,200,200,27,123,123,123,14,200,200,200,25,
|
|
123,123,123,86,200,200,200,91,49,124,118,124,71,32,124,95,49,56,114,52,82,121,0 };
|
|
|
|
//! Get/set default output stream for the \CImg library messages.
|
|
/**
|
|
\param file Desired output stream. Set to \c 0 to get the currently used output stream only.
|
|
\return Currently used output stream.
|
|
**/
|
|
inline std::FILE* output(std::FILE *file) {
|
|
cimg::mutex(1);
|
|
static std::FILE *res = cimg::_stderr();
|
|
if (file) res = file;
|
|
cimg::mutex(1,0);
|
|
return res;
|
|
}
|
|
|
|
// Return number of available CPU cores.
|
|
inline unsigned int nb_cpus() {
|
|
unsigned int res = 1;
|
|
#if cimg_OS==2
|
|
SYSTEM_INFO sysinfo;
|
|
GetSystemInfo(&sysinfo);
|
|
res = (unsigned int)sysinfo.dwNumberOfProcessors;
|
|
#elif cimg_OS == 1
|
|
res = (unsigned int)sysconf(_SC_NPROCESSORS_ONLN);
|
|
#endif
|
|
return res?res:1U;
|
|
}
|
|
|
|
// Lock/unlock mutex for CImg multi-thread programming.
|
|
inline int mutex(const unsigned int n, const int lock_mode) {
|
|
switch (lock_mode) {
|
|
case 0 : cimg::Mutex_attr().unlock(n); return 0;
|
|
case 1 : cimg::Mutex_attr().lock(n); return 0;
|
|
default : return cimg::Mutex_attr().trylock(n);
|
|
}
|
|
}
|
|
|
|
//! Display a warning message on the default output stream.
|
|
/**
|
|
\param format C-string containing the format of the message, as with <tt>std::printf()</tt>.
|
|
\note If configuration macro \c cimg_strict_warnings is set, this function throws a
|
|
\c CImgWarningException instead.
|
|
\warning As the first argument is a format string, it is highly recommended to write
|
|
\code
|
|
cimg::warn("%s",warning_message);
|
|
\endcode
|
|
instead of
|
|
\code
|
|
cimg::warn(warning_message);
|
|
\endcode
|
|
if \c warning_message can be arbitrary, to prevent nasty memory access.
|
|
**/
|
|
inline void warn(const char *const format, ...) {
|
|
if (cimg::exception_mode()>=1) {
|
|
char *const message = new char[16384];
|
|
std::va_list ap;
|
|
va_start(ap,format);
|
|
cimg_vsnprintf(message,16384,format,ap);
|
|
va_end(ap);
|
|
#ifdef cimg_strict_warnings
|
|
throw CImgWarningException(message);
|
|
#else
|
|
std::fprintf(cimg::output(),"\n%s[CImg] *** Warning ***%s%s\n",cimg::t_red,cimg::t_normal,message);
|
|
#endif
|
|
delete[] message;
|
|
}
|
|
}
|
|
|
|
// Execute an external system command.
|
|
/**
|
|
\param command C-string containing the command line to execute.
|
|
\param module_name Module name.
|
|
\return Status value of the executed command, whose meaning is OS-dependent.
|
|
\note This function is similar to <tt>std::system()</tt>
|
|
but it does not open an extra console windows
|
|
on Windows-based systems.
|
|
**/
|
|
inline int system(const char *const command, const char *const module_name=0, const bool is_verbose=false) {
|
|
cimg::unused(module_name);
|
|
#ifdef cimg_no_system_calls
|
|
return -1;
|
|
#else
|
|
|
|
if (is_verbose) return std::system(command);
|
|
#if cimg_OS==1
|
|
const unsigned int l = (unsigned int)std::strlen(command);
|
|
if (l) {
|
|
char *const ncommand = new char[l + 24];
|
|
std::memcpy(ncommand,command,l);
|
|
std::strcpy(ncommand + l," >/dev/null 2>&1"); // Make command silent
|
|
const int out_val = std::system(ncommand);
|
|
delete[] ncommand;
|
|
return out_val;
|
|
} else return -1;
|
|
#elif cimg_OS==2
|
|
PROCESS_INFORMATION pi;
|
|
STARTUPINFOA si;
|
|
std::memset(&pi,0,sizeof(PROCESS_INFORMATION));
|
|
std::memset(&si,0,sizeof(STARTUPINFO));
|
|
GetStartupInfoA(&si);
|
|
si.cb = sizeof(si);
|
|
si.wShowWindow = SW_HIDE;
|
|
si.dwFlags |= SW_HIDE | STARTF_USESHOWWINDOW;
|
|
const BOOL res = CreateProcessA((LPCSTR)module_name,(LPSTR)command,0,0,FALSE,0,0,0,&si,&pi);
|
|
if (res) {
|
|
WaitForSingleObject(pi.hProcess,INFINITE);
|
|
CloseHandle(pi.hThread);
|
|
CloseHandle(pi.hProcess);
|
|
return 0;
|
|
} else {
|
|
char* lpMsgBuf;
|
|
|
|
// Get the error message.
|
|
DWORD errorCode = GetLastError();
|
|
FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
|
|
0,errorCode,MAKELANGID(LANG_NEUTRAL,SUBLANG_DEFAULT),(LPSTR)&lpMsgBuf,0,0);
|
|
cimg::warn("cimg::system() : Command '%s' (module name '%s) failed with error %lu: %s",
|
|
module_name==0?"(null)":module_name,
|
|
command==0?"(null)":command,
|
|
errorCode,lpMsgBuf);
|
|
return -1;
|
|
}
|
|
#else
|
|
return std::system(command);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
//! Return a reference to a temporary variable of type T.
|
|
template<typename T>
|
|
inline T& temporary(const T&) {
|
|
static T temp;
|
|
return temp;
|
|
}
|
|
|
|
//! Exchange values of variables \c a and \c b.
|
|
template<typename T>
|
|
inline void swap(T& a, T& b) { T t = a; a = b; b = t; }
|
|
|
|
//! Exchange values of variables (\c a1,\c a2) and (\c b1,\c b2).
|
|
template<typename T1, typename T2>
|
|
inline void swap(T1& a1, T1& b1, T2& a2, T2& b2) {
|
|
cimg::swap(a1,b1); cimg::swap(a2,b2);
|
|
}
|
|
|
|
//! Exchange values of variables (\c a1,\c a2,\c a3) and (\c b1,\c b2,\c b3).
|
|
template<typename T1, typename T2, typename T3>
|
|
inline void swap(T1& a1, T1& b1, T2& a2, T2& b2, T3& a3, T3& b3) {
|
|
cimg::swap(a1,b1,a2,b2); cimg::swap(a3,b3);
|
|
}
|
|
|
|
//! Exchange values of variables (\c a1,\c a2,...,\c a4) and (\c b1,\c b2,...,\c b4).
|
|
template<typename T1, typename T2, typename T3, typename T4>
|
|
inline void swap(T1& a1, T1& b1, T2& a2, T2& b2, T3& a3, T3& b3, T4& a4, T4& b4) {
|
|
cimg::swap(a1,b1,a2,b2,a3,b3); cimg::swap(a4,b4);
|
|
}
|
|
|
|
//! Exchange values of variables (\c a1,\c a2,...,\c a5) and (\c b1,\c b2,...,\c b5).
|
|
template<typename T1, typename T2, typename T3, typename T4, typename T5>
|
|
inline void swap(T1& a1, T1& b1, T2& a2, T2& b2, T3& a3, T3& b3, T4& a4, T4& b4, T5& a5, T5& b5) {
|
|
cimg::swap(a1,b1,a2,b2,a3,b3,a4,b4); cimg::swap(a5,b5);
|
|
}
|
|
|
|
//! Exchange values of variables (\c a1,\c a2,...,\c a6) and (\c b1,\c b2,...,\c b6).
|
|
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
|
|
inline void swap(T1& a1, T1& b1, T2& a2, T2& b2, T3& a3, T3& b3, T4& a4, T4& b4, T5& a5, T5& b5, T6& a6, T6& b6) {
|
|
cimg::swap(a1,b1,a2,b2,a3,b3,a4,b4,a5,b5); cimg::swap(a6,b6);
|
|
}
|
|
|
|
//! Exchange values of variables (\c a1,\c a2,...,\c a7) and (\c b1,\c b2,...,\c b7).
|
|
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7>
|
|
inline void swap(T1& a1, T1& b1, T2& a2, T2& b2, T3& a3, T3& b3, T4& a4, T4& b4, T5& a5, T5& b5, T6& a6, T6& b6,
|
|
T7& a7, T7& b7) {
|
|
cimg::swap(a1,b1,a2,b2,a3,b3,a4,b4,a5,b5,a6,b6); cimg::swap(a7,b7);
|
|
}
|
|
|
|
//! Exchange values of variables (\c a1,\c a2,...,\c a8) and (\c b1,\c b2,...,\c b8).
|
|
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8>
|
|
inline void swap(T1& a1, T1& b1, T2& a2, T2& b2, T3& a3, T3& b3, T4& a4, T4& b4, T5& a5, T5& b5, T6& a6, T6& b6,
|
|
T7& a7, T7& b7, T8& a8, T8& b8) {
|
|
cimg::swap(a1,b1,a2,b2,a3,b3,a4,b4,a5,b5,a6,b6,a7,b7); cimg::swap(a8,b8);
|
|
}
|
|
|
|
//! Return the endianness of the current architecture.
|
|
/**
|
|
\return \c false for <i>Little Endian</i> or \c true for <i>Big Endian</i>.
|
|
**/
|
|
inline bool endianness() {
|
|
const int x = 1;
|
|
return ((unsigned char*)&x)[0]?false:true;
|
|
}
|
|
|
|
//! Reverse endianness of all elements in a memory buffer.
|
|
/**
|
|
\param[in,out] buffer Memory buffer whose endianness must be reversed.
|
|
\param size Number of buffer elements to reverse.
|
|
**/
|
|
template<typename T>
|
|
inline void invert_endianness(T* const buffer, const cimg_ulong size) {
|
|
if (size) switch (sizeof(T)) {
|
|
case 1 : break;
|
|
case 2 : {
|
|
for (unsigned short *ptr = (unsigned short*)buffer + size; ptr>(unsigned short*)buffer; ) {
|
|
const unsigned short val = *(--ptr);
|
|
*ptr = (unsigned short)((val>>8) | ((val<<8)));
|
|
}
|
|
} break;
|
|
case 4 : {
|
|
for (unsigned int *ptr = (unsigned int*)buffer + size; ptr>(unsigned int*)buffer; ) {
|
|
const unsigned int val = *(--ptr);
|
|
*ptr = (val>>24) | ((val>>8)&0xff00) | ((val<<8)&0xff0000) | (val<<24);
|
|
}
|
|
} break;
|
|
case 8 : {
|
|
const cimg_uint64
|
|
m0 = (cimg_uint64)0xff, m1 = m0<<8, m2 = m0<<16, m3 = m0<<24,
|
|
m4 = m0<<32, m5 = m0<<40, m6 = m0<<48, m7 = m0<<56;
|
|
for (cimg_uint64 *ptr = (cimg_uint64*)buffer + size; ptr>(cimg_uint64*)buffer; ) {
|
|
const cimg_uint64 val = *(--ptr);
|
|
*ptr = (((val&m7)>>56) | ((val&m6)>>40) | ((val&m5)>>24) | ((val&m4)>>8) |
|
|
((val&m3)<<8) |((val&m2)<<24) | ((val&m1)<<40) | ((val&m0)<<56));
|
|
}
|
|
} break;
|
|
default : {
|
|
for (T* ptr = buffer + size; ptr>buffer; ) {
|
|
unsigned char *pb = (unsigned char*)(--ptr), *pe = pb + sizeof(T);
|
|
for (int i = 0; i<(int)sizeof(T)/2; ++i) swap(*(pb++),*(--pe));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
inline void invert_endianness(bool* const, const cimg_ulong) {}
|
|
inline void invert_endianness(unsigned char* const, const cimg_ulong) {}
|
|
inline void invert_endianness(char* const, const cimg_ulong) {}
|
|
|
|
//! Reverse endianness of a single variable.
|
|
/**
|
|
\param[in,out] a Variable to reverse.
|
|
\return Reference to reversed variable.
|
|
**/
|
|
template<typename T>
|
|
inline T& invert_endianness(T& a) {
|
|
invert_endianness(&a,1);
|
|
return a;
|
|
}
|
|
|
|
// Conversion functions to get more precision when trying to store unsigned ints values as floats.
|
|
inline unsigned int float2uint(const float f) {
|
|
int tmp = 0;
|
|
std::memcpy(&tmp,&f,sizeof(float));
|
|
if (tmp>=0) return (unsigned int)f;
|
|
unsigned int u;
|
|
// use memcpy instead of assignment to avoid undesired optimizations by C++-compiler.
|
|
std::memcpy(&u,&f,sizeof(float));
|
|
return ((u)<<2)>>2; // set sign & exponent bit to 0
|
|
}
|
|
|
|
inline float uint2float(const unsigned int u) {
|
|
if (u<(1U<<19)) return (float)u; // Consider safe storage of unsigned int as floats until 19bits (i.e 524287)
|
|
float f;
|
|
const unsigned int v = u|(3U<<(8*sizeof(unsigned int)-2)); // set sign & exponent bit to 1
|
|
// use memcpy instead of simple assignment to avoid undesired optimizations by C++-compiler.
|
|
std::memcpy(&f,&v,sizeof(float));
|
|
return f;
|
|
}
|
|
|
|
//! Return the value of a system timer, with a millisecond precision.
|
|
/**
|
|
\note The timer does not necessarily starts from \c 0.
|
|
**/
|
|
inline cimg_uint64 time() {
|
|
#if cimg_OS==1
|
|
struct timeval st_time;
|
|
gettimeofday(&st_time,0);
|
|
return (cimg_uint64)st_time.tv_sec*1000 + (cimg_uint64)st_time.tv_usec/1000;
|
|
#elif cimg_OS==2
|
|
ULARGE_INTEGER ul;
|
|
FILETIME ft;
|
|
GetSystemTimeAsFileTime(&ft);
|
|
ul.LowPart = ft.dwLowDateTime;
|
|
ul.HighPart = ft.dwHighDateTime;
|
|
return (cimg_uint64)ul.QuadPart/10000;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
// Implement a tic/toc mechanism to display elapsed time of algorithms.
|
|
inline cimg_uint64 tictoc(const bool is_tic);
|
|
|
|
//! Start tic/toc timer for time measurement between code instructions.
|
|
/**
|
|
\return Current value of the timer (same value as time()).
|
|
**/
|
|
inline cimg_uint64 tic() {
|
|
return cimg::tictoc(true);
|
|
}
|
|
|
|
//! End tic/toc timer and displays elapsed time from last call to tic().
|
|
/**
|
|
\return Time elapsed (in ms) since last call to tic().
|
|
**/
|
|
inline cimg_uint64 toc() {
|
|
return cimg::tictoc(false);
|
|
}
|
|
|
|
//! Sleep for a given numbers of milliseconds.
|
|
/**
|
|
\param milliseconds Number of milliseconds to wait for.
|
|
\note This function frees the CPU resources during the sleeping time.
|
|
It can be used to temporize your program properly, without wasting CPU time.
|
|
**/
|
|
inline void sleep(const unsigned int milliseconds) {
|
|
#if cimg_OS==1
|
|
struct timespec tv;
|
|
tv.tv_sec = milliseconds/1000;
|
|
tv.tv_nsec = (milliseconds%1000)*1000000;
|
|
nanosleep(&tv,0);
|
|
#elif cimg_OS==2
|
|
Sleep(milliseconds);
|
|
#else
|
|
cimg::unused(milliseconds);
|
|
#endif
|
|
}
|
|
|
|
inline unsigned int wait(const unsigned int milliseconds, cimg_uint64 *const p_timer) {
|
|
if (!*p_timer) *p_timer = cimg::time();
|
|
const cimg_uint64 current_time = cimg::time();
|
|
if (current_time<*p_timer || current_time>=*p_timer + milliseconds) { *p_timer = current_time; return 0; }
|
|
const unsigned int time_diff = (unsigned int)(*p_timer + milliseconds - current_time);
|
|
*p_timer = current_time + time_diff;
|
|
cimg::sleep(time_diff);
|
|
return time_diff;
|
|
}
|
|
|
|
//! Wait for a given number of milliseconds since the last call to wait().
|
|
/**
|
|
\param milliseconds Number of milliseconds to wait for.
|
|
\return Number of milliseconds elapsed since the last call to wait().
|
|
\note Same as sleep() with a waiting time computed with regard to the last call
|
|
of wait(). It may be used to temporize your program properly, without wasting CPU time.
|
|
**/
|
|
inline unsigned int wait(const unsigned int milliseconds) {
|
|
cimg::mutex(3);
|
|
static cimg_uint64 timer = cimg::time();
|
|
cimg::mutex(3,0);
|
|
return cimg::wait(milliseconds,&timer);
|
|
}
|
|
|
|
// Custom random number generator (allow re-entrance).
|
|
inline cimg_uint64& rng() { // Used as a shared global number for rng
|
|
static cimg_uint64 rng = 0xB16B00B5U;
|
|
return rng;
|
|
}
|
|
|
|
inline unsigned int _rand(cimg_uint64 *const p_rng) {
|
|
*p_rng = *p_rng*1103515245 + 12345U;
|
|
return (unsigned int)*p_rng;
|
|
}
|
|
|
|
inline unsigned int _rand() {
|
|
cimg::mutex(4);
|
|
const unsigned int res = cimg::_rand(&cimg::rng());
|
|
cimg::mutex(4,0);
|
|
return res;
|
|
}
|
|
|
|
inline void srand(cimg_uint64 *const p_rng) {
|
|
#if cimg_OS==1
|
|
*p_rng = cimg::time() + (cimg_uint64)getpid();
|
|
#elif cimg_OS==2
|
|
*p_rng = cimg::time() + (cimg_uint64)_getpid();
|
|
#endif
|
|
}
|
|
|
|
inline void srand() {
|
|
cimg::mutex(4);
|
|
cimg::srand(&cimg::rng());
|
|
cimg::mutex(4,0);
|
|
}
|
|
|
|
inline void srand(const cimg_uint64 seed) {
|
|
cimg::mutex(4);
|
|
cimg::rng() = seed;
|
|
cimg::mutex(4,0);
|
|
}
|
|
|
|
inline double rand(const double val_min, const double val_max, cimg_uint64 *const p_rng) {
|
|
const double val = cimg::_rand(p_rng)/(double)~0U;
|
|
return val_min + (val_max - val_min)*val;
|
|
}
|
|
|
|
inline double rand(const double val_min, const double val_max) {
|
|
cimg::mutex(4);
|
|
const double res = cimg::rand(val_min,val_max,&cimg::rng());
|
|
cimg::mutex(4,0);
|
|
return res;
|
|
}
|
|
|
|
inline double rand(const double val_max, cimg_uint64 *const p_rng) {
|
|
const double val = cimg::_rand(p_rng)/(double)~0U;
|
|
return val_max*val;
|
|
}
|
|
|
|
inline double rand(const double val_max=1) {
|
|
cimg::mutex(4);
|
|
const double res = cimg::rand(val_max,&cimg::rng());
|
|
cimg::mutex(4,0);
|
|
return res;
|
|
}
|
|
|
|
inline double grand(cimg_uint64 *const p_rng) {
|
|
double x1, w;
|
|
do {
|
|
const double x2 = cimg::rand(-1,1,p_rng);
|
|
x1 = cimg::rand(-1,1,p_rng);
|
|
w = x1*x1 + x2*x2;
|
|
} while (w<=0 || w>=1.);
|
|
return x1*std::sqrt((-2*std::log(w))/w);
|
|
}
|
|
|
|
inline double grand() {
|
|
cimg::mutex(4);
|
|
const double res = cimg::grand(&cimg::rng());
|
|
cimg::mutex(4,0);
|
|
return res;
|
|
}
|
|
|
|
inline unsigned int prand(const double z, cimg_uint64 *const p_rng) {
|
|
if (z<=1.e-10) return 0;
|
|
if (z>100) return (unsigned int)((std::sqrt(z) * cimg::grand(p_rng)) + z);
|
|
unsigned int k = 0;
|
|
const double y = std::exp(-z);
|
|
for (double s = 1.; s>=y; ++k) s*=cimg::rand(1,p_rng);
|
|
return k - 1;
|
|
}
|
|
|
|
inline unsigned int prand(const double z) {
|
|
cimg::mutex(4);
|
|
const unsigned int res = cimg::prand(z,&cimg::rng());
|
|
cimg::mutex(4,0);
|
|
return res;
|
|
}
|
|
|
|
//! Cut (i.e. clamp) value in specified interval.
|
|
template<typename T, typename t>
|
|
inline T cut(const T& val, const t& val_min, const t& val_max) {
|
|
return val<=val_min?(T)val_min:val>=val_max?(T)val_max:val;
|
|
}
|
|
|
|
//! Bitwise-rotate value on the left.
|
|
template<typename T>
|
|
inline T rol(const T& a, const unsigned int n=1) {
|
|
return n?(T)((a<<n)|(a>>((sizeof(T)<<3) - n))):a;
|
|
}
|
|
|
|
inline float rol(const float a, const unsigned int n=1) {
|
|
return (float)rol((int)a,n);
|
|
}
|
|
|
|
inline double rol(const double a, const unsigned int n=1) {
|
|
return (double)rol((cimg_long)a,n);
|
|
}
|
|
|
|
inline double rol(const long double a, const unsigned int n=1) {
|
|
return (double)rol((cimg_long)a,n);
|
|
}
|
|
|
|
#ifdef cimg_use_half
|
|
inline half rol(const half a, const unsigned int n=1) {
|
|
return (half)rol((int)a,n);
|
|
}
|
|
#endif
|
|
|
|
//! Bitwise-rotate value on the right.
|
|
template<typename T>
|
|
inline T ror(const T& a, const unsigned int n=1) {
|
|
return n?(T)((a>>n)|(a<<((sizeof(T)<<3) - n))):a;
|
|
}
|
|
|
|
inline float ror(const float a, const unsigned int n=1) {
|
|
return (float)ror((int)a,n);
|
|
}
|
|
|
|
inline double ror(const double a, const unsigned int n=1) {
|
|
return (double)ror((cimg_long)a,n);
|
|
}
|
|
|
|
inline double ror(const long double a, const unsigned int n=1) {
|
|
return (double)ror((cimg_long)a,n);
|
|
}
|
|
|
|
#ifdef cimg_use_half
|
|
inline half ror(const half a, const unsigned int n=1) {
|
|
return (half)ror((int)a,n);
|
|
}
|
|
#endif
|
|
|
|
//! Return absolute value of a value.
|
|
template<typename T>
|
|
inline T abs(const T& a) {
|
|
return a>=0?a:-a;
|
|
}
|
|
inline bool abs(const bool a) {
|
|
return a;
|
|
}
|
|
inline int abs(const unsigned char a) {
|
|
return (int)a;
|
|
}
|
|
inline int abs(const unsigned short a) {
|
|
return (int)a;
|
|
}
|
|
inline int abs(const unsigned int a) {
|
|
return (int)a;
|
|
}
|
|
inline int abs(const int a) {
|
|
return std::abs(a);
|
|
}
|
|
inline cimg_int64 abs(const cimg_uint64 a) {
|
|
return (cimg_int64)a;
|
|
}
|
|
inline double abs(const double a) {
|
|
return std::fabs(a);
|
|
}
|
|
inline float abs(const float a) {
|
|
return (float)std::fabs((double)a);
|
|
}
|
|
|
|
//! Return hyperbolic arcosine of a value.
|
|
inline double acosh(const double x) {
|
|
#if cimg_use_cpp11==1 && !defined(_MSC_VER)
|
|
return std::acosh(x);
|
|
#else
|
|
return std::log(x + std::sqrt(x*x - 1));
|
|
#endif
|
|
}
|
|
|
|
//! Return hyperbolic arcsine of a value.
|
|
inline double asinh(const double x) {
|
|
#if cimg_use_cpp11==1 && !defined(_MSC_VER)
|
|
return std::asinh(x);
|
|
#else
|
|
return std::log(x + std::sqrt(x*x + 1));
|
|
#endif
|
|
}
|
|
|
|
//! Return hyperbolic arctangent of a value.
|
|
inline double atanh(const double x) {
|
|
#if cimg_use_cpp11==1 && !defined(_MSC_VER)
|
|
return std::atanh(x);
|
|
#else
|
|
return 0.5*std::log((1. + x)/(1. - x));
|
|
#endif
|
|
}
|
|
|
|
//! Return the sinc of a given value.
|
|
inline double sinc(const double x) {
|
|
return x?std::sin(x)/x:1;
|
|
}
|
|
|
|
//! Return base-2 logarithm of a value.
|
|
inline double log2(const double x) {
|
|
#if cimg_use_cpp11==1 && !defined(_MSC_VER)
|
|
return std::log2(x);
|
|
#else
|
|
const double base2 = std::log(2.);
|
|
return std::log(x)/base2;
|
|
#endif
|
|
}
|
|
|
|
//! Return square of a value.
|
|
template<typename T>
|
|
inline T sqr(const T& val) {
|
|
return val*val;
|
|
}
|
|
|
|
// Return inverse of error function.
|
|
template<typename T>
|
|
inline T erfinv(const T& val) {
|
|
const T
|
|
sgn = val<0?-1:1,
|
|
x = (1 - val)*(1 + val),
|
|
lnx = std::log(x),
|
|
tt1 = (T)(2/(cimg::PI*0.147) + 0.5*lnx),
|
|
tt2 = lnx/(T)0.147;
|
|
return sgn*std::sqrt(-tt1 + std::sqrt(tt1*tt1 - tt2));
|
|
}
|
|
|
|
//! Return cubic root of a value.
|
|
template<typename T>
|
|
inline double cbrt(const T& x) {
|
|
#if cimg_use_cpp11==1
|
|
return std::cbrt(x);
|
|
#else
|
|
return x>=0?std::pow((double)x,1./3):-std::pow(-(double)x,1./3);
|
|
#endif
|
|
}
|
|
|
|
template<typename T>
|
|
inline T pow3(const T& val) {
|
|
return val*val*val;
|
|
}
|
|
template<typename T>
|
|
inline T pow4(const T& val) {
|
|
return val*val*val*val;
|
|
}
|
|
|
|
//! Return the minimum between three values.
|
|
template<typename t>
|
|
inline t min(const t& a, const t& b, const t& c) {
|
|
return std::min(std::min(a,b),c);
|
|
}
|
|
|
|
//! Return the minimum between four values.
|
|
template<typename t>
|
|
inline t min(const t& a, const t& b, const t& c, const t& d) {
|
|
return std::min(std::min(a,b),std::min(c,d));
|
|
}
|
|
|
|
//! Return the minabs between two values.
|
|
template<typename t>
|
|
inline t minabs(const t& a, const t& b) {
|
|
return cimg::abs(b)<cimg::abs(a)?b:a;
|
|
}
|
|
|
|
template<typename t>
|
|
inline t minabs(const t& a, const t& b, const t& abs_b) {
|
|
return abs_b<cimg::abs(a)?b:a;
|
|
}
|
|
|
|
//! Return the maximum between three values.
|
|
template<typename t>
|
|
inline t max(const t& a, const t& b, const t& c) {
|
|
return std::max(std::max(a,b),c);
|
|
}
|
|
|
|
//! Return the maximum between four values.
|
|
template<typename t>
|
|
inline t max(const t& a, const t& b, const t& c, const t& d) {
|
|
return std::max(std::max(a,b),std::max(c,d));
|
|
}
|
|
|
|
//! Return the maxabs between two values.
|
|
template<typename t>
|
|
inline t maxabs(const t& a, const t& b) {
|
|
return cimg::abs(b)>cimg::abs(a)?b:a;
|
|
}
|
|
|
|
template<typename t>
|
|
inline t maxabs(const t& a, const t& b, const t& abs_b) {
|
|
return abs_b>cimg::abs(a)?b:a;
|
|
}
|
|
|
|
//! Return the sign of a value.
|
|
template<typename T>
|
|
inline T sign(const T& x) {
|
|
return (T)(cimg::type<T>::is_nan(x)?0:x<0?-1:x>0);
|
|
}
|
|
|
|
//! Return the nearest power of 2 higher than given value.
|
|
template<typename T>
|
|
inline cimg_uint64 nearest_pow2(const T& x) {
|
|
cimg_uint64 i = 1;
|
|
while (x>i) i<<=1;
|
|
return i;
|
|
}
|
|
|
|
//! Return the modulo of a value.
|
|
/**
|
|
\param x Input value.
|
|
\param m Modulo value.
|
|
\note This modulo function accepts negative and floating-points modulo numbers, as well as variables of any type.
|
|
**/
|
|
template<typename T>
|
|
inline T mod(const T& x, const T& m) {
|
|
if (!m) throw CImgArgumentException("cimg::mod(): Specified modulo value is 0.");
|
|
const double dx = (double)x, dm = (double)m;
|
|
if (!cimg::type<double>::is_finite(dm)) return x;
|
|
if (cimg::type<double>::is_finite(dx)) return (T)(dx - dm * std::floor(dx / dm));
|
|
return (T)0;
|
|
}
|
|
inline int mod(const bool x, const bool m) {
|
|
if (!m) throw CImgArgumentException("cimg::mod(): Specified modulo value is 0.");
|
|
return x?1:0;
|
|
}
|
|
inline int mod(const unsigned char x, const unsigned char m) {
|
|
if (!m) throw CImgArgumentException("cimg::mod(): Specified modulo value is 0.");
|
|
return x%m;
|
|
}
|
|
inline int mod(const char x, const char m) {
|
|
if (!m) throw CImgArgumentException("cimg::mod(): Specified modulo value is 0.");
|
|
#if defined(CHAR_MAX) && CHAR_MAX==255
|
|
return x%m;
|
|
#else
|
|
return x>=0?x%m:(x%m?m + x%m:0);
|
|
#endif
|
|
}
|
|
inline int mod(const unsigned short x, const unsigned short m) {
|
|
if (!m) throw CImgArgumentException("cimg::mod(): Specified modulo value is 0.");
|
|
return (int)(x%m);
|
|
}
|
|
inline int mod(const short x, const short m) {
|
|
if (!m) throw CImgArgumentException("cimg::mod(): Specified modulo value is 0.");
|
|
return (int)(x>=0?x%m:(x%m?m + x%m:0));
|
|
}
|
|
inline int mod(const unsigned int x, const unsigned int m) {
|
|
if (!m) throw CImgArgumentException("cimg::mod(): Specified modulo value is 0.");
|
|
return (int)(x%m);
|
|
}
|
|
inline int mod(const int x, const int m) {
|
|
if (!m) throw CImgArgumentException("cimg::mod(): Specified modulo value is 0.");
|
|
return (int)(x>=0?x%m:(x%m?m + x%m:0));
|
|
}
|
|
inline cimg_int64 mod(const cimg_uint64 x, const cimg_uint64 m) {
|
|
if (!m) throw CImgArgumentException("cimg::mod(): Specified modulo value is 0.");
|
|
return (cimg_int64)(x%m);
|
|
}
|
|
inline cimg_int64 mod(const cimg_int64 x, const cimg_int64 m) {
|
|
if (!m) throw CImgArgumentException("cimg::mod(): Specified modulo value is 0.");
|
|
return (cimg_int64)(x>=0?x%m:(x%m?m + x%m:0));
|
|
}
|
|
|
|
//! Return the min-mod of two values.
|
|
/**
|
|
\note <i>minmod(\p a,\p b)</i> is defined to be:
|
|
- <i>minmod(\p a,\p b) = min(\p a,\p b)</i>, if \p a and \p b have the same sign.
|
|
- <i>minmod(\p a,\p b) = 0</i>, if \p a and \p b have different signs.
|
|
**/
|
|
template<typename T>
|
|
inline T minmod(const T& a, const T& b) {
|
|
return a*b<=0?0:(a>0?(a<b?a:b):(a<b?b:a));
|
|
}
|
|
|
|
template<typename T>
|
|
inline T round(const T& x) {
|
|
return (T)std::floor((_cimg_Tfloat)x + 0.5f);
|
|
}
|
|
|
|
template<typename T>
|
|
inline int uiround(const T x) {
|
|
return cimg::type<T>::is_float()?(int)(x + 0.5f):(int)x;
|
|
}
|
|
|
|
//! Return rounded value.
|
|
/**
|
|
\param x Value to be rounded.
|
|
\param y Rounding precision.
|
|
\param rounding_type Type of rounding operation (\c 0 = nearest, \c -1 = backward, \c 1 = forward).
|
|
\return Rounded value, having the same type as input value \c x.
|
|
**/
|
|
template<typename T>
|
|
inline T round(const T& x, const double y, const int rounding_type=0) {
|
|
if (y<=0) return x;
|
|
if (y==1) switch (rounding_type) {
|
|
case 0 : return cimg::round(x);
|
|
case 1 : return (T)std::ceil((_cimg_Tfloat)x);
|
|
default : return (T)std::floor((_cimg_Tfloat)x);
|
|
}
|
|
const double sx = (double)x/y, floor = std::floor(sx), delta = sx - floor;
|
|
return (T)(y*(rounding_type<0?floor:rounding_type>0?std::ceil(sx):delta<0.5?floor:std::ceil(sx)));
|
|
}
|
|
|
|
// Code to compute fast median from 2,3,5,7,9,13,25 and 49 values.
|
|
// (contribution by RawTherapee: http://rawtherapee.com/).
|
|
template<typename T>
|
|
inline T median(T val0, T val1) {
|
|
return (val0 + val1)/2;
|
|
}
|
|
|
|
template<typename T>
|
|
inline T median(T val0, T val1, T val2) {
|
|
return std::max(std::min(val0,val1),std::min(val2,std::max(val0,val1)));
|
|
}
|
|
|
|
template<typename T>
|
|
inline T median(T val0, T val1, T val2, T val3, T val4) {
|
|
T tmp = std::min(val0,val1);
|
|
val1 = std::max(val0,val1); val0 = tmp; tmp = std::min(val3,val4); val4 = std::max(val3,val4);
|
|
val3 = std::max(val0,tmp); val1 = std::min(val1,val4); tmp = std::min(val1,val2); val2 = std::max(val1,val2);
|
|
val1 = tmp; tmp = std::min(val2,val3);
|
|
return std::max(val1,tmp);
|
|
}
|
|
|
|
template<typename T>
|
|
inline T median(T val0, T val1, T val2, T val3, T val4, T val5, T val6) {
|
|
T tmp = std::min(val0,val5);
|
|
val5 = std::max(val0,val5); val0 = tmp; tmp = std::min(val0,val3); val3 = std::max(val0,val3); val0 = tmp;
|
|
tmp = std::min(val1,val6); val6 = std::max(val1,val6); val1 = tmp; tmp = std::min(val2,val4);
|
|
val4 = std::max(val2,val4); val2 = tmp; val1 = std::max(val0,val1); tmp = std::min(val3,val5);
|
|
val5 = std::max(val3,val5); val3 = tmp; tmp = std::min(val2,val6); val6 = std::max(val2,val6);
|
|
val3 = std::max(tmp,val3); val3 = std::min(val3,val6); tmp = std::min(val4,val5); val4 = std::max(val1,tmp);
|
|
tmp = std::min(val1,tmp); val3 = std::max(tmp,val3);
|
|
return std::min(val3,val4);
|
|
}
|
|
|
|
template<typename T>
|
|
inline T median(T val0, T val1, T val2, T val3, T val4, T val5, T val6, T val7, T val8) {
|
|
T tmp = std::min(val1,val2);
|
|
val2 = std::max(val1,val2); val1 = tmp; tmp = std::min(val4,val5);
|
|
val5 = std::max(val4,val5); val4 = tmp; tmp = std::min(val7,val8);
|
|
val8 = std::max(val7,val8); val7 = tmp; tmp = std::min(val0,val1);
|
|
val1 = std::max(val0,val1); val0 = tmp; tmp = std::min(val3,val4);
|
|
val4 = std::max(val3,val4); val3 = tmp; tmp = std::min(val6,val7);
|
|
val7 = std::max(val6,val7); val6 = tmp; tmp = std::min(val1,val2);
|
|
val2 = std::max(val1,val2); val1 = tmp; tmp = std::min(val4,val5);
|
|
val5 = std::max(val4,val5); val4 = tmp; tmp = std::min(val7,val8);
|
|
val8 = std::max(val7,val8); val3 = std::max(val0,val3); val5 = std::min(val5,val8);
|
|
val7 = std::max(val4,tmp); tmp = std::min(val4,tmp); val6 = std::max(val3,val6);
|
|
val4 = std::max(val1,tmp); val2 = std::min(val2,val5); val4 = std::min(val4,val7);
|
|
tmp = std::min(val4,val2); val2 = std::max(val4,val2); val4 = std::max(val6,tmp);
|
|
return std::min(val4,val2);
|
|
}
|
|
|
|
template<typename T>
|
|
inline T median(T val0, T val1, T val2, T val3, T val4, T val5, T val6, T val7, T val8, T val9, T val10, T val11,
|
|
T val12) {
|
|
T tmp = std::min(val1,val7);
|
|
val7 = std::max(val1,val7); val1 = tmp; tmp = std::min(val9,val11); val11 = std::max(val9,val11); val9 = tmp;
|
|
tmp = std::min(val3,val4); val4 = std::max(val3,val4); val3 = tmp; tmp = std::min(val5,val8);
|
|
val8 = std::max(val5,val8); val5 = tmp; tmp = std::min(val0,val12); val12 = std::max(val0,val12);
|
|
val0 = tmp; tmp = std::min(val2,val6); val6 = std::max(val2,val6); val2 = tmp; tmp = std::min(val0,val1);
|
|
val1 = std::max(val0,val1); val0 = tmp; tmp = std::min(val2,val3); val3 = std::max(val2,val3); val2 = tmp;
|
|
tmp = std::min(val4,val6); val6 = std::max(val4,val6); val4 = tmp; tmp = std::min(val8,val11);
|
|
val11 = std::max(val8,val11); val8 = tmp; tmp = std::min(val7,val12); val12 = std::max(val7,val12); val7 = tmp;
|
|
tmp = std::min(val5,val9); val9 = std::max(val5,val9); val5 = tmp; tmp = std::min(val0,val2);
|
|
val2 = std::max(val0,val2); val0 = tmp; tmp = std::min(val3,val7); val7 = std::max(val3,val7); val3 = tmp;
|
|
tmp = std::min(val10,val11); val11 = std::max(val10,val11); val10 = tmp; tmp = std::min(val1,val4);
|
|
val4 = std::max(val1,val4); val1 = tmp; tmp = std::min(val6,val12); val12 = std::max(val6,val12); val6 = tmp;
|
|
tmp = std::min(val7,val8); val8 = std::max(val7,val8); val7 = tmp; val11 = std::min(val11,val12);
|
|
tmp = std::min(val4,val9); val9 = std::max(val4,val9); val4 = tmp; tmp = std::min(val6,val10);
|
|
val10 = std::max(val6,val10); val6 = tmp; tmp = std::min(val3,val4); val4 = std::max(val3,val4); val3 = tmp;
|
|
tmp = std::min(val5,val6); val6 = std::max(val5,val6); val5 = tmp; val8 = std::min(val8,val9);
|
|
val10 = std::min(val10,val11); tmp = std::min(val1,val7); val7 = std::max(val1,val7); val1 = tmp;
|
|
tmp = std::min(val2,val6); val6 = std::max(val2,val6); val2 = tmp; val3 = std::max(val1,val3);
|
|
tmp = std::min(val4,val7); val7 = std::max(val4,val7); val4 = tmp; val8 = std::min(val8,val10);
|
|
val5 = std::max(val0,val5); val5 = std::max(val2,val5); tmp = std::min(val6,val8); val8 = std::max(val6,val8);
|
|
val5 = std::max(val3,val5); val7 = std::min(val7,val8); val6 = std::max(val4,tmp); tmp = std::min(val4,tmp);
|
|
val5 = std::max(tmp,val5); val6 = std::min(val6,val7);
|
|
return std::max(val5,val6);
|
|
}
|
|
|
|
template<typename T>
|
|
inline T median(T val0, T val1, T val2, T val3, T val4,
|
|
T val5, T val6, T val7, T val8, T val9,
|
|
T val10, T val11, T val12, T val13, T val14,
|
|
T val15, T val16, T val17, T val18, T val19,
|
|
T val20, T val21, T val22, T val23, T val24) {
|
|
T tmp = std::min(val0,val1);
|
|
val1 = std::max(val0,val1); val0 = tmp; tmp = std::min(val3,val4); val4 = std::max(val3,val4);
|
|
val3 = tmp; tmp = std::min(val2,val4); val4 = std::max(val2,val4); val2 = std::min(tmp,val3);
|
|
val3 = std::max(tmp,val3); tmp = std::min(val6,val7); val7 = std::max(val6,val7); val6 = tmp;
|
|
tmp = std::min(val5,val7); val7 = std::max(val5,val7); val5 = std::min(tmp,val6); val6 = std::max(tmp,val6);
|
|
tmp = std::min(val9,val10); val10 = std::max(val9,val10); val9 = tmp; tmp = std::min(val8,val10);
|
|
val10 = std::max(val8,val10); val8 = std::min(tmp,val9); val9 = std::max(tmp,val9);
|
|
tmp = std::min(val12,val13); val13 = std::max(val12,val13); val12 = tmp; tmp = std::min(val11,val13);
|
|
val13 = std::max(val11,val13); val11 = std::min(tmp,val12); val12 = std::max(tmp,val12);
|
|
tmp = std::min(val15,val16); val16 = std::max(val15,val16); val15 = tmp; tmp = std::min(val14,val16);
|
|
val16 = std::max(val14,val16); val14 = std::min(tmp,val15); val15 = std::max(tmp,val15);
|
|
tmp = std::min(val18,val19); val19 = std::max(val18,val19); val18 = tmp; tmp = std::min(val17,val19);
|
|
val19 = std::max(val17,val19); val17 = std::min(tmp,val18); val18 = std::max(tmp,val18);
|
|
tmp = std::min(val21,val22); val22 = std::max(val21,val22); val21 = tmp; tmp = std::min(val20,val22);
|
|
val22 = std::max(val20,val22); val20 = std::min(tmp,val21); val21 = std::max(tmp,val21);
|
|
tmp = std::min(val23,val24); val24 = std::max(val23,val24); val23 = tmp; tmp = std::min(val2,val5);
|
|
val5 = std::max(val2,val5); val2 = tmp; tmp = std::min(val3,val6); val6 = std::max(val3,val6); val3 = tmp;
|
|
tmp = std::min(val0,val6); val6 = std::max(val0,val6); val0 = std::min(tmp,val3); val3 = std::max(tmp,val3);
|
|
tmp = std::min(val4,val7); val7 = std::max(val4,val7); val4 = tmp; tmp = std::min(val1,val7);
|
|
val7 = std::max(val1,val7); val1 = std::min(tmp,val4); val4 = std::max(tmp,val4); tmp = std::min(val11,val14);
|
|
val14 = std::max(val11,val14); val11 = tmp; tmp = std::min(val8,val14); val14 = std::max(val8,val14);
|
|
val8 = std::min(tmp,val11); val11 = std::max(tmp,val11); tmp = std::min(val12,val15);
|
|
val15 = std::max(val12,val15); val12 = tmp; tmp = std::min(val9,val15); val15 = std::max(val9,val15);
|
|
val9 = std::min(tmp,val12); val12 = std::max(tmp,val12); tmp = std::min(val13,val16);
|
|
val16 = std::max(val13,val16); val13 = tmp; tmp = std::min(val10,val16); val16 = std::max(val10,val16);
|
|
val10 = std::min(tmp,val13); val13 = std::max(tmp,val13); tmp = std::min(val20,val23);
|
|
val23 = std::max(val20,val23); val20 = tmp; tmp = std::min(val17,val23); val23 = std::max(val17,val23);
|
|
val17 = std::min(tmp,val20); val20 = std::max(tmp,val20); tmp = std::min(val21,val24);
|
|
val24 = std::max(val21,val24); val21 = tmp; tmp = std::min(val18,val24); val24 = std::max(val18,val24);
|
|
val18 = std::min(tmp,val21); val21 = std::max(tmp,val21); tmp = std::min(val19,val22);
|
|
val22 = std::max(val19,val22); val19 = tmp; val17 = std::max(val8,val17); tmp = std::min(val9,val18);
|
|
val18 = std::max(val9,val18); val9 = tmp; tmp = std::min(val0,val18); val18 = std::max(val0,val18);
|
|
val9 = std::max(tmp,val9); tmp = std::min(val10,val19); val19 = std::max(val10,val19); val10 = tmp;
|
|
tmp = std::min(val1,val19); val19 = std::max(val1,val19); val1 = std::min(tmp,val10);
|
|
val10 = std::max(tmp,val10); tmp = std::min(val11,val20); val20 = std::max(val11,val20); val11 = tmp;
|
|
tmp = std::min(val2,val20); val20 = std::max(val2,val20); val11 = std::max(tmp,val11);
|
|
tmp = std::min(val12,val21); val21 = std::max(val12,val21); val12 = tmp; tmp = std::min(val3,val21);
|
|
val21 = std::max(val3,val21); val3 = std::min(tmp,val12); val12 = std::max(tmp,val12);
|
|
tmp = std::min(val13,val22); val22 = std::max(val13,val22); val4 = std::min(val4,val22);
|
|
val13 = std::max(val4,tmp); tmp = std::min(val4,tmp); val4 = tmp; tmp = std::min(val14,val23);
|
|
val23 = std::max(val14,val23); val14 = tmp; tmp = std::min(val5,val23); val23 = std::max(val5,val23);
|
|
val5 = std::min(tmp,val14); val14 = std::max(tmp,val14); tmp = std::min(val15,val24);
|
|
val24 = std::max(val15,val24); val15 = tmp; val6 = std::min(val6,val24); tmp = std::min(val6,val15);
|
|
val15 = std::max(val6,val15); val6 = tmp; tmp = std::min(val7,val16); val7 = std::min(tmp,val19);
|
|
tmp = std::min(val13,val21); val15 = std::min(val15,val23); tmp = std::min(val7,tmp);
|
|
val7 = std::min(tmp,val15); val9 = std::max(val1,val9); val11 = std::max(val3,val11);
|
|
val17 = std::max(val5,val17); val17 = std::max(val11,val17); val17 = std::max(val9,val17);
|
|
tmp = std::min(val4,val10); val10 = std::max(val4,val10); val4 = tmp; tmp = std::min(val6,val12);
|
|
val12 = std::max(val6,val12); val6 = tmp; tmp = std::min(val7,val14); val14 = std::max(val7,val14);
|
|
val7 = tmp; tmp = std::min(val4,val6); val6 = std::max(val4,val6); val7 = std::max(tmp,val7);
|
|
tmp = std::min(val12,val14); val14 = std::max(val12,val14); val12 = tmp; val10 = std::min(val10,val14);
|
|
tmp = std::min(val6,val7); val7 = std::max(val6,val7); val6 = tmp; tmp = std::min(val10,val12);
|
|
val12 = std::max(val10,val12); val10 = std::max(val6,tmp); tmp = std::min(val6,tmp);
|
|
val17 = std::max(tmp,val17); tmp = std::min(val12,val17); val17 = std::max(val12,val17); val12 = tmp;
|
|
val7 = std::min(val7,val17); tmp = std::min(val7,val10); val10 = std::max(val7,val10); val7 = tmp;
|
|
tmp = std::min(val12,val18); val18 = std::max(val12,val18); val12 = std::max(val7,tmp);
|
|
val10 = std::min(val10,val18); tmp = std::min(val12,val20); val20 = std::max(val12,val20); val12 = tmp;
|
|
tmp = std::min(val10,val20);
|
|
return std::max(tmp,val12);
|
|
}
|
|
|
|
template<typename T>
|
|
inline T median(T val0, T val1, T val2, T val3, T val4, T val5, T val6,
|
|
T val7, T val8, T val9, T val10, T val11, T val12, T val13,
|
|
T val14, T val15, T val16, T val17, T val18, T val19, T val20,
|
|
T val21, T val22, T val23, T val24, T val25, T val26, T val27,
|
|
T val28, T val29, T val30, T val31, T val32, T val33, T val34,
|
|
T val35, T val36, T val37, T val38, T val39, T val40, T val41,
|
|
T val42, T val43, T val44, T val45, T val46, T val47, T val48) {
|
|
T tmp = std::min(val0,val32);
|
|
val32 = std::max(val0,val32); val0 = tmp; tmp = std::min(val1,val33); val33 = std::max(val1,val33); val1 = tmp;
|
|
tmp = std::min(val2,val34); val34 = std::max(val2,val34); val2 = tmp; tmp = std::min(val3,val35);
|
|
val35 = std::max(val3,val35); val3 = tmp; tmp = std::min(val4,val36); val36 = std::max(val4,val36); val4 = tmp;
|
|
tmp = std::min(val5,val37); val37 = std::max(val5,val37); val5 = tmp; tmp = std::min(val6,val38);
|
|
val38 = std::max(val6,val38); val6 = tmp; tmp = std::min(val7,val39); val39 = std::max(val7,val39); val7 = tmp;
|
|
tmp = std::min(val8,val40); val40 = std::max(val8,val40); val8 = tmp; tmp = std::min(val9,val41);
|
|
val41 = std::max(val9,val41); val9 = tmp; tmp = std::min(val10,val42); val42 = std::max(val10,val42);
|
|
val10 = tmp; tmp = std::min(val11,val43); val43 = std::max(val11,val43); val11 = tmp;
|
|
tmp = std::min(val12,val44); val44 = std::max(val12,val44); val12 = tmp; tmp = std::min(val13,val45);
|
|
val45 = std::max(val13,val45); val13 = tmp; tmp = std::min(val14,val46); val46 = std::max(val14,val46);
|
|
val14 = tmp; tmp = std::min(val15,val47); val47 = std::max(val15,val47); val15 = tmp;
|
|
tmp = std::min(val16,val48); val48 = std::max(val16,val48); val16 = tmp; tmp = std::min(val0,val16);
|
|
val16 = std::max(val0,val16); val0 = tmp; tmp = std::min(val1,val17); val17 = std::max(val1,val17);
|
|
val1 = tmp; tmp = std::min(val2,val18); val18 = std::max(val2,val18); val2 = tmp; tmp = std::min(val3,val19);
|
|
val19 = std::max(val3,val19); val3 = tmp; tmp = std::min(val4,val20); val20 = std::max(val4,val20); val4 = tmp;
|
|
tmp = std::min(val5,val21); val21 = std::max(val5,val21); val5 = tmp; tmp = std::min(val6,val22);
|
|
val22 = std::max(val6,val22); val6 = tmp; tmp = std::min(val7,val23); val23 = std::max(val7,val23); val7 = tmp;
|
|
tmp = std::min(val8,val24); val24 = std::max(val8,val24); val8 = tmp; tmp = std::min(val9,val25);
|
|
val25 = std::max(val9,val25); val9 = tmp; tmp = std::min(val10,val26); val26 = std::max(val10,val26);
|
|
val10 = tmp; tmp = std::min(val11,val27); val27 = std::max(val11,val27); val11 = tmp;
|
|
tmp = std::min(val12,val28); val28 = std::max(val12,val28); val12 = tmp; tmp = std::min(val13,val29);
|
|
val29 = std::max(val13,val29); val13 = tmp; tmp = std::min(val14,val30); val30 = std::max(val14,val30);
|
|
val14 = tmp; tmp = std::min(val15,val31); val31 = std::max(val15,val31); val15 = tmp;
|
|
tmp = std::min(val32,val48); val48 = std::max(val32,val48); val32 = tmp; tmp = std::min(val16,val32);
|
|
val32 = std::max(val16,val32); val16 = tmp; tmp = std::min(val17,val33); val33 = std::max(val17,val33);
|
|
val17 = tmp; tmp = std::min(val18,val34); val34 = std::max(val18,val34); val18 = tmp;
|
|
tmp = std::min(val19,val35); val35 = std::max(val19,val35); val19 = tmp; tmp = std::min(val20,val36);
|
|
val36 = std::max(val20,val36); val20 = tmp; tmp = std::min(val21,val37); val37 = std::max(val21,val37);
|
|
val21 = tmp; tmp = std::min(val22,val38); val38 = std::max(val22,val38); val22 = tmp;
|
|
tmp = std::min(val23,val39); val39 = std::max(val23,val39); val23 = tmp; tmp = std::min(val24,val40);
|
|
val40 = std::max(val24,val40); val24 = tmp; tmp = std::min(val25,val41); val41 = std::max(val25,val41);
|
|
val25 = tmp; tmp = std::min(val26,val42); val42 = std::max(val26,val42); val26 = tmp;
|
|
tmp = std::min(val27,val43); val43 = std::max(val27,val43); val27 = tmp; tmp = std::min(val28,val44);
|
|
val44 = std::max(val28,val44); val28 = tmp; tmp = std::min(val29,val45); val45 = std::max(val29,val45);
|
|
val29 = tmp; tmp = std::min(val30,val46); val46 = std::max(val30,val46); val30 = tmp;
|
|
tmp = std::min(val31,val47); val47 = std::max(val31,val47); val31 = tmp; tmp = std::min(val0,val8);
|
|
val8 = std::max(val0,val8); val0 = tmp; tmp = std::min(val1,val9); val9 = std::max(val1,val9); val1 = tmp;
|
|
tmp = std::min(val2,val10); val10 = std::max(val2,val10); val2 = tmp; tmp = std::min(val3,val11);
|
|
val11 = std::max(val3,val11); val3 = tmp; tmp = std::min(val4,val12); val12 = std::max(val4,val12); val4 = tmp;
|
|
tmp = std::min(val5,val13); val13 = std::max(val5,val13); val5 = tmp; tmp = std::min(val6,val14);
|
|
val14 = std::max(val6,val14); val6 = tmp; tmp = std::min(val7,val15); val15 = std::max(val7,val15); val7 = tmp;
|
|
tmp = std::min(val16,val24); val24 = std::max(val16,val24); val16 = tmp; tmp = std::min(val17,val25);
|
|
val25 = std::max(val17,val25); val17 = tmp; tmp = std::min(val18,val26); val26 = std::max(val18,val26);
|
|
val18 = tmp; tmp = std::min(val19,val27); val27 = std::max(val19,val27); val19 = tmp;
|
|
tmp = std::min(val20,val28); val28 = std::max(val20,val28); val20 = tmp; tmp = std::min(val21,val29);
|
|
val29 = std::max(val21,val29); val21 = tmp; tmp = std::min(val22,val30); val30 = std::max(val22,val30);
|
|
val22 = tmp; tmp = std::min(val23,val31); val31 = std::max(val23,val31); val23 = tmp;
|
|
tmp = std::min(val32,val40); val40 = std::max(val32,val40); val32 = tmp; tmp = std::min(val33,val41);
|
|
val41 = std::max(val33,val41); val33 = tmp; tmp = std::min(val34,val42); val42 = std::max(val34,val42);
|
|
val34 = tmp; tmp = std::min(val35,val43); val43 = std::max(val35,val43); val35 = tmp;
|
|
tmp = std::min(val36,val44); val44 = std::max(val36,val44); val36 = tmp; tmp = std::min(val37,val45);
|
|
val45 = std::max(val37,val45); val37 = tmp; tmp = std::min(val38,val46); val46 = std::max(val38,val46);
|
|
val38 = tmp; tmp = std::min(val39,val47); val47 = std::max(val39,val47); val39 = tmp;
|
|
tmp = std::min(val8,val32); val32 = std::max(val8,val32); val8 = tmp; tmp = std::min(val9,val33);
|
|
val33 = std::max(val9,val33); val9 = tmp; tmp = std::min(val10,val34); val34 = std::max(val10,val34);
|
|
val10 = tmp; tmp = std::min(val11,val35); val35 = std::max(val11,val35); val11 = tmp;
|
|
tmp = std::min(val12,val36); val36 = std::max(val12,val36); val12 = tmp; tmp = std::min(val13,val37);
|
|
val37 = std::max(val13,val37); val13 = tmp; tmp = std::min(val14,val38); val38 = std::max(val14,val38);
|
|
val14 = tmp; tmp = std::min(val15,val39); val39 = std::max(val15,val39); val15 = tmp;
|
|
tmp = std::min(val24,val48); val48 = std::max(val24,val48); val24 = tmp; tmp = std::min(val8,val16);
|
|
val16 = std::max(val8,val16); val8 = tmp; tmp = std::min(val9,val17); val17 = std::max(val9,val17);
|
|
val9 = tmp; tmp = std::min(val10,val18); val18 = std::max(val10,val18); val10 = tmp;
|
|
tmp = std::min(val11,val19); val19 = std::max(val11,val19); val11 = tmp; tmp = std::min(val12,val20);
|
|
val20 = std::max(val12,val20); val12 = tmp; tmp = std::min(val13,val21); val21 = std::max(val13,val21);
|
|
val13 = tmp; tmp = std::min(val14,val22); val22 = std::max(val14,val22); val14 = tmp;
|
|
tmp = std::min(val15,val23); val23 = std::max(val15,val23); val15 = tmp; tmp = std::min(val24,val32);
|
|
val32 = std::max(val24,val32); val24 = tmp; tmp = std::min(val25,val33); val33 = std::max(val25,val33);
|
|
val25 = tmp; tmp = std::min(val26,val34); val34 = std::max(val26,val34); val26 = tmp;
|
|
tmp = std::min(val27,val35); val35 = std::max(val27,val35); val27 = tmp; tmp = std::min(val28,val36);
|
|
val36 = std::max(val28,val36); val28 = tmp; tmp = std::min(val29,val37); val37 = std::max(val29,val37);
|
|
val29 = tmp; tmp = std::min(val30,val38); val38 = std::max(val30,val38); val30 = tmp;
|
|
tmp = std::min(val31,val39); val39 = std::max(val31,val39); val31 = tmp; tmp = std::min(val40,val48);
|
|
val48 = std::max(val40,val48); val40 = tmp; tmp = std::min(val0,val4); val4 = std::max(val0,val4);
|
|
val0 = tmp; tmp = std::min(val1,val5); val5 = std::max(val1,val5); val1 = tmp; tmp = std::min(val2,val6);
|
|
val6 = std::max(val2,val6); val2 = tmp; tmp = std::min(val3,val7); val7 = std::max(val3,val7); val3 = tmp;
|
|
tmp = std::min(val8,val12); val12 = std::max(val8,val12); val8 = tmp; tmp = std::min(val9,val13);
|
|
val13 = std::max(val9,val13); val9 = tmp; tmp = std::min(val10,val14); val14 = std::max(val10,val14);
|
|
val10 = tmp; tmp = std::min(val11,val15); val15 = std::max(val11,val15); val11 = tmp;
|
|
tmp = std::min(val16,val20); val20 = std::max(val16,val20); val16 = tmp; tmp = std::min(val17,val21);
|
|
val21 = std::max(val17,val21); val17 = tmp; tmp = std::min(val18,val22); val22 = std::max(val18,val22);
|
|
val18 = tmp; tmp = std::min(val19,val23); val23 = std::max(val19,val23); val19 = tmp;
|
|
tmp = std::min(val24,val28); val28 = std::max(val24,val28); val24 = tmp; tmp = std::min(val25,val29);
|
|
val29 = std::max(val25,val29); val25 = tmp; tmp = std::min(val26,val30); val30 = std::max(val26,val30);
|
|
val26 = tmp; tmp = std::min(val27,val31); val31 = std::max(val27,val31); val27 = tmp;
|
|
tmp = std::min(val32,val36); val36 = std::max(val32,val36); val32 = tmp; tmp = std::min(val33,val37);
|
|
val37 = std::max(val33,val37); val33 = tmp; tmp = std::min(val34,val38); val38 = std::max(val34,val38);
|
|
val34 = tmp; tmp = std::min(val35,val39); val39 = std::max(val35,val39); val35 = tmp;
|
|
tmp = std::min(val40,val44); val44 = std::max(val40,val44); val40 = tmp; tmp = std::min(val41,val45);
|
|
val45 = std::max(val41,val45); val41 = tmp; tmp = std::min(val42,val46); val46 = std::max(val42,val46);
|
|
val42 = tmp; tmp = std::min(val43,val47); val47 = std::max(val43,val47); val43 = tmp;
|
|
tmp = std::min(val4,val32); val32 = std::max(val4,val32); val4 = tmp; tmp = std::min(val5,val33);
|
|
val33 = std::max(val5,val33); val5 = tmp; tmp = std::min(val6,val34); val34 = std::max(val6,val34);
|
|
val6 = tmp; tmp = std::min(val7,val35); val35 = std::max(val7,val35); val7 = tmp;
|
|
tmp = std::min(val12,val40); val40 = std::max(val12,val40); val12 = tmp; tmp = std::min(val13,val41);
|
|
val41 = std::max(val13,val41); val13 = tmp; tmp = std::min(val14,val42); val42 = std::max(val14,val42);
|
|
val14 = tmp; tmp = std::min(val15,val43); val43 = std::max(val15,val43); val15 = tmp;
|
|
tmp = std::min(val20,val48); val48 = std::max(val20,val48); val20 = tmp; tmp = std::min(val4,val16);
|
|
val16 = std::max(val4,val16); val4 = tmp; tmp = std::min(val5,val17); val17 = std::max(val5,val17);
|
|
val5 = tmp; tmp = std::min(val6,val18); val18 = std::max(val6,val18); val6 = tmp;
|
|
tmp = std::min(val7,val19); val19 = std::max(val7,val19); val7 = tmp; tmp = std::min(val12,val24);
|
|
val24 = std::max(val12,val24); val12 = tmp; tmp = std::min(val13,val25); val25 = std::max(val13,val25);
|
|
val13 = tmp; tmp = std::min(val14,val26); val26 = std::max(val14,val26); val14 = tmp;
|
|
tmp = std::min(val15,val27); val27 = std::max(val15,val27); val15 = tmp; tmp = std::min(val20,val32);
|
|
val32 = std::max(val20,val32); val20 = tmp; tmp = std::min(val21,val33); val33 = std::max(val21,val33);
|
|
val21 = tmp; tmp = std::min(val22,val34); val34 = std::max(val22,val34); val22 = tmp;
|
|
tmp = std::min(val23,val35); val35 = std::max(val23,val35); val23 = tmp; tmp = std::min(val28,val40);
|
|
val40 = std::max(val28,val40); val28 = tmp; tmp = std::min(val29,val41); val41 = std::max(val29,val41);
|
|
val29 = tmp; tmp = std::min(val30,val42); val42 = std::max(val30,val42); val30 = tmp;
|
|
tmp = std::min(val31,val43); val43 = std::max(val31,val43); val31 = tmp; tmp = std::min(val36,val48);
|
|
val48 = std::max(val36,val48); val36 = tmp; tmp = std::min(val4,val8); val8 = std::max(val4,val8);
|
|
val4 = tmp; tmp = std::min(val5,val9); val9 = std::max(val5,val9); val5 = tmp; tmp = std::min(val6,val10);
|
|
val10 = std::max(val6,val10); val6 = tmp; tmp = std::min(val7,val11); val11 = std::max(val7,val11); val7 = tmp;
|
|
tmp = std::min(val12,val16); val16 = std::max(val12,val16); val12 = tmp; tmp = std::min(val13,val17);
|
|
val17 = std::max(val13,val17); val13 = tmp; tmp = std::min(val14,val18); val18 = std::max(val14,val18);
|
|
val14 = tmp; tmp = std::min(val15,val19); val19 = std::max(val15,val19); val15 = tmp;
|
|
tmp = std::min(val20,val24); val24 = std::max(val20,val24); val20 = tmp; tmp = std::min(val21,val25);
|
|
val25 = std::max(val21,val25); val21 = tmp; tmp = std::min(val22,val26); val26 = std::max(val22,val26);
|
|
val22 = tmp; tmp = std::min(val23,val27); val27 = std::max(val23,val27); val23 = tmp;
|
|
tmp = std::min(val28,val32); val32 = std::max(val28,val32); val28 = tmp; tmp = std::min(val29,val33);
|
|
val33 = std::max(val29,val33); val29 = tmp; tmp = std::min(val30,val34); val34 = std::max(val30,val34);
|
|
val30 = tmp; tmp = std::min(val31,val35); val35 = std::max(val31,val35); val31 = tmp;
|
|
tmp = std::min(val36,val40); val40 = std::max(val36,val40); val36 = tmp; tmp = std::min(val37,val41);
|
|
val41 = std::max(val37,val41); val37 = tmp; tmp = std::min(val38,val42); val42 = std::max(val38,val42);
|
|
val38 = tmp; tmp = std::min(val39,val43); val43 = std::max(val39,val43); val39 = tmp;
|
|
tmp = std::min(val44,val48); val48 = std::max(val44,val48); val44 = tmp; tmp = std::min(val0,val2);
|
|
val2 = std::max(val0,val2); val0 = tmp; tmp = std::min(val1,val3); val3 = std::max(val1,val3); val1 = tmp;
|
|
tmp = std::min(val4,val6); val6 = std::max(val4,val6); val4 = tmp; tmp = std::min(val5,val7);
|
|
val7 = std::max(val5,val7); val5 = tmp; tmp = std::min(val8,val10); val10 = std::max(val8,val10); val8 = tmp;
|
|
tmp = std::min(val9,val11); val11 = std::max(val9,val11); val9 = tmp; tmp = std::min(val12,val14);
|
|
val14 = std::max(val12,val14); val12 = tmp; tmp = std::min(val13,val15); val15 = std::max(val13,val15);
|
|
val13 = tmp; tmp = std::min(val16,val18); val18 = std::max(val16,val18); val16 = tmp;
|
|
tmp = std::min(val17,val19); val19 = std::max(val17,val19); val17 = tmp; tmp = std::min(val20,val22);
|
|
val22 = std::max(val20,val22); val20 = tmp; tmp = std::min(val21,val23); val23 = std::max(val21,val23);
|
|
val21 = tmp; tmp = std::min(val24,val26); val26 = std::max(val24,val26); val24 = tmp;
|
|
tmp = std::min(val25,val27); val27 = std::max(val25,val27); val25 = tmp; tmp = std::min(val28,val30);
|
|
val30 = std::max(val28,val30); val28 = tmp; tmp = std::min(val29,val31); val31 = std::max(val29,val31);
|
|
val29 = tmp; tmp = std::min(val32,val34); val34 = std::max(val32,val34); val32 = tmp;
|
|
tmp = std::min(val33,val35); val35 = std::max(val33,val35); val33 = tmp; tmp = std::min(val36,val38);
|
|
val38 = std::max(val36,val38); val36 = tmp; tmp = std::min(val37,val39); val39 = std::max(val37,val39);
|
|
val37 = tmp; tmp = std::min(val40,val42); val42 = std::max(val40,val42); val40 = tmp;
|
|
tmp = std::min(val41,val43); val43 = std::max(val41,val43); val41 = tmp; tmp = std::min(val44,val46);
|
|
val46 = std::max(val44,val46); val44 = tmp; tmp = std::min(val45,val47); val47 = std::max(val45,val47);
|
|
val45 = tmp; tmp = std::min(val2,val32); val32 = std::max(val2,val32); val2 = tmp; tmp = std::min(val3,val33);
|
|
val33 = std::max(val3,val33); val3 = tmp; tmp = std::min(val6,val36); val36 = std::max(val6,val36); val6 = tmp;
|
|
tmp = std::min(val7,val37); val37 = std::max(val7,val37); val7 = tmp; tmp = std::min(val10,val40);
|
|
val40 = std::max(val10,val40); val10 = tmp; tmp = std::min(val11,val41); val41 = std::max(val11,val41);
|
|
val11 = tmp; tmp = std::min(val14,val44); val44 = std::max(val14,val44); val14 = tmp;
|
|
tmp = std::min(val15,val45); val45 = std::max(val15,val45); val15 = tmp; tmp = std::min(val18,val48);
|
|
val48 = std::max(val18,val48); val18 = tmp; tmp = std::min(val2,val16); val16 = std::max(val2,val16);
|
|
val2 = tmp; tmp = std::min(val3,val17); val17 = std::max(val3,val17); val3 = tmp;
|
|
tmp = std::min(val6,val20); val20 = std::max(val6,val20); val6 = tmp; tmp = std::min(val7,val21);
|
|
val21 = std::max(val7,val21); val7 = tmp; tmp = std::min(val10,val24); val24 = std::max(val10,val24);
|
|
val10 = tmp; tmp = std::min(val11,val25); val25 = std::max(val11,val25); val11 = tmp;
|
|
tmp = std::min(val14,val28); val28 = std::max(val14,val28); val14 = tmp; tmp = std::min(val15,val29);
|
|
val29 = std::max(val15,val29); val15 = tmp; tmp = std::min(val18,val32); val32 = std::max(val18,val32);
|
|
val18 = tmp; tmp = std::min(val19,val33); val33 = std::max(val19,val33); val19 = tmp;
|
|
tmp = std::min(val22,val36); val36 = std::max(val22,val36); val22 = tmp; tmp = std::min(val23,val37);
|
|
val37 = std::max(val23,val37); val23 = tmp; tmp = std::min(val26,val40); val40 = std::max(val26,val40);
|
|
val26 = tmp; tmp = std::min(val27,val41); val41 = std::max(val27,val41); val27 = tmp;
|
|
tmp = std::min(val30,val44); val44 = std::max(val30,val44); val30 = tmp; tmp = std::min(val31,val45);
|
|
val45 = std::max(val31,val45); val31 = tmp; tmp = std::min(val34,val48); val48 = std::max(val34,val48);
|
|
val34 = tmp; tmp = std::min(val2,val8); val8 = std::max(val2,val8); val2 = tmp; tmp = std::min(val3,val9);
|
|
val9 = std::max(val3,val9); val3 = tmp; tmp = std::min(val6,val12); val12 = std::max(val6,val12); val6 = tmp;
|
|
tmp = std::min(val7,val13); val13 = std::max(val7,val13); val7 = tmp; tmp = std::min(val10,val16);
|
|
val16 = std::max(val10,val16); val10 = tmp; tmp = std::min(val11,val17); val17 = std::max(val11,val17);
|
|
val11 = tmp; tmp = std::min(val14,val20); val20 = std::max(val14,val20); val14 = tmp;
|
|
tmp = std::min(val15,val21); val21 = std::max(val15,val21); val15 = tmp; tmp = std::min(val18,val24);
|
|
val24 = std::max(val18,val24); val18 = tmp; tmp = std::min(val19,val25); val25 = std::max(val19,val25);
|
|
val19 = tmp; tmp = std::min(val22,val28); val28 = std::max(val22,val28); val22 = tmp;
|
|
tmp = std::min(val23,val29); val29 = std::max(val23,val29); val23 = tmp; tmp = std::min(val26,val32);
|
|
val32 = std::max(val26,val32); val26 = tmp; tmp = std::min(val27,val33); val33 = std::max(val27,val33);
|
|
val27 = tmp; tmp = std::min(val30,val36); val36 = std::max(val30,val36); val30 = tmp;
|
|
tmp = std::min(val31,val37); val37 = std::max(val31,val37); val31 = tmp; tmp = std::min(val34,val40);
|
|
val40 = std::max(val34,val40); val34 = tmp; tmp = std::min(val35,val41); val41 = std::max(val35,val41);
|
|
val35 = tmp; tmp = std::min(val38,val44); val44 = std::max(val38,val44); val38 = tmp;
|
|
tmp = std::min(val39,val45); val45 = std::max(val39,val45); val39 = tmp; tmp = std::min(val42,val48);
|
|
val48 = std::max(val42,val48); val42 = tmp; tmp = std::min(val2,val4); val4 = std::max(val2,val4);
|
|
val2 = tmp; tmp = std::min(val3,val5); val5 = std::max(val3,val5); val3 = tmp; tmp = std::min(val6,val8);
|
|
val8 = std::max(val6,val8); val6 = tmp; tmp = std::min(val7,val9); val9 = std::max(val7,val9); val7 = tmp;
|
|
tmp = std::min(val10,val12); val12 = std::max(val10,val12); val10 = tmp; tmp = std::min(val11,val13);
|
|
val13 = std::max(val11,val13); val11 = tmp; tmp = std::min(val14,val16); val16 = std::max(val14,val16);
|
|
val14 = tmp; tmp = std::min(val15,val17); val17 = std::max(val15,val17); val15 = tmp;
|
|
tmp = std::min(val18,val20); val20 = std::max(val18,val20); val18 = tmp; tmp = std::min(val19,val21);
|
|
val21 = std::max(val19,val21); val19 = tmp; tmp = std::min(val22,val24); val24 = std::max(val22,val24);
|
|
val22 = tmp; tmp = std::min(val23,val25); val25 = std::max(val23,val25); val23 = tmp;
|
|
tmp = std::min(val26,val28); val28 = std::max(val26,val28); val26 = tmp; tmp = std::min(val27,val29);
|
|
val29 = std::max(val27,val29); val27 = tmp; tmp = std::min(val30,val32); val32 = std::max(val30,val32);
|
|
val30 = tmp; tmp = std::min(val31,val33); val33 = std::max(val31,val33); val31 = tmp;
|
|
tmp = std::min(val34,val36); val36 = std::max(val34,val36); val34 = tmp; tmp = std::min(val35,val37);
|
|
val37 = std::max(val35,val37); val35 = tmp; tmp = std::min(val38,val40); val40 = std::max(val38,val40);
|
|
val38 = tmp; tmp = std::min(val39,val41); val41 = std::max(val39,val41); val39 = tmp;
|
|
tmp = std::min(val42,val44); val44 = std::max(val42,val44); val42 = tmp; tmp = std::min(val43,val45);
|
|
val45 = std::max(val43,val45); val43 = tmp; tmp = std::min(val46,val48); val48 = std::max(val46,val48);
|
|
val46 = tmp; val1 = std::max(val0,val1); val3 = std::max(val2,val3); val5 = std::max(val4,val5);
|
|
val7 = std::max(val6,val7); val9 = std::max(val8,val9); val11 = std::max(val10,val11);
|
|
val13 = std::max(val12,val13); val15 = std::max(val14,val15); val17 = std::max(val16,val17);
|
|
val19 = std::max(val18,val19); val21 = std::max(val20,val21); val23 = std::max(val22,val23);
|
|
val24 = std::min(val24,val25); val26 = std::min(val26,val27); val28 = std::min(val28,val29);
|
|
val30 = std::min(val30,val31); val32 = std::min(val32,val33); val34 = std::min(val34,val35);
|
|
val36 = std::min(val36,val37); val38 = std::min(val38,val39); val40 = std::min(val40,val41);
|
|
val42 = std::min(val42,val43); val44 = std::min(val44,val45); val46 = std::min(val46,val47);
|
|
val32 = std::max(val1,val32); val34 = std::max(val3,val34); val36 = std::max(val5,val36);
|
|
val38 = std::max(val7,val38); val9 = std::min(val9,val40); val11 = std::min(val11,val42);
|
|
val13 = std::min(val13,val44); val15 = std::min(val15,val46); val17 = std::min(val17,val48);
|
|
val24 = std::max(val9,val24); val26 = std::max(val11,val26); val28 = std::max(val13,val28);
|
|
val30 = std::max(val15,val30); val17 = std::min(val17,val32); val19 = std::min(val19,val34);
|
|
val21 = std::min(val21,val36); val23 = std::min(val23,val38); val24 = std::max(val17,val24);
|
|
val26 = std::max(val19,val26); val21 = std::min(val21,val28); val23 = std::min(val23,val30);
|
|
val24 = std::max(val21,val24); val23 = std::min(val23,val26);
|
|
return std::max(val23,val24);
|
|
}
|
|
|
|
//! Return sqrt(x^2 + y^2).
|
|
template<typename T>
|
|
inline T hypot(const T x, const T y) {
|
|
return std::sqrt(x*x + y*y);
|
|
}
|
|
|
|
template<typename T>
|
|
inline T hypot(const T x, const T y, const T z) {
|
|
return std::sqrt(x*x + y*y + z*z);
|
|
}
|
|
|
|
template<typename T>
|
|
inline T _hypot(const T x, const T y) { // Slower but more precise version
|
|
T nx = cimg::abs(x), ny = cimg::abs(y), t;
|
|
if (nx<ny) { t = nx; nx = ny; } else t = ny;
|
|
if (nx>0) { t/=nx; return nx*std::sqrt(1 + t*t); }
|
|
return 0;
|
|
}
|
|
|
|
//! Return the factorial of n
|
|
inline double factorial(const int n) {
|
|
if (n<0) return cimg::type<double>::nan();
|
|
if (n<2) return 1;
|
|
double res = 2;
|
|
for (int i = 3; i<=n; ++i) res*=i;
|
|
return res;
|
|
}
|
|
|
|
//! Return the number of permutations of k objects in a set of n objects.
|
|
inline double permutations(const int k, const int n, const bool with_order) {
|
|
if (n<0 || k<0) return cimg::type<double>::nan();
|
|
if (k>n) return 0;
|
|
double res = 1;
|
|
for (int i = n; i>=n - k + 1; --i) res*=i;
|
|
return with_order?res:res/cimg::factorial(k);
|
|
}
|
|
|
|
inline double _fibonacci(int exp) {
|
|
double
|
|
base = (1 + std::sqrt(5.))/2,
|
|
result = 1/std::sqrt(5.);
|
|
while (exp) {
|
|
if (exp&1) result*=base;
|
|
exp>>=1;
|
|
base*=base;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
//! Calculate fibonacci number.
|
|
// (Precise up to n = 78, less precise for n>78).
|
|
inline double fibonacci(const int n) {
|
|
if (n<0) return cimg::type<double>::nan();
|
|
if (n<3) return 1;
|
|
if (n<11) {
|
|
cimg_uint64 fn1 = 1, fn2 = 1, fn = 0;
|
|
for (int i = 3; i<=n; ++i) { fn = fn1 + fn2; fn2 = fn1; fn1 = fn; }
|
|
return (double)fn;
|
|
}
|
|
if (n<75) // precise up to n = 74, faster than the integer calculation above for n>10
|
|
return (double)((cimg_uint64)(_fibonacci(n) + 0.5));
|
|
|
|
if (n<94) { // precise up to n = 78, less precise for n>78 up to n = 93, overflows for n>93
|
|
cimg_uint64
|
|
fn1 = ((cimg_uint64)303836)<<32 | 3861581201UL, // 1304969544928657ULL (avoid C++98 warning with ULL)
|
|
fn2 = ((cimg_uint64)187781)<<32 | 2279239217UL, // 806515533049393ULL
|
|
fn = 0;
|
|
for (int i = 75; i<=n; ++i) { fn = fn1 + fn2; fn2 = fn1; fn1 = fn; }
|
|
return (double)fn;
|
|
}
|
|
return _fibonacci(n); // Not precise, but better than the wrong overflowing calculation
|
|
}
|
|
|
|
//! Calculate greatest common divisor.
|
|
inline long gcd(long a, long b) {
|
|
while (a) { const long c = a; a = b%a; b = c; }
|
|
return b;
|
|
}
|
|
|
|
//! Convert character to lower case.
|
|
inline char lowercase(const char x) {
|
|
return (char)((x<'A'||x>'Z')?x:x - 'A' + 'a');
|
|
}
|
|
inline double lowercase(const double x) {
|
|
return (double)((x<'A'||x>'Z')?x:x - 'A' + 'a');
|
|
}
|
|
|
|
//! Convert C-string to lower case.
|
|
inline void lowercase(char *const str) {
|
|
if (str) for (char *ptr = str; *ptr; ++ptr) *ptr = lowercase(*ptr);
|
|
}
|
|
|
|
//! Convert character to upper case.
|
|
inline char uppercase(const char x) {
|
|
return (char)((x<'a'||x>'z')?x:x - 'a' + 'A');
|
|
}
|
|
|
|
inline double uppercase(const double x) {
|
|
return (double)((x<'a'||x>'z')?x:x - 'a' + 'A');
|
|
}
|
|
|
|
//! Convert C-string to upper case.
|
|
inline void uppercase(char *const str) {
|
|
if (str) for (char *ptr = str; *ptr; ++ptr) *ptr = uppercase(*ptr);
|
|
}
|
|
|
|
//! Return \c true if input character is blank (space, tab, or non-printable character).
|
|
inline bool is_blank(const char c) {
|
|
return (unsigned char)c<=' ';
|
|
}
|
|
|
|
// Return \c true if specified argument is in set \c [a-zA-Z0-9_].
|
|
inline bool is_varchar(const char c) {
|
|
return (c>='a' && c<='z') || (c>='A' && c<='Z') || (c>='0' && c<='9') || c=='_';
|
|
}
|
|
|
|
//! Return \c true if argument \p str can be considered as a regular variable name.
|
|
inline bool is_varname(const char *const str, const unsigned int length=~0U) {
|
|
if (*str>='0' && *str<='9') return false;
|
|
for (unsigned int l = 0; l<length && str[l]; ++l)
|
|
if (!is_varchar(str[l])) return false;
|
|
return true;
|
|
}
|
|
|
|
//! Read value in a C-string.
|
|
/**
|
|
\param str C-string containing the float value to read.
|
|
\return Read value.
|
|
\note Same as <tt>std::atof()</tt> extended to manage the retrieval of fractions from C-strings,
|
|
as in <em>"1/2"</em>.
|
|
**/
|
|
inline double atof(const char *const str) {
|
|
double x = 0, y = 1;
|
|
return str && cimg_sscanf(str,"%lf/%lf",&x,&y)>0?x/y:0;
|
|
}
|
|
|
|
//! Compare the first \p length characters of two C-strings, ignoring the case.
|
|
/**
|
|
\param str1 C-string.
|
|
\param str2 C-string.
|
|
\param length Number of characters to compare.
|
|
\return \c 0 if the two strings are equal, something else otherwise.
|
|
\note This function has to be defined since it is not provided by all C++-compilers (not ANSI).
|
|
**/
|
|
inline int strncasecmp(const char *const str1, const char *const str2, const int length) {
|
|
if (!length) return 0;
|
|
if (!str1) return str2?-1:0;
|
|
const char *nstr1 = str1, *nstr2 = str2;
|
|
int k, diff = 0;
|
|
for (k = 0; k<length && !(diff = lowercase(*nstr1) - lowercase(*nstr2)); ++k) { ++nstr1; ++nstr2; }
|
|
return k!=length?diff:0;
|
|
}
|
|
|
|
//! Compare two C-strings, ignoring the case.
|
|
/**
|
|
\param str1 C-string.
|
|
\param str2 C-string.
|
|
\return \c 0 if the two strings are equal, something else otherwise.
|
|
\note This function has to be defined since it is not provided by all C++-compilers (not ANSI).
|
|
**/
|
|
inline int strcasecmp(const char *const str1, const char *const str2) {
|
|
if (!str1) return str2?-1:0;
|
|
const int
|
|
l1 = (int)std::strlen(str1),
|
|
l2 = (int)std::strlen(str2);
|
|
return cimg::strncasecmp(str1,str2,1 + (l1<l2?l1:l2));
|
|
}
|
|
|
|
//! Ellipsize a string.
|
|
/**
|
|
\param str C-string.
|
|
\param l Max number of characters.
|
|
\param is_ending Tell if the dots are placed at the end or at the center of the ellipsized string.
|
|
**/
|
|
inline char *strellipsize(char *const str, const unsigned int l=64,
|
|
const bool is_ending=true) {
|
|
if (!str) return str;
|
|
const unsigned int nl = l<5?5:l, ls = (unsigned int)std::strlen(str);
|
|
if (ls<=nl) return str;
|
|
if (is_ending) std::strcpy(str + nl - 5,"(...)");
|
|
else {
|
|
const unsigned int ll = (nl - 5)/2 + 1 - (nl%2), lr = nl - ll - 5;
|
|
std::strcpy(str + ll,"(...)");
|
|
std::memmove(str + ll + 5,str + ls - lr,lr);
|
|
}
|
|
str[nl] = 0;
|
|
return str;
|
|
}
|
|
|
|
//! Ellipsize a string.
|
|
/**
|
|
\param str C-string.
|
|
\param res output C-string.
|
|
\param l Max number of characters.
|
|
\param is_ending Tell if the dots are placed at the end or at the center of the ellipsized string.
|
|
**/
|
|
inline char *strellipsize(const char *const str, char *const res, const unsigned int l=64,
|
|
const bool is_ending=true) {
|
|
const unsigned int nl = l<5?5:l, ls = (unsigned int)std::strlen(str);
|
|
if (ls<=nl) { std::strcpy(res,str); return res; }
|
|
if (is_ending) {
|
|
std::strncpy(res,str,nl - 5);
|
|
std::strcpy(res + nl -5,"(...)");
|
|
} else {
|
|
const unsigned int ll = (nl - 5)/2 + 1 - (nl%2), lr = nl - ll - 5;
|
|
std::strncpy(res,str,ll);
|
|
std::strcpy(res + ll,"(...)");
|
|
std::strncpy(res + ll + 5,str + ls - lr,lr);
|
|
}
|
|
res[nl] = 0;
|
|
return res;
|
|
}
|
|
|
|
//! Remove delimiters on the start and/or end of a C-string.
|
|
/**
|
|
\param[in,out] str C-string to work with (modified at output).
|
|
\param delimiter Delimiter character code to remove.
|
|
\param is_symmetric Tells if the removal is done only if delimiters are symmetric
|
|
(both at the beginning and the end of \c s).
|
|
\param is_iterative Tells if the removal is done if several iterations are possible.
|
|
\return \c true if delimiters have been removed, \c false otherwise.
|
|
**/
|
|
inline bool strpare(char *const str, const char delimiter,
|
|
const bool is_symmetric, const bool is_iterative) {
|
|
if (!str) return false;
|
|
const int l = (int)std::strlen(str);
|
|
int p, q;
|
|
if (is_symmetric) for (p = 0, q = l - 1; p<q && str[p]==delimiter && str[q]==delimiter; ) {
|
|
--q; ++p; if (!is_iterative) break;
|
|
} else {
|
|
for (p = 0; p<l && str[p]==delimiter; ) { ++p; if (!is_iterative) break; }
|
|
for (q = l - 1; q>p && str[q]==delimiter; ) { --q; if (!is_iterative) break; }
|
|
}
|
|
const int n = q - p + 1;
|
|
if (n!=l) { std::memmove(str,str + p,(unsigned int)n); str[n] = 0; return true; }
|
|
return false;
|
|
}
|
|
|
|
//! Remove white spaces on the start and/or end of a C-string.
|
|
inline bool strpare(char *const str, const bool is_symmetric, const bool is_iterative) {
|
|
if (!str) return false;
|
|
const int l = (int)std::strlen(str);
|
|
int p, q;
|
|
if (is_symmetric) for (p = 0, q = l - 1; p<q && is_blank(str[p]) && is_blank(str[q]); ) {
|
|
--q; ++p; if (!is_iterative) break;
|
|
} else {
|
|
for (p = 0; p<l && is_blank(str[p]); ) { ++p; if (!is_iterative) break; }
|
|
for (q = l - 1; q>p && is_blank(str[q]); ) { --q; if (!is_iterative) break; }
|
|
}
|
|
const int n = q - p + 1;
|
|
if (n!=l) { std::memmove(str,str + p,(unsigned int)n); str[n] = 0; return true; }
|
|
return false;
|
|
}
|
|
|
|
//! Replace reserved characters (for Windows filename) by another character.
|
|
/**
|
|
\param[in,out] str C-string to work with (modified at output).
|
|
\param[in] c Replacement character.
|
|
**/
|
|
inline void strwindows_reserved(char *const str, const char c='_') {
|
|
for (char *s = str; *s; ++s) {
|
|
const char i = *s;
|
|
if (i=='<' || i=='>' || i==':' || i=='\"' || i=='/' || i=='\\' || i=='|' || i=='?' || i=='*') *s = c;
|
|
}
|
|
}
|
|
|
|
//! Replace escape sequences in C-strings by character values.
|
|
/**
|
|
\param[in,out] str C-string to work with (modified at output).
|
|
**/
|
|
inline void strunescape(char *const str) {
|
|
#define cimg_strunescape(ci,co) case ci : *nd = co; ++ns; break;
|
|
|
|
unsigned char val = 0;
|
|
for (char *ns = str, *nd = str; *ns || (bool)(*nd = 0); ++nd) if (*ns=='\\') switch (*(++ns)) {
|
|
cimg_strunescape('a','\a');
|
|
cimg_strunescape('b','\b');
|
|
cimg_strunescape('e',0x1B);
|
|
cimg_strunescape('f','\f');
|
|
cimg_strunescape('n','\n');
|
|
cimg_strunescape('r','\r');
|
|
cimg_strunescape('t','\t');
|
|
cimg_strunescape('v','\v');
|
|
cimg_strunescape('\\','\\');
|
|
cimg_strunescape('\'','\'');
|
|
cimg_strunescape('\"','\"');
|
|
cimg_strunescape('\?','\?');
|
|
case '0' : case '1' : case '2' : case '3' : case '4' : case '5' : case '6' : case '7' :
|
|
val = (unsigned char)(*(ns++) - '0');
|
|
if (*ns>='0' && *ns<='7') (val<<=3)|=*(ns++) - '0';
|
|
if (*ns>='0' && *ns<='7') (val<<=3)|=*(ns++) - '0';
|
|
*nd = (char)val;
|
|
break;
|
|
case 'x' : {
|
|
char c = lowercase(*(++ns));
|
|
if ((c>='0' && c<='9') || (c>='a' && c<='f')) {
|
|
val = (unsigned char)(c<='9'?c - '0':c - 'a' + 10);
|
|
c = lowercase(*(++ns));
|
|
if ((c>='0' && c<='9') || (c>='a' && c<='f')) {
|
|
(val<<=4)|=(c<='9'?c - '0':c - 'a' + 10);
|
|
++ns;
|
|
}
|
|
*nd = (char)val;
|
|
} else *nd = c;
|
|
} break;
|
|
case 'u' : { // UTF-8 BMP
|
|
char c1, c2, c3, c4;
|
|
if ((((c1 = lowercase(ns[1]))>='0' && c1<='9') || (c1>='a' && c1<='f')) &&
|
|
(((c2 = lowercase(ns[2]))>='0' && c2<='9') || (c2>='a' && c2<='f')) &&
|
|
(((c3 = lowercase(ns[3]))>='0' && c3<='9') || (c3>='a' && c3<='f')) &&
|
|
(((c4 = lowercase(ns[4]))>='0' && c4<='9') || (c4>='a' && c4<='f'))) {
|
|
c1 = (c1<='9'?c1 - '0':c1 - 'a' + 10);
|
|
c2 = (c2<='9'?c2 - '0':c2 - 'a' + 10);
|
|
c3 = (c3<='9'?c3 - '0':c3 - 'a' + 10);
|
|
c4 = (c4<='9'?c4 - '0':c4 - 'a' + 10);
|
|
const unsigned int ival =
|
|
((unsigned int)c1<<12) | ((unsigned int)c2<<8) | ((unsigned int)c3<<4) | c4;
|
|
if (ival<=0x007f) *nd = (char)ival;
|
|
else if (ival<=0x07ff) {
|
|
*(nd++) = (char)((ival>>6)|0xc0);
|
|
*nd = (char)((ival&0x3f)|0x80);
|
|
} else {
|
|
*(nd++) = (char)((ival>>12)|0xe0);
|
|
*(nd++) = (char)(((ival>>6)&0x3f)|0x80);
|
|
*nd = (char)((ival&0x3f)|0x80);
|
|
}
|
|
ns+=5;
|
|
} else *nd = *(ns++);
|
|
} break;
|
|
case 'U' : { // UTF-8 astral planes
|
|
char c1, c2, c3, c4, c5, c6, c7, c8;
|
|
if ((((c1 = lowercase(ns[1]))>='0' && c1<='9') || (c1>='a' && c1<='f')) &&
|
|
(((c2 = lowercase(ns[2]))>='0' && c2<='9') || (c2>='a' && c2<='f')) &&
|
|
(((c3 = lowercase(ns[3]))>='0' && c3<='9') || (c3>='a' && c3<='f')) &&
|
|
(((c4 = lowercase(ns[4]))>='0' && c4<='9') || (c4>='a' && c4<='f')) &&
|
|
(((c5 = lowercase(ns[5]))>='0' && c5<='9') || (c5>='a' && c5<='f')) &&
|
|
(((c6 = lowercase(ns[6]))>='0' && c6<='9') || (c6>='a' && c6<='f')) &&
|
|
(((c7 = lowercase(ns[7]))>='0' && c7<='9') || (c7>='a' && c7<='f')) &&
|
|
(((c8 = lowercase(ns[8]))>='0' && c8<='9') || (c8>='a' && c8<='f'))) {
|
|
c1 = (c1<='9'?c1 - '0':c1 - 'a' + 10);
|
|
c2 = (c2<='9'?c2 - '0':c2 - 'a' + 10);
|
|
c3 = (c3<='9'?c3 - '0':c3 - 'a' + 10);
|
|
c4 = (c4<='9'?c4 - '0':c4 - 'a' + 10);
|
|
c5 = (c5<='9'?c5 - '0':c5 - 'a' + 10);
|
|
c6 = (c6<='9'?c6 - '0':c6 - 'a' + 10);
|
|
c7 = (c7<='9'?c7 - '0':c7 - 'a' + 10);
|
|
c8 = (c8<='9'?c8 - '0':c8 - 'a' + 10);
|
|
const unsigned int ival =
|
|
((unsigned int)c1<<28) | ((unsigned int)c2<<24) | ((unsigned int)c3<<20) | ((unsigned int)c4<<16) |
|
|
((unsigned int)c5<<12) | ((unsigned int)c6<<8) | ((unsigned int)c7<<4) | (unsigned int)c8;
|
|
if (ival<=0x007f) *nd = (char)ival;
|
|
else if (ival<=0x07ff) {
|
|
*(nd++) = (char)((ival>>6)|0xc0);
|
|
*nd = (char)((ival&0x3f)|0x80);
|
|
} else if (ival<=0xffff) {
|
|
*(nd++) = (char)((ival>>12)|0xe0);
|
|
*(nd++) = (char)(((ival>>6)&0x3f)|0x80);
|
|
*nd = (char)((ival&0x3f)|0x80);
|
|
} else {
|
|
*(nd++) = (char)((ival>>18)|0xf0);
|
|
*(nd++) = (char)(((ival>>12)&0x3f)|0x80);
|
|
*(nd++) = (char)(((ival>>6)&0x3f)|0x80);
|
|
*nd = (char)((ival&0x3f)|0x80);
|
|
}
|
|
ns+=9;
|
|
} else *nd = *(ns++);
|
|
} break;
|
|
default : if (*ns) *nd = *(ns++);
|
|
}
|
|
else *nd = *(ns++);
|
|
}
|
|
|
|
// Return a temporary string describing the size of a memory buffer.
|
|
inline const char *strbuffersize(const cimg_ulong size);
|
|
|
|
// Return string that identifies the running OS.
|
|
inline const char *stros() {
|
|
#if defined(linux) || defined(__linux) || defined(__linux__)
|
|
static const char *const str = "Linux";
|
|
#elif defined(sun) || defined(__sun)
|
|
static const char *const str = "Sun OS";
|
|
#elif defined(BSD) || defined(__OpenBSD__) || defined(__NetBSD__) || defined(__FreeBSD__) || defined (__DragonFly__)
|
|
static const char *const str = "BSD";
|
|
#elif defined(sgi) || defined(__sgi)
|
|
static const char *const str = "Irix";
|
|
#elif defined(__MACOSX__) || defined(__APPLE__)
|
|
static const char *const str = "Mac OS";
|
|
#elif defined(unix) || defined(__unix) || defined(__unix__)
|
|
static const char *const str = "Generic Unix";
|
|
#elif defined(_MSC_VER) || defined(WIN32) || defined(_WIN32) || defined(__WIN32__) || \
|
|
defined(WIN64) || defined(_WIN64) || defined(__WIN64__)
|
|
static const char *const str = "Windows";
|
|
#else
|
|
const char
|
|
*const _str1 = std::getenv("OSTYPE"),
|
|
*const _str2 = _str1?_str1:std::getenv("OS"),
|
|
*const str = _str2?_str2:"Unknown OS";
|
|
#endif
|
|
return str;
|
|
}
|
|
|
|
//! Return the basename of a filename.
|
|
inline const char* basename(const char *const s, const char separator=cimg_file_separator) {
|
|
const char *p = 0, *np = s;
|
|
while (np>=s && (p=np)) np = std::strchr(np,separator) + 1;
|
|
return p;
|
|
}
|
|
|
|
// Return a random filename.
|
|
inline const char* filenamerand() {
|
|
cimg::mutex(6);
|
|
static char randomid[9];
|
|
for (unsigned int k = 0; k<8; ++k) {
|
|
const int v = (int)cimg::rand(65535)%3;
|
|
randomid[k] = (char)(v==0?('0' + ((int)cimg::rand(65535)%10)):
|
|
(v==1?('a' + ((int)cimg::rand(65535)%26)):
|
|
('A' + ((int)cimg::rand(65535)%26))));
|
|
}
|
|
cimg::mutex(6,0);
|
|
return randomid;
|
|
}
|
|
|
|
// Convert filename as a Windows-style filename (short path name).
|
|
inline void winformat_string(char *const str) {
|
|
if (str && *str) {
|
|
#if cimg_OS==2
|
|
char *const nstr = new char[MAX_PATH];
|
|
if (GetShortPathNameA(str,nstr,MAX_PATH)) std::strcpy(str,nstr);
|
|
delete[] nstr;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// Open a file (similar to std:: fopen(), but with wide character support on Windows).
|
|
inline std::FILE *std_fopen(const char *const path, const char *const mode);
|
|
|
|
|
|
//! Open a file.
|
|
/**
|
|
\param path Path of the filename to open.
|
|
\param mode C-string describing the opening mode.
|
|
\return Opened file.
|
|
\note Same as <tt>std::fopen()</tt> but throw a \c CImgIOException when
|
|
the specified file cannot be opened, instead of returning \c 0.
|
|
**/
|
|
inline std::FILE *fopen(const char *const path, const char *const mode) {
|
|
if (!path)
|
|
throw CImgArgumentException("cimg::fopen(): Specified file path is (null).");
|
|
if (!mode)
|
|
throw CImgArgumentException("cimg::fopen(): File '%s', specified mode is (null).",
|
|
path);
|
|
std::FILE *res = 0;
|
|
if (*path=='-' && (!path[1] || path[1]=='.')) {
|
|
res = (*mode=='r')?cimg::_stdin():cimg::_stdout();
|
|
#if cimg_OS==2
|
|
if (*mode && mode[1]=='b') { // Force stdin/stdout to be in binary mode
|
|
#ifdef __BORLANDC__
|
|
if (setmode(_fileno(res),0x8000)==-1) res = 0;
|
|
#else
|
|
if (_setmode(_fileno(res),0x8000)==-1) res = 0;
|
|
#endif
|
|
}
|
|
#endif
|
|
} else res = cimg::std_fopen(path,mode);
|
|
if (!res) throw CImgIOException("cimg::fopen(): Failed to open file '%s' with mode '%s'.",
|
|
path,mode);
|
|
return res;
|
|
}
|
|
|
|
//! Close a file.
|
|
/**
|
|
\param file File to close.
|
|
\return \c 0 if file has been closed properly, something else otherwise.
|
|
\note Same as <tt>std::fclose()</tt> but display a warning message if
|
|
the file has not been closed properly.
|
|
**/
|
|
inline int fclose(std::FILE *file) {
|
|
if (!file) { warn("cimg::fclose(): Specified file is (null)."); return 0; }
|
|
if (file==cimg::_stdin(false) || file==cimg::_stdout(false)) return 0;
|
|
const int errn = std::fclose(file);
|
|
if (errn!=0) warn("cimg::fclose(): Error code %d returned during file closing.",
|
|
errn);
|
|
return errn;
|
|
}
|
|
|
|
//! Version of 'fseek()' that supports >=64bits offsets everywhere (for Windows).
|
|
inline int fseek(FILE *stream, cimg_long offset, int origin) {
|
|
#if defined(WIN64) || defined(_WIN64) || defined(__WIN64__)
|
|
return _fseeki64(stream,(__int64)offset,origin);
|
|
#else
|
|
return std::fseek(stream,offset,origin);
|
|
#endif
|
|
}
|
|
|
|
//! Version of 'ftell()' that supports >=64bits offsets everywhere (for Windows).
|
|
inline cimg_long ftell(FILE *stream) {
|
|
#if defined(WIN64) || defined(_WIN64) || defined(__WIN64__)
|
|
return (cimg_long)_ftelli64(stream);
|
|
#else
|
|
return (cimg_long)std::ftell(stream);
|
|
#endif
|
|
}
|
|
|
|
// Get the file or directory attributes with support for UTF-8 paths (Windows only).
|
|
#if cimg_OS==2
|
|
inline DWORD win_getfileattributes(const char *const path);
|
|
#endif
|
|
|
|
//! Check if a path is a directory.
|
|
/**
|
|
\param path Specified path to test.
|
|
**/
|
|
inline bool is_directory(const char *const path) {
|
|
if (!path || !*path) return false;
|
|
#if cimg_OS==1
|
|
struct stat st_buf;
|
|
return (!stat(path,&st_buf) && S_ISDIR(st_buf.st_mode));
|
|
#elif cimg_OS==2
|
|
const DWORD res = win_getfileattributes(path);
|
|
return res!=INVALID_FILE_ATTRIBUTES && (res&FILE_ATTRIBUTE_DIRECTORY);
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
//! Check if a path is a file.
|
|
/**
|
|
\param path Specified path to test.
|
|
**/
|
|
inline bool is_file(const char *const path) {
|
|
if (!path || !*path) return false;
|
|
#if cimg_OS==2
|
|
const DWORD res = cimg::win_getfileattributes(path);
|
|
return res!=INVALID_FILE_ATTRIBUTES && !(res&FILE_ATTRIBUTE_DIRECTORY);
|
|
#else
|
|
std::FILE *const file = cimg::std_fopen(path,"rb");
|
|
if (!file) return false;
|
|
cimg::fclose(file);
|
|
return !is_directory(path);
|
|
#endif
|
|
}
|
|
|
|
//! Get file size.
|
|
/**
|
|
\param filename Specified filename to get size from.
|
|
\return File size or '-1' if file does not exist.
|
|
**/
|
|
inline cimg_int64 fsize(const char *const filename) {
|
|
std::FILE *const file = cimg::std_fopen(filename,"rb");
|
|
if (!file) return (cimg_int64)-1;
|
|
std::fseek(file,0,SEEK_END);
|
|
const cimg_int64 siz = (cimg_int64)std::ftell(file);
|
|
cimg::fclose(file);
|
|
return siz;
|
|
}
|
|
|
|
//! Get last write time of a given file or directory (multiple-attributes version).
|
|
/**
|
|
\param path Specified path to get attributes from.
|
|
\param[in,out] attr Type of requested time attributes.
|
|
Can be { 0=year | 1=month | 2=day | 3=day of week | 4=hour | 5=minute | 6=second }
|
|
Replaced by read attributes after return (or -1 if an error occurred).
|
|
\param nb_attr Number of attributes to read/write.
|
|
\return Latest read attribute.
|
|
**/
|
|
template<typename T>
|
|
inline int fdate(const char *const path, T *attr, const unsigned int nb_attr) {
|
|
#define _cimg_fdate_err() for (unsigned int i = 0; i<nb_attr; ++i) attr[i] = (T)-1
|
|
int res = -1;
|
|
if (!path || !*path) { _cimg_fdate_err(); return -1; }
|
|
cimg::mutex(6);
|
|
#if cimg_OS==2
|
|
HANDLE file = CreateFileA(path,GENERIC_READ,0,0,OPEN_EXISTING,FILE_ATTRIBUTE_NORMAL,0);
|
|
if (file!=INVALID_HANDLE_VALUE) {
|
|
FILETIME _ft;
|
|
SYSTEMTIME ft;
|
|
if (GetFileTime(file,0,0,&_ft) && FileTimeToSystemTime(&_ft,&ft)) {
|
|
for (unsigned int i = 0; i<nb_attr; ++i) {
|
|
res = (int)(attr[i]==0?ft.wYear:attr[i]==1?ft.wMonth:attr[i]==2?ft.wDay:
|
|
attr[i]==3?ft.wDayOfWeek:attr[i]==4?ft.wHour:attr[i]==5?ft.wMinute:
|
|
attr[i]==6?ft.wSecond:-1);
|
|
attr[i] = (T)res;
|
|
}
|
|
} else _cimg_fdate_err();
|
|
CloseHandle(file);
|
|
} else _cimg_fdate_err();
|
|
#elif cimg_OS==1
|
|
struct stat st_buf;
|
|
if (!stat(path,&st_buf)) {
|
|
const time_t _ft = st_buf.st_mtime;
|
|
const struct tm& ft = *std::localtime(&_ft);
|
|
for (unsigned int i = 0; i<nb_attr; ++i) {
|
|
res = (int)(attr[i]==0?ft.tm_year + 1900:attr[i]==1?ft.tm_mon + 1:attr[i]==2?ft.tm_mday:
|
|
attr[i]==3?ft.tm_wday:attr[i]==4?ft.tm_hour:attr[i]==5?ft.tm_min:
|
|
attr[i]==6?ft.tm_sec:-1);
|
|
attr[i] = (T)res;
|
|
}
|
|
} else _cimg_fdate_err();
|
|
#endif
|
|
cimg::mutex(6,0);
|
|
return res;
|
|
}
|
|
|
|
//! Get last write time of a given file or directory (single-attribute version).
|
|
/**
|
|
\param path Specified path to get attributes from.
|
|
\param attr Type of requested time attributes.
|
|
Can be { 0=year | 1=month | 2=day | 3=day of week | 4=hour | 5=minute | 6=second }
|
|
\return Specified attribute or -1 if an error occurred.
|
|
**/
|
|
inline int fdate(const char *const path, unsigned int attr) {
|
|
int out = (int)attr;
|
|
return fdate(path,&out,1);
|
|
}
|
|
|
|
//! Get current local time (multiple-attributes version).
|
|
/**
|
|
\param[in,out] attr Type of requested time attributes.
|
|
Can be { 0=year | 1=month | 2=day | 3=day of week | 4=hour | 5=minute | 6=second |
|
|
7=millisecond }
|
|
Replaced by read attributes after return (or -1 if an error occurred).
|
|
\param nb_attr Number of attributes to read/write.
|
|
\return Latest read attribute.
|
|
**/
|
|
template<typename T>
|
|
inline int date(T *attr, const unsigned int nb_attr) {
|
|
int res = -1;
|
|
cimg::mutex(6);
|
|
#if cimg_OS==2
|
|
SYSTEMTIME st;
|
|
GetLocalTime(&st);
|
|
for (unsigned int i = 0; i<nb_attr; ++i) {
|
|
res = (int)(attr[i]==0?st.wYear:
|
|
attr[i]==1?st.wMonth:
|
|
attr[i]==2?st.wDay:
|
|
attr[i]==3?st.wDayOfWeek:
|
|
attr[i]==4?st.wHour:
|
|
attr[i]==5?st.wMinute:
|
|
attr[i]==6?st.wSecond:
|
|
attr[i]==7?st.wMilliseconds:-1);
|
|
attr[i] = (T)res;
|
|
}
|
|
#else
|
|
struct timeval _st;
|
|
gettimeofday(&_st,0);
|
|
struct tm *st = std::localtime(&_st.tv_sec);
|
|
for (unsigned int i = 0; i<nb_attr; ++i) {
|
|
res = (int)(attr[i]==0?st->tm_year + 1900:
|
|
attr[i]==1?st->tm_mon + 1:
|
|
attr[i]==2?st->tm_mday:
|
|
attr[i]==3?st->tm_wday:
|
|
attr[i]==4?st->tm_hour:
|
|
attr[i]==5?st->tm_min:
|
|
attr[i]==6?st->tm_sec:
|
|
attr[i]==7?_st.tv_usec/1000:-1);
|
|
attr[i] = (T)res;
|
|
}
|
|
#endif
|
|
cimg::mutex(6,0);
|
|
return res;
|
|
}
|
|
|
|
//! Get current local time (single-attribute version).
|
|
/**
|
|
\param attr Type of requested time attribute.
|
|
Can be { 0=year | 1=month | 2=day | 3=day of week | 4=hour | 5=minute | 6=second |
|
|
7=millisecond }
|
|
\return Specified attribute or -1 if an error occurred.
|
|
**/
|
|
inline int date(unsigned int attr) {
|
|
int out = (int)attr;
|
|
return date(&out,1);
|
|
}
|
|
|
|
// Get/set path to the \c curl binary.
|
|
inline const char *curl_path(const char *const user_path=0, const bool reinit_path=false);
|
|
|
|
// Get/set path to the \c dcraw binary.
|
|
inline const char *dcraw_path(const char *const user_path=0, const bool reinit_path=false);
|
|
|
|
// Get/set path to the FFMPEG's \c ffmpeg binary.
|
|
inline const char *ffmpeg_path(const char *const user_path=0, const bool reinit_path=false);
|
|
|
|
// Get/set path to the GraphicsMagick's \c gm binary.
|
|
inline const char* graphicsmagick_path(const char *const user_path=0, const bool reinit_path=false);
|
|
|
|
// Get/set path to the \c gunzip binary.
|
|
inline const char *gunzip_path(const char *const user_path=0, const bool reinit_path=false);
|
|
|
|
// Get/set path to the \c gzip binary.
|
|
inline const char *gzip_path(const char *const user_path=0, const bool reinit_path=false);
|
|
|
|
// Get/set path to the ImageMagick's \c convert binary.
|
|
inline const char* imagemagick_path(const char *const user_path=0, const bool reinit_path=false);
|
|
|
|
// Get/set path to the Medcon's \c medcon binary.
|
|
inline const char* medcon_path(const char *const user_path=0, const bool reinit_path=false);
|
|
|
|
// Get/set path to store temporary files.
|
|
inline const char* temporary_path(const char *const user_path=0, const bool reinit_path=false);
|
|
|
|
// Get/set path to the \c wget binary.
|
|
inline const char *wget_path(const char *const user_path=0, const bool reinit_path=false);
|
|
|
|
#if cimg_OS==2
|
|
// Get/set path to the \c powershell binary.
|
|
inline const char *powershell_path(const char *const user_path=0, const bool reinit_path=false);
|
|
#endif
|
|
|
|
//! Split filename into two C-strings \c body and \c extension.
|
|
/**
|
|
filename and body must not overlap!
|
|
**/
|
|
inline const char *split_filename(const char *const filename, char *const body=0) {
|
|
if (!filename) { if (body) *body = 0; return ""; }
|
|
const char * p = std::strrchr(filename,'.');
|
|
if (!p || std::strchr(p,'/') || std::strchr(p,'\\')) { // No extension.
|
|
if (body) std::strcpy(body,filename);
|
|
return filename + std::strlen(filename);
|
|
}
|
|
const unsigned int l = (unsigned int)(p - filename);
|
|
if (body) { if (l) std::memcpy(body,filename,l); body[l] = 0; }
|
|
return p + 1;
|
|
}
|
|
|
|
// Generate a numbered version of a filename.
|
|
inline char* number_filename(const char *const filename, const int number,
|
|
const unsigned int digits, char *const str);
|
|
|
|
//! Read data from file.
|
|
/**
|
|
\param[out] ptr Pointer to memory buffer that will contain the binary data read from file.
|
|
\param nmemb Number of elements to read.
|
|
\param stream File to read data from.
|
|
\return Number of read elements.
|
|
\note Same as <tt>std::fread()</tt> but may display warning message if all elements could not be read.
|
|
**/
|
|
template<typename T>
|
|
inline size_t fread(T *const ptr, const size_t nmemb, std::FILE *stream) {
|
|
if (!ptr || !stream)
|
|
throw CImgArgumentException("cimg::fread(): Invalid reading request of %u %s%s from file %p to buffer %p.",
|
|
nmemb,cimg::type<T>::string(),nmemb>1?"s":"",stream,ptr);
|
|
if (!nmemb) return 0;
|
|
const size_t wlimitT = 63*1024*1024, wlimit = wlimitT/sizeof(T);
|
|
size_t to_read = nmemb, al_read = 0, l_to_read = 0, l_al_read = 0;
|
|
do {
|
|
l_to_read = (to_read*sizeof(T))<wlimitT?to_read:wlimit;
|
|
l_al_read = std::fread((void*)(ptr + al_read),sizeof(T),l_to_read,stream);
|
|
al_read+=l_al_read;
|
|
to_read-=l_al_read;
|
|
} while (l_to_read==l_al_read && to_read>0);
|
|
if (to_read>0)
|
|
warn("cimg::fread(): Only %lu/%lu elements could be read from file.",
|
|
(unsigned long)al_read,(unsigned long)nmemb);
|
|
return al_read;
|
|
}
|
|
|
|
//! Write data to file.
|
|
/**
|
|
\param ptr Pointer to memory buffer containing the binary data to write on file.
|
|
\param nmemb Number of elements to write.
|
|
\param[out] stream File to write data on.
|
|
\return Number of written elements.
|
|
\note Similar to <tt>std::fwrite</tt> but may display warning messages if all elements could not be written.
|
|
**/
|
|
template<typename T>
|
|
inline size_t fwrite(const T *ptr, const size_t nmemb, std::FILE *stream) {
|
|
if (!ptr || !stream)
|
|
throw CImgArgumentException("cimg::fwrite(): Invalid writing request of %u %s%s from buffer %p to file %p.",
|
|
nmemb,cimg::type<T>::string(),nmemb>1?"s":"",ptr,stream);
|
|
if (!nmemb) return 0;
|
|
const size_t wlimitT = 63*1024*1024, wlimit = wlimitT/sizeof(T);
|
|
size_t to_write = nmemb, al_write = 0, l_to_write = 0, l_al_write = 0;
|
|
do {
|
|
l_to_write = (to_write*sizeof(T))<wlimitT?to_write:wlimit;
|
|
l_al_write = std::fwrite((void*)(ptr + al_write),sizeof(T),l_to_write,stream);
|
|
al_write+=l_al_write;
|
|
to_write-=l_al_write;
|
|
} while (l_to_write==l_al_write && to_write>0);
|
|
if (to_write>0)
|
|
warn("cimg::fwrite(): Only %lu/%lu elements could be written in file.",
|
|
(unsigned long)al_write,(unsigned long)nmemb);
|
|
return al_write;
|
|
}
|
|
|
|
//! Create an empty file.
|
|
/**
|
|
\param file Input file (can be \c 0 if \c filename is set).
|
|
\param filename Filename, as a C-string (can be \c 0 if \c file is set).
|
|
**/
|
|
inline void fempty(std::FILE *const file, const char *const filename) {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException("cimg::fempty(): Specified filename is (null).");
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"wb");
|
|
if (!file) cimg::fclose(nfile);
|
|
}
|
|
|
|
// Try to guess format from an image file.
|
|
inline const char *ftype(std::FILE *const file, const char *const filename);
|
|
|
|
// Get or set load from network mode (can be { 0=disabled | 1=enabled }).
|
|
inline bool& network_mode(const bool value, const bool is_set) {
|
|
static bool mode = true;
|
|
if (is_set) { cimg::mutex(0); mode = value; cimg::mutex(0,0); }
|
|
return mode;
|
|
}
|
|
|
|
inline bool& network_mode() {
|
|
return network_mode(false,false);
|
|
}
|
|
|
|
// Load file from network as a local temporary file.
|
|
inline char *load_network(const char *const url, char *const filename_local,
|
|
const unsigned int timeout=0, const bool try_fallback=false,
|
|
const char *const referer=0, const char *const user_agent=0);
|
|
|
|
//! Return options specified on the command line.
|
|
inline const char* option(const char *const name, const int argc, const char *const *const argv,
|
|
const char *const _default, const char *const usage, const bool reset_static) {
|
|
static bool first = true, visu = false;
|
|
if (reset_static) { first = true; return 0; }
|
|
const char *res = 0;
|
|
if (first) {
|
|
first = false;
|
|
visu = cimg::option("-h",argc,argv,(char*)0,(char*)0,false)!=0;
|
|
visu |= cimg::option("-help",argc,argv,(char*)0,(char*)0,false)!=0;
|
|
visu |= cimg::option("--help",argc,argv,(char*)0,(char*)0,false)!=0;
|
|
}
|
|
if (!name && visu) {
|
|
if (usage) {
|
|
std::fprintf(cimg::output(),"\n %s%s%s",cimg::t_red,cimg::basename(argv[0]),cimg::t_normal);
|
|
std::fprintf(cimg::output(),": %s",usage);
|
|
std::fprintf(cimg::output()," (%s, %s)\n\n",cimg_date,cimg_time);
|
|
}
|
|
if (_default) std::fprintf(cimg::output(),"%s\n",_default);
|
|
}
|
|
if (name) {
|
|
if (argc>0) {
|
|
int k = 0;
|
|
while (k<argc && std::strcmp(argv[k],name)) ++k;
|
|
res = (k++==argc?_default:(k==argc?argv[--k]:argv[k]));
|
|
} else res = _default;
|
|
if (visu && usage) std::fprintf(cimg::output()," %s%-16s%s %-24s %s%s%s\n",
|
|
cimg::t_bold,name,cimg::t_normal,res?res:"0",
|
|
cimg::t_green,usage,cimg::t_normal);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
inline const char* option(const char *const name, const int argc, const char *const *const argv,
|
|
const char *const _default, const char *const usage=0) {
|
|
return option(name,argc,argv,_default,usage,false);
|
|
}
|
|
|
|
inline bool option(const char *const name, const int argc, const char *const *const argv,
|
|
const bool _default, const char *const usage=0) {
|
|
const char *const s = cimg::option(name,argc,argv,(char*)0);
|
|
const bool res = s?(cimg::strcasecmp(s,"false") && cimg::strcasecmp(s,"off") && cimg::strcasecmp(s,"0")):_default;
|
|
cimg::option(name,0,0,res?"true":"false",usage);
|
|
return res;
|
|
}
|
|
|
|
inline int option(const char *const name, const int argc, const char *const *const argv,
|
|
const int _default, const char *const usage=0) {
|
|
const char *const s = cimg::option(name,argc,argv,(char*)0);
|
|
const int res = s?std::atoi(s):_default;
|
|
char *const tmp = new char[256];
|
|
cimg_snprintf(tmp,256,"%d",res);
|
|
cimg::option(name,0,0,tmp,usage);
|
|
delete[] tmp;
|
|
return res;
|
|
}
|
|
|
|
inline char option(const char *const name, const int argc, const char *const *const argv,
|
|
const char _default, const char *const usage=0) {
|
|
const char *const s = cimg::option(name,argc,argv,(char*)0);
|
|
const char res = s?*s:_default;
|
|
char tmp[8];
|
|
*tmp = res; tmp[1] = 0;
|
|
cimg::option(name,0,0,tmp,usage);
|
|
return res;
|
|
}
|
|
|
|
inline float option(const char *const name, const int argc, const char *const *const argv,
|
|
const float _default, const char *const usage=0) {
|
|
const char *const s = cimg::option(name,argc,argv,(char*)0);
|
|
const float res = s?(float)cimg::atof(s):_default;
|
|
char *const tmp = new char[256];
|
|
cimg_snprintf(tmp,256,"%g",res);
|
|
cimg::option(name,0,0,tmp,usage);
|
|
delete[] tmp;
|
|
return res;
|
|
}
|
|
|
|
inline double option(const char *const name, const int argc, const char *const *const argv,
|
|
const double _default, const char *const usage=0) {
|
|
const char *const s = cimg::option(name,argc,argv,(char*)0);
|
|
const double res = s?cimg::atof(s):_default;
|
|
char *const tmp = new char[256];
|
|
cimg_snprintf(tmp,256,"%g",res);
|
|
cimg::option(name,0,0,tmp,usage);
|
|
delete[] tmp;
|
|
return res;
|
|
}
|
|
|
|
//! Print information about \CImg environment variables.
|
|
/**
|
|
\note Output is done on the default output stream.
|
|
**/
|
|
inline void info() {
|
|
std::fprintf(cimg::output(),"\n %s%sCImg Library %u.%u.%u%s, compiled %s ( %s ) with the following flags:\n\n",
|
|
cimg::t_red,cimg::t_bold,cimg_version/100,(cimg_version/10)%10,cimg_version%10,
|
|
cimg::t_normal,cimg_date,cimg_time);
|
|
|
|
std::fprintf(cimg::output()," > Operating System: %s%-13s%s %s('cimg_OS'=%d)%s\n",
|
|
cimg::t_bold,
|
|
cimg_OS==1?"Unix":(cimg_OS==2?"Windows":"Unknown"),
|
|
cimg::t_normal,cimg::t_green,
|
|
cimg_OS,
|
|
cimg::t_normal);
|
|
|
|
std::fprintf(cimg::output()," > CPU endianness: %s%s Endian%s\n",
|
|
cimg::t_bold,
|
|
cimg::endianness()?"Big":"Little",
|
|
cimg::t_normal);
|
|
|
|
std::fprintf(cimg::output()," > Verbosity mode: %s%-13s%s %s('cimg_verbosity'=%d)%s\n",
|
|
cimg::t_bold,
|
|
cimg_verbosity==0?"Quiet":
|
|
cimg_verbosity==1?"Console":
|
|
cimg_verbosity==2?"Dialog":
|
|
cimg_verbosity==3?"Console+Warnings":"Dialog+Warnings",
|
|
cimg::t_normal,cimg::t_green,
|
|
cimg_verbosity,
|
|
cimg::t_normal);
|
|
|
|
std::fprintf(cimg::output()," > Stricts warnings: %s%-13s%s %s('cimg_strict_warnings' %s)%s\n",
|
|
cimg::t_bold,
|
|
#ifdef cimg_strict_warnings
|
|
"Yes",cimg::t_normal,cimg::t_green,"defined",
|
|
#else
|
|
"No",cimg::t_normal,cimg::t_green,"undefined",
|
|
#endif
|
|
cimg::t_normal);
|
|
|
|
std::fprintf(cimg::output()," > Support for C++11: %s%-13s%s %s('cimg_use_cpp11'=%d)%s\n",
|
|
cimg::t_bold,
|
|
cimg_use_cpp11?"Yes":"No",
|
|
cimg::t_normal,cimg::t_green,
|
|
(int)cimg_use_cpp11,
|
|
cimg::t_normal);
|
|
|
|
std::fprintf(cimg::output()," > Using VT100 messages: %s%-13s%s %s('cimg_use_vt100' %s)%s\n",
|
|
cimg::t_bold,
|
|
#ifdef cimg_use_vt100
|
|
"Yes",cimg::t_normal,cimg::t_green,"defined",
|
|
#else
|
|
"No",cimg::t_normal,cimg::t_green,"undefined",
|
|
#endif
|
|
cimg::t_normal);
|
|
|
|
std::fprintf(cimg::output()," > Display type: %s%-13s%s %s('cimg_display'=%d)%s\n",
|
|
cimg::t_bold,
|
|
cimg_display==0?"No display":cimg_display==1?"X11":cimg_display==2?"Windows GDI":"Unknown",
|
|
cimg::t_normal,cimg::t_green,
|
|
(int)cimg_display,
|
|
cimg::t_normal);
|
|
|
|
#if cimg_display==1
|
|
std::fprintf(cimg::output()," > Using XShm for X11: %s%-13s%s %s('cimg_use_xshm' %s)%s\n",
|
|
cimg::t_bold,
|
|
#ifdef cimg_use_xshm
|
|
"Yes",cimg::t_normal,cimg::t_green,"defined",
|
|
#else
|
|
"No",cimg::t_normal,cimg::t_green,"undefined",
|
|
#endif
|
|
cimg::t_normal);
|
|
|
|
std::fprintf(cimg::output()," > Using XRand for X11: %s%-13s%s %s('cimg_use_xrandr' %s)%s\n",
|
|
cimg::t_bold,
|
|
#ifdef cimg_use_xrandr
|
|
"Yes",cimg::t_normal,cimg::t_green,"defined",
|
|
#else
|
|
"No",cimg::t_normal,cimg::t_green,"undefined",
|
|
#endif
|
|
cimg::t_normal);
|
|
#endif
|
|
std::fprintf(cimg::output()," > Using OpenMP: %s%-13s%s %s('cimg_use_openmp' %s)%s\n",
|
|
cimg::t_bold,
|
|
#if cimg_use_openmp!=0
|
|
"Yes",cimg::t_normal,cimg::t_green,"defined",
|
|
#else
|
|
"No",cimg::t_normal,cimg::t_green,"undefined",
|
|
#endif
|
|
cimg::t_normal);
|
|
std::fprintf(cimg::output()," > Using PNG library: %s%-13s%s %s('cimg_use_png' %s)%s\n",
|
|
cimg::t_bold,
|
|
#ifdef cimg_use_png
|
|
"Yes",cimg::t_normal,cimg::t_green,"defined",
|
|
#else
|
|
"No",cimg::t_normal,cimg::t_green,"undefined",
|
|
#endif
|
|
cimg::t_normal);
|
|
std::fprintf(cimg::output()," > Using JPEG library: %s%-13s%s %s('cimg_use_jpeg' %s)%s\n",
|
|
cimg::t_bold,
|
|
#ifdef cimg_use_jpeg
|
|
"Yes",cimg::t_normal,cimg::t_green,"defined",
|
|
#else
|
|
"No",cimg::t_normal,cimg::t_green,"undefined",
|
|
#endif
|
|
cimg::t_normal);
|
|
|
|
std::fprintf(cimg::output()," > Using TIFF library: %s%-13s%s %s('cimg_use_tiff' %s)%s\n",
|
|
cimg::t_bold,
|
|
#ifdef cimg_use_tiff
|
|
"Yes",cimg::t_normal,cimg::t_green,"defined",
|
|
#else
|
|
"No",cimg::t_normal,cimg::t_green,"undefined",
|
|
#endif
|
|
cimg::t_normal);
|
|
|
|
std::fprintf(cimg::output()," > Using Magick++ library: %s%-13s%s %s('cimg_use_magick' %s)%s\n",
|
|
cimg::t_bold,
|
|
#ifdef cimg_use_magick
|
|
"Yes",cimg::t_normal,cimg::t_green,"defined",
|
|
#else
|
|
"No",cimg::t_normal,cimg::t_green,"undefined",
|
|
#endif
|
|
cimg::t_normal);
|
|
|
|
std::fprintf(cimg::output()," > Using FFTW3 library: %s%-13s%s %s('cimg_use_fftw3' %s)%s\n",
|
|
cimg::t_bold,
|
|
#ifdef cimg_use_fftw3
|
|
"Yes",cimg::t_normal,cimg::t_green,"defined",
|
|
#else
|
|
"No",cimg::t_normal,cimg::t_green,"undefined",
|
|
#endif
|
|
cimg::t_normal);
|
|
|
|
std::fprintf(cimg::output()," > Using LAPACK library: %s%-13s%s %s('cimg_use_lapack' %s)%s\n",
|
|
cimg::t_bold,
|
|
#ifdef cimg_use_lapack
|
|
"Yes",cimg::t_normal,cimg::t_green,"defined",
|
|
#else
|
|
"No",cimg::t_normal,cimg::t_green,"undefined",
|
|
#endif
|
|
cimg::t_normal);
|
|
|
|
char *const tmp = new char[1024];
|
|
|
|
cimg_snprintf(tmp,1024,"\"%.1020s\"",cimg::curl_path());
|
|
std::fprintf(cimg::output()," > Path of 'curl': %s%-13s%s\n",
|
|
cimg::t_bold,
|
|
tmp,
|
|
cimg::t_normal);
|
|
|
|
cimg_snprintf(tmp,1024,"\"%.1020s\"",cimg::dcraw_path());
|
|
std::fprintf(cimg::output()," > Path of 'dcraw': %s%-13s%s\n",
|
|
cimg::t_bold,
|
|
tmp,
|
|
cimg::t_normal);
|
|
|
|
cimg_snprintf(tmp,1024,"\"%.1020s\"",cimg::ffmpeg_path());
|
|
std::fprintf(cimg::output()," > Path of 'ffmpeg': %s%-13s%s\n",
|
|
cimg::t_bold,
|
|
tmp,
|
|
cimg::t_normal);
|
|
|
|
cimg_snprintf(tmp,1024,"\"%.1020s\"",cimg::graphicsmagick_path());
|
|
std::fprintf(cimg::output()," > Path of 'graphicsmagick': %s%-13s%s\n",
|
|
cimg::t_bold,
|
|
tmp,
|
|
cimg::t_normal);
|
|
|
|
cimg_snprintf(tmp,1024,"\"%.1020s\"",cimg::gunzip_path());
|
|
std::fprintf(cimg::output()," > Path of 'gunzip': %s%-13s%s\n",
|
|
cimg::t_bold,
|
|
tmp,
|
|
cimg::t_normal);
|
|
|
|
cimg_snprintf(tmp,1024,"\"%.1020s\"",cimg::gzip_path());
|
|
std::fprintf(cimg::output()," > Path of 'gzip': %s%-13s%s\n",
|
|
cimg::t_bold,
|
|
tmp,
|
|
cimg::t_normal);
|
|
|
|
cimg_snprintf(tmp,1024,"\"%.1020s\"",cimg::imagemagick_path());
|
|
std::fprintf(cimg::output()," > Path of 'imagemagick': %s%-13s%s\n",
|
|
cimg::t_bold,
|
|
tmp,
|
|
cimg::t_normal);
|
|
|
|
cimg_snprintf(tmp,1024,"\"%.1020s\"",cimg::medcon_path());
|
|
std::fprintf(cimg::output()," > Path of 'medcon': %s%-13s%s\n",
|
|
cimg::t_bold,
|
|
tmp,
|
|
cimg::t_normal);
|
|
|
|
cimg_snprintf(tmp,1024,"\"%.1020s\"",cimg::temporary_path());
|
|
std::fprintf(cimg::output()," > Temporary path: %s%-13s%s\n",
|
|
cimg::t_bold,
|
|
tmp,
|
|
cimg::t_normal);
|
|
|
|
cimg_snprintf(tmp,1024,"\"%.1020s\"",cimg::wget_path());
|
|
std::fprintf(cimg::output()," > Path of 'wget': %s%-13s%s\n",
|
|
cimg::t_bold,
|
|
tmp,
|
|
cimg::t_normal);
|
|
#if cimg_OS==2
|
|
cimg_snprintf(tmp,1024,"\"%.1020s\"",cimg::powershell_path());
|
|
std::fprintf(cimg::output()," > Path of 'powershell_path': %s%-13s%s\n",
|
|
cimg::t_bold,
|
|
tmp,
|
|
cimg::t_normal);
|
|
#endif
|
|
|
|
std::fprintf(cimg::output(),"\n");
|
|
delete[] tmp;
|
|
}
|
|
|
|
// Declare LAPACK function signatures if LAPACK support is enabled.
|
|
#ifdef cimg_use_lapack
|
|
template<typename T>
|
|
inline void getrf(int &N, T *lapA, int *IPIV, int &INFO) {
|
|
dgetrf_(&N,&N,lapA,&N,IPIV,&INFO);
|
|
}
|
|
|
|
inline void getrf(int &N, float *lapA, int *IPIV, int &INFO) {
|
|
sgetrf_(&N,&N,lapA,&N,IPIV,&INFO);
|
|
}
|
|
|
|
template<typename T>
|
|
inline void getri(int &N, T *lapA, int *IPIV, T* WORK, int &LWORK, int &INFO) {
|
|
dgetri_(&N,lapA,&N,IPIV,WORK,&LWORK,&INFO);
|
|
}
|
|
|
|
inline void getri(int &N, float *lapA, int *IPIV, float* WORK, int &LWORK, int &INFO) {
|
|
sgetri_(&N,lapA,&N,IPIV,WORK,&LWORK,&INFO);
|
|
}
|
|
|
|
template<typename T>
|
|
inline void gesvd(char &JOB, int &M, int &N, T *lapA, int &MN,
|
|
T *lapS, T *lapU, T *lapV, T *WORK, int &LWORK, int &INFO) {
|
|
dgesvd_(&JOB,&JOB,&M,&N,lapA,&MN,lapS,lapU,&M,lapV,&N,WORK,&LWORK,&INFO);
|
|
}
|
|
|
|
inline void gesvd(char &JOB, int &M, int &N, float *lapA, int &MN,
|
|
float *lapS, float *lapU, float *lapV, float *WORK, int &LWORK, int &INFO) {
|
|
sgesvd_(&JOB,&JOB,&M,&N,lapA,&MN,lapS,lapU,&M,lapV,&N,WORK,&LWORK,&INFO);
|
|
}
|
|
|
|
template<typename T>
|
|
inline void getrs(char &TRANS, int &N, T *lapA, int *IPIV, T *lapB, int &INFO) {
|
|
int one = 1;
|
|
dgetrs_(&TRANS,&N,&one,lapA,&N,IPIV,lapB,&N,&INFO);
|
|
}
|
|
|
|
inline void getrs(char &TRANS, int &N, float *lapA, int *IPIV, float *lapB, int &INFO) {
|
|
int one = 1;
|
|
sgetrs_(&TRANS,&N,&one,lapA,&N,IPIV,lapB,&N,&INFO);
|
|
}
|
|
|
|
template<typename T>
|
|
inline void syev(char &JOB, char &UPLO, int &N, T *lapA, T *lapW, T *WORK, int &LWORK, int &INFO) {
|
|
dsyev_(&JOB,&UPLO,&N,lapA,&N,lapW,WORK,&LWORK,&INFO);
|
|
}
|
|
|
|
inline void syev(char &JOB, char &UPLO, int &N, float *lapA, float *lapW, float *WORK, int &LWORK, int &INFO) {
|
|
ssyev_(&JOB,&UPLO,&N,lapA,&N,lapW,WORK,&LWORK,&INFO);
|
|
}
|
|
|
|
template<typename T>
|
|
inline void sgels(char & TRANS, int &M, int &N, int &NRHS, T* lapA, int &LDA,
|
|
T* lapB, int &LDB, T* WORK, int &LWORK, int &INFO) {
|
|
dgels_(&TRANS, &M, &N, &NRHS, lapA, &LDA, lapB, &LDB, WORK, &LWORK, &INFO);
|
|
}
|
|
|
|
inline void sgels(char & TRANS, int &M, int &N, int &NRHS, float* lapA, int &LDA,
|
|
float* lapB, int &LDB, float* WORK, int &LWORK, int &INFO) {
|
|
sgels_(&TRANS, &M, &N, &NRHS, lapA, &LDA, lapB, &LDB, WORK, &LWORK, &INFO);
|
|
}
|
|
|
|
#endif
|
|
|
|
} // namespace cimg { ...
|
|
|
|
/*------------------------------------------------
|
|
#
|
|
#
|
|
# Definition of mathematical operators and
|
|
# external functions.
|
|
#
|
|
#
|
|
-------------------------------------------------*/
|
|
|
|
#define _cimg_create_operator(typ) \
|
|
template<typename T> \
|
|
inline CImg<typename cimg::superset<T,typ>::type> operator+(const typ val, const CImg<T>& img) { \
|
|
return img + val; \
|
|
} \
|
|
template<typename T> \
|
|
inline CImg<typename cimg::superset<T,typ>::type> operator-(const typ val, const CImg<T>& img) { \
|
|
typedef typename cimg::superset<T,typ>::type Tt; \
|
|
return CImg<Tt>(img._width,img._height,img._depth,img._spectrum,val)-=img; \
|
|
} \
|
|
template<typename T> \
|
|
inline CImg<typename cimg::superset<T,typ>::type> operator*(const typ val, const CImg<T>& img) { \
|
|
return img*val; \
|
|
} \
|
|
template<typename T> \
|
|
inline CImg<typename cimg::superset<T,typ>::type> operator/(const typ val, const CImg<T>& img) { \
|
|
return val*img.get_invert(); \
|
|
} \
|
|
template<typename T> \
|
|
inline CImg<typename cimg::superset<T,typ>::type> operator&(const typ val, const CImg<T>& img) { \
|
|
return img & val; \
|
|
} \
|
|
template<typename T> \
|
|
inline CImg<typename cimg::superset<T,typ>::type> operator|(const typ val, const CImg<T>& img) { \
|
|
return img | val; \
|
|
} \
|
|
template<typename T> \
|
|
inline CImg<typename cimg::superset<T,typ>::type> operator^(const typ val, const CImg<T>& img) { \
|
|
return img ^ val; \
|
|
} \
|
|
template<typename T> \
|
|
inline bool operator==(const typ val, const CImg<T>& img) { \
|
|
return img == val; \
|
|
} \
|
|
template<typename T> \
|
|
inline bool operator!=(const typ val, const CImg<T>& img) { \
|
|
return img != val; \
|
|
}
|
|
|
|
_cimg_create_operator(bool)
|
|
_cimg_create_operator(unsigned char)
|
|
_cimg_create_operator(char)
|
|
_cimg_create_operator(signed char)
|
|
_cimg_create_operator(unsigned short)
|
|
_cimg_create_operator(short)
|
|
_cimg_create_operator(unsigned int)
|
|
_cimg_create_operator(int)
|
|
_cimg_create_operator(cimg_uint64)
|
|
_cimg_create_operator(cimg_int64)
|
|
_cimg_create_operator(float)
|
|
_cimg_create_operator(double)
|
|
_cimg_create_operator(long double)
|
|
|
|
template<typename T>
|
|
inline CImg<_cimg_Tfloat> operator+(const char *const expression, const CImg<T>& img) {
|
|
return img + expression;
|
|
}
|
|
|
|
template<typename T>
|
|
inline CImg<_cimg_Tfloat> operator-(const char *const expression, const CImg<T>& img) {
|
|
return CImg<_cimg_Tfloat>(img,false).fill(expression,true)-=img;
|
|
}
|
|
|
|
template<typename T>
|
|
inline CImg<_cimg_Tfloat> operator*(const char *const expression, const CImg<T>& img) {
|
|
return img*expression;
|
|
}
|
|
|
|
template<typename T>
|
|
inline CImg<_cimg_Tfloat> operator/(const char *const expression, const CImg<T>& img) {
|
|
return expression*img.get_invert();
|
|
}
|
|
|
|
template<typename T>
|
|
inline CImg<T> operator&(const char *const expression, const CImg<T>& img) {
|
|
return img & expression;
|
|
}
|
|
|
|
template<typename T>
|
|
inline CImg<T> operator|(const char *const expression, const CImg<T>& img) {
|
|
return img | expression;
|
|
}
|
|
|
|
template<typename T>
|
|
inline CImg<T> operator^(const char *const expression, const CImg<T>& img) {
|
|
return img ^ expression;
|
|
}
|
|
|
|
template<typename T>
|
|
inline bool operator==(const char *const expression, const CImg<T>& img) {
|
|
return img==expression;
|
|
}
|
|
|
|
template<typename T>
|
|
inline bool operator!=(const char *const expression, const CImg<T>& img) {
|
|
return img!=expression;
|
|
}
|
|
|
|
template<typename T>
|
|
inline CImg<T> transpose(const CImg<T>& instance) {
|
|
return instance.get_transpose();
|
|
}
|
|
|
|
template<typename T>
|
|
inline CImg<_cimg_Tfloat> invert(const CImg<T>& instance, const bool use_LU=false, const float lambda=0) {
|
|
return instance.get_invert(use_LU,lambda);
|
|
}
|
|
|
|
#define _cimg_create_pointwise_function(name) \
|
|
template<typename T> \
|
|
inline CImg<_cimg_Tfloat> name(const CImg<T>& instance) { \
|
|
return instance.get_##name(); \
|
|
}
|
|
|
|
_cimg_create_pointwise_function(sqr)
|
|
_cimg_create_pointwise_function(sqrt)
|
|
_cimg_create_pointwise_function(erf)
|
|
_cimg_create_pointwise_function(exp)
|
|
_cimg_create_pointwise_function(log)
|
|
_cimg_create_pointwise_function(log2)
|
|
_cimg_create_pointwise_function(log10)
|
|
_cimg_create_pointwise_function(abs)
|
|
_cimg_create_pointwise_function(sign)
|
|
_cimg_create_pointwise_function(cos)
|
|
_cimg_create_pointwise_function(sin)
|
|
_cimg_create_pointwise_function(sinc)
|
|
_cimg_create_pointwise_function(tan)
|
|
_cimg_create_pointwise_function(acos)
|
|
_cimg_create_pointwise_function(asin)
|
|
_cimg_create_pointwise_function(atan)
|
|
_cimg_create_pointwise_function(cosh)
|
|
_cimg_create_pointwise_function(sinh)
|
|
_cimg_create_pointwise_function(tanh)
|
|
_cimg_create_pointwise_function(acosh)
|
|
_cimg_create_pointwise_function(asinh)
|
|
_cimg_create_pointwise_function(atanh)
|
|
|
|
/*-----------------------------------
|
|
#
|
|
# Define the CImgDisplay structure
|
|
#
|
|
----------------------------------*/
|
|
//! Allow the creation of windows, display images on them and manage user events (keyboard, mouse and windows events).
|
|
/**
|
|
CImgDisplay methods rely on a low-level graphic library to perform: it can be either \b X-Window
|
|
(X11, for Unix-based systems) or \b GDI32 (for Windows-based systems).
|
|
If both libraries are missing, CImgDisplay will not be able to display images on screen, and will enter
|
|
a minimal mode where warning messages will be outputted each time the program is trying to call one of the
|
|
CImgDisplay method.
|
|
|
|
The configuration variable \c cimg_display tells about the graphic library used.
|
|
It is set automatically by \CImg when one of these graphic libraries has been detected.
|
|
But, you can override its value if necessary. Valid choices are:
|
|
- 0: Disable display capabilities.
|
|
- 1: Use \b X-Window (X11) library.
|
|
- 2: Use \b GDI32 library.
|
|
|
|
Remember to link your program against \b X11 or \b GDI32 libraries if you use CImgDisplay.
|
|
**/
|
|
struct CImgDisplay {
|
|
cimg_uint64 _timer, _fps_frames, _fps_timer;
|
|
unsigned int _width, _height, _normalization;
|
|
float _fps_fps, _min, _max;
|
|
bool _is_fullscreen;
|
|
char *_title;
|
|
unsigned int _window_width, _window_height, _button, *_keys, *_released_keys;
|
|
int _window_x, _window_y, _mouse_x, _mouse_y, _wheel;
|
|
bool _is_closed, _is_resized, _is_moved, _is_event,
|
|
_is_keyESC, _is_keyF1, _is_keyF2, _is_keyF3, _is_keyF4, _is_keyF5, _is_keyF6, _is_keyF7,
|
|
_is_keyF8, _is_keyF9, _is_keyF10, _is_keyF11, _is_keyF12, _is_keyPAUSE, _is_key1, _is_key2,
|
|
_is_key3, _is_key4, _is_key5, _is_key6, _is_key7, _is_key8, _is_key9, _is_key0,
|
|
_is_keyBACKSPACE, _is_keyINSERT, _is_keyHOME, _is_keyPAGEUP, _is_keyTAB, _is_keyQ, _is_keyW, _is_keyE,
|
|
_is_keyR, _is_keyT, _is_keyY, _is_keyU, _is_keyI, _is_keyO, _is_keyP, _is_keyDELETE,
|
|
_is_keyEND, _is_keyPAGEDOWN, _is_keyCAPSLOCK, _is_keyA, _is_keyS, _is_keyD, _is_keyF, _is_keyG,
|
|
_is_keyH, _is_keyJ, _is_keyK, _is_keyL, _is_keyENTER, _is_keySHIFTLEFT, _is_keyZ, _is_keyX,
|
|
_is_keyC, _is_keyV, _is_keyB, _is_keyN, _is_keyM, _is_keySHIFTRIGHT, _is_keyARROWUP, _is_keyCTRLLEFT,
|
|
_is_keyAPPLEFT, _is_keyALT, _is_keySPACE, _is_keyALTGR, _is_keyAPPRIGHT, _is_keyMENU, _is_keyCTRLRIGHT,
|
|
_is_keyARROWLEFT, _is_keyARROWDOWN, _is_keyARROWRIGHT, _is_keyPAD0, _is_keyPAD1, _is_keyPAD2, _is_keyPAD3,
|
|
_is_keyPAD4, _is_keyPAD5, _is_keyPAD6, _is_keyPAD7, _is_keyPAD8, _is_keyPAD9, _is_keyPADADD, _is_keyPADSUB,
|
|
_is_keyPADMUL, _is_keyPADDIV;
|
|
|
|
//@}
|
|
//---------------------------
|
|
//
|
|
//! \name Plugins
|
|
//@{
|
|
//---------------------------
|
|
|
|
#ifdef cimgdisplay_plugin
|
|
#include cimgdisplay_plugin
|
|
#endif
|
|
#ifdef cimgdisplay_plugin1
|
|
#include cimgdisplay_plugin1
|
|
#endif
|
|
#ifdef cimgdisplay_plugin2
|
|
#include cimgdisplay_plugin2
|
|
#endif
|
|
#ifdef cimgdisplay_plugin3
|
|
#include cimgdisplay_plugin3
|
|
#endif
|
|
#ifdef cimgdisplay_plugin4
|
|
#include cimgdisplay_plugin4
|
|
#endif
|
|
#ifdef cimgdisplay_plugin5
|
|
#include cimgdisplay_plugin5
|
|
#endif
|
|
#ifdef cimgdisplay_plugin6
|
|
#include cimgdisplay_plugin6
|
|
#endif
|
|
#ifdef cimgdisplay_plugin7
|
|
#include cimgdisplay_plugin7
|
|
#endif
|
|
#ifdef cimgdisplay_plugin8
|
|
#include cimgdisplay_plugin8
|
|
#endif
|
|
|
|
//@}
|
|
//--------------------------------------------------------
|
|
//
|
|
//! \name Constructors / Destructor / Instance Management
|
|
//@{
|
|
//--------------------------------------------------------
|
|
|
|
//! Destructor.
|
|
/**
|
|
\note If the associated window is visible on the screen, it is closed by the call to the destructor.
|
|
**/
|
|
~CImgDisplay() {
|
|
assign();
|
|
delete[] _keys;
|
|
delete[] _released_keys;
|
|
}
|
|
|
|
//! Construct an empty display.
|
|
/**
|
|
\note Constructing an empty CImgDisplay instance does not make a window appearing on the screen, until
|
|
display of valid data is performed.
|
|
\par Example
|
|
\code
|
|
CImgDisplay disp; // Does actually nothing
|
|
...
|
|
disp.display(img); // Construct new window and display image in it
|
|
\endcode
|
|
**/
|
|
CImgDisplay():
|
|
_width(0),_height(0),_normalization(0),
|
|
_min(0),_max(0),
|
|
_is_fullscreen(false),
|
|
_title(0),
|
|
_window_width(0),_window_height(0),_button(0),
|
|
_keys(new unsigned int[128]),_released_keys(new unsigned int[128]),
|
|
_window_x(cimg::type<int>::min()),_window_y(cimg::type<int>::min()),
|
|
_mouse_x(-1),_mouse_y(-1),_wheel(0),
|
|
_is_closed(true),_is_resized(false),_is_moved(false),_is_event(false) {
|
|
assign();
|
|
}
|
|
|
|
//! Construct a display with specified dimensions.
|
|
/** \param width Window width.
|
|
\param height Window height.
|
|
\param title Window title.
|
|
\param normalization Normalization type
|
|
(<tt>0</tt>=none, <tt>1</tt>=always, <tt>2</tt>=once, <tt>3</tt>=pixel type-dependent, see normalization()).
|
|
\param is_fullscreen Tells if fullscreen mode is enabled.
|
|
\param is_closed Tells if associated window is initially visible or not.
|
|
\note A black background is initially displayed on the associated window.
|
|
**/
|
|
CImgDisplay(const unsigned int width, const unsigned int height,
|
|
const char *const title=0, const unsigned int normalization=3,
|
|
const bool is_fullscreen=false, const bool is_closed=false):
|
|
_width(0),_height(0),_normalization(0),
|
|
_min(0),_max(0),
|
|
_is_fullscreen(false),
|
|
_title(0),
|
|
_window_width(0),_window_height(0),_button(0),
|
|
_keys(new unsigned int[128]),_released_keys(new unsigned int[128]),
|
|
_window_x(cimg::type<int>::min()),_window_y(cimg::type<int>::min()),
|
|
_mouse_x(-1),_mouse_y(-1),_wheel(0),
|
|
_is_closed(true),_is_resized(false),_is_moved(false),_is_event(false) {
|
|
assign(width,height,title,normalization,is_fullscreen,is_closed);
|
|
}
|
|
|
|
//! Construct a display from an image.
|
|
/** \param img Image used as a model to create the window.
|
|
\param title Window title.
|
|
\param normalization Normalization type
|
|
(<tt>0</tt>=none, <tt>1</tt>=always, <tt>2</tt>=once, <tt>3</tt>=pixel type-dependent, see normalization()).
|
|
\param is_fullscreen Tells if fullscreen mode is enabled.
|
|
\param is_closed Tells if associated window is initially visible or not.
|
|
\note The pixels of the input image are initially displayed on the associated window.
|
|
**/
|
|
template<typename T>
|
|
explicit CImgDisplay(const CImg<T>& img,
|
|
const char *const title=0, const unsigned int normalization=3,
|
|
const bool is_fullscreen=false, const bool is_closed=false):
|
|
_width(0),_height(0),_normalization(0),
|
|
_min(0),_max(0),
|
|
_is_fullscreen(false),
|
|
_title(0),
|
|
_window_width(0),_window_height(0),_button(0),
|
|
_keys(new unsigned int[128]),_released_keys(new unsigned int[128]),
|
|
_window_x(cimg::type<int>::min()),_window_y(cimg::type<int>::min()),
|
|
_mouse_x(-1),_mouse_y(-1),_wheel(0),
|
|
_is_closed(true),_is_resized(false),_is_moved(false),_is_event(false) {
|
|
assign(img,title,normalization,is_fullscreen,is_closed);
|
|
}
|
|
|
|
//! Construct a display from an image list.
|
|
/** \param list The images list to display.
|
|
\param title Window title.
|
|
\param normalization Normalization type
|
|
(<tt>0</tt>=none, <tt>1</tt>=always, <tt>2</tt>=once, <tt>3</tt>=pixel type-dependent, see normalization()).
|
|
\param is_fullscreen Tells if fullscreen mode is enabled.
|
|
\param is_closed Tells if associated window is initially visible or not.
|
|
\note All images of the list, appended along the X-axis, are initially displayed on the associated window.
|
|
**/
|
|
template<typename T>
|
|
explicit CImgDisplay(const CImgList<T>& list,
|
|
const char *const title=0, const unsigned int normalization=3,
|
|
const bool is_fullscreen=false, const bool is_closed=false):
|
|
_width(0),_height(0),_normalization(0),
|
|
_min(0),_max(0),
|
|
_is_fullscreen(false),
|
|
_title(0),
|
|
_window_width(0),_window_height(0),_button(0),
|
|
_keys(new unsigned int[128]),_released_keys(new unsigned int[128]),
|
|
_window_x(cimg::type<int>::min()),_window_y(cimg::type<int>::min()),
|
|
_mouse_x(-1),_mouse_y(-1),_wheel(0),
|
|
_is_closed(true),_is_resized(false),_is_moved(false),_is_event(false) {
|
|
assign(list,title,normalization,is_fullscreen,is_closed);
|
|
}
|
|
|
|
//! Construct a display as a copy of an existing one.
|
|
/**
|
|
\param disp Display instance to copy.
|
|
\note The pixel buffer of the input window is initially displayed on the associated window.
|
|
**/
|
|
CImgDisplay(const CImgDisplay& disp):
|
|
_width(0),_height(0),_normalization(0),
|
|
_min(0),_max(0),
|
|
_is_fullscreen(false),
|
|
_title(0),
|
|
_window_width(0),_window_height(0),_button(0),
|
|
_keys(new unsigned int[128]),_released_keys(new unsigned int[128]),
|
|
_window_x(cimg::type<int>::min()),_window_y(cimg::type<int>::min()),
|
|
_mouse_x(-1),_mouse_y(-1),_wheel(0),
|
|
_is_closed(true),_is_resized(false),_is_moved(false),_is_event(false) {
|
|
assign(disp);
|
|
}
|
|
|
|
//! Take a screenshot.
|
|
/**
|
|
\param[out] img Output screenshot. Can be empty on input
|
|
**/
|
|
template<typename T>
|
|
static void screenshot(CImg<T>& img) {
|
|
return screenshot(0,0,cimg::type<int>::max(),cimg::type<int>::max(),img);
|
|
}
|
|
|
|
#if cimg_display==0
|
|
|
|
static void _no_display_exception() {
|
|
throw CImgDisplayException("CImgDisplay(): No display available.");
|
|
}
|
|
|
|
//! Destructor - Empty constructor \inplace.
|
|
/**
|
|
\note Replace the current instance by an empty display.
|
|
**/
|
|
CImgDisplay& assign() {
|
|
return flush();
|
|
}
|
|
|
|
//! Construct a display with specified dimensions \inplace.
|
|
/**
|
|
**/
|
|
CImgDisplay& assign(const unsigned int width, const unsigned int height,
|
|
const char *const title=0, const unsigned int normalization=3,
|
|
const bool is_fullscreen=false, const bool is_closed=false) {
|
|
cimg::unused(width,height,title,normalization,is_fullscreen,is_closed);
|
|
_no_display_exception();
|
|
return assign();
|
|
}
|
|
|
|
//! Construct a display from an image \inplace.
|
|
/**
|
|
**/
|
|
template<typename T>
|
|
CImgDisplay& assign(const CImg<T>& img,
|
|
const char *const title=0, const unsigned int normalization=3,
|
|
const bool is_fullscreen=false, const bool is_closed=false) {
|
|
_no_display_exception();
|
|
return assign(img._width,img._height,title,normalization,is_fullscreen,is_closed);
|
|
}
|
|
|
|
//! Construct a display from an image list \inplace.
|
|
/**
|
|
**/
|
|
template<typename T>
|
|
CImgDisplay& assign(const CImgList<T>& list,
|
|
const char *const title=0, const unsigned int normalization=3,
|
|
const bool is_fullscreen=false, const bool is_closed=false) {
|
|
_no_display_exception();
|
|
return assign(list._width,list._width,title,normalization,is_fullscreen,is_closed);
|
|
}
|
|
|
|
//! Construct a display as a copy of another one \inplace.
|
|
/**
|
|
**/
|
|
CImgDisplay& assign(const CImgDisplay &disp) {
|
|
_no_display_exception();
|
|
return assign(disp._width,disp._height);
|
|
}
|
|
|
|
#endif
|
|
|
|
//! Return a reference to an empty display.
|
|
/**
|
|
\note Can be useful for writing function prototypes where one of the argument (of type CImgDisplay&)
|
|
must have a default value.
|
|
\par Example
|
|
\code
|
|
void foo(CImgDisplay& disp=CImgDisplay::empty());
|
|
\endcode
|
|
**/
|
|
static CImgDisplay& empty() {
|
|
static CImgDisplay _empty;
|
|
return _empty.assign();
|
|
}
|
|
|
|
//! Return a reference to an empty display \const.
|
|
static const CImgDisplay& const_empty() {
|
|
static const CImgDisplay _empty;
|
|
return _empty;
|
|
}
|
|
|
|
#define cimg_fitscreen(dx,dy,dz) CImgDisplay::_fitscreen(dx,dy,dz,-25,-85,false), \
|
|
CImgDisplay::_fitscreen(dx,dy,dz,-25,-85,true)
|
|
static unsigned int _fitscreen(const unsigned int dx, const unsigned int dy, const unsigned int dz,
|
|
const int dmin, const int dmax, const bool return_y) {
|
|
const int
|
|
u = CImgDisplay::screen_width(),
|
|
v = CImgDisplay::screen_height();
|
|
const float
|
|
mw = dmin<0?cimg::round(u*-dmin/100.f):(float)dmin,
|
|
mh = dmin<0?cimg::round(v*-dmin/100.f):(float)dmin,
|
|
Mw = dmax<0?cimg::round(u*-dmax/100.f):(float)dmax,
|
|
Mh = dmax<0?cimg::round(v*-dmax/100.f):(float)dmax;
|
|
float
|
|
w = (float)std::max(1U,dx),
|
|
h = (float)std::max(1U,dy);
|
|
if (dz>1) { w+=dz; h+=dz; }
|
|
if (w<mw) { h = h*mw/w; w = mw; }
|
|
if (h<mh) { w = w*mh/h; h = mh; }
|
|
if (w>Mw) { h = h*Mw/w; w = Mw; }
|
|
if (h>Mh) { w = w*Mh/h; h = Mh; }
|
|
if (w<mw) w = mw;
|
|
if (h<mh) h = mh;
|
|
return std::max(1U,(unsigned int)cimg::round(return_y?h:w));
|
|
}
|
|
|
|
//@}
|
|
//------------------------------------------
|
|
//
|
|
//! \name Overloaded Operators
|
|
//@{
|
|
//------------------------------------------
|
|
|
|
//! Display image on associated window.
|
|
/**
|
|
\note <tt>disp = img</tt> is equivalent to <tt>disp.display(img)</tt>.
|
|
**/
|
|
template<typename t>
|
|
CImgDisplay& operator=(const CImg<t>& img) {
|
|
return display(img);
|
|
}
|
|
|
|
//! Display list of images on associated window.
|
|
/**
|
|
\note <tt>disp = list</tt> is equivalent to <tt>disp.display(list)</tt>.
|
|
**/
|
|
template<typename t>
|
|
CImgDisplay& operator=(const CImgList<t>& list) {
|
|
return display(list);
|
|
}
|
|
|
|
//! Construct a display as a copy of another one \inplace.
|
|
/**
|
|
\note Equivalent to assign(const CImgDisplay&).
|
|
**/
|
|
CImgDisplay& operator=(const CImgDisplay& disp) {
|
|
return assign(disp);
|
|
}
|
|
|
|
//! Return \c false if display is empty, \c true otherwise.
|
|
/**
|
|
\note <tt>if (disp) { ... }</tt> is equivalent to <tt>if (!disp.is_empty()) { ... }</tt>.
|
|
**/
|
|
operator bool() const {
|
|
return !is_empty();
|
|
}
|
|
|
|
//@}
|
|
//------------------------------------------
|
|
//
|
|
//! \name Instance Checking
|
|
//@{
|
|
//------------------------------------------
|
|
|
|
//! Return \c true if display is empty, \c false otherwise.
|
|
/**
|
|
**/
|
|
bool is_empty() const {
|
|
return !(_width && _height);
|
|
}
|
|
|
|
//! Return \c true if display is closed (i.e. not visible on the screen), \c false otherwise.
|
|
/**
|
|
\note
|
|
- When a user physically closes the associated window, the display is set to closed.
|
|
- A closed display is not destroyed. Its associated window can be show again on the screen using show().
|
|
**/
|
|
bool is_closed() const {
|
|
return _is_closed;
|
|
}
|
|
|
|
//! Return \c true if display is visible (i.e. not closed by the user), \c false otherwise.
|
|
bool is_visible() const {
|
|
return !is_closed();
|
|
}
|
|
|
|
//! Return \c true if associated window has been resized on the screen, \c false otherwise.
|
|
/**
|
|
**/
|
|
bool is_resized() const {
|
|
return _is_resized;
|
|
}
|
|
|
|
//! Return \c true if associated window has been moved on the screen, \c false otherwise.
|
|
/**
|
|
**/
|
|
bool is_moved() const {
|
|
return _is_moved;
|
|
}
|
|
|
|
//! Return \c true if any event has occurred on the associated window, \c false otherwise.
|
|
/**
|
|
**/
|
|
bool is_event() const {
|
|
return _is_event;
|
|
}
|
|
|
|
//! Return \c true if current display is in fullscreen mode, \c false otherwise.
|
|
/**
|
|
**/
|
|
bool is_fullscreen() const {
|
|
return _is_fullscreen;
|
|
}
|
|
|
|
//! Return \c true if any key is being pressed on the associated window, \c false otherwise.
|
|
/**
|
|
\note The methods below do the same only for specific keys.
|
|
**/
|
|
bool is_key() const {
|
|
return _is_keyESC || _is_keyF1 || _is_keyF2 || _is_keyF3 ||
|
|
_is_keyF4 || _is_keyF5 || _is_keyF6 || _is_keyF7 ||
|
|
_is_keyF8 || _is_keyF9 || _is_keyF10 || _is_keyF11 ||
|
|
_is_keyF12 || _is_keyPAUSE || _is_key1 || _is_key2 ||
|
|
_is_key3 || _is_key4 || _is_key5 || _is_key6 ||
|
|
_is_key7 || _is_key8 || _is_key9 || _is_key0 ||
|
|
_is_keyBACKSPACE || _is_keyINSERT || _is_keyHOME ||
|
|
_is_keyPAGEUP || _is_keyTAB || _is_keyQ || _is_keyW ||
|
|
_is_keyE || _is_keyR || _is_keyT || _is_keyY ||
|
|
_is_keyU || _is_keyI || _is_keyO || _is_keyP ||
|
|
_is_keyDELETE || _is_keyEND || _is_keyPAGEDOWN ||
|
|
_is_keyCAPSLOCK || _is_keyA || _is_keyS || _is_keyD ||
|
|
_is_keyF || _is_keyG || _is_keyH || _is_keyJ ||
|
|
_is_keyK || _is_keyL || _is_keyENTER ||
|
|
_is_keySHIFTLEFT || _is_keyZ || _is_keyX || _is_keyC ||
|
|
_is_keyV || _is_keyB || _is_keyN || _is_keyM ||
|
|
_is_keySHIFTRIGHT || _is_keyARROWUP || _is_keyCTRLLEFT ||
|
|
_is_keyAPPLEFT || _is_keyALT || _is_keySPACE || _is_keyALTGR ||
|
|
_is_keyAPPRIGHT || _is_keyMENU || _is_keyCTRLRIGHT ||
|
|
_is_keyARROWLEFT || _is_keyARROWDOWN || _is_keyARROWRIGHT ||
|
|
_is_keyPAD0 || _is_keyPAD1 || _is_keyPAD2 ||
|
|
_is_keyPAD3 || _is_keyPAD4 || _is_keyPAD5 ||
|
|
_is_keyPAD6 || _is_keyPAD7 || _is_keyPAD8 ||
|
|
_is_keyPAD9 || _is_keyPADADD || _is_keyPADSUB ||
|
|
_is_keyPADMUL || _is_keyPADDIV;
|
|
}
|
|
|
|
//! Return \c true if key specified by given keycode is being pressed on the associated window, \c false otherwise.
|
|
/**
|
|
\param keycode Keycode to test.
|
|
\note Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure
|
|
your code stay portable (see cimg::keyESC).
|
|
\par Example
|
|
\code
|
|
CImgDisplay disp(400,400);
|
|
while (!disp.is_closed()) {
|
|
if (disp.key(cimg::keyTAB)) { ... } // Equivalent to 'if (disp.is_keyTAB())'
|
|
disp.wait();
|
|
}
|
|
\endcode
|
|
**/
|
|
bool is_key(const unsigned int keycode) const {
|
|
#define _cimg_iskey_test(k) if (keycode==cimg::key##k) return _is_key##k;
|
|
_cimg_iskey_test(ESC); _cimg_iskey_test(F1); _cimg_iskey_test(F2); _cimg_iskey_test(F3);
|
|
_cimg_iskey_test(F4); _cimg_iskey_test(F5); _cimg_iskey_test(F6); _cimg_iskey_test(F7);
|
|
_cimg_iskey_test(F8); _cimg_iskey_test(F9); _cimg_iskey_test(F10); _cimg_iskey_test(F11);
|
|
_cimg_iskey_test(F12); _cimg_iskey_test(PAUSE); _cimg_iskey_test(1); _cimg_iskey_test(2);
|
|
_cimg_iskey_test(3); _cimg_iskey_test(4); _cimg_iskey_test(5); _cimg_iskey_test(6);
|
|
_cimg_iskey_test(7); _cimg_iskey_test(8); _cimg_iskey_test(9); _cimg_iskey_test(0);
|
|
_cimg_iskey_test(BACKSPACE); _cimg_iskey_test(INSERT); _cimg_iskey_test(HOME);
|
|
_cimg_iskey_test(PAGEUP); _cimg_iskey_test(TAB); _cimg_iskey_test(Q); _cimg_iskey_test(W);
|
|
_cimg_iskey_test(E); _cimg_iskey_test(R); _cimg_iskey_test(T); _cimg_iskey_test(Y);
|
|
_cimg_iskey_test(U); _cimg_iskey_test(I); _cimg_iskey_test(O); _cimg_iskey_test(P);
|
|
_cimg_iskey_test(DELETE); _cimg_iskey_test(END); _cimg_iskey_test(PAGEDOWN);
|
|
_cimg_iskey_test(CAPSLOCK); _cimg_iskey_test(A); _cimg_iskey_test(S); _cimg_iskey_test(D);
|
|
_cimg_iskey_test(F); _cimg_iskey_test(G); _cimg_iskey_test(H); _cimg_iskey_test(J);
|
|
_cimg_iskey_test(K); _cimg_iskey_test(L); _cimg_iskey_test(ENTER);
|
|
_cimg_iskey_test(SHIFTLEFT); _cimg_iskey_test(Z); _cimg_iskey_test(X); _cimg_iskey_test(C);
|
|
_cimg_iskey_test(V); _cimg_iskey_test(B); _cimg_iskey_test(N); _cimg_iskey_test(M);
|
|
_cimg_iskey_test(SHIFTRIGHT); _cimg_iskey_test(ARROWUP); _cimg_iskey_test(CTRLLEFT);
|
|
_cimg_iskey_test(APPLEFT); _cimg_iskey_test(ALT); _cimg_iskey_test(SPACE); _cimg_iskey_test(ALTGR);
|
|
_cimg_iskey_test(APPRIGHT); _cimg_iskey_test(MENU); _cimg_iskey_test(CTRLRIGHT);
|
|
_cimg_iskey_test(ARROWLEFT); _cimg_iskey_test(ARROWDOWN); _cimg_iskey_test(ARROWRIGHT);
|
|
_cimg_iskey_test(PAD0); _cimg_iskey_test(PAD1); _cimg_iskey_test(PAD2);
|
|
_cimg_iskey_test(PAD3); _cimg_iskey_test(PAD4); _cimg_iskey_test(PAD5);
|
|
_cimg_iskey_test(PAD6); _cimg_iskey_test(PAD7); _cimg_iskey_test(PAD8);
|
|
_cimg_iskey_test(PAD9); _cimg_iskey_test(PADADD); _cimg_iskey_test(PADSUB);
|
|
_cimg_iskey_test(PADMUL); _cimg_iskey_test(PADDIV);
|
|
return false;
|
|
}
|
|
|
|
//! Return \c true if key specified by given keycode is being pressed on the associated window, \c false otherwise.
|
|
/**
|
|
\param keycode C-string containing the keycode label of the key to test.
|
|
\note Use it when the key you want to test can be dynamically set by the user.
|
|
\par Example
|
|
\code
|
|
CImgDisplay disp(400,400);
|
|
const char *const keycode = "TAB";
|
|
while (!disp.is_closed()) {
|
|
if (disp.is_key(keycode)) { ... } // Equivalent to 'if (disp.is_keyTAB())'
|
|
disp.wait();
|
|
}
|
|
\endcode
|
|
**/
|
|
bool& is_key(const char *const keycode) {
|
|
static bool f = false;
|
|
f = false;
|
|
#define _cimg_iskey_test2(k) if (!cimg::strcasecmp(keycode,#k)) return _is_key##k;
|
|
_cimg_iskey_test2(ESC); _cimg_iskey_test2(F1); _cimg_iskey_test2(F2); _cimg_iskey_test2(F3);
|
|
_cimg_iskey_test2(F4); _cimg_iskey_test2(F5); _cimg_iskey_test2(F6); _cimg_iskey_test2(F7);
|
|
_cimg_iskey_test2(F8); _cimg_iskey_test2(F9); _cimg_iskey_test2(F10); _cimg_iskey_test2(F11);
|
|
_cimg_iskey_test2(F12); _cimg_iskey_test2(PAUSE); _cimg_iskey_test2(1); _cimg_iskey_test2(2);
|
|
_cimg_iskey_test2(3); _cimg_iskey_test2(4); _cimg_iskey_test2(5); _cimg_iskey_test2(6);
|
|
_cimg_iskey_test2(7); _cimg_iskey_test2(8); _cimg_iskey_test2(9); _cimg_iskey_test2(0);
|
|
_cimg_iskey_test2(BACKSPACE); _cimg_iskey_test2(INSERT); _cimg_iskey_test2(HOME);
|
|
_cimg_iskey_test2(PAGEUP); _cimg_iskey_test2(TAB); _cimg_iskey_test2(Q); _cimg_iskey_test2(W);
|
|
_cimg_iskey_test2(E); _cimg_iskey_test2(R); _cimg_iskey_test2(T); _cimg_iskey_test2(Y);
|
|
_cimg_iskey_test2(U); _cimg_iskey_test2(I); _cimg_iskey_test2(O); _cimg_iskey_test2(P);
|
|
_cimg_iskey_test2(DELETE); _cimg_iskey_test2(END); _cimg_iskey_test2(PAGEDOWN);
|
|
_cimg_iskey_test2(CAPSLOCK); _cimg_iskey_test2(A); _cimg_iskey_test2(S); _cimg_iskey_test2(D);
|
|
_cimg_iskey_test2(F); _cimg_iskey_test2(G); _cimg_iskey_test2(H); _cimg_iskey_test2(J);
|
|
_cimg_iskey_test2(K); _cimg_iskey_test2(L); _cimg_iskey_test2(ENTER);
|
|
_cimg_iskey_test2(SHIFTLEFT); _cimg_iskey_test2(Z); _cimg_iskey_test2(X); _cimg_iskey_test2(C);
|
|
_cimg_iskey_test2(V); _cimg_iskey_test2(B); _cimg_iskey_test2(N); _cimg_iskey_test2(M);
|
|
_cimg_iskey_test2(SHIFTRIGHT); _cimg_iskey_test2(ARROWUP); _cimg_iskey_test2(CTRLLEFT);
|
|
_cimg_iskey_test2(APPLEFT); _cimg_iskey_test2(ALT); _cimg_iskey_test2(SPACE); _cimg_iskey_test2(ALTGR);
|
|
_cimg_iskey_test2(APPRIGHT); _cimg_iskey_test2(MENU); _cimg_iskey_test2(CTRLRIGHT);
|
|
_cimg_iskey_test2(ARROWLEFT); _cimg_iskey_test2(ARROWDOWN); _cimg_iskey_test2(ARROWRIGHT);
|
|
_cimg_iskey_test2(PAD0); _cimg_iskey_test2(PAD1); _cimg_iskey_test2(PAD2);
|
|
_cimg_iskey_test2(PAD3); _cimg_iskey_test2(PAD4); _cimg_iskey_test2(PAD5);
|
|
_cimg_iskey_test2(PAD6); _cimg_iskey_test2(PAD7); _cimg_iskey_test2(PAD8);
|
|
_cimg_iskey_test2(PAD9); _cimg_iskey_test2(PADADD); _cimg_iskey_test2(PADSUB);
|
|
_cimg_iskey_test2(PADMUL); _cimg_iskey_test2(PADDIV);
|
|
return f;
|
|
}
|
|
|
|
//! Return \c true if specified key sequence has been typed on the associated window, \c false otherwise.
|
|
/**
|
|
\param keycodes_sequence Buffer of keycodes to test.
|
|
\param length Number of keys in the \c keycodes_sequence buffer.
|
|
\param remove_sequence Tells if the key sequence must be removed from the key history, if found.
|
|
\note Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure
|
|
your code stay portable (see cimg::keyESC).
|
|
\par Example
|
|
\code
|
|
CImgDisplay disp(400,400);
|
|
const unsigned int key_seq[] = { cimg::keyCTRLLEFT, cimg::keyD };
|
|
while (!disp.is_closed()) {
|
|
if (disp.is_key_sequence(key_seq,2)) { ... } // Test for the 'CTRL+D' keyboard event
|
|
disp.wait();
|
|
}
|
|
\endcode
|
|
**/
|
|
bool is_key_sequence(const unsigned int *const keycodes_sequence, const unsigned int length,
|
|
const bool remove_sequence=false) {
|
|
if (keycodes_sequence && length) {
|
|
const unsigned int
|
|
*const ps_end = keycodes_sequence + length - 1,
|
|
*const pk_end = (unsigned int*)_keys + 1 + 128 - length,
|
|
k = *ps_end;
|
|
for (unsigned int *pk = (unsigned int*)_keys; pk<pk_end; ) {
|
|
if (*(pk++)==k) {
|
|
bool res = true;
|
|
const unsigned int *ps = ps_end, *pk2 = pk;
|
|
for (unsigned int i = 1; i<length; ++i) res = (*(--ps)==*(pk2++));
|
|
if (res) {
|
|
if (remove_sequence) std::memset((void*)(pk - 1),0,sizeof(unsigned int)*length);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#define _cimg_iskey_def(k) \
|
|
bool is_key##k() const { \
|
|
return _is_key##k; \
|
|
}
|
|
|
|
//! Return \c true if the \c ESC key is being pressed on the associated window, \c false otherwise.
|
|
/**
|
|
\note Similar methods exist for all keys managed by \CImg (see cimg::keyESC).
|
|
**/
|
|
_cimg_iskey_def(ESC); _cimg_iskey_def(F1); _cimg_iskey_def(F2); _cimg_iskey_def(F3);
|
|
_cimg_iskey_def(F4); _cimg_iskey_def(F5); _cimg_iskey_def(F6); _cimg_iskey_def(F7);
|
|
_cimg_iskey_def(F8); _cimg_iskey_def(F9); _cimg_iskey_def(F10); _cimg_iskey_def(F11);
|
|
_cimg_iskey_def(F12); _cimg_iskey_def(PAUSE); _cimg_iskey_def(1); _cimg_iskey_def(2);
|
|
_cimg_iskey_def(3); _cimg_iskey_def(4); _cimg_iskey_def(5); _cimg_iskey_def(6);
|
|
_cimg_iskey_def(7); _cimg_iskey_def(8); _cimg_iskey_def(9); _cimg_iskey_def(0);
|
|
_cimg_iskey_def(BACKSPACE); _cimg_iskey_def(INSERT); _cimg_iskey_def(HOME);
|
|
_cimg_iskey_def(PAGEUP); _cimg_iskey_def(TAB); _cimg_iskey_def(Q); _cimg_iskey_def(W);
|
|
_cimg_iskey_def(E); _cimg_iskey_def(R); _cimg_iskey_def(T); _cimg_iskey_def(Y);
|
|
_cimg_iskey_def(U); _cimg_iskey_def(I); _cimg_iskey_def(O); _cimg_iskey_def(P);
|
|
_cimg_iskey_def(DELETE); _cimg_iskey_def(END); _cimg_iskey_def(PAGEDOWN);
|
|
_cimg_iskey_def(CAPSLOCK); _cimg_iskey_def(A); _cimg_iskey_def(S); _cimg_iskey_def(D);
|
|
_cimg_iskey_def(F); _cimg_iskey_def(G); _cimg_iskey_def(H); _cimg_iskey_def(J);
|
|
_cimg_iskey_def(K); _cimg_iskey_def(L); _cimg_iskey_def(ENTER);
|
|
_cimg_iskey_def(SHIFTLEFT); _cimg_iskey_def(Z); _cimg_iskey_def(X); _cimg_iskey_def(C);
|
|
_cimg_iskey_def(V); _cimg_iskey_def(B); _cimg_iskey_def(N); _cimg_iskey_def(M);
|
|
_cimg_iskey_def(SHIFTRIGHT); _cimg_iskey_def(ARROWUP); _cimg_iskey_def(CTRLLEFT);
|
|
_cimg_iskey_def(APPLEFT); _cimg_iskey_def(ALT); _cimg_iskey_def(SPACE); _cimg_iskey_def(ALTGR);
|
|
_cimg_iskey_def(APPRIGHT); _cimg_iskey_def(MENU); _cimg_iskey_def(CTRLRIGHT);
|
|
_cimg_iskey_def(ARROWLEFT); _cimg_iskey_def(ARROWDOWN); _cimg_iskey_def(ARROWRIGHT);
|
|
_cimg_iskey_def(PAD0); _cimg_iskey_def(PAD1); _cimg_iskey_def(PAD2);
|
|
_cimg_iskey_def(PAD3); _cimg_iskey_def(PAD4); _cimg_iskey_def(PAD5);
|
|
_cimg_iskey_def(PAD6); _cimg_iskey_def(PAD7); _cimg_iskey_def(PAD8);
|
|
_cimg_iskey_def(PAD9); _cimg_iskey_def(PADADD); _cimg_iskey_def(PADSUB);
|
|
_cimg_iskey_def(PADMUL); _cimg_iskey_def(PADDIV);
|
|
|
|
//@}
|
|
//------------------------------------------
|
|
//
|
|
//! \name Instance Characteristics
|
|
//@{
|
|
//------------------------------------------
|
|
|
|
#if cimg_display==0
|
|
|
|
//! Return width of the screen (current resolution along the X-axis).
|
|
/**
|
|
**/
|
|
static int screen_width() {
|
|
_no_display_exception();
|
|
return 0;
|
|
}
|
|
|
|
//! Return height of the screen (current resolution along the Y-axis).
|
|
/**
|
|
**/
|
|
static int screen_height() {
|
|
_no_display_exception();
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
//! Return display width.
|
|
/**
|
|
\note The width of the display (i.e. the width of the pixel data buffer associated to the CImgDisplay instance)
|
|
may be different from the actual width of the associated window.
|
|
**/
|
|
int width() const {
|
|
return (int)_width;
|
|
}
|
|
|
|
//! Return display height.
|
|
/**
|
|
\note The height of the display (i.e. the height of the pixel data buffer associated to the CImgDisplay instance)
|
|
may be different from the actual height of the associated window.
|
|
**/
|
|
int height() const {
|
|
return (int)_height;
|
|
}
|
|
|
|
//! Return normalization type of the display.
|
|
/**
|
|
The normalization type tells about how the values of an input image are normalized by the CImgDisplay to be
|
|
correctly displayed. The range of values for pixels displayed on screen is <tt>[0,255]</tt>.
|
|
If the range of values of the data to display is different, a normalization may be required for displaying
|
|
the data in a correct way. The normalization type can be one of:
|
|
- \c 0: Value normalization is disabled. It is then assumed that all input data to be displayed by the
|
|
CImgDisplay instance have values in range <tt>[0,255]</tt>.
|
|
- \c 1: Value normalization is always performed (this is the default behavior).
|
|
Before displaying an input image, its values will be (virtually) stretched
|
|
in range <tt>[0,255]</tt>, so that the contrast of the displayed pixels will be maximum.
|
|
Use this mode for images whose minimum and maximum values are not prescribed to known values
|
|
(e.g. float-valued images).
|
|
Note that when normalized versions of images are computed for display purposes, the actual values of these
|
|
images are not modified.
|
|
- \c 2: Value normalization is performed once (on the first image display), then the same normalization
|
|
coefficients are kept for next displayed frames.
|
|
- \c 3: Value normalization depends on the pixel type of the data to display. For integer pixel types,
|
|
the normalization is done regarding the minimum/maximum values of the type (no normalization occurs then
|
|
for <tt>unsigned char</tt>).
|
|
For float-valued pixel types, the normalization is done regarding the minimum/maximum value of the image
|
|
data instead.
|
|
**/
|
|
unsigned int normalization() const {
|
|
return _normalization;
|
|
}
|
|
|
|
//! Return title of the associated window as a C-string.
|
|
/**
|
|
\note Window title may be not visible, depending on the used window manager or if the current display is
|
|
in fullscreen mode.
|
|
**/
|
|
const char *title() const {
|
|
return _title?_title:"";
|
|
}
|
|
|
|
//! Return width of the associated window.
|
|
/**
|
|
\note The width of the display (i.e. the width of the pixel data buffer associated to the CImgDisplay instance)
|
|
may be different from the actual width of the associated window.
|
|
**/
|
|
int window_width() const {
|
|
return (int)_window_width;
|
|
}
|
|
|
|
//! Return height of the associated window.
|
|
/**
|
|
\note The height of the display (i.e. the height of the pixel data buffer associated to the CImgDisplay instance)
|
|
may be different from the actual height of the associated window.
|
|
**/
|
|
int window_height() const {
|
|
return (int)_window_height;
|
|
}
|
|
|
|
//! Return X-coordinate of the associated window.
|
|
/**
|
|
\note The returned coordinate corresponds to the location of the upper-left corner of the associated window.
|
|
**/
|
|
int window_x() const {
|
|
return _window_x;
|
|
}
|
|
|
|
//! Return Y-coordinate of the associated window.
|
|
/**
|
|
\note The returned coordinate corresponds to the location of the upper-left corner of the associated window.
|
|
**/
|
|
int window_y() const {
|
|
return _window_y;
|
|
}
|
|
|
|
//! Return X-coordinate of the mouse pointer.
|
|
/**
|
|
\note
|
|
- If the mouse pointer is outside window area, \c -1 is returned.
|
|
- Otherwise, the returned value is in the range [0,width()-1].
|
|
**/
|
|
int mouse_x() const {
|
|
return _mouse_x;
|
|
}
|
|
|
|
//! Return Y-coordinate of the mouse pointer.
|
|
/**
|
|
\note
|
|
- If the mouse pointer is outside window area, \c -1 is returned.
|
|
- Otherwise, the returned value is in the range [0,height()-1].
|
|
**/
|
|
int mouse_y() const {
|
|
return _mouse_y;
|
|
}
|
|
|
|
//! Return current state of the mouse buttons.
|
|
/**
|
|
\note Three mouse buttons can be managed. If one button is pressed, its corresponding bit in the returned
|
|
value is set:
|
|
- bit \c 0 (value \c 0x1): State of the left mouse button.
|
|
- bit \c 1 (value \c 0x2): State of the right mouse button.
|
|
- bit \c 2 (value \c 0x4): State of the middle mouse button.
|
|
|
|
Several bits can be activated if more than one button are pressed at the same time.
|
|
\par Example
|
|
\code
|
|
CImgDisplay disp(400,400);
|
|
while (!disp.is_closed()) {
|
|
if (disp.button()&1) { // Left button clicked
|
|
...
|
|
}
|
|
if (disp.button()&2) { // Right button clicked
|
|
...
|
|
}
|
|
if (disp.button()&4) { // Middle button clicked
|
|
...
|
|
}
|
|
disp.wait();
|
|
}
|
|
\endcode
|
|
**/
|
|
unsigned int button() const {
|
|
return _button;
|
|
}
|
|
|
|
//! Return current state of the mouse wheel.
|
|
/**
|
|
\note
|
|
- The returned value can be positive or negative depending on whether the mouse wheel has been scrolled
|
|
forward or backward.
|
|
- Scrolling the wheel forward add \c 1 to the wheel value.
|
|
- Scrolling the wheel backward subtract \c 1 to the wheel value.
|
|
- The returned value cumulates the number of forward of backward scrolls since the creation of the display,
|
|
or since the last reset of the wheel value (using set_wheel()). It is strongly recommended to quickly reset
|
|
the wheel counter when an action has been performed regarding the current wheel value.
|
|
Otherwise, the returned wheel value may be for instance \c 0 despite the fact that many scrolls have been done
|
|
(as many in forward as in backward directions).
|
|
\par Example
|
|
\code
|
|
CImgDisplay disp(400,400);
|
|
while (!disp.is_closed()) {
|
|
if (disp.wheel()) {
|
|
int counter = disp.wheel(); // Read the state of the mouse wheel
|
|
... // Do what you want with 'counter'
|
|
disp.set_wheel(); // Reset the wheel value to 0
|
|
}
|
|
disp.wait();
|
|
}
|
|
\endcode
|
|
**/
|
|
int wheel() const {
|
|
return _wheel;
|
|
}
|
|
|
|
//! Return one entry from the pressed keys history.
|
|
/**
|
|
\param pos Index to read from the pressed keys history (index \c 0 corresponds to latest entry).
|
|
\return Keycode of a pressed key or \c 0 for a released key.
|
|
\note
|
|
- Each CImgDisplay stores a history of the pressed keys in a buffer of size \c 128. When a new key is pressed,
|
|
its keycode is stored in the pressed keys history. When a key is released, \c 0 is put instead.
|
|
This means that up to the 64 last pressed keys may be read from the pressed keys history.
|
|
When a new value is stored, the pressed keys history is shifted so that the latest entry is always
|
|
stored at position \c 0.
|
|
- Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure
|
|
your code stay portable (see cimg::keyESC).
|
|
**/
|
|
unsigned int& key(const unsigned int pos=0) const {
|
|
static unsigned int key0;
|
|
return pos<128?_keys[pos]:(key0 = 0);
|
|
|
|
}
|
|
|
|
//! Return one entry from the released keys history.
|
|
/**
|
|
\param pos Index to read from the released keys history (index \c 0 corresponds to latest entry).
|
|
\return Keycode of a released key or \c 0 for a pressed key.
|
|
\note
|
|
- Each CImgDisplay stores a history of the released keys in a buffer of size \c 128. When a new key is released,
|
|
its keycode is stored in the pressed keys history. When a key is pressed, \c 0 is put instead.
|
|
This means that up to the 64 last released keys may be read from the released keys history.
|
|
When a new value is stored, the released keys history is shifted so that the latest entry is always
|
|
stored at position \c 0.
|
|
- Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure
|
|
your code stay portable (see cimg::keyESC).
|
|
**/
|
|
unsigned int& released_key(const unsigned int pos=0) const {
|
|
static unsigned int key0;
|
|
return pos<128?_released_keys[pos]:(key0 = 0);
|
|
}
|
|
|
|
//! Return keycode corresponding to the specified string.
|
|
/**
|
|
\note Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure
|
|
your code stay portable (see cimg::keyESC).
|
|
\par Example
|
|
\code
|
|
const unsigned int keyTAB = CImgDisplay::keycode("TAB"); // Return cimg::keyTAB
|
|
\endcode
|
|
**/
|
|
static unsigned int keycode(const char *const keycode) {
|
|
#define _cimg_keycode(k) if (!cimg::strcasecmp(keycode,#k)) return cimg::key##k;
|
|
_cimg_keycode(ESC); _cimg_keycode(F1); _cimg_keycode(F2); _cimg_keycode(F3);
|
|
_cimg_keycode(F4); _cimg_keycode(F5); _cimg_keycode(F6); _cimg_keycode(F7);
|
|
_cimg_keycode(F8); _cimg_keycode(F9); _cimg_keycode(F10); _cimg_keycode(F11);
|
|
_cimg_keycode(F12); _cimg_keycode(PAUSE); _cimg_keycode(1); _cimg_keycode(2);
|
|
_cimg_keycode(3); _cimg_keycode(4); _cimg_keycode(5); _cimg_keycode(6);
|
|
_cimg_keycode(7); _cimg_keycode(8); _cimg_keycode(9); _cimg_keycode(0);
|
|
_cimg_keycode(BACKSPACE); _cimg_keycode(INSERT); _cimg_keycode(HOME);
|
|
_cimg_keycode(PAGEUP); _cimg_keycode(TAB); _cimg_keycode(Q); _cimg_keycode(W);
|
|
_cimg_keycode(E); _cimg_keycode(R); _cimg_keycode(T); _cimg_keycode(Y);
|
|
_cimg_keycode(U); _cimg_keycode(I); _cimg_keycode(O); _cimg_keycode(P);
|
|
_cimg_keycode(DELETE); _cimg_keycode(END); _cimg_keycode(PAGEDOWN);
|
|
_cimg_keycode(CAPSLOCK); _cimg_keycode(A); _cimg_keycode(S); _cimg_keycode(D);
|
|
_cimg_keycode(F); _cimg_keycode(G); _cimg_keycode(H); _cimg_keycode(J);
|
|
_cimg_keycode(K); _cimg_keycode(L); _cimg_keycode(ENTER);
|
|
_cimg_keycode(SHIFTLEFT); _cimg_keycode(Z); _cimg_keycode(X); _cimg_keycode(C);
|
|
_cimg_keycode(V); _cimg_keycode(B); _cimg_keycode(N); _cimg_keycode(M);
|
|
_cimg_keycode(SHIFTRIGHT); _cimg_keycode(ARROWUP); _cimg_keycode(CTRLLEFT);
|
|
_cimg_keycode(APPLEFT); _cimg_keycode(ALT); _cimg_keycode(SPACE); _cimg_keycode(ALTGR);
|
|
_cimg_keycode(APPRIGHT); _cimg_keycode(MENU); _cimg_keycode(CTRLRIGHT);
|
|
_cimg_keycode(ARROWLEFT); _cimg_keycode(ARROWDOWN); _cimg_keycode(ARROWRIGHT);
|
|
_cimg_keycode(PAD0); _cimg_keycode(PAD1); _cimg_keycode(PAD2);
|
|
_cimg_keycode(PAD3); _cimg_keycode(PAD4); _cimg_keycode(PAD5);
|
|
_cimg_keycode(PAD6); _cimg_keycode(PAD7); _cimg_keycode(PAD8);
|
|
_cimg_keycode(PAD9); _cimg_keycode(PADADD); _cimg_keycode(PADSUB);
|
|
_cimg_keycode(PADMUL); _cimg_keycode(PADDIV);
|
|
return 0;
|
|
}
|
|
|
|
//! Return the current refresh rate, in frames per second.
|
|
/**
|
|
\note Returns a significant value when the current instance is used to display successive frames.
|
|
It measures the delay between successive calls to frames_per_second().
|
|
**/
|
|
float frames_per_second() {
|
|
if (!_fps_timer) _fps_timer = cimg::time();
|
|
const float delta = (float)((cimg::time() - _fps_timer)/1000.f);
|
|
++_fps_frames;
|
|
if (delta>=1) {
|
|
_fps_fps = _fps_frames/delta;
|
|
_fps_frames = 0;
|
|
_fps_timer = cimg::time();
|
|
}
|
|
return _fps_fps;
|
|
}
|
|
|
|
// Move current display window so that its content stays inside the current screen.
|
|
CImgDisplay& move_inside_screen() {
|
|
if (is_empty()) return *this;
|
|
const int
|
|
x0 = window_x(),
|
|
y0 = window_y(),
|
|
x1 = x0 + window_width() - 1,
|
|
y1 = y0 + window_height() - 1,
|
|
sw = CImgDisplay::screen_width(),
|
|
sh = CImgDisplay::screen_height();
|
|
if (x0<0 || y0<0 || x1>=sw || y1>=sh)
|
|
move(std::max(0,std::min(x0,sw - x1 + x0)),
|
|
std::max(0,std::min(y0,sh - y1 + y0)));
|
|
return *this;
|
|
}
|
|
|
|
//@}
|
|
//---------------------------------------
|
|
//
|
|
//! \name Window Manipulation
|
|
//@{
|
|
//---------------------------------------
|
|
|
|
#if cimg_display==0
|
|
|
|
//! Display image on associated window.
|
|
/**
|
|
\param img Input image to display.
|
|
\note This method returns immediately.
|
|
**/
|
|
template<typename T>
|
|
CImgDisplay& display(const CImg<T>& img) {
|
|
return assign(img);
|
|
}
|
|
|
|
#endif
|
|
|
|
//! Display list of images on associated window.
|
|
/**
|
|
\param list List of images to display.
|
|
\param axis Axis used to append the images along, for the visualization (can be \c x, \c y, \c z or \c c).
|
|
\param align Relative position of aligned images when displaying lists with images of different sizes
|
|
(\c 0 for upper-left, \c 0.5 for centering and \c 1 for lower-right).
|
|
\note This method returns immediately.
|
|
**/
|
|
template<typename T>
|
|
CImgDisplay& display(const CImgList<T>& list, const char axis='x', const float align=0) {
|
|
if (list._width==1) {
|
|
const CImg<T>& img = list[0];
|
|
if (img._depth==1 && (img._spectrum==1 || img._spectrum>=3) && _normalization!=1) return display(img);
|
|
}
|
|
CImgList<typename CImg<T>::ucharT> visu(list._width);
|
|
unsigned int dims = 0;
|
|
cimglist_for(list,l) {
|
|
const CImg<T>& img = list._data[l];
|
|
img._get_select(*this,_normalization,(img._width - 1)/2,(img._height - 1)/2,
|
|
(img._depth - 1)/2).move_to(visu[l]);
|
|
dims = std::max(dims,visu[l]._spectrum);
|
|
}
|
|
cimglist_for(list,l) if (visu[l]._spectrum<dims) visu[l].resize(-100,-100,-100,dims,1);
|
|
visu.get_append(axis,align).display(*this);
|
|
return *this;
|
|
}
|
|
|
|
#if cimg_display==0
|
|
|
|
//! Show (closed) associated window on the screen.
|
|
/**
|
|
\note
|
|
- Force the associated window of a display to be visible on the screen, even if it has been closed before.
|
|
- Using show() on a visible display does nothing.
|
|
**/
|
|
CImgDisplay& show() {
|
|
return assign();
|
|
}
|
|
|
|
//! Close (visible) associated window and make it disappear from the screen.
|
|
/**
|
|
\note
|
|
- A closed display only means the associated window is not visible anymore. This does not mean the display has
|
|
been destroyed.
|
|
Use show() to make the associated window reappear.
|
|
- Using close() on a closed display does nothing.
|
|
**/
|
|
CImgDisplay& close() {
|
|
return assign();
|
|
}
|
|
|
|
//! Move associated window to a new location.
|
|
/**
|
|
\param pos_x X-coordinate of the new window location.
|
|
\param pos_y Y-coordinate of the new window location.
|
|
\note Depending on the window manager behavior, this method may not succeed (no exceptions are thrown
|
|
nevertheless).
|
|
**/
|
|
CImgDisplay& move(const int pos_x, const int pos_y) {
|
|
return assign(pos_x,pos_y);
|
|
}
|
|
|
|
#endif
|
|
|
|
//! Resize display to the size of the associated window.
|
|
/**
|
|
\param force_redraw Tells if the previous window content must be updated and refreshed as well.
|
|
\note
|
|
- Calling this method ensures that width() and window_width() become equal, as well as height() and
|
|
window_height().
|
|
- The associated window is also resized to specified dimensions.
|
|
**/
|
|
CImgDisplay& resize(const bool force_redraw=true) {
|
|
resize(window_width(),window_height(),force_redraw);
|
|
return *this;
|
|
}
|
|
|
|
#if cimg_display==0
|
|
|
|
//! Resize display to the specified size.
|
|
/**
|
|
\param width Requested display width.
|
|
\param height Requested display height.
|
|
\param force_redraw Tells if the previous window content must be updated and refreshed as well.
|
|
\note The associated window is also resized to specified dimensions.
|
|
**/
|
|
CImgDisplay& resize(const int width, const int height, const bool force_redraw=true) {
|
|
return assign(width,height,0,3,force_redraw);
|
|
}
|
|
|
|
#endif
|
|
|
|
//! Resize display to the size of an input image.
|
|
/**
|
|
\param img Input image to take size from.
|
|
\param force_redraw Tells if the previous window content must be resized and updated as well.
|
|
\note
|
|
- Calling this method ensures that width() and <tt>img.width()</tt> become equal, as well as height() and
|
|
<tt>img.height()</tt>.
|
|
- The associated window is also resized to specified dimensions.
|
|
**/
|
|
template<typename T>
|
|
CImgDisplay& resize(const CImg<T>& img, const bool force_redraw=true) {
|
|
return resize(img._width,img._height,force_redraw);
|
|
}
|
|
|
|
//! Resize display to the size of another CImgDisplay instance.
|
|
/**
|
|
\param disp Input display to take size from.
|
|
\param force_redraw Tells if the previous window content must be resized and updated as well.
|
|
\note
|
|
- Calling this method ensures that width() and <tt>disp.width()</tt> become equal, as well as height() and
|
|
<tt>disp.height()</tt>.
|
|
- The associated window is also resized to specified dimensions.
|
|
**/
|
|
CImgDisplay& resize(const CImgDisplay& disp, const bool force_redraw=true) {
|
|
return resize(disp.width(),disp.height(),force_redraw);
|
|
}
|
|
|
|
// [internal] Render pixel buffer with size (wd,hd) from source buffer of size (ws,hs).
|
|
template<typename t, typename T>
|
|
static void _render_resize(const T *ptrs, const unsigned int ws, const unsigned int hs,
|
|
t *ptrd, const unsigned int wd, const unsigned int hd) {
|
|
typedef typename cimg::last<T,cimg_ulong>::type ulongT;
|
|
const ulongT one = (ulongT)1;
|
|
CImg<ulongT> off_x(wd), off_y(hd + 1);
|
|
if (wd==ws) off_x.fill(1);
|
|
else {
|
|
ulongT *poff_x = off_x._data, curr = 0;
|
|
for (unsigned int x = 0; x<wd; ++x) {
|
|
const ulongT old = curr;
|
|
curr = (x + one)*ws/wd;
|
|
*(poff_x++) = curr - old;
|
|
}
|
|
}
|
|
if (hd==hs) off_y.fill(ws);
|
|
else {
|
|
ulongT *poff_y = off_y._data, curr = 0;
|
|
for (unsigned int y = 0; y<hd; ++y) {
|
|
const ulongT old = curr;
|
|
curr = (y + one)*hs/hd;
|
|
*(poff_y++) = ws*(curr - old);
|
|
}
|
|
*poff_y = 0;
|
|
}
|
|
ulongT *poff_y = off_y._data;
|
|
for (unsigned int y = 0; y<hd; ) {
|
|
const T *ptr = ptrs;
|
|
ulongT *poff_x = off_x._data;
|
|
for (unsigned int x = 0; x<wd; ++x) { *(ptrd++) = *ptr; ptr+=*(poff_x++); }
|
|
++y;
|
|
ulongT dy = *(poff_y++);
|
|
for ( ; !dy && y<hd; std::memcpy(ptrd,ptrd - wd,sizeof(t)*wd), ++y, ptrd+=wd, dy = *(poff_y++)) {}
|
|
ptrs+=dy;
|
|
}
|
|
}
|
|
|
|
//! Set normalization type.
|
|
/**
|
|
\param normalization New normalization mode.
|
|
**/
|
|
CImgDisplay& set_normalization(const unsigned int normalization) {
|
|
_normalization = normalization;
|
|
_min = _max = 0;
|
|
return *this;
|
|
}
|
|
|
|
#if cimg_display==0
|
|
|
|
//! Set title of the associated window.
|
|
/**
|
|
\param format C-string containing the format of the title, as with <tt>std::printf()</tt>.
|
|
\warning As the first argument is a format string, it is highly recommended to write
|
|
\code
|
|
disp.set_title("%s",window_title);
|
|
\endcode
|
|
instead of
|
|
\code
|
|
disp.set_title(window_title);
|
|
\endcode
|
|
if \c window_title can be arbitrary, to prevent nasty memory access.
|
|
**/
|
|
CImgDisplay& set_title(const char *const format, ...) {
|
|
return assign(0,0,format);
|
|
}
|
|
|
|
#endif
|
|
|
|
//! Enable or disable fullscreen mode.
|
|
/**
|
|
\param is_fullscreen Tells is the fullscreen mode must be activated or not.
|
|
\param force_redraw Tells if the previous window content must be displayed as well.
|
|
\note
|
|
- When the fullscreen mode is enabled, the associated window fills the entire screen but the size of the
|
|
current display is not modified.
|
|
- The screen resolution may be switched to fit the associated window size and ensure it appears the largest
|
|
as possible.
|
|
For X-Window (X11) users, the configuration flag \c cimg_use_xrandr has to be set to allow the screen
|
|
resolution change (requires the X11 extensions to be enabled).
|
|
**/
|
|
CImgDisplay& set_fullscreen(const bool is_fullscreen, const bool force_redraw=true) {
|
|
if (is_empty() || _is_fullscreen==is_fullscreen) return *this;
|
|
return toggle_fullscreen(force_redraw);
|
|
}
|
|
|
|
#if cimg_display==0
|
|
|
|
//! Toggle fullscreen mode.
|
|
/**
|
|
\param force_redraw Tells if the previous window content must be displayed as well.
|
|
\note Enable fullscreen mode if it was not enabled, and disable it otherwise.
|
|
**/
|
|
CImgDisplay& toggle_fullscreen(const bool force_redraw=true) {
|
|
return assign(_width,_height,0,3,force_redraw);
|
|
}
|
|
|
|
//! Show mouse pointer.
|
|
/**
|
|
\note Depending on the window manager behavior, this method may not succeed
|
|
(no exceptions are thrown nevertheless).
|
|
**/
|
|
CImgDisplay& show_mouse() {
|
|
return assign();
|
|
}
|
|
|
|
//! Hide mouse pointer.
|
|
/**
|
|
\note Depending on the window manager behavior, this method may not succeed
|
|
(no exceptions are thrown nevertheless).
|
|
**/
|
|
CImgDisplay& hide_mouse() {
|
|
return assign();
|
|
}
|
|
|
|
//! Move mouse pointer to a specified location.
|
|
/**
|
|
\note Depending on the window manager behavior, this method may not succeed
|
|
(no exceptions are thrown nevertheless).
|
|
**/
|
|
CImgDisplay& set_mouse(const int pos_x, const int pos_y) {
|
|
return assign(pos_x,pos_y);
|
|
}
|
|
|
|
#endif
|
|
|
|
//! Simulate a mouse button release event.
|
|
/**
|
|
\note All mouse buttons are considered released at the same time.
|
|
**/
|
|
CImgDisplay& set_button() {
|
|
_button = 0;
|
|
_is_event = true;
|
|
#if cimg_display==1
|
|
pthread_cond_broadcast(&cimg::X11_attr().wait_event);
|
|
#elif cimg_display==2
|
|
SetEvent(cimg::Win32_attr().wait_event);
|
|
#endif
|
|
return *this;
|
|
}
|
|
|
|
//! Simulate a mouse button press or release event.
|
|
/**
|
|
\param button Buttons event code, where each button is associated to a single bit.
|
|
\param is_pressed Tells if the mouse button is considered as pressed or released.
|
|
**/
|
|
CImgDisplay& set_button(const unsigned int button, const bool is_pressed=true) {
|
|
const unsigned int buttoncode = button==1U?1U:button==2U?2U:button==3U?4U:0U;
|
|
if (is_pressed) _button |= buttoncode; else _button &= ~buttoncode;
|
|
_is_event = buttoncode?true:false;
|
|
if (buttoncode) {
|
|
#if cimg_display==1
|
|
pthread_cond_broadcast(&cimg::X11_attr().wait_event);
|
|
#elif cimg_display==2
|
|
SetEvent(cimg::Win32_attr().wait_event);
|
|
#endif
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Flush all mouse wheel events.
|
|
/**
|
|
\note Make wheel() to return \c 0, if called afterwards.
|
|
**/
|
|
CImgDisplay& set_wheel() {
|
|
_wheel = 0;
|
|
_is_event = true;
|
|
#if cimg_display==1
|
|
pthread_cond_broadcast(&cimg::X11_attr().wait_event);
|
|
#elif cimg_display==2
|
|
SetEvent(cimg::Win32_attr().wait_event);
|
|
#endif
|
|
return *this;
|
|
}
|
|
|
|
//! Simulate a wheel event.
|
|
/**
|
|
\param amplitude Amplitude of the wheel scrolling to simulate.
|
|
\note Make wheel() to return \c amplitude, if called afterwards.
|
|
**/
|
|
CImgDisplay& set_wheel(const int amplitude) {
|
|
_wheel+=amplitude;
|
|
_is_event = amplitude?true:false;
|
|
if (amplitude) {
|
|
#if cimg_display==1
|
|
pthread_cond_broadcast(&cimg::X11_attr().wait_event);
|
|
#elif cimg_display==2
|
|
SetEvent(cimg::Win32_attr().wait_event);
|
|
#endif
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Flush all key events.
|
|
/**
|
|
\note Make key() to return \c 0, if called afterwards.
|
|
**/
|
|
CImgDisplay& set_key() {
|
|
std::memset((void*)_keys,0,128*sizeof(unsigned int));
|
|
std::memset((void*)_released_keys,0,128*sizeof(unsigned int));
|
|
_is_keyESC = _is_keyF1 = _is_keyF2 = _is_keyF3 = _is_keyF4 = _is_keyF5 = _is_keyF6 = _is_keyF7 = _is_keyF8 =
|
|
_is_keyF9 = _is_keyF10 = _is_keyF11 = _is_keyF12 = _is_keyPAUSE = _is_key1 = _is_key2 = _is_key3 = _is_key4 =
|
|
_is_key5 = _is_key6 = _is_key7 = _is_key8 = _is_key9 = _is_key0 = _is_keyBACKSPACE = _is_keyINSERT =
|
|
_is_keyHOME = _is_keyPAGEUP = _is_keyTAB = _is_keyQ = _is_keyW = _is_keyE = _is_keyR = _is_keyT = _is_keyY =
|
|
_is_keyU = _is_keyI = _is_keyO = _is_keyP = _is_keyDELETE = _is_keyEND = _is_keyPAGEDOWN = _is_keyCAPSLOCK =
|
|
_is_keyA = _is_keyS = _is_keyD = _is_keyF = _is_keyG = _is_keyH = _is_keyJ = _is_keyK = _is_keyL =
|
|
_is_keyENTER = _is_keySHIFTLEFT = _is_keyZ = _is_keyX = _is_keyC = _is_keyV = _is_keyB = _is_keyN =
|
|
_is_keyM = _is_keySHIFTRIGHT = _is_keyARROWUP = _is_keyCTRLLEFT = _is_keyAPPLEFT = _is_keyALT = _is_keySPACE =
|
|
_is_keyALTGR = _is_keyAPPRIGHT = _is_keyMENU = _is_keyCTRLRIGHT = _is_keyARROWLEFT = _is_keyARROWDOWN =
|
|
_is_keyARROWRIGHT = _is_keyPAD0 = _is_keyPAD1 = _is_keyPAD2 = _is_keyPAD3 = _is_keyPAD4 = _is_keyPAD5 =
|
|
_is_keyPAD6 = _is_keyPAD7 = _is_keyPAD8 = _is_keyPAD9 = _is_keyPADADD = _is_keyPADSUB = _is_keyPADMUL =
|
|
_is_keyPADDIV = false;
|
|
_is_event = true;
|
|
#if cimg_display==1
|
|
pthread_cond_broadcast(&cimg::X11_attr().wait_event);
|
|
#elif cimg_display==2
|
|
SetEvent(cimg::Win32_attr().wait_event);
|
|
#endif
|
|
return *this;
|
|
}
|
|
|
|
//! Simulate a keyboard press/release event.
|
|
/**
|
|
\param keycode Keycode of the associated key.
|
|
\param is_pressed Tells if the key is considered as pressed or released.
|
|
\note Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure
|
|
your code stay portable (see cimg::keyESC).
|
|
**/
|
|
CImgDisplay& set_key(const unsigned int keycode, const bool is_pressed=true) {
|
|
#define _cimg_set_key(k) if (keycode==cimg::key##k) _is_key##k = is_pressed;
|
|
_cimg_set_key(ESC); _cimg_set_key(F1); _cimg_set_key(F2); _cimg_set_key(F3);
|
|
_cimg_set_key(F4); _cimg_set_key(F5); _cimg_set_key(F6); _cimg_set_key(F7);
|
|
_cimg_set_key(F8); _cimg_set_key(F9); _cimg_set_key(F10); _cimg_set_key(F11);
|
|
_cimg_set_key(F12); _cimg_set_key(PAUSE); _cimg_set_key(1); _cimg_set_key(2);
|
|
_cimg_set_key(3); _cimg_set_key(4); _cimg_set_key(5); _cimg_set_key(6);
|
|
_cimg_set_key(7); _cimg_set_key(8); _cimg_set_key(9); _cimg_set_key(0);
|
|
_cimg_set_key(BACKSPACE); _cimg_set_key(INSERT); _cimg_set_key(HOME);
|
|
_cimg_set_key(PAGEUP); _cimg_set_key(TAB); _cimg_set_key(Q); _cimg_set_key(W);
|
|
_cimg_set_key(E); _cimg_set_key(R); _cimg_set_key(T); _cimg_set_key(Y);
|
|
_cimg_set_key(U); _cimg_set_key(I); _cimg_set_key(O); _cimg_set_key(P);
|
|
_cimg_set_key(DELETE); _cimg_set_key(END); _cimg_set_key(PAGEDOWN);
|
|
_cimg_set_key(CAPSLOCK); _cimg_set_key(A); _cimg_set_key(S); _cimg_set_key(D);
|
|
_cimg_set_key(F); _cimg_set_key(G); _cimg_set_key(H); _cimg_set_key(J);
|
|
_cimg_set_key(K); _cimg_set_key(L); _cimg_set_key(ENTER);
|
|
_cimg_set_key(SHIFTLEFT); _cimg_set_key(Z); _cimg_set_key(X); _cimg_set_key(C);
|
|
_cimg_set_key(V); _cimg_set_key(B); _cimg_set_key(N); _cimg_set_key(M);
|
|
_cimg_set_key(SHIFTRIGHT); _cimg_set_key(ARROWUP); _cimg_set_key(CTRLLEFT);
|
|
_cimg_set_key(APPLEFT); _cimg_set_key(ALT); _cimg_set_key(SPACE); _cimg_set_key(ALTGR);
|
|
_cimg_set_key(APPRIGHT); _cimg_set_key(MENU); _cimg_set_key(CTRLRIGHT);
|
|
_cimg_set_key(ARROWLEFT); _cimg_set_key(ARROWDOWN); _cimg_set_key(ARROWRIGHT);
|
|
_cimg_set_key(PAD0); _cimg_set_key(PAD1); _cimg_set_key(PAD2);
|
|
_cimg_set_key(PAD3); _cimg_set_key(PAD4); _cimg_set_key(PAD5);
|
|
_cimg_set_key(PAD6); _cimg_set_key(PAD7); _cimg_set_key(PAD8);
|
|
_cimg_set_key(PAD9); _cimg_set_key(PADADD); _cimg_set_key(PADSUB);
|
|
_cimg_set_key(PADMUL); _cimg_set_key(PADDIV);
|
|
if (is_pressed) {
|
|
if (*_keys)
|
|
std::memmove((void*)(_keys + 1),(void*)_keys,127*sizeof(unsigned int));
|
|
*_keys = keycode;
|
|
if (*_released_keys) {
|
|
std::memmove((void*)(_released_keys + 1),(void*)_released_keys,127*sizeof(unsigned int));
|
|
*_released_keys = 0;
|
|
}
|
|
} else {
|
|
if (*_keys) {
|
|
std::memmove((void*)(_keys + 1),(void*)_keys,127*sizeof(unsigned int));
|
|
*_keys = 0;
|
|
}
|
|
if (*_released_keys)
|
|
std::memmove((void*)(_released_keys + 1),(void*)_released_keys,127*sizeof(unsigned int));
|
|
*_released_keys = keycode;
|
|
}
|
|
_is_event = keycode?true:false;
|
|
if (keycode) {
|
|
#if cimg_display==1
|
|
pthread_cond_broadcast(&cimg::X11_attr().wait_event);
|
|
#elif cimg_display==2
|
|
SetEvent(cimg::Win32_attr().wait_event);
|
|
#endif
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Flush all display events.
|
|
/**
|
|
\note Remove all passed events from the current display.
|
|
**/
|
|
CImgDisplay& flush() {
|
|
set_key().set_button().set_wheel();
|
|
_is_resized = _is_moved = _is_event = false;
|
|
_fps_timer = _fps_frames = _timer = 0;
|
|
_fps_fps = 0;
|
|
return *this;
|
|
}
|
|
|
|
//! Wait for any user event occurring on the current display.
|
|
CImgDisplay& wait() {
|
|
wait(*this);
|
|
return *this;
|
|
}
|
|
|
|
//! Wait for a given number of milliseconds since the last call to wait().
|
|
/**
|
|
\param milliseconds Number of milliseconds to wait for.
|
|
\note Similar to cimg::wait().
|
|
**/
|
|
CImgDisplay& wait(const unsigned int milliseconds) {
|
|
cimg::wait(milliseconds,&_timer);
|
|
return *this;
|
|
}
|
|
|
|
//! Wait for any event occurring on the display \c disp1.
|
|
static void wait(CImgDisplay& disp1) {
|
|
disp1._is_event = false;
|
|
while (!disp1._is_closed && !disp1._is_event) wait_all();
|
|
}
|
|
|
|
//! Wait for any event occurring either on the display \c disp1 or \c disp2.
|
|
static void wait(CImgDisplay& disp1, CImgDisplay& disp2) {
|
|
disp1._is_event = disp2._is_event = false;
|
|
while ((!disp1._is_closed || !disp2._is_closed) &&
|
|
!disp1._is_event && !disp2._is_event) wait_all();
|
|
}
|
|
|
|
//! Wait for any event occurring either on the display \c disp1, \c disp2 or \c disp3.
|
|
static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3) {
|
|
disp1._is_event = disp2._is_event = disp3._is_event = false;
|
|
while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed) &&
|
|
!disp1._is_event && !disp2._is_event && !disp3._is_event) wait_all();
|
|
}
|
|
|
|
//! Wait for any event occurring either on the display \c disp1, \c disp2, \c disp3 or \c disp4.
|
|
static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3, CImgDisplay& disp4) {
|
|
disp1._is_event = disp2._is_event = disp3._is_event = disp4._is_event = false;
|
|
while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed || !disp4._is_closed) &&
|
|
!disp1._is_event && !disp2._is_event && !disp3._is_event && !disp4._is_event) wait_all();
|
|
}
|
|
|
|
//! Wait for any event occurring either on the display \c disp1, \c disp2, \c disp3, \c disp4 or \c disp5.
|
|
static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3, CImgDisplay& disp4,
|
|
CImgDisplay& disp5) {
|
|
disp1._is_event = disp2._is_event = disp3._is_event = disp4._is_event = disp5._is_event = false;
|
|
while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed || !disp4._is_closed || !disp5._is_closed) &&
|
|
!disp1._is_event && !disp2._is_event && !disp3._is_event && !disp4._is_event && !disp5._is_event)
|
|
wait_all();
|
|
}
|
|
|
|
//! Wait for any event occurring either on the display \c disp1, \c disp2, \c disp3, \c disp4, ... \c disp6.
|
|
static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3, CImgDisplay& disp4, CImgDisplay& disp5,
|
|
CImgDisplay& disp6) {
|
|
disp1._is_event = disp2._is_event = disp3._is_event = disp4._is_event = disp5._is_event =
|
|
disp6._is_event = false;
|
|
while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed || !disp4._is_closed || !disp5._is_closed ||
|
|
!disp6._is_closed) &&
|
|
!disp1._is_event && !disp2._is_event && !disp3._is_event && !disp4._is_event && !disp5._is_event &&
|
|
!disp6._is_event) wait_all();
|
|
}
|
|
|
|
//! Wait for any event occurring either on the display \c disp1, \c disp2, \c disp3, \c disp4, ... \c disp7.
|
|
static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3, CImgDisplay& disp4, CImgDisplay& disp5,
|
|
CImgDisplay& disp6, CImgDisplay& disp7) {
|
|
disp1._is_event = disp2._is_event = disp3._is_event = disp4._is_event = disp5._is_event =
|
|
disp6._is_event = disp7._is_event = false;
|
|
while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed || !disp4._is_closed || !disp5._is_closed ||
|
|
!disp6._is_closed || !disp7._is_closed) &&
|
|
!disp1._is_event && !disp2._is_event && !disp3._is_event && !disp4._is_event && !disp5._is_event &&
|
|
!disp6._is_event && !disp7._is_event) wait_all();
|
|
}
|
|
|
|
//! Wait for any event occurring either on the display \c disp1, \c disp2, \c disp3, \c disp4, ... \c disp8.
|
|
static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3, CImgDisplay& disp4, CImgDisplay& disp5,
|
|
CImgDisplay& disp6, CImgDisplay& disp7, CImgDisplay& disp8) {
|
|
disp1._is_event = disp2._is_event = disp3._is_event = disp4._is_event = disp5._is_event =
|
|
disp6._is_event = disp7._is_event = disp8._is_event = false;
|
|
while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed || !disp4._is_closed || !disp5._is_closed ||
|
|
!disp6._is_closed || !disp7._is_closed || !disp8._is_closed) &&
|
|
!disp1._is_event && !disp2._is_event && !disp3._is_event && !disp4._is_event && !disp5._is_event &&
|
|
!disp6._is_event && !disp7._is_event && !disp8._is_event) wait_all();
|
|
}
|
|
|
|
//! Wait for any event occurring either on the display \c disp1, \c disp2, \c disp3, \c disp4, ... \c disp9.
|
|
static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3, CImgDisplay& disp4, CImgDisplay& disp5,
|
|
CImgDisplay& disp6, CImgDisplay& disp7, CImgDisplay& disp8, CImgDisplay& disp9) {
|
|
disp1._is_event = disp2._is_event = disp3._is_event = disp4._is_event = disp5._is_event =
|
|
disp6._is_event = disp7._is_event = disp8._is_event = disp9._is_event = false;
|
|
while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed || !disp4._is_closed || !disp5._is_closed ||
|
|
!disp6._is_closed || !disp7._is_closed || !disp8._is_closed || !disp9._is_closed) &&
|
|
!disp1._is_event && !disp2._is_event && !disp3._is_event && !disp4._is_event && !disp5._is_event &&
|
|
!disp6._is_event && !disp7._is_event && !disp8._is_event && !disp9._is_event) wait_all();
|
|
}
|
|
|
|
//! Wait for any event occurring either on the display \c disp1, \c disp2, \c disp3, \c disp4, ... \c disp10.
|
|
static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3, CImgDisplay& disp4, CImgDisplay& disp5,
|
|
CImgDisplay& disp6, CImgDisplay& disp7, CImgDisplay& disp8, CImgDisplay& disp9,
|
|
CImgDisplay& disp10) {
|
|
disp1._is_event = disp2._is_event = disp3._is_event = disp4._is_event = disp5._is_event =
|
|
disp6._is_event = disp7._is_event = disp8._is_event = disp9._is_event = disp10._is_event = false;
|
|
while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed || !disp4._is_closed || !disp5._is_closed ||
|
|
!disp6._is_closed || !disp7._is_closed || !disp8._is_closed || !disp9._is_closed || !disp10._is_closed) &&
|
|
!disp1._is_event && !disp2._is_event && !disp3._is_event && !disp4._is_event && !disp5._is_event &&
|
|
!disp6._is_event && !disp7._is_event && !disp8._is_event && !disp9._is_event && !disp10._is_event)
|
|
wait_all();
|
|
}
|
|
|
|
#if cimg_display==0
|
|
|
|
//! Wait for any window event occurring in any opened CImgDisplay.
|
|
static void wait_all() {
|
|
return _no_display_exception();
|
|
}
|
|
|
|
//! Render image into internal display buffer.
|
|
/**
|
|
\param img Input image data to render.
|
|
\note
|
|
- Convert image data representation into the internal display buffer (architecture-dependent structure).
|
|
- The content of the associated window is not modified, until paint() is called.
|
|
- Should not be used for common CImgDisplay uses, since display() is more useful.
|
|
**/
|
|
template<typename T>
|
|
CImgDisplay& render(const CImg<T>& img) {
|
|
return assign(img);
|
|
}
|
|
|
|
//! Paint internal display buffer on associated window.
|
|
/**
|
|
\note
|
|
- Update the content of the associated window with the internal display buffer, e.g. after a render() call.
|
|
- Should not be used for common CImgDisplay uses, since display() is more useful.
|
|
**/
|
|
CImgDisplay& paint() {
|
|
return assign();
|
|
}
|
|
|
|
|
|
//! Take a snapshot of the current screen content.
|
|
/**
|
|
\param x0 X-coordinate of the upper left corner.
|
|
\param y0 Y-coordinate of the upper left corner.
|
|
\param x1 X-coordinate of the lower right corner.
|
|
\param y1 Y-coordinate of the lower right corner.
|
|
\param[out] img Output screenshot. Can be empty on input
|
|
**/
|
|
template<typename T>
|
|
static void screenshot(const int x0, const int y0, const int x1, const int y1, CImg<T>& img) {
|
|
cimg::unused(x0,y0,x1,y1,&img);
|
|
_no_display_exception();
|
|
}
|
|
|
|
//! Take a snapshot of the associated window content.
|
|
/**
|
|
\param[out] img Output snapshot. Can be empty on input.
|
|
**/
|
|
template<typename T>
|
|
const CImgDisplay& snapshot(CImg<T>& img) const {
|
|
cimg::unused(img);
|
|
_no_display_exception();
|
|
return *this;
|
|
}
|
|
#endif
|
|
|
|
// X11-based implementation
|
|
//--------------------------
|
|
#if cimg_display==1
|
|
|
|
Atom _wm_window_atom, _wm_protocol_atom;
|
|
Window _window, _background_window;
|
|
Colormap _colormap;
|
|
XImage *_image;
|
|
void *_data;
|
|
|
|
#ifdef cimg_use_xshm
|
|
XShmSegmentInfo *_shminfo;
|
|
#endif
|
|
|
|
static int screen_width() {
|
|
Display *const dpy = cimg::X11_attr().display;
|
|
int res = 0;
|
|
if (!dpy) {
|
|
Display *const _dpy = XOpenDisplay(0);
|
|
if (!_dpy)
|
|
throw CImgDisplayException("CImgDisplay::screen_width(): Failed to open X11 display.");
|
|
res = DisplayWidth(_dpy,DefaultScreen(_dpy));
|
|
XCloseDisplay(_dpy);
|
|
} else {
|
|
|
|
#ifdef cimg_use_xrandr
|
|
if (cimg::X11_attr().resolutions && cimg::X11_attr().curr_resolution)
|
|
res = cimg::X11_attr().resolutions[cimg::X11_attr().curr_resolution].width;
|
|
else res = DisplayWidth(dpy,DefaultScreen(dpy));
|
|
#else
|
|
res = DisplayWidth(dpy,DefaultScreen(dpy));
|
|
#endif
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static int screen_height() {
|
|
Display *const dpy = cimg::X11_attr().display;
|
|
int res = 0;
|
|
if (!dpy) {
|
|
Display *const _dpy = XOpenDisplay(0);
|
|
if (!_dpy)
|
|
throw CImgDisplayException("CImgDisplay::screen_height(): Failed to open X11 display.");
|
|
res = DisplayHeight(_dpy,DefaultScreen(_dpy));
|
|
XCloseDisplay(_dpy);
|
|
} else {
|
|
|
|
#ifdef cimg_use_xrandr
|
|
if (cimg::X11_attr().resolutions && cimg::X11_attr().curr_resolution)
|
|
res = cimg::X11_attr().resolutions[cimg::X11_attr().curr_resolution].height;
|
|
else res = DisplayHeight(dpy,DefaultScreen(dpy));
|
|
#else
|
|
res = DisplayHeight(dpy,DefaultScreen(dpy));
|
|
#endif
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static void wait_all() {
|
|
if (!cimg::X11_attr().display) return;
|
|
pthread_mutex_lock(&cimg::X11_attr().wait_event_mutex);
|
|
pthread_cond_wait(&cimg::X11_attr().wait_event,&cimg::X11_attr().wait_event_mutex);
|
|
pthread_mutex_unlock(&cimg::X11_attr().wait_event_mutex);
|
|
}
|
|
|
|
void _handle_events(const XEvent *const pevent) {
|
|
Display *const dpy = cimg::X11_attr().display;
|
|
XEvent event = *pevent;
|
|
switch (event.type) {
|
|
case ClientMessage : {
|
|
if ((int)event.xclient.message_type==(int)_wm_protocol_atom &&
|
|
(int)event.xclient.data.l[0]==(int)_wm_window_atom) {
|
|
XUnmapWindow(cimg::X11_attr().display,_window);
|
|
_is_closed = _is_event = true;
|
|
pthread_cond_broadcast(&cimg::X11_attr().wait_event);
|
|
}
|
|
} break;
|
|
case ConfigureNotify : {
|
|
while (XCheckWindowEvent(dpy,_window,StructureNotifyMask,&event)) {}
|
|
const unsigned int nw = event.xconfigure.width, nh = event.xconfigure.height;
|
|
const int nx = event.xconfigure.x, ny = event.xconfigure.y;
|
|
if (nw && nh && (nw!=_window_width || nh!=_window_height)) {
|
|
_window_width = nw; _window_height = nh; _mouse_x = _mouse_y = -1;
|
|
XResizeWindow(dpy,_window,_window_width,_window_height);
|
|
_is_resized = _is_event = true;
|
|
pthread_cond_broadcast(&cimg::X11_attr().wait_event);
|
|
}
|
|
if (nx!=_window_x || ny!=_window_y) {
|
|
_window_x = nx;
|
|
_window_y = ny;
|
|
_is_moved = _is_event = true;
|
|
pthread_cond_broadcast(&cimg::X11_attr().wait_event);
|
|
}
|
|
} break;
|
|
case Expose : {
|
|
while (XCheckWindowEvent(dpy,_window,ExposureMask,&event)) {}
|
|
_paint(false);
|
|
if (_is_fullscreen) {
|
|
XWindowAttributes attr;
|
|
do {
|
|
XGetWindowAttributes(dpy,_window,&attr);
|
|
if (attr.map_state!=IsViewable) { XSync(dpy,0); cimg::sleep(10); }
|
|
} while (attr.map_state!=IsViewable);
|
|
XSetInputFocus(dpy,_window,RevertToParent,CurrentTime);
|
|
}
|
|
} break;
|
|
case ButtonPress : {
|
|
do {
|
|
_mouse_x = event.xmotion.x; _mouse_y = event.xmotion.y;
|
|
if (_mouse_x<0 || _mouse_y<0 || _mouse_x>=width() || _mouse_y>=height()) _mouse_x = _mouse_y = -1;
|
|
switch (event.xbutton.button) {
|
|
case 1 : set_button(1); break;
|
|
case 3 : set_button(2); break;
|
|
case 2 : set_button(3); break;
|
|
}
|
|
} while (XCheckWindowEvent(dpy,_window,ButtonPressMask,&event));
|
|
} break;
|
|
case ButtonRelease : {
|
|
do {
|
|
_mouse_x = event.xmotion.x; _mouse_y = event.xmotion.y;
|
|
if (_mouse_x<0 || _mouse_y<0 || _mouse_x>=width() || _mouse_y>=height()) _mouse_x = _mouse_y = -1;
|
|
switch (event.xbutton.button) {
|
|
case 1 : set_button(1,false); break;
|
|
case 3 : set_button(2,false); break;
|
|
case 2 : set_button(3,false); break;
|
|
case 4 : set_wheel(1); break;
|
|
case 5 : set_wheel(-1); break;
|
|
}
|
|
} while (XCheckWindowEvent(dpy,_window,ButtonReleaseMask,&event));
|
|
} break;
|
|
case KeyPress : {
|
|
char tmp = 0; KeySym ksym;
|
|
XLookupString(&event.xkey,&tmp,1,&ksym,0);
|
|
set_key((unsigned int)ksym,true);
|
|
} break;
|
|
case KeyRelease : {
|
|
char keys_return[32]; // Check that the key has been physically unpressed
|
|
XQueryKeymap(dpy,keys_return);
|
|
const unsigned int kc = event.xkey.keycode, kc1 = kc/8, kc2 = kc%8;
|
|
const bool is_key_pressed = kc1>=32?false:(keys_return[kc1]>>kc2)&1;
|
|
if (!is_key_pressed) {
|
|
char tmp = 0; KeySym ksym;
|
|
XLookupString(&event.xkey,&tmp,1,&ksym,0);
|
|
set_key((unsigned int)ksym,false);
|
|
}
|
|
} break;
|
|
case EnterNotify: {
|
|
while (XCheckWindowEvent(dpy,_window,EnterWindowMask,&event)) {}
|
|
_mouse_x = event.xmotion.x;
|
|
_mouse_y = event.xmotion.y;
|
|
if (_mouse_x<0 || _mouse_y<0 || _mouse_x>=width() || _mouse_y>=height()) _mouse_x = _mouse_y = -1;
|
|
} break;
|
|
case LeaveNotify : {
|
|
while (XCheckWindowEvent(dpy,_window,LeaveWindowMask,&event)) {}
|
|
_mouse_x = _mouse_y = -1; _is_event = true;
|
|
pthread_cond_broadcast(&cimg::X11_attr().wait_event);
|
|
} break;
|
|
case MotionNotify : {
|
|
while (XCheckWindowEvent(dpy,_window,PointerMotionMask,&event)) {}
|
|
_mouse_x = event.xmotion.x;
|
|
_mouse_y = event.xmotion.y;
|
|
if (_mouse_x<0 || _mouse_y<0 || _mouse_x>=width() || _mouse_y>=height()) _mouse_x = _mouse_y = -1;
|
|
_is_event = true;
|
|
pthread_cond_broadcast(&cimg::X11_attr().wait_event);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
static void* _events_thread(void *arg) { // Thread to manage events for all opened display windows
|
|
Display *const dpy = cimg::X11_attr().display;
|
|
XEvent event;
|
|
pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED,0);
|
|
pthread_setcancelstate(PTHREAD_CANCEL_ENABLE,0);
|
|
if (!arg) for ( ; ; ) {
|
|
cimg_lock_display();
|
|
bool event_flag = XCheckTypedEvent(dpy,ClientMessage,&event);
|
|
if (!event_flag) event_flag = XCheckMaskEvent(dpy,
|
|
ExposureMask | StructureNotifyMask | ButtonPressMask |
|
|
KeyPressMask | PointerMotionMask | EnterWindowMask |
|
|
LeaveWindowMask | ButtonReleaseMask | KeyReleaseMask,&event);
|
|
if (event_flag)
|
|
for (unsigned int i = 0; i<cimg::X11_attr().nb_wins; ++i)
|
|
if (!cimg::X11_attr().wins[i]->_is_closed && event.xany.window==cimg::X11_attr().wins[i]->_window)
|
|
cimg::X11_attr().wins[i]->_handle_events(&event);
|
|
cimg_unlock_display();
|
|
pthread_testcancel();
|
|
cimg::sleep(8);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void _set_colormap(Colormap& cmap, const unsigned int dim) {
|
|
XColor *const colormap = new XColor[256];
|
|
switch (dim) {
|
|
case 1 : { // colormap for greyscale images
|
|
for (unsigned int index = 0; index<256; ++index) {
|
|
colormap[index].pixel = index;
|
|
colormap[index].red = colormap[index].green = colormap[index].blue = (unsigned short)(index<<8);
|
|
colormap[index].flags = DoRed | DoGreen | DoBlue;
|
|
}
|
|
} break;
|
|
case 2 : { // colormap for RG images
|
|
for (unsigned int index = 0, r = 8; r<256; r+=16)
|
|
for (unsigned int g = 8; g<256; g+=16) {
|
|
colormap[index].pixel = index;
|
|
colormap[index].red = colormap[index].blue = (unsigned short)(r<<8);
|
|
colormap[index].green = (unsigned short)(g<<8);
|
|
colormap[index++].flags = DoRed | DoGreen | DoBlue;
|
|
}
|
|
} break;
|
|
default : { // colormap for RGB images
|
|
for (unsigned int index = 0, r = 16; r<256; r+=32)
|
|
for (unsigned int g = 16; g<256; g+=32)
|
|
for (unsigned int b = 32; b<256; b+=64) {
|
|
colormap[index].pixel = index;
|
|
colormap[index].red = (unsigned short)(r<<8);
|
|
colormap[index].green = (unsigned short)(g<<8);
|
|
colormap[index].blue = (unsigned short)(b<<8);
|
|
colormap[index++].flags = DoRed | DoGreen | DoBlue;
|
|
}
|
|
}
|
|
}
|
|
XStoreColors(cimg::X11_attr().display,cmap,colormap,256);
|
|
delete[] colormap;
|
|
}
|
|
|
|
void _map_window() {
|
|
Display *const dpy = cimg::X11_attr().display;
|
|
bool is_exposed = false, is_mapped = false;
|
|
XWindowAttributes attr;
|
|
XEvent event;
|
|
XMapRaised(dpy,_window);
|
|
do { // Wait for the window to be mapped
|
|
XWindowEvent(dpy,_window,StructureNotifyMask | ExposureMask,&event);
|
|
switch (event.type) {
|
|
case MapNotify : is_mapped = true; break;
|
|
case Expose : is_exposed = true; break;
|
|
}
|
|
} while (!is_exposed || !is_mapped);
|
|
do { // Wait for the window to be visible
|
|
XGetWindowAttributes(dpy,_window,&attr);
|
|
if (attr.map_state!=IsViewable) { XSync(dpy,0); cimg::sleep(10); }
|
|
} while (attr.map_state!=IsViewable);
|
|
_window_x = attr.x;
|
|
_window_y = attr.y;
|
|
}
|
|
|
|
void _paint(const bool wait_expose=true) {
|
|
if (_is_closed || !_image) return;
|
|
Display *const dpy = cimg::X11_attr().display;
|
|
if (wait_expose) { // Send an expose event sticked to display window to force repaint
|
|
XEvent event;
|
|
event.xexpose.type = Expose;
|
|
event.xexpose.serial = 0;
|
|
event.xexpose.send_event = 1;
|
|
event.xexpose.display = dpy;
|
|
event.xexpose.window = _window;
|
|
event.xexpose.x = 0;
|
|
event.xexpose.y = 0;
|
|
event.xexpose.width = width();
|
|
event.xexpose.height = height();
|
|
event.xexpose.count = 0;
|
|
XSendEvent(dpy,_window,0,0,&event);
|
|
} else { // Repaint directly (may be called from the expose event)
|
|
GC gc = DefaultGC(dpy,DefaultScreen(dpy));
|
|
|
|
#ifdef cimg_use_xshm
|
|
if (_shminfo) XShmPutImage(dpy,_window,gc,_image,0,0,0,0,_width,_height,1);
|
|
else XPutImage(dpy,_window,gc,_image,0,0,0,0,_width,_height);
|
|
#else
|
|
XPutImage(dpy,_window,gc,_image,0,0,0,0,_width,_height);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
void _resize(T pixel_type, const unsigned int ndimx, const unsigned int ndimy, const bool force_redraw) {
|
|
Display *const dpy = cimg::X11_attr().display;
|
|
cimg::unused(pixel_type);
|
|
|
|
#ifdef cimg_use_xshm
|
|
if (_shminfo) {
|
|
XShmSegmentInfo *const nshminfo = new XShmSegmentInfo;
|
|
XImage *const nimage = XShmCreateImage(dpy,DefaultVisual(dpy,DefaultScreen(dpy)),
|
|
cimg::X11_attr().nb_bits,ZPixmap,0,nshminfo,ndimx,ndimy);
|
|
if (!nimage) { delete nshminfo; return; }
|
|
else {
|
|
nshminfo->shmid = shmget(IPC_PRIVATE,ndimx*ndimy*sizeof(T),IPC_CREAT | 0777);
|
|
if (nshminfo->shmid==-1) { XDestroyImage(nimage); delete nshminfo; return; }
|
|
else {
|
|
nshminfo->shmaddr = nimage->data = (char*)shmat(nshminfo->shmid,0,0);
|
|
if (nshminfo->shmaddr==(char*)-1) {
|
|
shmctl(nshminfo->shmid,IPC_RMID,0); XDestroyImage(nimage); delete nshminfo; return;
|
|
} else {
|
|
nshminfo->readOnly = 0;
|
|
cimg::X11_attr().is_shm_enabled = true;
|
|
XErrorHandler oldXErrorHandler = XSetErrorHandler(_assign_xshm);
|
|
XShmAttach(dpy,nshminfo);
|
|
XFlush(dpy);
|
|
XSetErrorHandler(oldXErrorHandler);
|
|
if (!cimg::X11_attr().is_shm_enabled) {
|
|
shmdt(nshminfo->shmaddr);
|
|
shmctl(nshminfo->shmid,IPC_RMID,0);
|
|
XDestroyImage(nimage);
|
|
delete nshminfo;
|
|
return;
|
|
} else {
|
|
T *const ndata = (T*)nimage->data;
|
|
if (force_redraw) _render_resize((T*)_data,_width,_height,ndata,ndimx,ndimy);
|
|
else std::memset(ndata,0,sizeof(T)*ndimx*ndimy);
|
|
XShmDetach(dpy,_shminfo);
|
|
XDestroyImage(_image);
|
|
shmdt(_shminfo->shmaddr);
|
|
shmctl(_shminfo->shmid,IPC_RMID,0);
|
|
delete _shminfo;
|
|
_shminfo = nshminfo;
|
|
_image = nimage;
|
|
_data = (void*)ndata;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else
|
|
#endif
|
|
{
|
|
T *ndata = (T*)std::malloc(ndimx*ndimy*sizeof(T));
|
|
if (force_redraw) _render_resize((T*)_data,_width,_height,ndata,ndimx,ndimy);
|
|
else std::memset(ndata,0,sizeof(T)*ndimx*ndimy);
|
|
_data = (void*)ndata;
|
|
XDestroyImage(_image);
|
|
_image = XCreateImage(dpy,DefaultVisual(dpy,DefaultScreen(dpy)),
|
|
cimg::X11_attr().nb_bits,ZPixmap,0,(char*)_data,ndimx,ndimy,8,0);
|
|
}
|
|
}
|
|
|
|
void _init_fullscreen() {
|
|
if (!_is_fullscreen || _is_closed) return;
|
|
Display *const dpy = cimg::X11_attr().display;
|
|
_background_window = 0;
|
|
|
|
#ifdef cimg_use_xrandr
|
|
int foo;
|
|
if (XRRQueryExtension(dpy,&foo,&foo)) {
|
|
XRRRotations(dpy,DefaultScreen(dpy),&cimg::X11_attr().curr_rotation);
|
|
if (!cimg::X11_attr().resolutions) {
|
|
cimg::X11_attr().resolutions = XRRSizes(dpy,DefaultScreen(dpy),&foo);
|
|
cimg::X11_attr().nb_resolutions = (unsigned int)foo;
|
|
}
|
|
if (cimg::X11_attr().resolutions) {
|
|
cimg::X11_attr().curr_resolution = 0;
|
|
for (unsigned int i = 0; i<cimg::X11_attr().nb_resolutions; ++i) {
|
|
const unsigned int
|
|
nw = (unsigned int)(cimg::X11_attr().resolutions[i].width),
|
|
nh = (unsigned int)(cimg::X11_attr().resolutions[i].height);
|
|
if (nw>=_width && nh>=_height &&
|
|
nw<=(unsigned int)(cimg::X11_attr().resolutions[cimg::X11_attr().curr_resolution].width) &&
|
|
nh<=(unsigned int)(cimg::X11_attr().resolutions[cimg::X11_attr().curr_resolution].height))
|
|
cimg::X11_attr().curr_resolution = i;
|
|
}
|
|
if (cimg::X11_attr().curr_resolution>0) {
|
|
XRRScreenConfiguration *config = XRRGetScreenInfo(dpy,DefaultRootWindow(dpy));
|
|
XRRSetScreenConfig(dpy,config,DefaultRootWindow(dpy),
|
|
cimg::X11_attr().curr_resolution,cimg::X11_attr().curr_rotation,CurrentTime);
|
|
XRRFreeScreenConfigInfo(config);
|
|
XSync(dpy,0);
|
|
}
|
|
}
|
|
}
|
|
if (!cimg::X11_attr().resolutions)
|
|
cimg::warn(_cimgdisplay_instance
|
|
"init_fullscreen(): Xrandr extension not supported by the X server.",
|
|
cimgdisplay_instance);
|
|
#endif
|
|
|
|
const unsigned int sx = screen_width(), sy = screen_height();
|
|
if (sx==_width && sy==_height) return;
|
|
XSetWindowAttributes attr_set;
|
|
|
|
attr_set.background_pixel = XBlackPixel(dpy,XDefaultScreen(dpy));
|
|
attr_set.override_redirect = 1;
|
|
_background_window = XCreateWindow(dpy,DefaultRootWindow(dpy),0,0,sx,sy,0,0,
|
|
InputOutput,CopyFromParent,CWBackPixel | CWOverrideRedirect,&attr_set);
|
|
XEvent event;
|
|
XSelectInput(dpy,_background_window,StructureNotifyMask);
|
|
XMapRaised(dpy,_background_window);
|
|
do XWindowEvent(dpy,_background_window,StructureNotifyMask,&event);
|
|
while (event.type!=MapNotify);
|
|
|
|
XWindowAttributes attr;
|
|
do {
|
|
XGetWindowAttributes(dpy,_background_window,&attr);
|
|
if (attr.map_state!=IsViewable) { XSync(dpy,0); cimg::sleep(10); }
|
|
} while (attr.map_state!=IsViewable);
|
|
}
|
|
|
|
void _desinit_fullscreen() {
|
|
if (!_is_fullscreen) return;
|
|
Display *const dpy = cimg::X11_attr().display;
|
|
XUngrabKeyboard(dpy,CurrentTime);
|
|
|
|
#ifdef cimg_use_xrandr
|
|
if (cimg::X11_attr().resolutions && cimg::X11_attr().curr_resolution) {
|
|
XRRScreenConfiguration *config = XRRGetScreenInfo(dpy,DefaultRootWindow(dpy));
|
|
XRRSetScreenConfig(dpy,config,DefaultRootWindow(dpy),0,cimg::X11_attr().curr_rotation,CurrentTime);
|
|
XRRFreeScreenConfigInfo(config);
|
|
XSync(dpy,0);
|
|
cimg::X11_attr().curr_resolution = 0;
|
|
}
|
|
#endif
|
|
if (_background_window) XDestroyWindow(dpy,_background_window);
|
|
_background_window = 0;
|
|
_is_fullscreen = false;
|
|
}
|
|
|
|
static int _assign_xshm(Display *dpy, XErrorEvent *error) {
|
|
cimg::unused(dpy,error);
|
|
cimg::X11_attr().is_shm_enabled = false;
|
|
return 0;
|
|
}
|
|
|
|
void _assign(const unsigned int dimw, const unsigned int dimh, const char *const ptitle=0,
|
|
const unsigned int normalization_type=3,
|
|
const bool fullscreen_flag=false, const bool closed_flag=false) {
|
|
cimg::mutex(14);
|
|
|
|
// Allocate space for window title
|
|
const char *const nptitle = ptitle?ptitle:"";
|
|
const unsigned int s = (unsigned int)std::strlen(nptitle) + 1;
|
|
char *const tmp_title = s?new char[s]:0;
|
|
if (s) std::memcpy(tmp_title,nptitle,s*sizeof(char));
|
|
|
|
// Destroy previous display window if existing
|
|
if (!is_empty()) assign();
|
|
|
|
// Open X11 display and retrieve graphical properties.
|
|
Display* &dpy = cimg::X11_attr().display;
|
|
if (!dpy) {
|
|
dpy = XOpenDisplay(0);
|
|
if (!dpy)
|
|
throw CImgDisplayException(_cimgdisplay_instance
|
|
"assign(): Failed to open X11 display.",
|
|
cimgdisplay_instance);
|
|
|
|
cimg::X11_attr().nb_bits = DefaultDepth(dpy,DefaultScreen(dpy));
|
|
if (cimg::X11_attr().nb_bits!=8 && cimg::X11_attr().nb_bits!=16 &&
|
|
cimg::X11_attr().nb_bits!=24 && cimg::X11_attr().nb_bits!=32)
|
|
throw CImgDisplayException(_cimgdisplay_instance
|
|
"assign(): Invalid %u bits screen mode detected "
|
|
"(only 8, 16, 24 and 32 bits modes are managed).",
|
|
cimgdisplay_instance,
|
|
cimg::X11_attr().nb_bits);
|
|
XVisualInfo vtemplate;
|
|
vtemplate.visualid = XVisualIDFromVisual(DefaultVisual(dpy,DefaultScreen(dpy)));
|
|
int nb_visuals;
|
|
XVisualInfo *vinfo = XGetVisualInfo(dpy,VisualIDMask,&vtemplate,&nb_visuals);
|
|
if (vinfo && vinfo->red_mask<vinfo->blue_mask) cimg::X11_attr().is_blue_first = true;
|
|
cimg::X11_attr().byte_order = ImageByteOrder(dpy);
|
|
XFree(vinfo);
|
|
|
|
cimg_lock_display();
|
|
cimg::X11_attr().events_thread = new pthread_t;
|
|
pthread_create(cimg::X11_attr().events_thread,0,_events_thread,0);
|
|
} else cimg_lock_display();
|
|
|
|
// Set display variables.
|
|
_width = std::min(dimw,(unsigned int)screen_width());
|
|
_height = std::min(dimh,(unsigned int)screen_height());
|
|
_normalization = normalization_type<4?normalization_type:3;
|
|
_is_fullscreen = fullscreen_flag;
|
|
_window_x = _window_y = cimg::type<int>::min();
|
|
_is_closed = closed_flag;
|
|
_title = tmp_title;
|
|
flush();
|
|
|
|
// Create X11 window (and LUT, if 8bits display)
|
|
if (_is_fullscreen) {
|
|
if (!_is_closed) _init_fullscreen();
|
|
const unsigned int sx = screen_width(), sy = screen_height();
|
|
XSetWindowAttributes attr_set;
|
|
attr_set.override_redirect = 1;
|
|
_window = XCreateWindow(dpy,DefaultRootWindow(dpy),(sx - _width)/2,(sy - _height)/2,_width,_height,0,0,
|
|
InputOutput,CopyFromParent,CWOverrideRedirect,&attr_set);
|
|
} else
|
|
_window = XCreateSimpleWindow(dpy,DefaultRootWindow(dpy),0,0,_width,_height,0,0L,0L);
|
|
|
|
XSelectInput(dpy,_window,
|
|
ExposureMask | StructureNotifyMask | ButtonPressMask | KeyPressMask | PointerMotionMask |
|
|
EnterWindowMask | LeaveWindowMask | ButtonReleaseMask | KeyReleaseMask);
|
|
|
|
XStoreName(dpy,_window,_title?_title:" ");
|
|
if (cimg::X11_attr().nb_bits==8) {
|
|
_colormap = XCreateColormap(dpy,_window,DefaultVisual(dpy,DefaultScreen(dpy)),AllocAll);
|
|
_set_colormap(_colormap,3);
|
|
XSetWindowColormap(dpy,_window,_colormap);
|
|
}
|
|
|
|
static const char *const _window_class = cimg_appname;
|
|
XClassHint *const window_class = XAllocClassHint();
|
|
window_class->res_name = (char*)_window_class;
|
|
window_class->res_class = (char*)_window_class;
|
|
XSetClassHint(dpy,_window,window_class);
|
|
XFree(window_class);
|
|
|
|
_window_width = _width;
|
|
_window_height = _height;
|
|
|
|
// Create XImage
|
|
#ifdef cimg_use_xshm
|
|
_shminfo = 0;
|
|
if (XShmQueryExtension(dpy)) {
|
|
_shminfo = new XShmSegmentInfo;
|
|
_image = XShmCreateImage(dpy,DefaultVisual(dpy,DefaultScreen(dpy)),cimg::X11_attr().nb_bits,
|
|
ZPixmap,0,_shminfo,_width,_height);
|
|
if (!_image) { delete _shminfo; _shminfo = 0; }
|
|
else {
|
|
_shminfo->shmid = shmget(IPC_PRIVATE,_image->bytes_per_line*_image->height,IPC_CREAT|0777);
|
|
if (_shminfo->shmid==-1) { XDestroyImage(_image); delete _shminfo; _shminfo = 0; }
|
|
else {
|
|
_shminfo->shmaddr = _image->data = (char*)(_data = shmat(_shminfo->shmid,0,0));
|
|
if (_shminfo->shmaddr==(char*)-1) {
|
|
shmctl(_shminfo->shmid,IPC_RMID,0); XDestroyImage(_image); delete _shminfo; _shminfo = 0;
|
|
} else {
|
|
_shminfo->readOnly = 0;
|
|
cimg::X11_attr().is_shm_enabled = true;
|
|
XErrorHandler oldXErrorHandler = XSetErrorHandler(_assign_xshm);
|
|
XShmAttach(dpy,_shminfo);
|
|
XSync(dpy,0);
|
|
XSetErrorHandler(oldXErrorHandler);
|
|
if (!cimg::X11_attr().is_shm_enabled) {
|
|
shmdt(_shminfo->shmaddr); shmctl(_shminfo->shmid,IPC_RMID,0); XDestroyImage(_image);
|
|
delete _shminfo; _shminfo = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (!_shminfo)
|
|
#endif
|
|
{
|
|
const cimg_ulong buf_size = (cimg_ulong)_width*_height*(cimg::X11_attr().nb_bits==8?1:
|
|
(cimg::X11_attr().nb_bits==16?2:4));
|
|
_data = std::malloc(buf_size);
|
|
_image = XCreateImage(dpy,DefaultVisual(dpy,DefaultScreen(dpy)),cimg::X11_attr().nb_bits,
|
|
ZPixmap,0,(char*)_data,_width,_height,8,0);
|
|
}
|
|
|
|
_wm_window_atom = XInternAtom(dpy,"WM_DELETE_WINDOW",0);
|
|
_wm_protocol_atom = XInternAtom(dpy,"WM_PROTOCOLS",0);
|
|
XSetWMProtocols(dpy,_window,&_wm_window_atom,1);
|
|
|
|
if (_is_fullscreen) XGrabKeyboard(dpy,_window,1,GrabModeAsync,GrabModeAsync,CurrentTime);
|
|
cimg::X11_attr().wins[cimg::X11_attr().nb_wins++]=this;
|
|
if (!_is_closed) _map_window(); else _window_x = _window_y = cimg::type<int>::min();
|
|
cimg_unlock_display();
|
|
cimg::mutex(14,0);
|
|
}
|
|
|
|
CImgDisplay& assign() {
|
|
if (is_empty()) return flush();
|
|
Display *const dpy = cimg::X11_attr().display;
|
|
cimg_lock_display();
|
|
|
|
// Remove display window from event thread list.
|
|
unsigned int i;
|
|
for (i = 0; i<cimg::X11_attr().nb_wins && cimg::X11_attr().wins[i]!=this; ++i) {}
|
|
for ( ; i<cimg::X11_attr().nb_wins - 1; ++i) cimg::X11_attr().wins[i] = cimg::X11_attr().wins[i + 1];
|
|
--cimg::X11_attr().nb_wins;
|
|
|
|
// Destroy window, image, colormap and title.
|
|
if (_is_fullscreen && !_is_closed) _desinit_fullscreen();
|
|
|
|
|
|
#ifdef cimg_use_xshm
|
|
if (_shminfo) {
|
|
XShmDetach(dpy,_shminfo);
|
|
shmdt(_shminfo->shmaddr);
|
|
shmctl(_shminfo->shmid,IPC_RMID,0);
|
|
delete _shminfo;
|
|
_shminfo = 0;
|
|
}
|
|
#endif
|
|
|
|
XDestroyImage(_image);
|
|
if (cimg::X11_attr().nb_bits==8) XFreeColormap(dpy,_colormap);
|
|
XDestroyWindow(dpy,_window);
|
|
XSync(dpy,0);
|
|
_window = 0; _colormap = 0; _data = 0; _image = 0;
|
|
|
|
// Reset display variables.
|
|
delete[] _title;
|
|
_width = _height = _normalization = _window_width = _window_height = 0;
|
|
_window_x = _window_y = cimg::type<int>::min();
|
|
_is_fullscreen = false;
|
|
_is_closed = true;
|
|
_min = _max = 0;
|
|
_title = 0;
|
|
flush();
|
|
|
|
cimg_unlock_display();
|
|
return *this;
|
|
}
|
|
|
|
CImgDisplay& assign(const unsigned int dimw, const unsigned int dimh, const char *const title=0,
|
|
const unsigned int normalization_type=3,
|
|
const bool fullscreen_flag=false, const bool closed_flag=false) {
|
|
if (!dimw || !dimh) return assign();
|
|
_assign(dimw,dimh,title,normalization_type,fullscreen_flag,closed_flag);
|
|
_min = _max = 0;
|
|
std::memset(_data,0,(cimg::X11_attr().nb_bits==8?sizeof(unsigned char):
|
|
(cimg::X11_attr().nb_bits==16?sizeof(unsigned short):sizeof(unsigned int)))*
|
|
(size_t)_width*_height);
|
|
return paint();
|
|
}
|
|
|
|
template<typename T>
|
|
CImgDisplay& assign(const CImg<T>& img, const char *const title=0,
|
|
const unsigned int normalization_type=3,
|
|
const bool fullscreen_flag=false, const bool closed_flag=false) {
|
|
if (!img) return assign();
|
|
CImg<T> tmp;
|
|
const CImg<T>& nimg = (img._depth==1)?img:(tmp=img.get_projections2d((img._width - 1)/2,
|
|
(img._height - 1)/2,
|
|
(img._depth - 1)/2));
|
|
_assign(nimg._width,nimg._height,title,normalization_type,fullscreen_flag,closed_flag);
|
|
if (_normalization==2) _min = (float)nimg.min_max(_max);
|
|
return render(nimg).paint();
|
|
}
|
|
|
|
template<typename T>
|
|
CImgDisplay& assign(const CImgList<T>& list, const char *const title=0,
|
|
const unsigned int normalization_type=3,
|
|
const bool fullscreen_flag=false, const bool closed_flag=false) {
|
|
if (!list) return assign();
|
|
CImg<T> tmp;
|
|
const CImg<T> img = list>'x', &nimg = (img._depth==1)?img:(tmp=img.get_projections2d((img._width - 1)/2,
|
|
(img._height - 1)/2,
|
|
(img._depth - 1)/2));
|
|
_assign(nimg._width,nimg._height,title,normalization_type,fullscreen_flag,closed_flag);
|
|
if (_normalization==2) _min = (float)nimg.min_max(_max);
|
|
return render(nimg).paint();
|
|
}
|
|
|
|
CImgDisplay& assign(const CImgDisplay& disp) {
|
|
if (!disp) return assign();
|
|
_assign(disp._width,disp._height,disp._title,disp._normalization,disp._is_fullscreen,disp._is_closed);
|
|
std::memcpy(_data,disp._data,(cimg::X11_attr().nb_bits==8?sizeof(unsigned char):
|
|
cimg::X11_attr().nb_bits==16?sizeof(unsigned short):
|
|
sizeof(unsigned int))*(size_t)_width*_height);
|
|
return paint();
|
|
}
|
|
|
|
CImgDisplay& resize(const int nwidth, const int nheight, const bool force_redraw=true) {
|
|
if (!nwidth || !nheight || (is_empty() && (nwidth<0 || nheight<0))) return assign();
|
|
if (is_empty()) return assign(nwidth,nheight);
|
|
Display *const dpy = cimg::X11_attr().display;
|
|
const unsigned int
|
|
tmpdimx = (nwidth>0)?nwidth:(-nwidth*width()/100),
|
|
tmpdimy = (nheight>0)?nheight:(-nheight*height()/100),
|
|
dimx = tmpdimx?tmpdimx:1,
|
|
dimy = tmpdimy?tmpdimy:1;
|
|
if (_width!=dimx || _height!=dimy || _window_width!=dimx || _window_height!=dimy) {
|
|
show();
|
|
cimg_lock_display();
|
|
if (_window_width!=dimx || _window_height!=dimy) {
|
|
XWindowAttributes attr;
|
|
for (unsigned int i = 0; i<10; ++i) {
|
|
XResizeWindow(dpy,_window,dimx,dimy);
|
|
XGetWindowAttributes(dpy,_window,&attr);
|
|
if (attr.width==(int)dimx && attr.height==(int)dimy) break;
|
|
cimg::wait(5,&_timer);
|
|
}
|
|
}
|
|
if (_width!=dimx || _height!=dimy) switch (cimg::X11_attr().nb_bits) {
|
|
case 8 : { unsigned char pixel_type = 0; _resize(pixel_type,dimx,dimy,force_redraw); } break;
|
|
case 16 : { unsigned short pixel_type = 0; _resize(pixel_type,dimx,dimy,force_redraw); } break;
|
|
default : { unsigned int pixel_type = 0; _resize(pixel_type,dimx,dimy,force_redraw); }
|
|
}
|
|
_window_width = _width = dimx; _window_height = _height = dimy;
|
|
cimg_unlock_display();
|
|
}
|
|
_is_resized = false;
|
|
if (_is_fullscreen) move((screen_width() - _width)/2,(screen_height() - _height)/2);
|
|
if (force_redraw) return paint();
|
|
return *this;
|
|
}
|
|
|
|
CImgDisplay& toggle_fullscreen(const bool force_redraw=true) {
|
|
if (is_empty()) return *this;
|
|
if (force_redraw) {
|
|
const cimg_ulong buf_size = (cimg_ulong)_width*_height*
|
|
(cimg::X11_attr().nb_bits==8?1:(cimg::X11_attr().nb_bits==16?2:4));
|
|
void *image_data = std::malloc(buf_size);
|
|
std::memcpy(image_data,_data,buf_size);
|
|
assign(_width,_height,_title,_normalization,!_is_fullscreen,false);
|
|
std::memcpy(_data,image_data,buf_size);
|
|
std::free(image_data);
|
|
return paint();
|
|
}
|
|
return assign(_width,_height,_title,_normalization,!_is_fullscreen,false);
|
|
}
|
|
|
|
CImgDisplay& show() {
|
|
if (is_empty() || !_is_closed) return *this;
|
|
cimg_lock_display();
|
|
_is_closed = false;
|
|
if (_is_fullscreen) _init_fullscreen();
|
|
_map_window();
|
|
cimg_unlock_display();
|
|
return paint();
|
|
}
|
|
|
|
CImgDisplay& close() {
|
|
if (is_empty() || _is_closed) return *this;
|
|
Display *const dpy = cimg::X11_attr().display;
|
|
cimg_lock_display();
|
|
if (_is_fullscreen) _desinit_fullscreen();
|
|
XUnmapWindow(dpy,_window);
|
|
_window_x = _window_y = cimg::type<int>::min();
|
|
_is_closed = true;
|
|
cimg_unlock_display();
|
|
return *this;
|
|
}
|
|
|
|
CImgDisplay& move(const int posx, const int posy) {
|
|
if (is_empty()) return *this;
|
|
show();
|
|
if (_window_x!=posx || _window_y!=posy) {
|
|
Display *const dpy = cimg::X11_attr().display;
|
|
cimg_lock_display();
|
|
XMoveWindow(dpy,_window,posx,posy);
|
|
_window_x = posx;
|
|
_window_y = posy;
|
|
cimg_unlock_display();
|
|
}
|
|
_is_moved = false;
|
|
return paint();
|
|
}
|
|
|
|
CImgDisplay& show_mouse() {
|
|
if (is_empty()) return *this;
|
|
Display *const dpy = cimg::X11_attr().display;
|
|
cimg_lock_display();
|
|
XUndefineCursor(dpy,_window);
|
|
cimg_unlock_display();
|
|
return *this;
|
|
}
|
|
|
|
CImgDisplay& hide_mouse() {
|
|
if (is_empty()) return *this;
|
|
Display *const dpy = cimg::X11_attr().display;
|
|
cimg_lock_display();
|
|
static const char pix_data[8] = {};
|
|
XColor col;
|
|
col.red = col.green = col.blue = 0;
|
|
Pixmap pix = XCreateBitmapFromData(dpy,_window,pix_data,8,8);
|
|
Cursor cur = XCreatePixmapCursor(dpy,pix,pix,&col,&col,0,0);
|
|
XFreePixmap(dpy,pix);
|
|
XDefineCursor(dpy,_window,cur);
|
|
cimg_unlock_display();
|
|
return *this;
|
|
}
|
|
|
|
CImgDisplay& set_mouse(const int posx, const int posy) {
|
|
if (is_empty() || _is_closed) return *this;
|
|
Display *const dpy = cimg::X11_attr().display;
|
|
cimg_lock_display();
|
|
XWarpPointer(dpy,0L,_window,0,0,0,0,posx,posy);
|
|
_mouse_x = posx; _mouse_y = posy;
|
|
_is_moved = false;
|
|
XSync(dpy,0);
|
|
cimg_unlock_display();
|
|
return *this;
|
|
}
|
|
|
|
CImgDisplay& set_title(const char *const format, ...) {
|
|
if (is_empty()) return *this;
|
|
char *const tmp = new char[1024];
|
|
va_list ap;
|
|
va_start(ap, format);
|
|
cimg_vsnprintf(tmp,1024,format,ap);
|
|
va_end(ap);
|
|
if (!std::strcmp(_title,tmp)) { delete[] tmp; return *this; }
|
|
delete[] _title;
|
|
const unsigned int s = (unsigned int)std::strlen(tmp) + 1;
|
|
_title = new char[s];
|
|
std::memcpy(_title,tmp,s*sizeof(char));
|
|
Display *const dpy = cimg::X11_attr().display;
|
|
cimg_lock_display();
|
|
XStoreName(dpy,_window,tmp);
|
|
cimg_unlock_display();
|
|
delete[] tmp;
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
CImgDisplay& display(const CImg<T>& img) {
|
|
if (!img)
|
|
throw CImgArgumentException(_cimgdisplay_instance
|
|
"display(): Empty specified image.",
|
|
cimgdisplay_instance);
|
|
if (is_empty()) return assign(img);
|
|
return render(img).paint(false);
|
|
}
|
|
|
|
CImgDisplay& paint(const bool wait_expose=true) {
|
|
if (is_empty()) return *this;
|
|
cimg_lock_display();
|
|
_paint(wait_expose);
|
|
cimg_unlock_display();
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
CImgDisplay& render(const CImg<T>& img, const bool flag8=false) {
|
|
if (!img)
|
|
throw CImgArgumentException(_cimgdisplay_instance
|
|
"render(): Empty specified image.",
|
|
cimgdisplay_instance);
|
|
if (is_empty()) return *this;
|
|
if (img._depth!=1) return render(img.get_projections2d((img._width - 1)/2,(img._height - 1)/2,
|
|
(img._depth - 1)/2));
|
|
if (cimg::X11_attr().nb_bits==8 && (img._width!=_width || img._height!=_height))
|
|
return render(img.get_resize(_width,_height,1,-100,1));
|
|
if (cimg::X11_attr().nb_bits==8 && !flag8 && img._spectrum==3) {
|
|
static const CImg<typename CImg<T>::ucharT> default_colormap = CImg<typename CImg<T>::ucharT>::default_LUT256();
|
|
return render(img.get_index(default_colormap,1,false));
|
|
}
|
|
|
|
const T
|
|
*data1 = img._data,
|
|
*data2 = (img._spectrum>1)?img.data(0,0,0,1):data1,
|
|
*data3 = (img._spectrum>2)?img.data(0,0,0,2):data1;
|
|
|
|
if (cimg::X11_attr().is_blue_first) cimg::swap(data1,data3);
|
|
cimg_lock_display();
|
|
|
|
if (!_normalization || (_normalization==3 && cimg::type<T>::string()==cimg::type<unsigned char>::string())) {
|
|
_min = _max = 0;
|
|
switch (cimg::X11_attr().nb_bits) {
|
|
case 8 : { // 256 colormap, no normalization
|
|
_set_colormap(_colormap,img._spectrum);
|
|
unsigned char
|
|
*const ndata = (img._width==_width && img._height==_height)?(unsigned char*)_data:
|
|
new unsigned char[(size_t)img._width*img._height],
|
|
*ptrd = (unsigned char*)ndata;
|
|
switch (img._spectrum) {
|
|
case 1 :
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy)
|
|
(*ptrd++) = (unsigned char)*(data1++);
|
|
break;
|
|
case 2 : for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char
|
|
R = (unsigned char)*(data1++),
|
|
G = (unsigned char)*(data2++);
|
|
(*ptrd++) = (R&0xf0) | (G>>4);
|
|
} break;
|
|
default : for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char
|
|
R = (unsigned char)*(data1++),
|
|
G = (unsigned char)*(data2++),
|
|
B = (unsigned char)*(data3++);
|
|
(*ptrd++) = (R&0xe0) | ((G>>5)<<2) | (B>>6);
|
|
}
|
|
}
|
|
if (ndata!=_data) {
|
|
_render_resize(ndata,img._width,img._height,(unsigned char*)_data,_width,_height);
|
|
delete[] ndata;
|
|
}
|
|
} break;
|
|
case 16 : { // 16 bits colors, no normalization
|
|
unsigned short *const ndata = (img._width==_width && img._height==_height)?(unsigned short*)_data:
|
|
new unsigned short[(size_t)img._width*img._height];
|
|
unsigned char *ptrd = (unsigned char*)ndata;
|
|
const unsigned int M = 248;
|
|
switch (img._spectrum) {
|
|
case 1 :
|
|
if (cimg::X11_attr().byte_order)
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char val = (unsigned char)*(data1++), G = val>>2;
|
|
ptrd[0] = (val&M) | (G>>3);
|
|
ptrd[1] = (G<<5) | (G>>1);
|
|
ptrd+=2;
|
|
} else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char val = (unsigned char)*(data1++), G = val>>2;
|
|
ptrd[0] = (G<<5) | (G>>1);
|
|
ptrd[1] = (val&M) | (G>>3);
|
|
ptrd+=2;
|
|
}
|
|
break;
|
|
case 2 :
|
|
if (cimg::X11_attr().byte_order)
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char G = (unsigned char)*(data2++)>>2;
|
|
ptrd[0] = ((unsigned char)*(data1++)&M) | (G>>3);
|
|
ptrd[1] = (G<<5);
|
|
ptrd+=2;
|
|
} else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char G = (unsigned char)*(data2++)>>2;
|
|
ptrd[0] = (G<<5);
|
|
ptrd[1] = ((unsigned char)*(data1++)&M) | (G>>3);
|
|
ptrd+=2;
|
|
}
|
|
break;
|
|
default :
|
|
if (cimg::X11_attr().byte_order)
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char G = (unsigned char)*(data2++)>>2;
|
|
ptrd[0] = ((unsigned char)*(data1++)&M) | (G>>3);
|
|
ptrd[1] = (G<<5) | ((unsigned char)*(data3++)>>3);
|
|
ptrd+=2;
|
|
} else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char G = (unsigned char)*(data2++)>>2;
|
|
ptrd[0] = (G<<5) | ((unsigned char)*(data3++)>>3);
|
|
ptrd[1] = ((unsigned char)*(data1++)&M) | (G>>3);
|
|
ptrd+=2;
|
|
}
|
|
}
|
|
if (ndata!=_data) {
|
|
_render_resize(ndata,img._width,img._height,(unsigned short*)_data,_width,_height);
|
|
delete[] ndata;
|
|
}
|
|
} break;
|
|
default : { // 24 bits colors, no normalization
|
|
unsigned int *const ndata = (img._width==_width && img._height==_height)?(unsigned int*)_data:
|
|
new unsigned int[(size_t)img._width*img._height];
|
|
if (sizeof(int)==4) { // 32 bits int uses optimized version
|
|
unsigned int *ptrd = ndata;
|
|
switch (img._spectrum) {
|
|
case 1 :
|
|
if (cimg::X11_attr().byte_order==cimg::endianness())
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char val = (unsigned char)*(data1++);
|
|
*(ptrd++) = (val<<16) | (val<<8) | val;
|
|
}
|
|
else
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char val = (unsigned char)*(data1++);
|
|
*(ptrd++) = (val<<16) | (val<<8) | val;
|
|
}
|
|
break;
|
|
case 2 :
|
|
if (cimg::X11_attr().byte_order==cimg::endianness())
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy)
|
|
*(ptrd++) = ((unsigned char)*(data1++)<<16) | ((unsigned char)*(data2++)<<8);
|
|
else
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy)
|
|
*(ptrd++) = ((unsigned char)*(data2++)<<16) | ((unsigned char)*(data1++)<<8);
|
|
break;
|
|
default :
|
|
if (cimg::X11_attr().byte_order==cimg::endianness())
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy)
|
|
*(ptrd++) = ((unsigned char)*(data1++)<<16) | ((unsigned char)*(data2++)<<8) |
|
|
(unsigned char)*(data3++);
|
|
else
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy)
|
|
*(ptrd++) = ((unsigned char)*(data3++)<<24) | ((unsigned char)*(data2++)<<16) |
|
|
((unsigned char)*(data1++)<<8);
|
|
}
|
|
} else {
|
|
unsigned char *ptrd = (unsigned char*)ndata;
|
|
switch (img._spectrum) {
|
|
case 1 :
|
|
if (cimg::X11_attr().byte_order)
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
ptrd[0] = 0;
|
|
ptrd[1] = (unsigned char)*(data1++);
|
|
ptrd[2] = 0;
|
|
ptrd[3] = 0;
|
|
ptrd+=4;
|
|
} else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
ptrd[0] = 0;
|
|
ptrd[1] = 0;
|
|
ptrd[2] = (unsigned char)*(data1++);
|
|
ptrd[3] = 0;
|
|
ptrd+=4;
|
|
}
|
|
break;
|
|
case 2 :
|
|
if (cimg::X11_attr().byte_order) cimg::swap(data1,data2);
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
ptrd[0] = 0;
|
|
ptrd[1] = (unsigned char)*(data2++);
|
|
ptrd[2] = (unsigned char)*(data1++);
|
|
ptrd[3] = 0;
|
|
ptrd+=4;
|
|
}
|
|
break;
|
|
default :
|
|
if (cimg::X11_attr().byte_order)
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
ptrd[0] = 0;
|
|
ptrd[1] = (unsigned char)*(data1++);
|
|
ptrd[2] = (unsigned char)*(data2++);
|
|
ptrd[3] = (unsigned char)*(data3++);
|
|
ptrd+=4;
|
|
} else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
ptrd[0] = (unsigned char)*(data3++);
|
|
ptrd[1] = (unsigned char)*(data2++);
|
|
ptrd[2] = (unsigned char)*(data1++);
|
|
ptrd[3] = 0;
|
|
ptrd+=4;
|
|
}
|
|
}
|
|
}
|
|
if (ndata!=_data) {
|
|
_render_resize(ndata,img._width,img._height,(unsigned int*)_data,_width,_height);
|
|
delete[] ndata;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
if (_normalization==3) {
|
|
if (sizeof(T)>1 && cimg::type<T>::string()!=cimg::type<bool>::string()) _min = (float)img.min_max(_max);
|
|
else { _min = (float)cimg::type<T>::min(); _max = (float)cimg::type<T>::max(); }
|
|
} else if ((_min>_max) || _normalization==1) _min = (float)img.min_max(_max);
|
|
const float delta = _max - _min, mm = 255/(delta?delta:1.f);
|
|
switch (cimg::X11_attr().nb_bits) {
|
|
case 8 : { // 256 colormap, with normalization
|
|
_set_colormap(_colormap,img._spectrum);
|
|
unsigned char *const ndata = (img._width==_width && img._height==_height)?(unsigned char*)_data:
|
|
new unsigned char[(size_t)img._width*img._height];
|
|
unsigned char *ptrd = (unsigned char*)ndata;
|
|
switch (img._spectrum) {
|
|
case 1 : for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char R = (unsigned char)((*(data1++) - _min)*mm);
|
|
*(ptrd++) = R;
|
|
} break;
|
|
case 2 : for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char
|
|
R = (unsigned char)((*(data1++) - _min)*mm),
|
|
G = (unsigned char)((*(data2++) - _min)*mm);
|
|
(*ptrd++) = (R&0xf0) | (G>>4);
|
|
} break;
|
|
default :
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char
|
|
R = (unsigned char)((*(data1++) - _min)*mm),
|
|
G = (unsigned char)((*(data2++) - _min)*mm),
|
|
B = (unsigned char)((*(data3++) - _min)*mm);
|
|
*(ptrd++) = (R&0xe0) | ((G>>5)<<2) | (B>>6);
|
|
}
|
|
}
|
|
if (ndata!=_data) {
|
|
_render_resize(ndata,img._width,img._height,(unsigned char*)_data,_width,_height);
|
|
delete[] ndata;
|
|
}
|
|
} break;
|
|
case 16 : { // 16 bits colors, with normalization
|
|
unsigned short *const ndata = (img._width==_width && img._height==_height)?(unsigned short*)_data:
|
|
new unsigned short[(size_t)img._width*img._height];
|
|
unsigned char *ptrd = (unsigned char*)ndata;
|
|
const unsigned int M = 248;
|
|
switch (img._spectrum) {
|
|
case 1 :
|
|
if (cimg::X11_attr().byte_order)
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char val = (unsigned char)((*(data1++) - _min)*mm), G = val>>2;
|
|
ptrd[0] = (val&M) | (G>>3);
|
|
ptrd[1] = (G<<5) | (val>>3);
|
|
ptrd+=2;
|
|
} else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char val = (unsigned char)((*(data1++) - _min)*mm), G = val>>2;
|
|
ptrd[0] = (G<<5) | (val>>3);
|
|
ptrd[1] = (val&M) | (G>>3);
|
|
ptrd+=2;
|
|
}
|
|
break;
|
|
case 2 :
|
|
if (cimg::X11_attr().byte_order)
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char G = (unsigned char)((*(data2++) - _min)*mm)>>2;
|
|
ptrd[0] = ((unsigned char)((*(data1++) - _min)*mm)&M) | (G>>3);
|
|
ptrd[1] = (G<<5);
|
|
ptrd+=2;
|
|
} else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char G = (unsigned char)((*(data2++) - _min)*mm)>>2;
|
|
ptrd[0] = (G<<5);
|
|
ptrd[1] = ((unsigned char)((*(data1++) - _min)*mm)&M) | (G>>3);
|
|
ptrd+=2;
|
|
}
|
|
break;
|
|
default :
|
|
if (cimg::X11_attr().byte_order)
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char G = (unsigned char)((*(data2++) - _min)*mm)>>2;
|
|
ptrd[0] = ((unsigned char)((*(data1++) - _min)*mm)&M) | (G>>3);
|
|
ptrd[1] = (G<<5) | ((unsigned char)((*(data3++) - _min)*mm)>>3);
|
|
ptrd+=2;
|
|
} else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char G = (unsigned char)((*(data2++) - _min)*mm)>>2;
|
|
ptrd[0] = (G<<5) | ((unsigned char)((*(data3++) - _min)*mm)>>3);
|
|
ptrd[1] = ((unsigned char)((*(data1++) - _min)*mm)&M) | (G>>3);
|
|
ptrd+=2;
|
|
}
|
|
}
|
|
if (ndata!=_data) {
|
|
_render_resize(ndata,img._width,img._height,(unsigned short*)_data,_width,_height);
|
|
delete[] ndata;
|
|
}
|
|
} break;
|
|
default : { // 24 bits colors, with normalization
|
|
unsigned int *const ndata = (img._width==_width && img._height==_height)?(unsigned int*)_data:
|
|
new unsigned int[(size_t)img._width*img._height];
|
|
if (sizeof(int)==4) { // 32 bits int uses optimized version
|
|
unsigned int *ptrd = ndata;
|
|
switch (img._spectrum) {
|
|
case 1 :
|
|
if (cimg::X11_attr().byte_order==cimg::endianness())
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char val = (unsigned char)((*(data1++) - _min)*mm);
|
|
*(ptrd++) = (val<<16) | (val<<8) | val;
|
|
}
|
|
else
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char val = (unsigned char)((*(data1++) - _min)*mm);
|
|
*(ptrd++) = (val<<24) | (val<<16) | (val<<8);
|
|
}
|
|
break;
|
|
case 2 :
|
|
if (cimg::X11_attr().byte_order==cimg::endianness())
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy)
|
|
*(ptrd++) =
|
|
((unsigned char)((*(data1++) - _min)*mm)<<16) |
|
|
((unsigned char)((*(data2++) - _min)*mm)<<8);
|
|
else
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy)
|
|
*(ptrd++) =
|
|
((unsigned char)((*(data2++) - _min)*mm)<<16) |
|
|
((unsigned char)((*(data1++) - _min)*mm)<<8);
|
|
break;
|
|
default :
|
|
if (cimg::X11_attr().byte_order==cimg::endianness())
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy)
|
|
*(ptrd++) =
|
|
((unsigned char)((*(data1++) - _min)*mm)<<16) |
|
|
((unsigned char)((*(data2++) - _min)*mm)<<8) |
|
|
(unsigned char)((*(data3++) - _min)*mm);
|
|
else
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy)
|
|
*(ptrd++) =
|
|
((unsigned char)((*(data3++) - _min)*mm)<<24) |
|
|
((unsigned char)((*(data2++) - _min)*mm)<<16) |
|
|
((unsigned char)((*(data1++) - _min)*mm)<<8);
|
|
}
|
|
} else {
|
|
unsigned char *ptrd = (unsigned char*)ndata;
|
|
switch (img._spectrum) {
|
|
case 1 :
|
|
if (cimg::X11_attr().byte_order)
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char val = (unsigned char)((*(data1++) - _min)*mm);
|
|
ptrd[0] = 0;
|
|
ptrd[1] = val;
|
|
ptrd[2] = val;
|
|
ptrd[3] = val;
|
|
ptrd+=4;
|
|
} else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char val = (unsigned char)((*(data1++) - _min)*mm);
|
|
ptrd[0] = val;
|
|
ptrd[1] = val;
|
|
ptrd[2] = val;
|
|
ptrd[3] = 0;
|
|
ptrd+=4;
|
|
}
|
|
break;
|
|
case 2 :
|
|
if (cimg::X11_attr().byte_order) cimg::swap(data1,data2);
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
ptrd[0] = 0;
|
|
ptrd[1] = (unsigned char)((*(data2++) - _min)*mm);
|
|
ptrd[2] = (unsigned char)((*(data1++) - _min)*mm);
|
|
ptrd[3] = 0;
|
|
ptrd+=4;
|
|
}
|
|
break;
|
|
default :
|
|
if (cimg::X11_attr().byte_order)
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
ptrd[0] = 0;
|
|
ptrd[1] = (unsigned char)((*(data1++) - _min)*mm);
|
|
ptrd[2] = (unsigned char)((*(data2++) - _min)*mm);
|
|
ptrd[3] = (unsigned char)((*(data3++) - _min)*mm);
|
|
ptrd+=4;
|
|
} else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
ptrd[0] = (unsigned char)((*(data3++) - _min)*mm);
|
|
ptrd[1] = (unsigned char)((*(data2++) - _min)*mm);
|
|
ptrd[2] = (unsigned char)((*(data1++) - _min)*mm);
|
|
ptrd[3] = 0;
|
|
ptrd+=4;
|
|
}
|
|
}
|
|
}
|
|
if (ndata!=_data) {
|
|
_render_resize(ndata,img._width,img._height,(unsigned int*)_data,_width,_height);
|
|
delete[] ndata;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
cimg_unlock_display();
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
static void screenshot(const int x0, const int y0, const int x1, const int y1, CImg<T>& img) {
|
|
img.assign();
|
|
Display *dpy = cimg::X11_attr().display;
|
|
cimg_lock_display();
|
|
if (!dpy) {
|
|
dpy = XOpenDisplay(0);
|
|
if (!dpy)
|
|
throw CImgDisplayException("CImgDisplay::screenshot(): Failed to open X11 display.");
|
|
}
|
|
Window root = DefaultRootWindow(dpy);
|
|
XWindowAttributes gwa;
|
|
XGetWindowAttributes(dpy,root,&gwa);
|
|
const int width = gwa.width, height = gwa.height;
|
|
int _x0 = x0, _y0 = y0, _x1 = x1, _y1 = y1;
|
|
if (_x0>_x1) cimg::swap(_x0,_x1);
|
|
if (_y0>_y1) cimg::swap(_y0,_y1);
|
|
|
|
XImage *image = 0;
|
|
if (_x1>=0 && _x0<width && _y1>=0 && _y0<height) {
|
|
_x0 = std::max(_x0,0);
|
|
_y0 = std::max(_y0,0);
|
|
_x1 = std::min(_x1,width - 1);
|
|
_y1 = std::min(_y1,height - 1);
|
|
image = XGetImage(dpy,root,_x0,_y0,_x1 - _x0 + 1,_y1 - _y0 + 1,AllPlanes,ZPixmap);
|
|
|
|
if (image) {
|
|
const unsigned long
|
|
red_mask = image->red_mask,
|
|
green_mask = image->green_mask,
|
|
blue_mask = image->blue_mask;
|
|
img.assign(image->width,image->height,1,3);
|
|
T *pR = img.data(0,0,0,0), *pG = img.data(0,0,0,1), *pB = img.data(0,0,0,2);
|
|
cimg_forXY(img,x,y) {
|
|
const unsigned long pixel = XGetPixel(image,x,y);
|
|
*(pR++) = (T)((pixel & red_mask)>>16);
|
|
*(pG++) = (T)((pixel & green_mask)>>8);
|
|
*(pB++) = (T)(pixel & blue_mask);
|
|
}
|
|
XDestroyImage(image);
|
|
}
|
|
}
|
|
if (!cimg::X11_attr().display) XCloseDisplay(dpy);
|
|
cimg_unlock_display();
|
|
if (img.is_empty())
|
|
throw CImgDisplayException("CImgDisplay::screenshot(): Failed to take screenshot "
|
|
"with coordinates (%d,%d)-(%d,%d).",
|
|
x0,y0,x1,y1);
|
|
}
|
|
|
|
template<typename T>
|
|
const CImgDisplay& snapshot(CImg<T>& img) const {
|
|
if (is_empty()) { img.assign(); return *this; }
|
|
const unsigned char *ptrs = (unsigned char*)_data;
|
|
img.assign(_width,_height,1,3);
|
|
T
|
|
*data1 = img.data(0,0,0,0),
|
|
*data2 = img.data(0,0,0,1),
|
|
*data3 = img.data(0,0,0,2);
|
|
if (cimg::X11_attr().is_blue_first) cimg::swap(data1,data3);
|
|
switch (cimg::X11_attr().nb_bits) {
|
|
case 8 : {
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char val = *(ptrs++);
|
|
*(data1++) = (T)(val&0xe0);
|
|
*(data2++) = (T)((val&0x1c)<<3);
|
|
*(data3++) = (T)(val<<6);
|
|
}
|
|
} break;
|
|
case 16 : {
|
|
if (cimg::X11_attr().byte_order) for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char
|
|
val0 = ptrs[0],
|
|
val1 = ptrs[1];
|
|
ptrs+=2;
|
|
*(data1++) = (T)(val0&0xf8);
|
|
*(data2++) = (T)((val0<<5) | ((val1&0xe0)>>5));
|
|
*(data3++) = (T)(val1<<3);
|
|
} else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned short
|
|
val0 = ptrs[0],
|
|
val1 = ptrs[1];
|
|
ptrs+=2;
|
|
*(data1++) = (T)(val1&0xf8);
|
|
*(data2++) = (T)((val1<<5) | ((val0&0xe0)>>5));
|
|
*(data3++) = (T)(val0<<3);
|
|
}
|
|
} break;
|
|
default : {
|
|
if (cimg::X11_attr().byte_order) for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
++ptrs;
|
|
*(data1++) = (T)ptrs[0];
|
|
*(data2++) = (T)ptrs[1];
|
|
*(data3++) = (T)ptrs[2];
|
|
ptrs+=3;
|
|
} else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
*(data3++) = (T)ptrs[0];
|
|
*(data2++) = (T)ptrs[1];
|
|
*(data1++) = (T)ptrs[2];
|
|
ptrs+=3;
|
|
++ptrs;
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
// Windows-based implementation.
|
|
//-------------------------------
|
|
#elif cimg_display==2
|
|
|
|
bool _is_mouse_tracked, _is_cursor_visible;
|
|
HANDLE _thread, _is_created, _mutex;
|
|
HWND _window, _background_window;
|
|
CLIENTCREATESTRUCT _ccs;
|
|
unsigned int *_data;
|
|
DEVMODE _curr_mode;
|
|
BITMAPINFO _bmi;
|
|
HDC _hdc;
|
|
|
|
static int screen_width() {
|
|
DEVMODE mode;
|
|
mode.dmSize = sizeof(DEVMODE);
|
|
mode.dmDriverExtra = 0;
|
|
EnumDisplaySettings(0,ENUM_CURRENT_SETTINGS,&mode);
|
|
return (int)mode.dmPelsWidth;
|
|
}
|
|
|
|
static int screen_height() {
|
|
DEVMODE mode;
|
|
mode.dmSize = sizeof(DEVMODE);
|
|
mode.dmDriverExtra = 0;
|
|
EnumDisplaySettings(0,ENUM_CURRENT_SETTINGS,&mode);
|
|
return (int)mode.dmPelsHeight;
|
|
}
|
|
|
|
static void wait_all() {
|
|
WaitForSingleObject(cimg::Win32_attr().wait_event,INFINITE);
|
|
}
|
|
|
|
static LRESULT APIENTRY _handle_events(HWND window, UINT msg, WPARAM wParam, LPARAM lParam) {
|
|
#ifdef _WIN64
|
|
CImgDisplay *const disp = (CImgDisplay*)GetWindowLongPtr(window,GWLP_USERDATA);
|
|
#else
|
|
CImgDisplay *const disp = (CImgDisplay*)GetWindowLong(window,GWL_USERDATA);
|
|
#endif
|
|
MSG st_msg;
|
|
switch (msg) {
|
|
case WM_CLOSE :
|
|
disp->_mouse_x = disp->_mouse_y = -1;
|
|
disp->_window_x = disp->_window_y = cimg::type<int>::min();
|
|
disp->set_button().set_key(0).set_key(0,false)._is_closed = true;
|
|
ReleaseMutex(disp->_mutex);
|
|
ShowWindow(disp->_window,SW_HIDE);
|
|
disp->_is_event = true;
|
|
SetEvent(cimg::Win32_attr().wait_event);
|
|
return 0;
|
|
case WM_SIZE : {
|
|
while (PeekMessage(&st_msg,window,WM_SIZE,WM_SIZE,PM_REMOVE)) {}
|
|
WaitForSingleObject(disp->_mutex,INFINITE);
|
|
const unsigned int nw = LOWORD(lParam),nh = HIWORD(lParam);
|
|
if (nw && nh && (nw!=disp->_width || nh!=disp->_height)) {
|
|
disp->_window_width = nw;
|
|
disp->_window_height = nh;
|
|
disp->_mouse_x = disp->_mouse_y = -1;
|
|
disp->_is_resized = disp->_is_event = true;
|
|
SetEvent(cimg::Win32_attr().wait_event);
|
|
}
|
|
ReleaseMutex(disp->_mutex);
|
|
} break;
|
|
case WM_MOVE : {
|
|
while (PeekMessage(&st_msg,window,WM_SIZE,WM_SIZE,PM_REMOVE)) {}
|
|
WaitForSingleObject(disp->_mutex,INFINITE);
|
|
const int nx = (int)(short)(LOWORD(lParam)), ny = (int)(short)(HIWORD(lParam));
|
|
if (nx!=disp->_window_x || ny!=disp->_window_y) {
|
|
disp->_window_x = nx;
|
|
disp->_window_y = ny;
|
|
disp->_is_moved = disp->_is_event = true;
|
|
SetEvent(cimg::Win32_attr().wait_event);
|
|
}
|
|
ReleaseMutex(disp->_mutex);
|
|
} break;
|
|
case WM_PAINT :
|
|
disp->paint();
|
|
cimg_lock_display();
|
|
if (disp->_is_cursor_visible) while (ShowCursor(TRUE)<0); else while (ShowCursor(FALSE_WIN)>=0);
|
|
cimg_unlock_display();
|
|
break;
|
|
case WM_ERASEBKGND :
|
|
// return 0;
|
|
break;
|
|
case WM_KEYDOWN :
|
|
disp->set_key((unsigned int)wParam);
|
|
SetEvent(cimg::Win32_attr().wait_event);
|
|
break;
|
|
case WM_KEYUP :
|
|
disp->set_key((unsigned int)wParam,false);
|
|
SetEvent(cimg::Win32_attr().wait_event);
|
|
break;
|
|
case WM_MOUSEMOVE : {
|
|
while (PeekMessage(&st_msg,window,WM_MOUSEMOVE,WM_MOUSEMOVE,PM_REMOVE)) {}
|
|
disp->_mouse_x = LOWORD(lParam);
|
|
disp->_mouse_y = HIWORD(lParam);
|
|
#if (_WIN32_WINNT>=0x0400) && !defined(NOTRACKMOUSEEVENT)
|
|
if (!disp->_is_mouse_tracked) {
|
|
TRACKMOUSEEVENT tme;
|
|
tme.cbSize = sizeof(TRACKMOUSEEVENT);
|
|
tme.dwFlags = TME_LEAVE;
|
|
tme.hwndTrack = disp->_window;
|
|
if (TrackMouseEvent(&tme)) disp->_is_mouse_tracked = true;
|
|
}
|
|
#endif
|
|
if (disp->_mouse_x<0 || disp->_mouse_y<0 || disp->_mouse_x>=disp->width() || disp->_mouse_y>=disp->height())
|
|
disp->_mouse_x = disp->_mouse_y = -1;
|
|
disp->_is_event = true;
|
|
SetEvent(cimg::Win32_attr().wait_event);
|
|
cimg_lock_display();
|
|
if (disp->_is_cursor_visible) while (ShowCursor(TRUE)<0); else while (ShowCursor(FALSE_WIN)>=0);
|
|
cimg_unlock_display();
|
|
} break;
|
|
case WM_MOUSELEAVE : {
|
|
disp->_mouse_x = disp->_mouse_y = -1;
|
|
disp->_is_mouse_tracked = false;
|
|
cimg_lock_display();
|
|
while (ShowCursor(TRUE)<0) {}
|
|
cimg_unlock_display();
|
|
} break;
|
|
case WM_LBUTTONDOWN :
|
|
disp->set_button(1);
|
|
SetEvent(cimg::Win32_attr().wait_event);
|
|
break;
|
|
case WM_RBUTTONDOWN :
|
|
disp->set_button(2);
|
|
SetEvent(cimg::Win32_attr().wait_event);
|
|
break;
|
|
case WM_MBUTTONDOWN :
|
|
disp->set_button(3);
|
|
SetEvent(cimg::Win32_attr().wait_event);
|
|
break;
|
|
case WM_LBUTTONUP :
|
|
disp->set_button(1,false);
|
|
SetEvent(cimg::Win32_attr().wait_event);
|
|
break;
|
|
case WM_RBUTTONUP :
|
|
disp->set_button(2,false);
|
|
SetEvent(cimg::Win32_attr().wait_event);
|
|
break;
|
|
case WM_MBUTTONUP :
|
|
disp->set_button(3,false);
|
|
SetEvent(cimg::Win32_attr().wait_event);
|
|
break;
|
|
case 0x020A : // WM_MOUSEWHEEL:
|
|
disp->set_wheel((int)((short)HIWORD(wParam))/120);
|
|
SetEvent(cimg::Win32_attr().wait_event);
|
|
}
|
|
return DefWindowProc(window,msg,wParam,lParam);
|
|
}
|
|
|
|
static DWORD WINAPI _events_thread(void* arg) {
|
|
CImgDisplay *const disp = (CImgDisplay*)(((void**)arg)[0]);
|
|
const char *const title = (const char*)(((void**)arg)[1]);
|
|
MSG msg;
|
|
delete[] (void**)arg;
|
|
disp->_bmi.bmiHeader.biSize = sizeof(BITMAPINFOHEADER);
|
|
disp->_bmi.bmiHeader.biWidth = disp->width();
|
|
disp->_bmi.bmiHeader.biHeight = -disp->height();
|
|
disp->_bmi.bmiHeader.biPlanes = 1;
|
|
disp->_bmi.bmiHeader.biBitCount = 32;
|
|
disp->_bmi.bmiHeader.biCompression = BI_RGB;
|
|
disp->_bmi.bmiHeader.biSizeImage = 0;
|
|
disp->_bmi.bmiHeader.biXPelsPerMeter = 1;
|
|
disp->_bmi.bmiHeader.biYPelsPerMeter = 1;
|
|
disp->_bmi.bmiHeader.biClrUsed = 0;
|
|
disp->_bmi.bmiHeader.biClrImportant = 0;
|
|
disp->_data = new unsigned int[(size_t)disp->_width*disp->_height];
|
|
if (!disp->_is_fullscreen) { // Normal window
|
|
RECT rect;
|
|
rect.left = rect.top = 0; rect.right = (LONG)disp->_width - 1; rect.bottom = (LONG)disp->_height - 1;
|
|
AdjustWindowRect(&rect,WS_CAPTION | WS_SYSMENU | WS_THICKFRAME | WS_MINIMIZEBOX | WS_MAXIMIZEBOX,false);
|
|
const int
|
|
border1 = (int)((rect.right - rect.left + 1 - disp->_width)/2),
|
|
border2 = (int)(rect.bottom - rect.top + 1 - disp->_height - border1),
|
|
ww = disp->width() + 2*border1,
|
|
wh = disp->height() + border1 + border2,
|
|
sw = CImgDisplay::screen_width(),
|
|
sh = CImgDisplay::screen_height();
|
|
int
|
|
wx = (int)cimg::round(cimg::rand(0,sw - ww -1)),
|
|
wy = (int)cimg::round(cimg::rand(64,sh - wh - 65));
|
|
if (wx + ww>=sw) wx = sw - ww;
|
|
if (wy + wh>=sh) wy = sh - wh;
|
|
if (wx<0) wx = 0;
|
|
if (wy<0) wy = 0;
|
|
disp->_window = CreateWindowA("MDICLIENT",title?title:" ",
|
|
(DWORD)(WS_OVERLAPPEDWINDOW | (disp->_is_closed?0:WS_VISIBLE)),
|
|
wx,wy,ww,wh,0,0,0,&(disp->_ccs));
|
|
if (!disp->_is_closed) {
|
|
GetWindowRect(disp->_window,&rect);
|
|
disp->_window_x = rect.left;
|
|
disp->_window_y = rect.top;
|
|
} else disp->_window_x = disp->_window_y = cimg::type<int>::min();
|
|
} else { // Fullscreen window
|
|
const unsigned int
|
|
sx = (unsigned int)screen_width(),
|
|
sy = (unsigned int)screen_height();
|
|
disp->_window = CreateWindowA("MDICLIENT",title?title:" ",
|
|
(DWORD)(WS_POPUP | (disp->_is_closed?0:WS_VISIBLE)),
|
|
(int)(sx - disp->_width)/2,
|
|
(int)(sy - disp->_height)/2,
|
|
disp->width(),disp->height(),0,0,0,&(disp->_ccs));
|
|
disp->_window_x = disp->_window_y = 0;
|
|
}
|
|
SetForegroundWindow(disp->_window);
|
|
disp->_hdc = GetDC(disp->_window);
|
|
disp->_window_width = disp->_width;
|
|
disp->_window_height = disp->_height;
|
|
disp->flush();
|
|
#ifdef _WIN64
|
|
SetWindowLongPtr(disp->_window,GWLP_USERDATA,(LONG_PTR)disp);
|
|
SetWindowLongPtr(disp->_window,GWLP_WNDPROC,(LONG_PTR)_handle_events);
|
|
#else
|
|
SetWindowLong(disp->_window,GWL_USERDATA,(LONG)disp);
|
|
SetWindowLong(disp->_window,GWL_WNDPROC,(LONG)_handle_events);
|
|
#endif
|
|
SetEvent(disp->_is_created);
|
|
while (GetMessage(&msg,0,0,0)) DispatchMessage(&msg);
|
|
return 0;
|
|
}
|
|
|
|
CImgDisplay& _update_window_pos() {
|
|
if (_is_closed) _window_x = _window_y = cimg::type<int>::min();
|
|
else {
|
|
RECT rect;
|
|
rect.left = rect.top = 0; rect.right = (LONG)_width - 1; rect.bottom = (LONG)_height - 1;
|
|
AdjustWindowRect(&rect,WS_CAPTION | WS_SYSMENU | WS_THICKFRAME | WS_MINIMIZEBOX | WS_MAXIMIZEBOX,false);
|
|
GetWindowRect(_window,&rect);
|
|
_window_x = rect.left;
|
|
_window_y = rect.top;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
void _init_fullscreen() {
|
|
_background_window = 0;
|
|
if (!_is_fullscreen || _is_closed) _curr_mode.dmSize = 0;
|
|
else {
|
|
/* DEVMODE mode;
|
|
unsigned int imode = 0, ibest = 0, bestbpp = 0, bw = ~0U, bh = ~0U;
|
|
for (mode.dmSize = sizeof(DEVMODE), mode.dmDriverExtra = 0; EnumDisplaySettings(0,imode,&mode); ++imode) {
|
|
const unsigned int nw = mode.dmPelsWidth, nh = mode.dmPelsHeight;
|
|
if (nw>=_width && nh>=_height && mode.dmBitsPerPel>=bestbpp && nw<=bw && nh<=bh) {
|
|
bestbpp = mode.dmBitsPerPel;
|
|
ibest = imode;
|
|
bw = nw; bh = nh;
|
|
}
|
|
}
|
|
if (bestbpp) {
|
|
_curr_mode.dmSize = sizeof(DEVMODE); _curr_mode.dmDriverExtra = 0;
|
|
EnumDisplaySettings(0,ENUM_CURRENT_SETTINGS,&_curr_mode);
|
|
EnumDisplaySettings(0,ibest,&mode);
|
|
ChangeDisplaySettings(&mode,0);
|
|
} else _curr_mode.dmSize = 0;
|
|
*/
|
|
_curr_mode.dmSize = 0;
|
|
const unsigned int
|
|
sx = (unsigned int)screen_width(),
|
|
sy = (unsigned int)screen_height();
|
|
if (sx!=_width || sy!=_height) {
|
|
CLIENTCREATESTRUCT background_ccs = { 0,0 };
|
|
_background_window = CreateWindowA("MDICLIENT","",WS_POPUP | WS_VISIBLE,
|
|
0,0,(int)sx,(int)sy,0,0,0,&background_ccs);
|
|
SetForegroundWindow(_background_window);
|
|
}
|
|
}
|
|
}
|
|
|
|
void _desinit_fullscreen() {
|
|
if (!_is_fullscreen) return;
|
|
if (_background_window) DestroyWindow(_background_window);
|
|
_background_window = 0;
|
|
if (_curr_mode.dmSize) ChangeDisplaySettings(&_curr_mode,0);
|
|
_is_fullscreen = false;
|
|
}
|
|
|
|
CImgDisplay& _assign(const unsigned int dimw, const unsigned int dimh, const char *const ptitle=0,
|
|
const unsigned int normalization_type=3,
|
|
const bool fullscreen_flag=false, const bool closed_flag=false) {
|
|
|
|
// Allocate space for window title
|
|
const char *const nptitle = ptitle?ptitle:"";
|
|
const unsigned int s = (unsigned int)std::strlen(nptitle) + 1;
|
|
char *const tmp_title = s?new char[s]:0;
|
|
if (s) std::memcpy(tmp_title,nptitle,s*sizeof(char));
|
|
|
|
// Destroy previous window if existing
|
|
if (!is_empty()) assign();
|
|
|
|
// Set display variables
|
|
_width = std::min(dimw,(unsigned int)screen_width());
|
|
_height = std::min(dimh,(unsigned int)screen_height());
|
|
_normalization = normalization_type<4?normalization_type:3;
|
|
_is_fullscreen = fullscreen_flag;
|
|
_window_x = _window_y = cimg::type<int>::min();
|
|
_is_closed = closed_flag;
|
|
_is_cursor_visible = true;
|
|
_is_mouse_tracked = false;
|
|
_title = tmp_title;
|
|
flush();
|
|
if (_is_fullscreen) _init_fullscreen();
|
|
|
|
// Create event thread
|
|
void *const arg = (void*)(new void*[2]);
|
|
((void**)arg)[0] = (void*)this;
|
|
((void**)arg)[1] = (void*)_title;
|
|
_mutex = CreateMutex(0,FALSE_WIN,0);
|
|
_is_created = CreateEvent(0,FALSE_WIN,FALSE_WIN,0);
|
|
_thread = CreateThread(0,0,_events_thread,arg,0,0);
|
|
WaitForSingleObject(_is_created,INFINITE);
|
|
return *this;
|
|
}
|
|
|
|
CImgDisplay& assign() {
|
|
if (is_empty()) return flush();
|
|
DestroyWindow(_window);
|
|
TerminateThread(_thread,0);
|
|
delete[] _data;
|
|
delete[] _title;
|
|
_data = 0;
|
|
_title = 0;
|
|
if (_is_fullscreen) _desinit_fullscreen();
|
|
_width = _height = _normalization = _window_width = _window_height = 0;
|
|
_window_x = _window_y = cimg::type<int>::min();
|
|
_is_fullscreen = false;
|
|
_is_closed = true;
|
|
_min = _max = 0;
|
|
_title = 0;
|
|
flush();
|
|
return *this;
|
|
}
|
|
|
|
CImgDisplay& assign(const unsigned int dimw, const unsigned int dimh, const char *const title=0,
|
|
const unsigned int normalization_type=3,
|
|
const bool fullscreen_flag=false, const bool closed_flag=false) {
|
|
if (!dimw || !dimh) return assign();
|
|
_assign(dimw,dimh,title,normalization_type,fullscreen_flag,closed_flag);
|
|
_min = _max = 0;
|
|
std::memset(_data,0,sizeof(unsigned int)*_width*_height);
|
|
return paint();
|
|
}
|
|
|
|
template<typename T>
|
|
CImgDisplay& assign(const CImg<T>& img, const char *const title=0,
|
|
const unsigned int normalization_type=3,
|
|
const bool fullscreen_flag=false, const bool closed_flag=false) {
|
|
if (!img) return assign();
|
|
CImg<T> tmp;
|
|
const CImg<T>& nimg = (img._depth==1)?img:(tmp=img.get_projections2d((img._width - 1)/2,
|
|
(img._height - 1)/2,
|
|
(img._depth - 1)/2));
|
|
_assign(nimg._width,nimg._height,title,normalization_type,fullscreen_flag,closed_flag);
|
|
if (_normalization==2) _min = (float)nimg.min_max(_max);
|
|
return display(nimg);
|
|
}
|
|
|
|
template<typename T>
|
|
CImgDisplay& assign(const CImgList<T>& list, const char *const title=0,
|
|
const unsigned int normalization_type=3,
|
|
const bool fullscreen_flag=false, const bool closed_flag=false) {
|
|
if (!list) return assign();
|
|
CImg<T> tmp;
|
|
const CImg<T> img = list>'x', &nimg = (img._depth==1)?img:(tmp=img.get_projections2d((img._width - 1)/2,
|
|
(img._height - 1)/2,
|
|
(img._depth - 1)/2));
|
|
_assign(nimg._width,nimg._height,title,normalization_type,fullscreen_flag,closed_flag);
|
|
if (_normalization==2) _min = (float)nimg.min_max(_max);
|
|
return display(nimg);
|
|
}
|
|
|
|
CImgDisplay& assign(const CImgDisplay& disp) {
|
|
if (!disp) return assign();
|
|
_assign(disp._width,disp._height,disp._title,disp._normalization,disp._is_fullscreen,disp._is_closed);
|
|
std::memcpy(_data,disp._data,sizeof(unsigned int)*_width*_height);
|
|
return paint();
|
|
}
|
|
|
|
CImgDisplay& resize(const int nwidth, const int nheight, const bool force_redraw=true) {
|
|
if (!nwidth || !nheight || (is_empty() && (nwidth<0 || nheight<0))) return assign();
|
|
if (is_empty()) return assign((unsigned int)nwidth,(unsigned int)nheight);
|
|
const unsigned int
|
|
tmpdimx = (nwidth>0)?nwidth:(-nwidth*_width/100),
|
|
tmpdimy = (nheight>0)?nheight:(-nheight*_height/100),
|
|
dimx = tmpdimx?tmpdimx:1,
|
|
dimy = tmpdimy?tmpdimy:1;
|
|
if (_width!=dimx || _height!=dimy || _window_width!=dimx || _window_height!=dimy) {
|
|
if (_window_width!=dimx || _window_height!=dimy) {
|
|
RECT rect; rect.left = rect.top = 0; rect.right = (LONG)dimx - 1; rect.bottom = (LONG)dimy - 1;
|
|
AdjustWindowRect(&rect,WS_CAPTION | WS_SYSMENU | WS_THICKFRAME | WS_MINIMIZEBOX | WS_MAXIMIZEBOX,false);
|
|
const int cwidth = rect.right - rect.left + 1, cheight = rect.bottom - rect.top + 1;
|
|
SetWindowPos(_window,0,0,0,cwidth,cheight,SWP_NOMOVE | SWP_NOZORDER | SWP_NOCOPYBITS);
|
|
}
|
|
if (_width!=dimx || _height!=dimy) {
|
|
unsigned int *const ndata = new unsigned int[dimx*dimy];
|
|
if (force_redraw) _render_resize(_data,_width,_height,ndata,dimx,dimy);
|
|
else std::memset(ndata,0x80,sizeof(unsigned int)*dimx*dimy);
|
|
delete[] _data;
|
|
_data = ndata;
|
|
_bmi.bmiHeader.biWidth = (LONG)dimx;
|
|
_bmi.bmiHeader.biHeight = -(int)dimy;
|
|
_width = dimx;
|
|
_height = dimy;
|
|
}
|
|
_window_width = dimx; _window_height = dimy;
|
|
show();
|
|
}
|
|
_is_resized = false;
|
|
if (_is_fullscreen) move((screen_width() - width())/2,(screen_height() - height())/2);
|
|
if (force_redraw) return paint();
|
|
return *this;
|
|
}
|
|
|
|
CImgDisplay& toggle_fullscreen(const bool force_redraw=true) {
|
|
if (is_empty()) return *this;
|
|
if (force_redraw) {
|
|
const cimg_ulong buf_size = (cimg_ulong)_width*_height*4;
|
|
void *odata = std::malloc(buf_size);
|
|
if (odata) {
|
|
std::memcpy(odata,_data,buf_size);
|
|
assign(_width,_height,_title,_normalization,!_is_fullscreen,false);
|
|
std::memcpy(_data,odata,buf_size);
|
|
std::free(odata);
|
|
}
|
|
return paint();
|
|
}
|
|
return assign(_width,_height,_title,_normalization,!_is_fullscreen,false);
|
|
}
|
|
|
|
CImgDisplay& show() {
|
|
if (is_empty() || !_is_closed) return *this;
|
|
_is_closed = false;
|
|
if (_is_fullscreen) _init_fullscreen();
|
|
ShowWindow(_window,SW_SHOW);
|
|
_update_window_pos();
|
|
return paint();
|
|
}
|
|
|
|
CImgDisplay& close() {
|
|
if (is_empty() || _is_closed) return *this;
|
|
_is_closed = true;
|
|
if (_is_fullscreen) _desinit_fullscreen();
|
|
ShowWindow(_window,SW_HIDE);
|
|
_window_x = _window_y = cimg::type<int>::min();
|
|
return *this;
|
|
}
|
|
|
|
CImgDisplay& move(const int posx, const int posy) {
|
|
if (is_empty()) return *this;
|
|
if (_window_x!=posx || _window_y!=posy) {
|
|
SetWindowPos(_window,0,posx,posy,0,0,SWP_NOSIZE | SWP_NOZORDER);
|
|
_window_x = posx;
|
|
_window_y = posy;
|
|
}
|
|
show();
|
|
_is_moved = false;
|
|
return *this;
|
|
}
|
|
|
|
CImgDisplay& show_mouse() {
|
|
if (is_empty()) return *this;
|
|
_is_cursor_visible = true;
|
|
return *this;
|
|
}
|
|
|
|
CImgDisplay& hide_mouse() {
|
|
if (is_empty()) return *this;
|
|
_is_cursor_visible = false;
|
|
return *this;
|
|
}
|
|
|
|
CImgDisplay& set_mouse(const int posx, const int posy) {
|
|
if (is_empty() || _is_closed || posx<0 || posy<0) return *this;
|
|
if (!_is_closed) {
|
|
_update_window_pos();
|
|
const int res = (int)SetCursorPos(_window_x + posx,_window_y + posy);
|
|
if (res) { _mouse_x = posx; _mouse_y = posy; }
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
CImgDisplay& set_title(const char *const format, ...) {
|
|
if (is_empty()) return *this;
|
|
char *const tmp = new char[1024];
|
|
va_list ap;
|
|
va_start(ap, format);
|
|
cimg_vsnprintf(tmp,1024,format,ap);
|
|
va_end(ap);
|
|
if (!std::strcmp(_title,tmp)) { delete[] tmp; return *this; }
|
|
delete[] _title;
|
|
const unsigned int s = (unsigned int)std::strlen(tmp) + 1;
|
|
_title = new char[s];
|
|
std::memcpy(_title,tmp,s*sizeof(char));
|
|
SetWindowTextA(_window, tmp);
|
|
delete[] tmp;
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
CImgDisplay& display(const CImg<T>& img) {
|
|
if (!img)
|
|
throw CImgArgumentException(_cimgdisplay_instance
|
|
"display(): Empty specified image.",
|
|
cimgdisplay_instance);
|
|
if (is_empty()) return assign(img);
|
|
return render(img).paint();
|
|
}
|
|
|
|
CImgDisplay& paint() {
|
|
if (_is_closed) return *this;
|
|
WaitForSingleObject(_mutex,INFINITE);
|
|
SetDIBitsToDevice(_hdc,0,0,_width,_height,0,0,0,_height,_data,&_bmi,DIB_RGB_COLORS);
|
|
ReleaseMutex(_mutex);
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
CImgDisplay& render(const CImg<T>& img) {
|
|
if (!img)
|
|
throw CImgArgumentException(_cimgdisplay_instance
|
|
"render(): Empty specified image.",
|
|
cimgdisplay_instance);
|
|
|
|
if (is_empty()) return *this;
|
|
if (img._depth!=1) return render(img.get_projections2d((img._width - 1)/2,(img._height - 1)/2,
|
|
(img._depth - 1)/2));
|
|
|
|
const T
|
|
*data1 = img._data,
|
|
*data2 = (img._spectrum>=2)?img.data(0,0,0,1):data1,
|
|
*data3 = (img._spectrum>=3)?img.data(0,0,0,2):data1;
|
|
|
|
WaitForSingleObject(_mutex,INFINITE);
|
|
unsigned int
|
|
*const ndata = (img._width==_width && img._height==_height)?_data:
|
|
new unsigned int[(size_t)img._width*img._height],
|
|
*ptrd = ndata;
|
|
|
|
if (!_normalization || (_normalization==3 && cimg::type<T>::string()==cimg::type<unsigned char>::string())) {
|
|
_min = _max = 0;
|
|
switch (img._spectrum) {
|
|
case 1 : {
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char val = (unsigned char)*(data1++);
|
|
*(ptrd++) = (unsigned int)((val<<16) | (val<<8) | val);
|
|
}
|
|
} break;
|
|
case 2 : {
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char
|
|
R = (unsigned char)*(data1++),
|
|
G = (unsigned char)*(data2++);
|
|
*(ptrd++) = (unsigned int)((R<<16) | (G<<8));
|
|
}
|
|
} break;
|
|
default : {
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char
|
|
R = (unsigned char)*(data1++),
|
|
G = (unsigned char)*(data2++),
|
|
B = (unsigned char)*(data3++);
|
|
*(ptrd++) = (unsigned int)((R<<16) | (G<<8) | B);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
if (_normalization==3) {
|
|
if (cimg::type<T>::is_float()) _min = (float)img.min_max(_max);
|
|
else {
|
|
_min = (float)cimg::type<T>::min();
|
|
_max = (float)cimg::type<T>::max();
|
|
}
|
|
} else if ((_min>_max) || _normalization==1) _min = (float)img.min_max(_max);
|
|
const float delta = _max - _min, mm = 255/(delta?delta:1.f);
|
|
switch (img._spectrum) {
|
|
case 1 : {
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char val = (unsigned char)((*(data1++) - _min)*mm);
|
|
*(ptrd++) = (unsigned int)((val<<16) | (val<<8) | val);
|
|
}
|
|
} break;
|
|
case 2 : {
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char
|
|
R = (unsigned char)((*(data1++) - _min)*mm),
|
|
G = (unsigned char)((*(data2++) - _min)*mm);
|
|
*(ptrd++) = (unsigned int)((R<<16) | (G<<8));
|
|
}
|
|
} break;
|
|
default : {
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned char
|
|
R = (unsigned char)((*(data1++) - _min)*mm),
|
|
G = (unsigned char)((*(data2++) - _min)*mm),
|
|
B = (unsigned char)((*(data3++) - _min)*mm);
|
|
*(ptrd++) = (unsigned int)((R<<16) | (G<<8) | B);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (ndata!=_data) { _render_resize(ndata,img._width,img._height,_data,_width,_height); delete[] ndata; }
|
|
ReleaseMutex(_mutex);
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
static void screenshot(const int x0, const int y0, const int x1, const int y1, CImg<T>& img) {
|
|
img.assign();
|
|
HDC hScreen = GetDC(GetDesktopWindow());
|
|
if (hScreen) {
|
|
const int
|
|
width = GetDeviceCaps(hScreen,HORZRES),
|
|
height = GetDeviceCaps(hScreen,VERTRES);
|
|
int _x0 = x0, _y0 = y0, _x1 = x1, _y1 = y1;
|
|
if (_x0>_x1) cimg::swap(_x0,_x1);
|
|
if (_y0>_y1) cimg::swap(_y0,_y1);
|
|
if (_x1>=0 && _x0<width && _y1>=0 && _y0<height) {
|
|
_x0 = std::max(_x0,0);
|
|
_y0 = std::max(_y0,0);
|
|
_x1 = std::min(_x1,width - 1);
|
|
_y1 = std::min(_y1,height - 1);
|
|
const int bw = _x1 - _x0 + 1, bh = _y1 - _y0 + 1;
|
|
HDC hdcMem = CreateCompatibleDC(hScreen);
|
|
if (hdcMem) {
|
|
HBITMAP hBitmap = CreateCompatibleBitmap(hScreen,bw,bh);
|
|
if (hBitmap) {
|
|
HGDIOBJ hOld = SelectObject(hdcMem,hBitmap);
|
|
if (hOld && BitBlt(hdcMem,0,0,bw,bh,hScreen,_x0,_y0,SRCCOPY) && SelectObject(hdcMem,hOld)) {
|
|
BITMAPINFOHEADER bmi;
|
|
bmi.biSize = sizeof(BITMAPINFOHEADER);
|
|
bmi.biWidth = bw;
|
|
bmi.biHeight = -bh;
|
|
bmi.biPlanes = 1;
|
|
bmi.biBitCount = 32;
|
|
bmi.biCompression = BI_RGB;
|
|
bmi.biSizeImage = 0;
|
|
bmi.biXPelsPerMeter = bmi.biYPelsPerMeter = 0;
|
|
bmi.biClrUsed = bmi.biClrImportant = 0;
|
|
unsigned char *buf = new unsigned char[4*bw*bh];
|
|
if (GetDIBits(hdcMem,hBitmap,0,bh,buf,(BITMAPINFO*)&bmi,DIB_RGB_COLORS)) {
|
|
img.assign(bw,bh,1,3);
|
|
const unsigned char *ptrs = buf;
|
|
T *pR = img.data(0,0,0,0), *pG = img.data(0,0,0,1), *pB = img.data(0,0,0,2);
|
|
cimg_forXY(img,x,y) {
|
|
*(pR++) = (T)ptrs[2];
|
|
*(pG++) = (T)ptrs[1];
|
|
*(pB++) = (T)ptrs[0];
|
|
ptrs+=4;
|
|
}
|
|
}
|
|
delete[] buf;
|
|
}
|
|
DeleteObject(hBitmap);
|
|
}
|
|
DeleteDC(hdcMem);
|
|
}
|
|
}
|
|
ReleaseDC(GetDesktopWindow(),hScreen);
|
|
}
|
|
if (img.is_empty())
|
|
throw CImgDisplayException("CImgDisplay::screenshot(): Failed to take screenshot "
|
|
"with coordinates (%d,%d)-(%d,%d).",
|
|
x0,y0,x1,y1);
|
|
}
|
|
|
|
template<typename T>
|
|
const CImgDisplay& snapshot(CImg<T>& img) const {
|
|
if (is_empty()) { img.assign(); return *this; }
|
|
const unsigned int *ptrs = _data;
|
|
img.assign(_width,_height,1,3);
|
|
T
|
|
*data1 = img.data(0,0,0,0),
|
|
*data2 = img.data(0,0,0,1),
|
|
*data3 = img.data(0,0,0,2);
|
|
for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) {
|
|
const unsigned int val = *(ptrs++);
|
|
*(data1++) = (T)(unsigned char)(val>>16);
|
|
*(data2++) = (T)(unsigned char)((val>>8)&0xFF);
|
|
*(data3++) = (T)(unsigned char)(val&0xFF);
|
|
}
|
|
return *this;
|
|
}
|
|
#endif
|
|
|
|
//@}
|
|
}; // struct CImgDisplay { ...
|
|
|
|
/*
|
|
#--------------------------------------
|
|
#
|
|
#
|
|
#
|
|
# Definition of the CImg<T> structure
|
|
#
|
|
#
|
|
#
|
|
#--------------------------------------
|
|
*/
|
|
|
|
//! Class representing an image (up to 4 dimensions wide), each pixel being of type \c T.
|
|
/**
|
|
This is the main class of the %CImg Library. It declares and constructs
|
|
an image, allows access to its pixel values, and is able to perform various image operations.
|
|
|
|
\par Image representation
|
|
|
|
A %CImg image is defined as an instance of the container \c CImg<T>, which contains a regular grid of pixels,
|
|
each pixel value being of type \c T. The image grid can have up to 4 dimensions: width, height, depth
|
|
and number of channels.
|
|
Usually, the three first dimensions are used to describe spatial coordinates <tt>(x,y,z)</tt>,
|
|
while the number of channels is rather used as a vector-valued dimension
|
|
(it may describe the R,G,B color channels for instance).
|
|
If you need a fifth dimension, you can use image lists \c CImgList<T> rather than simple images \c CImg<T>.
|
|
|
|
Thus, the \c CImg<T> class is able to represent volumetric images of vector-valued pixels,
|
|
as well as images with less dimensions (1D scalar signal, 2D color images, ...).
|
|
Most member functions of the class CImg<\c T> are designed to handle this maximum case of (3+1) dimensions.
|
|
|
|
Concerning the pixel value type \c T:
|
|
fully supported template types are the basic C++ types: <tt>unsigned char, char, short, unsigned int, int,
|
|
unsigned long, long, float, double, ... </tt>.
|
|
Typically, fast image display can be done using <tt>CImg<unsigned char></tt> images,
|
|
while complex image processing algorithms may be rather coded using <tt>CImg<float></tt> or <tt>CImg<double></tt>
|
|
images that have floating-point pixel values. The default value for the template T is \c float.
|
|
Using your own template types may be possible. However, you will certainly have to define the complete set
|
|
of arithmetic and logical operators for your class.
|
|
|
|
\par Image structure
|
|
|
|
The \c CImg<T> structure contains \e six fields:
|
|
- \c _width defines the number of \a columns of the image (size along the X-axis).
|
|
- \c _height defines the number of \a rows of the image (size along the Y-axis).
|
|
- \c _depth defines the number of \a slices of the image (size along the Z-axis).
|
|
- \c _spectrum defines the number of \a channels of the image (size along the C-axis).
|
|
- \c _data defines a \a pointer to the \a pixel \a data (of type \c T).
|
|
- \c _is_shared is a boolean that tells if the memory buffer \c data is shared with
|
|
another image.
|
|
|
|
You can access these fields publicly although it is recommended to use the dedicated functions
|
|
width(), height(), depth(), spectrum() and ptr() to do so.
|
|
Image dimensions are not limited to a specific range (as long as you got enough available memory).
|
|
A value of \e 1 usually means that the corresponding dimension is \a flat.
|
|
If one of the dimensions is \e 0, or if the data pointer is null, the image is considered as \e empty.
|
|
Empty images should not contain any pixel data and thus, will not be processed by CImg member functions
|
|
(a CImgInstanceException will be thrown instead).
|
|
Pixel data are stored in memory, in a non interlaced mode (See \ref cimg_storage).
|
|
|
|
\par Image declaration and construction
|
|
|
|
Declaring an image can be done by using one of the several available constructors.
|
|
Here is a list of the most used:
|
|
|
|
- Construct images from arbitrary dimensions:
|
|
- <tt>CImg<char> img;</tt> declares an empty image.
|
|
- <tt>CImg<unsigned char> img(128,128);</tt> declares a 128x128 greyscale image with
|
|
\c unsigned \c char pixel values.
|
|
- <tt>CImg<double> img(3,3);</tt> declares a 3x3 matrix with \c double coefficients.
|
|
- <tt>CImg<unsigned char> img(256,256,1,3);</tt> declares a 256x256x1x3 (color) image
|
|
(colors are stored as an image with three channels).
|
|
- <tt>CImg<double> img(128,128,128);</tt> declares a 128x128x128 volumetric and greyscale image
|
|
(with \c double pixel values).
|
|
- <tt>CImg<> img(128,128,128,3);</tt> declares a 128x128x128 volumetric color image
|
|
(with \c float pixels, which is the default value of the template parameter \c T).
|
|
- \b Note: images pixels are <b>not automatically initialized to 0</b>. You may use the function \c fill() to
|
|
do it, or use the specific constructor taking 5 parameters like this:
|
|
<tt>CImg<> img(128,128,128,3,0);</tt> declares a 128x128x128 volumetric color image with all pixel values to 0.
|
|
|
|
- Construct images from filenames:
|
|
- <tt>CImg<unsigned char> img("image.jpg");</tt> reads a JPEG color image from the file "image.jpg".
|
|
- <tt>CImg<float> img("analyze.hdr");</tt> reads a volumetric image (ANALYZE7.5 format) from the
|
|
file "analyze.hdr".
|
|
- \b Note: You need to install <a href="http://www.imagemagick.org">ImageMagick</a>
|
|
to be able to read common compressed image formats (JPG,PNG, ...) (See \ref cimg_files_io).
|
|
|
|
- Construct images from C-style arrays:
|
|
- <tt>CImg<int> img(data_buffer,256,256);</tt> constructs a 256x256 greyscale image from a \c int* buffer
|
|
\c data_buffer (of size 256x256=65536).
|
|
- <tt>CImg<unsigned char> img(data_buffer,256,256,1,3);</tt> constructs a 256x256 color image
|
|
from a \c unsigned \c char* buffer \c data_buffer (where R,G,B channels follow each others).
|
|
|
|
The complete list of constructors can be found <a href="#constructors">here</a>.
|
|
|
|
\par Most useful functions
|
|
|
|
The \c CImg<T> class contains a lot of functions that operates on images.
|
|
Some of the most useful are:
|
|
|
|
- operator()(): Read or write pixel values.
|
|
- display(): displays the image in a new window.
|
|
**/
|
|
template<typename T>
|
|
struct CImg {
|
|
|
|
unsigned int _width, _height, _depth, _spectrum;
|
|
bool _is_shared;
|
|
T *_data;
|
|
|
|
//! Simple iterator type, to loop through each pixel value of an image instance.
|
|
/**
|
|
\note
|
|
- The \c CImg<T>::iterator type is defined to be a <tt>T*</tt>.
|
|
- You will seldom have to use iterators in %CImg, most classical operations
|
|
being achieved (often in a faster way) using methods of \c CImg<T>.
|
|
\par Example
|
|
\code
|
|
CImg<float> img("reference.jpg"); // Load image from file
|
|
// Set all pixels to '0', with a CImg iterator.
|
|
for (CImg<float>::iterator it = img.begin(), it<img.end(); ++it) *it = 0;
|
|
img.fill(0); // Do the same with a built-in method
|
|
\endcode
|
|
**/
|
|
typedef T* iterator;
|
|
|
|
//! Simple const iterator type, to loop through each pixel value of a \c const image instance.
|
|
/**
|
|
\note
|
|
- The \c CImg<T>::const_iterator type is defined to be a \c const \c T*.
|
|
- You will seldom have to use iterators in %CImg, most classical operations
|
|
being achieved (often in a faster way) using methods of \c CImg<T>.
|
|
\par Example
|
|
\code
|
|
const CImg<float> img("reference.jpg"); // Load image from file
|
|
float sum = 0;
|
|
// Compute sum of all pixel values, with a CImg iterator.
|
|
for (CImg<float>::iterator it = img.begin(), it<img.end(); ++it) sum+=*it;
|
|
const float sum2 = img.sum(); // Do the same with a built-in method
|
|
\endcode
|
|
**/
|
|
typedef const T* const_iterator;
|
|
|
|
//! Pixel value type.
|
|
/**
|
|
Refer to the type of the pixel values of an image instance.
|
|
\note
|
|
- The \c CImg<T>::value_type type of a \c CImg<T> is defined to be a \c T.
|
|
- \c CImg<T>::value_type is actually not used in %CImg methods. It has been mainly defined for
|
|
compatibility with STL naming conventions.
|
|
**/
|
|
typedef T value_type;
|
|
|
|
// Define common types related to template type T.
|
|
typedef typename cimg::superset<T,bool>::type Tbool;
|
|
typedef typename cimg::superset<T,unsigned char>::type Tuchar;
|
|
typedef typename cimg::superset<T,char>::type Tchar;
|
|
typedef typename cimg::superset<T,unsigned short>::type Tushort;
|
|
typedef typename cimg::superset<T,short>::type Tshort;
|
|
typedef typename cimg::superset<T,unsigned int>::type Tuint;
|
|
typedef typename cimg::superset<T,int>::type Tint;
|
|
typedef typename cimg::superset<T,cimg_ulong>::type Tulong;
|
|
typedef typename cimg::superset<T,cimg_long>::type Tlong;
|
|
typedef typename cimg::superset<T,float>::type Tfloat;
|
|
typedef typename cimg::superset<T,double>::type Tdouble;
|
|
typedef typename cimg::last<T,bool>::type boolT;
|
|
typedef typename cimg::last<T,unsigned char>::type ucharT;
|
|
typedef typename cimg::last<T,char>::type charT;
|
|
typedef typename cimg::last<T,unsigned short>::type ushortT;
|
|
typedef typename cimg::last<T,short>::type shortT;
|
|
typedef typename cimg::last<T,unsigned int>::type uintT;
|
|
typedef typename cimg::last<T,int>::type intT;
|
|
typedef typename cimg::last<T,cimg_ulong>::type ulongT;
|
|
typedef typename cimg::last<T,cimg_long>::type longT;
|
|
typedef typename cimg::last<T,cimg_uint64>::type uint64T;
|
|
typedef typename cimg::last<T,cimg_int64>::type int64T;
|
|
typedef typename cimg::last<T,float>::type floatT;
|
|
typedef typename cimg::last<T,double>::type doubleT;
|
|
|
|
// Return 'dx*dy*dz*dc' as a 'size_t' and check no overflow occurs.
|
|
static size_t safe_size(const unsigned int dx, const unsigned int dy,
|
|
const unsigned int dz, const unsigned int dc) {
|
|
if (!(dx && dy && dz && dc)) return 0;
|
|
size_t siz = (size_t)dx, osiz = siz;
|
|
if ((dy==1 || (siz*=dy)>osiz) &&
|
|
((osiz = siz), dz==1 || (siz*=dz)>osiz) &&
|
|
((osiz = siz), dc==1 || (siz*=dc)>osiz) &&
|
|
((osiz = siz), sizeof(T)==1 || (siz*sizeof(T))>osiz)) {
|
|
if (siz > cimg_max_buf_size){
|
|
throw CImgArgumentException("CImg<%s>::safe_size(): Specified size (%u,%u,%u,%u) exceeds maximum "
|
|
"allowed buffer size of %lu ",
|
|
pixel_type(),dx,dy,dz,dc,cimg_max_buf_size);
|
|
}
|
|
return siz;
|
|
}
|
|
throw CImgArgumentException("CImg<%s>::safe_size(): Specified size (%u,%u,%u,%u) overflows 'size_t'.",
|
|
pixel_type(),dx,dy,dz,dc);
|
|
}
|
|
|
|
//@}
|
|
//---------------------------
|
|
//
|
|
//! \name Plugins
|
|
//@{
|
|
//---------------------------
|
|
#ifdef cimg_plugin
|
|
#include cimg_plugin
|
|
#endif
|
|
#ifdef cimg_plugin1
|
|
#include cimg_plugin1
|
|
#endif
|
|
#ifdef cimg_plugin2
|
|
#include cimg_plugin2
|
|
#endif
|
|
#ifdef cimg_plugin3
|
|
#include cimg_plugin3
|
|
#endif
|
|
#ifdef cimg_plugin4
|
|
#include cimg_plugin4
|
|
#endif
|
|
#ifdef cimg_plugin5
|
|
#include cimg_plugin5
|
|
#endif
|
|
#ifdef cimg_plugin6
|
|
#include cimg_plugin6
|
|
#endif
|
|
#ifdef cimg_plugin7
|
|
#include cimg_plugin7
|
|
#endif
|
|
#ifdef cimg_plugin8
|
|
#include cimg_plugin8
|
|
#endif
|
|
|
|
//@}
|
|
//---------------------------------------------------------
|
|
//
|
|
//! \name Constructors / Destructor / Instance Management
|
|
//@{
|
|
//---------------------------------------------------------
|
|
|
|
//! Destroy image.
|
|
/**
|
|
\note
|
|
- The pixel buffer data() is deallocated if necessary, e.g. for non-empty and non-shared image instances.
|
|
- Destroying an empty or shared image does nothing actually.
|
|
\warning
|
|
- When destroying a non-shared image, make sure that you will \e not operate on a remaining shared image
|
|
that shares its buffer with the destroyed instance, in order to avoid further invalid memory access
|
|
(to a deallocated buffer).
|
|
**/
|
|
~CImg() {
|
|
if (!_is_shared) delete[] _data;
|
|
}
|
|
|
|
//! Construct empty image.
|
|
/**
|
|
\note
|
|
- An empty image has no pixel data and all of its dimensions width(), height(), depth(), spectrum()
|
|
are set to \c 0, as well as its pixel buffer pointer data().
|
|
- An empty image may be re-assigned afterwards, e.g. with the family of
|
|
assign(unsigned int,unsigned int,unsigned int,unsigned int) methods,
|
|
or by operator=(const CImg<t>&). In all cases, the type of pixels stays \c T.
|
|
- An empty image is never shared.
|
|
\par Example
|
|
\code
|
|
CImg<float> img1, img2; // Construct two empty images
|
|
img1.assign(256,256,1,3); // Re-assign 'img1' to be a 256x256x1x3 (color) image
|
|
img2 = img1.get_rand(0,255); // Re-assign 'img2' to be a random-valued version of 'img1'
|
|
img2.assign(); // Re-assign 'img2' to be an empty image again
|
|
\endcode
|
|
**/
|
|
CImg():_width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) {}
|
|
|
|
//! Construct image with specified size.
|
|
/**
|
|
\param size_x Image width().
|
|
\param size_y Image height().
|
|
\param size_z Image depth().
|
|
\param size_c Image spectrum() (number of channels).
|
|
\note
|
|
- It is able to create only \e non-shared images, and allocates thus a pixel buffer data()
|
|
for each constructed image instance.
|
|
- Setting one dimension \c size_x,\c size_y,\c size_z or \c size_c to \c 0 leads to the construction of
|
|
an \e empty image.
|
|
- A \c CImgInstanceException is thrown when the pixel buffer cannot be allocated
|
|
(e.g. when requested size is too big for available memory).
|
|
\warning
|
|
- The allocated pixel buffer is \e not filled with a default value, and is likely to contain garbage values.
|
|
In order to initialize pixel values during construction (e.g. with \c 0), use constructor
|
|
CImg(unsigned int,unsigned int,unsigned int,unsigned int,T) instead.
|
|
\par Example
|
|
\code
|
|
CImg<float> img1(256,256,1,3); // Construct a 256x256x1x3 (color) image, filled with garbage values
|
|
CImg<float> img2(256,256,1,3,0); // Construct a 256x256x1x3 (color) image, filled with value '0'
|
|
\endcode
|
|
**/
|
|
explicit CImg(const unsigned int size_x, const unsigned int size_y=1,
|
|
const unsigned int size_z=1, const unsigned int size_c=1):
|
|
_is_shared(false) {
|
|
const size_t siz = safe_size(size_x,size_y,size_z,size_c);
|
|
if (siz) {
|
|
_width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c;
|
|
try { _data = new T[siz]; } catch (...) {
|
|
_width = _height = _depth = _spectrum = 0; _data = 0;
|
|
throw CImgInstanceException(_cimg_instance
|
|
"CImg(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).",
|
|
cimg_instance,
|
|
cimg::strbuffersize(sizeof(T)*size_x*size_y*size_z*size_c),
|
|
size_x,size_y,size_z,size_c);
|
|
}
|
|
} else { _width = _height = _depth = _spectrum = 0; _data = 0; }
|
|
}
|
|
|
|
//! Construct image with specified size and initialize pixel values.
|
|
/**
|
|
\param size_x Image width().
|
|
\param size_y Image height().
|
|
\param size_z Image depth().
|
|
\param size_c Image spectrum() (number of channels).
|
|
\param value Initialization value.
|
|
\note
|
|
- Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int),
|
|
but it also fills the pixel buffer with the specified \c value.
|
|
\warning
|
|
- It cannot be used to construct a vector-valued image and initialize it with \e vector-valued pixels
|
|
(e.g. RGB vector, for color images).
|
|
For this task, you may use fillC() after construction.
|
|
**/
|
|
CImg(const unsigned int size_x, const unsigned int size_y,
|
|
const unsigned int size_z, const unsigned int size_c, const T& value):
|
|
_is_shared(false) {
|
|
const size_t siz = safe_size(size_x,size_y,size_z,size_c);
|
|
if (siz) {
|
|
_width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c;
|
|
try { _data = new T[siz]; } catch (...) {
|
|
_width = _height = _depth = _spectrum = 0; _data = 0;
|
|
throw CImgInstanceException(_cimg_instance
|
|
"CImg(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).",
|
|
cimg_instance,
|
|
cimg::strbuffersize(sizeof(T)*size_x*size_y*size_z*size_c),
|
|
size_x,size_y,size_z,size_c);
|
|
}
|
|
fill(value);
|
|
} else { _width = _height = _depth = _spectrum = 0; _data = 0; }
|
|
}
|
|
|
|
//! Construct image with specified size and initialize pixel values from a sequence of integers.
|
|
/**
|
|
Construct a new image instance of size \c size_x x \c size_y x \c size_z x \c size_c,
|
|
with pixels of type \c T, and initialize pixel
|
|
values from the specified sequence of integers \c value0,\c value1,\c ...
|
|
\param size_x Image width().
|
|
\param size_y Image height().
|
|
\param size_z Image depth().
|
|
\param size_c Image spectrum() (number of channels).
|
|
\param value0 First value of the initialization sequence (must be an \e integer).
|
|
\param value1 Second value of the initialization sequence (must be an \e integer).
|
|
\param ...
|
|
\note
|
|
- Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int), but it also fills
|
|
the pixel buffer with a sequence of specified integer values.
|
|
\warning
|
|
- You must specify \e exactly \c size_x*\c size_y*\c size_z*\c size_c integers in the initialization sequence.
|
|
Otherwise, the constructor may crash or fill your image pixels with garbage.
|
|
\par Example
|
|
\code
|
|
const CImg<float> img(2,2,1,3, // Construct a 2x2 color (RGB) image
|
|
0,255,0,255, // Set the 4 values for the red component
|
|
0,0,255,255, // Set the 4 values for the green component
|
|
64,64,64,64); // Set the 4 values for the blue component
|
|
img.resize(150,150).display();
|
|
\endcode
|
|
\image html ref_constructor1.jpg
|
|
**/
|
|
CImg(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c,
|
|
const int value0, const int value1, ...):
|
|
_width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) {
|
|
#define _CImg_stdarg(img,a0,a1,N,t) { \
|
|
size_t _siz = (size_t)N; \
|
|
if (_siz--) { \
|
|
va_list ap; \
|
|
va_start(ap,a1); \
|
|
T *ptrd = (img)._data; \
|
|
*(ptrd++) = (T)a0; \
|
|
if (_siz--) { \
|
|
*(ptrd++) = (T)a1; \
|
|
for ( ; _siz; --_siz) *(ptrd++) = (T)va_arg(ap,t); \
|
|
} \
|
|
va_end(ap); \
|
|
} \
|
|
}
|
|
assign(size_x,size_y,size_z,size_c);
|
|
_CImg_stdarg(*this,value0,value1,safe_size(size_x,size_y,size_z,size_c),int);
|
|
}
|
|
|
|
#if cimg_use_cpp11==1
|
|
//! Construct image with specified size and initialize pixel values from an initializer list of integers.
|
|
/**
|
|
Construct a new image instance of size \c size_x x \c size_y x \c size_z x \c size_c,
|
|
with pixels of type \c T, and initialize pixel
|
|
values from the specified initializer list of integers { \c value0,\c value1,\c ... }
|
|
\param size_x Image width().
|
|
\param size_y Image height().
|
|
\param size_z Image depth().
|
|
\param size_c Image spectrum() (number of channels).
|
|
\param { value0, value1, ... } Initialization list
|
|
\param repeat_values Tells if the value filling process is repeated over the image.
|
|
|
|
\note
|
|
- Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int), but it also fills
|
|
the pixel buffer with a sequence of specified integer values.
|
|
\par Example
|
|
\code
|
|
const CImg<float> img(2,2,1,3, // Construct a 2x2 color (RGB) image
|
|
{ 0,255,0,255, // Set the 4 values for the red component
|
|
0,0,255,255, // Set the 4 values for the green component
|
|
64,64,64,64 }); // Set the 4 values for the blue component
|
|
img.resize(150,150).display();
|
|
\endcode
|
|
\image html ref_constructor1.jpg
|
|
**/
|
|
template<typename t>
|
|
CImg(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c,
|
|
const std::initializer_list<t> values,
|
|
const bool repeat_values=true):
|
|
_width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) {
|
|
#define _cimg_constructor_cpp11(repeat_values) \
|
|
auto it = values.begin(); \
|
|
size_t siz = size(); \
|
|
if (repeat_values) for (T *ptrd = _data; siz--; ) { \
|
|
*(ptrd++) = (T)(*(it++)); if (it==values.end()) it = values.begin(); } \
|
|
else { siz = std::min(siz,values.size()); for (T *ptrd = _data; siz--; ) *(ptrd++) = (T)(*(it++)); }
|
|
assign(size_x,size_y,size_z,size_c);
|
|
_cimg_constructor_cpp11(repeat_values);
|
|
}
|
|
|
|
template<typename t>
|
|
CImg(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z,
|
|
std::initializer_list<t> values,
|
|
const bool repeat_values=true):
|
|
_width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) {
|
|
assign(size_x,size_y,size_z);
|
|
_cimg_constructor_cpp11(repeat_values);
|
|
}
|
|
|
|
template<typename t>
|
|
CImg(const unsigned int size_x, const unsigned int size_y,
|
|
std::initializer_list<t> values,
|
|
const bool repeat_values=true):
|
|
_width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) {
|
|
assign(size_x,size_y);
|
|
_cimg_constructor_cpp11(repeat_values);
|
|
}
|
|
|
|
template<typename t>
|
|
CImg(const unsigned int size_x,
|
|
std::initializer_list<t> values,
|
|
const bool repeat_values=true):_width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) {
|
|
assign(size_x);
|
|
_cimg_constructor_cpp11(repeat_values);
|
|
}
|
|
|
|
//! Construct single channel 1D image with pixel values and width obtained from an initializer list of integers.
|
|
/**
|
|
Construct a new image instance of size \c width x \c 1 x \c 1 x \c 1,
|
|
with pixels of type \c T, and initialize pixel
|
|
values from the specified initializer list of integers { \c value0,\c value1,\c ... }. Image width is
|
|
given by the size of the initializer list.
|
|
\param { value0, value1, ... } Initialization list
|
|
\note
|
|
- Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int) with height=1, depth=1, and spectrum=1,
|
|
but it also fills the pixel buffer with a sequence of specified integer values.
|
|
\par Example
|
|
\code
|
|
const CImg<float> img = {10,20,30,20,10 }; // Construct a 5x1 image with one channel, and set its pixel values
|
|
img.resize(150,150).display();
|
|
\endcode
|
|
\image html ref_constructor1.jpg
|
|
**/
|
|
template<typename t>
|
|
CImg(const std::initializer_list<t> values):
|
|
_width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) {
|
|
assign(values.size(),1,1,1);
|
|
auto it = values.begin();
|
|
unsigned int siz = _width;
|
|
for (T *ptrd = _data; siz--; ) *(ptrd++) = (T)(*(it++));
|
|
}
|
|
|
|
template<typename t>
|
|
CImg<T>& operator=(std::initializer_list<t> values) {
|
|
_cimg_constructor_cpp11(siz>values.size());
|
|
return *this;
|
|
}
|
|
#endif
|
|
|
|
//! Construct image with specified size and initialize pixel values from a sequence of doubles.
|
|
/**
|
|
Construct a new image instance of size \c size_x x \c size_y x \c size_z x \c size_c, with pixels of type \c T,
|
|
and initialize pixel values from the specified sequence of doubles \c value0,\c value1,\c ...
|
|
\param size_x Image width().
|
|
\param size_y Image height().
|
|
\param size_z Image depth().
|
|
\param size_c Image spectrum() (number of channels).
|
|
\param value0 First value of the initialization sequence (must be a \e double).
|
|
\param value1 Second value of the initialization sequence (must be a \e double).
|
|
\param ...
|
|
\note
|
|
- Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int,int,int,...), but
|
|
takes a sequence of double values instead of integers.
|
|
\warning
|
|
- You must specify \e exactly \c dx*\c dy*\c dz*\c dc doubles in the initialization sequence.
|
|
Otherwise, the constructor may crash or fill your image with garbage.
|
|
For instance, the code below will probably crash on most platforms:
|
|
\code
|
|
const CImg<float> img(2,2,1,1, 0.5,0.5,255,255); // FAIL: The two last arguments are 'int', not 'double'!
|
|
\endcode
|
|
**/
|
|
CImg(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c,
|
|
const double value0, const double value1, ...):
|
|
_width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) {
|
|
assign(size_x,size_y,size_z,size_c);
|
|
_CImg_stdarg(*this,value0,value1,safe_size(size_x,size_y,size_z,size_c),double);
|
|
}
|
|
|
|
//! Construct image with specified size and initialize pixel values from a value string.
|
|
/**
|
|
Construct a new image instance of size \c size_x x \c size_y x \c size_z x \c size_c, with pixels of type \c T,
|
|
and initializes pixel values from the specified string \c values.
|
|
\param size_x Image width().
|
|
\param size_y Image height().
|
|
\param size_z Image depth().
|
|
\param size_c Image spectrum() (number of channels).
|
|
\param values Value string describing the way pixel values are set.
|
|
\param repeat_values Tells if the value filling process is repeated over the image.
|
|
\note
|
|
- Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int), but it also fills
|
|
the pixel buffer with values described in the value string \c values.
|
|
- Value string \c values may describe two different filling processes:
|
|
- Either \c values is a sequences of values assigned to the image pixels, as in <tt>"1,2,3,7,8,2"</tt>.
|
|
In this case, set \c repeat_values to \c true to periodically fill the image with the value sequence.
|
|
- Either, \c values is a formula, as in <tt>"cos(x/10)*sin(y/20)"</tt>.
|
|
In this case, parameter \c repeat_values is pointless.
|
|
- For both cases, specifying \c repeat_values is mandatory.
|
|
It disambiguates the possible overloading of constructor
|
|
CImg(unsigned int,unsigned int,unsigned int,unsigned int,T) with \c T being a <tt>const char*</tt>.
|
|
- A \c CImgArgumentException is thrown when an invalid value string \c values is specified.
|
|
\par Example
|
|
\code
|
|
const CImg<float> img1(129,129,1,3,"0,64,128,192,255",true), // Construct image from a value sequence
|
|
img2(129,129,1,3,"if(c==0,255*abs(cos(x/10)),1.8*y)",false); // Construct image from a formula
|
|
(img1,img2).display();
|
|
\endcode
|
|
\image html ref_constructor2.jpg
|
|
**/
|
|
CImg(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c,
|
|
const char *const values, const bool repeat_values):_is_shared(false) {
|
|
const size_t siz = safe_size(size_x,size_y,size_z,size_c);
|
|
if (siz) {
|
|
_width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c;
|
|
try { _data = new T[siz]; } catch (...) {
|
|
_width = _height = _depth = _spectrum = 0; _data = 0;
|
|
throw CImgInstanceException(_cimg_instance
|
|
"CImg(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).",
|
|
cimg_instance,
|
|
cimg::strbuffersize(sizeof(T)*size_x*size_y*size_z*size_c),
|
|
size_x,size_y,size_z,size_c);
|
|
}
|
|
fill(values,repeat_values);
|
|
} else { _width = _height = _depth = _spectrum = 0; _data = 0; }
|
|
}
|
|
|
|
//! Construct image with specified size and initialize pixel values from a memory buffer.
|
|
/**
|
|
Construct a new image instance of size \c size_x x \c size_y x \c size_z x \c size_c, with pixels of type \c T,
|
|
and initializes pixel values from the specified \c t* memory buffer.
|
|
\param values Pointer to the input memory buffer.
|
|
\param size_x Image width().
|
|
\param size_y Image height().
|
|
\param size_z Image depth().
|
|
\param size_c Image spectrum() (number of channels).
|
|
\param is_shared Tells if input memory buffer must be shared by the current instance.
|
|
\note
|
|
- If \c is_shared is \c false, the image instance allocates its own pixel buffer,
|
|
and values from the specified input buffer are copied to the instance buffer.
|
|
If buffer types \c T and \c t are different, a regular static cast is performed during buffer copy.
|
|
- Otherwise, the image instance does \e not allocate a new buffer, and uses the input memory buffer as its
|
|
own pixel buffer. This case requires that types \c T and \c t are the same. Later, destroying such a shared
|
|
image will not deallocate the pixel buffer, this task being obviously charged to the initial buffer allocator.
|
|
- A \c CImgInstanceException is thrown when the pixel buffer cannot be allocated
|
|
(e.g. when requested size is too big for available memory).
|
|
\warning
|
|
- You must take care when operating on a shared image, since it may have an invalid pixel buffer pointer data()
|
|
(e.g. already deallocated).
|
|
\par Example
|
|
\code
|
|
unsigned char tab[256*256] = {};
|
|
CImg<unsigned char> img1(tab,256,256,1,1,false), // Construct new non-shared image from buffer 'tab'
|
|
img2(tab,256,256,1,1,true); // Construct new shared-image from buffer 'tab'
|
|
tab[1024] = 255; // Here, 'img2' is indirectly modified, but not 'img1'
|
|
\endcode
|
|
**/
|
|
template<typename t>
|
|
CImg(const t *const values, const unsigned int size_x, const unsigned int size_y=1,
|
|
const unsigned int size_z=1, const unsigned int size_c=1, const bool is_shared=false):_is_shared(false) {
|
|
if (is_shared) {
|
|
_width = _height = _depth = _spectrum = 0; _data = 0;
|
|
throw CImgArgumentException(_cimg_instance
|
|
"CImg(): Invalid construction request of a (%u,%u,%u,%u) shared instance "
|
|
"from a (%s*) buffer (pixel types are different).",
|
|
cimg_instance,
|
|
size_x,size_y,size_z,size_c,CImg<t>::pixel_type());
|
|
}
|
|
const size_t siz = safe_size(size_x,size_y,size_z,size_c);
|
|
if (values && siz) {
|
|
_width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c;
|
|
try { _data = new T[siz]; } catch (...) {
|
|
_width = _height = _depth = _spectrum = 0; _data = 0;
|
|
throw CImgInstanceException(_cimg_instance
|
|
"CImg(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).",
|
|
cimg_instance,
|
|
cimg::strbuffersize(sizeof(T)*size_x*size_y*size_z*size_c),
|
|
size_x,size_y,size_z,size_c);
|
|
|
|
}
|
|
const t *ptrs = values; cimg_for(*this,ptrd,T) *ptrd = (T)*(ptrs++);
|
|
} else { _width = _height = _depth = _spectrum = 0; _data = 0; }
|
|
}
|
|
|
|
//! Construct image with specified size and initialize pixel values from a memory buffer \specialization.
|
|
CImg(const T *const values, const unsigned int size_x, const unsigned int size_y=1,
|
|
const unsigned int size_z=1, const unsigned int size_c=1, const bool is_shared=false) {
|
|
const size_t siz = safe_size(size_x,size_y,size_z,size_c);
|
|
if (values && siz) {
|
|
_width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c; _is_shared = is_shared;
|
|
if (_is_shared) _data = const_cast<T*>(values);
|
|
else {
|
|
try { _data = new T[siz]; } catch (...) {
|
|
_width = _height = _depth = _spectrum = 0; _data = 0;
|
|
throw CImgInstanceException(_cimg_instance
|
|
"CImg(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).",
|
|
cimg_instance,
|
|
cimg::strbuffersize(sizeof(T)*size_x*size_y*size_z*size_c),
|
|
size_x,size_y,size_z,size_c);
|
|
}
|
|
std::memcpy(_data,values,siz*sizeof(T));
|
|
}
|
|
} else { _width = _height = _depth = _spectrum = 0; _is_shared = false; _data = 0; }
|
|
}
|
|
|
|
//! Construct image from memory buffer with specified size and pixel ordering scheme.
|
|
template<typename t>
|
|
CImg(const t *const values, const unsigned int size_x, const unsigned int size_y,
|
|
const unsigned int size_z, const unsigned int size_c,
|
|
const char *const axes_order):_data(0),_is_shared(false) {
|
|
const size_t siz = safe_size(size_x,size_y,size_z,size_c);
|
|
if (values && siz) {
|
|
unsigned char s_code[4] = { 0,1,2,3 }, n_code[4] = {};
|
|
for (unsigned int l = 0; axes_order[l]; ++l) {
|
|
int c = cimg::lowercase(axes_order[l]);
|
|
if (l>=4 || (c!='x' && c!='y' && c!='z' && c!='c')) { *s_code = 4; break; }
|
|
else { ++n_code[c%=4]; s_code[l] = c; }
|
|
}
|
|
if (*axes_order && *s_code<4 && *n_code<=1 && n_code[1]<=1 && n_code[2]<=1 && n_code[3]<=1) {
|
|
const unsigned int code = (s_code[0]<<12) | (s_code[1]<<8) | (s_code[2]<<4) | (s_code[3]);
|
|
int s0 = 0, s1 = 0, s2 = 0, s3 = 0;
|
|
const char *inv_order = 0;
|
|
switch (code) {
|
|
case 0x0123 : inv_order = "xyzc"; s0 = size_x; s1 = size_y; s2 = size_z; s3 = size_c; break; // xyzc
|
|
case 0x0132 : inv_order = "xyzc"; s0 = size_x; s1 = size_y; s2 = size_c; s3 = size_z; break; // xycz
|
|
case 0x0213 : inv_order = "xzyc"; s0 = size_x; s1 = size_z; s2 = size_y; s3 = size_c; break; // xzyc
|
|
case 0x0231 : inv_order = "xcyz"; s0 = size_x; s1 = size_z; s2 = size_c; s3 = size_y; break; // xzcy
|
|
case 0x0312 : inv_order = "xzcy"; s0 = size_x; s1 = size_c; s2 = size_y; s3 = size_z; break; // xcyz
|
|
case 0x0321 : inv_order = "xczy"; s0 = size_x; s1 = size_c; s2 = size_z; s3 = size_y; break; // xczy
|
|
case 0x1023 : inv_order = "yxzc"; s0 = size_y; s1 = size_x; s2 = size_z; s3 = size_c; break; // yxzc
|
|
case 0x1032 : inv_order = "yxcz"; s0 = size_y; s1 = size_x; s2 = size_c; s3 = size_z; break; // yxcz
|
|
case 0x1203 : inv_order = "zxyc"; s0 = size_y; s1 = size_z; s2 = size_x; s3 = size_c; break; // yzxc
|
|
case 0x1230 : inv_order = "cxyz"; s0 = size_y; s1 = size_z; s2 = size_c; s3 = size_x; break; // yzcx
|
|
case 0x1302 : inv_order = "zxcy"; s0 = size_y; s1 = size_c; s2 = size_x; s3 = size_z; break; // ycxz
|
|
case 0x1320 : inv_order = "cxzy"; s0 = size_y; s1 = size_c; s2 = size_z; s3 = size_x; break; // yczx
|
|
case 0x2013 : inv_order = "yzxc"; s0 = size_z; s1 = size_x; s2 = size_y; s3 = size_c; break; // zxyc
|
|
case 0x2031 : inv_order = "ycxz"; s0 = size_z; s1 = size_x; s2 = size_c; s3 = size_y; break; // zxcy
|
|
case 0x2103 : inv_order = "zyxc"; s0 = size_z; s1 = size_y; s2 = size_x; s3 = size_c; break; // zyxc
|
|
case 0x2130 : inv_order = "cyxz"; s0 = size_z; s1 = size_y; s2 = size_c; s3 = size_x; break; // zycx
|
|
case 0x2301 : inv_order = "zcxy"; s0 = size_z; s1 = size_c; s2 = size_x; s3 = size_y; break; // zcxy
|
|
case 0x2310 : inv_order = "czxy"; s0 = size_z; s1 = size_c; s2 = size_y; s3 = size_x; break; // zcyx
|
|
case 0x3012 : inv_order = "yzcx"; s0 = size_c; s1 = size_x; s2 = size_y; s3 = size_z; break; // cxyz
|
|
case 0x3021 : inv_order = "yczx"; s0 = size_c; s1 = size_x; s2 = size_z; s3 = size_y; break; // cxzy
|
|
case 0x3102 : inv_order = "zycx"; s0 = size_c; s1 = size_y; s2 = size_x; s3 = size_z; break; // cyxz
|
|
case 0x3120 : inv_order = "cyzx"; s0 = size_c; s1 = size_y; s2 = size_z; s3 = size_x; break; // cyzx
|
|
case 0x3201 : inv_order = "zcyx"; s0 = size_c; s1 = size_z; s2 = size_x; s3 = size_y; break; // czxy
|
|
case 0x3210 : inv_order = "czyx"; s0 = size_c; s1 = size_z; s2 = size_y; s3 = size_x; break; // czyx
|
|
}
|
|
CImg<t>(values,s0,s1,s2,s3,true).get_permute_axes(inv_order).move_to(*this);
|
|
} else {
|
|
_width = _height = _depth = _spectrum = 0; _data = 0;
|
|
throw CImgArgumentException(_cimg_instance
|
|
"CImg(): Invalid specified axes order '%s'.",
|
|
cimg_instance,
|
|
axes_order);
|
|
}
|
|
} else { _width = _height = _depth = _spectrum = 0; _is_shared = false; _data = 0; }
|
|
}
|
|
|
|
//! Construct image from reading an image file.
|
|
/**
|
|
Construct a new image instance with pixels of type \c T, and initialize pixel values with the data read from
|
|
an image file.
|
|
\param filename Filename, as a C-string.
|
|
\note
|
|
- Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int), but it reads the image
|
|
dimensions and pixel values from the specified image file.
|
|
- The recognition of the image file format by %CImg higlhy depends on the tools installed on your system
|
|
and on the external libraries you used to link your code against.
|
|
- Considered pixel type \c T should better fit the file format specification, or data loss may occur during
|
|
file load (e.g. constructing a \c CImg<unsigned char> from a float-valued image file).
|
|
- A \c CImgIOException is thrown when the specified \c filename cannot be read, or if the file format is not
|
|
recognized.
|
|
\par Example
|
|
\code
|
|
const CImg<float> img("reference.jpg");
|
|
img.display();
|
|
\endcode
|
|
\image html ref_image.jpg
|
|
**/
|
|
explicit CImg(const char *const filename):_width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) {
|
|
assign(filename);
|
|
}
|
|
|
|
//! Construct image copy.
|
|
/**
|
|
Construct a new image instance with pixels of type \c T, as a copy of an existing \c CImg<t> instance.
|
|
\param img Input image to copy.
|
|
\note
|
|
- Constructed copy has the same size width() x height() x depth() x spectrum() and pixel values as the
|
|
input image \c img.
|
|
- If input image \c img is \e shared and if types \c T and \c t are the same, the constructed copy is also
|
|
\e shared, and shares its pixel buffer with \c img.
|
|
Modifying a pixel value in the constructed copy will thus also modifies it in the input image \c img.
|
|
This behavior is needful to allow functions to return shared images.
|
|
- Otherwise, the constructed copy allocates its own pixel buffer, and copies pixel values from the input
|
|
image \c img into its buffer. The copied pixel values may be eventually statically casted if types \c T and
|
|
\c t are different.
|
|
- Constructing a copy from an image \c img when types \c t and \c T are the same is significantly faster than
|
|
with different types.
|
|
- A \c CImgInstanceException is thrown when the pixel buffer cannot be allocated
|
|
(e.g. not enough available memory).
|
|
**/
|
|
template<typename t>
|
|
CImg(const CImg<t>& img):_is_shared(false) {
|
|
const size_t siz = (size_t)img.size();
|
|
if (img._data && siz) {
|
|
_width = img._width; _height = img._height; _depth = img._depth; _spectrum = img._spectrum;
|
|
try { _data = new T[siz]; } catch (...) {
|
|
_width = _height = _depth = _spectrum = 0; _data = 0;
|
|
throw CImgInstanceException(_cimg_instance
|
|
"CImg(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).",
|
|
cimg_instance,
|
|
cimg::strbuffersize(sizeof(T)*img._width*img._height*img._depth*img._spectrum),
|
|
img._width,img._height,img._depth,img._spectrum);
|
|
}
|
|
const t *ptrs = img._data; cimg_for(*this,ptrd,T) *ptrd = (T)*(ptrs++);
|
|
} else { _width = _height = _depth = _spectrum = 0; _data = 0; }
|
|
}
|
|
|
|
//! Construct image copy \specialization.
|
|
CImg(const CImg<T>& img) {
|
|
const size_t siz = (size_t)img.size();
|
|
if (img._data && siz) {
|
|
_width = img._width; _height = img._height; _depth = img._depth; _spectrum = img._spectrum;
|
|
_is_shared = img._is_shared;
|
|
if (_is_shared) _data = const_cast<T*>(img._data);
|
|
else {
|
|
try { _data = new T[siz]; } catch (...) {
|
|
_width = _height = _depth = _spectrum = 0; _data = 0;
|
|
throw CImgInstanceException(_cimg_instance
|
|
"CImg(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).",
|
|
cimg_instance,
|
|
cimg::strbuffersize(sizeof(T)*img._width*img._height*img._depth*img._spectrum),
|
|
img._width,img._height,img._depth,img._spectrum);
|
|
|
|
}
|
|
std::memcpy(_data,img._data,siz*sizeof(T));
|
|
}
|
|
} else { _width = _height = _depth = _spectrum = 0; _is_shared = false; _data = 0; }
|
|
}
|
|
|
|
//! Advanced copy constructor.
|
|
/**
|
|
Construct a new image instance with pixels of type \c T, as a copy of an existing \c CImg<t> instance,
|
|
while forcing the shared state of the constructed copy.
|
|
\param img Input image to copy.
|
|
\param is_shared Tells about the shared state of the constructed copy.
|
|
\note
|
|
- Similar to CImg(const CImg<t>&), except that it allows to decide the shared state of
|
|
the constructed image, which does not depend anymore on the shared state of the input image \c img:
|
|
- If \c is_shared is \c true, the constructed copy will share its pixel buffer with the input image \c img.
|
|
For that case, the pixel types \c T and \c t \e must be the same.
|
|
- If \c is_shared is \c false, the constructed copy will allocate its own pixel buffer, whether the input
|
|
image \c img is shared or not.
|
|
- A \c CImgArgumentException is thrown when a shared copy is requested with different pixel types \c T and \c t.
|
|
**/
|
|
template<typename t>
|
|
CImg(const CImg<t>& img, const bool is_shared):_is_shared(false) {
|
|
if (is_shared) {
|
|
_width = _height = _depth = _spectrum = 0; _data = 0;
|
|
throw CImgArgumentException(_cimg_instance
|
|
"CImg(): Invalid construction request of a shared instance from a "
|
|
"CImg<%s> image (%u,%u,%u,%u,%p) (pixel types are different).",
|
|
cimg_instance,
|
|
CImg<t>::pixel_type(),img._width,img._height,img._depth,img._spectrum,img._data);
|
|
}
|
|
const size_t siz = (size_t)img.size();
|
|
if (img._data && siz) {
|
|
_width = img._width; _height = img._height; _depth = img._depth; _spectrum = img._spectrum;
|
|
try { _data = new T[siz]; } catch (...) {
|
|
_width = _height = _depth = _spectrum = 0; _data = 0;
|
|
throw CImgInstanceException(_cimg_instance
|
|
"CImg(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).",
|
|
cimg_instance,
|
|
cimg::strbuffersize(sizeof(T)*img._width*img._height*img._depth*img._spectrum),
|
|
img._width,img._height,img._depth,img._spectrum);
|
|
}
|
|
const t *ptrs = img._data; cimg_for(*this,ptrd,T) *ptrd = (T)*(ptrs++);
|
|
} else { _width = _height = _depth = _spectrum = 0; _data = 0; }
|
|
}
|
|
|
|
//! Advanced copy constructor \specialization.
|
|
CImg(const CImg<T>& img, const bool is_shared) {
|
|
const size_t siz = (size_t)img.size();
|
|
if (img._data && siz) {
|
|
_width = img._width; _height = img._height; _depth = img._depth; _spectrum = img._spectrum;
|
|
_is_shared = is_shared;
|
|
if (_is_shared) _data = const_cast<T*>(img._data);
|
|
else {
|
|
try { _data = new T[siz]; } catch (...) {
|
|
_width = _height = _depth = _spectrum = 0; _data = 0;
|
|
throw CImgInstanceException(_cimg_instance
|
|
"CImg(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).",
|
|
cimg_instance,
|
|
cimg::strbuffersize(sizeof(T)*img._width*img._height*img._depth*img._spectrum),
|
|
img._width,img._height,img._depth,img._spectrum);
|
|
}
|
|
std::memcpy(_data,img._data,siz*sizeof(T));
|
|
}
|
|
} else { _width = _height = _depth = _spectrum = 0; _is_shared = false; _data = 0; }
|
|
}
|
|
|
|
//! Construct image with dimensions borrowed from another image.
|
|
/**
|
|
Construct a new image instance with pixels of type \c T, and size get from some dimensions of an existing
|
|
\c CImg<t> instance.
|
|
\param img Input image from which dimensions are borrowed.
|
|
\param dimensions C-string describing the image size along the X,Y,Z and C-dimensions.
|
|
\note
|
|
- Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int), but it takes the image dimensions
|
|
(\e not its pixel values) from an existing \c CImg<t> instance.
|
|
- The allocated pixel buffer is \e not filled with a default value, and is likely to contain garbage values.
|
|
In order to initialize pixel values (e.g. with \c 0), use constructor CImg(const CImg<t>&,const char*,T)
|
|
instead.
|
|
\par Example
|
|
\code
|
|
const CImg<float> img1(256,128,1,3), // 'img1' is a 256x128x1x3 image
|
|
img2(img1,"xyzc"), // 'img2' is a 256x128x1x3 image
|
|
img3(img1,"y,x,z,c"), // 'img3' is a 128x256x1x3 image
|
|
img4(img1,"c,x,y,3",0), // 'img4' is a 3x128x256x3 image (with pixels initialized to '0')
|
|
\endcode
|
|
**/
|
|
template<typename t>
|
|
CImg(const CImg<t>& img, const char *const dimensions):
|
|
_width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) {
|
|
assign(img,dimensions);
|
|
}
|
|
|
|
//! Construct image with dimensions borrowed from another image and initialize pixel values.
|
|
/**
|
|
Construct a new image instance with pixels of type \c T, and size get from the dimensions of an existing
|
|
\c CImg<t> instance, and set all pixel values to specified \c value.
|
|
\param img Input image from which dimensions are borrowed.
|
|
\param dimensions String describing the image size along the X,Y,Z and V-dimensions.
|
|
\param value Value used for initialization.
|
|
\note
|
|
- Similar to CImg(const CImg<t>&,const char*), but it also fills the pixel buffer with the specified \c value.
|
|
**/
|
|
template<typename t>
|
|
CImg(const CImg<t>& img, const char *const dimensions, const T& value):
|
|
_width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) {
|
|
assign(img,dimensions).fill(value);
|
|
}
|
|
|
|
//! Construct image from a display window.
|
|
/**
|
|
Construct a new image instance with pixels of type \c T, as a snapshot of an existing \c CImgDisplay instance.
|
|
\param disp Input display window.
|
|
\note
|
|
- The width() and height() of the constructed image instance are the same as the specified \c CImgDisplay.
|
|
- The depth() and spectrum() of the constructed image instance are respectively set to \c 1 and \c 3
|
|
(i.e. a 2D color image).
|
|
- The image pixels are read as 8-bits RGB values.
|
|
**/
|
|
explicit CImg(const CImgDisplay &disp):_width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) {
|
|
disp.snapshot(*this);
|
|
}
|
|
|
|
// Constructor and assignment operator for rvalue references (c++11).
|
|
// This avoids an additional image copy for methods returning new images. Can save RAM for big images !
|
|
#if cimg_use_cpp11==1
|
|
CImg(CImg<T>&& img):_width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) {
|
|
swap(img);
|
|
}
|
|
|
|
CImg<T>& operator=(CImg<T>&& img) {
|
|
if (_is_shared) return assign(img);
|
|
return img.swap(*this);
|
|
}
|
|
#endif
|
|
|
|
//! Construct empty image \inplace.
|
|
/**
|
|
In-place version of the default constructor CImg(). It simply resets the instance to an empty image.
|
|
**/
|
|
CImg<T>& assign() {
|
|
if (!_is_shared) delete[] _data;
|
|
_width = _height = _depth = _spectrum = 0; _is_shared = false; _data = 0;
|
|
return *this;
|
|
}
|
|
|
|
//! Construct image with specified size \inplace.
|
|
/**
|
|
In-place version of the constructor CImg(unsigned int,unsigned int,unsigned int,unsigned int).
|
|
**/
|
|
CImg<T>& assign(const unsigned int size_x, const unsigned int size_y=1,
|
|
const unsigned int size_z=1, const unsigned int size_c=1) {
|
|
const size_t siz = safe_size(size_x,size_y,size_z,size_c);
|
|
if (!siz) return assign();
|
|
const size_t curr_siz = (size_t)size();
|
|
if (siz!=curr_siz) {
|
|
if (_is_shared)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"assign(): Invalid assignment request of shared instance from specified "
|
|
"image (%u,%u,%u,%u).",
|
|
cimg_instance,
|
|
size_x,size_y,size_z,size_c);
|
|
else {
|
|
delete[] _data;
|
|
try { _data = new T[siz]; } catch (...) {
|
|
_width = _height = _depth = _spectrum = 0; _data = 0;
|
|
throw CImgInstanceException(_cimg_instance
|
|
"assign(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).",
|
|
cimg_instance,
|
|
cimg::strbuffersize(sizeof(T)*size_x*size_y*size_z*size_c),
|
|
size_x,size_y,size_z,size_c);
|
|
}
|
|
}
|
|
}
|
|
_width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c;
|
|
return *this;
|
|
}
|
|
|
|
//! Construct image with specified size and initialize pixel values \inplace.
|
|
/**
|
|
In-place version of the constructor CImg(unsigned int,unsigned int,unsigned int,unsigned int,T).
|
|
**/
|
|
CImg<T>& assign(const unsigned int size_x, const unsigned int size_y,
|
|
const unsigned int size_z, const unsigned int size_c, const T& value) {
|
|
return assign(size_x,size_y,size_z,size_c).fill(value);
|
|
}
|
|
|
|
//! Construct image with specified size and initialize pixel values from a sequence of integers \inplace.
|
|
/**
|
|
In-place version of the constructor CImg(unsigned int,unsigned int,unsigned int,unsigned int,int,int,...).
|
|
**/
|
|
CImg<T>& assign(const unsigned int size_x, const unsigned int size_y,
|
|
const unsigned int size_z, const unsigned int size_c,
|
|
const int value0, const int value1, ...) {
|
|
assign(size_x,size_y,size_z,size_c);
|
|
_CImg_stdarg(*this,value0,value1,safe_size(size_x,size_y,size_z,size_c),int);
|
|
return *this;
|
|
}
|
|
|
|
//! Construct image with specified size and initialize pixel values from a sequence of doubles \inplace.
|
|
/**
|
|
In-place version of the constructor CImg(unsigned int,unsigned int,unsigned int,unsigned int,double,double,...).
|
|
**/
|
|
CImg<T>& assign(const unsigned int size_x, const unsigned int size_y,
|
|
const unsigned int size_z, const unsigned int size_c,
|
|
const double value0, const double value1, ...) {
|
|
assign(size_x,size_y,size_z,size_c);
|
|
_CImg_stdarg(*this,value0,value1,safe_size(size_x,size_y,size_z,size_c),double);
|
|
return *this;
|
|
}
|
|
|
|
//! Construct image with specified size and initialize pixel values from a value string \inplace.
|
|
/**
|
|
In-place version of the constructor CImg(unsigned int,unsigned int,unsigned int,unsigned int,const char*,bool).
|
|
**/
|
|
CImg<T>& assign(const unsigned int size_x, const unsigned int size_y,
|
|
const unsigned int size_z, const unsigned int size_c,
|
|
const char *const values, const bool repeat_values) {
|
|
return assign(size_x,size_y,size_z,size_c).fill(values,repeat_values);
|
|
}
|
|
|
|
//! Construct image with specified size and initialize pixel values from a memory buffer \inplace.
|
|
/**
|
|
In-place version of the constructor CImg(const t*,unsigned int,unsigned int,unsigned int,unsigned int).
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& assign(const t *const values, const unsigned int size_x, const unsigned int size_y=1,
|
|
const unsigned int size_z=1, const unsigned int size_c=1) {
|
|
const size_t siz = safe_size(size_x,size_y,size_z,size_c);
|
|
if (!values || !siz) return assign();
|
|
assign(size_x,size_y,size_z,size_c);
|
|
const t *ptrs = values; cimg_for(*this,ptrd,T) *ptrd = (T)*(ptrs++);
|
|
return *this;
|
|
}
|
|
|
|
//! Construct image with specified size and initialize pixel values from a memory buffer \specialization.
|
|
CImg<T>& assign(const T *const values, const unsigned int size_x, const unsigned int size_y=1,
|
|
const unsigned int size_z=1, const unsigned int size_c=1) {
|
|
const size_t siz = safe_size(size_x,size_y,size_z,size_c);
|
|
if (!values || !siz) return assign();
|
|
const size_t curr_siz = (size_t)size();
|
|
if (values==_data && siz==curr_siz) return assign(size_x,size_y,size_z,size_c);
|
|
if (_is_shared || values + siz<_data || values>=_data + size()) {
|
|
assign(size_x,size_y,size_z,size_c);
|
|
if (_is_shared) std::memmove((void*)_data,(void*)values,siz*sizeof(T));
|
|
else std::memcpy((void*)_data,(void*)values,siz*sizeof(T));
|
|
} else {
|
|
T *new_data = 0;
|
|
try { new_data = new T[siz]; } catch (...) {
|
|
_width = _height = _depth = _spectrum = 0; _data = 0;
|
|
throw CImgInstanceException(_cimg_instance
|
|
"assign(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).",
|
|
cimg_instance,
|
|
cimg::strbuffersize(sizeof(T)*size_x*size_y*size_z*size_c),
|
|
size_x,size_y,size_z,size_c);
|
|
}
|
|
std::memcpy((void*)new_data,(void*)values,siz*sizeof(T));
|
|
delete[] _data; _data = new_data; _width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Construct image with specified size and initialize pixel values from a memory buffer \overloading.
|
|
template<typename t>
|
|
CImg<T>& assign(const t *const values, const unsigned int size_x, const unsigned int size_y,
|
|
const unsigned int size_z, const unsigned int size_c, const bool is_shared) {
|
|
if (is_shared)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"assign(): Invalid assignment request of shared instance from (%s*) buffer"
|
|
"(pixel types are different).",
|
|
cimg_instance,
|
|
CImg<t>::pixel_type());
|
|
return assign(values,size_x,size_y,size_z,size_c);
|
|
}
|
|
|
|
//! Construct image with specified size and initialize pixel values from a memory buffer \overloading.
|
|
CImg<T>& assign(const T *const values, const unsigned int size_x, const unsigned int size_y,
|
|
const unsigned int size_z, const unsigned int size_c, const bool is_shared) {
|
|
const size_t siz = safe_size(size_x,size_y,size_z,size_c);
|
|
if (!values || !siz) return assign();
|
|
if (!is_shared) { if (_is_shared) assign(); assign(values,size_x,size_y,size_z,size_c); }
|
|
else {
|
|
if (!_is_shared) {
|
|
if (values + siz<_data || values>=_data + size()) assign();
|
|
else cimg::warn(_cimg_instance
|
|
"assign(): Shared image instance has overlapping memory.",
|
|
cimg_instance);
|
|
}
|
|
_width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c; _is_shared = true;
|
|
_data = const_cast<T*>(values);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Construct image from memory buffer with specified size and pixel ordering scheme.
|
|
template<typename t>
|
|
CImg<T>& assign(const t *const values, const unsigned int size_x, const unsigned int size_y,
|
|
const unsigned int size_z, const unsigned int size_c,
|
|
const char *const axes_order) {
|
|
CImg<T>(values,size_x,size_y,size_z,size_c,axes_order).move_to(*this);
|
|
}
|
|
|
|
//! Construct image from reading an image file \inplace.
|
|
/**
|
|
In-place version of the constructor CImg(const char*).
|
|
**/
|
|
CImg<T>& assign(const char *const filename) {
|
|
return load(filename);
|
|
}
|
|
|
|
//! Construct image copy \inplace.
|
|
/**
|
|
In-place version of the constructor CImg(const CImg<t>&).
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& assign(const CImg<t>& img) {
|
|
return assign(img._data,img._width,img._height,img._depth,img._spectrum);
|
|
}
|
|
|
|
//! In-place version of the advanced copy constructor.
|
|
/**
|
|
In-place version of the constructor CImg(const CImg<t>&,bool).
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& assign(const CImg<t>& img, const bool is_shared) {
|
|
return assign(img._data,img._width,img._height,img._depth,img._spectrum,is_shared);
|
|
}
|
|
|
|
//! Construct image with dimensions borrowed from another image \inplace.
|
|
/**
|
|
In-place version of the constructor CImg(const CImg<t>&,const char*).
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& assign(const CImg<t>& img, const char *const dimensions) {
|
|
if (!dimensions || !*dimensions) return assign(img._width,img._height,img._depth,img._spectrum);
|
|
unsigned int siz[4] = { 0,1,1,1 }, k = 0;
|
|
CImg<charT> item(256);
|
|
for (const char *s = dimensions; *s && k<4; ++k) {
|
|
if (cimg_sscanf(s,"%255[^0-9%xyzvwhdcXYZVWHDC]",item._data)>0) s+=std::strlen(item);
|
|
if (*s) {
|
|
unsigned int val = 0; char sep = 0;
|
|
if (cimg_sscanf(s,"%u%c",&val,&sep)>0) {
|
|
if (sep=='%') siz[k] = val*(k==0?_width:k==1?_height:k==2?_depth:_spectrum)/100;
|
|
else siz[k] = val;
|
|
while (*s>='0' && *s<='9') ++s;
|
|
if (sep=='%') ++s;
|
|
} else switch (cimg::lowercase(*s)) {
|
|
case 'x' : case 'w' : siz[k] = img._width; ++s; break;
|
|
case 'y' : case 'h' : siz[k] = img._height; ++s; break;
|
|
case 'z' : case 'd' : siz[k] = img._depth; ++s; break;
|
|
case 'c' : case 's' : siz[k] = img._spectrum; ++s; break;
|
|
default :
|
|
throw CImgArgumentException(_cimg_instance
|
|
"assign(): Invalid character '%c' detected in specified dimension string '%s'.",
|
|
cimg_instance,
|
|
*s,dimensions);
|
|
}
|
|
}
|
|
}
|
|
return assign(siz[0],siz[1],siz[2],siz[3]);
|
|
}
|
|
|
|
//! Construct image with dimensions borrowed from another image and initialize pixel values \inplace.
|
|
/**
|
|
In-place version of the constructor CImg(const CImg<t>&,const char*,T).
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& assign(const CImg<t>& img, const char *const dimensions, const T& value) {
|
|
return assign(img,dimensions).fill(value);
|
|
}
|
|
|
|
//! Construct image from a display window \inplace.
|
|
/**
|
|
In-place version of the constructor CImg(const CImgDisplay&).
|
|
**/
|
|
CImg<T>& assign(const CImgDisplay &disp) {
|
|
disp.snapshot(*this);
|
|
return *this;
|
|
}
|
|
|
|
//! Construct empty image \inplace.
|
|
/**
|
|
Equivalent to assign().
|
|
\note
|
|
- It has been defined for compatibility with STL naming conventions.
|
|
**/
|
|
CImg<T>& clear() {
|
|
return assign();
|
|
}
|
|
|
|
//! Transfer content of an image instance into another one.
|
|
/**
|
|
Transfer the dimensions and the pixel buffer content of an image instance into another one,
|
|
and replace instance by an empty image. It avoids the copy of the pixel buffer
|
|
when possible.
|
|
\param img Destination image.
|
|
\note
|
|
- Pixel types \c T and \c t of source and destination images can be different, though the process is
|
|
designed to be instantaneous when \c T and \c t are the same.
|
|
\par Example
|
|
\code
|
|
CImg<float> src(256,256,1,3,0), // Construct a 256x256x1x3 (color) image filled with value '0'
|
|
dest(16,16); // Construct a 16x16x1x1 (scalar) image
|
|
src.move_to(dest); // Now, 'src' is empty and 'dest' is the 256x256x1x3 image
|
|
\endcode
|
|
**/
|
|
template<typename t>
|
|
CImg<t>& move_to(CImg<t>& img) {
|
|
img.assign(*this);
|
|
assign();
|
|
return img;
|
|
}
|
|
|
|
//! Transfer content of an image instance into another one \specialization.
|
|
CImg<T>& move_to(CImg<T>& img) {
|
|
if (_is_shared || img._is_shared) img.assign(*this);
|
|
else swap(img);
|
|
assign();
|
|
return img;
|
|
}
|
|
|
|
//! Transfer content of an image instance into a new image in an image list.
|
|
/**
|
|
Transfer the dimensions and the pixel buffer content of an image instance
|
|
into a newly inserted image at position \c pos in specified \c CImgList<t> instance.
|
|
\param list Destination list.
|
|
\param pos Position of the newly inserted image in the list.
|
|
\note
|
|
- When optional parameter \c pos is omitted, the image instance is transferred as a new
|
|
image at the end of the specified \c list.
|
|
- It is convenient to sequentially insert new images into image lists, with no
|
|
additional copies of memory buffer.
|
|
\par Example
|
|
\code
|
|
CImgList<float> list; // Construct an empty image list
|
|
CImg<float> img("reference.jpg"); // Read image from filename
|
|
img.move_to(list); // Transfer image content as a new item in the list (no buffer copy)
|
|
\endcode
|
|
**/
|
|
template<typename t>
|
|
CImgList<t>& move_to(CImgList<t>& list, const unsigned int pos=~0U) {
|
|
const unsigned int npos = pos>list._width?list._width:pos;
|
|
move_to(list.insert(1,npos)[npos]);
|
|
return list;
|
|
}
|
|
|
|
//! Swap fields of two image instances.
|
|
/**
|
|
\param img Image to swap fields with.
|
|
\note
|
|
- It can be used to interchange the content of two images in a very fast way. Can be convenient when dealing
|
|
with algorithms requiring two swapping buffers.
|
|
\par Example
|
|
\code
|
|
CImg<float> img1("lena.jpg"),
|
|
img2("milla.jpg");
|
|
img1.swap(img2); // Now, 'img1' is 'milla' and 'img2' is 'lena'
|
|
\endcode
|
|
**/
|
|
CImg<T>& swap(CImg<T>& img) {
|
|
cimg::swap(_width,img._width,_height,img._height,_depth,img._depth,_spectrum,img._spectrum);
|
|
cimg::swap(_data,img._data);
|
|
cimg::swap(_is_shared,img._is_shared);
|
|
return img;
|
|
}
|
|
|
|
//! Return a reference to an empty image.
|
|
/**
|
|
\note
|
|
This function is useful mainly to declare optional parameters having type \c CImg<T> in functions prototypes,
|
|
e.g.
|
|
\code
|
|
void f(const int x=0, const int y=0, const CImg<float>& img=CImg<float>::empty());
|
|
\endcode
|
|
**/
|
|
static CImg<T>& empty() {
|
|
static CImg<T> _empty;
|
|
return _empty.assign();
|
|
}
|
|
|
|
//! Return a reference to an empty image \const.
|
|
static const CImg<T>& const_empty() {
|
|
static const CImg<T> _empty;
|
|
return _empty;
|
|
}
|
|
|
|
//@}
|
|
//------------------------------------------
|
|
//
|
|
//! \name Overloaded Operators
|
|
//@{
|
|
//------------------------------------------
|
|
|
|
//! Access to a pixel value.
|
|
/**
|
|
Return a reference to a located pixel value of the image instance,
|
|
being possibly \e const, whether the image instance is \e const or not.
|
|
This is the standard method to get/set pixel values in \c CImg<T> images.
|
|
\param x X-coordinate of the pixel value.
|
|
\param y Y-coordinate of the pixel value.
|
|
\param z Z-coordinate of the pixel value.
|
|
\param c C-coordinate of the pixel value.
|
|
\note
|
|
- Range of pixel coordinates start from <tt>(0,0,0,0)</tt> to
|
|
<tt>(width() - 1,height() - 1,depth() - 1,spectrum() - 1)</tt>.
|
|
- Due to the particular arrangement of the pixel buffers defined in %CImg, you can omit one coordinate if the
|
|
corresponding dimension is equal to \c 1.
|
|
For instance, pixels of a 2D image (depth() equal to \c 1) can be accessed by <tt>img(x,y,c)</tt> instead of
|
|
<tt>img(x,y,0,c)</tt>.
|
|
\warning
|
|
- There is \e no boundary checking done in this operator, to make it as fast as possible.
|
|
You \e must take care of out-of-bounds access by yourself, if necessary.
|
|
For debugging purposes, you may want to define macro \c 'cimg_verbosity'>=3 to enable additional boundary
|
|
checking operations in this operator. In that case, warning messages will be printed on the error output
|
|
when accessing out-of-bounds pixels.
|
|
\par Example
|
|
\code
|
|
CImg<float> img(100,100,1,3,0); // Construct a 100x100x1x3 (color) image with pixels set to '0'
|
|
const float
|
|
valR = img(10,10,0,0), // Read red value at coordinates (10,10)
|
|
valG = img(10,10,0,1), // Read green value at coordinates (10,10)
|
|
valB = img(10,10,2), // Read blue value at coordinates (10,10) (Z-coordinate can be omitted)
|
|
avg = (valR + valG + valB)/3; // Compute average pixel value
|
|
img(10,10,0) = img(10,10,1) = img(10,10,2) = avg; // Replace the color pixel (10,10) by the average grey value
|
|
\endcode
|
|
**/
|
|
#if cimg_verbosity>=3
|
|
T& operator()(const unsigned int x, const unsigned int y=0,
|
|
const unsigned int z=0, const unsigned int c=0) {
|
|
const ulongT off = (ulongT)offset(x,y,z,c);
|
|
if (!_data || off>=size()) {
|
|
cimg::warn(_cimg_instance
|
|
"operator(): Invalid pixel request, at coordinates (%d,%d,%d,%d) [offset=%u].",
|
|
cimg_instance,
|
|
(int)x,(int)y,(int)z,(int)c,off);
|
|
return *_data;
|
|
}
|
|
else return _data[off];
|
|
}
|
|
|
|
//! Access to a pixel value \const.
|
|
const T& operator()(const unsigned int x, const unsigned int y=0,
|
|
const unsigned int z=0, const unsigned int c=0) const {
|
|
return const_cast<CImg<T>*>(this)->operator()(x,y,z,c);
|
|
}
|
|
|
|
//! Access to a pixel value.
|
|
/**
|
|
\param x X-coordinate of the pixel value.
|
|
\param y Y-coordinate of the pixel value.
|
|
\param z Z-coordinate of the pixel value.
|
|
\param c C-coordinate of the pixel value.
|
|
\param wh Precomputed offset, must be equal to <tt>width()*\ref height()</tt>.
|
|
\param whd Precomputed offset, must be equal to <tt>width()*\ref height()*\ref depth()</tt>.
|
|
\note
|
|
- Similar to (but faster than) operator()().
|
|
It uses precomputed offsets to optimize memory access. You may use it to optimize
|
|
the reading/writing of several pixel values in the same image (e.g. in a loop).
|
|
**/
|
|
T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c,
|
|
const ulongT wh, const ulongT whd=0) {
|
|
cimg::unused(wh,whd);
|
|
return (*this)(x,y,z,c);
|
|
}
|
|
|
|
//! Access to a pixel value \const.
|
|
const T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c,
|
|
const ulongT wh, const ulongT whd=0) const {
|
|
cimg::unused(wh,whd);
|
|
return (*this)(x,y,z,c);
|
|
}
|
|
#else
|
|
T& operator()(const unsigned int x) {
|
|
return _data[x];
|
|
}
|
|
|
|
const T& operator()(const unsigned int x) const {
|
|
return _data[x];
|
|
}
|
|
|
|
T& operator()(const unsigned int x, const unsigned int y) {
|
|
return _data[x + y*_width];
|
|
}
|
|
|
|
const T& operator()(const unsigned int x, const unsigned int y) const {
|
|
return _data[x + y*_width];
|
|
}
|
|
|
|
T& operator()(const unsigned int x, const unsigned int y, const unsigned int z) {
|
|
return _data[x + y*(ulongT)_width + z*(ulongT)_width*_height];
|
|
}
|
|
|
|
const T& operator()(const unsigned int x, const unsigned int y, const unsigned int z) const {
|
|
return _data[x + y*(ulongT)_width + z*(ulongT)_width*_height];
|
|
}
|
|
|
|
T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c) {
|
|
return _data[x + y*(ulongT)_width + z*(ulongT)_width*_height + c*(ulongT)_width*_height*_depth];
|
|
}
|
|
|
|
const T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c) const {
|
|
return _data[x + y*(ulongT)_width + z*(ulongT)_width*_height + c*(ulongT)_width*_height*_depth];
|
|
}
|
|
|
|
T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int,
|
|
const ulongT wh) {
|
|
return _data[x + y*_width + z*wh];
|
|
}
|
|
|
|
const T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int,
|
|
const ulongT wh) const {
|
|
return _data[x + y*_width + z*wh];
|
|
}
|
|
|
|
T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c,
|
|
const ulongT wh, const ulongT whd) {
|
|
return _data[x + y*_width + z*wh + c*whd];
|
|
}
|
|
|
|
const T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c,
|
|
const ulongT wh, const ulongT whd) const {
|
|
return _data[x + y*_width + z*wh + c*whd];
|
|
}
|
|
#endif
|
|
|
|
//! Implicitly cast an image into a \c T*.
|
|
/**
|
|
Implicitly cast a \c CImg<T> instance into a \c T* or \c const \c T* pointer, whether the image instance
|
|
is \e const or not. The returned pointer points on the first value of the image pixel buffer.
|
|
\note
|
|
- It simply returns the pointer data() to the pixel buffer.
|
|
- This implicit conversion is convenient to test the empty state of images (data() being \c 0 in this case), e.g.
|
|
\code
|
|
CImg<float> img1(100,100), img2; // 'img1' is a 100x100 image, 'img2' is an empty image
|
|
if (img1) { // Test succeeds, 'img1' is not an empty image
|
|
if (!img2) { // Test succeeds, 'img2' is an empty image
|
|
std::printf("'img1' is not empty, 'img2' is empty.");
|
|
}
|
|
}
|
|
\endcode
|
|
- It also allows to use brackets to access pixel values, without need for a \c CImg<T>::operator[](), e.g.
|
|
\code
|
|
CImg<float> img(100,100);
|
|
const float value = img[99]; // Access to value of the last pixel on the first row
|
|
img[510] = 255; // Set pixel value at (10,5)
|
|
\endcode
|
|
**/
|
|
operator T*() {
|
|
return _data;
|
|
}
|
|
|
|
//! Implicitly cast an image into a \c T* \const.
|
|
operator const T*() const {
|
|
return _data;
|
|
}
|
|
|
|
//! Assign a value to all image pixels.
|
|
/**
|
|
Assign specified \c value to each pixel value of the image instance.
|
|
\param value Value that will be assigned to image pixels.
|
|
\note
|
|
- The image size is never modified.
|
|
- The \c value may be casted to pixel type \c T if necessary.
|
|
\par Example
|
|
\code
|
|
CImg<char> img(100,100); // Declare image (with garbage values)
|
|
img = 0; // Set all pixel values to '0'
|
|
img = 1.2; // Set all pixel values to '1' (cast of '1.2' as a 'char')
|
|
\endcode
|
|
**/
|
|
CImg<T>& operator=(const T& value) {
|
|
return fill(value);
|
|
}
|
|
|
|
//! Assign pixels values from a specified expression.
|
|
/**
|
|
Initialize all pixel values from the specified string \c expression.
|
|
\param expression Value string describing the way pixel values are set.
|
|
\note
|
|
- String parameter \c expression may describe different things:
|
|
- If \c expression is a list of values (as in \c "1,2,3,8,3,2"), or a formula (as in \c "(x*y)%255"),
|
|
the pixel values are set from specified \c expression and the image size is not modified.
|
|
- If \c expression is a filename (as in \c "reference.jpg"), the corresponding image file is loaded and
|
|
replace the image instance. The image size is modified if necessary.
|
|
\par Example
|
|
\code
|
|
CImg<float> img1(100,100), img2(img1), img3(img1); // Declare 3 scalar images 100x100 with uninitialized values
|
|
img1 = "0,50,100,150,200,250,200,150,100,50"; // Set pixel values of 'img1' from a value sequence
|
|
img2 = "10*((x*y)%25)"; // Set pixel values of 'img2' from a formula
|
|
img3 = "reference.jpg"; // Set pixel values of 'img3' from a file (image size is modified)
|
|
(img1,img2,img3).display();
|
|
\endcode
|
|
\image html ref_operator_eq.jpg
|
|
**/
|
|
CImg<T>& operator=(const char *const expression) {
|
|
const unsigned int omode = cimg::exception_mode();
|
|
cimg::exception_mode(0);
|
|
try {
|
|
_fill(expression,true,1,0,0,"operator=",0);
|
|
} catch (CImgException&) {
|
|
cimg::exception_mode(omode);
|
|
load(expression);
|
|
}
|
|
cimg::exception_mode(omode);
|
|
return *this;
|
|
}
|
|
|
|
//! Copy an image into the current image instance.
|
|
/**
|
|
Similar to the in-place copy constructor assign(const CImg<t>&).
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& operator=(const CImg<t>& img) {
|
|
return assign(img);
|
|
}
|
|
|
|
//! Copy an image into the current image instance \specialization.
|
|
CImg<T>& operator=(const CImg<T>& img) {
|
|
return assign(img);
|
|
}
|
|
|
|
//! Copy the content of a display window to the current image instance.
|
|
/**
|
|
Similar to assign(const CImgDisplay&).
|
|
**/
|
|
CImg<T>& operator=(const CImgDisplay& disp) {
|
|
disp.snapshot(*this);
|
|
return *this;
|
|
}
|
|
|
|
//! In-place addition operator.
|
|
/**
|
|
Add specified \c value to all pixels of an image instance.
|
|
\param value Value to add.
|
|
\note
|
|
- Resulting pixel values are casted to fit the pixel type \c T.
|
|
For instance, adding \c 0.2 to a \c CImg<char> is possible but does nothing indeed.
|
|
- Overflow values are treated as with standard C++ numeric types. For instance,
|
|
\code
|
|
CImg<unsigned char> img(100,100,1,1,255); // Construct a 100x100 image with pixel values '255'
|
|
img+=1; // Add '1' to each pixels -> Overflow
|
|
// here all pixels of image 'img' are equal to '0'.
|
|
\endcode
|
|
- To prevent value overflow, you may want to consider pixel type \c T as \c float or \c double,
|
|
and use cut() after addition.
|
|
\par Example
|
|
\code
|
|
CImg<unsigned char> img1("reference.jpg"); // Load a 8-bits RGB image (values in [0,255])
|
|
CImg<float> img2(img1); // Construct a float-valued copy of 'img1'
|
|
img2+=100; // Add '100' to pixel values -> goes out of [0,255] but no problems with floats
|
|
img2.cut(0,255); // Cut values in [0,255] to fit the 'unsigned char' constraint
|
|
img1 = img2; // Rewrite safe result in 'unsigned char' version 'img1'
|
|
const CImg<unsigned char> img3 = (img1 + 100).cut(0,255); // Do the same in a more simple and elegant way
|
|
(img1,img2,img3).display();
|
|
\endcode
|
|
\image html ref_operator_plus.jpg
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& operator+=(const t value) {
|
|
if (is_empty()) return *this;
|
|
cimg_openmp_for(*this,*ptr + value,524288);
|
|
return *this;
|
|
}
|
|
|
|
//! In-place addition operator.
|
|
/**
|
|
Add values to image pixels, according to the specified string \c expression.
|
|
\param expression Value string describing the way pixel values are added.
|
|
\note
|
|
- Similar to operator=(const char*), except that it adds values to the pixels of the current image instance,
|
|
instead of assigning them.
|
|
**/
|
|
CImg<T>& operator+=(const char *const expression) {
|
|
return *this+=(+*this)._fill(expression,true,1,0,0,"operator+=",this);
|
|
}
|
|
|
|
//! In-place addition operator.
|
|
/**
|
|
Add values to image pixels, according to the values of the input image \c img.
|
|
\param img Input image to add.
|
|
\note
|
|
- The size of the image instance is never modified.
|
|
- It is not mandatory that input image \c img has the same size as the image instance.
|
|
If less values are available in \c img, then the values are added periodically. For instance, adding one
|
|
WxH scalar image (spectrum() equal to \c 1) to one WxH color image (spectrum() equal to \c 3)
|
|
means each color channel will be incremented with the same values at the same locations.
|
|
\par Example
|
|
\code
|
|
CImg<float> img1("reference.jpg"); // Load a RGB color image (img1.spectrum()==3)
|
|
// Construct a scalar shading (img2.spectrum()==1).
|
|
const CImg<float> img2(img1.width(),img.height(),1,1,"255*(x/w)^2");
|
|
img1+=img2; // Add shading to each channel of 'img1'
|
|
img1.cut(0,255); // Prevent [0,255] overflow
|
|
(img2,img1).display();
|
|
\endcode
|
|
\image html ref_operator_plus1.jpg
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& operator+=(const CImg<t>& img) {
|
|
const ulongT siz = size(), isiz = img.size();
|
|
if (siz && isiz) {
|
|
if (is_overlapped(img)) return *this+=+img;
|
|
T *ptrd = _data, *const ptre = _data + siz;
|
|
if (siz>isiz) for (ulongT n = siz/isiz; n; --n)
|
|
for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs<ptrs_end; ++ptrd)
|
|
*ptrd = (T)(*ptrd + *(ptrs++));
|
|
for (const t *ptrs = img._data; ptrd<ptre; ++ptrd) *ptrd = (T)(*ptrd + *(ptrs++));
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! In-place increment operator (prefix).
|
|
/**
|
|
Add \c 1 to all image pixels, and return a reference to the current incremented image instance.
|
|
\note
|
|
- Writing \c ++img is equivalent to \c img+=1.
|
|
**/
|
|
CImg<T>& operator++() {
|
|
if (is_empty()) return *this;
|
|
cimg_openmp_for(*this,*ptr + 1,524288);
|
|
return *this;
|
|
}
|
|
|
|
//! In-place increment operator (postfix).
|
|
/**
|
|
Add \c 1 to all image pixels, and return a new copy of the initial (pre-incremented) image instance.
|
|
\note
|
|
- Use the prefixed version operator++() if you don't need a copy of the initial
|
|
(pre-incremented) image instance, since a useless image copy may be expensive in terms of memory usage.
|
|
**/
|
|
CImg<T> operator++(int) {
|
|
const CImg<T> copy(*this,false);
|
|
++*this;
|
|
return copy;
|
|
}
|
|
|
|
//! Return a non-shared copy of the image instance.
|
|
/**
|
|
\note
|
|
- Use this operator to ensure you get a non-shared copy of an image instance with same pixel type \c T.
|
|
Indeed, the usual copy constructor CImg<T>(const CImg<T>&) returns a shared copy of a shared input image,
|
|
and it may be not desirable to work on a regular copy (e.g. for a resize operation) if you have no
|
|
information about the shared state of the input image.
|
|
- Writing \c (+img) is equivalent to \c CImg<T>(img,false).
|
|
**/
|
|
CImg<T> operator+() const {
|
|
return CImg<T>(*this,false);
|
|
}
|
|
|
|
//! Addition operator.
|
|
/**
|
|
Similar to operator+=(const t), except that it returns a new image instance instead of operating in-place.
|
|
The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary.
|
|
**/
|
|
template<typename t>
|
|
CImg<_cimg_Tt> operator+(const t value) const {
|
|
return CImg<_cimg_Tt>(*this,false)+=value;
|
|
}
|
|
|
|
//! Addition operator.
|
|
/**
|
|
Similar to operator+=(const char*), except that it returns a new image instance instead of operating in-place.
|
|
The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary.
|
|
**/
|
|
CImg<Tfloat> operator+(const char *const expression) const {
|
|
return CImg<Tfloat>(*this,false)+=expression;
|
|
}
|
|
|
|
//! Addition operator.
|
|
/**
|
|
Similar to operator+=(const CImg<t>&), except that it returns a new image instance instead of operating in-place.
|
|
The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary.
|
|
**/
|
|
template<typename t>
|
|
CImg<_cimg_Tt> operator+(const CImg<t>& img) const {
|
|
return CImg<_cimg_Tt>(*this,false)+=img;
|
|
}
|
|
|
|
//! In-place subtraction operator.
|
|
/**
|
|
Similar to operator+=(const t), except that it performs a subtraction instead of an addition.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& operator-=(const t value) {
|
|
if (is_empty()) return *this;
|
|
cimg_openmp_for(*this,*ptr - value,524288);
|
|
return *this;
|
|
}
|
|
|
|
//! In-place subtraction operator.
|
|
/**
|
|
Similar to operator+=(const char*), except that it performs a subtraction instead of an addition.
|
|
**/
|
|
CImg<T>& operator-=(const char *const expression) {
|
|
return *this-=(+*this)._fill(expression,true,1,0,0,"operator-=",this);
|
|
}
|
|
|
|
//! In-place subtraction operator.
|
|
/**
|
|
Similar to operator+=(const CImg<t>&), except that it performs a subtraction instead of an addition.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& operator-=(const CImg<t>& img) {
|
|
const ulongT siz = size(), isiz = img.size();
|
|
if (siz && isiz) {
|
|
if (is_overlapped(img)) return *this-=+img;
|
|
T *ptrd = _data, *const ptre = _data + siz;
|
|
if (siz>isiz) for (ulongT n = siz/isiz; n; --n)
|
|
for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs<ptrs_end; ++ptrd)
|
|
*ptrd = (T)(*ptrd - *(ptrs++));
|
|
for (const t *ptrs = img._data; ptrd<ptre; ++ptrd) *ptrd = (T)(*ptrd - *(ptrs++));
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! In-place decrement operator (prefix).
|
|
/**
|
|
Similar to operator++(), except that it performs a decrement instead of an increment.
|
|
**/
|
|
CImg<T>& operator--() {
|
|
if (is_empty()) return *this;
|
|
cimg_openmp_for(*this,*ptr - 1,524288);
|
|
return *this;
|
|
}
|
|
|
|
//! In-place decrement operator (postfix).
|
|
/**
|
|
Similar to operator++(int), except that it performs a decrement instead of an increment.
|
|
**/
|
|
CImg<T> operator--(int) {
|
|
const CImg<T> copy(*this,false);
|
|
--*this;
|
|
return copy;
|
|
}
|
|
|
|
//! Replace each pixel by its opposite value.
|
|
/**
|
|
\note
|
|
- If the computed opposite values are out-of-range, they are treated as with standard C++ numeric types.
|
|
For instance, the \c unsigned \c char opposite of \c 1 is \c 255.
|
|
\par Example
|
|
\code
|
|
const CImg<unsigned char>
|
|
img1("reference.jpg"), // Load a RGB color image
|
|
img2 = -img1; // Compute its opposite (in 'unsigned char')
|
|
(img1,img2).display();
|
|
\endcode
|
|
\image html ref_operator_minus.jpg
|
|
**/
|
|
CImg<T> operator-() const {
|
|
return CImg<T>(_width,_height,_depth,_spectrum,(T)0)-=*this;
|
|
}
|
|
|
|
//! Subtraction operator.
|
|
/**
|
|
Similar to operator-=(const t), except that it returns a new image instance instead of operating in-place.
|
|
The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary.
|
|
**/
|
|
template<typename t>
|
|
CImg<_cimg_Tt> operator-(const t value) const {
|
|
return CImg<_cimg_Tt>(*this,false)-=value;
|
|
}
|
|
|
|
//! Subtraction operator.
|
|
/**
|
|
Similar to operator-=(const char*), except that it returns a new image instance instead of operating in-place.
|
|
The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary.
|
|
**/
|
|
CImg<Tfloat> operator-(const char *const expression) const {
|
|
return CImg<Tfloat>(*this,false)-=expression;
|
|
}
|
|
|
|
//! Subtraction operator.
|
|
/**
|
|
Similar to operator-=(const CImg<t>&), except that it returns a new image instance instead of operating in-place.
|
|
The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary.
|
|
**/
|
|
template<typename t>
|
|
CImg<_cimg_Tt> operator-(const CImg<t>& img) const {
|
|
return CImg<_cimg_Tt>(*this,false)-=img;
|
|
}
|
|
|
|
//! In-place multiplication operator.
|
|
/**
|
|
Similar to operator+=(const t), except that it performs a multiplication instead of an addition.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& operator*=(const t value) {
|
|
if (is_empty()) return *this;
|
|
cimg_openmp_for(*this,*ptr * value,262144);
|
|
return *this;
|
|
}
|
|
|
|
//! In-place multiplication operator.
|
|
/**
|
|
Similar to operator+=(const char*), except that it performs a multiplication instead of an addition.
|
|
**/
|
|
CImg<T>& operator*=(const char *const expression) {
|
|
return mul((+*this)._fill(expression,true,1,0,0,"operator*=",this));
|
|
}
|
|
|
|
//! In-place multiplication operator.
|
|
/**
|
|
Replace the image instance by the matrix multiplication between the image instance and the specified matrix
|
|
\c img.
|
|
\param img Second operand of the matrix multiplication.
|
|
\note
|
|
- It does \e not compute a pointwise multiplication between two images. For this purpose, use
|
|
mul(const CImg<t>&) instead.
|
|
- The size of the image instance can be modified by this operator.
|
|
\par Example
|
|
\code
|
|
CImg<float> A(2,2,1,1, 1,2,3,4); // Construct 2x2 matrix A = [1,2;3,4]
|
|
const CImg<float> X(1,2,1,1, 1,2); // Construct 1x2 vector X = [1;2]
|
|
A*=X; // Assign matrix multiplication A*X to 'A'
|
|
// 'A' is now a 1x2 vector whose values are [5;11].
|
|
\endcode
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& operator*=(const CImg<t>& img) {
|
|
return ((*this)*img).move_to(*this);
|
|
}
|
|
|
|
//! Multiplication operator.
|
|
/**
|
|
Similar to operator*=(const t), except that it returns a new image instance instead of operating in-place.
|
|
The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary.
|
|
**/
|
|
template<typename t>
|
|
CImg<_cimg_Tt> operator*(const t value) const {
|
|
return CImg<_cimg_Tt>(*this,false)*=value;
|
|
}
|
|
|
|
//! Multiplication operator.
|
|
/**
|
|
Similar to operator*=(const char*), except that it returns a new image instance instead of operating in-place.
|
|
The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary.
|
|
**/
|
|
CImg<Tfloat> operator*(const char *const expression) const {
|
|
return CImg<Tfloat>(*this,false)*=expression;
|
|
}
|
|
|
|
//! Multiplication operator.
|
|
/**
|
|
Similar to operator*=(const CImg<t>&), except that it returns a new image instance instead of operating in-place.
|
|
The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary.
|
|
**/
|
|
template<typename t>
|
|
CImg<_cimg_Tt> operator*(const CImg<t>& img) const {
|
|
typedef _cimg_Ttdouble Ttdouble;
|
|
typedef _cimg_Tt Tt;
|
|
if (_width!=img._height || _depth!=1 || _spectrum!=1)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"operator*(): Invalid multiplication of instance by specified "
|
|
"matrix (%u,%u,%u,%u,%p).",
|
|
cimg_instance,
|
|
img._width,img._height,img._depth,img._spectrum,img._data);
|
|
CImg<Tt> res(img._width,_height);
|
|
|
|
// Check for common cases to optimize.
|
|
if (img._width==1) { // Matrix * Vector
|
|
if (_height==1) switch (_width) { // Vector^T * Vector
|
|
case 1 :
|
|
res[0] = (Tt)((Ttdouble)_data[0]*img[0]);
|
|
return res;
|
|
case 2 :
|
|
res[0] = (Tt)((Ttdouble)_data[0]*img[0] + (Ttdouble)_data[1]*img[1]);
|
|
return res;
|
|
case 3 :
|
|
res[0] = (Tt)((Ttdouble)_data[0]*img[0] + (Ttdouble)_data[1]*img[1] +
|
|
(Ttdouble)_data[2]*img[2]);
|
|
return res;
|
|
case 4 :
|
|
res[0] = (Tt)((Ttdouble)_data[0]*img[0] + (Ttdouble)_data[1]*img[1] +
|
|
(Ttdouble)_data[2]*img[2] + (Ttdouble)_data[3]*img[3]);
|
|
return res;
|
|
default : {
|
|
Ttdouble val = 0;
|
|
cimg_pragma_openmp(parallel for reduction(+:val) cimg_openmp_if_size(size(),4096))
|
|
cimg_forX(*this,i) val+=(Ttdouble)_data[i]*img[i];
|
|
res[0] = val;
|
|
return res;
|
|
}
|
|
} else if (_height==_width) switch (_width) { // Square_matrix * Vector
|
|
case 2 : // 2x2_matrix * Vector
|
|
res[0] = (Tt)((Ttdouble)_data[0]*img[0] + (Ttdouble)_data[1]*img[1]);
|
|
res[1] = (Tt)((Ttdouble)_data[2]*img[0] + (Ttdouble)_data[3]*img[1]);
|
|
return res;
|
|
case 3 : // 3x3_matrix * Vector
|
|
res[0] = (Tt)((Ttdouble)_data[0]*img[0] + (Ttdouble)_data[1]*img[1] +
|
|
(Ttdouble)_data[2]*img[2]);
|
|
res[1] = (Tt)((Ttdouble)_data[3]*img[0] + (Ttdouble)_data[4]*img[1] +
|
|
(Ttdouble)_data[5]*img[2]);
|
|
res[2] = (Tt)((Ttdouble)_data[6]*img[0] + (Ttdouble)_data[7]*img[1] +
|
|
(Ttdouble)_data[8]*img[2]);
|
|
return res;
|
|
case 4 : // 4x4_matrix * Vector
|
|
res[0] = (Tt)((Ttdouble)_data[0]*img[0] + (Ttdouble)_data[1]*img[1] +
|
|
(Ttdouble)_data[2]*img[2] + (Ttdouble)_data[3]*img[3]);
|
|
res[1] = (Tt)((Ttdouble)_data[4]*img[0] + (Ttdouble)_data[5]*img[1] +
|
|
(Ttdouble)_data[6]*img[2] + (Ttdouble)_data[7]*img[3]);
|
|
res[2] = (Tt)((Ttdouble)_data[8]*img[0] + (Ttdouble)_data[9]*img[1] +
|
|
(Ttdouble)_data[10]*img[2] + (Ttdouble)_data[11]*img[3]);
|
|
res[3] = (Tt)((Ttdouble)_data[12]*img[0] + (Ttdouble)_data[13]*img[1] +
|
|
(Ttdouble)_data[14]*img[2] + (Ttdouble)_data[15]*img[3]);
|
|
return res;
|
|
}
|
|
} else if (_height==_width) {
|
|
if (img._height==img._width) switch (_width) { // Square_matrix * Square_matrix
|
|
case 2 : // 2x2_matrix * 2x2_matrix
|
|
res[0] = (Tt)((Ttdouble)_data[0]*img[0] + (Ttdouble)_data[1]*img[2]);
|
|
res[1] = (Tt)((Ttdouble)_data[0]*img[1] + (Ttdouble)_data[1]*img[3]);
|
|
res[2] = (Tt)((Ttdouble)_data[2]*img[0] + (Ttdouble)_data[3]*img[2]);
|
|
res[3] = (Tt)((Ttdouble)_data[2]*img[1] + (Ttdouble)_data[3]*img[3]);
|
|
return res;
|
|
case 3 : // 3x3_matrix * 3x3_matrix
|
|
res[0] = (Tt)((Ttdouble)_data[0]*img[0] + (Ttdouble)_data[1]*img[3] +
|
|
(Ttdouble)_data[2]*img[6]);
|
|
res[1] = (Tt)((Ttdouble)_data[0]*img[1] + (Ttdouble)_data[1]*img[4] +
|
|
(Ttdouble)_data[2]*img[7]);
|
|
res[2] = (Tt)((Ttdouble)_data[0]*img[2] + (Ttdouble)_data[1]*img[5] +
|
|
(Ttdouble)_data[2]*img[8]);
|
|
res[3] = (Tt)((Ttdouble)_data[3]*img[0] + (Ttdouble)_data[4]*img[3] +
|
|
(Ttdouble)_data[5]*img[6]);
|
|
res[4] = (Tt)((Ttdouble)_data[3]*img[1] + (Ttdouble)_data[4]*img[4] +
|
|
(Ttdouble)_data[5]*img[7]);
|
|
res[5] = (Tt)((Ttdouble)_data[3]*img[2] + (Ttdouble)_data[4]*img[5] +
|
|
(Ttdouble)_data[5]*img[8]);
|
|
res[6] = (Tt)((Ttdouble)_data[6]*img[0] + (Ttdouble)_data[7]*img[3] +
|
|
(Ttdouble)_data[8]*img[6]);
|
|
res[7] = (Tt)((Ttdouble)_data[6]*img[1] + (Ttdouble)_data[7]*img[4] +
|
|
(Ttdouble)_data[8]*img[7]);
|
|
res[8] = (Tt)((Ttdouble)_data[6]*img[2] + (Ttdouble)_data[7]*img[5] +
|
|
(Ttdouble)_data[8]*img[8]);
|
|
return res;
|
|
case 4 : // 4x4_matrix * 4x4_matrix
|
|
res[0] = (Tt)((Ttdouble)_data[0]*img[0] + (Ttdouble)_data[1]*img[4] +
|
|
(Ttdouble)_data[2]*img[8] + (Ttdouble)_data[3]*img[12]);
|
|
res[1] = (Tt)((Ttdouble)_data[0]*img[1] + (Ttdouble)_data[1]*img[5] +
|
|
(Ttdouble)_data[2]*img[9] + (Ttdouble)_data[3]*img[13]);
|
|
res[2] = (Tt)((Ttdouble)_data[0]*img[2] + (Ttdouble)_data[1]*img[6] +
|
|
(Ttdouble)_data[2]*img[10] + (Ttdouble)_data[3]*img[14]);
|
|
res[3] = (Tt)((Ttdouble)_data[0]*img[3] + (Ttdouble)_data[1]*img[7] +
|
|
(Ttdouble)_data[2]*img[11] + (Ttdouble)_data[3]*img[15]);
|
|
res[4] = (Tt)((Ttdouble)_data[4]*img[0] + (Ttdouble)_data[5]*img[4] +
|
|
(Ttdouble)_data[6]*img[8] + (Ttdouble)_data[7]*img[12]);
|
|
res[5] = (Tt)((Ttdouble)_data[4]*img[1] + (Ttdouble)_data[5]*img[5] +
|
|
(Ttdouble)_data[6]*img[9] + (Ttdouble)_data[7]*img[13]);
|
|
res[6] = (Tt)((Ttdouble)_data[4]*img[2] + (Ttdouble)_data[5]*img[6] +
|
|
(Ttdouble)_data[6]*img[10] + (Ttdouble)_data[7]*img[14]);
|
|
res[7] = (Tt)((Ttdouble)_data[4]*img[3] + (Ttdouble)_data[5]*img[7] +
|
|
(Ttdouble)_data[6]*img[11] + (Ttdouble)_data[7]*img[15]);
|
|
res[8] = (Tt)((Ttdouble)_data[8]*img[0] + (Ttdouble)_data[9]*img[4] +
|
|
(Ttdouble)_data[10]*img[8] + (Ttdouble)_data[11]*img[12]);
|
|
res[9] = (Tt)((Ttdouble)_data[8]*img[1] + (Ttdouble)_data[9]*img[5] +
|
|
(Ttdouble)_data[10]*img[9] + (Ttdouble)_data[11]*img[13]);
|
|
res[10] = (Tt)((Ttdouble)_data[8]*img[2] + (Ttdouble)_data[9]*img[6] +
|
|
(Ttdouble)_data[10]*img[10] + (Ttdouble)_data[11]*img[14]);
|
|
res[11] = (Tt)((Ttdouble)_data[8]*img[3] + (Ttdouble)_data[9]*img[7] +
|
|
(Ttdouble)_data[10]*img[11] + (Ttdouble)_data[11]*img[15]);
|
|
res[12] = (Tt)((Ttdouble)_data[12]*img[0] + (Ttdouble)_data[13]*img[4] +
|
|
(Ttdouble)_data[14]*img[8] + (Ttdouble)_data[15]*img[12]);
|
|
res[13] = (Tt)((Ttdouble)_data[12]*img[1] + (Ttdouble)_data[13]*img[5] +
|
|
(Ttdouble)_data[14]*img[9] + (Ttdouble)_data[15]*img[13]);
|
|
res[14] = (Tt)((Ttdouble)_data[12]*img[2] + (Ttdouble)_data[13]*img[6] +
|
|
(Ttdouble)_data[14]*img[10] + (Ttdouble)_data[15]*img[14]);
|
|
res[15] = (Tt)((Ttdouble)_data[12]*img[3] + (Ttdouble)_data[13]*img[7] +
|
|
(Ttdouble)_data[14]*img[11] + (Ttdouble)_data[15]*img[15]);
|
|
return res;
|
|
} else switch (_width) { // Square_matrix * Matrix
|
|
case 2 : { // 2x2_matrix * Matrix
|
|
const t *const ps0 = img.data(), *const ps1 = img.data(0,1);
|
|
Tt *const pd0 = res.data(), *const pd1 = res.data(0,1);
|
|
const Ttdouble
|
|
a0 = (Ttdouble)_data[0], a1 = (Ttdouble)_data[1],
|
|
a2 = (Ttdouble)_data[2], a3 = (Ttdouble)_data[3];
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(img.width(),4096))
|
|
cimg_forX(img,i) {
|
|
const Ttdouble x = (Ttdouble)ps0[i], y = (Ttdouble)ps1[i];
|
|
pd0[i] = (Tt)(a0*x + a1*y);
|
|
pd1[i] = (Tt)(a2*x + a3*y);
|
|
}
|
|
return res;
|
|
}
|
|
case 3 : { // 3x3_matrix * Matrix
|
|
const t *const ps0 = img.data(), *const ps1 = img.data(0,1), *const ps2 = img.data(0,2);
|
|
Tt *const pd0 = res.data(), *const pd1 = res.data(0,1), *const pd2 = res.data(0,2);
|
|
const Ttdouble
|
|
a0 = (Ttdouble)_data[0], a1 = (Ttdouble)_data[1], a2 = (Ttdouble)_data[2],
|
|
a3 = (Ttdouble)_data[3], a4 = (Ttdouble)_data[4], a5 = (Ttdouble)_data[5],
|
|
a6 = (Ttdouble)_data[6], a7 = (Ttdouble)_data[7], a8 = (Ttdouble)_data[8];
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(img.width(),1024))
|
|
cimg_forX(img,i) {
|
|
const Ttdouble x = (Ttdouble)ps0[i], y = (Ttdouble)ps1[i], z = (Ttdouble)ps2[i];
|
|
pd0[i] = (Tt)(a0*x + a1*y + a2*z);
|
|
pd1[i] = (Tt)(a3*x + a4*y + a5*z);
|
|
pd2[i] = (Tt)(a6*x + a7*y + a8*z);
|
|
}
|
|
return res;
|
|
}
|
|
case 4 : { // 4x4_matrix * Matrix
|
|
const t
|
|
*const ps0 = img.data(), *const ps1 = img.data(0,1),
|
|
*const ps2 = img.data(0,2), *const ps3 = img.data(0,3);
|
|
Tt
|
|
*const pd0 = res.data(), *const pd1 = res.data(0,1),
|
|
*const pd2 = res.data(0,2), *const pd3 = res.data(0,3);
|
|
const Ttdouble
|
|
a0 = (Ttdouble)_data[0], a1 = (Ttdouble)_data[1], a2 = (Ttdouble)_data[2], a3 = (Ttdouble)_data[3],
|
|
a4 = (Ttdouble)_data[4], a5 = (Ttdouble)_data[5], a6 = (Ttdouble)_data[6], a7 = (Ttdouble)_data[7],
|
|
a8 = (Ttdouble)_data[8], a9 = (Ttdouble)_data[9], a10 = (Ttdouble)_data[10], a11 = (Ttdouble)_data[11],
|
|
a12 = (Ttdouble)_data[12], a13 = (Ttdouble)_data[13], a14 = (Ttdouble)_data[14],
|
|
a15 = (Ttdouble)_data[15];
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(img.width(),512))
|
|
cimg_forX(img,i) {
|
|
const Ttdouble x = (Ttdouble)ps0[i], y = (Ttdouble)ps1[i], z = (Ttdouble)ps2[i], c = (Ttdouble)ps3[i];
|
|
pd0[i] = (Tt)(a0*x + a1*y + a2*z + a3*c);
|
|
pd1[i] = (Tt)(a4*x + a5*y + a6*z + a7*c);
|
|
pd2[i] = (Tt)(a8*x + a9*y + a10*z + a11*c);
|
|
pd3[i] = (Tt)(a12*x + a13*y + a14*z + a15*c);
|
|
}
|
|
return res;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Fallback to generic version.
|
|
#if cimg_use_openmp!=0
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2)
|
|
cimg_openmp_if(size()>(cimg_openmp_sizefactor)*1024 &&
|
|
img.size()>(cimg_openmp_sizefactor)*1024))
|
|
cimg_forXY(res,i,j) {
|
|
Ttdouble value = 0;
|
|
cimg_forX(*this,k) value+=(*this)(k,j)*img(i,k);
|
|
res(i,j) = (Tt)value;
|
|
}
|
|
#else
|
|
Tt *ptrd = res._data;
|
|
cimg_forXY(res,i,j) {
|
|
Ttdouble value = 0;
|
|
cimg_forX(*this,k) value+=(*this)(k,j)*img(i,k);
|
|
*(ptrd++) = (Tt)value;
|
|
}
|
|
#endif
|
|
return res;
|
|
}
|
|
|
|
//! In-place division operator.
|
|
/**
|
|
Similar to operator+=(const t), except that it performs a division instead of an addition.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& operator/=(const t value) {
|
|
if (is_empty()) return *this;
|
|
cimg_openmp_for(*this,*ptr / value,32768);
|
|
return *this;
|
|
}
|
|
|
|
//! In-place division operator.
|
|
/**
|
|
Similar to operator+=(const char*), except that it performs a division instead of an addition.
|
|
**/
|
|
CImg<T>& operator/=(const char *const expression) {
|
|
return div((+*this)._fill(expression,true,1,0,0,"operator/=",this));
|
|
}
|
|
|
|
//! In-place division operator.
|
|
/**
|
|
Replace the image instance by the (right) matrix division between the image instance and the specified
|
|
matrix \c img.
|
|
\param img Second operand of the matrix division.
|
|
\note
|
|
- It does \e not compute a pointwise division between two images. For this purpose, use
|
|
div(const CImg<t>&) instead.
|
|
- It returns the matrix operation \c A*inverse(img).
|
|
- The size of the image instance can be modified by this operator.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& operator/=(const CImg<t>& img) {
|
|
return (*this*img.get_invert()).move_to(*this);
|
|
}
|
|
|
|
//! Division operator.
|
|
/**
|
|
Similar to operator/=(const t), except that it returns a new image instance instead of operating in-place.
|
|
The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary.
|
|
**/
|
|
template<typename t>
|
|
CImg<_cimg_Tt> operator/(const t value) const {
|
|
return CImg<_cimg_Tt>(*this,false)/=value;
|
|
}
|
|
|
|
//! Division operator.
|
|
/**
|
|
Similar to operator/=(const char*), except that it returns a new image instance instead of operating in-place.
|
|
The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary.
|
|
**/
|
|
CImg<Tfloat> operator/(const char *const expression) const {
|
|
return CImg<Tfloat>(*this,false)/=expression;
|
|
}
|
|
|
|
//! Division operator.
|
|
/**
|
|
Similar to operator/=(const CImg<t>&), except that it returns a new image instance instead of operating in-place.
|
|
The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary.
|
|
**/
|
|
template<typename t>
|
|
CImg<_cimg_Tt> operator/(const CImg<t>& img) const {
|
|
return (*this)*img.get_invert();
|
|
}
|
|
|
|
//! In-place modulo operator.
|
|
/**
|
|
Similar to operator+=(const t), except that it performs a modulo operation instead of an addition.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& operator%=(const t value) {
|
|
if (is_empty()) return *this;
|
|
cimg_openmp_for(*this,cimg::mod(*ptr,(T)value),16384);
|
|
return *this;
|
|
}
|
|
|
|
//! In-place modulo operator.
|
|
/**
|
|
Similar to operator+=(const char*), except that it performs a modulo operation instead of an addition.
|
|
**/
|
|
CImg<T>& operator%=(const char *const expression) {
|
|
return *this%=(+*this)._fill(expression,true,1,0,0,"operator%=",this);
|
|
}
|
|
|
|
//! In-place modulo operator.
|
|
/**
|
|
Similar to operator+=(const CImg<t>&), except that it performs a modulo operation instead of an addition.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& operator%=(const CImg<t>& img) {
|
|
const ulongT siz = size(), isiz = img.size();
|
|
if (siz && isiz) {
|
|
if (is_overlapped(img)) return *this%=+img;
|
|
T *ptrd = _data, *const ptre = _data + siz;
|
|
if (siz>isiz) for (ulongT n = siz/isiz; n; --n)
|
|
for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs<ptrs_end; ++ptrd)
|
|
*ptrd = cimg::mod(*ptrd,(T)*(ptrs++));
|
|
for (const t *ptrs = img._data; ptrd<ptre; ++ptrd) *ptrd = cimg::mod(*ptrd,(T)*(ptrs++));
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Modulo operator.
|
|
/**
|
|
Similar to operator%=(const t), except that it returns a new image instance instead of operating in-place.
|
|
The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary.
|
|
**/
|
|
template<typename t>
|
|
CImg<_cimg_Tt> operator%(const t value) const {
|
|
return CImg<_cimg_Tt>(*this,false)%=value;
|
|
}
|
|
|
|
//! Modulo operator.
|
|
/**
|
|
Similar to operator%=(const char*), except that it returns a new image instance instead of operating in-place.
|
|
The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary.
|
|
**/
|
|
CImg<Tfloat> operator%(const char *const expression) const {
|
|
return CImg<Tfloat>(*this,false)%=expression;
|
|
}
|
|
|
|
//! Modulo operator.
|
|
/**
|
|
Similar to operator%=(const CImg<t>&), except that it returns a new image instance instead of operating in-place.
|
|
The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary.
|
|
**/
|
|
template<typename t>
|
|
CImg<_cimg_Tt> operator%(const CImg<t>& img) const {
|
|
return CImg<_cimg_Tt>(*this,false)%=img;
|
|
}
|
|
|
|
//! In-place bitwise AND operator.
|
|
/**
|
|
Similar to operator+=(const t), except that it performs a bitwise AND operation instead of an addition.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& operator&=(const t value) {
|
|
if (is_empty()) return *this;
|
|
cimg_openmp_for(*this,(longT)*ptr & (longT)value,32768);
|
|
return *this;
|
|
}
|
|
|
|
//! In-place bitwise AND operator.
|
|
/**
|
|
Similar to operator+=(const char*), except that it performs a bitwise AND operation instead of an addition.
|
|
**/
|
|
CImg<T>& operator&=(const char *const expression) {
|
|
return *this&=(+*this)._fill(expression,true,1,0,0,"operator&=",this);
|
|
}
|
|
|
|
//! In-place bitwise AND operator.
|
|
/**
|
|
Similar to operator+=(const CImg<t>&), except that it performs a bitwise AND operation instead of an addition.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& operator&=(const CImg<t>& img) {
|
|
const ulongT siz = size(), isiz = img.size();
|
|
if (siz && isiz) {
|
|
if (is_overlapped(img)) return *this&=+img;
|
|
T *ptrd = _data, *const ptre = _data + siz;
|
|
if (siz>isiz) for (ulongT n = siz/isiz; n; --n)
|
|
for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs<ptrs_end; ++ptrd)
|
|
*ptrd = (T)((longT)*ptrd & (longT)*(ptrs++));
|
|
for (const t *ptrs = img._data; ptrd<ptre; ++ptrd) *ptrd = (T)((longT)*ptrd & (longT)*(ptrs++));
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Bitwise AND operator.
|
|
/**
|
|
Similar to operator&=(const t), except that it returns a new image instance instead of operating in-place.
|
|
The pixel type of the returned image is \c T.
|
|
**/
|
|
template<typename t>
|
|
CImg<T> operator&(const t value) const {
|
|
return (+*this)&=value;
|
|
}
|
|
|
|
//! Bitwise AND operator.
|
|
/**
|
|
Similar to operator&=(const char*), except that it returns a new image instance instead of operating in-place.
|
|
The pixel type of the returned image is \c T.
|
|
**/
|
|
CImg<T> operator&(const char *const expression) const {
|
|
return (+*this)&=expression;
|
|
}
|
|
|
|
//! Bitwise AND operator.
|
|
/**
|
|
Similar to operator&=(const CImg<t>&), except that it returns a new image instance instead of operating in-place.
|
|
The pixel type of the returned image is \c T.
|
|
**/
|
|
template<typename t>
|
|
CImg<T> operator&(const CImg<t>& img) const {
|
|
return (+*this)&=img;
|
|
}
|
|
|
|
//! In-place bitwise OR operator.
|
|
/**
|
|
Similar to operator+=(const t), except that it performs a bitwise OR operation instead of an addition.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& operator|=(const t value) {
|
|
if (is_empty()) return *this;
|
|
cimg_openmp_for(*this,(longT)*ptr | (longT)value,32768);
|
|
return *this;
|
|
}
|
|
|
|
//! In-place bitwise OR operator.
|
|
/**
|
|
Similar to operator+=(const char*), except that it performs a bitwise OR operation instead of an addition.
|
|
**/
|
|
CImg<T>& operator|=(const char *const expression) {
|
|
return *this|=(+*this)._fill(expression,true,1,0,0,"operator|=",this);
|
|
}
|
|
|
|
//! In-place bitwise OR operator.
|
|
/**
|
|
Similar to operator+=(const CImg<t>&), except that it performs a bitwise OR operation instead of an addition.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& operator|=(const CImg<t>& img) {
|
|
const ulongT siz = size(), isiz = img.size();
|
|
if (siz && isiz) {
|
|
if (is_overlapped(img)) return *this|=+img;
|
|
T *ptrd = _data, *const ptre = _data + siz;
|
|
if (siz>isiz) for (ulongT n = siz/isiz; n; --n)
|
|
for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs<ptrs_end; ++ptrd)
|
|
*ptrd = (T)((longT)*ptrd | (longT)*(ptrs++));
|
|
for (const t *ptrs = img._data; ptrd<ptre; ++ptrd) *ptrd = (T)((longT)*ptrd | (longT)*(ptrs++));
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Bitwise OR operator.
|
|
/**
|
|
Similar to operator|=(const t), except that it returns a new image instance instead of operating in-place.
|
|
The pixel type of the returned image is \c T.
|
|
**/
|
|
template<typename t>
|
|
CImg<T> operator|(const t value) const {
|
|
return (+*this)|=value;
|
|
}
|
|
|
|
//! Bitwise OR operator.
|
|
/**
|
|
Similar to operator|=(const char*), except that it returns a new image instance instead of operating in-place.
|
|
The pixel type of the returned image is \c T.
|
|
**/
|
|
CImg<T> operator|(const char *const expression) const {
|
|
return (+*this)|=expression;
|
|
}
|
|
|
|
//! Bitwise OR operator.
|
|
/**
|
|
Similar to operator|=(const CImg<t>&), except that it returns a new image instance instead of operating in-place.
|
|
The pixel type of the returned image is \c T.
|
|
**/
|
|
template<typename t>
|
|
CImg<T> operator|(const CImg<t>& img) const {
|
|
return (+*this)|=img;
|
|
}
|
|
|
|
//! In-place bitwise XOR operator.
|
|
/**
|
|
Similar to operator+=(const t), except that it performs a bitwise XOR operation instead of an addition.
|
|
\warning
|
|
- It does \e not compute the \e power of pixel values. For this purpose, use pow(const t) instead.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& operator^=(const t value) {
|
|
if (is_empty()) return *this;
|
|
cimg_openmp_for(*this,(longT)*ptr ^ (longT)value,32768);
|
|
return *this;
|
|
}
|
|
|
|
//! In-place bitwise XOR operator.
|
|
/**
|
|
Similar to operator+=(const char*), except that it performs a bitwise XOR operation instead of an addition.
|
|
\warning
|
|
- It does \e not compute the \e power of pixel values. For this purpose, use pow(const char*) instead.
|
|
**/
|
|
CImg<T>& operator^=(const char *const expression) {
|
|
return *this^=(+*this)._fill(expression,true,1,0,0,"operator^=",this);
|
|
}
|
|
|
|
//! In-place bitwise XOR operator.
|
|
/**
|
|
Similar to operator+=(const CImg<t>&), except that it performs a bitwise XOR operation instead of an addition.
|
|
\warning
|
|
- It does \e not compute the \e power of pixel values. For this purpose, use pow(const CImg<t>&) instead.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& operator^=(const CImg<t>& img) {
|
|
const ulongT siz = size(), isiz = img.size();
|
|
if (siz && isiz) {
|
|
if (is_overlapped(img)) return *this^=+img;
|
|
T *ptrd = _data, *const ptre = _data + siz;
|
|
if (siz>isiz) for (ulongT n = siz/isiz; n; --n)
|
|
for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs<ptrs_end; ++ptrd)
|
|
*ptrd = (T)((longT)*ptrd ^ (longT)*(ptrs++));
|
|
for (const t *ptrs = img._data; ptrd<ptre; ++ptrd) *ptrd = (T)((longT)*ptrd ^ (longT)*(ptrs++));
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Bitwise XOR operator.
|
|
/**
|
|
Similar to operator^=(const t), except that it returns a new image instance instead of operating in-place.
|
|
The pixel type of the returned image is \c T.
|
|
**/
|
|
template<typename t>
|
|
CImg<T> operator^(const t value) const {
|
|
return (+*this)^=value;
|
|
}
|
|
|
|
//! Bitwise XOR operator.
|
|
/**
|
|
Similar to operator^=(const char*), except that it returns a new image instance instead of operating in-place.
|
|
The pixel type of the returned image is \c T.
|
|
**/
|
|
CImg<T> operator^(const char *const expression) const {
|
|
return (+*this)^=expression;
|
|
}
|
|
|
|
//! Bitwise XOR operator.
|
|
/**
|
|
Similar to operator^=(const CImg<t>&), except that it returns a new image instance instead of operating in-place.
|
|
The pixel type of the returned image is \c T.
|
|
**/
|
|
template<typename t>
|
|
CImg<T> operator^(const CImg<t>& img) const {
|
|
return (+*this)^=img;
|
|
}
|
|
|
|
//! In-place bitwise left shift operator.
|
|
/**
|
|
Similar to operator+=(const t), except that it performs a bitwise left shift instead of an addition.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& operator<<=(const t value) {
|
|
if (is_empty()) return *this;
|
|
cimg_openmp_for(*this,((longT)*ptr) << (int)value,65536);
|
|
return *this;
|
|
}
|
|
|
|
//! In-place bitwise left shift operator.
|
|
/**
|
|
Similar to operator+=(const char*), except that it performs a bitwise left shift instead of an addition.
|
|
**/
|
|
CImg<T>& operator<<=(const char *const expression) {
|
|
return *this<<=(+*this)._fill(expression,true,1,0,0,"operator<<=",this);
|
|
}
|
|
|
|
//! In-place bitwise left shift operator.
|
|
/**
|
|
Similar to operator+=(const CImg<t>&), except that it performs a bitwise left shift instead of an addition.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& operator<<=(const CImg<t>& img) {
|
|
const ulongT siz = size(), isiz = img.size();
|
|
if (siz && isiz) {
|
|
if (is_overlapped(img)) return *this^=+img;
|
|
T *ptrd = _data, *const ptre = _data + siz;
|
|
if (siz>isiz) for (ulongT n = siz/isiz; n; --n)
|
|
for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs<ptrs_end; ++ptrd)
|
|
*ptrd = (T)((longT)*ptrd << (int)*(ptrs++));
|
|
for (const t *ptrs = img._data; ptrd<ptre; ++ptrd) *ptrd = (T)((longT)*ptrd << (int)*(ptrs++));
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Bitwise left shift operator.
|
|
/**
|
|
Similar to operator<<=(const t), except that it returns a new image instance instead of operating in-place.
|
|
The pixel type of the returned image is \c T.
|
|
**/
|
|
template<typename t>
|
|
CImg<T> operator<<(const t value) const {
|
|
return (+*this)<<=value;
|
|
}
|
|
|
|
//! Bitwise left shift operator.
|
|
/**
|
|
Similar to operator<<=(const char*), except that it returns a new image instance instead of operating in-place.
|
|
The pixel type of the returned image is \c T.
|
|
**/
|
|
CImg<T> operator<<(const char *const expression) const {
|
|
return (+*this)<<=expression;
|
|
}
|
|
|
|
//! Bitwise left shift operator.
|
|
/**
|
|
Similar to operator<<=(const CImg<t>&), except that it returns a new image instance instead of
|
|
operating in-place.
|
|
The pixel type of the returned image is \c T.
|
|
**/
|
|
template<typename t>
|
|
CImg<T> operator<<(const CImg<t>& img) const {
|
|
return (+*this)<<=img;
|
|
}
|
|
|
|
//! In-place bitwise right shift operator.
|
|
/**
|
|
Similar to operator+=(const t), except that it performs a bitwise right shift instead of an addition.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& operator>>=(const t value) {
|
|
if (is_empty()) return *this;
|
|
cimg_openmp_for(*this,((longT)*ptr) >> (int)value,65536);
|
|
return *this;
|
|
}
|
|
|
|
//! In-place bitwise right shift operator.
|
|
/**
|
|
Similar to operator+=(const char*), except that it performs a bitwise right shift instead of an addition.
|
|
**/
|
|
CImg<T>& operator>>=(const char *const expression) {
|
|
return *this>>=(+*this)._fill(expression,true,1,0,0,"operator>>=",this);
|
|
}
|
|
|
|
//! In-place bitwise right shift operator.
|
|
/**
|
|
Similar to operator+=(const CImg<t>&), except that it performs a bitwise right shift instead of an addition.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& operator>>=(const CImg<t>& img) {
|
|
const ulongT siz = size(), isiz = img.size();
|
|
if (siz && isiz) {
|
|
if (is_overlapped(img)) return *this^=+img;
|
|
T *ptrd = _data, *const ptre = _data + siz;
|
|
if (siz>isiz) for (ulongT n = siz/isiz; n; --n)
|
|
for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs<ptrs_end; ++ptrd)
|
|
*ptrd = (T)((longT)*ptrd >> (int)*(ptrs++));
|
|
for (const t *ptrs = img._data; ptrd<ptre; ++ptrd) *ptrd = (T)((longT)*ptrd >> (int)*(ptrs++));
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Bitwise right shift operator.
|
|
/**
|
|
Similar to operator>>=(const t), except that it returns a new image instance instead of operating in-place.
|
|
The pixel type of the returned image is \c T.
|
|
**/
|
|
template<typename t>
|
|
CImg<T> operator>>(const t value) const {
|
|
return (+*this)>>=value;
|
|
}
|
|
|
|
//! Bitwise right shift operator.
|
|
/**
|
|
Similar to operator>>=(const char*), except that it returns a new image instance instead of operating in-place.
|
|
The pixel type of the returned image is \c T.
|
|
**/
|
|
CImg<T> operator>>(const char *const expression) const {
|
|
return (+*this)>>=expression;
|
|
}
|
|
|
|
//! Bitwise right shift operator.
|
|
/**
|
|
Similar to operator>>=(const CImg<t>&), except that it returns a new image instance instead of
|
|
operating in-place.
|
|
The pixel type of the returned image is \c T.
|
|
**/
|
|
template<typename t>
|
|
CImg<T> operator>>(const CImg<t>& img) const {
|
|
return (+*this)>>=img;
|
|
}
|
|
|
|
//! Bitwise inversion operator.
|
|
/**
|
|
Similar to operator-(), except that it compute the bitwise inverse instead of the opposite value.
|
|
**/
|
|
CImg<T> operator~() const {
|
|
CImg<T> res(_width,_height,_depth,_spectrum);
|
|
const T *ptrs = _data;
|
|
cimg_for(res,ptrd,T) { const ulongT value = (ulongT)*(ptrs++); *ptrd = (T)~value; }
|
|
return res;
|
|
}
|
|
|
|
//! Test if all pixels of an image have the same value.
|
|
/**
|
|
Return \c true is all pixels of the image instance are equal to the specified \c value.
|
|
\param value Reference value to compare with.
|
|
**/
|
|
template<typename t>
|
|
bool operator==(const t value) const {
|
|
if (is_empty()) return false;
|
|
typedef _cimg_Tt Tt;
|
|
bool is_equal = true;
|
|
for (T *ptrd = _data + size(); is_equal && ptrd>_data; is_equal = ((Tt)*(--ptrd)==(Tt)value)) {}
|
|
return is_equal;
|
|
}
|
|
|
|
//! Test if all pixel values of an image follow a specified expression.
|
|
/**
|
|
Return \c true is all pixels of the image instance are equal to the specified \c expression.
|
|
\param expression Value string describing the way pixel values are compared.
|
|
**/
|
|
bool operator==(const char *const expression) const {
|
|
return *this==(+*this)._fill(expression,true,1,0,0,"operator==",this);
|
|
}
|
|
|
|
//! Test if two images have the same size and values.
|
|
/**
|
|
Return \c true if the image instance and the input image \c img have the same pixel values,
|
|
even if the dimensions of the two images do not match. It returns \c false otherwise.
|
|
\param img Input image to compare with.
|
|
\note
|
|
- The pixel buffer pointers data() of the two compared images do not have to be the same for operator==()
|
|
to return \c true.
|
|
Only the dimensions and the pixel values matter. Thus, the comparison can be \c true even for different
|
|
pixel types \c T and \c t.
|
|
\par Example
|
|
\code
|
|
const CImg<float> img1(1,3,1,1, 0,1,2); // Construct a 1x3 vector [0;1;2] (with 'float' pixel values)
|
|
const CImg<char> img2(1,3,1,1, 0,1,2); // Construct a 1x3 vector [0;1;2] (with 'char' pixel values)
|
|
if (img1==img2) { // Test succeeds, image dimensions and values are the same
|
|
std::printf("'img1' and 'img2' have same dimensions and values.");
|
|
}
|
|
\endcode
|
|
**/
|
|
template<typename t>
|
|
bool operator==(const CImg<t>& img) const {
|
|
typedef _cimg_Tt Tt;
|
|
const ulongT siz = size();
|
|
bool is_equal = true;
|
|
if (siz!=img.size()) return false;
|
|
t *ptrs = img._data + siz;
|
|
for (T *ptrd = _data + siz; is_equal && ptrd>_data; is_equal = ((Tt)*(--ptrd)==(Tt)*(--ptrs))) {}
|
|
return is_equal;
|
|
}
|
|
|
|
//! Test if pixels of an image are all different from a value.
|
|
/**
|
|
Return \c true is all pixels of the image instance are different than the specified \c value.
|
|
\param value Reference value to compare with.
|
|
**/
|
|
template<typename t>
|
|
bool operator!=(const t value) const {
|
|
return !((*this)==value);
|
|
}
|
|
|
|
//! Test if all pixel values of an image are different from a specified expression.
|
|
/**
|
|
Return \c true is all pixels of the image instance are different to the specified \c expression.
|
|
\param expression Value string describing the way pixel values are compared.
|
|
**/
|
|
bool operator!=(const char *const expression) const {
|
|
return !((*this)==expression);
|
|
}
|
|
|
|
//! Test if two images have different sizes or values.
|
|
/**
|
|
Return \c true if the image instance and the input image \c img have different dimensions or pixel values,
|
|
and \c false otherwise.
|
|
\param img Input image to compare with.
|
|
\note
|
|
- Writing \c img1!=img2 is equivalent to \c !(img1==img2).
|
|
**/
|
|
template<typename t>
|
|
bool operator!=(const CImg<t>& img) const {
|
|
return !((*this)==img);
|
|
}
|
|
|
|
//! Construct an image list from two images.
|
|
/**
|
|
Return a new list of image (\c CImgList instance) containing exactly two elements:
|
|
- A copy of the image instance, at position [\c 0].
|
|
- A copy of the specified image \c img, at position [\c 1].
|
|
|
|
\param img Input image that will be the second image of the resulting list.
|
|
\note
|
|
- The family of operator,() is convenient to easily create list of images, but it is also \e quite \e slow
|
|
in practice (see warning below).
|
|
- Constructed lists contain no shared images. If image instance or input image \c img are shared, they are
|
|
inserted as new non-shared copies in the resulting list.
|
|
- The pixel type of the returned list may be a superset of the initial pixel type \c T, if necessary.
|
|
\warning
|
|
- Pipelining operator,() \c N times will perform \c N copies of the entire content of a (growing) image list.
|
|
This may become very expensive in terms of speed and used memory. You should avoid using this technique to
|
|
build a new CImgList instance from several images, if you are seeking for performance.
|
|
Fast insertions of images in an image list are possible with
|
|
CImgList<T>::insert(const CImg<t>&,unsigned int,bool) or move_to(CImgList<t>&,unsigned int).
|
|
\par Example
|
|
\code
|
|
const CImg<float>
|
|
img1("reference.jpg"),
|
|
img2 = img1.get_mirror('x'),
|
|
img3 = img2.get_blur(5);
|
|
const CImgList<float> list = (img1,img2); // Create list of two elements from 'img1' and 'img2'
|
|
(list,img3).display(); // Display image list containing copies of 'img1','img2' and 'img3'
|
|
\endcode
|
|
\image html ref_operator_comma.jpg
|
|
**/
|
|
template<typename t>
|
|
CImgList<_cimg_Tt> operator,(const CImg<t>& img) const {
|
|
return CImgList<_cimg_Tt>(*this,img);
|
|
}
|
|
|
|
//! Construct an image list from image instance and an input image list.
|
|
/**
|
|
Return a new list of images (\c CImgList instance) containing exactly \c list.size() \c + \c 1 elements:
|
|
- A copy of the image instance, at position [\c 0].
|
|
- A copy of the specified image list \c list, from positions [\c 1] to [\c list.size()].
|
|
|
|
\param list Input image list that will be appended to the image instance.
|
|
\note
|
|
- Similar to operator,(const CImg<t>&) const, except that it takes an image list as an argument.
|
|
**/
|
|
template<typename t>
|
|
CImgList<_cimg_Tt> operator,(const CImgList<t>& list) const {
|
|
return CImgList<_cimg_Tt>(list,false).insert(*this,0);
|
|
}
|
|
|
|
//! Split image along specified axis.
|
|
/**
|
|
Return a new list of images (\c CImgList instance) containing the split components
|
|
of the instance image along the specified axis.
|
|
\param axis Splitting axis (can be '\c x','\c y','\c z' or '\c c')
|
|
\note
|
|
- Similar to get_split(char,int) const, with default second argument.
|
|
\par Example
|
|
\code
|
|
const CImg<unsigned char> img("reference.jpg"); // Load a RGB color image
|
|
const CImgList<unsigned char> list = (img<'c'); // Get a list of its three R,G,B channels
|
|
(img,list).display();
|
|
\endcode
|
|
\image html ref_operator_less.jpg
|
|
**/
|
|
CImgList<T> operator<(const char axis) const {
|
|
return get_split(axis);
|
|
}
|
|
|
|
//@}
|
|
//-------------------------------------
|
|
//
|
|
//! \name Instance Characteristics
|
|
//@{
|
|
//-------------------------------------
|
|
|
|
//! Return the type of image pixel values as a C string.
|
|
/**
|
|
Return a \c char* string containing the usual type name of the image pixel values
|
|
(i.e. a stringified version of the template parameter \c T).
|
|
\note
|
|
- The returned string does not contain any spaces.
|
|
- If the pixel type \c T does not correspond to a registered type, the string <tt>"unknown"</tt> is returned.
|
|
**/
|
|
static const char* pixel_type() {
|
|
return cimg::type<T>::string();
|
|
}
|
|
|
|
//! Return the number of image columns.
|
|
/**
|
|
Return the image width, i.e. the image dimension along the X-axis.
|
|
\note
|
|
- The width() of an empty image is equal to \c 0.
|
|
- width() is typically equal to \c 1 when considering images as \e vectors for matrix calculations.
|
|
- width() returns an \c int, although the image width is internally stored as an \c unsigned \c int.
|
|
Using an \c int is safer and prevents arithmetic traps possibly encountered when doing calculations involving
|
|
\c unsigned \c int variables.
|
|
Access to the initial \c unsigned \c int variable is possible (though not recommended) by
|
|
<tt>(*this)._width</tt>.
|
|
**/
|
|
int width() const {
|
|
return (int)_width;
|
|
}
|
|
|
|
//! Return the number of image rows.
|
|
/**
|
|
Return the image height, i.e. the image dimension along the Y-axis.
|
|
\note
|
|
- The height() of an empty image is equal to \c 0.
|
|
- height() returns an \c int, although the image height is internally stored as an \c unsigned \c int.
|
|
Using an \c int is safer and prevents arithmetic traps possibly encountered when doing calculations involving
|
|
\c unsigned \c int variables.
|
|
Access to the initial \c unsigned \c int variable is possible (though not recommended) by
|
|
<tt>(*this)._height</tt>.
|
|
**/
|
|
int height() const {
|
|
return (int)_height;
|
|
}
|
|
|
|
//! Return the number of image slices.
|
|
/**
|
|
Return the image depth, i.e. the image dimension along the Z-axis.
|
|
\note
|
|
- The depth() of an empty image is equal to \c 0.
|
|
- depth() is typically equal to \c 1 when considering usual 2D images. When depth()\c > \c 1, the image
|
|
is said to be \e volumetric.
|
|
- depth() returns an \c int, although the image depth is internally stored as an \c unsigned \c int.
|
|
Using an \c int is safer and prevents arithmetic traps possibly encountered when doing calculations involving
|
|
\c unsigned \c int variables.
|
|
Access to the initial \c unsigned \c int variable is possible (though not recommended) by
|
|
<tt>(*this)._depth</tt>.
|
|
**/
|
|
int depth() const {
|
|
return (int)_depth;
|
|
}
|
|
|
|
//! Return the number of image channels.
|
|
/**
|
|
Return the number of image channels, i.e. the image dimension along the C-axis.
|
|
\note
|
|
- The spectrum() of an empty image is equal to \c 0.
|
|
- spectrum() is typically equal to \c 1 when considering scalar-valued images, to \c 3
|
|
for RGB-coded color images, and to \c 4 for RGBA-coded color images (with alpha-channel).
|
|
The number of channels of an image instance is not limited. The meaning of the pixel values is not linked
|
|
up to the number of channels (e.g. a 4-channel image may indifferently stands for a RGBA or CMYK color image).
|
|
- spectrum() returns an \c int, although the image spectrum is internally stored as an \c unsigned \c int.
|
|
Using an \c int is safer and prevents arithmetic traps possibly encountered when doing calculations involving
|
|
\c unsigned \c int variables.
|
|
Access to the initial \c unsigned \c int variable is possible (though not recommended) by
|
|
<tt>(*this)._spectrum</tt>.
|
|
**/
|
|
int spectrum() const {
|
|
return (int)_spectrum;
|
|
}
|
|
|
|
//! Return the total number of pixel values.
|
|
/**
|
|
Return <tt>width()*\ref height()*\ref depth()*\ref spectrum()</tt>,
|
|
i.e. the total number of values of type \c T in the pixel buffer of the image instance.
|
|
\note
|
|
- The size() of an empty image is equal to \c 0.
|
|
- The allocated memory size for a pixel buffer of a non-shared \c CImg<T> instance is equal to
|
|
<tt>size()*sizeof(T)</tt>.
|
|
\par Example
|
|
\code
|
|
const CImg<float> img(100,100,1,3); // Construct new 100x100 color image
|
|
if (img.size()==30000) // Test succeeds
|
|
std::printf("Pixel buffer uses %lu bytes",
|
|
img.size()*sizeof(float));
|
|
\endcode
|
|
**/
|
|
ulongT size() const {
|
|
return (ulongT)_width*_height*_depth*_spectrum;
|
|
}
|
|
|
|
//! Return a pointer to the first pixel value.
|
|
/**
|
|
Return a \c T*, or a \c const \c T* pointer to the first value in the pixel buffer of the image instance,
|
|
whether the instance is \c const or not.
|
|
\note
|
|
- The data() of an empty image is equal to \c 0 (null pointer).
|
|
- The allocated pixel buffer for the image instance starts from \c data()
|
|
and goes to <tt>data()+\ref size() - 1</tt> (included).
|
|
- To get the pointer to one particular location of the pixel buffer, use
|
|
data(unsigned int,unsigned int,unsigned int,unsigned int) instead.
|
|
**/
|
|
T* data() {
|
|
return _data;
|
|
}
|
|
|
|
//! Return a pointer to the first pixel value \const.
|
|
const T* data() const {
|
|
return _data;
|
|
}
|
|
|
|
//! Return a pointer to a located pixel value.
|
|
/**
|
|
Return a \c T*, or a \c const \c T* pointer to the value located at (\c x,\c y,\c z,\c c) in the pixel buffer
|
|
of the image instance,
|
|
whether the instance is \c const or not.
|
|
\param x X-coordinate of the pixel value.
|
|
\param y Y-coordinate of the pixel value.
|
|
\param z Z-coordinate of the pixel value.
|
|
\param c C-coordinate of the pixel value.
|
|
\note
|
|
- Writing \c img.data(x,y,z,c) is equivalent to <tt>&(img(x,y,z,c))</tt>. Thus, this method has the same
|
|
properties as operator()(unsigned int,unsigned int,unsigned int,unsigned int).
|
|
**/
|
|
#if cimg_verbosity>=3
|
|
T *data(const unsigned int x, const unsigned int y=0, const unsigned int z=0, const unsigned int c=0) {
|
|
const ulongT off = (ulongT)offset(x,y,z,c);
|
|
if (off>=size())
|
|
cimg::warn(_cimg_instance
|
|
"data(): Invalid pointer request, at coordinates (%u,%u,%u,%u) [offset=%u].",
|
|
cimg_instance,
|
|
x,y,z,c,off);
|
|
return _data + off;
|
|
}
|
|
|
|
//! Return a pointer to a located pixel value \const.
|
|
const T* data(const unsigned int x, const unsigned int y=0, const unsigned int z=0, const unsigned int c=0) const {
|
|
return const_cast<CImg<T>*>(this)->data(x,y,z,c);
|
|
}
|
|
#else
|
|
T* data(const unsigned int x, const unsigned int y=0, const unsigned int z=0, const unsigned int c=0) {
|
|
return _data + x + (ulongT)y*_width + (ulongT)z*_width*_height + (ulongT)c*_width*_height*_depth;
|
|
}
|
|
|
|
const T* data(const unsigned int x, const unsigned int y=0, const unsigned int z=0, const unsigned int c=0) const {
|
|
return _data + x + (ulongT)y*_width + (ulongT)z*_width*_height + (ulongT)c*_width*_height*_depth;
|
|
}
|
|
#endif
|
|
|
|
//! Return the offset to a located pixel value, with respect to the beginning of the pixel buffer.
|
|
/**
|
|
\param x X-coordinate of the pixel value.
|
|
\param y Y-coordinate of the pixel value.
|
|
\param z Z-coordinate of the pixel value.
|
|
\param c C-coordinate of the pixel value.
|
|
\note
|
|
- Writing \c img.data(x,y,z,c) is equivalent to <tt>&(img(x,y,z,c)) - img.data()</tt>.
|
|
Thus, this method has the same properties as operator()(unsigned int,unsigned int,unsigned int,unsigned int).
|
|
\par Example
|
|
\code
|
|
const CImg<float> img(100,100,1,3); // Define a 100x100 RGB-color image
|
|
const long off = img.offset(10,10,0,2); // Get the offset of the blue value of the pixel located at (10,10)
|
|
const float val = img[off]; // Get the blue value of this pixel
|
|
\endcode
|
|
**/
|
|
longT offset(const int x, const int y=0, const int z=0, const int c=0) const {
|
|
return x + (longT)y*_width + (longT)z*_width*_height + (longT)c*_width*_height*_depth;
|
|
}
|
|
|
|
//! Return a CImg<T>::iterator pointing to the first pixel value.
|
|
/**
|
|
\note
|
|
- Equivalent to data().
|
|
- It has been mainly defined for compatibility with STL naming conventions.
|
|
**/
|
|
iterator begin() {
|
|
return _data;
|
|
}
|
|
|
|
//! Return a CImg<T>::iterator pointing to the first value of the pixel buffer \const.
|
|
const_iterator begin() const {
|
|
return _data;
|
|
}
|
|
|
|
//! Return a CImg<T>::iterator pointing next to the last pixel value.
|
|
/**
|
|
\note
|
|
- Writing \c img.end() is equivalent to <tt>img.data() + img.size()</tt>.
|
|
- It has been mainly defined for compatibility with STL naming conventions.
|
|
\warning
|
|
- The returned iterator actually points to a value located \e outside the acceptable bounds of the pixel buffer.
|
|
Trying to read or write the content of the returned iterator will probably result in a crash.
|
|
Use it mainly as a strict upper bound for a CImg<T>::iterator.
|
|
\par Example
|
|
\code
|
|
CImg<float> img(100,100,1,3); // Define a 100x100 RGB color image
|
|
// 'img.end()' used below as an upper bound for the iterator.
|
|
for (CImg<float>::iterator it = img.begin(); it<img.end(); ++it)
|
|
*it = 0;
|
|
\endcode
|
|
**/
|
|
iterator end() {
|
|
return _data + size();
|
|
}
|
|
|
|
//! Return a CImg<T>::iterator pointing next to the last pixel value \const.
|
|
const_iterator end() const {
|
|
return _data + size();
|
|
}
|
|
|
|
//! Return a reference to the first pixel value.
|
|
/**
|
|
\note
|
|
- Writing \c img.front() is equivalent to <tt>img[0]</tt>, or <tt>img(0,0,0,0)</tt>.
|
|
- It has been mainly defined for compatibility with STL naming conventions.
|
|
**/
|
|
T& front() {
|
|
return *_data;
|
|
}
|
|
|
|
//! Return a reference to the first pixel value \const.
|
|
const T& front() const {
|
|
return *_data;
|
|
}
|
|
|
|
//! Return a reference to the last pixel value.
|
|
/**
|
|
\note
|
|
- Writing \c img.back() is equivalent to <tt>img[img.size() - 1]</tt>, or
|
|
<tt>img(img.width() - 1,img.height() - 1,img.depth() - 1,img.spectrum() - 1)</tt>.
|
|
- It has been mainly defined for compatibility with STL naming conventions.
|
|
**/
|
|
T& back() {
|
|
return *(_data + size() - 1);
|
|
}
|
|
|
|
//! Return a reference to the last pixel value \const.
|
|
const T& back() const {
|
|
return *(_data + size() - 1);
|
|
}
|
|
|
|
//! Access to a pixel value at a specified offset, using Dirichlet boundary conditions.
|
|
/**
|
|
Return a reference to the pixel value of the image instance located at a specified \c offset,
|
|
or to a specified default value in case of out-of-bounds access.
|
|
\param offset Offset to the desired pixel value.
|
|
\param out_value Default value returned if \c offset is outside image bounds.
|
|
\note
|
|
- Writing \c img.at(offset,out_value) is similar to <tt>img[offset]</tt>, except that if \c offset
|
|
is outside bounds (e.g. \c offset<0 or \c offset>=img.size()), a reference to a value \c out_value
|
|
is safely returned instead.
|
|
- Due to the additional boundary checking operation, this method is slower than operator()(). Use it when
|
|
you are \e not sure about the validity of the specified pixel offset.
|
|
**/
|
|
T& at(const int offset, const T& out_value) {
|
|
return (offset<0 || offset>=(int)size())?(cimg::temporary(out_value)=out_value):(*this)[offset];
|
|
}
|
|
|
|
//! Access to a pixel value at a specified offset, using Dirichlet boundary conditions \const.
|
|
T at(const int offset, const T& out_value) const {
|
|
return (offset<0 || offset>=(int)size())?out_value:(*this)[offset];
|
|
}
|
|
|
|
//! Access to a pixel value at a specified offset, using Neumann boundary conditions.
|
|
/**
|
|
Return a reference to the pixel value of the image instance located at a specified \c offset,
|
|
or to the nearest pixel location in the image instance in case of out-of-bounds access.
|
|
\param offset Offset to the desired pixel value.
|
|
\note
|
|
- Similar to at(int,const T), except that an out-of-bounds access returns the value of the
|
|
nearest pixel in the image instance, regarding the specified offset, i.e.
|
|
- If \c offset<0, then \c img[0] is returned.
|
|
- If \c offset>=img.size(), then \c img[img.size() - 1] is returned.
|
|
- Due to the additional boundary checking operation, this method is slower than operator()(). Use it when
|
|
you are \e not sure about the validity of the specified pixel offset.
|
|
- If you know your image instance is \e not empty, you may rather use the slightly faster method \c _at(int).
|
|
**/
|
|
T& at(const int offset) {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"at(): Empty instance.",
|
|
cimg_instance);
|
|
return _at(offset);
|
|
}
|
|
|
|
T& _at(const int offset) {
|
|
const unsigned int siz = (unsigned int)size();
|
|
return (*this)[offset<0?0:(unsigned int)offset>=siz?siz - 1:offset];
|
|
}
|
|
|
|
//! Access to a pixel value at a specified offset, using Neumann boundary conditions \const.
|
|
const T& at(const int offset) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"at(): Empty instance.",
|
|
cimg_instance);
|
|
return _at(offset);
|
|
}
|
|
|
|
const T& _at(const int offset) const {
|
|
const unsigned int siz = (unsigned int)size();
|
|
return (*this)[offset<0?0:(unsigned int)offset>=siz?siz - 1:offset];
|
|
}
|
|
|
|
//! Access to a pixel value, using Dirichlet boundary conditions for the X-coordinate.
|
|
/**
|
|
Return a reference to the pixel value of the image instance located at (\c x,\c y,\c z,\c c),
|
|
or to a specified default value in case of out-of-bounds access along the X-axis.
|
|
\param x X-coordinate of the pixel value.
|
|
\param y Y-coordinate of the pixel value.
|
|
\param z Z-coordinate of the pixel value.
|
|
\param c C-coordinate of the pixel value.
|
|
\param out_value Default value returned if \c (\c x,\c y,\c z,\c c) is outside image bounds.
|
|
\note
|
|
- Similar to operator()(), except that an out-of-bounds access along the X-axis returns the specified value
|
|
\c out_value.
|
|
- Due to the additional boundary checking operation, this method is slower than operator()(). Use it when
|
|
you are \e not sure about the validity of the specified pixel coordinates.
|
|
\warning
|
|
- There is \e no boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds.
|
|
**/
|
|
T& atX(const int x, const int y, const int z, const int c, const T& out_value) {
|
|
return (x<0 || x>=width())?(cimg::temporary(out_value)=out_value):(*this)(x,y,z,c);
|
|
}
|
|
|
|
//! Access to a pixel value, using Dirichlet boundary conditions for the X-coordinate \const.
|
|
T atX(const int x, const int y, const int z, const int c, const T& out_value) const {
|
|
return (x<0 || x>=width())?out_value:(*this)(x,y,z,c);
|
|
}
|
|
|
|
//! Access to a pixel value, using Neumann boundary conditions for the X-coordinate.
|
|
/**
|
|
Return a reference to the pixel value of the image instance located at (\c x,\c y,\c z,\c c),
|
|
or to the nearest pixel location in the image instance in case of out-of-bounds access along the X-axis.
|
|
\param x X-coordinate of the pixel value.
|
|
\param y Y-coordinate of the pixel value.
|
|
\param z Z-coordinate of the pixel value.
|
|
\param c C-coordinate of the pixel value.
|
|
\note
|
|
- Similar to at(int,int,int,int,const T), except that an out-of-bounds access returns the value of the
|
|
nearest pixel in the image instance, regarding the specified X-coordinate.
|
|
- Due to the additional boundary checking operation, this method is slower than operator()(). Use it when
|
|
you are \e not sure about the validity of the specified pixel coordinates.
|
|
- If you know your image instance is \e not empty, you may rather use the slightly faster method
|
|
\c _at(int,int,int,int).
|
|
\warning
|
|
- There is \e no boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds.
|
|
**/
|
|
T& atX(const int x, const int y=0, const int z=0, const int c=0) {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"atX(): Empty instance.",
|
|
cimg_instance);
|
|
return _atX(x,y,z,c);
|
|
}
|
|
|
|
T& _atX(const int x, const int y=0, const int z=0, const int c=0) {
|
|
return (*this)(x<0?0:(x>=width()?width() - 1:x),y,z,c);
|
|
}
|
|
|
|
//! Access to a pixel value, using Neumann boundary conditions for the X-coordinate \const.
|
|
const T& atX(const int x, const int y=0, const int z=0, const int c=0) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"atX(): Empty instance.",
|
|
cimg_instance);
|
|
return _atX(x,y,z,c);
|
|
}
|
|
|
|
const T& _atX(const int x, const int y=0, const int z=0, const int c=0) const {
|
|
return (*this)(x<0?0:(x>=width()?width() - 1:x),y,z,c);
|
|
}
|
|
|
|
//! Access to a pixel value, using Dirichlet boundary conditions for the X and Y-coordinates.
|
|
/**
|
|
Similar to atX(int,int,int,int,const T), except that boundary checking is performed both on X and Y-coordinates.
|
|
**/
|
|
T& atXY(const int x, const int y, const int z, const int c, const T& out_value) {
|
|
return (x<0 || y<0 || x>=width() || y>=height())?(cimg::temporary(out_value)=out_value):(*this)(x,y,z,c);
|
|
}
|
|
|
|
//! Access to a pixel value, using Dirichlet boundary conditions for the X and Y coordinates \const.
|
|
T atXY(const int x, const int y, const int z, const int c, const T& out_value) const {
|
|
return (x<0 || y<0 || x>=width() || y>=height())?out_value:(*this)(x,y,z,c);
|
|
}
|
|
|
|
//! Access to a pixel value, using Neumann boundary conditions for the X and Y-coordinates.
|
|
/**
|
|
Similar to atX(int,int,int,int), except that boundary checking is performed both on X and Y-coordinates.
|
|
\note
|
|
- If you know your image instance is \e not empty, you may rather use the slightly faster method
|
|
\c _atXY(int,int,int,int).
|
|
**/
|
|
T& atXY(const int x, const int y, const int z=0, const int c=0) {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"atXY(): Empty instance.",
|
|
cimg_instance);
|
|
return _atXY(x,y,z,c);
|
|
}
|
|
|
|
T& _atXY(const int x, const int y, const int z=0, const int c=0) {
|
|
return (*this)(cimg::cut(x,0,width() - 1),
|
|
cimg::cut(y,0,height() - 1),z,c);
|
|
}
|
|
|
|
//! Access to a pixel value, using Neumann boundary conditions for the X and Y-coordinates \const.
|
|
const T& atXY(const int x, const int y, const int z=0, const int c=0) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"atXY(): Empty instance.",
|
|
cimg_instance);
|
|
return _atXY(x,y,z,c);
|
|
}
|
|
|
|
const T& _atXY(const int x, const int y, const int z=0, const int c=0) const {
|
|
return (*this)(cimg::cut(x,0,width() - 1),
|
|
cimg::cut(y,0,height() - 1),z,c);
|
|
}
|
|
|
|
//! Access to a pixel value, using Dirichlet boundary conditions for the X,Y and Z-coordinates.
|
|
/**
|
|
Similar to atX(int,int,int,int,const T), except that boundary checking is performed both on
|
|
X,Y and Z-coordinates.
|
|
**/
|
|
T& atXYZ(const int x, const int y, const int z, const int c, const T& out_value) {
|
|
return (x<0 || y<0 || z<0 || x>=width() || y>=height() || z>=depth())?
|
|
(cimg::temporary(out_value)=out_value):(*this)(x,y,z,c);
|
|
}
|
|
|
|
//! Access to a pixel value, using Dirichlet boundary conditions for the X,Y and Z-coordinates \const.
|
|
T atXYZ(const int x, const int y, const int z, const int c, const T& out_value) const {
|
|
return (x<0 || y<0 || z<0 || x>=width() || y>=height() || z>=depth())?out_value:(*this)(x,y,z,c);
|
|
}
|
|
|
|
//! Access to a pixel value, using Neumann boundary conditions for the X,Y and Z-coordinates.
|
|
/**
|
|
Similar to atX(int,int,int,int), except that boundary checking is performed both on X,Y and Z-coordinates.
|
|
\note
|
|
- If you know your image instance is \e not empty, you may rather use the slightly faster method
|
|
\c _atXYZ(int,int,int,int).
|
|
**/
|
|
T& atXYZ(const int x, const int y, const int z, const int c=0) {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"atXYZ(): Empty instance.",
|
|
cimg_instance);
|
|
return _atXYZ(x,y,z,c);
|
|
}
|
|
|
|
T& _atXYZ(const int x, const int y, const int z, const int c=0) {
|
|
return (*this)(cimg::cut(x,0,width() - 1),
|
|
cimg::cut(y,0,height() - 1),
|
|
cimg::cut(z,0,depth() - 1),c);
|
|
}
|
|
|
|
//! Access to a pixel value, using Neumann boundary conditions for the X,Y and Z-coordinates \const.
|
|
const T& atXYZ(const int x, const int y, const int z, const int c=0) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"atXYZ(): Empty instance.",
|
|
cimg_instance);
|
|
return _atXYZ(x,y,z,c);
|
|
}
|
|
|
|
const T& _atXYZ(const int x, const int y, const int z, const int c=0) const {
|
|
return (*this)(cimg::cut(x,0,width() - 1),
|
|
cimg::cut(y,0,height() - 1),
|
|
cimg::cut(z,0,depth() - 1),c);
|
|
}
|
|
|
|
//! Access to a pixel value, using Dirichlet boundary conditions.
|
|
/**
|
|
Similar to atX(int,int,int,int,const T), except that boundary checking is performed on all
|
|
X,Y,Z and C-coordinates.
|
|
**/
|
|
T& atXYZC(const int x, const int y, const int z, const int c, const T& out_value) {
|
|
return (x<0 || y<0 || z<0 || c<0 || x>=width() || y>=height() || z>=depth() || c>=spectrum())?
|
|
(cimg::temporary(out_value)=out_value):(*this)(x,y,z,c);
|
|
}
|
|
|
|
//! Access to a pixel value, using Dirichlet boundary conditions \const.
|
|
T atXYZC(const int x, const int y, const int z, const int c, const T& out_value) const {
|
|
return (x<0 || y<0 || z<0 || c<0 || x>=width() || y>=height() || z>=depth() || c>=spectrum())?out_value:
|
|
(*this)(x,y,z,c);
|
|
}
|
|
|
|
//! Access to a pixel value, using Neumann boundary conditions.
|
|
/**
|
|
Similar to atX(int,int,int,int), except that boundary checking is performed on all X,Y,Z and C-coordinates.
|
|
\note
|
|
- If you know your image instance is \e not empty, you may rather use the slightly faster method
|
|
\c _atXYZC(int,int,int,int).
|
|
**/
|
|
T& atXYZC(const int x, const int y, const int z, const int c) {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"atXYZC(): Empty instance.",
|
|
cimg_instance);
|
|
return _atXYZC(x,y,z,c);
|
|
}
|
|
|
|
T& _atXYZC(const int x, const int y, const int z, const int c) {
|
|
return (*this)(cimg::cut(x,0,width() - 1),
|
|
cimg::cut(y,0,height() - 1),
|
|
cimg::cut(z,0,depth() - 1),
|
|
cimg::cut(c,0,spectrum() - 1));
|
|
}
|
|
|
|
//! Access to a pixel value, using Neumann boundary conditions \const.
|
|
const T& atXYZC(const int x, const int y, const int z, const int c) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"atXYZC(): Empty instance.",
|
|
cimg_instance);
|
|
return _atXYZC(x,y,z,c);
|
|
}
|
|
|
|
const T& _atXYZC(const int x, const int y, const int z, const int c) const {
|
|
return (*this)(cimg::cut(x,0,width() - 1),
|
|
cimg::cut(y,0,height() - 1),
|
|
cimg::cut(z,0,depth() - 1),
|
|
cimg::cut(c,0,spectrum() - 1));
|
|
}
|
|
|
|
//! Return pixel value, using linear interpolation and Dirichlet boundary conditions for the X-coordinate.
|
|
/**
|
|
Return a linearly-interpolated pixel value of the image instance located at (\c fx,\c y,\c z,\c c),
|
|
or a specified default value in case of out-of-bounds access along the X-axis.
|
|
\param fx X-coordinate of the pixel value (float-valued).
|
|
\param y Y-coordinate of the pixel value.
|
|
\param z Z-coordinate of the pixel value.
|
|
\param c C-coordinate of the pixel value.
|
|
\param out_value Default value returned if \c (\c fx,\c y,\c z,\c c) is outside image bounds.
|
|
\note
|
|
- Similar to atX(int,int,int,int,const T), except that the returned pixel value is approximated by
|
|
a linear interpolation along the X-axis, if corresponding coordinates are not integers.
|
|
- The type of the returned pixel value is extended to \c float, if the pixel type \c T is not float-valued.
|
|
\warning
|
|
- There is \e no boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds.
|
|
**/
|
|
Tfloat linear_atX(const float fx, const int y, const int z, const int c, const T& out_value) const {
|
|
const int
|
|
x = (int)fx - (fx>=0?0:1), nx = x + 1;
|
|
const float
|
|
dx = fx - x;
|
|
const Tfloat
|
|
Ic = (Tfloat)atX(x,y,z,c,out_value), In = (Tfloat)atXY(nx,y,z,c,out_value);
|
|
return Ic + dx*(In - Ic);
|
|
}
|
|
|
|
//! Return pixel value, using linear interpolation and Neumann boundary conditions for the X-coordinate.
|
|
/**
|
|
Return a linearly-interpolated pixel value of the image instance located at (\c fx,\c y,\c z,\c c),
|
|
or the value of the nearest pixel location in the image instance in case of out-of-bounds access along
|
|
the X-axis.
|
|
\param fx X-coordinate of the pixel value (float-valued).
|
|
\param y Y-coordinate of the pixel value.
|
|
\param z Z-coordinate of the pixel value.
|
|
\param c C-coordinate of the pixel value.
|
|
\note
|
|
- Similar to linear_atX(float,int,int,int,const T) const, except that an out-of-bounds access returns
|
|
the value of the nearest pixel in the image instance, regarding the specified X-coordinate.
|
|
- If you know your image instance is \e not empty, you may rather use the slightly faster method
|
|
\c _linear_atX(float,int,int,int).
|
|
\warning
|
|
- There is \e no boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds.
|
|
**/
|
|
Tfloat linear_atX(const float fx, const int y=0, const int z=0, const int c=0) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"linear_atX(): Empty instance.",
|
|
cimg_instance);
|
|
|
|
return _linear_atX(fx,y,z,c);
|
|
}
|
|
|
|
Tfloat _linear_atX(const float fx, const int y=0, const int z=0, const int c=0) const {
|
|
const float
|
|
nfx = cimg::cut(fx,0,width() - 1);
|
|
const unsigned int
|
|
x = (unsigned int)nfx;
|
|
const float
|
|
dx = nfx - x;
|
|
const unsigned int
|
|
nx = dx>0?x + 1:x;
|
|
const Tfloat
|
|
Ic = (Tfloat)(*this)(x,y,z,c), In = (Tfloat)(*this)(nx,y,z,c);
|
|
return Ic + dx*(In - Ic);
|
|
}
|
|
|
|
//! Return pixel value, using linear interpolation and periodic boundary conditions for the X-coordinate.
|
|
Tfloat linear_atX_p(const float fx, const int y=0, const int z=0, const int c=0) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"linear_atX_p(): Empty instance.",
|
|
cimg_instance);
|
|
|
|
return _linear_atX_p(fx,y,z,c);
|
|
}
|
|
|
|
Tfloat _linear_atX_p(const float fx, const int y=0, const int z=0, const int c=0) const {
|
|
const float
|
|
nfx = cimg::mod(fx,_width - 0.5f);
|
|
const unsigned int
|
|
x = (unsigned int)nfx;
|
|
const float
|
|
dx = nfx - x;
|
|
const unsigned int
|
|
nx = cimg::mod(x + 1,_width);
|
|
const Tfloat
|
|
Ic = (Tfloat)(*this)(x,y,z,c), In = (Tfloat)(*this)(nx,y,z,c);
|
|
return Ic + dx*(In - Ic);
|
|
}
|
|
|
|
//! Return pixel value, using linear interpolation and Dirichlet boundary conditions for the X and Y-coordinates.
|
|
/**
|
|
Similar to linear_atX(float,int,int,int,const T) const, except that the linear interpolation and the
|
|
boundary checking are achieved both for X and Y-coordinates.
|
|
**/
|
|
Tfloat linear_atXY(const float fx, const float fy, const int z, const int c, const T& out_value) const {
|
|
const int
|
|
x = (int)fx - (fx>=0?0:1), nx = x + 1,
|
|
y = (int)fy - (fy>=0?0:1), ny = y + 1;
|
|
const float
|
|
dx = fx - x,
|
|
dy = fy - y;
|
|
const Tfloat
|
|
Icc = (Tfloat)atXY(x,y,z,c,out_value), Inc = (Tfloat)atXY(nx,y,z,c,out_value),
|
|
Icn = (Tfloat)atXY(x,ny,z,c,out_value), Inn = (Tfloat)atXY(nx,ny,z,c,out_value);
|
|
return Icc + (Inc - Icc + (Icc + Inn - Icn - Inc)*dy)*dx + (Icn - Icc)*dy;
|
|
}
|
|
|
|
//! Return pixel value, using linear interpolation and Neumann boundary conditions for the X and Y-coordinates.
|
|
/**
|
|
Similar to linear_atX(float,int,int,int) const, except that the linear interpolation and the boundary checking
|
|
are achieved both for X and Y-coordinates.
|
|
\note
|
|
- If you know your image instance is \e not empty, you may rather use the slightly faster method
|
|
\c _linear_atXY(float,float,int,int).
|
|
**/
|
|
Tfloat linear_atXY(const float fx, const float fy, const int z=0, const int c=0) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"linear_atXY(): Empty instance.",
|
|
cimg_instance);
|
|
|
|
return _linear_atXY(fx,fy,z,c);
|
|
}
|
|
|
|
Tfloat _linear_atXY(const float fx, const float fy, const int z=0, const int c=0) const {
|
|
const float
|
|
nfx = cimg::cut(fx,0,width() - 1),
|
|
nfy = cimg::cut(fy,0,height() - 1);
|
|
const unsigned int
|
|
x = (unsigned int)nfx,
|
|
y = (unsigned int)nfy;
|
|
const float
|
|
dx = nfx - x,
|
|
dy = nfy - y;
|
|
const unsigned int
|
|
nx = dx>0?x + 1:x,
|
|
ny = dy>0?y + 1:y;
|
|
const Tfloat
|
|
Icc = (Tfloat)(*this)(x,y,z,c), Inc = (Tfloat)(*this)(nx,y,z,c),
|
|
Icn = (Tfloat)(*this)(x,ny,z,c), Inn = (Tfloat)(*this)(nx,ny,z,c);
|
|
return Icc + (Inc - Icc + (Icc + Inn - Icn - Inc)*dy)*dx + (Icn - Icc)*dy;
|
|
}
|
|
|
|
//! Return pixel value, using linear interpolation and periodic boundary conditions for the X and Y-coordinates.
|
|
Tfloat linear_atXY_p(const float fx, const float fy, const int z=0, const int c=0) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"linear_atXY_p(): Empty instance.",
|
|
cimg_instance);
|
|
|
|
return _linear_atXY_p(fx,fy,z,c);
|
|
}
|
|
|
|
Tfloat _linear_atXY_p(const float fx, const float fy, const int z=0, const int c=0) const {
|
|
const float
|
|
nfx = cimg::mod(fx,_width - 0.5f),
|
|
nfy = cimg::mod(fy,_height - 0.5f);
|
|
const unsigned int
|
|
x = (unsigned int)nfx,
|
|
y = (unsigned int)nfy;
|
|
const float
|
|
dx = nfx - x,
|
|
dy = nfy - y;
|
|
const unsigned int
|
|
nx = cimg::mod(x + 1,_width),
|
|
ny = cimg::mod(y + 1,_height);
|
|
const Tfloat
|
|
Icc = (Tfloat)(*this)(x,y,z,c), Inc = (Tfloat)(*this)(nx,y,z,c),
|
|
Icn = (Tfloat)(*this)(x,ny,z,c), Inn = (Tfloat)(*this)(nx,ny,z,c);
|
|
return Icc + (Inc - Icc + (Icc + Inn - Icn - Inc)*dy)*dx + (Icn - Icc)*dy;
|
|
}
|
|
|
|
//! Return pixel value, using linear interpolation and Dirichlet boundary conditions for the X,Y and Z-coordinates.
|
|
/**
|
|
Similar to linear_atX(float,int,int,int,const T) const, except that the linear interpolation and the
|
|
boundary checking are achieved both for X,Y and Z-coordinates.
|
|
**/
|
|
Tfloat linear_atXYZ(const float fx, const float fy, const float fz, const int c, const T& out_value) const {
|
|
const int
|
|
x = (int)fx - (fx>=0?0:1), nx = x + 1,
|
|
y = (int)fy - (fy>=0?0:1), ny = y + 1,
|
|
z = (int)fz - (fz>=0?0:1), nz = z + 1;
|
|
const float
|
|
dx = fx - x,
|
|
dy = fy - y,
|
|
dz = fz - z;
|
|
const Tfloat
|
|
Iccc = (Tfloat)atXYZ(x,y,z,c,out_value), Incc = (Tfloat)atXYZ(nx,y,z,c,out_value),
|
|
Icnc = (Tfloat)atXYZ(x,ny,z,c,out_value), Innc = (Tfloat)atXYZ(nx,ny,z,c,out_value),
|
|
Iccn = (Tfloat)atXYZ(x,y,nz,c,out_value), Incn = (Tfloat)atXYZ(nx,y,nz,c,out_value),
|
|
Icnn = (Tfloat)atXYZ(x,ny,nz,c,out_value), Innn = (Tfloat)atXYZ(nx,ny,nz,c,out_value);
|
|
return Iccc +
|
|
(Incc - Iccc +
|
|
(Iccc + Innc - Icnc - Incc +
|
|
(Iccn + Innn + Icnc + Incc - Icnn - Incn - Iccc - Innc)*dz)*dy +
|
|
(Iccc + Incn - Iccn - Incc)*dz)*dx +
|
|
(Icnc - Iccc +
|
|
(Iccc + Icnn - Iccn - Icnc)*dz)*dy +
|
|
(Iccn - Iccc)*dz;
|
|
}
|
|
|
|
//! Return pixel value, using linear interpolation and Neumann boundary conditions for the X,Y and Z-coordinates.
|
|
/**
|
|
Similar to linear_atX(float,int,int,int) const, except that the linear interpolation and the boundary checking
|
|
are achieved both for X,Y and Z-coordinates.
|
|
\note
|
|
- If you know your image instance is \e not empty, you may rather use the slightly faster method
|
|
\c _linear_atXYZ(float,float,float,int).
|
|
**/
|
|
Tfloat linear_atXYZ(const float fx, const float fy=0, const float fz=0, const int c=0) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"linear_atXYZ(): Empty instance.",
|
|
cimg_instance);
|
|
|
|
return _linear_atXYZ(fx,fy,fz,c);
|
|
}
|
|
|
|
Tfloat _linear_atXYZ(const float fx, const float fy=0, const float fz=0, const int c=0) const {
|
|
const float
|
|
nfx = cimg::cut(fx,0,width() - 1),
|
|
nfy = cimg::cut(fy,0,height() - 1),
|
|
nfz = cimg::cut(fz,0,depth() - 1);
|
|
const unsigned int
|
|
x = (unsigned int)nfx,
|
|
y = (unsigned int)nfy,
|
|
z = (unsigned int)nfz;
|
|
const float
|
|
dx = nfx - x,
|
|
dy = nfy - y,
|
|
dz = nfz - z;
|
|
const unsigned int
|
|
nx = dx>0?x + 1:x,
|
|
ny = dy>0?y + 1:y,
|
|
nz = dz>0?z + 1:z;
|
|
const Tfloat
|
|
Iccc = (Tfloat)(*this)(x,y,z,c), Incc = (Tfloat)(*this)(nx,y,z,c),
|
|
Icnc = (Tfloat)(*this)(x,ny,z,c), Innc = (Tfloat)(*this)(nx,ny,z,c),
|
|
Iccn = (Tfloat)(*this)(x,y,nz,c), Incn = (Tfloat)(*this)(nx,y,nz,c),
|
|
Icnn = (Tfloat)(*this)(x,ny,nz,c), Innn = (Tfloat)(*this)(nx,ny,nz,c);
|
|
return Iccc +
|
|
(Incc - Iccc +
|
|
(Iccc + Innc - Icnc - Incc +
|
|
(Iccn + Innn + Icnc + Incc - Icnn - Incn - Iccc - Innc)*dz)*dy +
|
|
(Iccc + Incn - Iccn - Incc)*dz)*dx +
|
|
(Icnc - Iccc +
|
|
(Iccc + Icnn - Iccn - Icnc)*dz)*dy +
|
|
(Iccn - Iccc)*dz;
|
|
}
|
|
|
|
//! Return pixel value, using linear interpolation and periodic boundary conditions for the X,Y and Z-coordinates.
|
|
Tfloat linear_atXYZ_p(const float fx, const float fy=0, const float fz=0, const int c=0) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"linear_atXYZ_p(): Empty instance.",
|
|
cimg_instance);
|
|
|
|
return _linear_atXYZ_p(fx,fy,fz,c);
|
|
}
|
|
|
|
Tfloat _linear_atXYZ_p(const float fx, const float fy=0, const float fz=0, const int c=0) const {
|
|
const float
|
|
nfx = cimg::mod(fx,_width - 0.5f),
|
|
nfy = cimg::mod(fy,_height - 0.5f),
|
|
nfz = cimg::mod(fz,_depth - 0.5f);
|
|
const unsigned int
|
|
x = (unsigned int)nfx,
|
|
y = (unsigned int)nfy,
|
|
z = (unsigned int)nfz;
|
|
const float
|
|
dx = nfx - x,
|
|
dy = nfy - y,
|
|
dz = nfz - z;
|
|
const unsigned int
|
|
nx = cimg::mod(x + 1,_width),
|
|
ny = cimg::mod(y + 1,_height),
|
|
nz = cimg::mod(z + 1,_depth);
|
|
const Tfloat
|
|
Iccc = (Tfloat)(*this)(x,y,z,c), Incc = (Tfloat)(*this)(nx,y,z,c),
|
|
Icnc = (Tfloat)(*this)(x,ny,z,c), Innc = (Tfloat)(*this)(nx,ny,z,c),
|
|
Iccn = (Tfloat)(*this)(x,y,nz,c), Incn = (Tfloat)(*this)(nx,y,nz,c),
|
|
Icnn = (Tfloat)(*this)(x,ny,nz,c), Innn = (Tfloat)(*this)(nx,ny,nz,c);
|
|
return Iccc +
|
|
(Incc - Iccc +
|
|
(Iccc + Innc - Icnc - Incc +
|
|
(Iccn + Innn + Icnc + Incc - Icnn - Incn - Iccc - Innc)*dz)*dy +
|
|
(Iccc + Incn - Iccn - Incc)*dz)*dx +
|
|
(Icnc - Iccc +
|
|
(Iccc + Icnn - Iccn - Icnc)*dz)*dy +
|
|
(Iccn - Iccc)*dz;
|
|
}
|
|
|
|
//! Return pixel value, using linear interpolation and Dirichlet boundary conditions for all X,Y,Z,C-coordinates.
|
|
/**
|
|
Similar to linear_atX(float,int,int,int,const T) const, except that the linear interpolation and the
|
|
boundary checking are achieved for all X,Y,Z and C-coordinates.
|
|
**/
|
|
Tfloat linear_atXYZC(const float fx, const float fy, const float fz, const float fc, const T& out_value) const {
|
|
const int
|
|
x = (int)fx - (fx>=0?0:1), nx = x + 1,
|
|
y = (int)fy - (fy>=0?0:1), ny = y + 1,
|
|
z = (int)fz - (fz>=0?0:1), nz = z + 1,
|
|
c = (int)fc - (fc>=0?0:1), nc = c + 1;
|
|
const float
|
|
dx = fx - x,
|
|
dy = fy - y,
|
|
dz = fz - z,
|
|
dc = fc - c;
|
|
const Tfloat
|
|
Icccc = (Tfloat)atXYZC(x,y,z,c,out_value), Inccc = (Tfloat)atXYZC(nx,y,z,c,out_value),
|
|
Icncc = (Tfloat)atXYZC(x,ny,z,c,out_value), Inncc = (Tfloat)atXYZC(nx,ny,z,c,out_value),
|
|
Iccnc = (Tfloat)atXYZC(x,y,nz,c,out_value), Incnc = (Tfloat)atXYZC(nx,y,nz,c,out_value),
|
|
Icnnc = (Tfloat)atXYZC(x,ny,nz,c,out_value), Innnc = (Tfloat)atXYZC(nx,ny,nz,c,out_value),
|
|
Icccn = (Tfloat)atXYZC(x,y,z,nc,out_value), Inccn = (Tfloat)atXYZC(nx,y,z,nc,out_value),
|
|
Icncn = (Tfloat)atXYZC(x,ny,z,nc,out_value), Inncn = (Tfloat)atXYZC(nx,ny,z,nc,out_value),
|
|
Iccnn = (Tfloat)atXYZC(x,y,nz,nc,out_value), Incnn = (Tfloat)atXYZC(nx,y,nz,nc,out_value),
|
|
Icnnn = (Tfloat)atXYZC(x,ny,nz,nc,out_value), Innnn = (Tfloat)atXYZC(nx,ny,nz,nc,out_value);
|
|
return Icccc +
|
|
dx*(Inccc - Icccc +
|
|
dy*(Icccc + Inncc - Icncc - Inccc +
|
|
dz*(Iccnc + Innnc + Icncc + Inccc - Icnnc - Incnc - Icccc - Inncc +
|
|
dc*(Iccnn + Innnn + Icncn + Inccn + Icnnc + Incnc + Icccc + Inncc -
|
|
Icnnn - Incnn - Icccn - Inncn - Iccnc - Innnc - Icncc - Inccc)) +
|
|
dc*(Icccn + Inncn + Icncc + Inccc - Icncn - Inccn - Icccc - Inncc)) +
|
|
dz*(Icccc + Incnc - Iccnc - Inccc +
|
|
dc*(Icccn + Incnn + Iccnc + Inccc - Iccnn - Inccn - Icccc - Incnc)) +
|
|
dc*(Icccc + Inccn - Inccc - Icccn)) +
|
|
dy*(Icncc - Icccc +
|
|
dz*(Icccc + Icnnc - Iccnc - Icncc +
|
|
dc*(Icccn + Icnnn + Iccnc + Icncc - Iccnn - Icncn - Icccc - Icnnc)) +
|
|
dc*(Icccc + Icncn - Icncc - Icccn)) +
|
|
dz*(Iccnc - Icccc +
|
|
dc*(Icccc + Iccnn - Iccnc - Icccn)) +
|
|
dc*(Icccn -Icccc);
|
|
}
|
|
|
|
//! Return pixel value, using linear interpolation and Neumann boundary conditions for all X,Y,Z and C-coordinates.
|
|
/**
|
|
Similar to linear_atX(float,int,int,int) const, except that the linear interpolation and the boundary checking
|
|
are achieved for all X,Y,Z and C-coordinates.
|
|
\note
|
|
- If you know your image instance is \e not empty, you may rather use the slightly faster method
|
|
\c _linear_atXYZC(float,float,float,float).
|
|
**/
|
|
Tfloat linear_atXYZC(const float fx, const float fy=0, const float fz=0, const float fc=0) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"linear_atXYZC(): Empty instance.",
|
|
cimg_instance);
|
|
|
|
return _linear_atXYZC(fx,fy,fz,fc);
|
|
}
|
|
|
|
Tfloat _linear_atXYZC(const float fx, const float fy=0, const float fz=0, const float fc=0) const {
|
|
const float
|
|
nfx = cimg::cut(fx,0,width() - 1),
|
|
nfy = cimg::cut(fy,0,height() - 1),
|
|
nfz = cimg::cut(fz,0,depth() - 1),
|
|
nfc = cimg::cut(fc,0,spectrum() - 1);
|
|
const unsigned int
|
|
x = (unsigned int)nfx,
|
|
y = (unsigned int)nfy,
|
|
z = (unsigned int)nfz,
|
|
c = (unsigned int)nfc;
|
|
const float
|
|
dx = nfx - x,
|
|
dy = nfy - y,
|
|
dz = nfz - z,
|
|
dc = nfc - c;
|
|
const unsigned int
|
|
nx = dx>0?x + 1:x,
|
|
ny = dy>0?y + 1:y,
|
|
nz = dz>0?z + 1:z,
|
|
nc = dc>0?c + 1:c;
|
|
const Tfloat
|
|
Icccc = (Tfloat)(*this)(x,y,z,c), Inccc = (Tfloat)(*this)(nx,y,z,c),
|
|
Icncc = (Tfloat)(*this)(x,ny,z,c), Inncc = (Tfloat)(*this)(nx,ny,z,c),
|
|
Iccnc = (Tfloat)(*this)(x,y,nz,c), Incnc = (Tfloat)(*this)(nx,y,nz,c),
|
|
Icnnc = (Tfloat)(*this)(x,ny,nz,c), Innnc = (Tfloat)(*this)(nx,ny,nz,c),
|
|
Icccn = (Tfloat)(*this)(x,y,z,nc), Inccn = (Tfloat)(*this)(nx,y,z,nc),
|
|
Icncn = (Tfloat)(*this)(x,ny,z,nc), Inncn = (Tfloat)(*this)(nx,ny,z,nc),
|
|
Iccnn = (Tfloat)(*this)(x,y,nz,nc), Incnn = (Tfloat)(*this)(nx,y,nz,nc),
|
|
Icnnn = (Tfloat)(*this)(x,ny,nz,nc), Innnn = (Tfloat)(*this)(nx,ny,nz,nc);
|
|
return Icccc +
|
|
dx*(Inccc - Icccc +
|
|
dy*(Icccc + Inncc - Icncc - Inccc +
|
|
dz*(Iccnc + Innnc + Icncc + Inccc - Icnnc - Incnc - Icccc - Inncc +
|
|
dc*(Iccnn + Innnn + Icncn + Inccn + Icnnc + Incnc + Icccc + Inncc -
|
|
Icnnn - Incnn - Icccn - Inncn - Iccnc - Innnc - Icncc - Inccc)) +
|
|
dc*(Icccn + Inncn + Icncc + Inccc - Icncn - Inccn - Icccc - Inncc)) +
|
|
dz*(Icccc + Incnc - Iccnc - Inccc +
|
|
dc*(Icccn + Incnn + Iccnc + Inccc - Iccnn - Inccn - Icccc - Incnc)) +
|
|
dc*(Icccc + Inccn - Inccc - Icccn)) +
|
|
dy*(Icncc - Icccc +
|
|
dz*(Icccc + Icnnc - Iccnc - Icncc +
|
|
dc*(Icccn + Icnnn + Iccnc + Icncc - Iccnn - Icncn - Icccc - Icnnc)) +
|
|
dc*(Icccc + Icncn - Icncc - Icccn)) +
|
|
dz*(Iccnc - Icccc +
|
|
dc*(Icccc + Iccnn - Iccnc - Icccn)) +
|
|
dc*(Icccn - Icccc);
|
|
}
|
|
|
|
//! Return pixel value, using linear interpolation and periodic boundary conditions for all X,Y,Z and C-coordinates.
|
|
Tfloat linear_atXYZC_p(const float fx, const float fy=0, const float fz=0, const float fc=0) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"linear_atXYZC_p(): Empty instance.",
|
|
cimg_instance);
|
|
|
|
return _linear_atXYZC_p(fx,fy,fz,fc);
|
|
}
|
|
|
|
Tfloat _linear_atXYZC_p(const float fx, const float fy=0, const float fz=0, const float fc=0) const {
|
|
const float
|
|
nfx = cimg::mod(fx,_width - 0.5f),
|
|
nfy = cimg::mod(fy,_height - 0.5f),
|
|
nfz = cimg::mod(fz,_depth - 0.5f),
|
|
nfc = cimg::mod(fc,_spectrum - 0.5f);
|
|
const unsigned int
|
|
x = (unsigned int)nfx,
|
|
y = (unsigned int)nfy,
|
|
z = (unsigned int)nfz,
|
|
c = (unsigned int)nfc;
|
|
const float
|
|
dx = nfx - x,
|
|
dy = nfy - y,
|
|
dz = nfz - z,
|
|
dc = nfc - c;
|
|
const unsigned int
|
|
nx = cimg::mod(x + 1,_width),
|
|
ny = cimg::mod(y + 1,_height),
|
|
nz = cimg::mod(z + 1,_depth),
|
|
nc = cimg::mod(c + 1,_spectrum);
|
|
const Tfloat
|
|
Icccc = (Tfloat)(*this)(x,y,z,c), Inccc = (Tfloat)(*this)(nx,y,z,c),
|
|
Icncc = (Tfloat)(*this)(x,ny,z,c), Inncc = (Tfloat)(*this)(nx,ny,z,c),
|
|
Iccnc = (Tfloat)(*this)(x,y,nz,c), Incnc = (Tfloat)(*this)(nx,y,nz,c),
|
|
Icnnc = (Tfloat)(*this)(x,ny,nz,c), Innnc = (Tfloat)(*this)(nx,ny,nz,c),
|
|
Icccn = (Tfloat)(*this)(x,y,z,nc), Inccn = (Tfloat)(*this)(nx,y,z,nc),
|
|
Icncn = (Tfloat)(*this)(x,ny,z,nc), Inncn = (Tfloat)(*this)(nx,ny,z,nc),
|
|
Iccnn = (Tfloat)(*this)(x,y,nz,nc), Incnn = (Tfloat)(*this)(nx,y,nz,nc),
|
|
Icnnn = (Tfloat)(*this)(x,ny,nz,nc), Innnn = (Tfloat)(*this)(nx,ny,nz,nc);
|
|
return Icccc +
|
|
dx*(Inccc - Icccc +
|
|
dy*(Icccc + Inncc - Icncc - Inccc +
|
|
dz*(Iccnc + Innnc + Icncc + Inccc - Icnnc - Incnc - Icccc - Inncc +
|
|
dc*(Iccnn + Innnn + Icncn + Inccn + Icnnc + Incnc + Icccc + Inncc -
|
|
Icnnn - Incnn - Icccn - Inncn - Iccnc - Innnc - Icncc - Inccc)) +
|
|
dc*(Icccn + Inncn + Icncc + Inccc - Icncn - Inccn - Icccc - Inncc)) +
|
|
dz*(Icccc + Incnc - Iccnc - Inccc +
|
|
dc*(Icccn + Incnn + Iccnc + Inccc - Iccnn - Inccn - Icccc - Incnc)) +
|
|
dc*(Icccc + Inccn - Inccc - Icccn)) +
|
|
dy*(Icncc - Icccc +
|
|
dz*(Icccc + Icnnc - Iccnc - Icncc +
|
|
dc*(Icccn + Icnnn + Iccnc + Icncc - Iccnn - Icncn - Icccc - Icnnc)) +
|
|
dc*(Icccc + Icncn - Icncc - Icccn)) +
|
|
dz*(Iccnc - Icccc +
|
|
dc*(Icccc + Iccnn - Iccnc - Icccn)) +
|
|
dc*(Icccn - Icccc);
|
|
}
|
|
|
|
//! Return pixel value, using cubic interpolation and Dirichlet boundary conditions for the X-coordinate.
|
|
/**
|
|
Return a cubicly-interpolated pixel value of the image instance located at (\c fx,\c y,\c z,\c c),
|
|
or a specified default value in case of out-of-bounds access along the X-axis.
|
|
The cubic interpolation uses Hermite splines.
|
|
\param fx d X-coordinate of the pixel value (float-valued).
|
|
\param y Y-coordinate of the pixel value.
|
|
\param z Z-coordinate of the pixel value.
|
|
\param c C-coordinate of the pixel value.
|
|
\param out_value Default value returned if \c (\c fx,\c y,\c z,\c c) is outside image bounds.
|
|
\note
|
|
- Similar to linear_atX(float,int,int,int,const T) const, except that the returned pixel value is
|
|
approximated by a \e cubic interpolation along the X-axis.
|
|
- The type of the returned pixel value is extended to \c float, if the pixel type \c T is not float-valued.
|
|
\warning
|
|
- There is \e no boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds.
|
|
**/
|
|
Tfloat cubic_atX(const float fx, const int y, const int z, const int c, const T& out_value) const {
|
|
const int
|
|
x = (int)fx - (fx>=0?0:1), px = x - 1, nx = x + 1, ax = x + 2;
|
|
const float
|
|
dx = fx - x;
|
|
const Tfloat
|
|
Ip = (Tfloat)atX(px,y,z,c,out_value), Ic = (Tfloat)atX(x,y,z,c,out_value),
|
|
In = (Tfloat)atX(nx,y,z,c,out_value), Ia = (Tfloat)atX(ax,y,z,c,out_value);
|
|
return Ic + 0.5f*(dx*(-Ip + In) + dx*dx*(2*Ip - 5*Ic + 4*In - Ia) + dx*dx*dx*(-Ip + 3*Ic - 3*In + Ia));
|
|
}
|
|
|
|
//! Return clamped pixel value, using cubic interpolation and Dirichlet boundary conditions for the X-coordinate.
|
|
/**
|
|
Similar to cubic_atX(float,int,int,int,const T) const, except that the return value is clamped to stay in the
|
|
min/max range of the datatype \c T.
|
|
**/
|
|
T cubic_atX_c(const float fx, const int y, const int z, const int c, const T& out_value) const {
|
|
return cimg::type<T>::cut(cubic_atX(fx,y,z,c,out_value));
|
|
}
|
|
|
|
//! Return pixel value, using cubic interpolation and Neumann boundary conditions for the X-coordinate.
|
|
/**
|
|
Return a cubicly-interpolated pixel value of the image instance located at (\c fx,\c y,\c z,\c c),
|
|
or the value of the nearest pixel location in the image instance in case of out-of-bounds access
|
|
along the X-axis. The cubic interpolation uses Hermite splines.
|
|
\param fx X-coordinate of the pixel value (float-valued).
|
|
\param y Y-coordinate of the pixel value.
|
|
\param z Z-coordinate of the pixel value.
|
|
\param c C-coordinate of the pixel value.
|
|
\note
|
|
- Similar to cubic_atX(float,int,int,int,const T) const, except that the returned pixel value is
|
|
approximated by a cubic interpolation along the X-axis.
|
|
- If you know your image instance is \e not empty, you may rather use the slightly faster method
|
|
\c _cubic_atX(float,int,int,int).
|
|
\warning
|
|
- There is \e no boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds.
|
|
**/
|
|
Tfloat cubic_atX(const float fx, const int y=0, const int z=0, const int c=0) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"cubic_atX(): Empty instance.",
|
|
cimg_instance);
|
|
return _cubic_atX(fx,y,z,c);
|
|
}
|
|
|
|
Tfloat _cubic_atX(const float fx, const int y=0, const int z=0, const int c=0) const {
|
|
const float
|
|
nfx = cimg::type<float>::is_nan(fx)?0:cimg::cut(fx,0,width() - 1);
|
|
const int
|
|
x = (int)nfx;
|
|
const float
|
|
dx = nfx - x;
|
|
const int
|
|
px = x - 1<0?0:x - 1, nx = dx>0?x + 1:x, ax = x + 2>=width()?width() - 1:x + 2;
|
|
const Tfloat
|
|
Ip = (Tfloat)(*this)(px,y,z,c), Ic = (Tfloat)(*this)(x,y,z,c),
|
|
In = (Tfloat)(*this)(nx,y,z,c), Ia = (Tfloat)(*this)(ax,y,z,c);
|
|
return Ic + 0.5f*(dx*(-Ip + In) + dx*dx*(2*Ip - 5*Ic + 4*In - Ia) + dx*dx*dx*(-Ip + 3*Ic - 3*In + Ia));
|
|
}
|
|
|
|
//! Return clamped pixel value, using cubic interpolation and Neumann boundary conditions for the X-coordinate.
|
|
/**
|
|
Similar to cubic_atX(float,int,int,int) const, except that the return value is clamped to stay in the
|
|
min/max range of the datatype \c T.
|
|
**/
|
|
T cubic_atX_c(const float fx, const int y, const int z, const int c) const {
|
|
return cimg::type<T>::cut(cubic_atX(fx,y,z,c));
|
|
}
|
|
|
|
T _cubic_atX_c(const float fx, const int y, const int z, const int c) const {
|
|
return cimg::type<T>::cut(_cubic_atX(fx,y,z,c));
|
|
}
|
|
|
|
//! Return pixel value, using cubic interpolation and periodic boundary conditions for the X-coordinate.
|
|
Tfloat cubic_atX_p(const float fx, const int y=0, const int z=0, const int c=0) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"cubic_atX_p(): Empty instance.",
|
|
cimg_instance);
|
|
return _cubic_atX_p(fx,y,z,c);
|
|
}
|
|
|
|
Tfloat _cubic_atX_p(const float fx, const int y=0, const int z=0, const int c=0) const {
|
|
const float
|
|
nfx = cimg::type<float>::is_nan(fx)?0:cimg::mod(fx,_width - 0.5f);
|
|
const int
|
|
x = (int)nfx;
|
|
const float
|
|
dx = nfx - x;
|
|
const int
|
|
px = cimg::mod(x - 1,width()), nx = cimg::mod(x + 1,width()), ax = cimg::mod(x + 2,width());
|
|
const Tfloat
|
|
Ip = (Tfloat)(*this)(px,y,z,c), Ic = (Tfloat)(*this)(x,y,z,c),
|
|
In = (Tfloat)(*this)(nx,y,z,c), Ia = (Tfloat)(*this)(ax,y,z,c);
|
|
return Ic + 0.5f*(dx*(-Ip + In) + dx*dx*(2*Ip - 5*Ic + 4*In - Ia) + dx*dx*dx*(-Ip + 3*Ic - 3*In + Ia));
|
|
}
|
|
|
|
T cubic_atX_pc(const float fx, const int y, const int z, const int c) const {
|
|
return cimg::type<T>::cut(cubic_atX_p(fx,y,z,c));
|
|
}
|
|
|
|
T _cubic_atX_pc(const float fx, const int y, const int z, const int c) const {
|
|
return cimg::type<T>::cut(_cubic_atX_p(fx,y,z,c));
|
|
}
|
|
|
|
//! Return pixel value, using cubic interpolation and Dirichlet boundary conditions for the X and Y-coordinates.
|
|
/**
|
|
Similar to cubic_atX(float,int,int,int,const T) const, except that the cubic interpolation and boundary checking
|
|
are achieved both for X and Y-coordinates.
|
|
**/
|
|
Tfloat cubic_atXY(const float fx, const float fy, const int z, const int c, const T& out_value) const {
|
|
const int
|
|
x = (int)fx - (fx>=0?0:1), px = x - 1, nx = x + 1, ax = x + 2,
|
|
y = (int)fy - (fy>=0?0:1), py = y - 1, ny = y + 1, ay = y + 2;
|
|
const float dx = fx - x, dy = fy - y;
|
|
const Tfloat
|
|
Ipp = (Tfloat)atXY(px,py,z,c,out_value), Icp = (Tfloat)atXY(x,py,z,c,out_value),
|
|
Inp = (Tfloat)atXY(nx,py,z,c,out_value), Iap = (Tfloat)atXY(ax,py,z,c,out_value),
|
|
Ip = Icp + 0.5f*(dx*(-Ipp + Inp) + dx*dx*(2*Ipp - 5*Icp + 4*Inp - Iap) + dx*dx*dx*(-Ipp + 3*Icp - 3*Inp + Iap)),
|
|
Ipc = (Tfloat)atXY(px,y,z,c,out_value), Icc = (Tfloat)atXY(x, y,z,c,out_value),
|
|
Inc = (Tfloat)atXY(nx,y,z,c,out_value), Iac = (Tfloat)atXY(ax,y,z,c,out_value),
|
|
Ic = Icc + 0.5f*(dx*(-Ipc + Inc) + dx*dx*(2*Ipc - 5*Icc + 4*Inc - Iac) + dx*dx*dx*(-Ipc + 3*Icc - 3*Inc + Iac)),
|
|
Ipn = (Tfloat)atXY(px,ny,z,c,out_value), Icn = (Tfloat)atXY(x,ny,z,c,out_value),
|
|
Inn = (Tfloat)atXY(nx,ny,z,c,out_value), Ian = (Tfloat)atXY(ax,ny,z,c,out_value),
|
|
In = Icn + 0.5f*(dx*(-Ipn + Inn) + dx*dx*(2*Ipn - 5*Icn + 4*Inn - Ian) + dx*dx*dx*(-Ipn + 3*Icn - 3*Inn + Ian)),
|
|
Ipa = (Tfloat)atXY(px,ay,z,c,out_value), Ica = (Tfloat)atXY(x,ay,z,c,out_value),
|
|
Ina = (Tfloat)atXY(nx,ay,z,c,out_value), Iaa = (Tfloat)atXY(ax,ay,z,c,out_value),
|
|
Ia = Ica + 0.5f*(dx*(-Ipa + Ina) + dx*dx*(2*Ipa - 5*Ica + 4*Ina - Iaa) + dx*dx*dx*(-Ipa + 3*Ica - 3*Ina + Iaa));
|
|
return Ic + 0.5f*(dy*(-Ip + In) + dy*dy*(2*Ip - 5*Ic + 4*In - Ia) + dy*dy*dy*(-Ip + 3*Ic - 3*In + Ia));
|
|
}
|
|
|
|
//! Return clamped pixel value, using cubic interpolation and Dirichlet boundary conditions for the X,Y-coordinates.
|
|
/**
|
|
Similar to cubic_atXY(float,float,int,int,const T) const, except that the return value is clamped to stay in the
|
|
min/max range of the datatype \c T.
|
|
**/
|
|
T cubic_atXY_c(const float fx, const float fy, const int z, const int c, const T& out_value) const {
|
|
return cimg::type<T>::cut(cubic_atXY(fx,fy,z,c,out_value));
|
|
}
|
|
|
|
//! Return pixel value, using cubic interpolation and Neumann boundary conditions for the X and Y-coordinates.
|
|
/**
|
|
Similar to cubic_atX(float,int,int,int) const, except that the cubic interpolation and boundary checking
|
|
are achieved for both X and Y-coordinates.
|
|
\note
|
|
- If you know your image instance is \e not empty, you may rather use the slightly faster method
|
|
\c _cubic_atXY(float,float,int,int).
|
|
**/
|
|
Tfloat cubic_atXY(const float fx, const float fy, const int z=0, const int c=0) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"cubic_atXY(): Empty instance.",
|
|
cimg_instance);
|
|
return _cubic_atXY(fx,fy,z,c);
|
|
}
|
|
|
|
Tfloat _cubic_atXY(const float fx, const float fy, const int z=0, const int c=0) const {
|
|
const float
|
|
nfx = cimg::type<float>::is_nan(fx)?0:cimg::cut(fx,0,width() - 1),
|
|
nfy = cimg::type<float>::is_nan(fy)?0:cimg::cut(fy,0,height() - 1);
|
|
const int x = (int)nfx, y = (int)nfy;
|
|
const float dx = nfx - x, dy = nfy - y;
|
|
const int
|
|
px = x - 1<0?0:x - 1, nx = dx<=0?x:x + 1, ax = x + 2>=width()?width() - 1:x + 2,
|
|
py = y - 1<0?0:y - 1, ny = dy<=0?y:y + 1, ay = y + 2>=height()?height() - 1:y + 2;
|
|
const Tfloat
|
|
Ipp = (Tfloat)(*this)(px,py,z,c), Icp = (Tfloat)(*this)(x,py,z,c), Inp = (Tfloat)(*this)(nx,py,z,c),
|
|
Iap = (Tfloat)(*this)(ax,py,z,c),
|
|
Ip = Icp + 0.5f*(dx*(-Ipp + Inp) + dx*dx*(2*Ipp - 5*Icp + 4*Inp - Iap) + dx*dx*dx*(-Ipp + 3*Icp - 3*Inp + Iap)),
|
|
Ipc = (Tfloat)(*this)(px,y,z,c), Icc = (Tfloat)(*this)(x, y,z,c), Inc = (Tfloat)(*this)(nx,y,z,c),
|
|
Iac = (Tfloat)(*this)(ax,y,z,c),
|
|
Ic = Icc + 0.5f*(dx*(-Ipc + Inc) + dx*dx*(2*Ipc - 5*Icc + 4*Inc - Iac) + dx*dx*dx*(-Ipc + 3*Icc - 3*Inc + Iac)),
|
|
Ipn = (Tfloat)(*this)(px,ny,z,c), Icn = (Tfloat)(*this)(x,ny,z,c), Inn = (Tfloat)(*this)(nx,ny,z,c),
|
|
Ian = (Tfloat)(*this)(ax,ny,z,c),
|
|
In = Icn + 0.5f*(dx*(-Ipn + Inn) + dx*dx*(2*Ipn - 5*Icn + 4*Inn - Ian) + dx*dx*dx*(-Ipn + 3*Icn - 3*Inn + Ian)),
|
|
Ipa = (Tfloat)(*this)(px,ay,z,c), Ica = (Tfloat)(*this)(x,ay,z,c), Ina = (Tfloat)(*this)(nx,ay,z,c),
|
|
Iaa = (Tfloat)(*this)(ax,ay,z,c),
|
|
Ia = Ica + 0.5f*(dx*(-Ipa + Ina) + dx*dx*(2*Ipa - 5*Ica + 4*Ina - Iaa) + dx*dx*dx*(-Ipa + 3*Ica - 3*Ina + Iaa));
|
|
return Ic + 0.5f*(dy*(-Ip + In) + dy*dy*(2*Ip - 5*Ic + 4*In - Ia) + dy*dy*dy*(-Ip + 3*Ic - 3*In + Ia));
|
|
}
|
|
|
|
//! Return clamped pixel value, using cubic interpolation and Neumann boundary conditions for the X,Y-coordinates.
|
|
/**
|
|
Similar to cubic_atXY(float,float,int,int) const, except that the return value is clamped to stay in the
|
|
min/max range of the datatype \c T.
|
|
**/
|
|
T cubic_atXY_c(const float fx, const float fy, const int z, const int c) const {
|
|
return cimg::type<T>::cut(cubic_atXY(fx,fy,z,c));
|
|
}
|
|
|
|
T _cubic_atXY_c(const float fx, const float fy, const int z, const int c) const {
|
|
return cimg::type<T>::cut(_cubic_atXY(fx,fy,z,c));
|
|
}
|
|
|
|
//! Return pixel value, using cubic interpolation and periodic boundary conditions for the X and Y-coordinates.
|
|
Tfloat cubic_atXY_p(const float fx, const float fy, const int z=0, const int c=0) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"cubic_atXY_p(): Empty instance.",
|
|
cimg_instance);
|
|
return _cubic_atXY_p(fx,fy,z,c);
|
|
}
|
|
|
|
Tfloat _cubic_atXY_p(const float fx, const float fy, const int z=0, const int c=0) const {
|
|
const float
|
|
nfx = cimg::type<float>::is_nan(fx)?0:cimg::mod(fx,_width - 0.5f),
|
|
nfy = cimg::type<float>::is_nan(fy)?0:cimg::mod(fy,_height - 0.5f);
|
|
const int x = (int)nfx, y = (int)nfy;
|
|
const float dx = nfx - x, dy = nfy - y;
|
|
const int
|
|
px = cimg::mod(x - 1,width()), nx = cimg::mod(x + 1,width()), ax = cimg::mod(x + 2,width()),
|
|
py = cimg::mod(y - 1,height()), ny = cimg::mod(y + 1,height()), ay = cimg::mod(y + 2,height());
|
|
const Tfloat
|
|
Ipp = (Tfloat)(*this)(px,py,z,c), Icp = (Tfloat)(*this)(x,py,z,c), Inp = (Tfloat)(*this)(nx,py,z,c),
|
|
Iap = (Tfloat)(*this)(ax,py,z,c),
|
|
Ip = Icp + 0.5f*(dx*(-Ipp + Inp) + dx*dx*(2*Ipp - 5*Icp + 4*Inp - Iap) + dx*dx*dx*(-Ipp + 3*Icp - 3*Inp + Iap)),
|
|
Ipc = (Tfloat)(*this)(px,y,z,c), Icc = (Tfloat)(*this)(x, y,z,c), Inc = (Tfloat)(*this)(nx,y,z,c),
|
|
Iac = (Tfloat)(*this)(ax,y,z,c),
|
|
Ic = Icc + 0.5f*(dx*(-Ipc + Inc) + dx*dx*(2*Ipc - 5*Icc + 4*Inc - Iac) + dx*dx*dx*(-Ipc + 3*Icc - 3*Inc + Iac)),
|
|
Ipn = (Tfloat)(*this)(px,ny,z,c), Icn = (Tfloat)(*this)(x,ny,z,c), Inn = (Tfloat)(*this)(nx,ny,z,c),
|
|
Ian = (Tfloat)(*this)(ax,ny,z,c),
|
|
In = Icn + 0.5f*(dx*(-Ipn + Inn) + dx*dx*(2*Ipn - 5*Icn + 4*Inn - Ian) + dx*dx*dx*(-Ipn + 3*Icn - 3*Inn + Ian)),
|
|
Ipa = (Tfloat)(*this)(px,ay,z,c), Ica = (Tfloat)(*this)(x,ay,z,c), Ina = (Tfloat)(*this)(nx,ay,z,c),
|
|
Iaa = (Tfloat)(*this)(ax,ay,z,c),
|
|
Ia = Ica + 0.5f*(dx*(-Ipa + Ina) + dx*dx*(2*Ipa - 5*Ica + 4*Ina - Iaa) + dx*dx*dx*(-Ipa + 3*Ica - 3*Ina + Iaa));
|
|
return Ic + 0.5f*(dy*(-Ip + In) + dy*dy*(2*Ip - 5*Ic + 4*In - Ia) + dy*dy*dy*(-Ip + 3*Ic - 3*In + Ia));
|
|
}
|
|
|
|
T cubic_atXY_pc(const float fx, const float fy, const int z, const int c) const {
|
|
return cimg::type<T>::cut(cubic_atXY_p(fx,fy,z,c));
|
|
}
|
|
|
|
T _cubic_atXY_pc(const float fx, const float fy, const int z, const int c) const {
|
|
return cimg::type<T>::cut(_cubic_atXY_p(fx,fy,z,c));
|
|
}
|
|
|
|
//! Return pixel value, using cubic interpolation and Dirichlet boundary conditions for the X,Y and Z-coordinates.
|
|
/**
|
|
Similar to cubic_atX(float,int,int,int,const T) const, except that the cubic interpolation and boundary checking
|
|
are achieved both for X,Y and Z-coordinates.
|
|
**/
|
|
Tfloat cubic_atXYZ(const float fx, const float fy, const float fz, const int c, const T& out_value) const {
|
|
const int
|
|
x = (int)fx - (fx>=0?0:1), px = x - 1, nx = x + 1, ax = x + 2,
|
|
y = (int)fy - (fy>=0?0:1), py = y - 1, ny = y + 1, ay = y + 2,
|
|
z = (int)fz - (fz>=0?0:1), pz = z - 1, nz = z + 1, az = z + 2;
|
|
const float dx = fx - x, dy = fy - y, dz = fz - z;
|
|
const Tfloat
|
|
Ippp = (Tfloat)atXYZ(px,py,pz,c,out_value), Icpp = (Tfloat)atXYZ(x,py,pz,c,out_value),
|
|
Inpp = (Tfloat)atXYZ(nx,py,pz,c,out_value), Iapp = (Tfloat)atXYZ(ax,py,pz,c,out_value),
|
|
Ipp = Icpp + 0.5f*(dx*(-Ippp + Inpp) + dx*dx*(2*Ippp - 5*Icpp + 4*Inpp - Iapp) +
|
|
dx*dx*dx*(-Ippp + 3*Icpp - 3*Inpp + Iapp)),
|
|
Ipcp = (Tfloat)atXYZ(px,y,pz,c,out_value), Iccp = (Tfloat)atXYZ(x, y,pz,c,out_value),
|
|
Incp = (Tfloat)atXYZ(nx,y,pz,c,out_value), Iacp = (Tfloat)atXYZ(ax,y,pz,c,out_value),
|
|
Icp = Iccp + 0.5f*(dx*(-Ipcp + Incp) + dx*dx*(2*Ipcp - 5*Iccp + 4*Incp - Iacp) +
|
|
dx*dx*dx*(-Ipcp + 3*Iccp - 3*Incp + Iacp)),
|
|
Ipnp = (Tfloat)atXYZ(px,ny,pz,c,out_value), Icnp = (Tfloat)atXYZ(x,ny,pz,c,out_value),
|
|
Innp = (Tfloat)atXYZ(nx,ny,pz,c,out_value), Ianp = (Tfloat)atXYZ(ax,ny,pz,c,out_value),
|
|
Inp = Icnp + 0.5f*(dx*(-Ipnp + Innp) + dx*dx*(2*Ipnp - 5*Icnp + 4*Innp - Ianp) +
|
|
dx*dx*dx*(-Ipnp + 3*Icnp - 3*Innp + Ianp)),
|
|
Ipap = (Tfloat)atXYZ(px,ay,pz,c,out_value), Icap = (Tfloat)atXYZ(x,ay,pz,c,out_value),
|
|
Inap = (Tfloat)atXYZ(nx,ay,pz,c,out_value), Iaap = (Tfloat)atXYZ(ax,ay,pz,c,out_value),
|
|
Iap = Icap + 0.5f*(dx*(-Ipap + Inap) + dx*dx*(2*Ipap - 5*Icap + 4*Inap - Iaap) +
|
|
dx*dx*dx*(-Ipap + 3*Icap - 3*Inap + Iaap)),
|
|
Ip = Icp + 0.5f*(dy*(-Ipp + Inp) + dy*dy*(2*Ipp - 5*Icp + 4*Inp - Iap) +
|
|
dy*dy*dy*(-Ipp + 3*Icp - 3*Inp + Iap)),
|
|
Ippc = (Tfloat)atXYZ(px,py,z,c,out_value), Icpc = (Tfloat)atXYZ(x,py,z,c,out_value),
|
|
Inpc = (Tfloat)atXYZ(nx,py,z,c,out_value), Iapc = (Tfloat)atXYZ(ax,py,z,c,out_value),
|
|
Ipc = Icpc + 0.5f*(dx*(-Ippc + Inpc) + dx*dx*(2*Ippc - 5*Icpc + 4*Inpc - Iapc) +
|
|
dx*dx*dx*(-Ippc + 3*Icpc - 3*Inpc + Iapc)),
|
|
Ipcc = (Tfloat)atXYZ(px,y,z,c,out_value), Iccc = (Tfloat)atXYZ(x, y,z,c,out_value),
|
|
Incc = (Tfloat)atXYZ(nx,y,z,c,out_value), Iacc = (Tfloat)atXYZ(ax,y,z,c,out_value),
|
|
Icc = Iccc + 0.5f*(dx*(-Ipcc + Incc) + dx*dx*(2*Ipcc - 5*Iccc + 4*Incc - Iacc) +
|
|
dx*dx*dx*(-Ipcc + 3*Iccc - 3*Incc + Iacc)),
|
|
Ipnc = (Tfloat)atXYZ(px,ny,z,c,out_value), Icnc = (Tfloat)atXYZ(x,ny,z,c,out_value),
|
|
Innc = (Tfloat)atXYZ(nx,ny,z,c,out_value), Ianc = (Tfloat)atXYZ(ax,ny,z,c,out_value),
|
|
Inc = Icnc + 0.5f*(dx*(-Ipnc + Innc) + dx*dx*(2*Ipnc - 5*Icnc + 4*Innc - Ianc) +
|
|
dx*dx*dx*(-Ipnc + 3*Icnc - 3*Innc + Ianc)),
|
|
Ipac = (Tfloat)atXYZ(px,ay,z,c,out_value), Icac = (Tfloat)atXYZ(x,ay,z,c,out_value),
|
|
Inac = (Tfloat)atXYZ(nx,ay,z,c,out_value), Iaac = (Tfloat)atXYZ(ax,ay,z,c,out_value),
|
|
Iac = Icac + 0.5f*(dx*(-Ipac + Inac) + dx*dx*(2*Ipac - 5*Icac + 4*Inac - Iaac) +
|
|
dx*dx*dx*(-Ipac + 3*Icac - 3*Inac + Iaac)),
|
|
Ic = Icc + 0.5f*(dy*(-Ipc + Inc) + dy*dy*(2*Ipc - 5*Icc + 4*Inc - Iac) +
|
|
dy*dy*dy*(-Ipc + 3*Icc - 3*Inc + Iac)),
|
|
Ippn = (Tfloat)atXYZ(px,py,nz,c,out_value), Icpn = (Tfloat)atXYZ(x,py,nz,c,out_value),
|
|
Inpn = (Tfloat)atXYZ(nx,py,nz,c,out_value), Iapn = (Tfloat)atXYZ(ax,py,nz,c,out_value),
|
|
Ipn = Icpn + 0.5f*(dx*(-Ippn + Inpn) + dx*dx*(2*Ippn - 5*Icpn + 4*Inpn - Iapn) +
|
|
dx*dx*dx*(-Ippn + 3*Icpn - 3*Inpn + Iapn)),
|
|
Ipcn = (Tfloat)atXYZ(px,y,nz,c,out_value), Iccn = (Tfloat)atXYZ(x, y,nz,c,out_value),
|
|
Incn = (Tfloat)atXYZ(nx,y,nz,c,out_value), Iacn = (Tfloat)atXYZ(ax,y,nz,c,out_value),
|
|
Icn = Iccn + 0.5f*(dx*(-Ipcn + Incn) + dx*dx*(2*Ipcn - 5*Iccn + 4*Incn - Iacn) +
|
|
dx*dx*dx*(-Ipcn + 3*Iccn - 3*Incn + Iacn)),
|
|
Ipnn = (Tfloat)atXYZ(px,ny,nz,c,out_value), Icnn = (Tfloat)atXYZ(x,ny,nz,c,out_value),
|
|
Innn = (Tfloat)atXYZ(nx,ny,nz,c,out_value), Iann = (Tfloat)atXYZ(ax,ny,nz,c,out_value),
|
|
Inn = Icnn + 0.5f*(dx*(-Ipnn + Innn) + dx*dx*(2*Ipnn - 5*Icnn + 4*Innn - Iann) +
|
|
dx*dx*dx*(-Ipnn + 3*Icnn - 3*Innn + Iann)),
|
|
Ipan = (Tfloat)atXYZ(px,ay,nz,c,out_value), Ican = (Tfloat)atXYZ(x,ay,nz,c,out_value),
|
|
Inan = (Tfloat)atXYZ(nx,ay,nz,c,out_value), Iaan = (Tfloat)atXYZ(ax,ay,nz,c,out_value),
|
|
Ian = Ican + 0.5f*(dx*(-Ipan + Inan) + dx*dx*(2*Ipan - 5*Ican + 4*Inan - Iaan) +
|
|
dx*dx*dx*(-Ipan + 3*Ican - 3*Inan + Iaan)),
|
|
In = Icn + 0.5f*(dy*(-Ipn + Inn) + dy*dy*(2*Ipn - 5*Icn + 4*Inn - Ian) +
|
|
dy*dy*dy*(-Ipn + 3*Icn - 3*Inn + Ian)),
|
|
Ippa = (Tfloat)atXYZ(px,py,az,c,out_value), Icpa = (Tfloat)atXYZ(x,py,az,c,out_value),
|
|
Inpa = (Tfloat)atXYZ(nx,py,az,c,out_value), Iapa = (Tfloat)atXYZ(ax,py,az,c,out_value),
|
|
Ipa = Icpa + 0.5f*(dx*(-Ippa + Inpa) + dx*dx*(2*Ippa - 5*Icpa + 4*Inpa - Iapa) +
|
|
dx*dx*dx*(-Ippa + 3*Icpa - 3*Inpa + Iapa)),
|
|
Ipca = (Tfloat)atXYZ(px,y,az,c,out_value), Icca = (Tfloat)atXYZ(x, y,az,c,out_value),
|
|
Inca = (Tfloat)atXYZ(nx,y,az,c,out_value), Iaca = (Tfloat)atXYZ(ax,y,az,c,out_value),
|
|
Ica = Icca + 0.5f*(dx*(-Ipca + Inca) + dx*dx*(2*Ipca - 5*Icca + 4*Inca - Iaca) +
|
|
dx*dx*dx*(-Ipca + 3*Icca - 3*Inca + Iaca)),
|
|
Ipna = (Tfloat)atXYZ(px,ny,az,c,out_value), Icna = (Tfloat)atXYZ(x,ny,az,c,out_value),
|
|
Inna = (Tfloat)atXYZ(nx,ny,az,c,out_value), Iana = (Tfloat)atXYZ(ax,ny,az,c,out_value),
|
|
Ina = Icna + 0.5f*(dx*(-Ipna + Inna) + dx*dx*(2*Ipna - 5*Icna + 4*Inna - Iana) +
|
|
dx*dx*dx*(-Ipna + 3*Icna - 3*Inna + Iana)),
|
|
Ipaa = (Tfloat)atXYZ(px,ay,az,c,out_value), Icaa = (Tfloat)atXYZ(x,ay,az,c,out_value),
|
|
Inaa = (Tfloat)atXYZ(nx,ay,az,c,out_value), Iaaa = (Tfloat)atXYZ(ax,ay,az,c,out_value),
|
|
Iaa = Icaa + 0.5f*(dx*(-Ipaa + Inaa) + dx*dx*(2*Ipaa - 5*Icaa + 4*Inaa - Iaaa) +
|
|
dx*dx*dx*(-Ipaa + 3*Icaa - 3*Inaa + Iaaa)),
|
|
Ia = Ica + 0.5f*(dy*(-Ipa + Ina) + dy*dy*(2*Ipa - 5*Ica + 4*Ina - Iaa) +
|
|
dy*dy*dy*(-Ipa + 3*Ica - 3*Ina + Iaa));
|
|
return Ic + 0.5f*(dz*(-Ip + In) + dz*dz*(2*Ip - 5*Ic + 4*In - Ia) + dz*dz*dz*(-Ip + 3*Ic - 3*In + Ia));
|
|
}
|
|
|
|
//! Return clamped pixel value, using cubic interpolation and Dirichlet boundary conditions for the XYZ-coordinates.
|
|
/**
|
|
Similar to cubic_atXYZ(float,float,float,int,const T) const, except that the return value is clamped to stay
|
|
in the min/max range of the datatype \c T.
|
|
**/
|
|
T cubic_atXYZ_c(const float fx, const float fy, const float fz, const int c, const T& out_value) const {
|
|
return cimg::type<T>::cut(cubic_atXYZ(fx,fy,fz,c,out_value));
|
|
}
|
|
|
|
//! Return pixel value, using cubic interpolation and Neumann boundary conditions for the X,Y and Z-coordinates.
|
|
/**
|
|
Similar to cubic_atX(float,int,int,int) const, except that the cubic interpolation and boundary checking
|
|
are achieved both for X,Y and Z-coordinates.
|
|
\note
|
|
- If you know your image instance is \e not empty, you may rather use the slightly faster method
|
|
\c _cubic_atXYZ(float,float,float,int).
|
|
**/
|
|
Tfloat cubic_atXYZ(const float fx, const float fy, const float fz, const int c=0) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"cubic_atXYZ(): Empty instance.",
|
|
cimg_instance);
|
|
return _cubic_atXYZ(fx,fy,fz,c);
|
|
}
|
|
|
|
Tfloat _cubic_atXYZ(const float fx, const float fy, const float fz, const int c=0) const {
|
|
const float
|
|
nfx = cimg::type<float>::is_nan(fx)?0:cimg::cut(fx,0,width() - 1),
|
|
nfy = cimg::type<float>::is_nan(fy)?0:cimg::cut(fy,0,height() - 1),
|
|
nfz = cimg::type<float>::is_nan(fz)?0:cimg::cut(fz,0,depth() - 1);
|
|
const int x = (int)nfx, y = (int)nfy, z = (int)nfz;
|
|
const float dx = nfx - x, dy = nfy - y, dz = nfz - z;
|
|
const int
|
|
px = x - 1<0?0:x - 1, nx = dx>0?x + 1:x, ax = x + 2>=width()?width() - 1:x + 2,
|
|
py = y - 1<0?0:y - 1, ny = dy>0?y + 1:y, ay = y + 2>=height()?height() - 1:y + 2,
|
|
pz = z - 1<0?0:z - 1, nz = dz>0?z + 1:z, az = z + 2>=depth()?depth() - 1:z + 2;
|
|
const Tfloat
|
|
Ippp = (Tfloat)(*this)(px,py,pz,c), Icpp = (Tfloat)(*this)(x,py,pz,c),
|
|
Inpp = (Tfloat)(*this)(nx,py,pz,c), Iapp = (Tfloat)(*this)(ax,py,pz,c),
|
|
Ipp = Icpp + 0.5f*(dx*(-Ippp + Inpp) + dx*dx*(2*Ippp - 5*Icpp + 4*Inpp - Iapp) +
|
|
dx*dx*dx*(-Ippp + 3*Icpp - 3*Inpp + Iapp)),
|
|
Ipcp = (Tfloat)(*this)(px,y,pz,c), Iccp = (Tfloat)(*this)(x, y,pz,c),
|
|
Incp = (Tfloat)(*this)(nx,y,pz,c), Iacp = (Tfloat)(*this)(ax,y,pz,c),
|
|
Icp = Iccp + 0.5f*(dx*(-Ipcp + Incp) + dx*dx*(2*Ipcp - 5*Iccp + 4*Incp - Iacp) +
|
|
dx*dx*dx*(-Ipcp + 3*Iccp - 3*Incp + Iacp)),
|
|
Ipnp = (Tfloat)(*this)(px,ny,pz,c), Icnp = (Tfloat)(*this)(x,ny,pz,c),
|
|
Innp = (Tfloat)(*this)(nx,ny,pz,c), Ianp = (Tfloat)(*this)(ax,ny,pz,c),
|
|
Inp = Icnp + 0.5f*(dx*(-Ipnp + Innp) + dx*dx*(2*Ipnp - 5*Icnp + 4*Innp - Ianp) +
|
|
dx*dx*dx*(-Ipnp + 3*Icnp - 3*Innp + Ianp)),
|
|
Ipap = (Tfloat)(*this)(px,ay,pz,c), Icap = (Tfloat)(*this)(x,ay,pz,c),
|
|
Inap = (Tfloat)(*this)(nx,ay,pz,c), Iaap = (Tfloat)(*this)(ax,ay,pz,c),
|
|
Iap = Icap + 0.5f*(dx*(-Ipap + Inap) + dx*dx*(2*Ipap - 5*Icap + 4*Inap - Iaap) +
|
|
dx*dx*dx*(-Ipap + 3*Icap - 3*Inap + Iaap)),
|
|
Ip = Icp + 0.5f*(dy*(-Ipp + Inp) + dy*dy*(2*Ipp - 5*Icp + 4*Inp - Iap) +
|
|
dy*dy*dy*(-Ipp + 3*Icp - 3*Inp + Iap)),
|
|
Ippc = (Tfloat)(*this)(px,py,z,c), Icpc = (Tfloat)(*this)(x,py,z,c),
|
|
Inpc = (Tfloat)(*this)(nx,py,z,c), Iapc = (Tfloat)(*this)(ax,py,z,c),
|
|
Ipc = Icpc + 0.5f*(dx*(-Ippc + Inpc) + dx*dx*(2*Ippc - 5*Icpc + 4*Inpc - Iapc) +
|
|
dx*dx*dx*(-Ippc + 3*Icpc - 3*Inpc + Iapc)),
|
|
Ipcc = (Tfloat)(*this)(px,y,z,c), Iccc = (Tfloat)(*this)(x, y,z,c),
|
|
Incc = (Tfloat)(*this)(nx,y,z,c), Iacc = (Tfloat)(*this)(ax,y,z,c),
|
|
Icc = Iccc + 0.5f*(dx*(-Ipcc + Incc) + dx*dx*(2*Ipcc - 5*Iccc + 4*Incc - Iacc) +
|
|
dx*dx*dx*(-Ipcc + 3*Iccc - 3*Incc + Iacc)),
|
|
Ipnc = (Tfloat)(*this)(px,ny,z,c), Icnc = (Tfloat)(*this)(x,ny,z,c),
|
|
Innc = (Tfloat)(*this)(nx,ny,z,c), Ianc = (Tfloat)(*this)(ax,ny,z,c),
|
|
Inc = Icnc + 0.5f*(dx*(-Ipnc + Innc) + dx*dx*(2*Ipnc - 5*Icnc + 4*Innc - Ianc) +
|
|
dx*dx*dx*(-Ipnc + 3*Icnc - 3*Innc + Ianc)),
|
|
Ipac = (Tfloat)(*this)(px,ay,z,c), Icac = (Tfloat)(*this)(x,ay,z,c),
|
|
Inac = (Tfloat)(*this)(nx,ay,z,c), Iaac = (Tfloat)(*this)(ax,ay,z,c),
|
|
Iac = Icac + 0.5f*(dx*(-Ipac + Inac) + dx*dx*(2*Ipac - 5*Icac + 4*Inac - Iaac) +
|
|
dx*dx*dx*(-Ipac + 3*Icac - 3*Inac + Iaac)),
|
|
Ic = Icc + 0.5f*(dy*(-Ipc + Inc) + dy*dy*(2*Ipc - 5*Icc + 4*Inc - Iac) +
|
|
dy*dy*dy*(-Ipc + 3*Icc - 3*Inc + Iac)),
|
|
Ippn = (Tfloat)(*this)(px,py,nz,c), Icpn = (Tfloat)(*this)(x,py,nz,c),
|
|
Inpn = (Tfloat)(*this)(nx,py,nz,c), Iapn = (Tfloat)(*this)(ax,py,nz,c),
|
|
Ipn = Icpn + 0.5f*(dx*(-Ippn + Inpn) + dx*dx*(2*Ippn - 5*Icpn + 4*Inpn - Iapn) +
|
|
dx*dx*dx*(-Ippn + 3*Icpn - 3*Inpn + Iapn)),
|
|
Ipcn = (Tfloat)(*this)(px,y,nz,c), Iccn = (Tfloat)(*this)(x, y,nz,c),
|
|
Incn = (Tfloat)(*this)(nx,y,nz,c), Iacn = (Tfloat)(*this)(ax,y,nz,c),
|
|
Icn = Iccn + 0.5f*(dx*(-Ipcn + Incn) + dx*dx*(2*Ipcn - 5*Iccn + 4*Incn - Iacn) +
|
|
dx*dx*dx*(-Ipcn + 3*Iccn - 3*Incn + Iacn)),
|
|
Ipnn = (Tfloat)(*this)(px,ny,nz,c), Icnn = (Tfloat)(*this)(x,ny,nz,c),
|
|
Innn = (Tfloat)(*this)(nx,ny,nz,c), Iann = (Tfloat)(*this)(ax,ny,nz,c),
|
|
Inn = Icnn + 0.5f*(dx*(-Ipnn + Innn) + dx*dx*(2*Ipnn - 5*Icnn + 4*Innn - Iann) +
|
|
dx*dx*dx*(-Ipnn + 3*Icnn - 3*Innn + Iann)),
|
|
Ipan = (Tfloat)(*this)(px,ay,nz,c), Ican = (Tfloat)(*this)(x,ay,nz,c),
|
|
Inan = (Tfloat)(*this)(nx,ay,nz,c), Iaan = (Tfloat)(*this)(ax,ay,nz,c),
|
|
Ian = Ican + 0.5f*(dx*(-Ipan + Inan) + dx*dx*(2*Ipan - 5*Ican + 4*Inan - Iaan) +
|
|
dx*dx*dx*(-Ipan + 3*Ican - 3*Inan + Iaan)),
|
|
In = Icn + 0.5f*(dy*(-Ipn + Inn) + dy*dy*(2*Ipn - 5*Icn + 4*Inn - Ian) +
|
|
dy*dy*dy*(-Ipn + 3*Icn - 3*Inn + Ian)),
|
|
Ippa = (Tfloat)(*this)(px,py,az,c), Icpa = (Tfloat)(*this)(x,py,az,c),
|
|
Inpa = (Tfloat)(*this)(nx,py,az,c), Iapa = (Tfloat)(*this)(ax,py,az,c),
|
|
Ipa = Icpa + 0.5f*(dx*(-Ippa + Inpa) + dx*dx*(2*Ippa - 5*Icpa + 4*Inpa - Iapa) +
|
|
dx*dx*dx*(-Ippa + 3*Icpa - 3*Inpa + Iapa)),
|
|
Ipca = (Tfloat)(*this)(px,y,az,c), Icca = (Tfloat)(*this)(x, y,az,c),
|
|
Inca = (Tfloat)(*this)(nx,y,az,c), Iaca = (Tfloat)(*this)(ax,y,az,c),
|
|
Ica = Icca + 0.5f*(dx*(-Ipca + Inca) + dx*dx*(2*Ipca - 5*Icca + 4*Inca - Iaca) +
|
|
dx*dx*dx*(-Ipca + 3*Icca - 3*Inca + Iaca)),
|
|
Ipna = (Tfloat)(*this)(px,ny,az,c), Icna = (Tfloat)(*this)(x,ny,az,c),
|
|
Inna = (Tfloat)(*this)(nx,ny,az,c), Iana = (Tfloat)(*this)(ax,ny,az,c),
|
|
Ina = Icna + 0.5f*(dx*(-Ipna + Inna) + dx*dx*(2*Ipna - 5*Icna + 4*Inna - Iana) +
|
|
dx*dx*dx*(-Ipna + 3*Icna - 3*Inna + Iana)),
|
|
Ipaa = (Tfloat)(*this)(px,ay,az,c), Icaa = (Tfloat)(*this)(x,ay,az,c),
|
|
Inaa = (Tfloat)(*this)(nx,ay,az,c), Iaaa = (Tfloat)(*this)(ax,ay,az,c),
|
|
Iaa = Icaa + 0.5f*(dx*(-Ipaa + Inaa) + dx*dx*(2*Ipaa - 5*Icaa + 4*Inaa - Iaaa) +
|
|
dx*dx*dx*(-Ipaa + 3*Icaa - 3*Inaa + Iaaa)),
|
|
Ia = Ica + 0.5f*(dy*(-Ipa + Ina) + dy*dy*(2*Ipa - 5*Ica + 4*Ina - Iaa) +
|
|
dy*dy*dy*(-Ipa + 3*Ica - 3*Ina + Iaa));
|
|
return Ic + 0.5f*(dz*(-Ip + In) + dz*dz*(2*Ip - 5*Ic + 4*In - Ia) + dz*dz*dz*(-Ip + 3*Ic - 3*In + Ia));
|
|
}
|
|
|
|
//! Return clamped pixel value, using cubic interpolation and Neumann boundary conditions for the XYZ-coordinates.
|
|
/**
|
|
Similar to cubic_atXYZ(float,float,float,int) const, except that the return value is clamped to stay in the
|
|
min/max range of the datatype \c T.
|
|
**/
|
|
T cubic_atXYZ_c(const float fx, const float fy, const float fz, const int c) const {
|
|
return cimg::type<T>::cut(cubic_atXYZ(fx,fy,fz,c));
|
|
}
|
|
|
|
T _cubic_atXYZ_c(const float fx, const float fy, const float fz, const int c) const {
|
|
return cimg::type<T>::cut(_cubic_atXYZ(fx,fy,fz,c));
|
|
}
|
|
|
|
//! Return pixel value, using cubic interpolation and Neumann boundary conditions for the X,Y and Z-coordinates.
|
|
/**
|
|
Similar to cubic_atX(float,int,int,int) const, except that the cubic interpolation and boundary checking
|
|
are achieved both for X,Y and Z-coordinates.
|
|
\note
|
|
- If you know your image instance is \e not empty, you may rather use the slightly faster method
|
|
\c _cubic_atXYZ(float,float,float,int).
|
|
**/
|
|
Tfloat cubic_atXYZ_p(const float fx, const float fy, const float fz, const int c=0) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"cubic_atXYZ_p(): Empty instance.",
|
|
cimg_instance);
|
|
return _cubic_atXYZ_p(fx,fy,fz,c);
|
|
}
|
|
|
|
Tfloat _cubic_atXYZ_p(const float fx, const float fy, const float fz, const int c=0) const {
|
|
const float
|
|
nfx = cimg::type<float>::is_nan(fx)?0:cimg::mod(fx,_width - 0.5f),
|
|
nfy = cimg::type<float>::is_nan(fy)?0:cimg::mod(fy,_height - 0.5f),
|
|
nfz = cimg::type<float>::is_nan(fz)?0:cimg::mod(fz,_depth - 0.5f);
|
|
const int x = (int)nfx, y = (int)nfy, z = (int)nfz;
|
|
const float dx = nfx - x, dy = nfy - y, dz = nfz - z;
|
|
const int
|
|
px = cimg::mod(x - 1,width()), nx = cimg::mod(x + 1,width()), ax = cimg::mod(x + 2,width()),
|
|
py = cimg::mod(y - 1,height()), ny = cimg::mod(y + 1,height()), ay = cimg::mod(y + 2,height()),
|
|
pz = cimg::mod(z - 1,depth()), nz = cimg::mod(z + 1,depth()), az = cimg::mod(z + 2,depth());
|
|
const Tfloat
|
|
Ippp = (Tfloat)(*this)(px,py,pz,c), Icpp = (Tfloat)(*this)(x,py,pz,c),
|
|
Inpp = (Tfloat)(*this)(nx,py,pz,c), Iapp = (Tfloat)(*this)(ax,py,pz,c),
|
|
Ipp = Icpp + 0.5f*(dx*(-Ippp + Inpp) + dx*dx*(2*Ippp - 5*Icpp + 4*Inpp - Iapp) +
|
|
dx*dx*dx*(-Ippp + 3*Icpp - 3*Inpp + Iapp)),
|
|
Ipcp = (Tfloat)(*this)(px,y,pz,c), Iccp = (Tfloat)(*this)(x, y,pz,c),
|
|
Incp = (Tfloat)(*this)(nx,y,pz,c), Iacp = (Tfloat)(*this)(ax,y,pz,c),
|
|
Icp = Iccp + 0.5f*(dx*(-Ipcp + Incp) + dx*dx*(2*Ipcp - 5*Iccp + 4*Incp - Iacp) +
|
|
dx*dx*dx*(-Ipcp + 3*Iccp - 3*Incp + Iacp)),
|
|
Ipnp = (Tfloat)(*this)(px,ny,pz,c), Icnp = (Tfloat)(*this)(x,ny,pz,c),
|
|
Innp = (Tfloat)(*this)(nx,ny,pz,c), Ianp = (Tfloat)(*this)(ax,ny,pz,c),
|
|
Inp = Icnp + 0.5f*(dx*(-Ipnp + Innp) + dx*dx*(2*Ipnp - 5*Icnp + 4*Innp - Ianp) +
|
|
dx*dx*dx*(-Ipnp + 3*Icnp - 3*Innp + Ianp)),
|
|
Ipap = (Tfloat)(*this)(px,ay,pz,c), Icap = (Tfloat)(*this)(x,ay,pz,c),
|
|
Inap = (Tfloat)(*this)(nx,ay,pz,c), Iaap = (Tfloat)(*this)(ax,ay,pz,c),
|
|
Iap = Icap + 0.5f*(dx*(-Ipap + Inap) + dx*dx*(2*Ipap - 5*Icap + 4*Inap - Iaap) +
|
|
dx*dx*dx*(-Ipap + 3*Icap - 3*Inap + Iaap)),
|
|
Ip = Icp + 0.5f*(dy*(-Ipp + Inp) + dy*dy*(2*Ipp - 5*Icp + 4*Inp - Iap) +
|
|
dy*dy*dy*(-Ipp + 3*Icp - 3*Inp + Iap)),
|
|
Ippc = (Tfloat)(*this)(px,py,z,c), Icpc = (Tfloat)(*this)(x,py,z,c),
|
|
Inpc = (Tfloat)(*this)(nx,py,z,c), Iapc = (Tfloat)(*this)(ax,py,z,c),
|
|
Ipc = Icpc + 0.5f*(dx*(-Ippc + Inpc) + dx*dx*(2*Ippc - 5*Icpc + 4*Inpc - Iapc) +
|
|
dx*dx*dx*(-Ippc + 3*Icpc - 3*Inpc + Iapc)),
|
|
Ipcc = (Tfloat)(*this)(px,y,z,c), Iccc = (Tfloat)(*this)(x, y,z,c),
|
|
Incc = (Tfloat)(*this)(nx,y,z,c), Iacc = (Tfloat)(*this)(ax,y,z,c),
|
|
Icc = Iccc + 0.5f*(dx*(-Ipcc + Incc) + dx*dx*(2*Ipcc - 5*Iccc + 4*Incc - Iacc) +
|
|
dx*dx*dx*(-Ipcc + 3*Iccc - 3*Incc + Iacc)),
|
|
Ipnc = (Tfloat)(*this)(px,ny,z,c), Icnc = (Tfloat)(*this)(x,ny,z,c),
|
|
Innc = (Tfloat)(*this)(nx,ny,z,c), Ianc = (Tfloat)(*this)(ax,ny,z,c),
|
|
Inc = Icnc + 0.5f*(dx*(-Ipnc + Innc) + dx*dx*(2*Ipnc - 5*Icnc + 4*Innc - Ianc) +
|
|
dx*dx*dx*(-Ipnc + 3*Icnc - 3*Innc + Ianc)),
|
|
Ipac = (Tfloat)(*this)(px,ay,z,c), Icac = (Tfloat)(*this)(x,ay,z,c),
|
|
Inac = (Tfloat)(*this)(nx,ay,z,c), Iaac = (Tfloat)(*this)(ax,ay,z,c),
|
|
Iac = Icac + 0.5f*(dx*(-Ipac + Inac) + dx*dx*(2*Ipac - 5*Icac + 4*Inac - Iaac) +
|
|
dx*dx*dx*(-Ipac + 3*Icac - 3*Inac + Iaac)),
|
|
Ic = Icc + 0.5f*(dy*(-Ipc + Inc) + dy*dy*(2*Ipc - 5*Icc + 4*Inc - Iac) +
|
|
dy*dy*dy*(-Ipc + 3*Icc - 3*Inc + Iac)),
|
|
Ippn = (Tfloat)(*this)(px,py,nz,c), Icpn = (Tfloat)(*this)(x,py,nz,c),
|
|
Inpn = (Tfloat)(*this)(nx,py,nz,c), Iapn = (Tfloat)(*this)(ax,py,nz,c),
|
|
Ipn = Icpn + 0.5f*(dx*(-Ippn + Inpn) + dx*dx*(2*Ippn - 5*Icpn + 4*Inpn - Iapn) +
|
|
dx*dx*dx*(-Ippn + 3*Icpn - 3*Inpn + Iapn)),
|
|
Ipcn = (Tfloat)(*this)(px,y,nz,c), Iccn = (Tfloat)(*this)(x, y,nz,c),
|
|
Incn = (Tfloat)(*this)(nx,y,nz,c), Iacn = (Tfloat)(*this)(ax,y,nz,c),
|
|
Icn = Iccn + 0.5f*(dx*(-Ipcn + Incn) + dx*dx*(2*Ipcn - 5*Iccn + 4*Incn - Iacn) +
|
|
dx*dx*dx*(-Ipcn + 3*Iccn - 3*Incn + Iacn)),
|
|
Ipnn = (Tfloat)(*this)(px,ny,nz,c), Icnn = (Tfloat)(*this)(x,ny,nz,c),
|
|
Innn = (Tfloat)(*this)(nx,ny,nz,c), Iann = (Tfloat)(*this)(ax,ny,nz,c),
|
|
Inn = Icnn + 0.5f*(dx*(-Ipnn + Innn) + dx*dx*(2*Ipnn - 5*Icnn + 4*Innn - Iann) +
|
|
dx*dx*dx*(-Ipnn + 3*Icnn - 3*Innn + Iann)),
|
|
Ipan = (Tfloat)(*this)(px,ay,nz,c), Ican = (Tfloat)(*this)(x,ay,nz,c),
|
|
Inan = (Tfloat)(*this)(nx,ay,nz,c), Iaan = (Tfloat)(*this)(ax,ay,nz,c),
|
|
Ian = Ican + 0.5f*(dx*(-Ipan + Inan) + dx*dx*(2*Ipan - 5*Ican + 4*Inan - Iaan) +
|
|
dx*dx*dx*(-Ipan + 3*Ican - 3*Inan + Iaan)),
|
|
In = Icn + 0.5f*(dy*(-Ipn + Inn) + dy*dy*(2*Ipn - 5*Icn + 4*Inn - Ian) +
|
|
dy*dy*dy*(-Ipn + 3*Icn - 3*Inn + Ian)),
|
|
Ippa = (Tfloat)(*this)(px,py,az,c), Icpa = (Tfloat)(*this)(x,py,az,c),
|
|
Inpa = (Tfloat)(*this)(nx,py,az,c), Iapa = (Tfloat)(*this)(ax,py,az,c),
|
|
Ipa = Icpa + 0.5f*(dx*(-Ippa + Inpa) + dx*dx*(2*Ippa - 5*Icpa + 4*Inpa - Iapa) +
|
|
dx*dx*dx*(-Ippa + 3*Icpa - 3*Inpa + Iapa)),
|
|
Ipca = (Tfloat)(*this)(px,y,az,c), Icca = (Tfloat)(*this)(x, y,az,c),
|
|
Inca = (Tfloat)(*this)(nx,y,az,c), Iaca = (Tfloat)(*this)(ax,y,az,c),
|
|
Ica = Icca + 0.5f*(dx*(-Ipca + Inca) + dx*dx*(2*Ipca - 5*Icca + 4*Inca - Iaca) +
|
|
dx*dx*dx*(-Ipca + 3*Icca - 3*Inca + Iaca)),
|
|
Ipna = (Tfloat)(*this)(px,ny,az,c), Icna = (Tfloat)(*this)(x,ny,az,c),
|
|
Inna = (Tfloat)(*this)(nx,ny,az,c), Iana = (Tfloat)(*this)(ax,ny,az,c),
|
|
Ina = Icna + 0.5f*(dx*(-Ipna + Inna) + dx*dx*(2*Ipna - 5*Icna + 4*Inna - Iana) +
|
|
dx*dx*dx*(-Ipna + 3*Icna - 3*Inna + Iana)),
|
|
Ipaa = (Tfloat)(*this)(px,ay,az,c), Icaa = (Tfloat)(*this)(x,ay,az,c),
|
|
Inaa = (Tfloat)(*this)(nx,ay,az,c), Iaaa = (Tfloat)(*this)(ax,ay,az,c),
|
|
Iaa = Icaa + 0.5f*(dx*(-Ipaa + Inaa) + dx*dx*(2*Ipaa - 5*Icaa + 4*Inaa - Iaaa) +
|
|
dx*dx*dx*(-Ipaa + 3*Icaa - 3*Inaa + Iaaa)),
|
|
Ia = Ica + 0.5f*(dy*(-Ipa + Ina) + dy*dy*(2*Ipa - 5*Ica + 4*Ina - Iaa) +
|
|
dy*dy*dy*(-Ipa + 3*Ica - 3*Ina + Iaa));
|
|
return Ic + 0.5f*(dz*(-Ip + In) + dz*dz*(2*Ip - 5*Ic + 4*In - Ia) + dz*dz*dz*(-Ip + 3*Ic - 3*In + Ia));
|
|
}
|
|
|
|
T cubic_atXYZ_pc(const float fx, const float fy, const float fz, const int c) const {
|
|
return cimg::type<T>::cut(cubic_atXYZ_p(fx,fy,fz,c));
|
|
}
|
|
|
|
T _cubic_atXYZ_pc(const float fx, const float fy, const float fz, const int c) const {
|
|
return cimg::type<T>::cut(_cubic_atXYZ_p(fx,fy,fz,c));
|
|
}
|
|
|
|
//! Set pixel value, using linear interpolation for the X-coordinates.
|
|
/**
|
|
Set pixel value at specified coordinates (\c fx,\c y,\c z,\c c) in the image instance, in a way that
|
|
the value is spread amongst several neighbors if the pixel coordinates are float-valued.
|
|
\param value Pixel value to set.
|
|
\param fx X-coordinate of the pixel value (float-valued).
|
|
\param y Y-coordinate of the pixel value.
|
|
\param z Z-coordinate of the pixel value.
|
|
\param c C-coordinate of the pixel value.
|
|
\param is_added Tells if the pixel value is added to (\c true), or simply replace (\c false) the current image
|
|
pixel(s).
|
|
\return A reference to the current image instance.
|
|
\note
|
|
- Calling this method with out-of-bounds coordinates does nothing.
|
|
**/
|
|
CImg<T>& set_linear_atX(const T& value, const float fx, const int y=0, const int z=0, const int c=0,
|
|
const bool is_added=false) {
|
|
const int
|
|
x = (int)fx - (fx>=0?0:1), nx = x + 1;
|
|
const float
|
|
dx = fx - x;
|
|
if (y>=0 && y<height() && z>=0 && z<depth() && c>=0 && c<spectrum()) {
|
|
if (x>=0 && x<width()) {
|
|
const float w1 = 1 - dx, w2 = is_added?1:(1 - w1);
|
|
(*this)(x,y,z,c) = (T)(w1*value + w2*(*this)(x,y,z,c));
|
|
}
|
|
if (nx>=0 && nx<width()) {
|
|
const float w1 = dx, w2 = is_added?1:(1 - w1);
|
|
(*this)(nx,y,z,c) = (T)(w1*value + w2*(*this)(nx,y,z,c));
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Set pixel value, using linear interpolation for the X and Y-coordinates.
|
|
/**
|
|
Similar to set_linear_atX(const T&,float,int,int,int,bool), except that the linear interpolation
|
|
is achieved both for X and Y-coordinates.
|
|
**/
|
|
CImg<T>& set_linear_atXY(const T& value, const float fx, const float fy=0, const int z=0, const int c=0,
|
|
const bool is_added=false) {
|
|
const int
|
|
x = (int)fx - (fx>=0?0:1), nx = x + 1,
|
|
y = (int)fy - (fy>=0?0:1), ny = y + 1;
|
|
const float
|
|
dx = fx - x,
|
|
dy = fy - y;
|
|
if (z>=0 && z<depth() && c>=0 && c<spectrum()) {
|
|
if (y>=0 && y<height()) {
|
|
if (x>=0 && x<width()) {
|
|
const float w1 = (1 - dx)*(1 - dy), w2 = is_added?1:(1 - w1);
|
|
(*this)(x,y,z,c) = (T)(w1*value + w2*(*this)(x,y,z,c));
|
|
}
|
|
if (nx>=0 && nx<width()) {
|
|
const float w1 = dx*(1 - dy), w2 = is_added?1:(1 - w1);
|
|
(*this)(nx,y,z,c) = (T)(w1*value + w2*(*this)(nx,y,z,c));
|
|
}
|
|
}
|
|
if (ny>=0 && ny<height()) {
|
|
if (x>=0 && x<width()) {
|
|
const float w1 = (1 - dx)*dy, w2 = is_added?1:(1 - w1);
|
|
(*this)(x,ny,z,c) = (T)(w1*value + w2*(*this)(x,ny,z,c));
|
|
}
|
|
if (nx>=0 && nx<width()) {
|
|
const float w1 = dx*dy, w2 = is_added?1:(1 - w1);
|
|
(*this)(nx,ny,z,c) = (T)(w1*value + w2*(*this)(nx,ny,z,c));
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Set pixel value, using linear interpolation for the X,Y and Z-coordinates.
|
|
/**
|
|
Similar to set_linear_atXY(const T&,float,float,int,int,bool), except that the linear interpolation
|
|
is achieved both for X,Y and Z-coordinates.
|
|
**/
|
|
CImg<T>& set_linear_atXYZ(const T& value, const float fx, const float fy=0, const float fz=0, const int c=0,
|
|
const bool is_added=false) {
|
|
const int
|
|
x = (int)fx - (fx>=0?0:1), nx = x + 1,
|
|
y = (int)fy - (fy>=0?0:1), ny = y + 1,
|
|
z = (int)fz - (fz>=0?0:1), nz = z + 1;
|
|
const float
|
|
dx = fx - x,
|
|
dy = fy - y,
|
|
dz = fz - z;
|
|
if (c>=0 && c<spectrum()) {
|
|
if (z>=0 && z<depth()) {
|
|
if (y>=0 && y<height()) {
|
|
if (x>=0 && x<width()) {
|
|
const float w1 = (1 - dx)*(1 - dy)*(1 - dz), w2 = is_added?1:(1 - w1);
|
|
(*this)(x,y,z,c) = (T)(w1*value + w2*(*this)(x,y,z,c));
|
|
}
|
|
if (nx>=0 && nx<width()) {
|
|
const float w1 = dx*(1 - dy)*(1 - dz), w2 = is_added?1:(1 - w1);
|
|
(*this)(nx,y,z,c) = (T)(w1*value + w2*(*this)(nx,y,z,c));
|
|
}
|
|
}
|
|
if (ny>=0 && ny<height()) {
|
|
if (x>=0 && x<width()) {
|
|
const float w1 = (1 - dx)*dy*(1 - dz), w2 = is_added?1:(1 - w1);
|
|
(*this)(x,ny,z,c) = (T)(w1*value + w2*(*this)(x,ny,z,c));
|
|
}
|
|
if (nx>=0 && nx<width()) {
|
|
const float w1 = dx*dy*(1 - dz), w2 = is_added?1:(1 - w1);
|
|
(*this)(nx,ny,z,c) = (T)(w1*value + w2*(*this)(nx,ny,z,c));
|
|
}
|
|
}
|
|
}
|
|
if (nz>=0 && nz<depth()) {
|
|
if (y>=0 && y<height()) {
|
|
if (x>=0 && x<width()) {
|
|
const float w1 = (1 - dx)*(1 - dy)*dz, w2 = is_added?1:(1 - w1);
|
|
(*this)(x,y,nz,c) = (T)(w1*value + w2*(*this)(x,y,nz,c));
|
|
}
|
|
if (nx>=0 && nx<width()) {
|
|
const float w1 = dx*(1 - dy)*dz, w2 = is_added?1:(1 - w1);
|
|
(*this)(nx,y,nz,c) = (T)(w1*value + w2*(*this)(nx,y,nz,c));
|
|
}
|
|
}
|
|
if (ny>=0 && ny<height()) {
|
|
if (x>=0 && x<width()) {
|
|
const float w1 = (1 - dx)*dy*dz, w2 = is_added?1:(1 - w1);
|
|
(*this)(x,ny,nz,c) = (T)(w1*value + w2*(*this)(x,ny,nz,c));
|
|
}
|
|
if (nx>=0 && nx<width()) {
|
|
const float w1 = dx*dy*dz, w2 = is_added?1:(1 - w1);
|
|
(*this)(nx,ny,nz,c) = (T)(w1*value + w2*(*this)(nx,ny,nz,c));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Return a C-string containing a list of all values of the image instance.
|
|
/**
|
|
Return a new \c CImg<char> image whose buffer data() is a \c char* string describing the list of all pixel values
|
|
of the image instance (written in base 10), separated by specified \c separator character.
|
|
\param separator A \c char character which specifies the separator between values in the returned C-string.
|
|
\param max_size Maximum size of the returned image (or \c 0 if no limits are set).
|
|
\param format For float/double-values, tell the printf format used to generate the text representation
|
|
of the numbers (or \c 0 for default representation).
|
|
\note
|
|
- The returned image is never empty.
|
|
- For an empty image instance, the returned string is <tt>""</tt>.
|
|
- If \c max_size is equal to \c 0, there are no limits on the size of the returned string.
|
|
- Otherwise, if the maximum number of string characters is exceeded, the value string is cut off
|
|
and terminated by character \c '\0'. In that case, the returned image size is <tt>max_size + 1</tt>.
|
|
**/
|
|
CImg<charT> value_string(const char separator=',', const unsigned int max_size=0,
|
|
const char *const format=0) const {
|
|
if (is_empty() || max_size==1) return CImg<charT>(1,1,1,1,0);
|
|
CImgList<charT> items;
|
|
CImg<charT> s_item(256); *s_item = 0;
|
|
const T *ptrs = _data;
|
|
unsigned int string_size = 0;
|
|
const char *const _format = format?format:cimg::type<T>::format();
|
|
for (ulongT off = 0, siz = size(); off<siz && (!max_size || string_size<max_size); ++off) {
|
|
const unsigned int printed_size = 1U + cimg_snprintf(s_item,s_item._width,_format,
|
|
cimg::type<T>::format(*(ptrs++)));
|
|
CImg<charT> item(s_item._data,printed_size);
|
|
item[printed_size - 1] = separator;
|
|
item.move_to(items);
|
|
if (max_size) string_size+=printed_size;
|
|
}
|
|
CImg<charT> res;
|
|
(items>'x').move_to(res);
|
|
if (max_size && res._width>=max_size) res.crop(0,max_size - 1);
|
|
res.back() = 0;
|
|
return res;
|
|
}
|
|
|
|
//@}
|
|
//-------------------------------------
|
|
//
|
|
//! \name Instance Checking
|
|
//@{
|
|
//-------------------------------------
|
|
|
|
//! Test shared state of the pixel buffer.
|
|
/**
|
|
Return \c true if image instance has a shared memory buffer, and \c false otherwise.
|
|
\note
|
|
- A shared image do not own his pixel buffer data() and will not deallocate it on destruction.
|
|
- Most of the time, a \c CImg<T> image instance will \e not be shared.
|
|
- A shared image can only be obtained by a limited set of constructors and methods (see list below).
|
|
**/
|
|
bool is_shared() const {
|
|
return _is_shared;
|
|
}
|
|
|
|
//! Test if image instance is empty.
|
|
/**
|
|
Return \c true, if image instance is empty, i.e. does \e not contain any pixel values, has dimensions
|
|
\c 0 x \c 0 x \c 0 x \c 0 and a pixel buffer pointer set to \c 0 (null pointer), and \c false otherwise.
|
|
**/
|
|
bool is_empty() const {
|
|
return !(_data && _width && _height && _depth && _spectrum);
|
|
}
|
|
|
|
//! Test if image instance contains a 'inf' value.
|
|
/**
|
|
Return \c true, if image instance contains a 'inf' value, and \c false otherwise.
|
|
**/
|
|
bool is_inf() const {
|
|
if (cimg::type<T>::is_float()) cimg_for(*this,p,T) if (cimg::type<T>::is_inf((float)*p)) return true;
|
|
return false;
|
|
}
|
|
|
|
//! Test if image instance contains a NaN value.
|
|
/**
|
|
Return \c true, if image instance contains a NaN value, and \c false otherwise.
|
|
**/
|
|
bool is_nan() const {
|
|
if (cimg::type<T>::is_float()) cimg_for(*this,p,T) if (cimg::type<T>::is_nan((float)*p)) return true;
|
|
return false;
|
|
}
|
|
|
|
//! Test if image width is equal to specified value.
|
|
bool is_sameX(const unsigned int size_x) const {
|
|
return _width==size_x;
|
|
}
|
|
|
|
//! Test if image width is equal to specified value.
|
|
template<typename t>
|
|
bool is_sameX(const CImg<t>& img) const {
|
|
return is_sameX(img._width);
|
|
}
|
|
|
|
//! Test if image width is equal to specified value.
|
|
bool is_sameX(const CImgDisplay& disp) const {
|
|
return is_sameX(disp._width);
|
|
}
|
|
|
|
//! Test if image height is equal to specified value.
|
|
bool is_sameY(const unsigned int size_y) const {
|
|
return _height==size_y;
|
|
}
|
|
|
|
//! Test if image height is equal to specified value.
|
|
template<typename t>
|
|
bool is_sameY(const CImg<t>& img) const {
|
|
return is_sameY(img._height);
|
|
}
|
|
|
|
//! Test if image height is equal to specified value.
|
|
bool is_sameY(const CImgDisplay& disp) const {
|
|
return is_sameY(disp._height);
|
|
}
|
|
|
|
//! Test if image depth is equal to specified value.
|
|
bool is_sameZ(const unsigned int size_z) const {
|
|
return _depth==size_z;
|
|
}
|
|
|
|
//! Test if image depth is equal to specified value.
|
|
template<typename t>
|
|
bool is_sameZ(const CImg<t>& img) const {
|
|
return is_sameZ(img._depth);
|
|
}
|
|
|
|
//! Test if image spectrum is equal to specified value.
|
|
bool is_sameC(const unsigned int size_c) const {
|
|
return _spectrum==size_c;
|
|
}
|
|
|
|
//! Test if image spectrum is equal to specified value.
|
|
template<typename t>
|
|
bool is_sameC(const CImg<t>& img) const {
|
|
return is_sameC(img._spectrum);
|
|
}
|
|
|
|
//! Test if image width and height are equal to specified values.
|
|
/**
|
|
Test if is_sameX(unsigned int) const and is_sameY(unsigned int) const are both verified.
|
|
**/
|
|
bool is_sameXY(const unsigned int size_x, const unsigned int size_y) const {
|
|
return _width==size_x && _height==size_y;
|
|
}
|
|
|
|
//! Test if image width and height are the same as that of another image.
|
|
/**
|
|
Test if is_sameX(const CImg<t>&) const and is_sameY(const CImg<t>&) const are both verified.
|
|
**/
|
|
template<typename t>
|
|
bool is_sameXY(const CImg<t>& img) const {
|
|
return is_sameXY(img._width,img._height);
|
|
}
|
|
|
|
//! Test if image width and height are the same as that of an existing display window.
|
|
/**
|
|
Test if is_sameX(const CImgDisplay&) const and is_sameY(const CImgDisplay&) const are both verified.
|
|
**/
|
|
bool is_sameXY(const CImgDisplay& disp) const {
|
|
return is_sameXY(disp._width,disp._height);
|
|
}
|
|
|
|
//! Test if image width and depth are equal to specified values.
|
|
/**
|
|
Test if is_sameX(unsigned int) const and is_sameZ(unsigned int) const are both verified.
|
|
**/
|
|
bool is_sameXZ(const unsigned int size_x, const unsigned int size_z) const {
|
|
return _width==size_x && _depth==size_z;
|
|
}
|
|
|
|
//! Test if image width and depth are the same as that of another image.
|
|
/**
|
|
Test if is_sameX(const CImg<t>&) const and is_sameZ(const CImg<t>&) const are both verified.
|
|
**/
|
|
template<typename t>
|
|
bool is_sameXZ(const CImg<t>& img) const {
|
|
return is_sameXZ(img._width,img._depth);
|
|
}
|
|
|
|
//! Test if image width and spectrum are equal to specified values.
|
|
/**
|
|
Test if is_sameX(unsigned int) const and is_sameC(unsigned int) const are both verified.
|
|
**/
|
|
bool is_sameXC(const unsigned int size_x, const unsigned int size_c) const {
|
|
return _width==size_x && _spectrum==size_c;
|
|
}
|
|
|
|
//! Test if image width and spectrum are the same as that of another image.
|
|
/**
|
|
Test if is_sameX(const CImg<t>&) const and is_sameC(const CImg<t>&) const are both verified.
|
|
**/
|
|
template<typename t>
|
|
bool is_sameXC(const CImg<t>& img) const {
|
|
return is_sameXC(img._width,img._spectrum);
|
|
}
|
|
|
|
//! Test if image height and depth are equal to specified values.
|
|
/**
|
|
Test if is_sameY(unsigned int) const and is_sameZ(unsigned int) const are both verified.
|
|
**/
|
|
bool is_sameYZ(const unsigned int size_y, const unsigned int size_z) const {
|
|
return _height==size_y && _depth==size_z;
|
|
}
|
|
|
|
//! Test if image height and depth are the same as that of another image.
|
|
/**
|
|
Test if is_sameY(const CImg<t>&) const and is_sameZ(const CImg<t>&) const are both verified.
|
|
**/
|
|
template<typename t>
|
|
bool is_sameYZ(const CImg<t>& img) const {
|
|
return is_sameYZ(img._height,img._depth);
|
|
}
|
|
|
|
//! Test if image height and spectrum are equal to specified values.
|
|
/**
|
|
Test if is_sameY(unsigned int) const and is_sameC(unsigned int) const are both verified.
|
|
**/
|
|
bool is_sameYC(const unsigned int size_y, const unsigned int size_c) const {
|
|
return _height==size_y && _spectrum==size_c;
|
|
}
|
|
|
|
//! Test if image height and spectrum are the same as that of another image.
|
|
/**
|
|
Test if is_sameY(const CImg<t>&) const and is_sameC(const CImg<t>&) const are both verified.
|
|
**/
|
|
template<typename t>
|
|
bool is_sameYC(const CImg<t>& img) const {
|
|
return is_sameYC(img._height,img._spectrum);
|
|
}
|
|
|
|
//! Test if image depth and spectrum are equal to specified values.
|
|
/**
|
|
Test if is_sameZ(unsigned int) const and is_sameC(unsigned int) const are both verified.
|
|
**/
|
|
bool is_sameZC(const unsigned int size_z, const unsigned int size_c) const {
|
|
return _depth==size_z && _spectrum==size_c;
|
|
}
|
|
|
|
//! Test if image depth and spectrum are the same as that of another image.
|
|
/**
|
|
Test if is_sameZ(const CImg<t>&) const and is_sameC(const CImg<t>&) const are both verified.
|
|
**/
|
|
template<typename t>
|
|
bool is_sameZC(const CImg<t>& img) const {
|
|
return is_sameZC(img._depth,img._spectrum);
|
|
}
|
|
|
|
//! Test if image width, height and depth are equal to specified values.
|
|
/**
|
|
Test if is_sameXY(unsigned int,unsigned int) const and is_sameZ(unsigned int) const are both verified.
|
|
**/
|
|
bool is_sameXYZ(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z) const {
|
|
return is_sameXY(size_x,size_y) && _depth==size_z;
|
|
}
|
|
|
|
//! Test if image width, height and depth are the same as that of another image.
|
|
/**
|
|
Test if is_sameXY(const CImg<t>&) const and is_sameZ(const CImg<t>&) const are both verified.
|
|
**/
|
|
template<typename t>
|
|
bool is_sameXYZ(const CImg<t>& img) const {
|
|
return is_sameXYZ(img._width,img._height,img._depth);
|
|
}
|
|
|
|
//! Test if image width, height and spectrum are equal to specified values.
|
|
/**
|
|
Test if is_sameXY(unsigned int,unsigned int) const and is_sameC(unsigned int) const are both verified.
|
|
**/
|
|
bool is_sameXYC(const unsigned int size_x, const unsigned int size_y, const unsigned int size_c) const {
|
|
return is_sameXY(size_x,size_y) && _spectrum==size_c;
|
|
}
|
|
|
|
//! Test if image width, height and spectrum are the same as that of another image.
|
|
/**
|
|
Test if is_sameXY(const CImg<t>&) const and is_sameC(const CImg<t>&) const are both verified.
|
|
**/
|
|
template<typename t>
|
|
bool is_sameXYC(const CImg<t>& img) const {
|
|
return is_sameXYC(img._width,img._height,img._spectrum);
|
|
}
|
|
|
|
//! Test if image width, depth and spectrum are equal to specified values.
|
|
/**
|
|
Test if is_sameXZ(unsigned int,unsigned int) const and is_sameC(unsigned int) const are both verified.
|
|
**/
|
|
bool is_sameXZC(const unsigned int size_x, const unsigned int size_z, const unsigned int size_c) const {
|
|
return is_sameXZ(size_x,size_z) && _spectrum==size_c;
|
|
}
|
|
|
|
//! Test if image width, depth and spectrum are the same as that of another image.
|
|
/**
|
|
Test if is_sameXZ(const CImg<t>&) const and is_sameC(const CImg<t>&) const are both verified.
|
|
**/
|
|
template<typename t>
|
|
bool is_sameXZC(const CImg<t>& img) const {
|
|
return is_sameXZC(img._width,img._depth,img._spectrum);
|
|
}
|
|
|
|
//! Test if image height, depth and spectrum are equal to specified values.
|
|
/**
|
|
Test if is_sameYZ(unsigned int,unsigned int) const and is_sameC(unsigned int) const are both verified.
|
|
**/
|
|
bool is_sameYZC(const unsigned int size_y, const unsigned int size_z, const unsigned int size_c) const {
|
|
return is_sameYZ(size_y,size_z) && _spectrum==size_c;
|
|
}
|
|
|
|
//! Test if image height, depth and spectrum are the same as that of another image.
|
|
/**
|
|
Test if is_sameYZ(const CImg<t>&) const and is_sameC(const CImg<t>&) const are both verified.
|
|
**/
|
|
template<typename t>
|
|
bool is_sameYZC(const CImg<t>& img) const {
|
|
return is_sameYZC(img._height,img._depth,img._spectrum);
|
|
}
|
|
|
|
//! Test if image width, height, depth and spectrum are equal to specified values.
|
|
/**
|
|
Test if is_sameXYZ(unsigned int,unsigned int,unsigned int) const and is_sameC(unsigned int) const are both
|
|
verified.
|
|
**/
|
|
bool is_sameXYZC(const unsigned int size_x, const unsigned int size_y,
|
|
const unsigned int size_z, const unsigned int size_c) const {
|
|
return is_sameXYZ(size_x,size_y,size_z) && _spectrum==size_c;
|
|
}
|
|
|
|
//! Test if image width, height, depth and spectrum are the same as that of another image.
|
|
/**
|
|
Test if is_sameXYZ(const CImg<t>&) const and is_sameC(const CImg<t>&) const are both verified.
|
|
**/
|
|
template<typename t>
|
|
bool is_sameXYZC(const CImg<t>& img) const {
|
|
return is_sameXYZC(img._width,img._height,img._depth,img._spectrum);
|
|
}
|
|
|
|
//! Test if specified coordinates are inside image bounds.
|
|
/**
|
|
Return \c true if pixel located at (\c x,\c y,\c z,\c c) is inside bounds of the image instance,
|
|
and \c false otherwise.
|
|
\param x X-coordinate of the pixel value.
|
|
\param y Y-coordinate of the pixel value.
|
|
\param z Z-coordinate of the pixel value.
|
|
\param c C-coordinate of the pixel value.
|
|
\note
|
|
- Return \c true only if all these conditions are verified:
|
|
- The image instance is \e not empty.
|
|
- <tt>0<=x<=\ref width() - 1</tt>.
|
|
- <tt>0<=y<=\ref height() - 1</tt>.
|
|
- <tt>0<=z<=\ref depth() - 1</tt>.
|
|
- <tt>0<=c<=\ref spectrum() - 1</tt>.
|
|
**/
|
|
bool containsXYZC(const int x, const int y=0, const int z=0, const int c=0) const {
|
|
return !is_empty() && x>=0 && x<width() && y>=0 && y<height() && z>=0 && z<depth() && c>=0 && c<spectrum();
|
|
}
|
|
|
|
//! Test if pixel value is inside image bounds and get its X,Y,Z and C-coordinates.
|
|
/**
|
|
Return \c true, if specified reference refers to a pixel value inside bounds of the image instance,
|
|
and \c false otherwise.
|
|
\param pixel Reference to pixel value to test.
|
|
\param[out] x X-coordinate of the pixel value, if test succeeds.
|
|
\param[out] y Y-coordinate of the pixel value, if test succeeds.
|
|
\param[out] z Z-coordinate of the pixel value, if test succeeds.
|
|
\param[out] c C-coordinate of the pixel value, if test succeeds.
|
|
\note
|
|
- Useful to convert an offset to a buffer value into pixel value coordinates:
|
|
\code
|
|
const CImg<float> img(100,100,1,3); // Construct a 100x100 RGB color image
|
|
const unsigned long offset = 1249; // Offset to the pixel (49,12,0,0)
|
|
unsigned int x,y,z,c;
|
|
if (img.contains(img[offset],x,y,z,c)) { // Convert offset to (x,y,z,c) coordinates
|
|
std::printf("Offset %u refers to pixel located at (%u,%u,%u,%u).\n",
|
|
offset,x,y,z,c);
|
|
}
|
|
\endcode
|
|
**/
|
|
template<typename t>
|
|
bool contains(const T& pixel, t& x, t& y, t& z, t& c) const {
|
|
const ulongT wh = (ulongT)_width*_height, whd = wh*_depth, siz = whd*_spectrum;
|
|
const T *const ppixel = &pixel;
|
|
if (is_empty() || ppixel<_data || ppixel>=_data + siz) return false;
|
|
ulongT off = (ulongT)(ppixel - _data);
|
|
const ulongT nc = off/whd;
|
|
off%=whd;
|
|
const ulongT nz = off/wh;
|
|
off%=wh;
|
|
const ulongT ny = off/_width, nx = off%_width;
|
|
x = (t)nx; y = (t)ny; z = (t)nz; c = (t)nc;
|
|
return true;
|
|
}
|
|
|
|
//! Test if pixel value is inside image bounds and get its X,Y and Z-coordinates.
|
|
/**
|
|
Similar to contains(const T&,t&,t&,t&,t&) const, except that only the X,Y and Z-coordinates are set.
|
|
**/
|
|
template<typename t>
|
|
bool contains(const T& pixel, t& x, t& y, t& z) const {
|
|
const ulongT wh = (ulongT)_width*_height, whd = wh*_depth, siz = whd*_spectrum;
|
|
const T *const ppixel = &pixel;
|
|
if (is_empty() || ppixel<_data || ppixel>=_data + siz) return false;
|
|
ulongT off = ((ulongT)(ppixel - _data))%whd;
|
|
const ulongT nz = off/wh;
|
|
off%=wh;
|
|
const ulongT ny = off/_width, nx = off%_width;
|
|
x = (t)nx; y = (t)ny; z = (t)nz;
|
|
return true;
|
|
}
|
|
|
|
//! Test if pixel value is inside image bounds and get its X and Y-coordinates.
|
|
/**
|
|
Similar to contains(const T&,t&,t&,t&,t&) const, except that only the X and Y-coordinates are set.
|
|
**/
|
|
template<typename t>
|
|
bool contains(const T& pixel, t& x, t& y) const {
|
|
const ulongT wh = (ulongT)_width*_height, siz = wh*_depth*_spectrum;
|
|
const T *const ppixel = &pixel;
|
|
if (is_empty() || ppixel<_data || ppixel>=_data + siz) return false;
|
|
ulongT off = ((unsigned int)(ppixel - _data))%wh;
|
|
const ulongT ny = off/_width, nx = off%_width;
|
|
x = (t)nx; y = (t)ny;
|
|
return true;
|
|
}
|
|
|
|
//! Test if pixel value is inside image bounds and get its X-coordinate.
|
|
/**
|
|
Similar to contains(const T&,t&,t&,t&,t&) const, except that only the X-coordinate is set.
|
|
**/
|
|
template<typename t>
|
|
bool contains(const T& pixel, t& x) const {
|
|
const T *const ppixel = &pixel;
|
|
if (is_empty() || ppixel<_data || ppixel>=_data + size()) return false;
|
|
x = (t)(((ulongT)(ppixel - _data))%_width);
|
|
return true;
|
|
}
|
|
|
|
//! Test if pixel value is inside image bounds.
|
|
/**
|
|
Similar to contains(const T&,t&,t&,t&,t&) const, except that no pixel coordinates are set.
|
|
**/
|
|
bool contains(const T& pixel) const {
|
|
const T *const ppixel = &pixel;
|
|
return !is_empty() && ppixel>=_data && ppixel<_data + size();
|
|
}
|
|
|
|
//! Test if pixel buffers of instance and input images overlap.
|
|
/**
|
|
Return \c true, if pixel buffers attached to image instance and input image \c img overlap,
|
|
and \c false otherwise.
|
|
\param img Input image to compare with.
|
|
\note
|
|
- Buffer overlapping may happen when manipulating \e shared images.
|
|
- If two image buffers overlap, operating on one of the image will probably modify the other one.
|
|
- Most of the time, \c CImg<T> instances are \e non-shared and do not overlap between each others.
|
|
\par Example
|
|
\code
|
|
const CImg<float>
|
|
img1("reference.jpg"), // Load RGB-color image
|
|
img2 = img1.get_shared_channel(1); // Get shared version of the green channel
|
|
if (img1.is_overlapped(img2)) { // Test succeeds, 'img1' and 'img2' overlaps
|
|
std::printf("Buffers overlap!\n");
|
|
}
|
|
\endcode
|
|
**/
|
|
template<typename t>
|
|
bool is_overlapped(const CImg<t>& img) const {
|
|
const ulongT csiz = size(), isiz = img.size();
|
|
return !((void*)(_data + csiz)<=(void*)img._data || (void*)_data>=(void*)(img._data + isiz));
|
|
}
|
|
|
|
//! Test if the set {\c *this,\c primitives,\c colors,\c opacities} defines a valid 3D object.
|
|
/**
|
|
Return \c true is the 3D object represented by the set {\c *this,\c primitives,\c colors,\c opacities} defines a
|
|
valid 3D object, and \c false otherwise. The vertex coordinates are defined by the instance image.
|
|
\param primitives List of primitives of the 3D object.
|
|
\param colors List of colors of the 3D object.
|
|
\param opacities List (or image) of opacities of the 3D object.
|
|
\param full_check Tells if full checking of the 3D object must be performed.
|
|
\param[out] error_message C-string to contain the error message, if the test does not succeed
|
|
(at least 256 bytes).
|
|
\note
|
|
- Set \c full_checking to \c false to speed-up the 3D object checking. In this case, only the size of
|
|
each 3D object component is checked.
|
|
- Size of the string \c error_message should be at least 128-bytes long, to be able to contain the error message.
|
|
**/
|
|
template<typename tp, typename tc, typename to>
|
|
bool is_object3d(const CImgList<tp>& primitives,
|
|
const CImgList<tc>& colors,
|
|
const to& opacities,
|
|
const bool full_check=true,
|
|
char *const error_message=0) const {
|
|
if (error_message) *error_message = 0;
|
|
|
|
// Check consistency for the particular case of an empty 3D object.
|
|
if (is_empty()) {
|
|
if (primitives || colors || opacities) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"3D object (%u,%u) defines no vertices but %u primitives, "
|
|
"%u colors and %lu opacities",
|
|
_width,primitives._width,primitives._width,
|
|
colors._width,(unsigned long)opacities.size());
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Check consistency of vertices.
|
|
if (_height!=3 || _depth>1 || _spectrum>1) { // Check vertices dimensions
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"3D object (%u,%u) has invalid vertex dimensions (%u,%u,%u,%u)",
|
|
_width,primitives._width,_width,_height,_depth,_spectrum);
|
|
return false;
|
|
}
|
|
if (colors._width>primitives._width + 1) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"3D object (%u,%u) defines %u colors",
|
|
_width,primitives._width,colors._width);
|
|
return false;
|
|
}
|
|
if (opacities.size()>primitives._width) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"3D object (%u,%u) defines %lu opacities",
|
|
_width,primitives._width,(unsigned long)opacities.size());
|
|
return false;
|
|
}
|
|
if (!full_check) return true;
|
|
|
|
// Check consistency of primitives.
|
|
cimglist_for(primitives,l) {
|
|
const CImg<tp>& primitive = primitives[l];
|
|
const unsigned int psiz = (unsigned int)primitive.size();
|
|
switch (psiz) {
|
|
case 1 : { // Point
|
|
const unsigned int i0 = (unsigned int)primitive(0);
|
|
if (i0>=_width) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"3D object (%u,%u) refers to invalid vertex index %u in "
|
|
"point primitive [%u]",
|
|
_width,primitives._width,i0,l);
|
|
return false;
|
|
}
|
|
} break;
|
|
case 5 : { // Sphere
|
|
const unsigned int
|
|
i0 = (unsigned int)primitive(0),
|
|
i1 = (unsigned int)primitive(1);
|
|
if (i0>=_width || i1>=_width) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"3D object (%u,%u) refers to invalid vertex indices (%u,%u) in "
|
|
"sphere primitive [%u]",
|
|
_width,primitives._width,i0,i1,l);
|
|
return false;
|
|
}
|
|
} break;
|
|
case 2 : case 6 : { // Segment
|
|
const unsigned int
|
|
i0 = (unsigned int)primitive(0),
|
|
i1 = (unsigned int)primitive(1);
|
|
if (i0>=_width || i1>=_width) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"3D object (%u,%u) refers to invalid vertex indices (%u,%u) in "
|
|
"segment primitive [%u]",
|
|
_width,primitives._width,i0,i1,l);
|
|
return false;
|
|
}
|
|
} break;
|
|
case 3 : case 9 : { // Triangle
|
|
const unsigned int
|
|
i0 = (unsigned int)primitive(0),
|
|
i1 = (unsigned int)primitive(1),
|
|
i2 = (unsigned int)primitive(2);
|
|
if (i0>=_width || i1>=_width || i2>=_width) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"3D object (%u,%u) refers to invalid vertex indices (%u,%u,%u) in "
|
|
"triangle primitive [%u]",
|
|
_width,primitives._width,i0,i1,i2,l);
|
|
return false;
|
|
}
|
|
} break;
|
|
case 4 : case 12 : { // Quadrangle
|
|
const unsigned int
|
|
i0 = (unsigned int)primitive(0),
|
|
i1 = (unsigned int)primitive(1),
|
|
i2 = (unsigned int)primitive(2),
|
|
i3 = (unsigned int)primitive(3);
|
|
if (i0>=_width || i1>=_width || i2>=_width || i3>=_width) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"3D object (%u,%u) refers to invalid vertex indices (%u,%u,%u,%u) in "
|
|
"quadrangle primitive [%u]",
|
|
_width,primitives._width,i0,i1,i2,i3,l);
|
|
return false;
|
|
}
|
|
} break;
|
|
default :
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"3D object (%u,%u) defines an invalid primitive [%u] of size %u",
|
|
_width,primitives._width,l,(unsigned int)psiz);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check consistency of colors.
|
|
cimglist_for(colors,c) {
|
|
const CImg<tc>& color = colors[c];
|
|
if (!color) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"3D object (%u,%u) defines no color for primitive [%u]",
|
|
_width,primitives._width,c);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check consistency of light texture.
|
|
if (colors._width>primitives._width) {
|
|
const CImg<tc> &light = colors.back();
|
|
if (!light || light._depth>1) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"3D object (%u,%u) defines an invalid light texture (%u,%u,%u,%u)",
|
|
_width,primitives._width,light._width,
|
|
light._height,light._depth,light._spectrum);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//! Test if image instance represents a valid serialization of a 3D object.
|
|
/**
|
|
Return \c true if the image instance represents a valid serialization of a 3D object, and \c false otherwise.
|
|
\param full_check Tells if full checking of the instance must be performed.
|
|
\param[out] error_message C-string to contain the error message, if the test does not succeed.
|
|
\note
|
|
- Set \c full_check to \c false to speed-up the 3D object checking. In this case, only the size of
|
|
each 3D object component is checked.
|
|
- Size of the string \c error_message should be at least 256-bytes long, to be able to contain the error message.
|
|
**/
|
|
bool is_CImg3d(const bool full_check=true, char *const error_message=0) const {
|
|
if (error_message) *error_message = 0;
|
|
|
|
// Check instance dimension and header.
|
|
if (_width!=1 || _height<8 || _depth!=1 || _spectrum!=1) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"CImg3d has invalid dimensions (%u,%u,%u,%u)",
|
|
_width,_height,_depth,_spectrum);
|
|
return false;
|
|
}
|
|
const T *ptrs = _data, *const ptre = end();
|
|
if (!_is_CImg3d(*(ptrs++),'C') || !_is_CImg3d(*(ptrs++),'I') || !_is_CImg3d(*(ptrs++),'m') ||
|
|
!_is_CImg3d(*(ptrs++),'g') || !_is_CImg3d(*(ptrs++),'3') || !_is_CImg3d(*(ptrs++),'d')) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"CImg3d header not found");
|
|
return false;
|
|
}
|
|
const unsigned int
|
|
nb_points = cimg::float2uint((float)*(ptrs++)),
|
|
nb_primitives = cimg::float2uint((float)*(ptrs++));
|
|
|
|
// Check consistency of number of vertices / primitives.
|
|
if (!full_check) {
|
|
const ulongT minimal_size = 8UL + 3*nb_points + 6*nb_primitives;
|
|
if (_data + minimal_size>ptre) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"CImg3d (%u,%u) has only %lu values, while at least %lu values were expected",
|
|
nb_points,nb_primitives,(unsigned long)size(),(unsigned long)minimal_size);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check consistency of vertex data.
|
|
if (!nb_points) {
|
|
if (nb_primitives) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"CImg3d (%u,%u) defines no vertices but %u primitives",
|
|
nb_points,nb_primitives,nb_primitives);
|
|
return false;
|
|
}
|
|
if (ptrs!=ptre) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"CImg3d (%u,%u) is an empty object but contains %u value%s "
|
|
"more than expected",
|
|
nb_points,nb_primitives,(unsigned int)(ptre - ptrs),(ptre - ptrs)>1?"s":"");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
if (ptrs + 3*nb_points>ptre) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"CImg3d (%u,%u) defines only %u vertices data",
|
|
nb_points,nb_primitives,(unsigned int)(ptre - ptrs)/3);
|
|
return false;
|
|
}
|
|
ptrs+=3*nb_points;
|
|
|
|
// Check consistency of primitive data.
|
|
if (ptrs==ptre) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"CImg3d (%u,%u) defines %u vertices but no primitive",
|
|
nb_points,nb_primitives,nb_points);
|
|
return false;
|
|
}
|
|
|
|
if (!full_check) return true;
|
|
|
|
for (unsigned int p = 0; p<nb_primitives; ++p) {
|
|
const unsigned int nb_inds = (unsigned int)*(ptrs++);
|
|
switch (nb_inds) {
|
|
case 1 : { // Point
|
|
const unsigned int i0 = cimg::float2uint((float)*(ptrs++));
|
|
if (i0>=nb_points) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"CImg3d (%u,%u) refers to invalid vertex index %u in point primitive [%u]",
|
|
nb_points,nb_primitives,i0,p);
|
|
return false;
|
|
}
|
|
} break;
|
|
case 5 : { // Sphere
|
|
const unsigned int
|
|
i0 = cimg::float2uint((float)*(ptrs++)),
|
|
i1 = cimg::float2uint((float)*(ptrs++));
|
|
ptrs+=3;
|
|
if (i0>=nb_points || i1>=nb_points) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"CImg3d (%u,%u) refers to invalid vertex indices (%u,%u) in "
|
|
"sphere primitive [%u]",
|
|
nb_points,nb_primitives,i0,i1,p);
|
|
return false;
|
|
}
|
|
} break;
|
|
case 2 : case 6 : { // Segment
|
|
const unsigned int
|
|
i0 = cimg::float2uint((float)*(ptrs++)),
|
|
i1 = cimg::float2uint((float)*(ptrs++));
|
|
if (nb_inds==6) ptrs+=4;
|
|
if (i0>=nb_points || i1>=nb_points) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"CImg3d (%u,%u) refers to invalid vertex indices (%u,%u) in "
|
|
"segment primitive [%u]",
|
|
nb_points,nb_primitives,i0,i1,p);
|
|
return false;
|
|
}
|
|
} break;
|
|
case 3 : case 9 : { // Triangle
|
|
const unsigned int
|
|
i0 = cimg::float2uint((float)*(ptrs++)),
|
|
i1 = cimg::float2uint((float)*(ptrs++)),
|
|
i2 = cimg::float2uint((float)*(ptrs++));
|
|
if (nb_inds==9) ptrs+=6;
|
|
if (i0>=nb_points || i1>=nb_points || i2>=nb_points) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"CImg3d (%u,%u) refers to invalid vertex indices (%u,%u,%u) in "
|
|
"triangle primitive [%u]",
|
|
nb_points,nb_primitives,i0,i1,i2,p);
|
|
return false;
|
|
}
|
|
} break;
|
|
case 4 : case 12 : { // Quadrangle
|
|
const unsigned int
|
|
i0 = cimg::float2uint((float)*(ptrs++)),
|
|
i1 = cimg::float2uint((float)*(ptrs++)),
|
|
i2 = cimg::float2uint((float)*(ptrs++)),
|
|
i3 = cimg::float2uint((float)*(ptrs++));
|
|
if (nb_inds==12) ptrs+=8;
|
|
if (i0>=nb_points || i1>=nb_points || i2>=nb_points || i3>=nb_points) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"CImg3d (%u,%u) refers to invalid vertex indices (%u,%u,%u,%u) in "
|
|
"quadrangle primitive [%u]",
|
|
nb_points,nb_primitives,i0,i1,i2,i3,p);
|
|
return false;
|
|
}
|
|
} break;
|
|
default :
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"CImg3d (%u,%u) defines an invalid primitive [%u] of size %u",
|
|
nb_points,nb_primitives,p,nb_inds);
|
|
return false;
|
|
}
|
|
if (ptrs>ptre) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"CImg3d (%u,%u) has incomplete primitive data for primitive [%u], "
|
|
"%u values missing",
|
|
nb_points,nb_primitives,p,(unsigned int)(ptrs - ptre));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check consistency of color data.
|
|
if (ptrs==ptre) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"CImg3d (%u,%u) defines no color/texture data",
|
|
nb_points,nb_primitives);
|
|
return false;
|
|
}
|
|
for (unsigned int c = 0; c<nb_primitives; ++c) {
|
|
if (*(ptrs++)!=(T)-128) ptrs+=2;
|
|
else if ((ptrs+=3)<ptre) {
|
|
const unsigned int
|
|
w = (unsigned int)*(ptrs - 3),
|
|
h = (unsigned int)*(ptrs - 2),
|
|
s = (unsigned int)*(ptrs - 1);
|
|
if (!h && !s) {
|
|
if (w>=c) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"CImg3d (%u,%u) refers to invalid shared sprite/texture index %u "
|
|
"for primitive [%u]",
|
|
nb_points,nb_primitives,w,c);
|
|
return false;
|
|
}
|
|
} else ptrs+=w*h*s;
|
|
}
|
|
if (ptrs>ptre) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"CImg3d (%u,%u) has incomplete color/texture data for primitive [%u], "
|
|
"%u values missing",
|
|
nb_points,nb_primitives,c,(unsigned int)(ptrs - ptre));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check consistency of opacity data.
|
|
if (ptrs==ptre) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"CImg3d (%u,%u) defines no opacity data",
|
|
nb_points,nb_primitives);
|
|
return false;
|
|
}
|
|
for (unsigned int o = 0; o<nb_primitives; ++o) {
|
|
if (*(ptrs++)==(T)-128 && (ptrs+=3)<ptre) {
|
|
const unsigned int
|
|
w = (unsigned int)*(ptrs - 3),
|
|
h = (unsigned int)*(ptrs - 2),
|
|
s = (unsigned int)*(ptrs - 1);
|
|
if (!h && !s) {
|
|
if (w>=o) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"CImg3d (%u,%u) refers to invalid shared opacity index %u "
|
|
"for primitive [%u]",
|
|
nb_points,nb_primitives,w,o);
|
|
return false;
|
|
}
|
|
} else ptrs+=w*h*s;
|
|
}
|
|
if (ptrs>ptre) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"CImg3d (%u,%u) has incomplete opacity data for primitive [%u]",
|
|
nb_points,nb_primitives,o);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check end of data.
|
|
if (ptrs<ptre) {
|
|
if (error_message) cimg_snprintf(error_message,256,
|
|
"CImg3d (%u,%u) contains %u value%s more than expected",
|
|
nb_points,nb_primitives,(unsigned int)(ptre - ptrs),(ptre - ptrs)>1?"s":"");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool _is_CImg3d(const T val, const char c) {
|
|
return val>=(T)c && val<(T)(c + 1);
|
|
}
|
|
|
|
//@}
|
|
//-------------------------------------
|
|
//
|
|
//! \name Mathematical Functions
|
|
//@{
|
|
//-------------------------------------
|
|
|
|
// Define the math formula parser/compiler and expression evaluator.
|
|
struct _cimg_math_parser {
|
|
CImg<doubleT> mem;
|
|
CImg<intT> memtype, memmerge;
|
|
CImgList<ulongT> _code, &code, code_begin, code_end,
|
|
_code_begin_t, &code_begin_t, _code_end_t, &code_end_t;
|
|
CImg<ulongT> opcode;
|
|
const CImg<ulongT> *p_code_end, *p_code;
|
|
const CImg<ulongT> *const p_break;
|
|
|
|
CImg<charT> expr, pexpr;
|
|
const CImg<T>& imgin;
|
|
CImg<T> &imgout;
|
|
CImgList<T>& imglist;
|
|
|
|
CImg<doubleT> _img_stats, &img_stats, constcache_vals;
|
|
CImgList<doubleT> _list_stats, &list_stats, _list_median, &list_median, _list_norm, &list_norm;
|
|
CImg<uintT> mem_img_stats, constcache_inds;
|
|
|
|
CImg<uintT> level, variable_pos, reserved_label;
|
|
CImgList<charT> variable_def, macro_def, macro_body;
|
|
char *user_macro;
|
|
|
|
unsigned int mempos, mem_img_median, mem_img_norm, mem_img_index, debug_indent, result_dim, break_type,
|
|
constcache_size;
|
|
bool is_parallelizable, is_noncritical_run, is_end_code, is_fill, return_new_comp, need_input_copy;
|
|
double *result;
|
|
cimg_uint64 rng;
|
|
const char *const calling_function, *s_op, *ss_op;
|
|
typedef double (*mp_func)(_cimg_math_parser&);
|
|
|
|
#define _cimg_mp_is_scalar(arg) (memtype[arg]<2) // Is scalar value?
|
|
#define _cimg_mp_is_const_scalar(arg) (memtype[arg]==1) // Is const scalar?
|
|
#define _cimg_mp_is_vector(arg) (memtype[arg]>1) // Is vector?
|
|
#define _cimg_mp_is_comp(arg) (!memtype[arg]) // Is computation value?
|
|
#define _cimg_mp_is_reserved(arg) (memtype[arg]==-1) // Is scalar and reserved (e.g. variable)?
|
|
#define _cimg_mp_size(arg) (_cimg_mp_is_scalar(arg)?0U:(unsigned int)memtype[arg] - 1) // Size (0=scalar, N>0=vectorN)
|
|
#define _cimg_mp_calling_function s_calling_function()._data
|
|
#define _cimg_mp_op(s) s_op = s; ss_op = ss
|
|
#define _cimg_mp_check_type(arg,n_arg,mode,N) check_type(arg,n_arg,mode,N,ss,se,saved_char)
|
|
#define _cimg_mp_check_const_scalar(arg,n_arg,mode) check_const_scalar(arg,n_arg,mode,ss,se,saved_char)
|
|
#define _cimg_mp_check_const_index(arg) check_const_index(arg,ss,se,saved_char)
|
|
#define _cimg_mp_check_matrix_square(arg,n_arg) check_matrix_square(arg,n_arg,ss,se,saved_char)
|
|
#define _cimg_mp_check_list() check_list(ss,se,saved_char)
|
|
#define _cimg_mp_defunc(mp) (*(mp_func)(*(mp).opcode))(mp)
|
|
#define _cimg_mp_return(x) { *se = saved_char; s_op = previous_s_op; ss_op = previous_ss_op; return x; }
|
|
#define _cimg_mp_return_nan() _cimg_mp_return(_cimg_mp_slot_nan)
|
|
#define _cimg_mp_const_scalar(val) _cimg_mp_return(const_scalar((double)(val)))
|
|
#define _cimg_mp_scalar0(op) _cimg_mp_return(scalar0(op))
|
|
#define _cimg_mp_scalar1(op,i1) _cimg_mp_return(scalar1(op,i1))
|
|
#define _cimg_mp_scalar2(op,i1,i2) _cimg_mp_return(scalar2(op,i1,i2))
|
|
#define _cimg_mp_scalar3(op,i1,i2,i3) _cimg_mp_return(scalar3(op,i1,i2,i3))
|
|
#define _cimg_mp_scalar4(op,i1,i2,i3,i4) _cimg_mp_return(scalar4(op,i1,i2,i3,i4))
|
|
#define _cimg_mp_scalar5(op,i1,i2,i3,i4,i5) _cimg_mp_return(scalar5(op,i1,i2,i3,i4,i5))
|
|
#define _cimg_mp_scalar6(op,i1,i2,i3,i4,i5,i6) _cimg_mp_return(scalar6(op,i1,i2,i3,i4,i5,i6))
|
|
#define _cimg_mp_scalar7(op,i1,i2,i3,i4,i5,i6,i7) _cimg_mp_return(scalar7(op,i1,i2,i3,i4,i5,i6,i7))
|
|
#define _cimg_mp_vector1_v(op,i1) _cimg_mp_return(vector1_v(op,i1))
|
|
#define _cimg_mp_vector2_sv(op,i1,i2) _cimg_mp_return(vector2_sv(op,i1,i2))
|
|
#define _cimg_mp_vector2_vs(op,i1,i2) _cimg_mp_return(vector2_vs(op,i1,i2))
|
|
#define _cimg_mp_vector2_vv(op,i1,i2) _cimg_mp_return(vector2_vv(op,i1,i2))
|
|
#define _cimg_mp_vector3_vss(op,i1,i2,i3) _cimg_mp_return(vector3_vss(op,i1,i2,i3))
|
|
#define _cimg_mp_vector4_vvss(op,i1,i2,i3,i4) _cimg_mp_return(vector4_vvss(op,i1,i2,i3,i4))
|
|
#define _cimg_mp_vector4_vsss(op,i1,i2,i3,i4) _cimg_mp_return(vector4_vsss(op,i1,i2,i3,i4))
|
|
#define _cimg_mp_vector4_svss(op,i1,i2,i3,i4) _cimg_mp_return(vector4_svss(op,i1,i2,i3,i4))
|
|
#define _cimg_mp_strerr \
|
|
*se = saved_char; \
|
|
for (s0 = ss; s0>expr._data && *s0!=';'; --s0) {} \
|
|
if (*s0==';') ++s0; \
|
|
while (cimg::is_blank(*s0)) ++s0; \
|
|
cimg::strellipsize(s0,64)
|
|
|
|
// Constructors / Destructors.
|
|
~_cimg_math_parser() {
|
|
cimg::srand(rng);
|
|
}
|
|
|
|
_cimg_math_parser(const char *const expression, const char *const funcname=0,
|
|
const CImg<T>& img_input=CImg<T>::const_empty(), CImg<T> *const img_output=0,
|
|
CImgList<T> *const list_images=0, const bool _is_fill=false):
|
|
code(_code),code_begin_t(_code_begin_t),code_end_t(_code_end_t),
|
|
p_break((CImg<ulongT>*)(cimg_ulong)-2),imgin(img_input),
|
|
imgout(img_output?*img_output:CImg<T>::empty()),imglist(list_images?*list_images:CImgList<T>::empty()),
|
|
img_stats(_img_stats),list_stats(_list_stats),list_median(_list_median),list_norm(_list_norm),user_macro(0),
|
|
mem_img_median(~0U),mem_img_norm(~0U),mem_img_index(~0U),debug_indent(0),result_dim(0),break_type(0),
|
|
constcache_size(0),is_parallelizable(true),is_noncritical_run(false),is_fill(_is_fill),need_input_copy(false),
|
|
rng((cimg::_rand(),cimg::rng())),calling_function(funcname?funcname:"cimg_math_parser") {
|
|
|
|
#if cimg_use_openmp!=0
|
|
rng+=omp_get_thread_num();
|
|
#endif
|
|
if (!expression || !*expression)
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: Empty expression.",
|
|
pixel_type(),_cimg_mp_calling_function);
|
|
const char *_expression = expression;
|
|
while (*_expression && (cimg::is_blank(*_expression) || *_expression==';')) ++_expression;
|
|
CImg<charT>::string(_expression).move_to(expr);
|
|
char *ps = &expr.back() - 1;
|
|
while (ps>expr._data && (cimg::is_blank(*ps) || *ps==';')) --ps;
|
|
*(++ps) = 0; expr._width = (unsigned int)(ps - expr._data + 1);
|
|
|
|
// Ease the retrieval of previous non-space characters afterwards.
|
|
pexpr.assign(expr._width);
|
|
char c, *pe = pexpr._data;
|
|
for (ps = expr._data, c = ' '; *ps; ++ps) {
|
|
if (!cimg::is_blank(*ps)) c = *ps; else *ps = ' ';
|
|
*(pe++) = c;
|
|
}
|
|
*pe = 0;
|
|
level = get_level(expr);
|
|
|
|
// Init constant values.
|
|
#define _cimg_mp_interpolation (reserved_label[31]!=~0U?reserved_label[31]:0)
|
|
#define _cimg_mp_boundary (reserved_label[32]!=~0U?reserved_label[32]:0)
|
|
#define _cimg_mp_slot_t 17
|
|
#define _cimg_mp_slot_nan 29
|
|
#define _cimg_mp_slot_x 30
|
|
#define _cimg_mp_slot_y 31
|
|
#define _cimg_mp_slot_z 32
|
|
#define _cimg_mp_slot_c 33
|
|
|
|
mem.assign(96);
|
|
for (unsigned int i = 0; i<=10; ++i) mem[i] = (double)i; // mem[0-10] = 0...10
|
|
for (unsigned int i = 1; i<=5; ++i) mem[i + 10] = -(double)i; // mem[11-15] = -1...-5
|
|
mem[16] = 0.5;
|
|
mem[_cimg_mp_slot_t] = 0; // thread_id
|
|
mem[18] = (double)imgin._width; // w
|
|
mem[19] = (double)imgin._height; // h
|
|
mem[20] = (double)imgin._depth; // d
|
|
mem[21] = (double)imgin._spectrum; // s
|
|
mem[22] = (double)imgin._is_shared; // r
|
|
mem[23] = (double)imgin._width*imgin._height; // wh
|
|
mem[24] = (double)imgin._width*imgin._height*imgin._depth; // whd
|
|
mem[25] = (double)imgin._width*imgin._height*imgin._depth*imgin._spectrum; // whds
|
|
mem[26] = (double)imglist._width; // l
|
|
mem[27] = std::exp(1.); // e
|
|
mem[28] = cimg::PI; // pi
|
|
mem[_cimg_mp_slot_nan] = cimg::type<double>::nan(); // nan
|
|
|
|
// Set value property :
|
|
// { -1 = reserved (e.g. variable) | 0 = computation value |
|
|
// 1 = compile-time constant | N>1 = constant ptr to vector[N-1] }.
|
|
memtype.assign(mem._width,1,1,1,0);
|
|
for (unsigned int i = 0; i<_cimg_mp_slot_x; ++i) memtype[i] = 1;
|
|
memtype[_cimg_mp_slot_t] = memtype[_cimg_mp_slot_x] = memtype[_cimg_mp_slot_y] =
|
|
memtype[_cimg_mp_slot_z] = memtype[_cimg_mp_slot_c] = -1;
|
|
mempos = _cimg_mp_slot_c + 1;
|
|
variable_pos.assign(8);
|
|
|
|
reserved_label.assign(128,1,1,1,~0U);
|
|
// reserved_label[0-32] are used to store the memory index of these variables:
|
|
// [0] = wh, [1] = whd, [2] = whds, [3] = pi, [4] = im, [5] = iM, [6] = ia, [7] = iv, [8] = id,
|
|
// [9] = is, [10] = ip, [11] = ic, [12] = in, [13] = xm, [14] = ym, [15] = zm, [16] = cm, [17] = xM,
|
|
// [18] = yM, [19] = zM, [20] = cM, [21] = i0...[30] = i9, [31] = interpolation, [32] = boundary
|
|
|
|
// Compile expression into a sequence of opcodes.
|
|
s_op = ""; ss_op = expr._data;
|
|
const unsigned int ind_result = compile(expr._data,expr._data + expr._width - 1,0,0,0);
|
|
if (!_cimg_mp_is_const_scalar(ind_result)) {
|
|
if (_cimg_mp_is_vector(ind_result))
|
|
CImg<doubleT>(&mem[ind_result] + 1,_cimg_mp_size(ind_result),1,1,1,true).
|
|
fill(cimg::type<double>::nan());
|
|
else if (ind_result!=_cimg_mp_slot_t) mem[ind_result] = cimg::type<double>::nan();
|
|
}
|
|
|
|
// Free resources used for compiling expression and prepare evaluation.
|
|
result_dim = _cimg_mp_size(ind_result);
|
|
if (mem._width>=256 && mem._width - mempos>=mem._width/2) mem.resize(mempos,1,1,1,-1);
|
|
result = mem._data + ind_result;
|
|
memtype.assign();
|
|
constcache_vals.assign();
|
|
constcache_inds.assign();
|
|
level.assign();
|
|
variable_pos.assign();
|
|
reserved_label.assign();
|
|
expr.assign();
|
|
pexpr.assign();
|
|
opcode.assign();
|
|
opcode._is_shared = true;
|
|
|
|
// Execute begin() block if any specified.
|
|
if (code_begin) {
|
|
mem[_cimg_mp_slot_x] = mem[_cimg_mp_slot_y] = mem[_cimg_mp_slot_z] = mem[_cimg_mp_slot_c] = 0;
|
|
p_code_end = code_begin.end();
|
|
for (p_code = code_begin; p_code<p_code_end; ++p_code) {
|
|
opcode._data = p_code->_data;
|
|
const ulongT target = opcode[1];
|
|
mem[target] = _cimg_mp_defunc(*this);
|
|
}
|
|
}
|
|
p_code_end = code.end();
|
|
}
|
|
|
|
_cimg_math_parser():
|
|
code(_code),code_begin_t(_code_begin_t),code_end_t(_code_end_t),
|
|
p_code_end(0),p_break((CImg<ulongT>*)(cimg_ulong)-2),
|
|
imgin(CImg<T>::const_empty()),imgout(CImg<T>::empty()),imglist(CImgList<T>::empty()),
|
|
img_stats(_img_stats),list_stats(_list_stats),list_median(_list_median),list_norm(_list_norm),debug_indent(0),
|
|
result_dim(0),break_type(0),constcache_size(0),is_parallelizable(true),is_noncritical_run(false),is_fill(false),
|
|
need_input_copy(false),rng(0),calling_function(0) {
|
|
mem.assign(1 + _cimg_mp_slot_c,1,1,1,0); // Allow to skip 'is_empty?' test in operator()()
|
|
result = mem._data;
|
|
}
|
|
|
|
_cimg_math_parser(const _cimg_math_parser& mp):
|
|
mem(mp.mem),code(mp.code),code_begin_t(mp.code_begin_t),code_end_t(mp.code_end_t),
|
|
p_code_end(mp.p_code_end),p_break(mp.p_break),
|
|
imgin(mp.imgin),imgout(mp.imgout),imglist(mp.imglist),
|
|
img_stats(mp.img_stats),list_stats(mp.list_stats),list_median(mp.list_median),list_norm(mp.list_norm),
|
|
debug_indent(0),result_dim(mp.result_dim),break_type(0),constcache_size(0),
|
|
is_parallelizable(mp.is_parallelizable),is_noncritical_run(mp.is_noncritical_run),is_fill(mp.is_fill),
|
|
need_input_copy(mp.need_input_copy),result(mem._data + (mp.result - mp.mem._data)),
|
|
rng((cimg::_rand(),cimg::rng())),calling_function(0) {
|
|
|
|
#if cimg_use_openmp!=0
|
|
mem[_cimg_mp_slot_t] = (double)omp_get_thread_num();
|
|
rng+=omp_get_thread_num();
|
|
#endif
|
|
opcode.assign();
|
|
opcode._is_shared = true;
|
|
}
|
|
|
|
// Compilation procedure.
|
|
unsigned int compile(char *ss, char *se, const unsigned int depth, unsigned int *const p_ref,
|
|
const unsigned char block_flags) {
|
|
if (depth>256) {
|
|
cimg::strellipsize(expr,64);
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: Call stack overflow (infinite recursion?), "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,
|
|
(ss - 4)>expr._data?ss - 4:expr._data);
|
|
}
|
|
char c1, c2;
|
|
|
|
// Simplify expression when possible.
|
|
do {
|
|
c2 = 0;
|
|
if (ss<se) {
|
|
while (*ss && (cimg::is_blank(*ss) || *ss==';')) ++ss; // Remove leading blanks and ';'
|
|
while (se>ss && (cimg::is_blank(c1 = *(se - 1)) || c1==';')) --se; // Remove trailing blanks and ';'
|
|
}
|
|
while (*ss=='(' && *(se - 1)==')' && std::strchr(ss,')')==se - 1) { // Remove useless start/end parentheses
|
|
++ss; --se; c2 = 1;
|
|
}
|
|
if (*ss=='_' && ss + 1<se && ss[1]=='(') { // Remove leading '_(something)' comment.
|
|
const unsigned int clevel = level[ss - expr._data];
|
|
ss+=2;
|
|
while (ss<se && (*ss!=')' || level[ss - expr._data]!=clevel)) ++ss;
|
|
if (ss<se) ++ss;
|
|
if (ss>=se) return _cimg_mp_slot_nan;
|
|
c2 = 1;
|
|
}
|
|
} while (c2 && ss<se);
|
|
|
|
if (se<=ss || !*ss) {
|
|
cimg::strellipsize(expr,64);
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s%s Missing %s, in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,*s_op?":":"",
|
|
*s_op=='F'?"argument":"item",
|
|
ss_op);
|
|
}
|
|
|
|
static const size_t siz_ref = 7*sizeof(unsigned int);
|
|
const char *const previous_s_op = s_op, *const previous_ss_op = ss_op;
|
|
const unsigned int depth1 = depth + 1;
|
|
unsigned int pos, p1, p2, p3, arg1, arg2, arg3, arg4, arg5, arg6;
|
|
char
|
|
*const se1 = se - 1, *const se2 = se - 2, *const se3 = se - 3,
|
|
*const ss1 = ss + 1, *const ss2 = ss + 2, *const ss3 = ss + 3, *const ss4 = ss + 4,
|
|
*const ss5 = ss + 5, *const ss6 = ss + 6, *const ss7 = ss + 7, *const ss8 = ss + 8,
|
|
*s, *ps, *ns, *s0, *s1, *s2, *s3, sep = 0, end = 0;
|
|
double val = 0, val1, val2;
|
|
mp_func op;
|
|
return_new_comp = false;
|
|
|
|
// Bits of 'block_flags' tell about in which code block we currently are:
|
|
// 0: critical(), 1: begin(), 2: begin_t(), 3: end(), 4: end_t().
|
|
const bool is_inside_critical = (bool)(block_flags&1);
|
|
|
|
// 'p_ref' is a 'unsigned int[7]' used to return a reference to an image or vector value
|
|
// linked to the returned memory slot (reference that cannot be determined at compile time).
|
|
// p_ref[0] can be { 0 = scalar (unlinked) | 1 = vector value | 2 = image value (offset) |
|
|
// 3 = image value (coordinates) | 4 = image value as a vector (offset) |
|
|
// 5 = image value as a vector (coordinates) }.
|
|
// Depending on p_ref[0], the remaining p_ref[k] have the following meaning:
|
|
// When p_ref[0]==0, p_ref is actually unlinked.
|
|
// When p_ref[0]==1, p_ref = [ 1, vector_ind, offset ].
|
|
// When p_ref[0]==2, p_ref = [ 2, image_ind (or ~0U), is_relative, offset ].
|
|
// When p_ref[0]==3, p_ref = [ 3, image_ind (or ~0U), is_relative, x, y, z, c ].
|
|
// When p_ref[0]==4, p_ref = [ 4, image_ind (or ~0U), is_relative, offset ].
|
|
// When p_ref[0]==5, p_ref = [ 5, image_ind (or ~0U), is_relative, x, y, z ].
|
|
if (p_ref) { *p_ref = 0; p_ref[1] = p_ref[2] = p_ref[3] = p_ref[4] = p_ref[5] = p_ref[6] = ~0U; }
|
|
|
|
const char saved_char = *se; *se = 0;
|
|
const unsigned int clevel = level[ss - expr._data], clevel1 = clevel + 1;
|
|
bool is_sth, is_relative;
|
|
CImg<uintT> ref;
|
|
CImg<charT> variable_name;
|
|
CImgList<ulongT> l_opcode;
|
|
|
|
// Look for a single value or a pre-defined variable.
|
|
int nb = 0;
|
|
s = ss + (*ss=='+' || *ss=='-'?1:0);
|
|
if (*s=='i' || *s=='I' || *s=='n' || *s=='N') { // Particular cases : +/-NaN and +/-Inf
|
|
is_sth = *ss=='-';
|
|
if (!cimg::strcasecmp(s,"inf")) { val = cimg::type<double>::inf(); nb = 1; }
|
|
else if (!cimg::strcasecmp(s,"nan")) { val = cimg::type<double>::nan(); nb = 1; }
|
|
if (nb==1 && is_sth) val = -val;
|
|
} else if (*s=='0' && (s[1]=='x' || s[1]=='X')) { // Hexadecimal number
|
|
is_sth = *ss=='-';
|
|
if (cimg_sscanf(s + 2,"%x%c",&arg1,&sep)==1) {
|
|
nb = 1;
|
|
val = (double)arg1;
|
|
if (is_sth) val = -val;
|
|
}
|
|
}
|
|
if (!nb) nb = cimg_sscanf(ss,"%lf%c%c",&val,&(sep=0),&(end=0));
|
|
if (nb==1) _cimg_mp_const_scalar(val);
|
|
if (nb==2 && sep=='%') _cimg_mp_const_scalar(val/100);
|
|
|
|
if (ss1==se) switch (*ss) { // One-char reserved variable
|
|
case 'c' : _cimg_mp_return(reserved_label[(int)'c']!=~0U?reserved_label[(int)'c']:_cimg_mp_slot_c);
|
|
case 'd' : _cimg_mp_return(reserved_label[(int)'d']!=~0U?reserved_label[(int)'d']:20);
|
|
case 'e' : _cimg_mp_return(reserved_label[(int)'e']!=~0U?reserved_label[(int)'e']:27);
|
|
case 'h' : _cimg_mp_return(reserved_label[(int)'h']!=~0U?reserved_label[(int)'h']:19);
|
|
case 'k' :
|
|
if (reserved_label[(int)'k']!=~0U) _cimg_mp_return(reserved_label[(int)'k']);
|
|
pos = get_mem_img_index();
|
|
if (pos!=~0U) _cimg_mp_return(pos);
|
|
_cimg_mp_return_nan();
|
|
case 'l' : _cimg_mp_return(reserved_label[(int)'l']!=~0U?reserved_label[(int)'l']:26);
|
|
case 'r' : _cimg_mp_return(reserved_label[(int)'r']!=~0U?reserved_label[(int)'r']:22);
|
|
case 's' : _cimg_mp_return(reserved_label[(int)'s']!=~0U?reserved_label[(int)'s']:21);
|
|
case 't' : _cimg_mp_return(reserved_label[(int)'t']!=~0U?reserved_label[(int)'t']:_cimg_mp_slot_t);
|
|
case 'n' :
|
|
if (reserved_label[(int)'n']!=~0U) _cimg_mp_return(reserved_label[(int)'n']);
|
|
#if cimg_use_openmp!=0
|
|
_cimg_mp_const_scalar((double)omp_get_max_threads());
|
|
#else
|
|
_cimg_mp_return(1);
|
|
#endif
|
|
case 'w' : _cimg_mp_return(reserved_label[(int)'w']!=~0U?reserved_label[(int)'w']:18);
|
|
case 'x' : _cimg_mp_return(reserved_label[(int)'x']!=~0U?reserved_label[(int)'x']:_cimg_mp_slot_x);
|
|
case 'y' : _cimg_mp_return(reserved_label[(int)'y']!=~0U?reserved_label[(int)'y']:_cimg_mp_slot_y);
|
|
case 'z' : _cimg_mp_return(reserved_label[(int)'z']!=~0U?reserved_label[(int)'z']:_cimg_mp_slot_z);
|
|
case 'u' :
|
|
if (reserved_label[(int)'u']!=~0U) _cimg_mp_return(reserved_label[(int)'u']);
|
|
_cimg_mp_scalar2(mp_u,0,1);
|
|
case 'v' :
|
|
if (reserved_label[(int)'v']!=~0U) _cimg_mp_return(reserved_label[(int)'v']);
|
|
_cimg_mp_scalar2(mp_u,11,1);
|
|
case 'g' :
|
|
if (reserved_label[(int)'g']!=~0U) _cimg_mp_return(reserved_label[(int)'g']);
|
|
_cimg_mp_scalar0(mp_g);
|
|
case 'i' :
|
|
if (reserved_label[(int)'i']!=~0U) _cimg_mp_return(reserved_label[(int)'i']);
|
|
_cimg_mp_scalar0(mp_i);
|
|
case 'I' :
|
|
_cimg_mp_op("Variable 'I'");
|
|
if (reserved_label[(int)'I']!=~0U) _cimg_mp_return(reserved_label[(int)'I']);
|
|
if (!imgin._spectrum) _cimg_mp_return(0);
|
|
need_input_copy = true;
|
|
pos = vector(imgin._spectrum);
|
|
CImg<ulongT>::vector((ulongT)mp_Joff,pos,0,0,imgin._spectrum).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
case 'R' :
|
|
if (reserved_label[(int)'R']!=~0U) _cimg_mp_return(reserved_label[(int)'R']);
|
|
need_input_copy = true;
|
|
_cimg_mp_scalar6(mp_ixyzc,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,0,0,0);
|
|
case 'G' :
|
|
if (reserved_label[(int)'G']!=~0U) _cimg_mp_return(reserved_label[(int)'G']);
|
|
need_input_copy = true;
|
|
_cimg_mp_scalar6(mp_ixyzc,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,1,0,0);
|
|
case 'B' :
|
|
if (reserved_label[(int)'B']!=~0U) _cimg_mp_return(reserved_label[(int)'B']);
|
|
need_input_copy = true;
|
|
_cimg_mp_scalar6(mp_ixyzc,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,2,0,0);
|
|
case 'A' :
|
|
if (reserved_label[(int)'A']!=~0U) _cimg_mp_return(reserved_label[(int)'A']);
|
|
need_input_copy = true;
|
|
_cimg_mp_scalar6(mp_ixyzc,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,3,0,0);
|
|
}
|
|
else if (ss2==se) { // Two-chars reserved variable
|
|
arg1 = arg2 = ~0U;
|
|
if (*ss=='w' && *ss1=='h') // wh
|
|
_cimg_mp_return(reserved_label[0]!=~0U?reserved_label[0]:23);
|
|
if (*ss=='p' && *ss1=='i') // pi
|
|
_cimg_mp_return(reserved_label[3]!=~0U?reserved_label[3]:28);
|
|
if (*ss=='i') {
|
|
if (*ss1>='0' && *ss1<='9') { // i0...i9
|
|
pos = 21 + *ss1 - '0';
|
|
if (reserved_label[pos]!=~0U) _cimg_mp_return(reserved_label[pos]);
|
|
need_input_copy = true;
|
|
_cimg_mp_scalar6(mp_ixyzc,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,pos - 21,0,0);
|
|
}
|
|
switch (*ss1) {
|
|
case 'm' : arg1 = 4; arg2 = 0; break; // im
|
|
case 'M' : arg1 = 5; arg2 = 1; break; // iM
|
|
case 'a' : arg1 = 6; arg2 = 2; break; // ia
|
|
case 'v' : arg1 = 7; arg2 = 3; break; // iv
|
|
case 'd' : arg1 = 8; arg2 = 3; break; // id
|
|
case 's' : arg1 = 9; arg2 = 12; break; // is
|
|
case 'p' : arg1 = 10; arg2 = 13; break; // ip
|
|
case 'c' : // ic
|
|
if (reserved_label[11]!=~0U) _cimg_mp_return(reserved_label[11]);
|
|
if (mem_img_median==~0U) mem_img_median = imgin?const_scalar(imgin.median()):0;
|
|
_cimg_mp_return(mem_img_median);
|
|
break;
|
|
case 'n' : // in
|
|
if (reserved_label[12]!=~0U) _cimg_mp_return(reserved_label[12]);
|
|
if (mem_img_norm==~0U) mem_img_norm = imgin?const_scalar(imgin.magnitude()):0;
|
|
_cimg_mp_return(mem_img_norm);
|
|
}
|
|
}
|
|
else if (*ss1=='m') switch (*ss) {
|
|
case 'x' : arg1 = 13; arg2 = 4; break; // xm
|
|
case 'y' : arg1 = 14; arg2 = 5; break; // ym
|
|
case 'z' : arg1 = 15; arg2 = 6; break; // zm
|
|
case 'c' : arg1 = 16; arg2 = 7; break; // cm
|
|
}
|
|
else if (*ss1=='M') switch (*ss) {
|
|
case 'x' : arg1 = 17; arg2 = 8; break; // xM
|
|
case 'y' : arg1 = 18; arg2 = 9; break; // yM
|
|
case 'z' : arg1 = 19; arg2 = 10; break; // zM
|
|
case 'c' : arg1 = 20; arg2 = 11; break; // cM
|
|
}
|
|
if (arg1!=~0U) {
|
|
if (reserved_label[arg1]!=~0U) _cimg_mp_return(reserved_label[arg1]);
|
|
if (!img_stats) {
|
|
img_stats.assign(1,14,1,1,0).fill(imgin.get_stats(),false);
|
|
mem_img_stats.assign(1,14,1,1,~0U);
|
|
}
|
|
if (mem_img_stats[arg2]==~0U) mem_img_stats[arg2] = const_scalar(img_stats[arg2]);
|
|
if (arg1==8) _cimg_mp_const_scalar(std::sqrt(img_stats[arg2])); // id: std variation
|
|
_cimg_mp_return(mem_img_stats[arg2]);
|
|
}
|
|
} else if (ss3==se) { // Three-chars reserved variable
|
|
if (*ss=='w' && *ss1=='h' && *ss2=='d') // whd
|
|
_cimg_mp_return(reserved_label[1]!=~0U?reserved_label[1]:24);
|
|
} else if (ss4==se) { // Four-chars reserved variable
|
|
if (*ss=='w' && *ss1=='h' && *ss2=='d' && *ss3=='s') // whds
|
|
_cimg_mp_return(reserved_label[2]!=~0U?reserved_label[2]:25);
|
|
}
|
|
|
|
pos = ~0U;
|
|
is_sth = false;
|
|
|
|
for (s0 = ss, s = ss1; s<se1; ++s)
|
|
if (*s==';' && level[s - expr._data]==clevel) { // Separator ';'
|
|
is_end_code = false;
|
|
arg1 = compile(s0,s++,depth,0,block_flags);
|
|
if (!is_end_code) pos = arg1; // 'end()' and 'end_t()' return void
|
|
is_sth = true;
|
|
while (*s && (cimg::is_blank(*s) || *s==';')) ++s;
|
|
s0 = s;
|
|
}
|
|
if (is_sth) {
|
|
is_end_code = false;
|
|
arg1 = compile(s0,se,depth,p_ref,block_flags);
|
|
if (!is_end_code) pos = arg1; // 'end()' and 'end_t()' return void
|
|
_cimg_mp_return(pos!=~0U?pos:_cimg_mp_slot_nan);
|
|
}
|
|
|
|
// Declare / assign variable, vector value or image value.
|
|
for (s = ss1, ps = ss, ns = ss2; s<se1; ++s, ++ps, ++ns)
|
|
if (*s=='=' && *ns!='=' && *ps!='=' && *ps!='>' && *ps!='<' && *ps!='!' &&
|
|
*ps!='+' && *ps!='-' && *ps!='*' && *ps!='/' && *ps!='%' &&
|
|
*ps!='>' && *ps!='<' && *ps!='&' && *ps!='|' && *ps!='^' &&
|
|
level[s - expr._data]==clevel) {
|
|
variable_name.assign(ss,(unsigned int)(s + 1 - ss)).back() = 0;
|
|
cimg::strpare(variable_name,false,true);
|
|
const unsigned int l_variable_name = (unsigned int)std::strlen(variable_name);
|
|
char *const ve1 = ss + l_variable_name - 1;
|
|
_cimg_mp_op("Operator '='");
|
|
|
|
// Assign image value (direct).
|
|
if (l_variable_name>2 && (*ss=='i' || *ss=='j' || *ss=='I' || *ss=='J') && (*ss1=='(' || *ss1=='[') &&
|
|
(reserved_label[(int)*ss]==~0U || *ss1=='(' || !_cimg_mp_is_vector(reserved_label[(int)*ss]))) {
|
|
is_relative = *ss=='j' || *ss=='J';
|
|
|
|
if (*ss1=='[' && *ve1==']') { // i/j/I/J[_#ind,offset] = value
|
|
if (!is_inside_critical) is_parallelizable = false;
|
|
if (*ss2=='#') { // Index specified
|
|
s0 = ss3; while (s0<ve1 && (*s0!=',' || level[s0 - expr._data]!=clevel1)) ++s0;
|
|
p1 = compile(ss3,s0++,depth1,0,block_flags);
|
|
_cimg_mp_check_list();
|
|
} else { p1 = ~0U; s0 = ss2; }
|
|
arg1 = compile(s0,ve1,depth1,0,block_flags); // Offset
|
|
_cimg_mp_check_type(arg1,0,1,0);
|
|
arg2 = compile(s + 1,se,depth1,0,block_flags); // Value to assign
|
|
_cimg_mp_check_type(arg2,2,*ss>='i'?1:3,0);
|
|
if (_cimg_mp_is_vector(arg2)) {
|
|
if (p1!=~0U) {
|
|
_cimg_mp_check_const_index(p1);
|
|
p3 = (unsigned int)cimg::mod((int)mem[p1],imglist.width());
|
|
p2 = imglist[p3]._spectrum;
|
|
} else p2 = imgin._spectrum;
|
|
if (!p2) _cimg_mp_return(0);
|
|
_cimg_mp_check_type(arg2,2,2,p2);
|
|
} else p2 = 0;
|
|
|
|
if (p_ref) {
|
|
*p_ref = *ss=='I' || *ss=='J'?4:2;
|
|
p_ref[1] = p1;
|
|
p_ref[2] = (unsigned int)is_relative;
|
|
p_ref[3] = arg1;
|
|
if (_cimg_mp_is_vector(arg2))
|
|
set_reserved_vector(arg2); // Prevent from being used in further optimization
|
|
else if (_cimg_mp_is_comp(arg2)) memtype[arg2] = -1;
|
|
if (_cimg_mp_is_comp(arg1)) memtype[arg1] = -1;
|
|
}
|
|
|
|
if (p1!=~0U) {
|
|
if (!imglist) _cimg_mp_return(arg2);
|
|
if (*ss>='i')
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_set_joff:mp_list_set_ioff),
|
|
arg2,p1,arg1).move_to(code);
|
|
else if (_cimg_mp_is_scalar(arg2))
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_set_Joff_s:mp_list_set_Ioff_s),
|
|
arg2,p1,arg1).move_to(code);
|
|
else
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_set_Joff_v:mp_list_set_Ioff_v),
|
|
arg2,p1,arg1,_cimg_mp_size(arg2)).move_to(code);
|
|
} else {
|
|
if (!imgout) _cimg_mp_return(arg2);
|
|
if (*ss>='i')
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_set_joff:mp_set_ioff),
|
|
arg2,arg1).move_to(code);
|
|
else if (_cimg_mp_is_scalar(arg2))
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_set_Joff_s:mp_set_Ioff_s),
|
|
arg2,arg1).move_to(code);
|
|
else
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_set_Joff_v:mp_set_Ioff_v),
|
|
arg2,arg1,_cimg_mp_size(arg2)).move_to(code);
|
|
}
|
|
_cimg_mp_return(arg2);
|
|
}
|
|
|
|
if (*ss1=='(' && *ve1==')') { // i/j/I/J(_#ind,_x,_y,_z,_c) = value
|
|
if (!is_inside_critical) is_parallelizable = false;
|
|
if (*ss2=='#') { // Index specified
|
|
s0 = ss3; while (s0<ve1 && (*s0!=',' || level[s0 - expr._data]!=clevel1)) ++s0;
|
|
p1 = compile(ss3,s0++,depth1,0,block_flags);
|
|
_cimg_mp_check_list();
|
|
} else { p1 = ~0U; s0 = ss2; }
|
|
arg1 = is_relative?0U:(unsigned int)_cimg_mp_slot_x;
|
|
arg2 = is_relative?0U:(unsigned int)_cimg_mp_slot_y;
|
|
arg3 = is_relative?0U:(unsigned int)_cimg_mp_slot_z;
|
|
arg4 = is_relative?0U:(unsigned int)_cimg_mp_slot_c;
|
|
arg5 = compile(s + 1,se,depth1,0,block_flags); // Value to assign
|
|
_cimg_mp_check_type(arg5,2,*ss>='i'?1:3,0);
|
|
if (s0<ve1) { // X or [ X,_Y,_Z,_C ]
|
|
s1 = s0; while (s1<ve1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(s0,s1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) { // Coordinates specified as a vector
|
|
p2 = _cimg_mp_size(arg1); // Vector size
|
|
++arg1;
|
|
if (p2>1) {
|
|
arg2 = arg1 + 1;
|
|
if (p2>2) {
|
|
arg3 = arg2 + 1;
|
|
if (p2>3) arg4 = arg3 + 1;
|
|
}
|
|
}
|
|
} else if (s1<ve1) { // Y
|
|
s2 = ++s1; while (s2<ve1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg2 = compile(s1,s2,depth1,0,block_flags);
|
|
if (s2<ve1) { // Z
|
|
s3 = ++s2; while (s3<ve1 && (*s3!=',' || level[s3 - expr._data]!=clevel1)) ++s3;
|
|
arg3 = compile(s2,s3,depth1,0,block_flags);
|
|
if (s3<ve1) arg4 = compile(++s3,ve1,depth1,0,block_flags); // C
|
|
}
|
|
}
|
|
}
|
|
|
|
if (_cimg_mp_is_vector(arg5)) {
|
|
if (p1!=~0U) {
|
|
_cimg_mp_check_const_index(p1);
|
|
p3 = (unsigned int)cimg::mod((int)mem[p1],imglist.width());
|
|
p2 = imglist[p3]._spectrum;
|
|
} else p2 = imgin._spectrum;
|
|
if (!p2) _cimg_mp_return(0);
|
|
_cimg_mp_check_type(arg5,2,2,p2);
|
|
} else p2 = 0;
|
|
|
|
|
|
if (p_ref) {
|
|
*p_ref = *ss=='I' || *ss=='J'?5:3;
|
|
p_ref[1] = p1;
|
|
p_ref[2] = (unsigned int)is_relative;
|
|
p_ref[3] = arg1;
|
|
p_ref[4] = arg2;
|
|
p_ref[5] = arg3;
|
|
p_ref[6] = arg4;
|
|
if (_cimg_mp_is_vector(arg5))
|
|
set_reserved_vector(arg5); // Prevent from being used in further optimization
|
|
else if (_cimg_mp_is_comp(arg5)) memtype[arg5] = -1;
|
|
if (p1!=~0U && _cimg_mp_is_comp(p1)) memtype[p1] = -1;
|
|
if (_cimg_mp_is_comp(arg1)) memtype[arg1] = -1;
|
|
if (_cimg_mp_is_comp(arg2)) memtype[arg2] = -1;
|
|
if (_cimg_mp_is_comp(arg3)) memtype[arg3] = -1;
|
|
if (_cimg_mp_is_comp(arg4)) memtype[arg4] = -1;
|
|
}
|
|
if (p1!=~0U) {
|
|
if (!imglist) _cimg_mp_return(arg5);
|
|
if (*ss>='i')
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_set_jxyzc:mp_list_set_ixyzc),
|
|
arg5,p1,arg1,arg2,arg3,arg4).move_to(code);
|
|
else if (_cimg_mp_is_scalar(arg5))
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_set_Jxyz_s:mp_list_set_Ixyz_s),
|
|
arg5,p1,arg1,arg2,arg3).move_to(code);
|
|
else
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_set_Jxyz_v:mp_list_set_Ixyz_v),
|
|
arg5,p1,arg1,arg2,arg3,_cimg_mp_size(arg5)).move_to(code);
|
|
} else {
|
|
if (!imgout) _cimg_mp_return(arg5);
|
|
if (*ss>='i')
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_set_jxyzc:mp_set_ixyzc),
|
|
arg5,arg1,arg2,arg3,arg4).move_to(code);
|
|
else if (_cimg_mp_is_scalar(arg5))
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_set_Jxyz_s:mp_set_Ixyz_s),
|
|
arg5,arg1,arg2,arg3).move_to(code);
|
|
else
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_set_Jxyz_v:mp_set_Ixyz_v),
|
|
arg5,arg1,arg2,arg3,_cimg_mp_size(arg5)).move_to(code);
|
|
}
|
|
_cimg_mp_return(arg5);
|
|
}
|
|
}
|
|
|
|
// Assign vector value (direct).
|
|
if (l_variable_name>3 && *ve1==']' && *ss!='[') {
|
|
s0 = ve1; while (s0>ss && (*s0!='[' || level[s0 - expr._data]!=clevel)) --s0;
|
|
if (s0>ss && cimg::is_varname(ss,s0 - ss)) {
|
|
variable_name[s0 - ss] = 0; // Remove brackets in variable name
|
|
get_variable_pos(variable_name,arg1,arg2);
|
|
arg1 = arg2!=~0U?reserved_label[arg2]:arg1!=~0U?variable_pos[arg1]:~0U; // Vector slot
|
|
if (arg1==~0U || _cimg_mp_is_scalar(arg1))
|
|
compile(ss,s0,depth1,0,block_flags); // Variable does not exist or is not a vector -> error
|
|
|
|
arg2 = compile(++s0,ve1,depth1,0,block_flags); // Index
|
|
arg3 = compile(s + 1,se,depth1,0,block_flags); // Value to assign
|
|
_cimg_mp_check_type(arg3,2,1,0);
|
|
|
|
if (_cimg_mp_is_const_scalar(arg2)) { // Constant index -> return corresponding variable slot directly
|
|
nb = (int)mem[arg2];
|
|
if (nb>=0 && nb<(int)_cimg_mp_size(arg1)) {
|
|
arg1+=nb + 1;
|
|
CImg<ulongT>::vector((ulongT)mp_copy,arg1,arg3).move_to(code);
|
|
_cimg_mp_return(arg1);
|
|
}
|
|
compile(ss,s,depth1,0,block_flags); // Out-of-bounds reference -> error
|
|
}
|
|
|
|
// Case of non-constant index -> return assigned value + linked reference
|
|
if (p_ref) {
|
|
*p_ref = 1;
|
|
p_ref[1] = arg1;
|
|
p_ref[2] = arg2;
|
|
if (_cimg_mp_is_comp(arg3)) memtype[arg3] = -1; // Prevent from being used in further optimization
|
|
if (_cimg_mp_is_comp(arg2)) memtype[arg2] = -1;
|
|
}
|
|
CImg<ulongT>::vector((ulongT)mp_vector_set_off,arg3,arg1,(ulongT)_cimg_mp_size(arg1),arg2).
|
|
move_to(code);
|
|
_cimg_mp_return(arg3);
|
|
}
|
|
}
|
|
|
|
// Assign user-defined macro.
|
|
if (l_variable_name>2 && *ve1==')' && *ss!='(') {
|
|
s0 = ve1; while (s0>ss && *s0!='(') --s0;
|
|
if (cimg::is_varname(ss,s0 - ss) && std::strncmp(variable_name,"debug(",6) &&
|
|
std::strncmp(variable_name,"print(",6)) { // Valid macro name
|
|
s0 = variable_name._data + (s0 - ss);
|
|
*s0 = 0;
|
|
s1 = variable_name._data + l_variable_name - 1; // Pointer to closing parenthesis
|
|
CImg<charT>(variable_name._data,(unsigned int)(s0 - variable_name._data + 1)).move_to(macro_def,0);
|
|
++s; while (*s && cimg::is_blank(*s)) ++s;
|
|
CImg<charT>(s,(unsigned int)(se - s + 1)).move_to(macro_body,0);
|
|
|
|
bool is_variadic = false;
|
|
p1 = 1; // Index of current parsed argument
|
|
for (s = s0 + 1; s<=s1; ++p1, s = ns + 1) { // Parse function arguments
|
|
if (is_variadic && p1>1) {
|
|
_cimg_mp_strerr;
|
|
cimg::strellipsize(variable_name,64);
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Multiple arguments not allowed when first one is "
|
|
"variadic, in macro definition '%s()', in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
variable_name._data,s0);
|
|
}
|
|
if (p1>24) {
|
|
_cimg_mp_strerr;
|
|
cimg::strellipsize(variable_name,64);
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Too much specified arguments (>24), in macro "
|
|
"definition '%s()', in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
variable_name._data,s0);
|
|
}
|
|
while (*s && cimg::is_blank(*s)) ++s;
|
|
if (*s==')' && p1==1) break; // Function has no arguments
|
|
s2 = s; // Start of the argument name
|
|
is_sth = true; // is_valid_argument_name?
|
|
if (*s2>='0' && *s2<='9') is_sth = false;
|
|
else for (ns = s2; ns<s1 && *ns!=',' && *ns!='.' && !cimg::is_blank(*ns); ++ns)
|
|
if (!cimg::is_varchar(*ns)) { is_sth = false; break; }
|
|
s3 = ns; // End of the argument name
|
|
if (is_sth && ns>s2 && *ns=='.' && ns[1]=='.' && ns[2]=='.') { is_variadic = true; ns+=3; }
|
|
else if (*ns=='.') is_sth = false;
|
|
while (*ns && cimg::is_blank(*ns)) ++ns;
|
|
|
|
if (!is_sth || s2==s3 || (*ns!=',' && ns!=s1)) {
|
|
_cimg_mp_strerr;
|
|
cimg::strellipsize(variable_name,64);
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: %s name specified for argument %u when defining "
|
|
"macro '%s()', in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
is_sth?"Empty":"Invalid",p1,
|
|
variable_name._data,s0);
|
|
}
|
|
|
|
if (ns==s1 || *ns==',' || (is_variadic && *ns=='.')) { // New argument found
|
|
*s3 = 0;
|
|
p2 = (unsigned int)(s3 - s2); // Argument length
|
|
for (ps = std::strstr(macro_body[0],s2); ps; ps = std::strstr(ps,s2)) { // Replace by arg number
|
|
if (!((ps>macro_body[0]._data && cimg::is_varchar(*(ps - 1))) ||
|
|
(ps + p2<macro_body[0].end() && cimg::is_varchar(*(ps + p2))))) {
|
|
if (ps>macro_body[0]._data && *(ps - 1)=='#') { // Remove pre-number sign
|
|
*(ps - 1) = (char)p1;
|
|
if (ps + p2<macro_body[0].end() && *(ps + p2)=='#') { // Has pre & post number signs
|
|
std::memmove(ps,ps + p2 + 1,macro_body[0].end() - ps - p2 - 1);
|
|
macro_body[0]._width-=p2 + 1;
|
|
} else { // Has pre number sign only
|
|
std::memmove(ps,ps + p2,macro_body[0].end() - ps - p2);
|
|
macro_body[0]._width-=p2;
|
|
}
|
|
} else if (ps + p2<macro_body[0].end() && *(ps + p2)=='#') { // Remove post-number sign
|
|
*(ps++) = (char)p1;
|
|
std::memmove(ps,ps + p2,macro_body[0].end() - ps - p2);
|
|
macro_body[0]._width-=p2;
|
|
} else if (is_variadic) { // Replace variadic argument
|
|
*(ps++) = (char)p1;
|
|
std::memmove(ps,ps + p2 - 1,macro_body[0].end() - ps - p2 + 1);
|
|
macro_body[0]._width-=p2 - 1;
|
|
} else { // Not near a number sign
|
|
if (p2<3) {
|
|
ps-=(ulongT)macro_body[0]._data;
|
|
macro_body[0].resize(macro_body[0]._width - p2 + 3,1,1,1,0);
|
|
ps+=(ulongT)macro_body[0]._data;
|
|
} else macro_body[0]._width-=p2 - 3;
|
|
std::memmove(ps + 3,ps + p2,macro_body[0].end() - ps - 3);
|
|
*(ps++) = '(';
|
|
*(ps++) = (char)p1;
|
|
*(ps++) = ')';
|
|
}
|
|
} else ++ps;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Store number of arguments.
|
|
macro_def[0].resize(macro_def[0]._width + 1,1,1,1,0).back() = is_variadic?(char)-1:(char)(p1 - 1);
|
|
_cimg_mp_return_nan();
|
|
}
|
|
}
|
|
|
|
// Check if the variable name could be valid. If not, this is probably an lvalue assignment.
|
|
const bool is_const = l_variable_name>6 && !std::strncmp(variable_name,"const ",6);
|
|
s0 = variable_name._data;
|
|
if (is_const) {
|
|
s0+=6; while (cimg::is_blank(*s0)) ++s0;
|
|
variable_name.resize(variable_name.end() - s0,1,1,1,0,0,1);
|
|
}
|
|
if (cimg::is_varname(variable_name)) { // Valid variable name
|
|
|
|
// Assign variable (direct).
|
|
get_variable_pos(variable_name,arg1,arg2);
|
|
arg3 = compile(s + 1,se,depth1,0,block_flags);
|
|
is_sth = return_new_comp; // is arg3 a new blank object?
|
|
if (is_const) _cimg_mp_check_const_scalar(arg3,2,0);
|
|
arg1 = arg2!=~0U?reserved_label[arg2]:arg1!=~0U?variable_pos[arg1]:~0U;
|
|
|
|
if (arg1==~0U) { // Create new variable
|
|
if (_cimg_mp_is_vector(arg3)) { // Vector variable
|
|
arg1 = is_sth || is_comp_vector(arg3)?arg3:vector_copy(arg3);
|
|
set_reserved_vector(arg1); // Prevent from being used in further optimization
|
|
} else { // Scalar variable
|
|
if (is_const) arg1 = arg3;
|
|
else {
|
|
arg1 = is_sth || _cimg_mp_is_comp(arg3)?arg3:scalar1(mp_copy,arg3);
|
|
memtype[arg1] = -1;
|
|
}
|
|
}
|
|
|
|
if (arg2!=~0U) reserved_label[arg2] = arg1;
|
|
else {
|
|
if (variable_def._width>=variable_pos._width) variable_pos.resize(-200,1,1,1,0);
|
|
variable_pos[variable_def._width] = arg1;
|
|
variable_name.move_to(variable_def);
|
|
}
|
|
|
|
} else { // Variable already exists -> assign a new value
|
|
if (is_const || _cimg_mp_is_const_scalar(arg1)) {
|
|
_cimg_mp_strerr;
|
|
cimg::strellipsize(variable_name,64);
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Invalid assignment of %sconst variable '%s'%s, "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
_cimg_mp_is_const_scalar(arg1)?"":"non-",
|
|
variable_name._data,
|
|
!_cimg_mp_is_const_scalar(arg1) && is_const?" as a const variable":"",
|
|
s0);
|
|
}
|
|
_cimg_mp_check_type(arg3,2,_cimg_mp_is_vector(arg1)?3:1,_cimg_mp_size(arg1));
|
|
if (_cimg_mp_is_vector(arg1)) { // Vector
|
|
if (_cimg_mp_is_vector(arg3)) // From vector
|
|
CImg<ulongT>::vector((ulongT)mp_vector_copy,arg1,arg3,(ulongT)_cimg_mp_size(arg1)).
|
|
move_to(code);
|
|
else // From scalar
|
|
CImg<ulongT>::vector((ulongT)mp_vector_init,arg1,1,(ulongT)_cimg_mp_size(arg1),arg3).
|
|
move_to(code);
|
|
} else // Scalar
|
|
CImg<ulongT>::vector((ulongT)mp_copy,arg1,arg3).move_to(code);
|
|
}
|
|
return_new_comp = false;
|
|
_cimg_mp_return(arg1);
|
|
}
|
|
|
|
// Assign lvalue (variable name was not valid for a direct assignment).
|
|
arg1 = ~0U;
|
|
is_sth = (bool)std::strchr(variable_name,'?'); // Contains_ternary_operator?
|
|
if (is_sth) break; // Do nothing and make ternary operator priority over assignment
|
|
|
|
if (l_variable_name>2 && (std::strchr(variable_name,'(') || std::strchr(variable_name,'['))) {
|
|
ref.assign(7);
|
|
arg1 = compile(ss,s,depth1,ref,block_flags); // Lvalue slot
|
|
arg2 = compile(s + 1,se,depth1,0,block_flags); // Value to assign
|
|
|
|
if (*ref==1) { // Vector value (scalar): V[k] = scalar
|
|
_cimg_mp_check_type(arg2,2,1,0);
|
|
arg3 = ref[1]; // Vector slot
|
|
arg4 = ref[2]; // Index
|
|
if (p_ref) std::memcpy(p_ref,ref,siz_ref);
|
|
CImg<ulongT>::vector((ulongT)mp_vector_set_off,arg2,arg3,(ulongT)_cimg_mp_size(arg3),arg4).
|
|
move_to(code);
|
|
_cimg_mp_return(arg2);
|
|
}
|
|
|
|
if (*ref==2) { // Image value (scalar): i/j[_#ind,off] = scalar
|
|
if (!is_inside_critical) is_parallelizable = false;
|
|
_cimg_mp_check_type(arg2,2,1,0);
|
|
p1 = ref[1]; // Index
|
|
is_relative = (bool)ref[2];
|
|
arg3 = ref[3]; // Offset
|
|
if (p_ref) std::memcpy(p_ref,ref,siz_ref);
|
|
if (p1!=~0U) {
|
|
if (!imglist) _cimg_mp_return(arg2);
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_set_joff:mp_list_set_ioff),
|
|
arg2,p1,arg3).move_to(code);
|
|
} else {
|
|
if (!imgout) _cimg_mp_return(arg2);
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_set_joff:mp_set_ioff),
|
|
arg2,arg3).move_to(code);
|
|
}
|
|
_cimg_mp_return(arg2);
|
|
}
|
|
|
|
if (*ref==3) { // Image value (scalar): i/j(_#ind,_x,_y,_z,_c) = scalar
|
|
if (!is_inside_critical) is_parallelizable = false;
|
|
_cimg_mp_check_type(arg2,2,1,0);
|
|
p1 = ref[1]; // Index
|
|
is_relative = (bool)ref[2];
|
|
arg3 = ref[3]; // X
|
|
arg4 = ref[4]; // Y
|
|
arg5 = ref[5]; // Z
|
|
arg6 = ref[6]; // C
|
|
if (p_ref) std::memcpy(p_ref,ref,siz_ref);
|
|
if (p1!=~0U) {
|
|
if (!imglist) _cimg_mp_return(arg2);
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_set_jxyzc:mp_list_set_ixyzc),
|
|
arg2,p1,arg3,arg4,arg5,arg6).move_to(code);
|
|
} else {
|
|
if (!imgout) _cimg_mp_return(arg2);
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_set_jxyzc:mp_set_ixyzc),
|
|
arg2,arg3,arg4,arg5,arg6).move_to(code);
|
|
}
|
|
_cimg_mp_return(arg2);
|
|
}
|
|
|
|
if (*ref==4) { // Image value (vector): I/J[_#ind,off] = value
|
|
if (!is_inside_critical) is_parallelizable = false;
|
|
_cimg_mp_check_type(arg2,2,3,_cimg_mp_size(arg1));
|
|
p1 = ref[1]; // Index
|
|
is_relative = (bool)ref[2];
|
|
arg3 = ref[3]; // Offset
|
|
if (p_ref) std::memcpy(p_ref,ref,siz_ref);
|
|
if (p1!=~0U) {
|
|
if (!imglist) _cimg_mp_return(arg2);
|
|
if (_cimg_mp_is_scalar(arg2))
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_set_Joff_s:mp_list_set_Ioff_s),
|
|
arg2,p1,arg3).move_to(code);
|
|
else {
|
|
_cimg_mp_check_const_index(p1);
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_set_Joff_v:mp_list_set_Ioff_v),
|
|
arg2,p1,arg3,_cimg_mp_size(arg2)).move_to(code);
|
|
}
|
|
|
|
} else {
|
|
if (!imgout) _cimg_mp_return(arg2);
|
|
if (_cimg_mp_is_scalar(arg2))
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_set_Joff_s:mp_set_Ioff_s),
|
|
arg2,arg3).move_to(code);
|
|
else
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_set_Joff_v:mp_set_Ioff_v),
|
|
arg2,arg3,_cimg_mp_size(arg2)).move_to(code);
|
|
}
|
|
_cimg_mp_return(arg2);
|
|
}
|
|
|
|
if (*ref==5) { // Image value (vector): I/J(_#ind,_x,_y,_z,_c) = value
|
|
if (!is_inside_critical) is_parallelizable = false;
|
|
_cimg_mp_check_type(arg2,2,3,_cimg_mp_size(arg1));
|
|
p1 = ref[1]; // Index
|
|
is_relative = (bool)ref[2];
|
|
arg3 = ref[3]; // X
|
|
arg4 = ref[4]; // Y
|
|
arg5 = ref[5]; // Z
|
|
if (p_ref) std::memcpy(p_ref,ref,siz_ref);
|
|
if (p1!=~0U) {
|
|
if (!imglist) _cimg_mp_return(arg2);
|
|
if (_cimg_mp_is_scalar(arg2))
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_set_Jxyz_s:mp_list_set_Ixyz_s),
|
|
arg2,p1,arg3,arg4,arg5).move_to(code);
|
|
else {
|
|
_cimg_mp_check_const_index(p1);
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_set_Jxyz_v:mp_list_set_Ixyz_v),
|
|
arg2,p1,arg3,arg4,arg5,_cimg_mp_size(arg2)).move_to(code);
|
|
}
|
|
|
|
} else {
|
|
if (!imgout) _cimg_mp_return(arg2);
|
|
if (_cimg_mp_is_scalar(arg2))
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_set_Jxyz_s:mp_set_Ixyz_s),
|
|
arg2,arg3,arg4,arg5).move_to(code);
|
|
else
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_set_Jxyz_v:mp_set_Ixyz_v),
|
|
arg2,arg3,arg4,arg5,_cimg_mp_size(arg2)).move_to(code);
|
|
}
|
|
_cimg_mp_return(arg2);
|
|
}
|
|
|
|
if (_cimg_mp_is_vector(arg1)) { // Vector variable: V = value
|
|
_cimg_mp_check_type(arg2,2,3,_cimg_mp_size(arg1));
|
|
if (_cimg_mp_is_vector(arg2)) // From vector
|
|
CImg<ulongT>::vector((ulongT)mp_vector_copy,arg1,arg2,(ulongT)_cimg_mp_size(arg1)).
|
|
move_to(code);
|
|
else // From scalar
|
|
CImg<ulongT>::vector((ulongT)mp_vector_init,arg1,1,(ulongT)_cimg_mp_size(arg1),arg2).
|
|
move_to(code);
|
|
_cimg_mp_return(arg1);
|
|
}
|
|
|
|
if (_cimg_mp_is_reserved(arg1)) { // Scalar variable: s = scalar
|
|
_cimg_mp_check_type(arg2,2,1,0);
|
|
CImg<ulongT>::vector((ulongT)mp_copy,arg1,arg2).move_to(code);
|
|
_cimg_mp_return(arg1);
|
|
}
|
|
}
|
|
|
|
// No assignment expressions match -> error
|
|
_cimg_mp_strerr;
|
|
cimg::strellipsize(variable_name,64);
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Invalid %slvalue '%s', "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
arg1!=~0U && _cimg_mp_is_const_scalar(arg1)?"const ":"",
|
|
variable_name._data,s0);
|
|
}
|
|
|
|
// Apply unary/binary/ternary operators. The operator precedences should be the same as in C++.
|
|
for (s = se2, ps = se3, ns = ps - 1; s>ss1; --s, --ps, --ns) // Here, ns = ps - 1
|
|
if (*s=='=' && (*ps=='*' || *ps=='/' || *ps=='^') && *ns==*ps &&
|
|
level[s - expr._data]==clevel) { // Self-operators for complex numbers only (**=,//=,^^=)
|
|
_cimg_mp_op(*ps=='*'?"Operator '**='":*ps=='/'?"Operator '//='":"Operator '^^='");
|
|
|
|
ref.assign(7);
|
|
arg1 = compile(ss,ns,depth1,ref,block_flags); // Vector slot
|
|
arg2 = compile(s + 1,se,depth1,0,block_flags); // Right operand
|
|
_cimg_mp_check_type(arg1,1,2,2);
|
|
_cimg_mp_check_type(arg2,2,3,2);
|
|
if (_cimg_mp_is_vector(arg2)) { // Complex **= complex
|
|
if (*ps=='*')
|
|
CImg<ulongT>::vector((ulongT)mp_complex_mul,arg1,arg1,arg2).move_to(code);
|
|
else if (*ps=='/')
|
|
CImg<ulongT>::vector((ulongT)mp_complex_div_vv,arg1,arg1,arg2).move_to(code);
|
|
else
|
|
CImg<ulongT>::vector((ulongT)mp_complex_pow_vv,arg1,arg1,arg2).move_to(code);
|
|
} else { // Complex **= scalar
|
|
if (*ps=='*') {
|
|
if (arg2==1) _cimg_mp_return(arg1);
|
|
self_vector_s(arg1,mp_self_mul,arg2);
|
|
} else if (*ps=='/') {
|
|
if (arg2==1) _cimg_mp_return(arg1);
|
|
self_vector_s(arg1,mp_self_div,arg2);
|
|
} else {
|
|
if (arg2==1) _cimg_mp_return(arg1);
|
|
CImg<ulongT>::vector((ulongT)mp_complex_pow_vs,arg1,arg1,arg2).move_to(code);
|
|
}
|
|
}
|
|
|
|
if (*ref==4) { // Image value (vector): I/J[_#ind,off] **= value
|
|
if (!is_inside_critical) is_parallelizable = false;
|
|
p1 = ref[1]; // Index
|
|
is_relative = (bool)ref[2];
|
|
arg3 = ref[3]; // Offset
|
|
if (p_ref) std::memcpy(p_ref,ref,siz_ref);
|
|
if (p1!=~0U) {
|
|
if (!imglist) _cimg_mp_return(arg1);
|
|
_cimg_mp_check_const_index(p1);
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_set_Joff_v:mp_list_set_Ioff_v),
|
|
arg1,p1,arg3,_cimg_mp_size(arg1)).move_to(code);
|
|
} else {
|
|
if (!imgout) _cimg_mp_return(arg1);
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_set_Joff_v:mp_set_Ioff_v),
|
|
arg1,arg3,_cimg_mp_size(arg1)).move_to(code);
|
|
}
|
|
|
|
} else if (*ref==5) { // Image value (vector): I/J(_#ind,_x,_y,_z,_c) **= value
|
|
if (!is_inside_critical) is_parallelizable = false;
|
|
p1 = ref[1]; // Index
|
|
is_relative = (bool)ref[2];
|
|
arg3 = ref[3]; // X
|
|
arg4 = ref[4]; // Y
|
|
arg5 = ref[5]; // Z
|
|
if (p_ref) std::memcpy(p_ref,ref,siz_ref);
|
|
if (p1!=~0U) {
|
|
if (!imglist) _cimg_mp_return(arg1);
|
|
_cimg_mp_check_const_index(p1);
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_set_Jxyz_v:mp_list_set_Ixyz_v),
|
|
arg1,p1,arg3,arg4,arg5,_cimg_mp_size(arg1)).move_to(code);
|
|
} else {
|
|
if (!imgout) _cimg_mp_return(arg1);
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_set_Jxyz_v:mp_set_Ixyz_v),
|
|
arg1,arg3,arg4,arg5,_cimg_mp_size(arg1)).move_to(code);
|
|
}
|
|
}
|
|
|
|
_cimg_mp_return(arg1);
|
|
}
|
|
|
|
for (s = se2, ps = se3, ns = ps - 1; s>ss1; --s, --ps, --ns) // Here, ns = ps - 1
|
|
if (*s=='=' && (*ps=='+' || *ps=='-' || *ps=='*' || *ps=='/' || (*ps=='%' && s[1]!='=') ||
|
|
*ps=='&' || *ps=='^' || *ps=='|' ||
|
|
(*ps=='>' && *ns=='>') || (*ps=='<' && *ns=='<')) &&
|
|
level[s - expr._data]==clevel) { // Self-operators (+=,-=,*=,/=,%=,>>=,<<=,&=,^=,|=)
|
|
switch (*ps) {
|
|
case '+' : op = mp_self_add; _cimg_mp_op("Operator '+='"); break;
|
|
case '-' : op = mp_self_sub; _cimg_mp_op("Operator '-='"); break;
|
|
case '*' : op = mp_self_mul; _cimg_mp_op("Operator '*='"); break;
|
|
case '/' : op = mp_self_div; _cimg_mp_op("Operator '/='"); break;
|
|
case '%' : op = mp_self_modulo; _cimg_mp_op("Operator '%='"); break;
|
|
case '<' : op = mp_self_bitwise_left_shift; _cimg_mp_op("Operator '<<='"); break;
|
|
case '>' : op = mp_self_bitwise_right_shift; _cimg_mp_op("Operator '>>='"); break;
|
|
case '&' : op = mp_self_bitwise_and; _cimg_mp_op("Operator '&='"); break;
|
|
case '|' : op = mp_self_bitwise_or; _cimg_mp_op("Operator '|='"); break;
|
|
default : op = mp_self_pow; _cimg_mp_op("Operator '^='"); break;
|
|
}
|
|
s1 = *ps=='>' || *ps=='<'?ns:ps;
|
|
|
|
ref.assign(7);
|
|
arg1 = compile(ss,s1,depth1,ref,block_flags); // Variable slot
|
|
arg2 = compile(s + 1,se,depth1,0,block_flags); // Value to apply
|
|
|
|
// Check for particular case to be simplified.
|
|
if ((op==mp_self_add || op==mp_self_sub) && !arg2) _cimg_mp_return(arg1);
|
|
if ((op==mp_self_mul || op==mp_self_div) && arg2==1) _cimg_mp_return(arg1);
|
|
|
|
// Apply operator on a copy to prevent modifying a constant or a variable.
|
|
if (*ref && (_cimg_mp_is_const_scalar(arg1) || _cimg_mp_is_vector(arg1) || _cimg_mp_is_reserved(arg1))) {
|
|
if (_cimg_mp_is_vector(arg1)) arg1 = vector_copy(arg1);
|
|
else arg1 = scalar1(mp_copy,arg1);
|
|
}
|
|
|
|
if (*ref==1) { // Vector value (scalar): V[k] += scalar
|
|
_cimg_mp_check_type(arg2,2,1,0);
|
|
arg3 = ref[1]; // Vector slot
|
|
arg4 = ref[2]; // Index
|
|
if (p_ref) std::memcpy(p_ref,ref,siz_ref);
|
|
CImg<ulongT>::vector((ulongT)op,arg1,arg2).move_to(code);
|
|
CImg<ulongT>::vector((ulongT)mp_vector_set_off,arg1,arg3,(ulongT)_cimg_mp_size(arg3),arg4).
|
|
move_to(code);
|
|
_cimg_mp_return(arg1);
|
|
}
|
|
|
|
if (*ref==2) { // Image value (scalar): i/j[_#ind,off] += scalar
|
|
if (!is_inside_critical) is_parallelizable = false;
|
|
_cimg_mp_check_type(arg2,2,1,0);
|
|
p1 = ref[1]; // Index
|
|
is_relative = (bool)ref[2];
|
|
arg3 = ref[3]; // Offset
|
|
if (p_ref) std::memcpy(p_ref,ref,siz_ref);
|
|
CImg<ulongT>::vector((ulongT)op,arg1,arg2).move_to(code);
|
|
if (p1!=~0U) {
|
|
if (!imglist) _cimg_mp_return(arg1);
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_set_joff:mp_list_set_ioff),
|
|
arg1,p1,arg3).move_to(code);
|
|
} else {
|
|
if (!imgout) _cimg_mp_return(arg1);
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_set_joff:mp_set_ioff),
|
|
arg1,arg3).move_to(code);
|
|
}
|
|
_cimg_mp_return(arg1);
|
|
}
|
|
|
|
if (*ref==3) { // Image value (scalar): i/j(_#ind,_x,_y,_z,_c) += scalar
|
|
if (!is_inside_critical) is_parallelizable = false;
|
|
_cimg_mp_check_type(arg2,2,1,0);
|
|
p1 = ref[1]; // Index
|
|
is_relative = (bool)ref[2];
|
|
arg3 = ref[3]; // X
|
|
arg4 = ref[4]; // Y
|
|
arg5 = ref[5]; // Z
|
|
arg6 = ref[6]; // C
|
|
if (p_ref) std::memcpy(p_ref,ref,siz_ref);
|
|
CImg<ulongT>::vector((ulongT)op,arg1,arg2).move_to(code);
|
|
if (p1!=~0U) {
|
|
if (!imglist) _cimg_mp_return(arg1);
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_set_jxyzc:mp_list_set_ixyzc),
|
|
arg1,p1,arg3,arg4,arg5,arg6).move_to(code);
|
|
} else {
|
|
if (!imgout) _cimg_mp_return(arg1);
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_set_jxyzc:mp_set_ixyzc),
|
|
arg1,arg3,arg4,arg5,arg6).move_to(code);
|
|
}
|
|
_cimg_mp_return(arg1);
|
|
}
|
|
|
|
if (*ref==4) { // Image value (vector): I/J[_#ind,off] += value
|
|
if (!is_inside_critical) is_parallelizable = false;
|
|
_cimg_mp_check_type(arg2,2,3,_cimg_mp_size(arg1));
|
|
p1 = ref[1]; // Index
|
|
is_relative = (bool)ref[2];
|
|
arg3 = ref[3]; // Offset
|
|
if (p_ref) std::memcpy(p_ref,ref,siz_ref);
|
|
if (_cimg_mp_is_scalar(arg2)) self_vector_s(arg1,op,arg2); else self_vector_v(arg1,op,arg2);
|
|
if (p1!=~0U) {
|
|
if (!imglist) _cimg_mp_return(arg1);
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_set_Joff_v:mp_list_set_Ioff_v),
|
|
arg1,p1,arg3,_cimg_mp_size(arg1)).move_to(code);
|
|
} else {
|
|
if (!imgout) _cimg_mp_return(arg1);
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_set_Joff_v:mp_set_Ioff_v),
|
|
arg1,arg3,_cimg_mp_size(arg1)).move_to(code);
|
|
}
|
|
_cimg_mp_return(arg1);
|
|
}
|
|
|
|
if (*ref==5) { // Image value (vector): I/J(_#ind,_x,_y,_z,_c) += value
|
|
if (!is_inside_critical) is_parallelizable = false;
|
|
_cimg_mp_check_type(arg2,2,3,_cimg_mp_size(arg1));
|
|
p1 = ref[1]; // Index
|
|
is_relative = (bool)ref[2];
|
|
arg3 = ref[3]; // X
|
|
arg4 = ref[4]; // Y
|
|
arg5 = ref[5]; // Z
|
|
if (p_ref) std::memcpy(p_ref,ref,siz_ref);
|
|
if (_cimg_mp_is_scalar(arg2)) self_vector_s(arg1,op,arg2); else self_vector_v(arg1,op,arg2);
|
|
if (p1!=~0U) {
|
|
if (!imglist) _cimg_mp_return(arg1);
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_set_Jxyz_v:mp_list_set_Ixyz_v),
|
|
arg1,p1,arg3,arg4,arg5,_cimg_mp_size(arg1)).move_to(code);
|
|
} else {
|
|
if (!imgout) _cimg_mp_return(arg1);
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_set_Jxyz_v:mp_set_Ixyz_v),
|
|
arg1,arg3,arg4,arg5,_cimg_mp_size(arg1)).move_to(code);
|
|
}
|
|
_cimg_mp_return(arg1);
|
|
}
|
|
|
|
if (_cimg_mp_is_vector(arg1)) { // Vector variable: V += value
|
|
_cimg_mp_check_type(arg2,2,3,_cimg_mp_size(arg1));
|
|
if (_cimg_mp_is_vector(arg2)) self_vector_v(arg1,op,arg2); // Vector += vector
|
|
else self_vector_s(arg1,op,arg2); // Vector += scalar
|
|
_cimg_mp_return(arg1);
|
|
}
|
|
|
|
if (_cimg_mp_is_reserved(arg1)) { // Scalar variable: s += scalar
|
|
_cimg_mp_check_type(arg2,2,1,0);
|
|
CImg<ulongT>::vector((ulongT)op,arg1,arg2).move_to(code);
|
|
_cimg_mp_return(arg1);
|
|
}
|
|
|
|
variable_name.assign(ss,(unsigned int)(s - ss)).back() = 0;
|
|
cimg::strpare(variable_name,false,true);
|
|
_cimg_mp_strerr;
|
|
cimg::strellipsize(variable_name,64);
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Invalid %slvalue '%s', "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
_cimg_mp_is_const_scalar(arg1)?"const ":"",
|
|
variable_name._data,s0);
|
|
}
|
|
|
|
for (s = ss1; s<se1; ++s)
|
|
if (*s=='?' && level[s - expr._data]==clevel) { // Ternary operator 'cond?expr1:expr2'
|
|
_cimg_mp_op("Operator '?:'");
|
|
s1 = s + 1; while (s1<se1 && (*s1!=':' || level[s1 - expr._data]!=clevel)) ++s1;
|
|
arg1 = compile(ss,s,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,1,1,0);
|
|
if (_cimg_mp_is_const_scalar(arg1)) {
|
|
if ((bool)mem[arg1]) return compile(s + 1,*s1!=':'?se:s1,depth1,0,block_flags);
|
|
else return *s1!=':'?0:compile(++s1,se,depth1,0,block_flags);
|
|
}
|
|
p2 = code._width;
|
|
arg2 = compile(s + 1,*s1!=':'?se:s1,depth1,0,block_flags);
|
|
p3 = code._width;
|
|
arg3 = *s1==':'?compile(++s1,se,depth1,0,block_flags):
|
|
_cimg_mp_is_vector(arg2)?vector(_cimg_mp_size(arg2),0):0;
|
|
_cimg_mp_check_type(arg3,3,_cimg_mp_is_vector(arg2)?2:1,_cimg_mp_size(arg2));
|
|
arg4 = _cimg_mp_size(arg2);
|
|
if (arg4) pos = vector(arg4); else pos = scalar();
|
|
CImg<ulongT>::vector((ulongT)mp_if,pos,arg1,arg2,arg3,
|
|
p3 - p2,code._width - p3,arg4).move_to(code,p2);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
for (s = se3, ns = se2; s>ss; --s, --ns)
|
|
if (*s=='|' && *ns=='|' && level[s - expr._data]==clevel) { // Logical or ('||')
|
|
_cimg_mp_op("Operator '||'");
|
|
arg1 = compile(ss,s,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,1,1,0);
|
|
if (arg1>0 && arg1<=16) _cimg_mp_return(1);
|
|
p2 = code._width;
|
|
arg2 = compile(s + 2,se,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg2,2,1,0);
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2))
|
|
_cimg_mp_const_scalar(mem[arg1] || mem[arg2]);
|
|
if (!arg1) _cimg_mp_return(arg2);
|
|
pos = scalar();
|
|
CImg<ulongT>::vector((ulongT)mp_logical_or,pos,arg1,arg2,code._width - p2).
|
|
move_to(code,p2);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
for (s = se3, ns = se2; s>ss; --s, --ns)
|
|
if (*s=='&' && *ns=='&' && level[s - expr._data]==clevel) { // Logical and ('&&')
|
|
_cimg_mp_op("Operator '&&'");
|
|
arg1 = compile(ss,s,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,1,1,0);
|
|
if (!arg1) _cimg_mp_return(0);
|
|
p2 = code._width;
|
|
arg2 = compile(s + 2,se,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg2,2,1,0);
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2))
|
|
_cimg_mp_const_scalar(mem[arg1] && mem[arg2]);
|
|
if (arg1>0 && arg1<=16) _cimg_mp_return(arg2);
|
|
pos = scalar();
|
|
CImg<ulongT>::vector((ulongT)mp_logical_and,pos,arg1,arg2,code._width - p2).
|
|
move_to(code,p2);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
for (s = se2; s>ss; --s)
|
|
if (*s=='|' && level[s - expr._data]==clevel) { // Bitwise or ('|')
|
|
_cimg_mp_op("Operator '|'");
|
|
arg1 = compile(ss,s,depth1,0,block_flags);
|
|
arg2 = compile(s + 1,se,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg2,2,3,_cimg_mp_size(arg1));
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_bitwise_or,arg1,arg2);
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) {
|
|
if (!arg2) _cimg_mp_return(arg1);
|
|
_cimg_mp_vector2_vs(mp_bitwise_or,arg1,arg2);
|
|
}
|
|
if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) {
|
|
if (!arg1) _cimg_mp_return(arg2);
|
|
_cimg_mp_vector2_sv(mp_bitwise_or,arg1,arg2);
|
|
}
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2))
|
|
_cimg_mp_const_scalar((longT)mem[arg1] | (longT)mem[arg2]);
|
|
if (!arg2) _cimg_mp_return(arg1);
|
|
if (!arg1) _cimg_mp_return(arg2);
|
|
_cimg_mp_scalar2(mp_bitwise_or,arg1,arg2);
|
|
}
|
|
|
|
for (s = se2; s>ss; --s)
|
|
if (*s=='&' && level[s - expr._data]==clevel) { // Bitwise and ('&')
|
|
_cimg_mp_op("Operator '&'");
|
|
arg1 = compile(ss,s,depth1,0,block_flags);
|
|
arg2 = compile(s + 1,se,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg2,2,3,_cimg_mp_size(arg1));
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_bitwise_and,arg1,arg2);
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_bitwise_and,arg1,arg2);
|
|
if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_bitwise_and,arg1,arg2);
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2))
|
|
_cimg_mp_const_scalar((longT)mem[arg1] & (longT)mem[arg2]);
|
|
if (!arg1 || !arg2) _cimg_mp_return(0);
|
|
_cimg_mp_scalar2(mp_bitwise_and,arg1,arg2);
|
|
}
|
|
|
|
for (s = se3, ns = se2; s>ss; --s, --ns)
|
|
if (*s=='!' && *ns=='=' && level[s - expr._data]==clevel) { // Not equal to ('!=')
|
|
_cimg_mp_op("Operator '!='");
|
|
arg1 = compile(ss,s,depth1,0,block_flags);
|
|
arg2 = compile(s + 2,se,depth1,0,block_flags);
|
|
if (arg1==arg2) _cimg_mp_return(0);
|
|
p1 = _cimg_mp_size(arg1);
|
|
p2 = _cimg_mp_size(arg2);
|
|
if (p1 || p2) {
|
|
if (p1 && p2 && p1!=p2) _cimg_mp_return(1);
|
|
pos = scalar();
|
|
CImg<ulongT>::vector((ulongT)mp_vector_neq,pos,arg1,p1,arg2,p2,11,1).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2))
|
|
_cimg_mp_const_scalar(mem[arg1]!=mem[arg2]);
|
|
_cimg_mp_scalar2(mp_neq,arg1,arg2);
|
|
}
|
|
|
|
for (s = se3, ns = se2; s>ss; --s, --ns)
|
|
if (*s=='=' && *ns=='=' && level[s - expr._data]==clevel) { // Equal to ('==')
|
|
_cimg_mp_op("Operator '=='");
|
|
arg1 = compile(ss,s,depth1,0,block_flags);
|
|
arg2 = compile(s + 2,se,depth1,0,block_flags);
|
|
if (arg1==arg2) _cimg_mp_return(1);
|
|
p1 = _cimg_mp_size(arg1);
|
|
p2 = _cimg_mp_size(arg2);
|
|
if (p1 || p2) {
|
|
if (p1 && p2 && p1!=p2) _cimg_mp_return(0);
|
|
pos = scalar();
|
|
CImg<ulongT>::vector((ulongT)mp_vector_eq,pos,arg1,p1,arg2,p2,11,1).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2))
|
|
_cimg_mp_const_scalar(mem[arg1]==mem[arg2]);
|
|
_cimg_mp_scalar2(mp_eq,arg1,arg2);
|
|
}
|
|
|
|
for (s = se3, ns = se2; s>ss; --s, --ns)
|
|
if (*s=='<' && *ns=='=' && level[s - expr._data]==clevel) { // Less or equal than ('<=')
|
|
_cimg_mp_op("Operator '<='");
|
|
arg1 = compile(ss,s,depth1,0,block_flags);
|
|
arg2 = compile(s + 2,se,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg2,2,3,_cimg_mp_size(arg1));
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_lte,arg1,arg2);
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_lte,arg1,arg2);
|
|
if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_lte,arg1,arg2);
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2))
|
|
_cimg_mp_const_scalar(mem[arg1]<=mem[arg2]);
|
|
if (arg1==arg2) _cimg_mp_return(1);
|
|
_cimg_mp_scalar2(mp_lte,arg1,arg2);
|
|
}
|
|
|
|
for (s = se3, ns = se2; s>ss; --s, --ns)
|
|
if (*s=='>' && *ns=='=' && level[s - expr._data]==clevel) { // Greater or equal than ('>=')
|
|
_cimg_mp_op("Operator '>='");
|
|
arg1 = compile(ss,s,depth1,0,block_flags);
|
|
arg2 = compile(s + 2,se,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg2,2,3,_cimg_mp_size(arg1));
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_gte,arg1,arg2);
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_gte,arg1,arg2);
|
|
if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_gte,arg1,arg2);
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2))
|
|
_cimg_mp_const_scalar(mem[arg1]>=mem[arg2]);
|
|
if (arg1==arg2) _cimg_mp_return(1);
|
|
_cimg_mp_scalar2(mp_gte,arg1,arg2);
|
|
}
|
|
|
|
for (s = se2, ns = se1, ps = se3; s>ss; --s, --ns, --ps)
|
|
if (*s=='<' && *ns!='<' && *ps!='<' && level[s - expr._data]==clevel) { // Less than ('<')
|
|
_cimg_mp_op("Operator '<'");
|
|
arg1 = compile(ss,s,depth1,0,block_flags);
|
|
arg2 = compile(s + 1,se,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg2,2,3,_cimg_mp_size(arg1));
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_lt,arg1,arg2);
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_lt,arg1,arg2);
|
|
if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_lt,arg1,arg2);
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2))
|
|
_cimg_mp_const_scalar(mem[arg1]<mem[arg2]);
|
|
if (arg1==arg2) _cimg_mp_return(0);
|
|
_cimg_mp_scalar2(mp_lt,arg1,arg2);
|
|
}
|
|
|
|
for (s = se2, ns = se1, ps = se3; s>ss; --s, --ns, --ps)
|
|
if (*s=='>' && *ns!='>' && *ps!='>' && level[s - expr._data]==clevel) { // Greater than ('>')
|
|
_cimg_mp_op("Operator '>'");
|
|
arg1 = compile(ss,s,depth1,0,block_flags);
|
|
arg2 = compile(s + 1,se,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg2,2,3,_cimg_mp_size(arg1));
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_gt,arg1,arg2);
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_gt,arg1,arg2);
|
|
if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_gt,arg1,arg2);
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2))
|
|
_cimg_mp_const_scalar(mem[arg1]>mem[arg2]);
|
|
if (arg1==arg2) _cimg_mp_return(0);
|
|
_cimg_mp_scalar2(mp_gt,arg1,arg2);
|
|
}
|
|
|
|
for (s = se3, ns = se2; s>ss; --s, --ns)
|
|
if (*s=='<' && *ns=='<' && level[s - expr._data]==clevel) { // Left bit shift ('<<')
|
|
_cimg_mp_op("Operator '<<'");
|
|
arg1 = compile(ss,s,depth1,0,block_flags);
|
|
arg2 = compile(s + 2,se,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg2,2,3,_cimg_mp_size(arg1));
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2))
|
|
_cimg_mp_vector2_vv(mp_bitwise_left_shift,arg1,arg2);
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) {
|
|
if (!arg2) _cimg_mp_return(arg1);
|
|
_cimg_mp_vector2_vs(mp_bitwise_left_shift,arg1,arg2);
|
|
}
|
|
if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2))
|
|
_cimg_mp_vector2_sv(mp_bitwise_left_shift,arg1,arg2);
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2))
|
|
_cimg_mp_const_scalar((longT)mem[arg1]<<(unsigned int)mem[arg2]);
|
|
if (!arg1) _cimg_mp_return(0);
|
|
if (!arg2) _cimg_mp_return(arg1);
|
|
_cimg_mp_scalar2(mp_bitwise_left_shift,arg1,arg2);
|
|
}
|
|
|
|
for (s = se3, ns = se2; s>ss; --s, --ns)
|
|
if (*s=='>' && *ns=='>' && level[s - expr._data]==clevel) { // Right bit shift ('>>')
|
|
_cimg_mp_op("Operator '>>'");
|
|
arg1 = compile(ss,s,depth1,0,block_flags);
|
|
arg2 = compile(s + 2,se,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg2,2,3,_cimg_mp_size(arg1));
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2))
|
|
_cimg_mp_vector2_vv(mp_bitwise_right_shift,arg1,arg2);
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) {
|
|
if (!arg2) _cimg_mp_return(arg1);
|
|
_cimg_mp_vector2_vs(mp_bitwise_right_shift,arg1,arg2);
|
|
}
|
|
if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2))
|
|
_cimg_mp_vector2_sv(mp_bitwise_right_shift,arg1,arg2);
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2))
|
|
_cimg_mp_const_scalar((longT)mem[arg1]>>(unsigned int)mem[arg2]);
|
|
if (!arg1) _cimg_mp_return(0);
|
|
if (!arg2) _cimg_mp_return(arg1);
|
|
_cimg_mp_scalar2(mp_bitwise_right_shift,arg1,arg2);
|
|
}
|
|
|
|
for (ns = se1, s = se2, ps = pexpr._data + (se3 - expr._data); s>ss; --ns, --s, --ps)
|
|
if (*s=='+' && (*ns!='+' || ns!=se1) && *ps!='-' && *ps!='+' && *ps!='*' && *ps!='/' && *ps!='%' &&
|
|
*ps!='&' && *ps!='|' && *ps!='^' && *ps!='!' && *ps!='~' && *ps!='#' &&
|
|
(*ps!='e' || !(ps - pexpr._data>ss - expr._data && (*(ps - 1)=='.' || (*(ps - 1)>='0' &&
|
|
*(ps - 1)<='9')))) &&
|
|
level[s - expr._data]==clevel) { // Addition ('+')
|
|
_cimg_mp_op("Operator '+'");
|
|
arg1 = compile(ss,s,depth1,0,block_flags);
|
|
arg2 = compile(s + 1,se,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg2,2,3,_cimg_mp_size(arg1));
|
|
if (!arg2) _cimg_mp_return(arg1);
|
|
if (!arg1) _cimg_mp_return(arg2);
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_add,arg1,arg2);
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_add,arg1,arg2);
|
|
if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_add,arg1,arg2);
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2))
|
|
_cimg_mp_const_scalar(mem[arg1] + mem[arg2]);
|
|
if (code) { // Try to spot linear case 'a*b + c'
|
|
CImg<ulongT> &pop = code.back();
|
|
if (pop[0]==(ulongT)mp_mul && _cimg_mp_is_comp(pop[1]) && (pop[1]==arg1 || pop[1]==arg2)) {
|
|
arg3 = (unsigned int)pop[1];
|
|
arg4 = (unsigned int)pop[2];
|
|
arg5 = (unsigned int)pop[3];
|
|
code.remove();
|
|
CImg<ulongT>::vector((ulongT)mp_linear_add,arg3,arg4,arg5,arg3==arg2?arg1:arg2).move_to(code);
|
|
_cimg_mp_return(arg3);
|
|
}
|
|
}
|
|
if (arg2==1) _cimg_mp_scalar1(mp_increment,arg1);
|
|
if (arg1==1) _cimg_mp_scalar1(mp_increment,arg2);
|
|
_cimg_mp_scalar2(mp_add,arg1,arg2);
|
|
}
|
|
|
|
for (ns = se1, s = se2, ps = pexpr._data + (se3 - expr._data); s>ss; --ns, --s, --ps)
|
|
if (*s=='-' && (*ns!='-' || ns!=se1) && *ps!='-' && *ps!='+' && *ps!='*' && *ps!='/' && *ps!='%' &&
|
|
*ps!='&' && *ps!='|' && *ps!='^' && *ps!='!' && *ps!='~' && *ps!='#' &&
|
|
(*ps!='e' || !(ps - pexpr._data>ss - expr._data && (*(ps - 1)=='.' || (*(ps - 1)>='0' &&
|
|
*(ps - 1)<='9')))) &&
|
|
level[s - expr._data]==clevel) { // Subtraction ('-')
|
|
_cimg_mp_op("Operator '-'");
|
|
arg1 = compile(ss,s,depth1,0,block_flags);
|
|
arg2 = compile(s + 1,se,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg2,2,3,_cimg_mp_size(arg1));
|
|
if (!arg2) _cimg_mp_return(arg1);
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_sub,arg1,arg2);
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_sub,arg1,arg2);
|
|
if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) {
|
|
if (!arg1) _cimg_mp_vector1_v(mp_minus,arg2);
|
|
_cimg_mp_vector2_sv(mp_sub,arg1,arg2);
|
|
}
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2))
|
|
_cimg_mp_const_scalar(mem[arg1] - mem[arg2]);
|
|
if (!arg1) _cimg_mp_scalar1(mp_minus,arg2);
|
|
if (code) { // Try to spot linear cases 'a*b - c' and 'c - a*b'
|
|
CImg<ulongT> &pop = code.back();
|
|
if (pop[0]==(ulongT)mp_mul && _cimg_mp_is_comp(pop[1]) && (pop[1]==arg1 || pop[1]==arg2)) {
|
|
arg3 = (unsigned int)pop[1];
|
|
arg4 = (unsigned int)pop[2];
|
|
arg5 = (unsigned int)pop[3];
|
|
code.remove();
|
|
CImg<ulongT>::vector((ulongT)(arg3==arg1?mp_linear_sub_left:mp_linear_sub_right),
|
|
arg3,arg4,arg5,arg3==arg1?arg2:arg1).move_to(code);
|
|
_cimg_mp_return(arg3);
|
|
}
|
|
}
|
|
if (arg2==1) _cimg_mp_scalar1(mp_decrement,arg1);
|
|
_cimg_mp_scalar2(mp_sub,arg1,arg2);
|
|
}
|
|
|
|
for (s = se3, ns = se2; s>ss; --s, --ns)
|
|
if (*s=='*' && *ns=='*' && level[s - expr._data]==clevel) { // Complex multiplication ('**')
|
|
_cimg_mp_op("Operator '**'");
|
|
arg1 = compile(ss,s,depth1,0,block_flags);
|
|
arg2 = compile(s + 2,se,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,1,3,2);
|
|
_cimg_mp_check_type(arg2,2,3,2);
|
|
if (arg2==1) _cimg_mp_return(arg1);
|
|
if (arg1==1) _cimg_mp_return(arg2);
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) {
|
|
pos = vector(2);
|
|
CImg<ulongT>::vector((ulongT)mp_complex_mul,pos,arg1,arg2).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_mul,arg1,arg2);
|
|
if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_mul,arg1,arg2);
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2))
|
|
_cimg_mp_const_scalar(mem[arg1]*mem[arg2]);
|
|
if (!arg1 || !arg2) _cimg_mp_return(0);
|
|
_cimg_mp_scalar2(mp_mul,arg1,arg2);
|
|
}
|
|
|
|
for (s = se3, ns = se2; s>ss; --s, --ns)
|
|
if (*s=='/' && *ns=='/' && level[s - expr._data]==clevel) { // Complex division ('//')
|
|
_cimg_mp_op("Operator '//'");
|
|
arg1 = compile(ss,s,depth1,0,block_flags);
|
|
arg2 = compile(s + 2,se,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,1,3,2);
|
|
_cimg_mp_check_type(arg2,2,3,2);
|
|
if (arg2==1) _cimg_mp_return(arg1);
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) {
|
|
pos = vector(2);
|
|
CImg<ulongT>::vector((ulongT)mp_complex_div_vv,pos,arg1,arg2).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_div,arg1,arg2);
|
|
if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) {
|
|
pos = vector(2);
|
|
CImg<ulongT>::vector((ulongT)mp_complex_div_sv,pos,arg1,arg2).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2))
|
|
_cimg_mp_const_scalar(mem[arg1]/mem[arg2]);
|
|
if (!arg1) _cimg_mp_return(0);
|
|
_cimg_mp_scalar2(mp_div,arg1,arg2);
|
|
}
|
|
|
|
for (s = se2; s>ss; --s) if (*s=='*' && level[s - expr._data]==clevel) { // Multiplication ('*')
|
|
_cimg_mp_op("Operator '*'");
|
|
arg1 = compile(ss,s,depth1,0,block_flags);
|
|
arg2 = compile(s + 1,se,depth1,0,block_flags);
|
|
p2 = _cimg_mp_size(arg2);
|
|
if (p2>0 && (ulongT)_cimg_mp_size(arg1)==(ulongT)p2*p2) { // Particular case of matrix multiplication
|
|
pos = vector(p2);
|
|
CImg<ulongT>::vector((ulongT)mp_matrix_mul,pos,arg1,arg2,p2,p2,1).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
_cimg_mp_check_type(arg2,2,3,_cimg_mp_size(arg1));
|
|
if (arg2==1) _cimg_mp_return(arg1);
|
|
if (arg1==1) _cimg_mp_return(arg2);
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_mul,arg1,arg2);
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_mul,arg1,arg2);
|
|
if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_mul,arg1,arg2);
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2))
|
|
_cimg_mp_const_scalar(mem[arg1]*mem[arg2]);
|
|
|
|
if (code) { // Try to spot double multiplication 'a*b*c'
|
|
CImg<ulongT> &pop = code.back();
|
|
if (pop[0]==(ulongT)mp_mul && _cimg_mp_is_comp(pop[1]) && (pop[1]==arg1 || pop[1]==arg2)) {
|
|
arg3 = (unsigned int)pop[1];
|
|
arg4 = (unsigned int)pop[2];
|
|
arg5 = (unsigned int)pop[3];
|
|
code.remove();
|
|
CImg<ulongT>::vector((ulongT)mp_mul2,arg3,arg4,arg5,arg3==arg2?arg1:arg2).move_to(code);
|
|
_cimg_mp_return(arg3);
|
|
}
|
|
}
|
|
if (!arg1 || !arg2) _cimg_mp_return(0);
|
|
_cimg_mp_scalar2(mp_mul,arg1,arg2);
|
|
}
|
|
|
|
for (s = se2; s>ss; --s) if (*s=='/' && level[s - expr._data]==clevel) { // Division ('/')
|
|
_cimg_mp_op("Operator '/'");
|
|
arg1 = compile(ss,s,depth1,0,block_flags);
|
|
arg2 = compile(s + 1,se,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg2,2,3,_cimg_mp_size(arg1));
|
|
if (arg2==1) _cimg_mp_return(arg1);
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_div,arg1,arg2);
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_div,arg1,arg2);
|
|
if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_div,arg1,arg2);
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2))
|
|
_cimg_mp_const_scalar(mem[arg1]/mem[arg2]);
|
|
if (!arg1) _cimg_mp_return(0);
|
|
_cimg_mp_scalar2(mp_div,arg1,arg2);
|
|
}
|
|
|
|
for (s = se2, ns = se1; s>ss; --s, --ns)
|
|
if (*s=='%' && *ns!='^' && level[s - expr._data]==clevel) { // Modulo ('%')
|
|
_cimg_mp_op("Operator '%'");
|
|
arg1 = compile(ss,s,depth1,0,block_flags);
|
|
arg2 = compile(s + 1,se,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg2,2,3,_cimg_mp_size(arg1));
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_modulo,arg1,arg2);
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_modulo,arg1,arg2);
|
|
if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_modulo,arg1,arg2);
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2))
|
|
_cimg_mp_const_scalar(cimg::mod(mem[arg1],mem[arg2]));
|
|
_cimg_mp_scalar2(mp_modulo,arg1,arg2);
|
|
}
|
|
|
|
if (se1>ss) {
|
|
if (*ss=='+' && (*ss1!='+' || (ss2<se && *ss2>='0' && *ss2<='9'))) { // Unary plus ('+')
|
|
_cimg_mp_op("Operator '+'");
|
|
_cimg_mp_return(compile(ss1,se,depth1,0,block_flags));
|
|
}
|
|
|
|
if (*ss=='-' && (*ss1!='-' || (ss2<se && *ss2>='0' && *ss2<='9'))) { // Unary minus ('-')
|
|
_cimg_mp_op("Operator '-'");
|
|
arg1 = compile(ss1,se,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_minus,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(-mem[arg1]);
|
|
_cimg_mp_scalar1(mp_minus,arg1);
|
|
}
|
|
|
|
if (*ss=='!') { // Logical not ('!')
|
|
_cimg_mp_op("Operator '!'");
|
|
if (*ss1=='!') { // '!!expr' optimized as 'bool(expr)'
|
|
arg1 = compile(ss2,se,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_bool,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar((bool)mem[arg1]);
|
|
_cimg_mp_scalar1(mp_bool,arg1);
|
|
}
|
|
arg1 = compile(ss1,se,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_logical_not,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(!mem[arg1]);
|
|
_cimg_mp_scalar1(mp_logical_not,arg1);
|
|
}
|
|
|
|
if (*ss=='~') { // Bitwise not ('~')
|
|
_cimg_mp_op("Operator '~'");
|
|
arg1 = compile(ss1,se,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_bitwise_not,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(~(unsigned int)mem[arg1]);
|
|
_cimg_mp_scalar1(mp_bitwise_not,arg1);
|
|
}
|
|
}
|
|
|
|
for (s = se3, ns = se2; s>ss; --s, --ns)
|
|
if (*s=='^' && *ns=='^' && level[s - expr._data]==clevel) { // Complex power ('^^')
|
|
_cimg_mp_op("Operator '^^'");
|
|
arg1 = compile(ss,s,depth1,0,block_flags);
|
|
arg2 = compile(s + 2,se,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,1,3,2);
|
|
_cimg_mp_check_type(arg2,2,3,2);
|
|
if (arg2==1) _cimg_mp_return(arg1);
|
|
pos = vector(2);
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2))
|
|
CImg<ulongT>::vector((ulongT)mp_complex_pow_vv,pos,arg1,arg2).move_to(code);
|
|
else if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2))
|
|
CImg<ulongT>::vector((ulongT)mp_complex_pow_vs,pos,arg1,arg2).move_to(code);
|
|
else if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2))
|
|
CImg<ulongT>::vector((ulongT)mp_complex_pow_sv,pos,arg1,arg2).move_to(code);
|
|
else
|
|
CImg<ulongT>::vector((ulongT)mp_complex_pow_ss,pos,arg1,arg2).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
for (s = se2; s>ss; --s)
|
|
if (*s=='^' && level[s - expr._data]==clevel) { // Power ('^')
|
|
_cimg_mp_op("Operator '^'");
|
|
arg1 = compile(ss,s,depth1,0,block_flags);
|
|
arg2 = compile(s + 1,se,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg2,2,3,_cimg_mp_size(arg1));
|
|
if (arg2==1) _cimg_mp_return(arg1);
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_pow,arg1,arg2);
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_pow,arg1,arg2);
|
|
if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_pow,arg1,arg2);
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2))
|
|
_cimg_mp_const_scalar(std::pow(mem[arg1],mem[arg2]));
|
|
switch (arg2) {
|
|
case 0 : _cimg_mp_return(1);
|
|
case 2 : _cimg_mp_scalar1(mp_sqr,arg1);
|
|
case 3 : _cimg_mp_scalar1(mp_pow3,arg1);
|
|
case 4 : _cimg_mp_scalar1(mp_pow4,arg1);
|
|
default :
|
|
if (_cimg_mp_is_const_scalar(arg2)) {
|
|
if (mem[arg2]==0.5) { _cimg_mp_scalar1(mp_sqrt,arg1); }
|
|
else if (mem[arg2]==0.25) { _cimg_mp_scalar1(mp_pow0_25,arg1); }
|
|
}
|
|
_cimg_mp_scalar2(mp_pow,arg1,arg2);
|
|
}
|
|
}
|
|
|
|
// Percentage computation.
|
|
if (*se1=='%') {
|
|
arg1 = compile(ss,se1,depth1,0,block_flags);
|
|
arg2 = _cimg_mp_is_const_scalar(arg1)?0:const_scalar(100);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector2_vs(mp_div,arg1,arg2);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(mem[arg1]/100);
|
|
_cimg_mp_scalar2(mp_div,arg1,arg2);
|
|
}
|
|
|
|
// Degree to radian postfix operator ('°' in UTF-8).
|
|
if (se2>ss && (unsigned char)*se2==0xC2 && (unsigned char)*se1==0xB0) {
|
|
arg1 = compile(ss,se2,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_deg2rad,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(mem[arg1]*cimg::PI/180);
|
|
_cimg_mp_scalar1(mp_deg2rad,arg1);
|
|
}
|
|
|
|
// Pre/post-decrement and increment.
|
|
is_sth = ss1<se1 && (*ss=='+' || *ss=='-') && *ss1==*ss; // is pre-?
|
|
if (is_sth || (se2>ss && (*se1=='+' || *se1=='-') && *se2==*se1)) {
|
|
if ((is_sth && *ss=='+') || (!is_sth && *se1=='+')) {
|
|
_cimg_mp_op("Operator '++'");
|
|
op = mp_self_increment;
|
|
} else {
|
|
_cimg_mp_op("Operator '--'");
|
|
op = mp_self_decrement;
|
|
}
|
|
ref.assign(7);
|
|
arg1 = is_sth?compile(ss2,se,depth1,ref,block_flags):
|
|
compile(ss,se2,depth1,ref,block_flags); // Variable slot
|
|
|
|
// Apply operator on a copy to prevent modifying a constant or a variable.
|
|
if (*ref && (_cimg_mp_is_const_scalar(arg1) || _cimg_mp_is_vector(arg1) || _cimg_mp_is_reserved(arg1))) {
|
|
if (_cimg_mp_is_vector(arg1)) arg1 = vector_copy(arg1);
|
|
else arg1 = scalar1(mp_copy,arg1);
|
|
}
|
|
|
|
if (is_sth) pos = arg1; // Determine return index, depending on pre/post action
|
|
else {
|
|
if (_cimg_mp_is_vector(arg1)) pos = vector_copy(arg1);
|
|
else pos = scalar1(mp_copy,arg1);
|
|
}
|
|
|
|
if (*ref==1) { // Vector value (scalar): V[k]++
|
|
arg3 = ref[1]; // Vector slot
|
|
arg4 = ref[2]; // Index
|
|
if (is_sth && p_ref) std::memcpy(p_ref,ref,ref._width*sizeof(unsigned int));
|
|
CImg<ulongT>::vector((ulongT)op,arg1,1).move_to(code);
|
|
CImg<ulongT>::vector((ulongT)mp_vector_set_off,arg1,arg3,(ulongT)_cimg_mp_size(arg3),arg4).
|
|
move_to(code);
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (*ref==2) { // Image value (scalar): i/j[_#ind,off]++
|
|
if (!is_inside_critical) is_parallelizable = false;
|
|
p1 = ref[1]; // Index
|
|
is_relative = (bool)ref[2];
|
|
arg3 = ref[3]; // Offset
|
|
if (is_sth && p_ref) std::memcpy(p_ref,ref,ref._width*sizeof(unsigned int));
|
|
CImg<ulongT>::vector((ulongT)op,arg1).move_to(code);
|
|
if (p1!=~0U) {
|
|
if (!imglist) _cimg_mp_return(pos);
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_set_joff:mp_list_set_ioff),
|
|
arg1,p1,arg3).move_to(code);
|
|
} else {
|
|
if (!imgout) _cimg_mp_return(pos);
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_set_joff:mp_set_ioff),
|
|
arg1,arg3).move_to(code);
|
|
}
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (*ref==3) { // Image value (scalar): i/j(_#ind,_x,_y,_z,_c)++
|
|
if (!is_inside_critical) is_parallelizable = false;
|
|
p1 = ref[1]; // Index
|
|
is_relative = (bool)ref[2];
|
|
arg3 = ref[3]; // X
|
|
arg4 = ref[4]; // Y
|
|
arg5 = ref[5]; // Z
|
|
arg6 = ref[6]; // C
|
|
if (is_sth && p_ref) std::memcpy(p_ref,ref,ref._width*sizeof(unsigned int));
|
|
CImg<ulongT>::vector((ulongT)op,arg1).move_to(code);
|
|
if (p1!=~0U) {
|
|
if (!imglist) _cimg_mp_return(pos);
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_set_jxyzc:mp_list_set_ixyzc),
|
|
arg1,p1,arg3,arg4,arg5,arg6).move_to(code);
|
|
} else {
|
|
if (!imgout) _cimg_mp_return(pos);
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_set_jxyzc:mp_set_ixyzc),
|
|
arg1,arg3,arg4,arg5,arg6).move_to(code);
|
|
}
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (*ref==4) { // Image value (vector): I/J[_#ind,off]++
|
|
if (!is_inside_critical) is_parallelizable = false;
|
|
p1 = ref[1]; // Index
|
|
is_relative = (bool)ref[2];
|
|
arg3 = ref[3]; // Offset
|
|
if (is_sth && p_ref) std::memcpy(p_ref,ref,ref._width*sizeof(unsigned int));
|
|
self_vector_s(arg1,op==mp_self_increment?mp_self_add:mp_self_sub,1);
|
|
if (p1!=~0U) {
|
|
if (!imglist) _cimg_mp_return(pos);
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_set_Joff_v:mp_list_set_Ioff_v),
|
|
arg1,p1,arg3,_cimg_mp_size(arg1)).move_to(code);
|
|
} else {
|
|
if (!imgout) _cimg_mp_return(pos);
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_set_Joff_v:mp_set_Ioff_v),
|
|
arg1,arg3,_cimg_mp_size(arg1)).move_to(code);
|
|
}
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (*ref==5) { // Image value (vector): I/J(_#ind,_x,_y,_z,_c)++
|
|
if (!is_inside_critical) is_parallelizable = false;
|
|
p1 = ref[1]; // Index
|
|
is_relative = (bool)ref[2];
|
|
arg3 = ref[3]; // X
|
|
arg4 = ref[4]; // Y
|
|
arg5 = ref[5]; // Z
|
|
if (is_sth && p_ref) std::memcpy(p_ref,ref,ref._width*sizeof(unsigned int));
|
|
self_vector_s(arg1,op==mp_self_increment?mp_self_add:mp_self_sub,1);
|
|
if (p1!=~0U) {
|
|
if (!imglist) _cimg_mp_return(pos);
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_set_Jxyz_v:mp_list_set_Ixyz_v),
|
|
arg1,p1,arg3,arg4,arg5,_cimg_mp_size(arg1)).move_to(code);
|
|
} else {
|
|
if (!imgout) _cimg_mp_return(pos);
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_set_Jxyz_v:mp_set_Ixyz_v),
|
|
arg1,arg3,arg4,arg5,_cimg_mp_size(arg1)).move_to(code);
|
|
}
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (_cimg_mp_is_vector(arg1)) { // Vector variable: V++
|
|
self_vector_s(arg1,op==mp_self_increment?mp_self_add:mp_self_sub,1);
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (_cimg_mp_is_reserved(arg1)) { // Scalar variable: s++
|
|
CImg<ulongT>::vector((ulongT)op,arg1).move_to(code);
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (is_sth) variable_name.assign(ss2,(unsigned int)(se - ss1));
|
|
else variable_name.assign(ss,(unsigned int)(se1 - ss));
|
|
variable_name.back() = 0;
|
|
cimg::strpare(variable_name,false,true);
|
|
_cimg_mp_strerr;
|
|
cimg::strellipsize(variable_name,64);
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Invalid %slvalue '%s', "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
_cimg_mp_is_const_scalar(arg1)?"const ":"",
|
|
variable_name._data,s0);
|
|
}
|
|
|
|
// Array-like access to vectors and image values 'i/j/I/J[_#ind,offset,_boundary]' and 'vector[offset]'.
|
|
if (*se1==']') {
|
|
_cimg_mp_op("Value accessor '[]'");
|
|
|
|
// Find opening bracket for the offset.
|
|
s0 = se1; while (s0>ss && (*s0!='[' || level[s0 - expr._data]!=clevel)) --s0;
|
|
if (s0>ss) { s1 = s0; do { --s1; } while (cimg::is_blank(*s1)); cimg::swap(*s0,*++s1); }
|
|
is_sth=s0>ss && *(s0-1)==']'; // Particular case s.a. '..[..][..]' ?
|
|
is_relative = *ss=='j' || *ss=='J';
|
|
|
|
if (!is_sth && (*ss=='I' || *ss=='J') && *ss1=='[' &&
|
|
(reserved_label[(int)*ss]==~0U ||
|
|
!_cimg_mp_is_vector(reserved_label[(int)*ss]))) { // Image value as a vector
|
|
if (*ss2=='#') { // Index specified
|
|
s0 = ss3; while (s0<se1 && (*s0!=',' || level[s0 - expr._data]!=clevel1)) ++s0;
|
|
p1 = compile(ss3,s0++,depth1,0,block_flags);
|
|
_cimg_mp_check_const_index(p1);
|
|
_cimg_mp_check_list();
|
|
} else { p1 = ~0U; s0 = ss2; }
|
|
s1 = s0; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
p2 = 1 + (p1!=~0U);
|
|
arg1 = compile(s0,s1,depth1,0,block_flags); // Offset
|
|
_cimg_mp_check_type(arg1,p2,1,0);
|
|
arg2 = ~0U;
|
|
if (s1<se1) {
|
|
arg2 = compile(++s1,se1,depth1,0,block_flags); // Boundary
|
|
_cimg_mp_check_type(arg2,p2 + 1,1,0);
|
|
}
|
|
if (p_ref && arg2==~0U) {
|
|
*p_ref = 4;
|
|
p_ref[1] = p1;
|
|
p_ref[2] = (unsigned int)is_relative;
|
|
p_ref[3] = arg1;
|
|
if (_cimg_mp_is_comp(arg1)) memtype[arg1] = -1;
|
|
}
|
|
p2 = ~0U; // 'p2' must be the dimension of the vector-valued operand if any
|
|
if (p1==~0U) p2 = imgin._spectrum;
|
|
else {
|
|
p3 = (unsigned int)cimg::mod((int)mem[p1],imglist.width());
|
|
p2 = imglist[p3]._spectrum;
|
|
}
|
|
if (!p2) _cimg_mp_return(0);
|
|
pos = vector(p2);
|
|
if (p1!=~0U) {
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_Joff:mp_list_Ioff),
|
|
pos,p1,arg1,arg2==~0U?_cimg_mp_boundary:arg2,p2).move_to(code);
|
|
} else {
|
|
need_input_copy = true;
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_Joff:mp_Ioff),
|
|
pos,arg1,arg2==~0U?_cimg_mp_boundary:arg2,p2).move_to(code);
|
|
}
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!is_sth && (*ss=='i' || *ss=='j') && *ss1=='[' &&
|
|
(reserved_label[(int)*ss]==~0U ||
|
|
!_cimg_mp_is_vector(reserved_label[(int)*ss]))) { // Image value as a scalar
|
|
if (*ss2=='#') { // Index specified
|
|
s0 = ss3; while (s0<se1 && (*s0!=',' || level[s0 - expr._data]!=clevel1)) ++s0;
|
|
p1 = compile(ss3,s0++,depth1,0,block_flags);
|
|
} else { p1 = ~0U; s0 = ss2; }
|
|
s1 = s0; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(s0,s1,depth1,0,block_flags); // Offset
|
|
arg2 = s1<se1?compile(++s1,se1,depth1,0,block_flags):~0U; // Boundary
|
|
if (p_ref && arg2==~0U) {
|
|
*p_ref = 2;
|
|
p_ref[1] = p1;
|
|
p_ref[2] = (unsigned int)is_relative;
|
|
p_ref[3] = arg1;
|
|
if (p1!=~0U && _cimg_mp_is_comp(p1)) memtype[p1] = -1; // Prevent from being used in further optimization
|
|
if (_cimg_mp_is_comp(arg1)) memtype[arg1] = -1;
|
|
}
|
|
if (p1!=~0U) {
|
|
if (!imglist) _cimg_mp_return(0);
|
|
pos = scalar3(is_relative?mp_list_joff:mp_list_ioff,p1,arg1,arg2==~0U?_cimg_mp_boundary:arg2);
|
|
} else {
|
|
if (!imgin) _cimg_mp_return(0);
|
|
need_input_copy = true;
|
|
pos = scalar2(is_relative?mp_joff:mp_ioff,arg1,arg2==~0U?_cimg_mp_boundary:arg2);
|
|
}
|
|
memtype[pos] = -1; // Prevent from being used in further optimization
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
s0 = se1; while (s0>ss && (*s0!='[' || level[s0 - expr._data]!=clevel)) --s0;
|
|
if (s0>ss) { // Vector element
|
|
arg1 = compile(ss,s0,depth1,0,block_flags);
|
|
if (_cimg_mp_is_scalar(arg1)) {
|
|
variable_name.assign(ss,(unsigned int)(s0 - ss + 1)).back() = 0;
|
|
_cimg_mp_strerr;
|
|
cimg::strellipsize(variable_name,64);
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Array brackets used on non-vector variable '%s', "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
variable_name._data,s0);
|
|
}
|
|
s1 = s0 + 1; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
|
|
if (s1<se1) { // Two or three arguments -> sub-vector extraction
|
|
p1 = _cimg_mp_size(arg1);
|
|
arg2 = compile(++s0,s1,depth1,0,block_flags); // Starting index
|
|
s0 = ++s1; while (s0<se1 && (*s0!=',' || level[s0 - expr._data]!=clevel1)) ++s0;
|
|
arg3 = compile(s1,s0,depth1,0,block_flags); // Length
|
|
arg4 = s0<se1?compile(++s0,se1,depth1,0,block_flags):1; // Step
|
|
_cimg_mp_check_const_scalar(arg3,2,3);
|
|
arg3 = (unsigned int)mem[arg3];
|
|
pos = vector(arg3);
|
|
CImg<ulongT>::vector((ulongT)mp_vector_crop,pos,arg1,p1,arg2,arg3,arg4).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
// One argument -> vector value reference
|
|
arg2 = compile(++s0,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_const_scalar(arg2)) { // Constant index
|
|
nb = (int)mem[arg2];
|
|
if (nb>=0 && nb<(int)_cimg_mp_size(arg1)) _cimg_mp_return(arg1 + 1 + nb);
|
|
variable_name.assign(ss,(unsigned int)(s0 - ss)).back() = 0;
|
|
_cimg_mp_strerr;
|
|
cimg::strellipsize(variable_name,64);
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: Out-of-bounds reference '%s[%d]' "
|
|
"(vector '%s' has dimension %u), "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,
|
|
variable_name._data,nb,
|
|
variable_name._data,_cimg_mp_size(arg1),s0);
|
|
}
|
|
if (p_ref) {
|
|
*p_ref = 1;
|
|
p_ref[1] = arg1;
|
|
p_ref[2] = arg2;
|
|
if (_cimg_mp_is_comp(arg2)) memtype[arg2] = -1; // Prevent from being used in further optimization
|
|
}
|
|
pos = scalar3(mp_vector_off,arg1,_cimg_mp_size(arg1),arg2);
|
|
memtype[pos] = -1; // Prevent from being used in further optimization
|
|
_cimg_mp_return(pos);
|
|
}
|
|
}
|
|
|
|
// Look for a function call, an access to image value, or a parenthesis.
|
|
if (*se1==')') {
|
|
if (*ss=='(') _cimg_mp_return(compile(ss1,se1,depth1,p_ref,block_flags)); // Simple parentheses
|
|
_cimg_mp_op("Value accessor '()'");
|
|
is_relative = *ss=='j' || *ss=='J';
|
|
s0 = s1 = std::strchr(ss,'('); if (s0) { do { --s1; } while (cimg::is_blank(*s1)); cimg::swap(*s0,*++s1); }
|
|
|
|
// I/J(_#ind,_x,_y,_z,_interpolation,_boundary_conditions)
|
|
if ((*ss=='I' || *ss=='J') && *ss1=='(') { // Image value as scalar
|
|
if (*ss2=='#') { // Index specified
|
|
s0 = ss3; while (s0<se1 && (*s0!=',' || level[s0 - expr._data]!=clevel1)) ++s0;
|
|
p1 = compile(ss3,s0++,depth1,0,block_flags);
|
|
_cimg_mp_check_const_index(p1);
|
|
_cimg_mp_check_list();
|
|
} else { p1 = ~0U; s0 = ss2; }
|
|
arg1 = is_relative?0U:(unsigned int)_cimg_mp_slot_x;
|
|
arg2 = is_relative?0U:(unsigned int)_cimg_mp_slot_y;
|
|
arg3 = is_relative?0U:(unsigned int)_cimg_mp_slot_z;
|
|
arg4 = arg5 = ~0U;
|
|
if (s0<se1) {
|
|
s1 = s0; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(s0,s1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) { // Coordinates specified as a vector
|
|
p2 = _cimg_mp_size(arg1);
|
|
++arg1;
|
|
if (p2>1) {
|
|
arg2 = arg1 + 1;
|
|
if (p2>2) arg3 = arg2 + 1;
|
|
}
|
|
if (s1<se1) {
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg4 = compile(s1,s2,depth1,0,block_flags);
|
|
arg5 = s2<se1?compile(++s2,se1,depth1,0,block_flags):~0U;
|
|
}
|
|
} else if (s1<se1) {
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg2 = compile(s1,s2,depth1,0,block_flags);
|
|
if (s2<se1) {
|
|
s3 = ++s2; while (s3<se1 && (*s3!=',' || level[s3 - expr._data]!=clevel1)) ++s3;
|
|
arg3 = compile(s2,s3,depth1,0,block_flags);
|
|
if (s3<se1) {
|
|
s2 = ++s3; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg4 = compile(s3,s2,depth1,0,block_flags);
|
|
arg5 = s2<se1?compile(++s2,se1,depth1,0,block_flags):~0U;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (p_ref && arg4==~0U && arg5==~0U) {
|
|
*p_ref = 5;
|
|
p_ref[1] = p1;
|
|
p_ref[2] = (unsigned int)is_relative;
|
|
p_ref[3] = arg1;
|
|
p_ref[4] = arg2;
|
|
p_ref[5] = arg3;
|
|
if (p1!=~0U && _cimg_mp_is_comp(p1)) memtype[p1] = -1; // Prevent from being used in further optimization
|
|
if (_cimg_mp_is_comp(arg1)) memtype[arg1] = -1;
|
|
if (_cimg_mp_is_comp(arg2)) memtype[arg2] = -1;
|
|
if (_cimg_mp_is_comp(arg3)) memtype[arg3] = -1;
|
|
}
|
|
p2 = ~0U; // 'p2' must be the dimension of the vector-valued operand if any
|
|
if (p1==~0U) p2 = imgin._spectrum;
|
|
else if (_cimg_mp_is_const_scalar(p1)) {
|
|
p3 = (unsigned int)cimg::mod((int)mem[p1],imglist.width());
|
|
p2 = imglist[p3]._spectrum;
|
|
}
|
|
if (!p2) _cimg_mp_return(0);
|
|
pos = vector(p2);
|
|
if (p1!=~0U)
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_Jxyz:mp_list_Ixyz),
|
|
pos,p1,arg1,arg2,arg3,
|
|
arg4==~0U?_cimg_mp_interpolation:arg4,
|
|
arg5==~0U?_cimg_mp_boundary:arg5,p2).move_to(code);
|
|
else {
|
|
need_input_copy = true;
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_Jxyz:mp_Ixyz),
|
|
pos,arg1,arg2,arg3,
|
|
arg4==~0U?_cimg_mp_interpolation:arg4,
|
|
arg5==~0U?_cimg_mp_boundary:arg5,p2).move_to(code);
|
|
}
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
// i/j(_#ind,_x,_y,_z,_c,_interpolation,_boundary_conditions)
|
|
if ((*ss=='i' || *ss=='j') && *ss1=='(') { // Image value as scalar
|
|
if (*ss2=='#') { // Index specified
|
|
s0 = ss3; while (s0<se1 && (*s0!=',' || level[s0 - expr._data]!=clevel1)) ++s0;
|
|
p1 = compile(ss3,s0++,depth1,0,block_flags);
|
|
} else { p1 = ~0U; s0 = ss2; }
|
|
arg1 = is_relative?0U:(unsigned int)_cimg_mp_slot_x;
|
|
arg2 = is_relative?0U:(unsigned int)_cimg_mp_slot_y;
|
|
arg3 = is_relative?0U:(unsigned int)_cimg_mp_slot_z;
|
|
arg4 = is_relative?0U:(unsigned int)_cimg_mp_slot_c;
|
|
arg5 = arg6 = ~0U;
|
|
if (s0<se1) {
|
|
s1 = s0; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(s0,s1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) { // Coordinates specified as a vector
|
|
p2 = _cimg_mp_size(arg1);
|
|
++arg1;
|
|
if (p2>1) {
|
|
arg2 = arg1 + 1;
|
|
if (p2>2) {
|
|
arg3 = arg2 + 1;
|
|
if (p2>3) arg4 = arg3 + 1;
|
|
}
|
|
}
|
|
if (s1<se1) {
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg5 = compile(s1,s2,depth1,0,block_flags);
|
|
arg6 = s2<se1?compile(++s2,se1,depth1,0,block_flags):~0U;
|
|
}
|
|
} else if (s1<se1) {
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg2 = compile(s1,s2,depth1,0,block_flags);
|
|
if (s2<se1) {
|
|
s3 = ++s2; while (s3<se1 && (*s3!=',' || level[s3 - expr._data]!=clevel1)) ++s3;
|
|
arg3 = compile(s2,s3,depth1,0,block_flags);
|
|
if (s3<se1) {
|
|
s2 = ++s3; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg4 = compile(s3,s2,depth1,0,block_flags);
|
|
if (s2<se1) {
|
|
s3 = ++s2; while (s3<se1 && (*s3!=',' || level[s3 - expr._data]!=clevel1)) ++s3;
|
|
arg5 = compile(s2,s3,depth1,0,block_flags);
|
|
arg6 = s3<se1?compile(++s3,se1,depth1,0,block_flags):~0U;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (p_ref && arg5==~0U && arg6==~0U) {
|
|
*p_ref = 3;
|
|
p_ref[1] = p1;
|
|
p_ref[2] = (unsigned int)is_relative;
|
|
p_ref[3] = arg1;
|
|
p_ref[4] = arg2;
|
|
p_ref[5] = arg3;
|
|
p_ref[6] = arg4;
|
|
if (p1!=~0U && _cimg_mp_is_comp(p1)) memtype[p1] = -1; // Prevent from being used in further optimization
|
|
if (_cimg_mp_is_comp(arg1)) memtype[arg1] = -1;
|
|
if (_cimg_mp_is_comp(arg2)) memtype[arg2] = -1;
|
|
if (_cimg_mp_is_comp(arg3)) memtype[arg3] = -1;
|
|
if (_cimg_mp_is_comp(arg4)) memtype[arg4] = -1;
|
|
}
|
|
|
|
if (p1!=~0U) {
|
|
if (!imglist) _cimg_mp_return(0);
|
|
pos = scalar7(is_relative?mp_list_jxyzc:mp_list_ixyzc,
|
|
p1,arg1,arg2,arg3,arg4,
|
|
arg5==~0U?_cimg_mp_interpolation:arg5,
|
|
arg6==~0U?_cimg_mp_boundary:arg6);
|
|
} else {
|
|
if (!imgin) _cimg_mp_return(0);
|
|
need_input_copy = true;
|
|
pos = scalar6(is_relative?mp_jxyzc:mp_ixyzc,
|
|
arg1,arg2,arg3,arg4,
|
|
arg5==~0U?_cimg_mp_interpolation:arg5,
|
|
arg6==~0U?_cimg_mp_boundary:arg6);
|
|
}
|
|
memtype[pos] = -1; // Prevent from being used in further optimization
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
// Mathematical functions.
|
|
switch (*ss) {
|
|
|
|
case 'a' :
|
|
if (!std::strncmp(ss,"abs(",4)) { // Absolute value
|
|
_cimg_mp_op("Function 'abs()'");
|
|
arg1 = compile(ss4,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_abs,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(cimg::abs(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_abs,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"addr(",5)) { // Pointer address
|
|
_cimg_mp_op("Function 'addr()'");
|
|
arg1 = compile(ss5,se1,depth1,0,block_flags);
|
|
_cimg_mp_const_scalar((double)arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"acos(",5)) { // Arccos
|
|
_cimg_mp_op("Function 'acos()'");
|
|
arg1 = compile(ss5,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_acos,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(std::acos(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_acos,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"acosh(",6)) { // Hyperbolic arccosine
|
|
_cimg_mp_op("Function 'acosh()'");
|
|
arg1 = compile(ss6,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_acosh,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(cimg::acosh(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_acosh,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"asinh(",6)) { // Hyperbolic arcsine
|
|
_cimg_mp_op("Function 'asinh()'");
|
|
arg1 = compile(ss6,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_asinh,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(cimg::asinh(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_asinh,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"atanh(",6)) { // Hyperbolic arctangent
|
|
_cimg_mp_op("Function 'atanh()'");
|
|
arg1 = compile(ss6,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_atanh,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(cimg::atanh(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_atanh,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"arg(",4) ||
|
|
!std::strncmp(ss,"arg0(",5) ||
|
|
!std::strncmp(ss,"arg1(",5)) { // Nth argument
|
|
_cimg_mp_op(*ss3=='('?"Function 'arg()'":*ss3=='0'?"Function 'arg0()'":"Function 'arg1()'");
|
|
s0 = ss4 + (*ss3!='('?1:0);
|
|
s1 = s0; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(s0,s1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,1,1,0);
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg2 = compile(s1,s2,depth1,0,block_flags);
|
|
p2 = _cimg_mp_size(arg2);
|
|
p3 = 3;
|
|
CImg<ulongT>::vector((ulongT)(*ss3=='0'?mp_arg0:mp_arg),0,0,p2,arg1,arg2).move_to(l_opcode);
|
|
for (s = ++s2; s<se; ++s) {
|
|
ns = s; while (ns<se && (*ns!=',' || level[ns - expr._data]!=clevel1) &&
|
|
(*ns!=')' || level[ns - expr._data]!=clevel)) ++ns;
|
|
arg3 = compile(s,ns,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg3,p3,p2?2:1,p2);
|
|
CImg<ulongT>::vector(arg3).move_to(l_opcode);
|
|
++p3;
|
|
s = ns;
|
|
}
|
|
(l_opcode>'y').move_to(opcode);
|
|
opcode[2] = opcode._height;
|
|
if (_cimg_mp_is_const_scalar(arg1)) {
|
|
p3-=1; // Number of args
|
|
if (*ss3=='0') arg1 = (unsigned int)(mem[arg1]<0?mem[arg1] + p3:mem[arg1] + 1);
|
|
else arg1 = (unsigned int)(mem[arg1]<0?mem[arg1] + p3:mem[arg1]);
|
|
if (arg1<p3) _cimg_mp_return(opcode[4 + arg1]);
|
|
if (p2) {
|
|
pos = vector(p2);
|
|
std::memset(&mem[pos] + 1,0,p2*sizeof(double));
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
} else _cimg_mp_return(0);
|
|
}
|
|
pos = opcode[1] = p2?vector(p2):scalar();
|
|
opcode.move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"asin(",5)) { // Arcsin
|
|
_cimg_mp_op("Function 'asin()'");
|
|
arg1 = compile(ss5,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_asin,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(std::asin(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_asin,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"atan(",5)) { // Arctan
|
|
_cimg_mp_op("Function 'atan()'");
|
|
arg1 = compile(ss5,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_atan,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(std::atan(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_atan,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"atan2(",6)) { // Arctan2
|
|
_cimg_mp_op("Function 'atan2()'");
|
|
s1 = ss6; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss6,s1,depth1,0,block_flags);
|
|
arg2 = compile(++s1,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg2,2,3,_cimg_mp_size(arg1));
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_atan2,arg1,arg2);
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_atan2,arg1,arg2);
|
|
if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_atan2,arg1,arg2);
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2))
|
|
_cimg_mp_const_scalar(std::atan2(mem[arg1],mem[arg2]));
|
|
_cimg_mp_scalar2(mp_atan2,arg1,arg2);
|
|
}
|
|
break;
|
|
|
|
case 'b' :
|
|
if (!std::strncmp(ss,"break(",6)) { // Break current block
|
|
if (pexpr[se2 - expr._data]=='(') { // no arguments?
|
|
CImg<ulongT>::vector((ulongT)mp_break,_cimg_mp_slot_nan).move_to(code);
|
|
_cimg_mp_return_nan();
|
|
}
|
|
}
|
|
|
|
if (!std::strncmp(ss,"breakpoint(",11)) { // Break point (for abort test)
|
|
_cimg_mp_op("Function 'breakpoint()'");
|
|
if (pexpr[se2 - expr._data]=='(') { // no arguments?
|
|
CImg<ulongT>::vector((ulongT)mp_breakpoint,_cimg_mp_slot_nan).move_to(code);
|
|
_cimg_mp_return_nan();
|
|
}
|
|
}
|
|
|
|
if (!std::strncmp(ss,"bool(",5)) { // Boolean cast
|
|
_cimg_mp_op("Function 'bool()'");
|
|
arg1 = compile(ss5,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_bool,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar((bool)mem[arg1]);
|
|
_cimg_mp_scalar1(mp_bool,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"begin(",6)) { // Begin
|
|
_cimg_mp_op("Function 'begin()'");
|
|
s1 = ss6; while (s1<se1 && cimg::is_blank(*s1)) ++s1;
|
|
if (s1!=se1) {
|
|
const bool is_inside_begin = (bool)(block_flags&2);
|
|
if (!is_inside_begin) code.swap(code_begin);
|
|
arg1 = compile(s1,se1,depth1,p_ref,2);
|
|
if (!is_inside_begin) code.swap(code_begin);
|
|
_cimg_mp_return(arg1);
|
|
} else _cimg_mp_return_nan();
|
|
}
|
|
|
|
if (!std::strncmp(ss,"begin_t(",8)) { // Begin thread
|
|
_cimg_mp_op("Function 'begin_t()'");
|
|
s1 = ss8; while (s1<se1 && cimg::is_blank(*s1)) ++s1;
|
|
if (s1!=se1) {
|
|
const bool is_inside_begin_t = (bool)(block_flags&4);
|
|
if (!is_inside_begin_t) code.swap(code_begin_t);
|
|
arg1 = compile(s1,se1,depth1,p_ref,4);
|
|
if (!is_inside_begin_t) code.swap(code_begin_t);
|
|
_cimg_mp_return(arg1);
|
|
} else _cimg_mp_return_nan();
|
|
}
|
|
break;
|
|
|
|
case 'c' :
|
|
if (!std::strncmp(ss,"cabs(",5)) { // Complex absolute value
|
|
_cimg_mp_op("Function 'cabs()'");
|
|
arg1 = compile(ss5,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,0,3,2);
|
|
if (_cimg_mp_is_scalar(arg1)) _cimg_mp_scalar2(mp_complex_abs,arg1,0);
|
|
_cimg_mp_scalar2(mp_complex_abs,arg1 + 1,arg1 + 2);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"carg(",5)) { // Complex argument
|
|
_cimg_mp_op("Function 'carg()'");
|
|
arg1 = compile(ss5,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,0,3,2);
|
|
if (_cimg_mp_is_scalar(arg1)) _cimg_mp_scalar2(mp_atan2,0,arg1);
|
|
_cimg_mp_scalar2(mp_atan2,arg1 + 2,arg1 + 1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"cbrt(",5)) { // Cubic root
|
|
_cimg_mp_op("Function 'cbrt()'");
|
|
arg1 = compile(ss5,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_cbrt,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(cimg::cbrt(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_cbrt,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"cconj(",6)) { // Complex conjugate
|
|
_cimg_mp_op("Function 'cconj()'");
|
|
arg1 = compile(ss6,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,0,3,2);
|
|
pos = vector(2);
|
|
if (_cimg_mp_is_scalar(arg1)) CImg<ulongT>::vector((ulongT)mp_complex_conj,pos,arg1,0).move_to(code);
|
|
else CImg<ulongT>::vector((ulongT)mp_complex_conj,pos,arg1 + 1,arg1 + 2).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"ceil(",5)) { // Ceil
|
|
_cimg_mp_op("Function 'ceil()'");
|
|
arg1 = compile(ss5,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_ceil,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(std::ceil(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_ceil,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"cexp(",5)) { // Complex exponential
|
|
_cimg_mp_op("Function 'cexp()'");
|
|
arg1 = compile(ss5,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,0,3,2);
|
|
pos = vector(2);
|
|
if (_cimg_mp_is_scalar(arg1)) CImg<ulongT>::vector((ulongT)mp_complex_exp,pos,arg1,0).move_to(code);
|
|
else CImg<ulongT>::vector((ulongT)mp_complex_exp,pos,arg1 + 1,arg1 + 2).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"clog(",5)) { // Complex logarithm
|
|
_cimg_mp_op("Function 'clog()'");
|
|
arg1 = compile(ss5,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,0,3,2);
|
|
pos = vector(2);
|
|
if (_cimg_mp_is_scalar(arg1)) CImg<ulongT>::vector((ulongT)mp_complex_log,pos,arg1,0).move_to(code);
|
|
else CImg<ulongT>::vector((ulongT)mp_complex_log,pos,arg1 + 1,arg1 + 2).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"ccos(",5)) { // Complex cosine
|
|
_cimg_mp_op("Function 'ccos()'");
|
|
arg1 = compile(ss5,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,0,3,2);
|
|
pos = vector(2);
|
|
if (_cimg_mp_is_scalar(arg1)) CImg<ulongT>::vector((ulongT)mp_complex_cos,pos,arg1,0).move_to(code);
|
|
else CImg<ulongT>::vector((ulongT)mp_complex_cos,pos,arg1 + 1,arg1 + 2).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"csin(",5)) { // Complex sine
|
|
_cimg_mp_op("Function 'csin()'");
|
|
arg1 = compile(ss5,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,0,3,2);
|
|
pos = vector(2);
|
|
if (_cimg_mp_is_scalar(arg1)) CImg<ulongT>::vector((ulongT)mp_complex_sin,pos,arg1,0).move_to(code);
|
|
else CImg<ulongT>::vector((ulongT)mp_complex_sin,pos,arg1 + 1,arg1 + 2).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"ctan(",5)) { // Complex tangent
|
|
_cimg_mp_op("Function 'ctan()'");
|
|
arg1 = compile(ss5,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,0,3,2);
|
|
pos = vector(2);
|
|
if (_cimg_mp_is_scalar(arg1)) CImg<ulongT>::vector((ulongT)mp_complex_tan,pos,arg1,0).move_to(code);
|
|
else CImg<ulongT>::vector((ulongT)mp_complex_tan,pos,arg1 + 1,arg1 + 2).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"ccosh(",6)) { // Complex hyperbolic cosine
|
|
_cimg_mp_op("Function 'ccosh()'");
|
|
arg1 = compile(ss6,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,0,3,2);
|
|
pos = vector(2);
|
|
if (_cimg_mp_is_scalar(arg1)) CImg<ulongT>::vector((ulongT)mp_complex_cosh,pos,arg1,0).move_to(code);
|
|
else CImg<ulongT>::vector((ulongT)mp_complex_cosh,pos,arg1 + 1,arg1 + 2).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"csinh(",6)) { // Complex hyperbolic sine
|
|
_cimg_mp_op("Function 'csinh()'");
|
|
arg1 = compile(ss6,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,0,3,2);
|
|
pos = vector(2);
|
|
if (_cimg_mp_is_scalar(arg1)) CImg<ulongT>::vector((ulongT)mp_complex_sinh,pos,arg1,0).move_to(code);
|
|
else CImg<ulongT>::vector((ulongT)mp_complex_sinh,pos,arg1 + 1,arg1 + 2).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"ctanh(",6)) { // Complex hyperbolic tangent
|
|
_cimg_mp_op("Function 'ctanh()'");
|
|
arg1 = compile(ss6,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,0,3,2);
|
|
pos = vector(2);
|
|
if (_cimg_mp_is_scalar(arg1)) CImg<ulongT>::vector((ulongT)mp_complex_tanh,pos,arg1,0).move_to(code);
|
|
else CImg<ulongT>::vector((ulongT)mp_complex_tanh,pos,arg1 + 1,arg1 + 2).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"continue(",9)) { // Continue loop
|
|
if (pexpr[se2 - expr._data]=='(') { // no arguments?
|
|
CImg<ulongT>::vector((ulongT)mp_continue,_cimg_mp_slot_nan).move_to(code);
|
|
_cimg_mp_return_nan();
|
|
}
|
|
}
|
|
|
|
if (!std::strncmp(ss,"copy(",5)) { // Memory copy
|
|
_cimg_mp_op("Function 'copy()'");
|
|
ref.assign(14);
|
|
s1 = ss5; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = p1 = compile(ss5,s1,depth1,ref,block_flags);
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg2 = compile(s1,s2,depth1,ref._data + 7,block_flags);
|
|
arg3 = arg4 = arg5 = ~0U; arg6 = 1;
|
|
if (s2<se1) {
|
|
s3 = ++s2; while (s3<se1 && (*s3!=',' || level[s3 - expr._data]!=clevel1)) ++s3;
|
|
arg3 = compile(s2,s3,depth1,0,block_flags);
|
|
if (s3<se1) {
|
|
s1 = ++s3; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg4 = compile(s3,s1,depth1,0,block_flags);
|
|
if (s1<se1) {
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg5 = compile(s1,s2,depth1,0,block_flags);
|
|
arg6 = s2<se1?compile(++s2,se1,depth1,0,block_flags):1;
|
|
}
|
|
}
|
|
}
|
|
if (_cimg_mp_is_vector(arg1)) {
|
|
if (!ref[0]) ++arg1;
|
|
else if (ref[0]>=4 && arg4==~0U) arg4 = scalar1(mp_image_whd,ref[1]);
|
|
}
|
|
if (_cimg_mp_is_vector(arg2)) {
|
|
if (arg3==~0U) arg3 = const_scalar(_cimg_mp_size(arg2));
|
|
if (!ref[7]) ++arg2;
|
|
if (ref[7]>=4 && arg5==~0U) arg5 = scalar1(mp_image_whd,ref[8]);
|
|
}
|
|
if (arg3==~0U) arg3 = 1;
|
|
if (arg4==~0U) arg4 = 1;
|
|
if (arg5==~0U) arg5 = 1;
|
|
_cimg_mp_check_type(arg3,3,1,0);
|
|
_cimg_mp_check_type(arg4,4,1,0);
|
|
_cimg_mp_check_type(arg5,5,1,0);
|
|
_cimg_mp_check_type(arg6,5,1,0);
|
|
CImg<ulongT>(1,22).move_to(code);
|
|
code.back().get_shared_rows(0,7).fill((ulongT)mp_memcopy,p1,arg1,arg2,arg3,arg4,arg5,arg6);
|
|
code.back().get_shared_rows(8,21).fill(ref);
|
|
_cimg_mp_return_nan();
|
|
}
|
|
|
|
if (!std::strncmp(ss,"cos(",4)) { // Cosine
|
|
_cimg_mp_op("Function 'cos()'");
|
|
arg1 = compile(ss4,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_cos,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(std::cos(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_cos,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"cosh(",5)) { // Hyperbolic cosine
|
|
_cimg_mp_op("Function 'cosh()'");
|
|
arg1 = compile(ss5,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_cosh,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(std::cosh(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_cosh,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"cov(",4)) { // Covariance
|
|
_cimg_mp_op("Function 'cov()'");
|
|
s1 = ss4; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss4,s1,depth1,0,block_flags);
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg2 = compile(s1,s2,depth1,0,block_flags);
|
|
arg3 = arg4 = ~0U;
|
|
if (s2<se1) {
|
|
s1 = ++s2; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg3 = compile(s2,s1,depth1,0,block_flags);
|
|
arg4 = s1<se1?compile(++s1,se1,depth1,0,block_flags):~0U;
|
|
}
|
|
_cimg_mp_check_type(arg2,2,_cimg_mp_is_scalar(arg1)?1:2,_cimg_mp_size(arg1));
|
|
if (arg3!=~0U) _cimg_mp_check_type(arg3,3,1,0);
|
|
if (arg4!=~0U) _cimg_mp_check_type(arg4,4,1,0);
|
|
if (arg3==~0U && arg4==~0U && _cimg_mp_size(arg1)<2) _cimg_mp_const_scalar(0);
|
|
_cimg_mp_scalar5(mp_cov,arg1,arg2,_cimg_mp_size(arg1),arg3,arg4);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"critical(",9)) { // Critical section (single thread at a time)
|
|
_cimg_mp_op("Function 'critical()'");
|
|
p1 = code._width;
|
|
arg1 = compile(ss + 9,se1,depth1,p_ref,block_flags | 1);
|
|
CImg<ulongT>::vector((ulongT)mp_critical,arg1,code._width - p1).move_to(code,p1);
|
|
_cimg_mp_return(arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"crop(",5)) { // Image or vector crop
|
|
_cimg_mp_op("Function 'crop()'");
|
|
is_sth = false; // is image crop ?
|
|
if (*ss5=='#') { // Index specified
|
|
s0 = ss6; while (s0<se1 && (*s0!=',' || level[s0 - expr._data]!=clevel1)) ++s0;
|
|
p1 = compile(ss6,s0++,depth1,0,block_flags);
|
|
pos = 2;
|
|
is_sth = true;
|
|
_cimg_mp_check_list();
|
|
} else { p1 = ~0U; s0 = ss5; need_input_copy = true; pos = 1; }
|
|
if (s0<se1) for (s = s0; s<se; ++s, ++pos) {
|
|
ns = s; while (ns<se && (*ns!=',' || level[ns - expr._data]!=clevel1) &&
|
|
(*ns!=')' || level[ns - expr._data]!=clevel)) ++ns;
|
|
arg1 = compile(s,ns,depth1,0,block_flags);
|
|
if (pos==1 && _cimg_mp_is_scalar(arg1)) is_sth = true;
|
|
else if (pos>1) _cimg_mp_check_type(arg1,pos,1,0);
|
|
CImg<ulongT>::vector(arg1).move_to(l_opcode);
|
|
s = ns;
|
|
}
|
|
(l_opcode>'y').move_to(opcode);
|
|
|
|
if (!opcode || is_sth) { // Image crop
|
|
arg1 = 0; arg2 = (p1!=~0U);
|
|
switch (opcode._height) {
|
|
case 0 : case 1 :
|
|
CImg<ulongT>::vector(0,0,0,0,~0U,~0U,~0U,~0U,0).move_to(opcode);
|
|
break;
|
|
case 2 :
|
|
CImg<ulongT>::vector(*opcode,0,0,0,opcode[1],~0U,~0U,~0U,_cimg_mp_boundary).move_to(opcode);
|
|
arg1 = 2 + arg2; break;
|
|
case 3 :
|
|
CImg<ulongT>::vector(*opcode,0,0,0,opcode[1],~0U,~0U,~0U,opcode[2]).move_to(opcode);
|
|
arg1 = 2 + arg2; break;
|
|
case 4 :
|
|
CImg<ulongT>::vector(*opcode,opcode[1],0,0,opcode[2],opcode[3],~0U,~0U,_cimg_mp_boundary).
|
|
move_to(opcode);
|
|
arg1 = 3 + arg2; break;
|
|
case 5 :
|
|
CImg<ulongT>::vector(*opcode,opcode[1],0,0,opcode[2],opcode[3],~0U,~0U,opcode[4]).
|
|
move_to(opcode);
|
|
arg1 = 3 + arg2; break;
|
|
case 6 :
|
|
CImg<ulongT>::vector(*opcode,opcode[1],opcode[2],0,opcode[3],opcode[4],opcode[5],~0U,
|
|
_cimg_mp_boundary).move_to(opcode);
|
|
arg1 = 4 + arg2; break;
|
|
case 7 :
|
|
CImg<ulongT>::vector(*opcode,opcode[1],opcode[2],0,opcode[3],opcode[4],opcode[5],~0U,
|
|
opcode[6]).move_to(opcode);
|
|
arg1 = 4 + arg2; break;
|
|
case 8 :
|
|
CImg<ulongT>::vector(*opcode,opcode[1],opcode[2],opcode[3],opcode[4],opcode[5],opcode[6],
|
|
opcode[7],_cimg_mp_boundary).move_to(opcode);
|
|
arg1 = 5 + arg2; break;
|
|
case 9 :
|
|
arg1 = 5 + arg2; break;
|
|
default : // Error -> too much arguments
|
|
_cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Too much arguments specified, "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,s0);
|
|
}
|
|
|
|
if (opcode[4]!=(ulongT)~0U) {
|
|
_cimg_mp_check_const_scalar((unsigned int)opcode[4],arg1,3);
|
|
opcode[4] = (ulongT)mem[opcode[4]];
|
|
}
|
|
if (opcode[5]!=(ulongT)~0U) {
|
|
_cimg_mp_check_const_scalar((unsigned int)opcode[5],arg1 + 1,3);
|
|
opcode[5] = (ulongT)mem[opcode[5]];
|
|
}
|
|
if (opcode[6]!=(ulongT)~0U) {
|
|
_cimg_mp_check_const_scalar((unsigned int)opcode[6],arg1 + 2,3);
|
|
opcode[6] = (ulongT)mem[opcode[6]];
|
|
}
|
|
if (opcode[7]!=(ulongT)~0U) {
|
|
_cimg_mp_check_const_scalar((unsigned int)opcode[7],arg1 + 3,3);
|
|
opcode[7] = (ulongT)mem[opcode[7]];
|
|
}
|
|
_cimg_mp_check_type((unsigned int)opcode[8],arg1 + 4,1,0);
|
|
|
|
if (opcode[4]==(ulongT)~0U || opcode[5]==(ulongT)~0U ||
|
|
opcode[6]==(ulongT)~0U || opcode[7]==(ulongT)~0U) {
|
|
p2 = 0;
|
|
if (p1!=~0U) {
|
|
_cimg_mp_check_const_scalar(p1,1,1);
|
|
p2 = (unsigned int)cimg::mod((int)mem[p1],imglist.width());
|
|
}
|
|
const CImg<T> &img = p1!=~0U?imglist[p2]:imgin;
|
|
if (!img) {
|
|
_cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Cannot crop empty image when "
|
|
"some xyzc-coordinates are unspecified, in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,s0);
|
|
}
|
|
if (opcode[4]==(ulongT)~0U) opcode[4] = (ulongT)img._width;
|
|
if (opcode[5]==(ulongT)~0U) opcode[5] = (ulongT)img._height;
|
|
if (opcode[6]==(ulongT)~0U) opcode[6] = (ulongT)img._depth;
|
|
if (opcode[7]==(ulongT)~0U) opcode[7] = (ulongT)img._spectrum;
|
|
}
|
|
|
|
pos = vector((unsigned int)(opcode[4]*opcode[5]*opcode[6]*opcode[7]));
|
|
CImg<ulongT>::vector((ulongT)mp_image_crop,
|
|
pos,p1, // 1-2: res,#ind
|
|
*opcode,opcode[1],opcode[2],opcode[3], // 3-6: x,y,z,c
|
|
opcode[4],opcode[5],opcode[6],opcode[7], // 7-10: dx,dy,dz,dc
|
|
opcode[8]).move_to(code); // 11: boundary conditions
|
|
|
|
} else { // Vector crop
|
|
switch (opcode._height) {
|
|
case 5 : case 6 :
|
|
CImg<ulongT>::vector(*opcode,opcode[1],opcode[2],opcode[3],opcode[4],
|
|
0,0,0,0,~0U,~0U,~0U,~0U,0).move_to(opcode);
|
|
break;
|
|
case 7 :
|
|
CImg<ulongT>::vector(*opcode,opcode[1],opcode[2],opcode[3],opcode[4],
|
|
opcode[5],0,0,0,opcode[6],~0U,~0U,~0U,_cimg_mp_boundary).move_to(opcode);
|
|
arg1 = 7; break;
|
|
case 8 :
|
|
CImg<ulongT>::vector(*opcode,opcode[1],opcode[2],opcode[3],opcode[4],
|
|
opcode[5],0,0,0,opcode[6],~0U,~0U,~0U,opcode[7]).move_to(opcode);
|
|
arg1 = 7; break;
|
|
case 9 :
|
|
CImg<ulongT>::vector(*opcode,opcode[1],opcode[2],opcode[3],opcode[4],
|
|
opcode[5],opcode[6],0,0,opcode[7],opcode[8],~0U,~0U,_cimg_mp_boundary).
|
|
move_to(opcode);
|
|
arg1 = 8; break;
|
|
case 10 :
|
|
CImg<ulongT>::vector(*opcode,opcode[1],opcode[2],opcode[3],opcode[4],
|
|
opcode[5],opcode[6],0,0,opcode[7],opcode[8],~0U,~0U,opcode[9]).
|
|
move_to(opcode);
|
|
arg1 = 8; break;
|
|
case 11 :
|
|
CImg<ulongT>::vector(*opcode,opcode[1],opcode[2],opcode[3],opcode[4],
|
|
opcode[5],opcode[6],opcode[7],0,opcode[8],opcode[9],opcode[10],~0U,
|
|
_cimg_mp_boundary).move_to(opcode);
|
|
arg1 = 9; break;
|
|
case 12 :
|
|
CImg<ulongT>::vector(*opcode,opcode[1],opcode[2],opcode[3],opcode[4],
|
|
opcode[5],opcode[6],opcode[7],0,opcode[8],opcode[9],opcode[10],~0U,
|
|
opcode[11]).move_to(opcode);
|
|
arg1 = 9; break;
|
|
case 13 :
|
|
CImg<ulongT>::vector(*opcode,opcode[1],opcode[2],opcode[3],opcode[4],
|
|
opcode[5],opcode[6],opcode[7],opcode[8],opcode[9],opcode[10],opcode[11],
|
|
opcode[12],_cimg_mp_boundary).move_to(opcode);
|
|
arg1 = 10; break;
|
|
case 14 :
|
|
arg1 = 10; break;
|
|
default : // Error -> too few or too much arguments
|
|
_cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Too %s arguments specified, "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
opcode._height<5?"few":"much",s0);
|
|
}
|
|
|
|
_cimg_mp_check_const_scalar((unsigned int)opcode[1],2,3); // w
|
|
opcode[1] = (ulongT)mem[opcode[1]];
|
|
_cimg_mp_check_const_scalar((unsigned int)opcode[2],3,3); // h
|
|
opcode[2] = (ulongT)mem[opcode[2]];
|
|
_cimg_mp_check_const_scalar((unsigned int)opcode[3],4,3); // d
|
|
opcode[3] = (ulongT)mem[opcode[3]];
|
|
_cimg_mp_check_const_scalar((unsigned int)opcode[4],5,3); // s
|
|
opcode[4] = (ulongT)mem[opcode[4]];
|
|
p1 = _cimg_mp_size((unsigned int)opcode[0]);
|
|
arg2 = (unsigned int)opcode[1];
|
|
arg3 = (unsigned int)opcode[2];
|
|
arg4 = (unsigned int)opcode[3];
|
|
arg5 = (unsigned int)opcode[4];
|
|
if (arg2*arg3*arg4*arg5!=p1)
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Input vector size (%lu values) and its specified "
|
|
"geometry (%u,%u,%u,%u) (%lu values) do not match.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
p1,arg2,arg3,arg4,arg5,(ulongT)arg2*arg3*arg4*arg5);
|
|
|
|
if (opcode[9]!=(ulongT)~0U) {
|
|
_cimg_mp_check_const_scalar((unsigned int)opcode[9],arg1,3);
|
|
opcode[9] = (ulongT)mem[opcode[9]];
|
|
} else opcode[9] = opcode[1];
|
|
if (opcode[10]!=(ulongT)~0U) {
|
|
_cimg_mp_check_const_scalar((unsigned int)opcode[10],arg1 + 1,3);
|
|
opcode[10] = (ulongT)mem[opcode[10]];
|
|
} else opcode[10] = opcode[2];
|
|
if (opcode[11]!=(ulongT)~0U) {
|
|
_cimg_mp_check_const_scalar((unsigned int)opcode[11],arg1 + 2,3);
|
|
opcode[11] = (ulongT)mem[opcode[11]];
|
|
} else opcode[11] = opcode[3];
|
|
if (opcode[12]!=(ulongT)~0U) {
|
|
_cimg_mp_check_const_scalar((unsigned int)opcode[12],arg1 + 3,3);
|
|
opcode[12] = (ulongT)mem[opcode[12]];
|
|
} else opcode[12] = opcode[4];
|
|
_cimg_mp_check_type((unsigned int)opcode[13],arg1 + 4,1,0);
|
|
|
|
pos = vector((unsigned int)(opcode[9]*opcode[10]*opcode[11]*opcode[12]));
|
|
CImg<ulongT>::vector((ulongT)mp_vector_crop_ext,
|
|
pos,*opcode, // 1-2: res,S
|
|
opcode[1],opcode[2],opcode[3],opcode[4], // 3-6: w,h,d,s
|
|
opcode[5],opcode[6],opcode[7],opcode[8], // 7-10: x,y,z,c
|
|
opcode[9],opcode[10],opcode[11],opcode[12], // 11-14: dx,dy,dz,dc
|
|
opcode[13]).move_to(code); // 15: boundary conditions
|
|
}
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"cross(",6)) { // Cross product
|
|
_cimg_mp_op("Function 'cross()'");
|
|
s1 = ss6; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss6,s1,depth1,0,block_flags);
|
|
arg2 = compile(++s1,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,1,2,3);
|
|
_cimg_mp_check_type(arg2,2,2,3);
|
|
pos = vector(3);
|
|
CImg<ulongT>::vector((ulongT)mp_cross,pos,arg1,arg2).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"cut(",4)) { // Cut
|
|
_cimg_mp_op("Function 'cut()'");
|
|
s1 = ss4; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss4,s1,depth1,0,block_flags);
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg2 = compile(s1,s2,depth1,0,block_flags);
|
|
arg3 = compile(++s2,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg2,2,1,0);
|
|
_cimg_mp_check_type(arg3,3,1,0);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector3_vss(mp_cut,arg1,arg2,arg3);
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2) && _cimg_mp_is_const_scalar(arg3)) {
|
|
val = mem[arg1];
|
|
val1 = mem[arg2];
|
|
val2 = mem[arg3];
|
|
_cimg_mp_const_scalar(val<val1?val1:val>val2?val2:val);
|
|
}
|
|
_cimg_mp_scalar3(mp_cut,arg1,arg2,arg3);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"convolve(",9) || !std::strncmp(ss,"correlate(",10)) { // Convolve & Correlate
|
|
is_sth = *ss2=='n'; // is_convolve?
|
|
_cimg_mp_op(is_sth?"Function 'convolve()'":"Function 'correlate()'");
|
|
op = is_sth?mp_convolve:mp_correlate;
|
|
const ulongT default_params[] = { (ulongT)op,0, // [0]=function, [1]=result vector
|
|
0,0,0,0,0, // [2]=A, [3]=wA, [4]=hA, [5]=dA, [6]=sA
|
|
0,0,0,0,0, // [7]=M, [8]=wM, [9]=hM, [10]=dM, [11]=sM
|
|
1,0,1, // [12]=boundary_conditions, [13]=is_normalized, [14]=chan._mode
|
|
~0U,~0U,~0U, // [15]=xcenter, [16]=ycenter, [17]=zcenter
|
|
0,0,0, // [18]=xstart, [19]=ystart, [20]=zstart
|
|
~0U,~0U,~0U, // [21]=xend, [22]=yend, [23]=zend
|
|
1,1,1, // [24]=xstride, [25]=ystride, [26]=zstride
|
|
1,1,1, // [27]=xdilation, [28]=ydilation, [29]=zdilation,
|
|
0 }; // [30]=interpolation_type
|
|
|
|
l_opcode.assign(); // Don't use 'opcode': it could be modified by further calls to 'compile()'!
|
|
CImg<ulongT>(default_params,1,sizeof(default_params)/sizeof(ulongT)).move_to(l_opcode);
|
|
|
|
arg1 = 2;
|
|
for (s = std::strchr(ss,'(') + 1; s<se && arg1<l_opcode[0]._height; ++s) {
|
|
ns = s; while (ns<se && (*ns!=',' || level[ns - expr._data]!=clevel1) &&
|
|
(*ns!=')' || level[ns - expr._data]!=clevel)) ++ns;
|
|
l_opcode(0,arg1++) = compile(s,ns,depth1,0,block_flags);
|
|
s = ns;
|
|
}
|
|
l_opcode[0].move_to(opcode);
|
|
|
|
if (arg1<12 || arg1>opcode._height) {
|
|
_cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: %s arguments provided, in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
arg1<12?"Not enough":"Too much",s0);
|
|
}
|
|
_cimg_mp_check_type(opcode[2],1,2,0); // A
|
|
_cimg_mp_check_const_scalar(opcode[3],2,3); // wA
|
|
_cimg_mp_check_const_scalar(opcode[4],3,3); // hA
|
|
_cimg_mp_check_const_scalar(opcode[5],4,3); // dA
|
|
_cimg_mp_check_const_scalar(opcode[6],5,3); // sA
|
|
_cimg_mp_check_type(opcode[7],6,2,0); // M
|
|
_cimg_mp_check_const_scalar(opcode[8],7,3); // wM
|
|
_cimg_mp_check_const_scalar(opcode[9],8,3); // hM
|
|
_cimg_mp_check_const_scalar(opcode[10],9,3); // dM
|
|
_cimg_mp_check_const_scalar(opcode[11],10,3); // sM
|
|
_cimg_mp_check_type(opcode[12],11,1,0); // boundary_conditions
|
|
_cimg_mp_check_type(opcode[13],12,1,0); // is_normalized
|
|
_cimg_mp_check_const_scalar(opcode[14],13,1); // channel_mode
|
|
if (opcode[15]!=~0U) _cimg_mp_check_type(opcode[15],14,1,0); // xcenter
|
|
if (opcode[16]!=~0U) _cimg_mp_check_type(opcode[16],15,1,0); // ycenter
|
|
if (opcode[17]!=~0U) _cimg_mp_check_type(opcode[17],16,1,0); // zcenter
|
|
_cimg_mp_check_const_scalar(opcode[18],17,1); // xstart
|
|
_cimg_mp_check_const_scalar(opcode[19],18,1); // ystart
|
|
_cimg_mp_check_const_scalar(opcode[20],19,1); // zstart
|
|
if (opcode[21]!=~0U) _cimg_mp_check_const_scalar(opcode[21],20,1); // xend
|
|
if (opcode[22]!=~0U) _cimg_mp_check_const_scalar(opcode[22],21,1); // yend
|
|
if (opcode[23]!=~0U) _cimg_mp_check_const_scalar(opcode[23],22,1); // zend
|
|
_cimg_mp_check_const_scalar(opcode[24],23,0); // xstride
|
|
_cimg_mp_check_const_scalar(opcode[25],24,0); // ystride
|
|
_cimg_mp_check_const_scalar(opcode[26],25,0); // zstride
|
|
_cimg_mp_check_type(opcode[27],26,1,0); // xdilation
|
|
_cimg_mp_check_type(opcode[28],27,1,0); // ydilation
|
|
_cimg_mp_check_type(opcode[29],28,1,0); // zdilation
|
|
_cimg_mp_check_type(opcode[30],29,1,0); // interpolation_type
|
|
|
|
const unsigned int
|
|
wA = (unsigned int)mem[opcode[3]],
|
|
hA = (unsigned int)mem[opcode[4]],
|
|
dA = (unsigned int)mem[opcode[5]],
|
|
sA = (unsigned int)mem[opcode[6]],
|
|
wM = (unsigned int)mem[opcode[8]],
|
|
hM = (unsigned int)mem[opcode[9]],
|
|
dM = (unsigned int)mem[opcode[10]],
|
|
sM = (unsigned int)mem[opcode[11]],
|
|
channel_mode = (unsigned int)mem[opcode[14]];
|
|
const int
|
|
xstart = (int)mem[opcode[18]],
|
|
ystart = (int)mem[opcode[19]],
|
|
zstart = (int)mem[opcode[20]],
|
|
xend = opcode[21]!=~0U?(int)mem[opcode[21]]:wA - 1,
|
|
yend = opcode[22]!=~0U?(int)mem[opcode[22]]:hA - 1,
|
|
zend = opcode[23]!=~0U?(int)mem[opcode[23]]:dA - 1;
|
|
|
|
if (xstart>xend || ystart>yend || zstart>zend) {
|
|
_cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Invalid xyz-start/end arguments "
|
|
"(start = (%d,%d,%d), end = (%d,%d,%d)), in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
xstart,ystart,zstart,xend,yend,zend,s0);
|
|
}
|
|
|
|
const float
|
|
xstride = (float)mem[opcode[24]],
|
|
ystride = (float)mem[opcode[25]],
|
|
zstride = (float)mem[opcode[26]];
|
|
|
|
if (xstride<=0 || ystride<=0 || zstride<=0) {
|
|
_cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Invalid stride arguments (%g,%g,%g), "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
xstride,ystride,zstride,s0);
|
|
}
|
|
|
|
arg2 = xend - xstart + 1;
|
|
arg3 = yend - ystart + 1;
|
|
arg4 = zend - zstart + 1;
|
|
arg5 = !channel_mode?sA*sM:channel_mode==1?std::max(sA,sM):
|
|
channel_mode==2?std::max(sA,sM)/std::min(sA,sM):1U;
|
|
|
|
opcode[1] = pos = vector(arg2*arg3*arg4*arg5);
|
|
opcode[3] = (ulongT)wA;
|
|
opcode[4] = (ulongT)hA;
|
|
opcode[5] = (ulongT)dA;
|
|
opcode[6] = (ulongT)sA;
|
|
opcode[8] = (ulongT)wM;
|
|
opcode[9] = (ulongT)hM;
|
|
opcode[10] = (ulongT)dM;
|
|
opcode[11] = (ulongT)sM;
|
|
opcode[14] = (ulongT)channel_mode;
|
|
opcode[18] = (ulongT)xstart;
|
|
opcode[19] = (ulongT)ystart;
|
|
opcode[20] = (ulongT)zstart;
|
|
opcode[21] = (ulongT)xend;
|
|
opcode[22] = (ulongT)yend;
|
|
opcode[23] = (ulongT)zend;
|
|
opcode.move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
break;
|
|
|
|
case 'd' :
|
|
if (*ss1=='(') { // Image depth
|
|
_cimg_mp_op("Function 'd()'");
|
|
if (*ss2=='#') { // Index specified
|
|
p1 = compile(ss3,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_list();
|
|
} else { if (ss2!=se1) break; p1 = ~0U; }
|
|
_cimg_mp_scalar1(mp_image_d,p1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"da_back(",8) ||
|
|
!std::strncmp(ss,"da_pop(",7)) { // Get latest element in a dynamic array
|
|
if (!is_inside_critical) is_parallelizable = false;
|
|
const bool is_pop = *ss3=='p';
|
|
_cimg_mp_op(is_pop?"Function 'da_pop()'":"Function 'da_back()'");
|
|
s0 = ss + (is_pop?7:8);
|
|
if (*s0=='#') { // Index specified
|
|
s1 = ++s0; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
p1 = compile(s0,s1++,depth1,0,block_flags);
|
|
} else { p1 = 11; s1 = s0; }
|
|
_cimg_mp_check_list();
|
|
_cimg_mp_check_const_scalar(p1,1,1);
|
|
p3 = (unsigned int)cimg::mod((int)mem[p1],imglist.width());
|
|
p2 = imglist[p3]._spectrum;
|
|
if (p2>1) pos = vector(p2); else pos = scalar(); // Return vector or scalar result
|
|
CImg<ulongT>::vector((ulongT)mp_da_back_or_pop,pos,p2,p1,is_pop).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"da_insert(",10) ||
|
|
!std::strncmp(ss,"da_push(",8)) { // Insert element(s) in a dynamic array
|
|
if (!is_inside_critical) is_parallelizable = false;
|
|
const bool is_push = *ss3=='p';
|
|
_cimg_mp_op(is_push?"Function 'da_push()'":"Function 'da_insert()'");
|
|
s0 = ss + (is_push?8:10);
|
|
if (*s0=='#') { // Index specified
|
|
s1 = ++s0; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
p1 = compile(s0,s1++,depth1,0,block_flags);
|
|
} else { p1 = 11; s1 = s0; }
|
|
_cimg_mp_check_list();
|
|
|
|
if (!is_push) {
|
|
s0 = s1; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(s0,s1++,depth1,0,block_flags); // Position
|
|
} else arg1 = ~0U;
|
|
|
|
CImg<ulongT>::vector((ulongT)mp_da_insert_or_push,_cimg_mp_slot_nan,p1,arg1,0,0).move_to(l_opcode);
|
|
p3 = p1==~0U?2:3;
|
|
p1 = ~0U;
|
|
for (s = s1; s<se; ++s) {
|
|
ns = s; while (ns<se && (*ns!=',' || level[ns - expr._data]!=clevel1) &&
|
|
(*ns!=')' || level[ns - expr._data]!=clevel)) ++ns;
|
|
arg2 = compile(s,ns,depth1,0,block_flags); // Element
|
|
p2 = _cimg_mp_size(arg2);
|
|
if (p1==~0U) p1 = p2;
|
|
else {
|
|
if (!p1) _cimg_mp_check_type(arg2,p3,1,0);
|
|
else _cimg_mp_check_type(arg2,p3,2,p1);
|
|
}
|
|
CImg<ulongT>::vector(arg2).move_to(l_opcode);
|
|
s = ns;
|
|
++p3;
|
|
}
|
|
if (p1==~0U) compile(++s1,se1,depth1,0,block_flags); // Missing element -> error
|
|
(l_opcode>'y').move_to(opcode);
|
|
opcode[4] = p1;
|
|
opcode[5] = opcode._height;
|
|
opcode.move_to(code);
|
|
_cimg_mp_return_nan();
|
|
}
|
|
|
|
if (!std::strncmp(ss,"da_freeze(",10)) { // Freeze dynamic array
|
|
if (!is_inside_critical) is_parallelizable = false;
|
|
_cimg_mp_op("Function 'da_freeze()'");
|
|
s0 = ss + 10;
|
|
if (*s0=='#') { // Index specified
|
|
s1 = ++s0; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
p1 = compile(s0,s1++,depth1,0,block_flags);
|
|
} else { p1 = 11; s1 = s0; }
|
|
_cimg_mp_check_list();
|
|
CImg<ulongT>::vector((ulongT)mp_da_freeze,_cimg_mp_slot_nan,p1).move_to(code);
|
|
_cimg_mp_return_nan();
|
|
}
|
|
|
|
if (!std::strncmp(ss,"da_remove(",10)) { // Remove element(s) in a dynamic array
|
|
if (!is_inside_critical) is_parallelizable = false;
|
|
_cimg_mp_op("Function 'da_remove()'");
|
|
if (ss[10]=='#') { // Index specified
|
|
s0 = ss + 11; while (s0<se1 && (*s0!=',' || level[s0 - expr._data]!=clevel1)) ++s0;
|
|
p1 = compile(ss + 11,s0++,depth1,0,block_flags);
|
|
} else { p1 = 11; s0 = ss + 10; }
|
|
_cimg_mp_check_list();
|
|
|
|
arg1 = arg2 = ~0U;
|
|
if (s0<se1) {
|
|
s1 = s0; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(s0,s1,depth1,0,block_flags); // Starting position
|
|
arg2 = s1<se1?compile(++s1,se1,depth1,0,block_flags):~0U; // Ending position
|
|
}
|
|
CImg<ulongT>::vector((ulongT)mp_da_remove,_cimg_mp_slot_nan,p1,arg1,arg2).move_to(code);
|
|
_cimg_mp_return_nan();
|
|
}
|
|
|
|
if (!std::strncmp(ss,"da_size(",8)) { // Size of a dynamic array
|
|
if (!is_inside_critical) is_parallelizable = false;
|
|
_cimg_mp_op("Function 'da_size()'");
|
|
if (ss[8]=='#') { // Index specified
|
|
s0 = ss + 9; while (s0<se1 && (*s0!=',' || level[s0 - expr._data]!=clevel1)) ++s0;
|
|
p1 = compile(ss + 9,s0++,depth1,0,block_flags);
|
|
} else { p1 = 11; s0 = ss + 8; }
|
|
_cimg_mp_check_list();
|
|
_cimg_mp_scalar1(mp_da_size,p1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"date(",5)) { // Current date or file date
|
|
_cimg_mp_op("Function 'date()'");
|
|
s1 = ss5; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = ss5!=se1?compile(ss5,s1,depth1,0,block_flags):~0U;
|
|
arg2 = s1<se1?compile(++s1,se1,depth1,0,block_flags):~0U;
|
|
if (arg2!=~0U) _cimg_mp_check_type(arg2,1,2,0);
|
|
pos = arg1==~0U || _cimg_mp_is_vector(arg1)?vector(arg1==~0U?7:_cimg_mp_size(arg1)):scalar();
|
|
CImg<ulongT>::vector((ulongT)mp_date,pos,_cimg_mp_size(pos),
|
|
arg1,arg1==~0U?~0U:_cimg_mp_size(arg1),
|
|
arg2,arg2==~0U?~0U:_cimg_mp_size(arg2)).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"debug(",6)) { // Print debug info
|
|
_cimg_mp_op("Function 'debug()'");
|
|
p1 = code._width;
|
|
arg1 = compile(ss6,se1,depth1,p_ref,block_flags);
|
|
*se1 = 0;
|
|
variable_name.assign(CImg<charT>::string(ss6,true,true).unroll('y'),true);
|
|
cimg::strpare(variable_name,false,true);
|
|
((CImg<ulongT>::vector((ulongT)mp_debug,arg1,0,code._width - p1),
|
|
variable_name)>'y').move_to(opcode);
|
|
opcode[2] = opcode._height;
|
|
opcode.move_to(code,p1);
|
|
*se1 = ')';
|
|
_cimg_mp_return(arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"deg2rad(",8)) { // Degrees to radians
|
|
_cimg_mp_op("Function 'deg2rad()'");
|
|
arg1 = compile(ss8,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_deg2rad,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(mem[arg1]*cimg::PI/180);
|
|
_cimg_mp_scalar1(mp_deg2rad,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"display(",8)) { // Display memory, vector or image
|
|
_cimg_mp_op("Function 'display()'");
|
|
if (pexpr[se2 - expr._data]=='(') { // no arguments?
|
|
CImg<ulongT>::vector((ulongT)mp_display_memory,_cimg_mp_slot_nan).move_to(code);
|
|
_cimg_mp_return_nan();
|
|
}
|
|
if (*ss8!='#') { // Vector
|
|
s1 = ss8; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss8,s1,depth1,0,block_flags);
|
|
arg2 = 0; arg3 = arg4 = arg5 = 1;
|
|
if (s1<se1) {
|
|
s2 = s1 + 1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg2 = compile(s1 + 1,s2,depth1,0,block_flags);
|
|
if (s2<se1) {
|
|
s3 = ++s2; while (s3<se1 && (*s3!=',' || level[s3 - expr._data]!=clevel1)) ++s3;
|
|
arg3 = compile(s2,s3,depth1,0,block_flags);
|
|
if (s3<se1) {
|
|
s2 = ++s3; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg4 = compile(s3,s2,depth1,0,block_flags);
|
|
arg5 = s2<se1?compile(++s2,se1,depth1,0,block_flags):0;
|
|
}
|
|
}
|
|
}
|
|
_cimg_mp_check_type(arg2,2,1,0);
|
|
_cimg_mp_check_type(arg3,3,1,0);
|
|
_cimg_mp_check_type(arg4,4,1,0);
|
|
_cimg_mp_check_type(arg5,5,1,0);
|
|
|
|
c1 = *s1; *s1 = 0;
|
|
variable_name.assign(CImg<charT>::string(ss8,true,true).unroll('y'),true);
|
|
cimg::strpare(variable_name,false,true);
|
|
if (_cimg_mp_is_vector(arg1))
|
|
((CImg<ulongT>::vector((ulongT)mp_vector_print,arg1,0,(ulongT)_cimg_mp_size(arg1),0),
|
|
variable_name)>'y').move_to(opcode);
|
|
else
|
|
((CImg<ulongT>::vector((ulongT)mp_print,arg1,0,0),
|
|
variable_name)>'y').move_to(opcode);
|
|
opcode[2] = opcode._height;
|
|
opcode.move_to(code);
|
|
|
|
((CImg<ulongT>::vector((ulongT)mp_display,arg1,0,(ulongT)_cimg_mp_size(arg1),
|
|
arg2,arg3,arg4,arg5),
|
|
variable_name)>'y').move_to(opcode);
|
|
opcode[2] = opcode._height;
|
|
opcode.move_to(code);
|
|
*s1 = c1;
|
|
_cimg_mp_return(arg1);
|
|
|
|
} else { // Image
|
|
p1 = compile(ss8 + 1,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_list();
|
|
CImg<ulongT>::vector((ulongT)mp_image_display,_cimg_mp_slot_nan,p1).move_to(code);
|
|
_cimg_mp_return_nan();
|
|
}
|
|
}
|
|
|
|
if (!std::strncmp(ss,"det(",4)) { // Matrix determinant
|
|
_cimg_mp_op("Function 'det()'");
|
|
arg1 = compile(ss4,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_matrix_square(arg1,1);
|
|
p1 = (unsigned int)cimg::round(std::sqrt((float)_cimg_mp_size(arg1)));
|
|
_cimg_mp_scalar2(mp_det,arg1,p1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"diag(",5)) { // Diagonal matrix
|
|
_cimg_mp_op("Function 'diag()'");
|
|
CImg<ulongT>::vector((ulongT)mp_diag,0,0).move_to(l_opcode);
|
|
for (s = ss5; s<se; ++s) {
|
|
ns = s; while (ns<se && (*ns!=',' || level[ns - expr._data]!=clevel1) &&
|
|
(*ns!=')' || level[ns - expr._data]!=clevel)) ++ns;
|
|
arg2 = compile(s,ns,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg2))
|
|
CImg<ulongT>::sequence(_cimg_mp_size(arg2),arg2 + 1,
|
|
arg2 + (ulongT)_cimg_mp_size(arg2)).
|
|
move_to(l_opcode);
|
|
else CImg<ulongT>::vector(arg2).move_to(l_opcode);
|
|
s = ns;
|
|
}
|
|
(l_opcode>'y').move_to(opcode);
|
|
arg1 = opcode._height - 3;
|
|
pos = vector(arg1*arg1);
|
|
opcode[1] = pos;
|
|
opcode[2] = opcode._height;
|
|
opcode.move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"dot(",4)) { // Dot product
|
|
_cimg_mp_op("Function 'dot()'");
|
|
s1 = ss4; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss4,s1,depth1,0,block_flags);
|
|
arg2 = compile(++s1,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) {
|
|
_cimg_mp_check_type(arg2,2,2,_cimg_mp_size(arg1));
|
|
_cimg_mp_scalar3(mp_dot,arg1,arg2,_cimg_mp_size(arg1));
|
|
}
|
|
_cimg_mp_check_type(arg2,2,1,0);
|
|
_cimg_mp_scalar2(mp_mul,arg1,arg2);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"do(",3)) { // Do..while
|
|
_cimg_mp_op("Function 'do()'");
|
|
s0 = *ss2=='('?ss3:ss8;
|
|
s1 = s0; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = code._width;
|
|
arg6 = mempos;
|
|
p1 = compile(s0,s1,depth1,0,block_flags); // Body
|
|
arg2 = code._width;
|
|
p2 = s1<se1?compile(++s1,se1,depth1,0,block_flags):p1; // Condition
|
|
_cimg_mp_check_type(p2,2,1,0);
|
|
CImg<ulongT>::vector((ulongT)mp_do,p1,p2,arg2 - arg1,code._width - arg2,_cimg_mp_size(p1),
|
|
p1>=arg6 && !_cimg_mp_is_const_scalar(p1),
|
|
p2>=arg6 && !_cimg_mp_is_const_scalar(p2)).move_to(code,arg1);
|
|
_cimg_mp_return(p1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"draw(",5)) { // Draw image
|
|
_cimg_mp_op("Function 'draw()'");
|
|
if (*ss5=='#') { // Index specified
|
|
s0 = ss6; while (s0<se1 && (*s0!=',' || level[s0 - expr._data]!=clevel1)) ++s0;
|
|
p1 = compile(ss6,s0++,depth1,0,block_flags);
|
|
_cimg_mp_check_list();
|
|
} else { p1 = ~0U; s0 = ss5; }
|
|
|
|
for (s = s0; s<se; ++s, ++pos) {
|
|
ns = s; while (ns<se && (*ns!=',' || level[ns - expr._data]!=clevel1) &&
|
|
(*ns!=')' || level[ns - expr._data]!=clevel)) ++ns;
|
|
arg1 = compile(s,ns,depth1,0,block_flags);
|
|
CImg<ulongT>::vector(arg1).move_to(l_opcode);
|
|
s = ns;
|
|
}
|
|
(l_opcode>'y').move_to(opcode);
|
|
|
|
is_sth = p1==~0U && opcode._height>5 && _cimg_mp_is_vector((unsigned int)opcode[5]); // Is vector drawing?
|
|
if ((is_sth && (opcode._height<6 || opcode._height>17)) ||
|
|
(!is_sth && (opcode._height<1 || opcode._height>12))) {
|
|
_cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Too %s arguments specified, "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
opcode._height>12?"much":"few",s0);
|
|
}
|
|
|
|
if (is_sth) { // Drawing in a vector
|
|
_cimg_mp_check_type((unsigned int)*opcode,1,2,0); // D
|
|
_cimg_mp_check_type((unsigned int)opcode[1],2,1,0); // w
|
|
_cimg_mp_check_type((unsigned int)opcode[2],3,1,0); // h
|
|
_cimg_mp_check_type((unsigned int)opcode[3],4,1,0); // d
|
|
_cimg_mp_check_type((unsigned int)opcode[4],5,1,0); // s
|
|
|
|
if (opcode._height<8 || (opcode._height<10 && _cimg_mp_is_vector((unsigned int)opcode[7]))) {
|
|
// D,w,h,d,s,S[,opac,M,maxM]
|
|
if (opcode._height>6) _cimg_mp_check_type((unsigned int)opcode[6],7,1,0); // opac
|
|
if (opcode._height>8) _cimg_mp_check_type((unsigned int)opcode[8],9,1,0); // maxM
|
|
CImg<ulongT>::vector((ulongT)mp_vector_draw,
|
|
*opcode,_cimg_mp_size((unsigned int)*opcode), // 1-2: D,sizD
|
|
opcode[1],opcode[2],opcode[3],opcode[4], // 3-6: w,h,d,s
|
|
opcode[5],_cimg_mp_size((unsigned int)opcode[5]), // 7-8: S,sizS
|
|
0,0,0,0, // 9-12: x,y,z,c
|
|
~0U,~0U,~0U,~0U, // 13-16: dx,dy,dz,dc
|
|
opcode._height<7?1:opcode[6], // 17: opac
|
|
opcode._height<8?~0U:opcode[7], // 18: M
|
|
opcode._height<8?0:_cimg_mp_size((unsigned int)opcode[7]), // 19: sizM
|
|
opcode._height<9?1:opcode[8]).move_to(code); // 20: maxM
|
|
} else if (opcode._height<10 || (opcode._height<12 && _cimg_mp_is_vector((unsigned int)opcode[9]))) {
|
|
// D,w,h,d,s,S,x,dx[,opac,M,maxM]
|
|
_cimg_mp_check_type((unsigned int)opcode[6],7,1,0); // x
|
|
_cimg_mp_check_type((unsigned int)opcode[7],8,1,0); // dx
|
|
if (opcode._height>8) _cimg_mp_check_type((unsigned int)opcode[8],9,1,0); // opac
|
|
if (opcode._height>10) _cimg_mp_check_type((unsigned int)opcode[10],11,1,0); // maxM
|
|
CImg<ulongT>::vector((ulongT)mp_vector_draw,
|
|
*opcode,_cimg_mp_size((unsigned int)*opcode), // 1-2: D,sizD
|
|
opcode[1],opcode[2],opcode[3],opcode[4], // 3-6: w,h,d,s
|
|
opcode[5],_cimg_mp_size((unsigned int)opcode[5]), // 7-8: S,sizS
|
|
opcode[6],0,0,0, // 9-12: x,y,z,c
|
|
opcode[7],~0U,~0U,~0U, // 13-16: dx,dy,dz,dc
|
|
opcode._height<9?1:opcode[8], // 17: opac
|
|
opcode._height<10?~0U:opcode[9], // 18: M
|
|
opcode._height<10?0:_cimg_mp_size((unsigned int)opcode[9]), // 19: sizM
|
|
opcode._height<11?1:opcode[10]).move_to(code); // 20: maxM
|
|
} else if (opcode._height<12 || (opcode._height<14 && _cimg_mp_is_vector((unsigned int)opcode[11]))) {
|
|
// D,w,h,d,s,S,x,y,dx,dy[,opac,M,maxM]
|
|
_cimg_mp_check_type((unsigned int)opcode[6],7,1,0); // x
|
|
_cimg_mp_check_type((unsigned int)opcode[7],8,1,0); // y
|
|
_cimg_mp_check_type((unsigned int)opcode[8],9,1,0); // dx
|
|
_cimg_mp_check_type((unsigned int)opcode[9],10,1,0); // dy
|
|
if (opcode._height>10) _cimg_mp_check_type((unsigned int)opcode[10],11,1,0); // opac
|
|
if (opcode._height>12) _cimg_mp_check_type((unsigned int)opcode[12],13,1,0); // maxM
|
|
CImg<ulongT>::vector((ulongT)mp_vector_draw,
|
|
*opcode,_cimg_mp_size((unsigned int)*opcode), // 1-2: D,sizD
|
|
opcode[1],opcode[2],opcode[3],opcode[4], // 3-6: w,h,d,s
|
|
opcode[5],_cimg_mp_size((unsigned int)opcode[5]), // 7-8: S,sizS
|
|
opcode[6],opcode[7],0,0, // 9-12: x,y,z,c
|
|
opcode[8],opcode[9],~0U,~0U, // 13-16: dx,dy,dz,dc
|
|
opcode._height<11?1:opcode[10], // 17: opac
|
|
opcode._height<12?~0U:opcode[11], // 18: M
|
|
opcode._height<12?0:_cimg_mp_size((unsigned int)opcode[11]), // 19: sizM
|
|
opcode._height<13?1:opcode[12]).move_to(code); // 20: maxM
|
|
} else if (opcode._height<14 || (opcode._height<16 && _cimg_mp_is_vector((unsigned int)opcode[13]))) {
|
|
// D,w,h,d,s,S,x,y,z,dx,dy,dz[,opac,M,maxM]
|
|
_cimg_mp_check_type((unsigned int)opcode[6],7,1,0); // x
|
|
_cimg_mp_check_type((unsigned int)opcode[7],8,1,0); // y
|
|
_cimg_mp_check_type((unsigned int)opcode[8],9,1,0); // z
|
|
_cimg_mp_check_type((unsigned int)opcode[9],10,1,0); // dx
|
|
_cimg_mp_check_type((unsigned int)opcode[10],11,1,0); // dy
|
|
_cimg_mp_check_type((unsigned int)opcode[11],12,1,0); // dz
|
|
if (opcode._height>12) _cimg_mp_check_type((unsigned int)opcode[12],13,1,0); // opac
|
|
if (opcode._height>14) _cimg_mp_check_type((unsigned int)opcode[14],15,1,0); // maxM
|
|
CImg<ulongT>::vector((ulongT)mp_vector_draw,
|
|
*opcode,_cimg_mp_size((unsigned int)*opcode), // 1-2: D,sizD
|
|
opcode[1],opcode[2],opcode[3],opcode[4], // 3-6: w,h,d,s
|
|
opcode[5],_cimg_mp_size((unsigned int)opcode[5]), // 7-8: S,sizS
|
|
opcode[6],opcode[7],opcode[8],0, // 9-12: x,y,z,c
|
|
opcode[9],opcode[10],opcode[11],~0U, // 13-16: dx,dy,dz,dc
|
|
opcode._height<13?1:opcode[12], // 17: opac
|
|
opcode._height<14?~0U:opcode[13], // 18: M
|
|
opcode._height<14?0:_cimg_mp_size((unsigned int)opcode[13]), // 19: sizM
|
|
opcode._height<15?1:opcode[14]).move_to(code); // 20: maxM
|
|
} else if (opcode._height<16 || (opcode._height<18 && _cimg_mp_is_vector((unsigned int)opcode[15]))) {
|
|
// D,w,h,d,s,S,x,y,z,c,dx,dy,dz,dc[,opac,M,maxM]
|
|
_cimg_mp_check_type((unsigned int)opcode[6],7,1,0); // x
|
|
_cimg_mp_check_type((unsigned int)opcode[7],8,1,0); // y
|
|
_cimg_mp_check_type((unsigned int)opcode[8],9,1,0); // z
|
|
_cimg_mp_check_type((unsigned int)opcode[9],10,1,0); // c
|
|
_cimg_mp_check_type((unsigned int)opcode[10],11,1,0); // dx
|
|
_cimg_mp_check_type((unsigned int)opcode[11],12,1,0); // dy
|
|
_cimg_mp_check_type((unsigned int)opcode[12],13,1,0); // dz
|
|
_cimg_mp_check_type((unsigned int)opcode[13],14,1,0); // dc
|
|
if (opcode._height>14) _cimg_mp_check_type((unsigned int)opcode[14],15,1,0); // opac
|
|
if (opcode._height>16) _cimg_mp_check_type((unsigned int)opcode[16],17,1,0); // maxM
|
|
CImg<ulongT>::vector((ulongT)mp_vector_draw,
|
|
*opcode,_cimg_mp_size((unsigned int)*opcode), // 1-2: D,sizD
|
|
opcode[1],opcode[2],opcode[3],opcode[4], // 3-6: w,h,d,s
|
|
opcode[5],_cimg_mp_size((unsigned int)opcode[5]), // 7-8: S,sizS
|
|
opcode[6],opcode[7],opcode[8],opcode[9], // 9-12: x,y,z,c
|
|
opcode[10],opcode[11],opcode[12],opcode[13], // 13-16: dx,dy,dz,dc
|
|
opcode._height<15?1:opcode[14], // 17: opac
|
|
opcode._height<16?~0U:opcode[15], // 18: M
|
|
opcode._height<16?0:_cimg_mp_size((unsigned int)opcode[15]), // 19: sizM
|
|
opcode._height<17?1:opcode[16]).move_to(code); // 20: maxM
|
|
} else {
|
|
_cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Invalid types in specified arguments, "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,s0);
|
|
}
|
|
|
|
} else { // Drawing in an image
|
|
if (!is_inside_critical) is_parallelizable = false;
|
|
arg1 = p1!=~0U;
|
|
_cimg_mp_check_type((unsigned int)*opcode,1 + arg1,2,0); // S
|
|
if (opcode._height<3 || (opcode._height<5 && _cimg_mp_is_vector((unsigned int)opcode[2]))) {
|
|
// S[,opac,M,maxM]
|
|
if (opcode._height>1) _cimg_mp_check_type((unsigned int)opcode[1],2 + arg1,1,0); // opac
|
|
if (opcode._height>3) _cimg_mp_check_type((unsigned int)opcode[3],4 + arg1,1,0); // maxM
|
|
CImg<ulongT>::vector((ulongT)mp_image_draw,
|
|
*opcode,_cimg_mp_size((unsigned int)*opcode),p1, // 1-3: S,sizS,#ind
|
|
0,0,0,0, // 4-7: x,y,z,c
|
|
~0U,~0U,~0U,~0U, // 8-11: dx,dy,dz,dc
|
|
opcode._height<2?1:opcode[1], // 12: opac
|
|
opcode._height<3?~0U:opcode[2], // 13: M
|
|
opcode._height<3?0:_cimg_mp_size((unsigned int)opcode[2]), // 14: sizM
|
|
opcode._height<4?1:opcode[3]).move_to(code); // 15: maxM
|
|
} else if (opcode._height<5 || (opcode._height<7 && _cimg_mp_is_vector((unsigned int)opcode[4]))) {
|
|
// x,dx,S[,opac,M,maxM]
|
|
_cimg_mp_check_type((unsigned int)opcode[1],2 + arg1,1,0); // x
|
|
_cimg_mp_check_type((unsigned int)opcode[2],3 + arg1,1,0); // dx
|
|
if (opcode._height>3) _cimg_mp_check_type((unsigned int)opcode[3],4 + arg1,1,0); // opac
|
|
if (opcode._height>5) _cimg_mp_check_type((unsigned int)opcode[5],6 + arg1,1,0); // maxM
|
|
CImg<ulongT>::vector((ulongT)mp_image_draw,
|
|
*opcode,_cimg_mp_size((unsigned int)*opcode),p1, // 1-3: S,sizS,#ind
|
|
opcode[1],0,0,0, // 4-7: x,y,z,c
|
|
opcode[2],~0U,~0U,~0U, // 8-11: dx,dy,dz,dc
|
|
opcode._height<4?1:opcode[3], // 12: opac
|
|
opcode._height<5?~0U:opcode[4], // 13: M
|
|
opcode._height<5?0:_cimg_mp_size((unsigned int)opcode[4]), // 14: sizM
|
|
opcode._height<6?1:opcode[5]).move_to(code); // 15: maxM
|
|
} else if (opcode._height<7 || (opcode._height<9 && _cimg_mp_is_vector((unsigned int)opcode[6]))) {
|
|
// x,y,dx,dy,S[,opac,M,maxM]
|
|
_cimg_mp_check_type((unsigned int)opcode[1],2 + arg1,1,0); // x
|
|
_cimg_mp_check_type((unsigned int)opcode[2],3 + arg1,1,0); // y
|
|
_cimg_mp_check_type((unsigned int)opcode[3],4 + arg1,1,0); // dx
|
|
_cimg_mp_check_type((unsigned int)opcode[4],5 + arg1,1,0); // dy
|
|
if (opcode._height>5) _cimg_mp_check_type((unsigned int)opcode[5],6 + arg1,1,0); // opac
|
|
if (opcode._height>7) _cimg_mp_check_type((unsigned int)opcode[7],8 + arg1,1,0); // maxM
|
|
CImg<ulongT>::vector((ulongT)mp_image_draw,
|
|
*opcode,_cimg_mp_size((unsigned int)*opcode),p1, // 1-3: S,sizS,#ind
|
|
opcode[1],opcode[2],0,0, // 4-7: x,y,z,c
|
|
opcode[3],opcode[4],~0U,~0U, // 8-11: dx,dy,dz,dc
|
|
opcode._height<6?1:opcode[5], // 12: opac
|
|
opcode._height<7?~0U:opcode[6], // 13: M
|
|
opcode._height<7?0:_cimg_mp_size((unsigned int)opcode[6]), // 14: sizM
|
|
opcode._height<8?1:opcode[7]).move_to(code); // 15: maxM
|
|
} else if (opcode._height<9 || (opcode._height<11 && _cimg_mp_is_vector((unsigned int)opcode[8]))) {
|
|
// x,y,z,dx,dy,dz,S[,opac,M,maxM]
|
|
_cimg_mp_check_type((unsigned int)opcode[1],2 + arg1,1,0); // x
|
|
_cimg_mp_check_type((unsigned int)opcode[2],3 + arg1,1,0); // y
|
|
_cimg_mp_check_type((unsigned int)opcode[3],4 + arg1,1,0); // z
|
|
_cimg_mp_check_type((unsigned int)opcode[4],5 + arg1,1,0); // dx
|
|
_cimg_mp_check_type((unsigned int)opcode[5],6 + arg1,1,0); // dy
|
|
_cimg_mp_check_type((unsigned int)opcode[6],7 + arg1,1,0); // dz
|
|
if (opcode._height>7) _cimg_mp_check_type((unsigned int)opcode[7],8 + arg1,1,0); // opac
|
|
if (opcode._height>9) _cimg_mp_check_type((unsigned int)opcode[9],10 + arg1,1,0); // maxM
|
|
CImg<ulongT>::vector((ulongT)mp_image_draw,
|
|
*opcode,_cimg_mp_size((unsigned int)*opcode),p1, // 1-3: S,sizS,#ind
|
|
opcode[1],opcode[2],opcode[3],0, // 4-7: x,y,z,c
|
|
opcode[4],opcode[5],opcode[6],~0U, // 8-11: dx,dy,dz,dc
|
|
opcode._height<8?1:opcode[7], // 12: opac
|
|
opcode._height<9?~0U:opcode[8], // 13: M
|
|
opcode._height<9?0:_cimg_mp_size((unsigned int)opcode[8]), // 14: sizM
|
|
opcode._height<10?1:opcode[9]).move_to(code); // 15: maxM
|
|
} else if (opcode._height<11 || (opcode._height<13 && _cimg_mp_is_vector((unsigned int)opcode[10]))) {
|
|
// x,y,z,c,dx,dy,dz,dc,S[,opac,M,maxM]
|
|
_cimg_mp_check_type((unsigned int)opcode[1],2 + arg1,1,0); // x
|
|
_cimg_mp_check_type((unsigned int)opcode[2],3 + arg1,1,0); // y
|
|
_cimg_mp_check_type((unsigned int)opcode[3],4 + arg1,1,0); // z
|
|
_cimg_mp_check_type((unsigned int)opcode[4],5 + arg1,1,0); // c
|
|
_cimg_mp_check_type((unsigned int)opcode[5],6 + arg1,1,0); // dx
|
|
_cimg_mp_check_type((unsigned int)opcode[6],7 + arg1,1,0); // dy
|
|
_cimg_mp_check_type((unsigned int)opcode[7],8 + arg1,1,0); // dz
|
|
_cimg_mp_check_type((unsigned int)opcode[8],9 + arg1,1,0); // dc
|
|
if (opcode._height>9) _cimg_mp_check_type((unsigned int)opcode[9],10 + arg1,1,0); // opac
|
|
if (opcode._height>11) _cimg_mp_check_type((unsigned int)opcode[11],12 + arg1,1,0); // maxM
|
|
CImg<ulongT>::vector((ulongT)mp_image_draw,
|
|
*opcode,_cimg_mp_size((unsigned int)*opcode),p1, // 1-3: S,sizS,#ind
|
|
opcode[1],opcode[2],opcode[3],opcode[4], // 4-7: x,y,z,c
|
|
opcode[5],opcode[6],opcode[7],opcode[8], // 8-11: dx,dy,dz,dc
|
|
opcode._height<10?1:opcode[9], // 12: opac
|
|
opcode._height<11?~0U:opcode[10], // 13: M
|
|
opcode._height<11?0:_cimg_mp_size((unsigned int)opcode[10]), // 14: sizM
|
|
opcode._height<12?1:opcode[11]).move_to(code); // 15: maxM
|
|
} else {
|
|
_cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Invalid types in specified arguments, "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,s0);
|
|
}
|
|
}
|
|
_cimg_mp_return_nan();
|
|
}
|
|
break;
|
|
|
|
case 'e' :
|
|
if (!std::strncmp(ss,"echo(",5)) { // Echo
|
|
_cimg_mp_op("Function 'echo()'");
|
|
CImg<ulongT>::vector((ulongT)mp_echo,_cimg_mp_slot_nan,0).move_to(l_opcode);
|
|
for (s = ss5; s<se1; ++s) {
|
|
ns = s; while (ns<se1 && (*ns!=',' || level[ns - expr._data]!=clevel1) &&
|
|
(*ns!=')' || level[ns - expr._data]!=clevel)) ++ns;
|
|
arg1 = compile(s,ns,depth1,0,block_flags);
|
|
CImg<ulongT>::vector(arg1,_cimg_mp_size(arg1)).move_to(l_opcode);
|
|
s = ns;
|
|
}
|
|
(l_opcode>'y').move_to(opcode);
|
|
opcode[2] = opcode._height;
|
|
opcode.move_to(code);
|
|
_cimg_mp_return_nan();
|
|
}
|
|
|
|
if (!std::strncmp(ss,"eig(",4)) { // Matrix eigenvalues/eigenvector
|
|
_cimg_mp_op("Function 'eig()'");
|
|
arg1 = compile(ss4,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_matrix_square(arg1,1);
|
|
p1 = (unsigned int)cimg::round(std::sqrt((float)_cimg_mp_size(arg1)));
|
|
pos = vector((p1 + 1)*p1);
|
|
CImg<ulongT>::vector((ulongT)mp_matrix_eig,pos,arg1,p1).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"ellipse(",8)) { // Ellipse/circle drawing
|
|
if (!is_inside_critical) is_parallelizable = false;
|
|
_cimg_mp_op("Function 'ellipse()'");
|
|
if (*ss8=='#') { // Index specified
|
|
s0 = ss + 9; while (s0<se1 && (*s0!=',' || level[s0 - expr._data]!=clevel1)) ++s0;
|
|
p1 = compile(ss + 9,s0++,depth1,0,block_flags);
|
|
pos = 2;
|
|
_cimg_mp_check_list();
|
|
} else { p1 = ~0U; s0 = ss8; pos = 1; }
|
|
if (s0==se1) compile(s0,se1,depth1,0,block_flags); // 'missing' argument error
|
|
CImg<ulongT>::vector((ulongT)mp_ellipse,_cimg_mp_slot_nan,0,p1).move_to(l_opcode);
|
|
for (s = s0; s<se; ++s, ++pos) {
|
|
ns = s; while (ns<se && (*ns!=',' || level[ns - expr._data]!=clevel1) &&
|
|
(*ns!=')' || level[ns - expr._data]!=clevel)) ++ns;
|
|
arg2 = compile(s,ns,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg2)) // Vector argument allowed to specify cordinates and color
|
|
CImg<ulongT>::sequence(_cimg_mp_size(arg2),arg2 + 1,
|
|
arg2 + (ulongT)_cimg_mp_size(arg2)).
|
|
move_to(l_opcode);
|
|
else
|
|
CImg<ulongT>::vector(arg2).move_to(l_opcode);
|
|
s = ns;
|
|
}
|
|
(l_opcode>'y').move_to(opcode);
|
|
opcode[2] = opcode._height;
|
|
opcode.move_to(code);
|
|
_cimg_mp_return_nan();
|
|
}
|
|
|
|
if (!std::strncmp(ss,"erf(",4)) { // Error function
|
|
_cimg_mp_op("Function 'erf()'");
|
|
arg1 = compile(ss4,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_erf,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(std::erf(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_erf,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"erfinv(",7)) { // Inverse of error function
|
|
_cimg_mp_op("Function 'erfinv()'");
|
|
arg1 = compile(ss7,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_erfinv,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(cimg::erfinv(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_erfinv,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"exp(",4)) { // Exponential
|
|
_cimg_mp_op("Function 'exp()'");
|
|
arg1 = compile(ss4,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_exp,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(std::exp(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_exp,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"expr(",5)) { // Vector from expression
|
|
_cimg_mp_op("Function 'expr()'");
|
|
s1 = ss5; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss5,s1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,1,2,0);
|
|
p1 = _cimg_mp_size(arg1);
|
|
arg2 = arg3 = arg4 = arg5 = 0;
|
|
if (s1<se1) {
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg2 = compile(s1,s2,depth1,0,block_flags);
|
|
_cimg_mp_check_const_scalar(arg2,2,2);
|
|
arg2 = (unsigned int)mem[arg2];
|
|
if (arg2) arg3 = arg4 = arg5 = 1;
|
|
if (s2<se1) {
|
|
s1 = ++s2; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg3 = compile(s2,s1,depth1,0,block_flags);
|
|
_cimg_mp_check_const_scalar(arg3,3,3);
|
|
arg3 = (unsigned int)mem[arg3];
|
|
if (s1<se1) {
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg4 = compile(s1,s2,depth1,0,block_flags);
|
|
_cimg_mp_check_const_scalar(arg4,4,3);
|
|
arg4 = (unsigned int)mem[arg4];
|
|
arg5 = s2<se1?compile(++s2,se1,depth1,0,block_flags):0;
|
|
_cimg_mp_check_const_scalar(arg5,5,3);
|
|
arg5 = (unsigned int)mem[arg5];
|
|
}
|
|
}
|
|
}
|
|
p2 = arg2*arg3*arg4*arg5;
|
|
if (p2) pos = vector(p2); else pos = scalar();
|
|
CImg<ulongT>::vector((ulongT)mp_expr,pos,arg1,p1,arg2,arg3,arg4,arg5).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"eye(",4)) { // Identity matrix
|
|
_cimg_mp_op("Function 'eye()'");
|
|
arg1 = compile(ss4,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_const_scalar(arg1,1,3);
|
|
p1 = (unsigned int)mem[arg1];
|
|
pos = vector(p1*p1);
|
|
CImg<ulongT>::vector((ulongT)mp_eye,pos,p1).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"end(",4)) { // End
|
|
_cimg_mp_op("Function 'end()'");
|
|
s1 = ss4; while (s1<se1 && cimg::is_blank(*s1)) ++s1;
|
|
if (s1!=se1) {
|
|
const bool is_inside_end = (bool)(block_flags&8);
|
|
if (!is_inside_end) code.swap(code_end);
|
|
compile(s1,se1,depth1,p_ref,8);
|
|
if (!is_inside_end) code.swap(code_end);
|
|
is_end_code = true;
|
|
}
|
|
_cimg_mp_return_nan();
|
|
}
|
|
|
|
if (!std::strncmp(ss,"end_t(",6)) { // End thread
|
|
_cimg_mp_op("Function 'end_t()'");
|
|
s1 = ss6; while (s1<se1 && cimg::is_blank(*s1)) ++s1;
|
|
if (s1!=se1) {
|
|
const bool is_inside_end = (bool)(block_flags&16);
|
|
if (!is_inside_end) code.swap(code_end_t);
|
|
compile(s1,se1,depth1,p_ref,16);
|
|
if (!is_inside_end) code.swap(code_end_t);
|
|
is_end_code = true;
|
|
}
|
|
_cimg_mp_return_nan();
|
|
}
|
|
break;
|
|
|
|
case 'f' :
|
|
if (!std::strncmp(ss,"f2ui(",5)) { // Special float->uint conversion
|
|
_cimg_mp_op("Function 'f2ui()'");
|
|
arg1 = compile(ss5,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_f2ui,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar((double)cimg::float2uint((float)mem[arg1]));
|
|
_cimg_mp_scalar1(mp_f2ui,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"fact(",5)) { // Factorial
|
|
_cimg_mp_op("Function 'fact()'");
|
|
arg1 = compile(ss5,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_factorial,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(cimg::factorial((int)mem[arg1]));
|
|
_cimg_mp_scalar1(mp_factorial,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"fibo(",5)) { // Fibonacci
|
|
_cimg_mp_op("Function 'fibo()'");
|
|
arg1 = compile(ss5,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_fibonacci,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(cimg::fibonacci((int)mem[arg1]));
|
|
_cimg_mp_scalar1(mp_fibonacci,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"fill(",5)) { // Fill
|
|
_cimg_mp_op("Function 'fill()'");
|
|
s0 = ss5; while (s0<se1 && (*s0!=',' || level[s0 - expr._data]!=clevel1)) ++s0;
|
|
arg1 = compile(ss5,s0,depth1,0,block_flags); // Object to fill
|
|
if (_cimg_mp_is_const_scalar(arg1))
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Target scalar is constant, "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,ss);
|
|
s1 = ++s0; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
p1 = code._width;
|
|
|
|
if (s1<se1) { // Version with 3 arguments
|
|
variable_name.assign(s0,(unsigned int)(s1 + 1 - s0)).back() = 0;
|
|
cimg::strpare(variable_name,false,true);
|
|
if (!cimg::is_varname(variable_name)) { // Invalid variable name
|
|
cimg::strellipsize(variable_name,64);
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Invalid loop variable name '%s', "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
variable_name._data,s0);
|
|
}
|
|
get_variable_pos(variable_name,arg2,arg3);
|
|
arg2 = arg3!=~0U?reserved_label[arg3]:arg2!=~0U?variable_pos[arg2]:~0U; // Variable slot
|
|
if (arg2!=~0U && (!_cimg_mp_is_scalar(arg2) ||
|
|
_cimg_mp_is_const_scalar(arg2))) { // Variable is not a vector or is a constant->error
|
|
cimg::strellipsize(variable_name,64);
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Invalid type '%s' for variable '%s' "
|
|
"(expected 'scalar'), in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
s_type(arg2)._data,variable_name._data,s0);
|
|
} else if (arg2==~0U) { // Variable does not exist -> create it
|
|
arg2 = scalar();
|
|
if (arg3!=~0U) reserved_label[arg3] = arg2;
|
|
else {
|
|
if (variable_def._width>=variable_pos._width) variable_pos.resize(-200,1,1,1,0);
|
|
variable_pos[variable_def._width] = arg2;
|
|
variable_name.move_to(variable_def);
|
|
}
|
|
memtype[arg2] = -1;
|
|
}
|
|
arg3 = compile(++s1,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg3,3,1,0);
|
|
} else { // Version with 2 arguments
|
|
arg2 = ~0U;
|
|
arg3 = compile(s0,se1,depth1,0,block_flags);
|
|
}
|
|
// arg2 = variable slot, arg3 = fill expression.
|
|
_cimg_mp_check_type(arg3,3,1,0);
|
|
CImg<ulongT>::vector((ulongT)mp_fill,arg1,_cimg_mp_size(arg1),arg2,arg3,code._width - p1).
|
|
move_to(code,p1);
|
|
_cimg_mp_return_nan();
|
|
}
|
|
|
|
if (!std::strncmp(ss,"find(",5)) { // Find
|
|
_cimg_mp_op("Function 'find()'");
|
|
|
|
// First argument: data to look at.
|
|
s0 = ss5; while (s0<se1 && (*s0!=',' || level[s0 - expr._data]!=clevel1)) ++s0;
|
|
if (*ss5=='#') { // Index specified
|
|
p1 = compile(ss6,s0,depth1,0,block_flags);
|
|
_cimg_mp_check_list();
|
|
arg1 = ~0U;
|
|
} else { // Vector specified
|
|
arg1 = compile(ss5,s0,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,1,2,0);
|
|
p1 = ~0U;
|
|
}
|
|
|
|
// Second argument: data to find.
|
|
s1 = ++s0; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg2 = compile(s0,s1,depth1,0,block_flags);
|
|
|
|
// Third and fourth arguments: starting index and search direction.
|
|
arg3 = _cimg_mp_slot_nan; arg4 = 1;
|
|
if (s1<se1) {
|
|
s0 = ++s1; while (s0<se1 && (*s0!=',' || level[s0 - expr._data]!=clevel1)) ++s0;
|
|
arg3 = compile(s1,s0,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg3,3,1,0);
|
|
if (s0<se1) {
|
|
arg4 = compile(++s0,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg4,4,1,0);
|
|
}
|
|
}
|
|
if (p1!=~0U) {
|
|
if (_cimg_mp_size(arg2)>1)
|
|
_cimg_mp_scalar5(mp_list_find_seq,p1,arg2,_cimg_mp_size(arg2),arg3,arg4);
|
|
_cimg_mp_scalar4(mp_list_find,p1,arg2 + (_cimg_mp_size(arg2)?1:0),arg3,arg4);
|
|
}
|
|
if (_cimg_mp_size(arg2)>1)
|
|
_cimg_mp_scalar6(mp_find_seq,arg1,_cimg_mp_size(arg1),arg2,_cimg_mp_size(arg2),arg3,arg4);
|
|
_cimg_mp_scalar5(mp_find,arg1,_cimg_mp_size(arg1),arg2 + (_cimg_mp_size(arg2)?1:0),arg3,arg4);
|
|
}
|
|
|
|
if (*ss1=='o' && *ss2=='r' && *ss3=='(') { // For loop
|
|
_cimg_mp_op("Function 'for()'");
|
|
s1 = ss4; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
s2 = s1 + 1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
s3 = s2 + 1; while (s3<se1 && (*s3!=',' || level[s3 - expr._data]!=clevel1)) ++s3;
|
|
arg1 = code._width;
|
|
p1 = compile(ss4,s1,depth1,0,block_flags); // Init
|
|
arg2 = code._width;
|
|
p2 = compile(++s1,s2,depth1,0,block_flags); // Cond
|
|
arg3 = code._width;
|
|
arg6 = mempos;
|
|
if (s3<se1) { // Body + post
|
|
p3 = compile(s3 + 1,se1,depth1,0,block_flags); // Body
|
|
arg4 = code._width;
|
|
pos = compile(++s2,s3,depth1,0,block_flags); // Post
|
|
} else {
|
|
p3 = compile(++s2,se1,depth1,0,block_flags); // Body only
|
|
arg4 = pos = code._width;
|
|
}
|
|
_cimg_mp_check_type(p2,2,1,0);
|
|
arg5 = _cimg_mp_size(pos);
|
|
CImg<ulongT>::vector((ulongT)mp_for,p3,(ulongT)_cimg_mp_size(p3),p2,arg2 - arg1,arg3 - arg2,
|
|
arg4 - arg3,code._width - arg4,
|
|
p3>=arg6 && !_cimg_mp_is_const_scalar(p3),
|
|
p2>=arg6 && !_cimg_mp_is_const_scalar(p2)).move_to(code,arg1);
|
|
_cimg_mp_return(p3);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"floor(",6)) { // Floor
|
|
_cimg_mp_op("Function 'floor()'");
|
|
arg1 = compile(ss6,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_floor,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(std::floor(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_floor,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"fsize(",6)) { // File size
|
|
_cimg_mp_op("Function 'fsize()'");
|
|
arg1 = compile(ss6,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,1,2,0);
|
|
pos = scalar();
|
|
CImg<ulongT>::vector((ulongT)mp_fsize,pos,arg1,(ulongT)_cimg_mp_size(arg1)).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
break;
|
|
|
|
case 'g' :
|
|
if (!std::strncmp(ss,"gauss(",6)) { // Gaussian function
|
|
_cimg_mp_op("Function 'gauss()'");
|
|
s1 = ss6; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss6,s1,depth1,0,block_flags);
|
|
arg2 = arg3 = 1;
|
|
if (s1<se1) {
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg2 = compile(s1,s2,depth1,0,block_flags);
|
|
arg3 = s2<se1?compile(++s2,se1,depth1,0,block_flags):1;
|
|
}
|
|
_cimg_mp_check_type(arg2,2,1,0);
|
|
_cimg_mp_check_type(arg3,3,1,0);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector3_vss(mp_gauss,arg1,arg2,arg3);
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2) && _cimg_mp_is_const_scalar(arg3)) {
|
|
val1 = mem[arg1];
|
|
val2 = mem[arg2];
|
|
_cimg_mp_const_scalar(std::exp(-val1*val1/(2*val2*val2))/(mem[arg3]?std::sqrt(2*val2*val2*cimg::PI):1));
|
|
}
|
|
_cimg_mp_scalar3(mp_gauss,arg1,arg2,arg3);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"gcd(",4)) { // Gcd
|
|
_cimg_mp_op("Function 'gcd()'");
|
|
s1 = ss4; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss4,s1,depth1,0,block_flags);
|
|
arg2 = compile(++s1,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,1,1,0);
|
|
_cimg_mp_check_type(arg2,2,1,0);
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2))
|
|
_cimg_mp_const_scalar(cimg::gcd((long)mem[arg1],(long)mem[arg2]));
|
|
_cimg_mp_scalar2(mp_gcd,arg1,arg2);
|
|
}
|
|
|
|
#ifdef cimg_mp_func_get
|
|
if (!std::strncmp(ss,"get(",4)) { // Get value/vector from external variable
|
|
_cimg_mp_op("Function 'get()'");
|
|
s1 = ss4; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss4,s1,depth1,0,block_flags);
|
|
arg2 = arg3 = 0;
|
|
if (s1<se1) {
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg2 = compile(s1,s2,depth1,0,block_flags);
|
|
arg3 = s2<se1?compile(++s2,se1,depth1,0,block_flags):0;
|
|
}
|
|
_cimg_mp_check_type(arg1,1,2,0);
|
|
_cimg_mp_check_const_scalar(arg2,2,2);
|
|
_cimg_mp_check_type(arg3,3,1,0);
|
|
p1 = _cimg_mp_size(arg1);
|
|
|
|
const int siz_max = cimg::type<int>::max();
|
|
if (mem[arg2]>=siz_max) {
|
|
_cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Specified variable size %g is larger than %d.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
mem[arg2],siz_max);
|
|
}
|
|
arg2 = (unsigned int)mem[arg2];
|
|
if (arg2) pos = vector(arg2); else pos = scalar();
|
|
CImg<ulongT>::vector((ulongT)mp_get,pos,arg1,p1,arg2,arg3).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
#endif
|
|
break;
|
|
|
|
case 'h' :
|
|
if (*ss1=='(') { // Image height
|
|
_cimg_mp_op("Function 'h()'");
|
|
if (*ss2=='#') { // Index specified
|
|
p1 = compile(ss3,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_list();
|
|
} else { if (ss2!=se1) break; p1 = ~0U; }
|
|
_cimg_mp_scalar1(mp_image_h,p1);
|
|
}
|
|
break;
|
|
|
|
case 'i' :
|
|
if (*ss1=='c' && *ss2=='(') { // Image median
|
|
_cimg_mp_op("Function 'ic()'");
|
|
if (*ss3=='#') { // Index specified
|
|
p1 = compile(ss4,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_list();
|
|
} else { if (ss3!=se1) break; p1 = ~0U; }
|
|
pos = scalar();
|
|
CImg<ulongT>::vector((ulongT)mp_image_median,pos,p1).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (*ss1=='n' && *ss2=='(') { // Image norm
|
|
_cimg_mp_op("Function 'in()'");
|
|
if (*ss3=='#') { // Index specified
|
|
p1 = compile(ss4,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_list();
|
|
} else { if (ss3!=se1) break; p1 = ~0U; }
|
|
pos = scalar();
|
|
CImg<ulongT>::vector((ulongT)mp_image_norm,pos,p1).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (*ss1=='f' && *ss2=='(') { // If..then[..else.]
|
|
_cimg_mp_op("Function 'if()'");
|
|
s1 = ss3; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
s2 = s1 + 1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg1 = compile(ss3,s1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,1,1,0);
|
|
if (_cimg_mp_is_const_scalar(arg1)) {
|
|
if ((bool)mem[arg1]) return compile(++s1,s2,depth1,0,block_flags);
|
|
else return s2<se1?compile(++s2,se1,depth1,0,block_flags):0;
|
|
}
|
|
p2 = code._width;
|
|
arg2 = compile(++s1,s2,depth1,0,block_flags);
|
|
p3 = code._width;
|
|
arg3 = s2<se1?compile(++s2,se1,depth1,0,block_flags):
|
|
_cimg_mp_is_vector(arg2)?vector(_cimg_mp_size(arg2),0):0;
|
|
_cimg_mp_check_type(arg3,3,_cimg_mp_is_vector(arg2)?2:1,_cimg_mp_size(arg2));
|
|
arg4 = _cimg_mp_size(arg2);
|
|
if (arg4) pos = vector(arg4); else pos = scalar();
|
|
CImg<ulongT>::vector((ulongT)mp_if,pos,arg1,arg2,arg3,
|
|
p3 - p2,code._width - p3,arg4).move_to(code,p2);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"inrange(",8)) { // Check value range
|
|
_cimg_mp_op("Function 'inrange()'");
|
|
s1 = ss8; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss8,s1,depth1,0,block_flags);
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg2 = compile(s1,s2,depth1,0,block_flags);
|
|
s1 = ++s2; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg3 = compile(s2,s1,depth1,0,block_flags);
|
|
arg4 = arg5 = 1;
|
|
if (s1<se1) {
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg4 = compile(s1,s2,depth1,0,block_flags);
|
|
arg5 = s2<se1?compile(++s2,se1,depth1,0,block_flags):arg4;
|
|
_cimg_mp_check_type(arg4,4,1,0);
|
|
_cimg_mp_check_type(arg5,5,1,0);
|
|
}
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2) &&
|
|
_cimg_mp_is_const_scalar(arg3) && _cimg_mp_is_const_scalar(arg4) &&
|
|
_cimg_mp_is_const_scalar(arg5)) { // Optimize constant case
|
|
val = mem[arg1]; val1 = mem[arg2]; val2 = mem[arg3];
|
|
if (val2>=val1)
|
|
is_sth = (mem[arg4]?(val>=val1):(val>val1)) && (mem[arg5]?(val<=val2):(val<val2));
|
|
else
|
|
is_sth = (mem[arg5]?(val>=val2):(val>val2)) && (mem[arg4]?(val<=val1):(val<val1));
|
|
_cimg_mp_return(is_sth?1:0);
|
|
}
|
|
p1 = _cimg_mp_size(arg1);
|
|
p2 = _cimg_mp_size(arg2);
|
|
p3 = _cimg_mp_size(arg3);
|
|
arg6 = ~0U; // Size of return value
|
|
if (!p1) {
|
|
arg6 = p2?p2:p3;
|
|
if (arg6) _cimg_mp_check_type(arg3,3,3,arg6);
|
|
} else {
|
|
arg6 = p1;
|
|
_cimg_mp_check_type(arg2,2,3,arg6);
|
|
_cimg_mp_check_type(arg3,3,3,arg6);
|
|
}
|
|
pos = arg6?vector(arg6):scalar();
|
|
CImg<ulongT>::vector((ulongT)mp_inrange,pos,arg6,arg1,p1,arg2,p2,arg3,p3,arg4,arg5).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"int(",4)) { // Integer cast
|
|
_cimg_mp_op("Function 'int()'");
|
|
arg1 = compile(ss4,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_int,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar((longT)mem[arg1]);
|
|
_cimg_mp_scalar1(mp_int,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"invert(",7)) { // Matrix/scalar inverse (or pseudoinverse)
|
|
_cimg_mp_op("Function 'invert()'");
|
|
s1 = ss7; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss7,s1,depth1,0,block_flags); // A
|
|
arg2 = ~0U; // nb_colsA
|
|
arg3 = 0; // use_LU
|
|
arg4 = 0; // lambda
|
|
if (s1<se1) {
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg2 = compile(s1,s2,depth1,0,block_flags);
|
|
if (s2<se1) {
|
|
s1 = ++s2; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg3 = compile(s2,s1,depth1,0,block_flags);
|
|
arg4 = s1<se1?compile(++s1,se1,depth1,0,block_flags):0;
|
|
}
|
|
}
|
|
if (arg2!=~0U) {
|
|
_cimg_mp_check_const_scalar(arg2,2,3);
|
|
arg2 = (unsigned int)mem[arg2];
|
|
}
|
|
_cimg_mp_check_type(arg3,3,1,0);
|
|
_cimg_mp_check_type(arg4,4,1,0);
|
|
|
|
if (_cimg_mp_is_vector(arg1)) {
|
|
p1 = _cimg_mp_size(arg1);
|
|
if (arg2==~0U) { // nb_colsA not specified: assuming square matrix
|
|
_cimg_mp_check_matrix_square(arg1,1);
|
|
p2 = p3 = (unsigned int)cimg::round(std::sqrt((float)p1));
|
|
} else {
|
|
p2 = arg2;
|
|
p3 = p1/p2;
|
|
if (p3*p2!=p1) {
|
|
_cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Type of first argument ('%s') "
|
|
"does not match with second argument 'nb_colsA=%u', "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
s_type(arg1)._data,p2,s0);
|
|
}
|
|
}
|
|
pos = vector(p1);
|
|
CImg<ulongT>::vector((ulongT)mp_matrix_invert,pos,arg1,p2,p3,arg3,arg4).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(1/mem[arg1]);
|
|
_cimg_mp_scalar2(mp_div,1,arg1);
|
|
}
|
|
|
|
if (*ss1=='s') { // Family of 'is_?()' functions
|
|
|
|
if (!std::strncmp(ss,"isbool(",7)) { // Is boolean?
|
|
_cimg_mp_op("Function 'isbool()'");
|
|
if (ss7==se1) _cimg_mp_return(0);
|
|
try { arg1 = compile(ss7,se1,depth1,0,block_flags); }
|
|
catch(CImgException&) { _cimg_mp_return(0); }
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_isbool,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_return(mem[arg1]==0. || mem[arg1]==1.);
|
|
_cimg_mp_scalar1(mp_isbool,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"isdir(",6)) { // Is directory?
|
|
_cimg_mp_op("Function 'isdir()'");
|
|
arg1 = compile(ss6,se1,depth1,0,block_flags);
|
|
pos = scalar();
|
|
CImg<ulongT>::vector((ulongT)mp_isdir,pos,arg1,(ulongT)_cimg_mp_size(arg1)).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"isfile(",7)) { // Is file?
|
|
_cimg_mp_op("Function 'isfile()'");
|
|
arg1 = compile(ss7,se1,depth1,0,block_flags);
|
|
pos = scalar();
|
|
CImg<ulongT>::vector((ulongT)mp_isfile,pos,arg1,(ulongT)_cimg_mp_size(arg1)).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"isin(",5)) { // Is in sequence/vector?
|
|
if (ss5>=se1) _cimg_mp_return(0);
|
|
_cimg_mp_op("Function 'isin()'");
|
|
pos = scalar();
|
|
CImg<ulongT>::vector((ulongT)mp_isin,pos,0).move_to(l_opcode);
|
|
for (s = ss5; s<se; ++s) {
|
|
ns = s; while (ns<se && (*ns!=',' || level[ns - expr._data]!=clevel1) &&
|
|
(*ns!=')' || level[ns - expr._data]!=clevel)) ++ns;
|
|
arg1 = compile(s,ns,depth1,0,block_flags);
|
|
CImg<ulongT>::vector(arg1,_cimg_mp_size(arg1)).move_to(l_opcode);
|
|
s = ns;
|
|
}
|
|
(l_opcode>'y').move_to(opcode);
|
|
opcode[2] = opcode._height;
|
|
opcode.move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"isinf(",6)) { // Is infinite?
|
|
_cimg_mp_op("Function 'isinf()'");
|
|
if (ss6==se1) _cimg_mp_return(0);
|
|
arg1 = compile(ss6,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_isinf,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1))
|
|
_cimg_mp_return((unsigned int)cimg::type<double>::is_inf(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_isinf,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"isint(",6)) { // Is integer?
|
|
_cimg_mp_op("Function 'isint()'");
|
|
if (ss6==se1) _cimg_mp_return(0);
|
|
try { arg1 = compile(ss6,se1,depth1,0,block_flags); }
|
|
catch(CImgException&) { _cimg_mp_return(0); }
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_isint,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1))
|
|
_cimg_mp_return((unsigned int)((double)(longT)mem[arg1]==mem[arg1]));
|
|
_cimg_mp_scalar1(mp_isint,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"isnan(",6)) { // Is NaN?
|
|
_cimg_mp_op("Function 'isnan()'");
|
|
if (ss6==se1) _cimg_mp_return(0);
|
|
arg1 = compile(ss6,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_isnan,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1))
|
|
_cimg_mp_return((unsigned int)cimg::type<double>::is_nan(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_isnan,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"isnum(",6)) { // Is number?
|
|
_cimg_mp_op("Function 'isnum()'");
|
|
val = 0;
|
|
if (cimg_sscanf(ss6,"%lf%c%c",&val,&sep,&end)==2 && sep==')') _cimg_mp_return(1);
|
|
_cimg_mp_return(0);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"isexpr(",7)) { // Is valid expression?
|
|
_cimg_mp_op("Function 'isexpr()'");
|
|
if (ss7==se1) _cimg_mp_return(0);
|
|
try { arg1 = compile(ss7,se1,depth1,0,block_flags); }
|
|
catch (CImgException&) { _cimg_mp_return(0); }
|
|
_cimg_mp_return(1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"isvarname(",10)) { // Is variable name?
|
|
_cimg_mp_op("Function 'isvarname()'");
|
|
arg1 = compile(ss + 10,se1,depth1,0,block_flags);
|
|
pos = scalar();
|
|
CImg<ulongT>::vector((ulongT)mp_isvarname,pos,arg1,(ulongT)_cimg_mp_size(arg1)).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 'l' :
|
|
if (*ss1=='(') { // Size of image list
|
|
_cimg_mp_op("Function 'l()'");
|
|
if (ss2!=se1) break;
|
|
_cimg_mp_scalar0(mp_list_l);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"lerp(",5)) { // Linear interpolation
|
|
_cimg_mp_op("Function 'lerp()'");
|
|
s1 = ss5; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss5,s1,depth1,0,block_flags);
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg2 = compile(s1,s2,depth1,0,block_flags);
|
|
arg3 = s2<se1?compile(++s2,se1,depth1,0,block_flags):16; // Default value is 0.5
|
|
_cimg_mp_check_type(arg3,3,1,0);
|
|
if (_cimg_mp_is_const_scalar(arg3)) { // Optimize constant cases
|
|
if (!arg3) _cimg_mp_return(arg1);
|
|
if (arg3==1) _cimg_mp_return(arg2);
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2)) {
|
|
const double t = mem[arg3];
|
|
_cimg_mp_const_scalar(mem[arg1]*(1-t) + mem[arg2]*t);
|
|
}
|
|
}
|
|
if (_cimg_mp_is_scalar(arg1)) {
|
|
_cimg_mp_check_type(arg2,2,1,0);
|
|
_cimg_mp_scalar3(mp_lerp,arg1,arg2,arg3);
|
|
}
|
|
p1 = _cimg_mp_size(arg1);
|
|
_cimg_mp_check_type(arg2,2,2,p1);
|
|
pos = vector(p1);
|
|
CImg<ulongT>::vector((ulongT)mp_vector_lerp,pos,p1,arg1,arg2,arg3).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"log(",4)) { // Natural logarithm
|
|
_cimg_mp_op("Function 'log()'");
|
|
arg1 = compile(ss4,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_log,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(std::log(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_log,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"log2(",5)) { // Base-2 logarithm
|
|
_cimg_mp_op("Function 'log2()'");
|
|
arg1 = compile(ss5,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_log2,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(cimg::log2(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_log2,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"log10(",6)) { // Base-10 logarithm
|
|
_cimg_mp_op("Function 'log10()'");
|
|
arg1 = compile(ss6,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_log10,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(std::log10(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_log10,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"lowercase(",10)) { // Lower case
|
|
_cimg_mp_op("Function 'lowercase()'");
|
|
arg1 = compile(ss + 10,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_lowercase,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(cimg::lowercase(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_lowercase,arg1);
|
|
}
|
|
break;
|
|
|
|
case 'm' :
|
|
if (!std::strncmp(ss,"map(",4)) { // Map vector
|
|
_cimg_mp_op("Function 'map()'");
|
|
s1 = ss4; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss4,s1,depth1,0,block_flags);
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg2 = compile(s1,s2,depth1,0,block_flags);
|
|
arg3 = arg4 = 1; arg5 = 0;
|
|
if (s2<se1) {
|
|
s1 = ++s2; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg3 = compile(s2,s1,depth1,0,block_flags);
|
|
if (s1<se1) {
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg4 = compile(s1,s2,depth1,0,block_flags);
|
|
arg5 = s2<se1?compile(++s2,se1,depth1,0,block_flags):0;
|
|
}
|
|
}
|
|
_cimg_mp_check_type(arg1,1,2,0);
|
|
_cimg_mp_check_type(arg2,2,2,0);
|
|
_cimg_mp_check_const_scalar(arg3,3,3);
|
|
_cimg_mp_check_const_scalar(arg4,4,3);
|
|
_cimg_mp_check_type(arg5,5,1,0);
|
|
p1 = _cimg_mp_size(arg1);
|
|
p2 = _cimg_mp_size(arg2);
|
|
arg3 = (unsigned int)mem[arg3];
|
|
arg4 = (unsigned int)mem[arg4];
|
|
if (p1%arg3) {
|
|
_cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Type of first arguments ('%s') "
|
|
"does not match with third argument 'nb_channelsX=%u', "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
s_type(arg1)._data,arg3,s0);
|
|
}
|
|
if (p2%arg4) {
|
|
_cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Type of second arguments ('%s') "
|
|
"does not match with fourth argument 'nb_channelsP=%u', "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
s_type(arg2)._data,arg4,s0);
|
|
}
|
|
pos = vector(p1*arg4);
|
|
CImg<ulongT>::vector((ulongT)mp_map,pos,arg1,arg2,p1,p2,arg3,arg4,arg5).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"mul(",4)) { // Matrix multiplication
|
|
_cimg_mp_op("Function 'mul()'");
|
|
s1 = ss4; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss4,s1,depth1,0,block_flags);
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg2 = compile(s1,s2,depth1,0,block_flags);
|
|
arg3 = s2<se1?compile(++s2,se1,depth1,0,block_flags):1;
|
|
_cimg_mp_check_type(arg1,1,2,0);
|
|
_cimg_mp_check_type(arg2,2,2,0);
|
|
_cimg_mp_check_const_scalar(arg3,3,3);
|
|
p1 = _cimg_mp_size(arg1);
|
|
p2 = _cimg_mp_size(arg2);
|
|
p3 = (unsigned int)mem[arg3];
|
|
arg5 = p2/p3;
|
|
arg4 = p1/arg5;
|
|
if (arg4*arg5!=p1 || arg5*p3!=p2) {
|
|
_cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Types of first and second arguments ('%s' and '%s') "
|
|
"do not match with third argument 'nb_colsB=%u', "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
s_type(arg1)._data,s_type(arg2)._data,p3,s0);
|
|
}
|
|
pos = vector(arg4*p3);
|
|
CImg<ulongT>::vector((ulongT)mp_matrix_mul,pos,arg1,arg2,arg4,arg5,p3).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"mproj(",6)) { // Project matrix onto dictionary
|
|
_cimg_mp_op("Function 'mproj()'");
|
|
s1 = ss6; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss6,s1,depth1,0,block_flags); // S
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg2 = compile(s1,s2,depth1,0,block_flags); // ncolS
|
|
s1 = ++s2; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg3 = compile(s2,s1,depth1,0,block_flags); // D
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg4 = compile(s1,s2,depth1,0,block_flags); // ncolD
|
|
arg5 = arg6 = p3 = 0;
|
|
if (s2<se1) {
|
|
s1 = ++s2; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg5 = compile(s2,s1,depth1,0,block_flags); // method
|
|
if (s1<se1) {
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg6 = compile(s1,s2,depth1,0,block_flags); // max_iter
|
|
p3 = s2<se1?compile(++s2,se1,depth1,0,block_flags):0; // method
|
|
}
|
|
}
|
|
_cimg_mp_check_type(arg1,1,2,0);
|
|
_cimg_mp_check_const_scalar(arg2,2,3);
|
|
_cimg_mp_check_type(arg3,3,2,0);
|
|
_cimg_mp_check_const_scalar(arg4,4,3);
|
|
_cimg_mp_check_type(arg5,5,1,0);
|
|
_cimg_mp_check_type(arg6,6,1,0);
|
|
_cimg_mp_check_type(p3,7,1,0);
|
|
p1 = _cimg_mp_size(arg1);
|
|
p2 = _cimg_mp_size(arg3);
|
|
const unsigned int
|
|
wS = (unsigned int)mem[arg2],
|
|
wD = (unsigned int)mem[arg4],
|
|
hS = p1/wS,
|
|
hD = p2/wD;
|
|
|
|
if (wS*hS!=p1) {
|
|
_cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Type of first argument ('%s') "
|
|
"do not match with second argument 'nb_colsS=%u', "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
s_type(arg1)._data,wS,s0);
|
|
}
|
|
if (wD*hD!=p2) {
|
|
_cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Type of third argument ('%s') "
|
|
"do not match with fourth argument 'nb_colsD=%u', "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
s_type(arg3)._data,wD,s0);
|
|
}
|
|
if (hS!=hD) {
|
|
_cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Type of first argument ('%s') "
|
|
"do not match with third argument ('%s'), "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
s_type(arg1)._data,s_type(arg3)._data,s0);
|
|
}
|
|
pos = vector(wS*wD);
|
|
CImg<ulongT>::vector((ulongT)mp_mproj,pos,arg1,wS,hS,arg3,wD,arg5,arg6,p3).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"mse(",4)) { // Mean-squared error
|
|
_cimg_mp_op("Function 'mse()'");
|
|
s1 = ss4; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss4,s1,depth1,0,block_flags);
|
|
arg2 = compile(++s1,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg2,2,_cimg_mp_is_scalar(arg1)?1:2,_cimg_mp_size(arg1));
|
|
_cimg_mp_scalar3(mp_mse,arg1,arg2,_cimg_mp_size(arg1));
|
|
}
|
|
|
|
if (!std::strncmp(ss,"merge(",6)) { // Merge inter-thread variables
|
|
_cimg_mp_op("Function 'merge()'");
|
|
s1 = ss6; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
ref.assign(7);
|
|
pos = compile(ss6,s1,depth1,ref,block_flags);
|
|
if (*ref) {
|
|
_cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: First argument cannot be a linked reference, "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
s0);
|
|
}
|
|
|
|
arg1 = ~0U; // Merge operator
|
|
// (0='=',1='+',2='-',3='*',4='/',5='&',6='|',7='xor',8='&&',9=='||',10='min',11='max')
|
|
if (s1<se1) {
|
|
++s1;
|
|
char st_op[4] = {};
|
|
is_sth = false; // blank after operator?
|
|
if (cimg_sscanf(s1," %3[=+-*/&|minaxor]%c",st_op,&sep)==2 && (sep==')' ||
|
|
(is_sth=cimg::is_blank(sep)))) {
|
|
if (!is_sth || (is_sth && cimg_sscanf(s1," %*[=+-*/&|minaxor ]%c",&sep)==1 && sep==')')) {
|
|
cimg::strpare(st_op,' ',false,true);
|
|
if (!st_op[1])
|
|
arg1 = *st_op=='='?0:*st_op=='+'?1:*st_op=='-'?2:*st_op=='*'?3:*st_op=='/'?4:
|
|
*st_op=='&'?5:*st_op=='|'?6:~0U;
|
|
else if (*st_op=='x' && st_op[1]=='o' && st_op[2]=='r' && !st_op[3]) arg1 = 7;
|
|
else if (*st_op=='&' && st_op[1]=='&' && !st_op[2]) arg1 = 8;
|
|
else if (*st_op=='|' && st_op[1]=='|' && !st_op[2]) arg1 = 9;
|
|
else if (*st_op=='m' && st_op[1]=='i' && st_op[2]=='n' && !st_op[3]) arg1 = 10;
|
|
else if (*st_op=='m' && st_op[1]=='a' && st_op[2]=='x' && !st_op[3]) arg1 = 11;
|
|
}
|
|
}
|
|
}
|
|
|
|
cimg_rofY(memmerge,k) if (memmerge(0,k)==(int)pos) {
|
|
_cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Merge has already been requested before "
|
|
"for specified variable "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,s0);
|
|
}
|
|
if (arg1==~0U) {
|
|
_cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Invalid specified operator "
|
|
"(should be one of '=,+,-,*,/,&,|,xor,&&,||,min,max'), "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,s0);
|
|
}
|
|
memmerge.resize(3,memmerge._height + 1,1,1,0,0);
|
|
memmerge(0,memmerge._height - 1) = (int)pos;
|
|
memmerge(1,memmerge._height - 1) = (int)_cimg_mp_size(pos);
|
|
memmerge(2,memmerge._height - 1) = (int)arg1;
|
|
_cimg_mp_return_nan();
|
|
}
|
|
break;
|
|
|
|
case 'n' :
|
|
#ifdef cimg_mp_func_name
|
|
if (!std::strncmp(ss,"name(",5)) { // Get image name as a string vector
|
|
_cimg_mp_op("Function 'name()'");
|
|
if (*ss5=='#') { // Index specified
|
|
s0 = ss6; while (s0<se1 && (*s0!=',' || level[s0 - expr._data]!=clevel1)) ++s0;
|
|
p1 = compile(ss6,s0++,depth1,0,block_flags);
|
|
is_sth = true; // is_index_specified?
|
|
_cimg_mp_check_list();
|
|
} else { s0 = ss5; p1 = get_mem_img_index(); is_sth = false; }
|
|
arg1 = s0<se1?compile(s0,se1,depth1,0,block_flags):~0U;
|
|
if (arg1!=~0U) {
|
|
_cimg_mp_check_const_scalar(arg1,is_sth?2:1,3);
|
|
arg1 = (unsigned int)mem[arg1];
|
|
} else arg1 = 1024;
|
|
pos = vector(arg1);
|
|
CImg<ulongT>::vector((ulongT)mp_name,pos,p1,arg1).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
#endif
|
|
|
|
if (!std::strncmp(ss,"narg(",5)) { // Number of arguments
|
|
_cimg_mp_op("Function 'narg()'");
|
|
if (ss5>=se1) _cimg_mp_return(0);
|
|
arg1 = 0;
|
|
for (s = ss5; s<se; ++s) {
|
|
ns = s; while (ns<se && (*ns!=',' || level[ns - expr._data]!=clevel1) &&
|
|
(*ns!=')' || level[ns - expr._data]!=clevel)) ++ns;
|
|
++arg1; s = ns;
|
|
}
|
|
_cimg_mp_const_scalar((double)arg1);
|
|
}
|
|
|
|
if ((cimg_sscanf(ss,"norm%u%c",&(arg1=~0U),&sep)==2 && sep=='(') ||
|
|
!std::strncmp(ss,"norminf(",8) || !std::strncmp(ss,"norm(",5) ||
|
|
(!std::strncmp(ss,"norm",4) && ss5<se1 && (s=std::strchr(ss5,'('))!=0)) { // Lp norm
|
|
_cimg_mp_op("Function 'normP()'");
|
|
if (*ss4=='(') { arg1 = 2; s = ss5; }
|
|
else if (*ss4=='i' && *ss5=='n' && *ss6=='f' && *ss7=='(') { arg1 = ~0U; s = ss8; }
|
|
else if (arg1==~0U) {
|
|
arg1 = compile(ss4,s++,depth1,0,block_flags);
|
|
_cimg_mp_check_const_scalar(arg1,0,2);
|
|
arg1 = (unsigned int)mem[arg1];
|
|
} else s = std::strchr(ss4,'(') + 1;
|
|
is_sth = true; // Tell if all arguments are constant
|
|
pos = scalar();
|
|
switch (arg1) {
|
|
case 0 : op = mp_norm0; CImg<ulongT>::vector((ulongT)op,pos,0).move_to(l_opcode); break;
|
|
case 1 : op = mp_norm1; CImg<ulongT>::vector((ulongT)op,pos,0).move_to(l_opcode); break;
|
|
case 2 : op = mp_norm2; CImg<ulongT>::vector((ulongT)op,pos,0).move_to(l_opcode); break;
|
|
case ~0U : op = mp_norminf; CImg<ulongT>::vector((ulongT)op,pos,0).move_to(l_opcode); break;
|
|
default : op = mp_normp; CImg<ulongT>::vector((ulongT)op,pos,0,(ulongT)(arg1==~0U?-1:(int)arg1)).
|
|
move_to(l_opcode);
|
|
}
|
|
for ( ; s<se; ++s) {
|
|
ns = s; while (ns<se && (*ns!=',' || level[ns - expr._data]!=clevel1) &&
|
|
(*ns!=')' || level[ns - expr._data]!=clevel)) ++ns;
|
|
arg2 = compile(s,ns,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg2))
|
|
CImg<ulongT>::sequence(_cimg_mp_size(arg2),arg2 + 1,
|
|
arg2 + (ulongT)_cimg_mp_size(arg2)).
|
|
move_to(l_opcode);
|
|
else CImg<ulongT>::vector(arg2).move_to(l_opcode);
|
|
is_sth&=_cimg_mp_is_const_scalar(arg2);
|
|
s = ns;
|
|
}
|
|
|
|
(l_opcode>'y').move_to(opcode);
|
|
opcode[2] = opcode._height;
|
|
if (is_sth) _cimg_mp_const_scalar(op(*this));
|
|
if (arg1>0 && opcode._height==4) // Special case with one argument and p>=1
|
|
_cimg_mp_scalar1(mp_abs,opcode[3]);
|
|
opcode.move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
break;
|
|
|
|
case 'p' :
|
|
if (!std::strncmp(ss,"permut(",7)) { // Number of permutations
|
|
_cimg_mp_op("Function 'permut()'");
|
|
s1 = ss7; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss7,s1,depth1,0,block_flags);
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg2 = compile(s1,s2,depth1,0,block_flags);
|
|
arg3 = compile(++s2,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,1,1,0);
|
|
_cimg_mp_check_type(arg2,2,1,0);
|
|
_cimg_mp_check_type(arg3,3,1,0);
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2) && _cimg_mp_is_const_scalar(arg3))
|
|
_cimg_mp_const_scalar(cimg::permutations((int)mem[arg1],(int)mem[arg2],(bool)mem[arg3]));
|
|
_cimg_mp_scalar3(mp_permutations,arg1,arg2,arg3);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"polygon(",8)) { // Polygon/line drawing
|
|
if (!is_inside_critical) is_parallelizable = false;
|
|
_cimg_mp_op("Function 'polygon()'");
|
|
if (*ss8=='#') { // Index specified
|
|
s0 = ss + 9; while (s0<se1 && (*s0!=',' || level[s0 - expr._data]!=clevel1)) ++s0;
|
|
p1 = compile(ss + 9,s0++,depth1,0,block_flags);
|
|
pos = 2;
|
|
_cimg_mp_check_list();
|
|
} else { p1 = ~0U; s0 = ss8; pos = 1; }
|
|
if (s0==se1) compile(s0,se1,depth1,0,block_flags); // 'missing' argument error
|
|
CImg<ulongT>::vector((ulongT)mp_polygon,_cimg_mp_slot_nan,0,p1).move_to(l_opcode);
|
|
for (s = s0; s<se; ++s, ++pos) {
|
|
ns = s; while (ns<se && (*ns!=',' || level[ns - expr._data]!=clevel1) &&
|
|
(*ns!=')' || level[ns - expr._data]!=clevel)) ++ns;
|
|
arg2 = compile(s,ns,depth1,0,block_flags);
|
|
if (pos>1 && _cimg_mp_is_vector(arg2)) // Vector argument allowed to specify coordinates and color
|
|
CImg<ulongT>::sequence(_cimg_mp_size(arg2),arg2 + 1,
|
|
arg2 + (ulongT)_cimg_mp_size(arg2)).
|
|
move_to(l_opcode);
|
|
else {
|
|
_cimg_mp_check_type(arg2,pos,1,0);
|
|
CImg<ulongT>::vector(arg2).move_to(l_opcode);
|
|
}
|
|
s = ns;
|
|
}
|
|
(l_opcode>'y').move_to(opcode);
|
|
opcode[2] = opcode._height;
|
|
opcode.move_to(code);
|
|
_cimg_mp_return_nan();
|
|
}
|
|
|
|
if (!std::strncmp(ss,"print(",6) ||
|
|
!std::strncmp(ss,"prints(",7)) { // Print expressions
|
|
s0 = ss6 + (*ss5=='('?0:1);
|
|
is_sth = *ss5=='s'; // corresponding string must be printed?
|
|
_cimg_mp_op(is_sth?"Function 'prints()'":"Function 'print()'");
|
|
if (!is_sth && *s0=='#') { // Image
|
|
p1 = compile(ss7,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_list();
|
|
CImg<ulongT>::vector((ulongT)mp_image_print,_cimg_mp_slot_nan,p1).move_to(code);
|
|
_cimg_mp_return_nan();
|
|
}
|
|
|
|
// Regular expression
|
|
for (s = s0; s<se; ++s) {
|
|
ns = s; while (ns<se && (*ns!=',' || level[ns - expr._data]!=clevel1) &&
|
|
(*ns!=')' || level[ns - expr._data]!=clevel)) ++ns;
|
|
ref.assign(7);
|
|
pos = compile(s,ns,depth1,ref,block_flags);
|
|
c1 = *ns; *ns = 0;
|
|
variable_name.assign(CImg<charT>::string(s,true,true).unroll('y'),true);
|
|
cimg::strpare(variable_name,false,true);
|
|
if (_cimg_mp_is_const_scalar(pos)) // Const scalar
|
|
std::fprintf(cimg::output(),"\n[" cimg_appname "_math_parser] %s = %.17g "
|
|
"(mem[%u]: %s%s)",
|
|
variable_name._data,mem[pos],pos,s_type(pos)._data,s_ref(ref)._data);
|
|
else // Vector or non-const scalar
|
|
std::fprintf(cimg::output(),"\n[" cimg_appname "_math_parser] %s = (uninitialized) "
|
|
"(mem[%u]: %s%s)",
|
|
variable_name._data,pos,s_type(pos)._data,s_ref(ref)._data);
|
|
|
|
if (p_ref) std::memcpy(p_ref,ref,siz_ref);
|
|
|
|
if (_cimg_mp_is_vector(pos)) // Vector
|
|
((CImg<ulongT>::vector((ulongT)mp_vector_print,pos,0,(ulongT)_cimg_mp_size(pos),is_sth?1:0),
|
|
variable_name)>'y').move_to(opcode);
|
|
else // Scalar
|
|
((CImg<ulongT>::vector((ulongT)mp_print,pos,0,is_sth?1:0),
|
|
variable_name)>'y').move_to(opcode);
|
|
|
|
opcode[2] = opcode._height;
|
|
opcode.move_to(code);
|
|
*ns = c1; s = ns;
|
|
}
|
|
_cimg_mp_return(pos);
|
|
}
|
|
break;
|
|
|
|
case 'r' :
|
|
if (!std::strncmp(ss,"rad2deg(",8)) { // Degrees to radians
|
|
_cimg_mp_op("Function 'rad2deg()'");
|
|
arg1 = compile(ss8,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_rad2deg,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(mem[arg1]*180/cimg::PI);
|
|
_cimg_mp_scalar1(mp_rad2deg,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"ref(",4)) { // Variable declaration
|
|
_cimg_mp_op("Function 'ref()'");
|
|
s1 = ss4; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
if (s1>=se1 || !*s1) compile(s1,s1,depth1,0,block_flags); // Will throw missing argument error
|
|
arg3 = compile(ss4,s1++,depth1,p_ref,block_flags);
|
|
*se1 = 0;
|
|
|
|
if (!cimg::is_varname(s1)) { // Invalid variable name
|
|
variable_name.assign(s1,(unsigned int)(se1 + 1 - s1)).back() = 0;
|
|
cimg::strellipsize(variable_name,64);
|
|
*se1 = ')';
|
|
_cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Invalid specified variable name '%s', "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
variable_name._data,s0);
|
|
}
|
|
get_variable_pos(s1,arg1,arg2);
|
|
if (arg2!=~0U) reserved_label[arg2] = arg3;
|
|
else if (arg1!=~0U) variable_pos[arg1] = arg3;
|
|
else { // New variable
|
|
if (variable_def._width>=variable_pos._width) variable_pos.resize(-200,1,1,1,0);
|
|
variable_pos[variable_def._width] = arg3;
|
|
CImg<char>::string(s1).move_to(variable_def);
|
|
}
|
|
if (_cimg_mp_is_vector(arg3))
|
|
set_reserved_vector(arg3); // Prevent from being used in further optimization
|
|
else if (_cimg_mp_is_comp(arg3)) memtype[arg3] = -1;
|
|
*se1 = ')';
|
|
_cimg_mp_return(arg3);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"repeat(",7)) { // Repeat
|
|
_cimg_mp_op("Function 'repeat()'");
|
|
s0 = ss7; while (s0<se1 && (*s0!=',' || level[s0 - expr._data]!=clevel1)) ++s0;
|
|
arg1 = compile(ss7,s0,depth1,0,block_flags); // Number of iterations
|
|
_cimg_mp_check_type(arg1,1,1,0);
|
|
s1 = ++s0; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
p1 = code._width;
|
|
|
|
if (s1<se1) { // Version with 3 arguments
|
|
variable_name.assign(s0,(unsigned int)(s1 + 1 - s0)).back() = 0;
|
|
cimg::strpare(variable_name,false,true);
|
|
if (!cimg::is_varname(variable_name)) { // Invalid variable name
|
|
cimg::strellipsize(variable_name,64);
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Invalid loop variable name '%s', "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
variable_name._data,s0);
|
|
}
|
|
get_variable_pos(variable_name,arg2,arg3);
|
|
arg2 = arg3!=~0U?reserved_label[arg3]:arg2!=~0U?variable_pos[arg2]:~0U; // Variable slot
|
|
if (arg2!=~0U && (!_cimg_mp_is_scalar(arg2) ||
|
|
_cimg_mp_is_const_scalar(arg2))) { // Variable is not a vector or is a constant->error
|
|
cimg::strellipsize(variable_name,64);
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Invalid type '%s' for variable '%s' "
|
|
"(expected 'scalar'), in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
s_type(arg2)._data,variable_name._data,s0);
|
|
} else if (arg2==~0U) { // Variable does not exist -> create it
|
|
arg2 = scalar();
|
|
if (arg3!=~0U) reserved_label[arg3] = arg2;
|
|
else {
|
|
if (variable_def._width>=variable_pos._width) variable_pos.resize(-200,1,1,1,0);
|
|
variable_pos[variable_def._width] = arg2;
|
|
variable_name.move_to(variable_def);
|
|
}
|
|
memtype[arg2] = -1;
|
|
}
|
|
arg3 = compile(++s1,se1,depth1,0,block_flags);
|
|
} else { // Version with 2 arguments
|
|
arg2 = ~0U;
|
|
arg3 = compile(s0,se1,depth1,0,block_flags);
|
|
}
|
|
// arg2 = variable slot, arg3 = fill expression.
|
|
CImg<ulongT>::vector((ulongT)mp_repeat,arg3,arg1,arg2,code._width - p1).move_to(code,p1);
|
|
_cimg_mp_return_nan();
|
|
}
|
|
|
|
if (!std::strncmp(ss,"resize(",7)) { // Vector or image resize
|
|
_cimg_mp_op("Function 'resize()'");
|
|
if (*ss7!='#') { // Vector
|
|
pos = 1;
|
|
for (s = ss7; s<se; ++s, ++pos) {
|
|
ns = s; while (ns<se && (*ns!=',' || level[ns - expr._data]!=clevel1) &&
|
|
(*ns!=')' || level[ns - expr._data]!=clevel)) ++ns;
|
|
arg2 = compile(s,ns,depth1,0,block_flags);
|
|
if (s!=ss7) _cimg_mp_check_type(arg2,pos,1,0);
|
|
CImg<ulongT>::vector(arg2).move_to(l_opcode);
|
|
s = ns;
|
|
}
|
|
(l_opcode>'y').move_to(opcode);
|
|
if (opcode.height()<2) compile(s,se1,depth1,0,block_flags); // Not enough arguments -> throw exception
|
|
arg1 = (unsigned int)opcode[0]; // Vector to resize
|
|
p1 = _cimg_mp_size(arg1);
|
|
|
|
if (opcode.height()<=4) { // Simple vector resize
|
|
arg2 = (unsigned int)opcode[1];
|
|
_cimg_mp_check_const_scalar(arg2,2,3);
|
|
arg2 = (unsigned int)mem[arg2];
|
|
arg3 = opcode.height()<3?1U:(unsigned int)opcode[2];
|
|
_cimg_mp_check_type(arg3,3,1,0);
|
|
arg4 = opcode.height()<4?0U:(unsigned int)opcode[3];
|
|
_cimg_mp_check_type(arg4,4,1,0);
|
|
pos = vector(arg2);
|
|
CImg<ulongT>::vector((ulongT)mp_vector_resize,pos,arg2,arg1,p1,arg3,arg4).move_to(code);
|
|
} else { // Advanced vector resize (vector viewed as an image)
|
|
// opcode = [ A, ow,oh,od,os, nw,nh,nd,ns, interp, boundary_cond, ax,ay,az,ac ]
|
|
// [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ]
|
|
|
|
if (opcode.height()<6) compile(s,se1,depth1,0,block_flags); // Not enough arguments -> throw exception
|
|
p2 = opcode.height();
|
|
opcode.resize(1,15,1,1,0);
|
|
if (p2<7) opcode[6] = opcode[2];
|
|
if (p2<8) opcode[7] = opcode[3];
|
|
if (p2<9) opcode[8] = opcode[4];
|
|
if (p2<10) opcode[9] = 1;
|
|
_cimg_mp_check_const_scalar(opcode[1],2,3);
|
|
_cimg_mp_check_const_scalar(opcode[2],3,3);
|
|
_cimg_mp_check_const_scalar(opcode[3],4,3);
|
|
_cimg_mp_check_const_scalar(opcode[4],5,3);
|
|
_cimg_mp_check_const_scalar(opcode[5],6,3);
|
|
_cimg_mp_check_const_scalar(opcode[6],7,3);
|
|
_cimg_mp_check_const_scalar(opcode[7],8,3);
|
|
_cimg_mp_check_const_scalar(opcode[8],9,3);
|
|
arg2 = (unsigned int)mem[opcode[1]]; opcode[1] = arg2;
|
|
arg3 = (unsigned int)mem[opcode[2]]; opcode[2] = arg3;
|
|
arg4 = (unsigned int)mem[opcode[3]]; opcode[3] = arg4;
|
|
arg5 = (unsigned int)mem[opcode[4]]; opcode[4] = arg5;
|
|
if (arg2*arg3*arg4*arg5!=std::max(1U,p1))
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Input vector size (%lu values) and its specified "
|
|
"geometry (%u,%u,%u,%u) (%lu values) do not match.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
std::max(p1,1U),arg2,arg3,arg4,arg5,(ulongT)arg2*arg3*arg4*arg5);
|
|
arg2 = (unsigned int)mem[opcode[5]]; opcode[5] = arg2;
|
|
arg3 = (unsigned int)mem[opcode[6]]; opcode[6] = arg3;
|
|
arg4 = (unsigned int)mem[opcode[7]]; opcode[7] = arg4;
|
|
arg5 = (unsigned int)mem[opcode[8]]; opcode[8] = arg5;
|
|
pos = vector(arg2*arg3*arg4*arg5);
|
|
opcode.resize(1,18,1,1,0,0,0,1);
|
|
opcode[0] = (ulongT)mp_vector_resize_ext;
|
|
opcode[1] = (ulongT)pos;
|
|
opcode[2] = (ulongT)p1;
|
|
opcode.move_to(code);
|
|
}
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
|
|
} else { // Image
|
|
if (!is_inside_critical) is_parallelizable = false;
|
|
s0 = ss8; while (s0<se1 && (*s0!=',' || level[s0 - expr._data]!=clevel1)) ++s0;
|
|
p1 = compile(ss8,s0++,depth1,0,block_flags);
|
|
_cimg_mp_check_list();
|
|
l_opcode.assign(); // Don't use 'opcode': it can be modified by further calls to 'compile()'!
|
|
CImg<ulongT>::vector((ulongT)mp_image_resize,_cimg_mp_slot_nan,p1,~0U,~0U,~0U,~0U,1,0,0,0,0,0).
|
|
move_to(l_opcode);
|
|
pos = 0;
|
|
for (s = s0; s<se && pos<10; ++s) {
|
|
ns = s; while (ns<se && (*ns!=',' || level[ns - expr._data]!=clevel1) &&
|
|
(*ns!=')' || level[ns - expr._data]!=clevel)) ++ns;
|
|
arg1 = compile(s,ns,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,pos + 2,1,0);
|
|
l_opcode(0,pos + 3) = arg1;
|
|
s = ns;
|
|
++pos;
|
|
}
|
|
if (pos<1 || pos>10) {
|
|
_cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: %s arguments, in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
pos<1?"Missing":"Too much",s0);
|
|
}
|
|
l_opcode[0].move_to(code);
|
|
_cimg_mp_return_nan();
|
|
}
|
|
}
|
|
|
|
if (!std::strncmp(ss,"reverse(",8)) { // Vector reverse
|
|
_cimg_mp_op("Function 'reverse()'");
|
|
arg1 = compile(ss8,se1,depth1,0,block_flags);
|
|
if (!_cimg_mp_is_vector(arg1)) _cimg_mp_return(arg1);
|
|
p1 = _cimg_mp_size(arg1);
|
|
pos = vector(p1);
|
|
CImg<ulongT>::vector((ulongT)mp_vector_reverse,pos,arg1,p1).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"rol(",4) || !std::strncmp(ss,"ror(",4)) { // Bitwise rotation
|
|
_cimg_mp_op(ss[2]=='l'?"Function 'rol()'":"Function 'ror()'");
|
|
s1 = ss4; while (s1<se1 && (*s1!=',' || level[s1-expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss4,s1,depth1,0,block_flags);
|
|
arg2 = s1<se1?compile(++s1,se1,depth1,0,block_flags):1;
|
|
_cimg_mp_check_type(arg2,2,1,0);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector2_vs(*ss2=='l'?mp_rol:mp_ror,arg1,arg2);
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2))
|
|
_cimg_mp_const_scalar(*ss2=='l'?cimg::rol(mem[arg1],(unsigned int)mem[arg2]):
|
|
cimg::ror(mem[arg1],(unsigned int)mem[arg2]));
|
|
_cimg_mp_scalar2(*ss2=='l'?mp_rol:mp_ror,arg1,arg2);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"rot(",4)) { // 2D/3D rotation matrix
|
|
_cimg_mp_op("Function 'rot()'");
|
|
s1 = ss4; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss4,s1,depth1,0,block_flags);
|
|
if (s1<se1) { // 3D rotation
|
|
_cimg_mp_check_type(arg1,1,3,3);
|
|
is_sth = false; // Is coordinates as vector?
|
|
if (_cimg_mp_is_vector(arg1)) { // Coordinates specified as a vector
|
|
is_sth = true;
|
|
p2 = _cimg_mp_size(arg1);
|
|
++arg1;
|
|
arg2 = arg3 = 0;
|
|
if (p2>1) {
|
|
arg2 = arg1 + 1;
|
|
if (p2>2) arg3 = arg2 + 1;
|
|
}
|
|
arg4 = compile(++s1,se1,depth1,0,block_flags);
|
|
} else {
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg2 = compile(s1,s2,depth1,0,block_flags);
|
|
s3 = ++s2; while (s3<se1 && (*s3!=',' || level[s3 - expr._data]!=clevel1)) ++s3;
|
|
arg3 = compile(s2,s3,depth1,0,block_flags);
|
|
arg4 = compile(++s3,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg2,2,1,0);
|
|
_cimg_mp_check_type(arg3,3,1,0);
|
|
}
|
|
_cimg_mp_check_type(arg4,is_sth?2:4,1,0);
|
|
pos = vector(9);
|
|
CImg<ulongT>::vector((ulongT)mp_rot3d,pos,arg1,arg2,arg3,arg4).move_to(code);
|
|
} else { // 2D rotation
|
|
_cimg_mp_check_type(arg1,1,1,0);
|
|
pos = vector(4);
|
|
CImg<ulongT>::vector((ulongT)mp_rot2d,pos,arg1).move_to(code);
|
|
}
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"round(",6)) { // Value rounding
|
|
_cimg_mp_op("Function 'round()'");
|
|
s1 = ss6; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss6,s1,depth1,0,block_flags);
|
|
arg2 = 1;
|
|
arg3 = 0;
|
|
if (s1<se1) {
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg2 = compile(s1,s2,depth1,0,block_flags);
|
|
arg3 = s2<se1?compile(++s2,se1,depth1,0,block_flags):0;
|
|
}
|
|
_cimg_mp_check_type(arg2,2,1,0);
|
|
_cimg_mp_check_type(arg3,3,1,0);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector3_vss(mp_round,arg1,arg2,arg3);
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2) && _cimg_mp_is_const_scalar(arg3))
|
|
_cimg_mp_const_scalar(cimg::round(mem[arg1],mem[arg2],(int)mem[arg3]));
|
|
_cimg_mp_scalar3(mp_round,arg1,arg2,arg3);
|
|
}
|
|
|
|
#ifdef cimg_mp_func_run
|
|
if (!std::strncmp(ss,"run(",4)) { // Run external command
|
|
_cimg_mp_op("Function 'run()'");
|
|
const bool is_inside_begin = (bool)(block_flags&2), is_inside_end = (bool)(block_flags&8);
|
|
if (!is_inside_critical && !is_inside_begin && !is_inside_end) {
|
|
is_parallelizable = false; is_noncritical_run = true;
|
|
}
|
|
CImg<ulongT>::vector((ulongT)mp_run,0,0).move_to(l_opcode);
|
|
pos = 1;
|
|
for (s = ss4; s<se; ++s) {
|
|
ns = s; while (ns<se && (*ns!=',' || level[ns - expr._data]!=clevel1) &&
|
|
(*ns!=')' || level[ns - expr._data]!=clevel)) ++ns;
|
|
arg1 = compile(s,ns,depth1,0,block_flags);
|
|
CImg<ulongT>::vector(arg1,_cimg_mp_size(arg1)).move_to(l_opcode);
|
|
s = ns;
|
|
}
|
|
(l_opcode>'y').move_to(opcode);
|
|
pos = scalar();
|
|
opcode[1] = pos;
|
|
opcode[2] = opcode._height;
|
|
opcode.move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
#endif
|
|
break;
|
|
|
|
case 's' :
|
|
if (*ss1=='(') { // Image spectrum
|
|
_cimg_mp_op("Function 's()'");
|
|
if (*ss2=='#') { // Index specified
|
|
p1 = compile(ss3,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_list();
|
|
} else { if (ss2!=se1) break; p1 = ~0U; }
|
|
_cimg_mp_scalar1(mp_image_s,p1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"same(",5)) { // Test if operands have the same values
|
|
_cimg_mp_op("Function 'same()'");
|
|
s1 = ss5; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss5,s1,depth1,0,block_flags);
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg2 = compile(s1,s2,depth1,0,block_flags);
|
|
arg3 = 11;
|
|
arg4 = 1;
|
|
if (s2<se1) {
|
|
s3 = ++s2; while (s3<se1 && (*s3!=',' || level[s3 - expr._data]!=clevel1)) ++s3;
|
|
arg3 = compile(s2,s3,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg3,3,1,0);
|
|
arg4 = s3<se1?compile(++s3,se1,depth1,0,block_flags):1;
|
|
}
|
|
p1 = _cimg_mp_size(arg1);
|
|
p2 = _cimg_mp_size(arg2);
|
|
_cimg_mp_scalar6(mp_vector_eq,arg1,p1,arg2,p2,arg3,arg4);
|
|
}
|
|
|
|
#ifdef cimg_mp_func_set
|
|
if (!std::strncmp(ss,"set(",4)) { // Set value/vector to external variable
|
|
_cimg_mp_op("Function 'set()'");
|
|
s1 = ss4; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss4,s1,depth1,0,block_flags);
|
|
arg2 = compile(++s1,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,2,2,0);
|
|
p1 = _cimg_mp_size(arg1);
|
|
p2 = _cimg_mp_size(arg2);
|
|
CImg<ulongT>::vector((ulongT)mp_set,arg2,p2,arg1,p1).move_to(code);
|
|
_cimg_mp_return_nan();
|
|
}
|
|
#endif
|
|
|
|
if (!std::strncmp(ss,"shift(",6)) { // Shift vector
|
|
_cimg_mp_op("Function 'shift()'");
|
|
s1 = ss6; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss6,s1,depth1,0,block_flags);
|
|
arg2 = 1; arg3 = 0;
|
|
if (s1<se1) {
|
|
s0 = ++s1; while (s0<se1 && (*s0!=',' || level[s0 - expr._data]!=clevel1)) ++s0;
|
|
arg2 = compile(s1,s0,depth1,0,block_flags);
|
|
arg3 = s0<se1?compile(++s0,se1,depth1,0,block_flags):0;
|
|
}
|
|
_cimg_mp_check_type(arg1,1,2,0);
|
|
_cimg_mp_check_type(arg2,2,1,0);
|
|
_cimg_mp_check_type(arg3,3,1,0);
|
|
p1 = _cimg_mp_size(arg1);
|
|
pos = vector(p1);
|
|
CImg<ulongT>::vector((ulongT)mp_shift,pos,arg1,p1,arg2,arg3).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"sign(",5)) { // Sign
|
|
_cimg_mp_op("Function 'sign()'");
|
|
arg1 = compile(ss5,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_sign,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(cimg::sign(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_sign,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"sin(",4)) { // Sine
|
|
_cimg_mp_op("Function 'sin()'");
|
|
arg1 = compile(ss4,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_sin,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(std::sin(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_sin,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"sinc(",5)) { // Sine cardinal
|
|
_cimg_mp_op("Function 'sinc()'");
|
|
arg1 = compile(ss5,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_sinc,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(cimg::sinc(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_sinc,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"sinh(",5)) { // Hyperbolic sine
|
|
_cimg_mp_op("Function 'sinh()'");
|
|
arg1 = compile(ss5,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_sinh,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(std::sinh(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_sinh,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"size(",5)) { // Vector size
|
|
_cimg_mp_op("Function 'size()'");
|
|
arg1 = compile(ss5,se1,depth1,0,block_flags);
|
|
_cimg_mp_const_scalar(_cimg_mp_is_scalar(arg1)?0:_cimg_mp_size(arg1));
|
|
}
|
|
|
|
if (!std::strncmp(ss,"solve(",6)) { // Solve square linear system
|
|
_cimg_mp_op("Function 'solve()'");
|
|
s1 = ss6; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss6,s1,depth1,0,block_flags);
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg2 = compile(s1,s2,depth1,0,block_flags);
|
|
arg3 = 1;
|
|
arg4 = 0;
|
|
if (s2<se1) {
|
|
s1 = ++s2; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg3 = compile(s2,s1,depth1,0,block_flags);
|
|
arg4 = s1<se1?compile(++s1,se1,depth1,0,block_flags):0;
|
|
}
|
|
_cimg_mp_check_type(arg1,1,2,0);
|
|
_cimg_mp_check_type(arg2,2,2,0);
|
|
_cimg_mp_check_const_scalar(arg3,3,3);
|
|
_cimg_mp_check_type(arg4,4,1,0);
|
|
|
|
p1 = _cimg_mp_size(arg1);
|
|
p2 = _cimg_mp_size(arg2);
|
|
p3 = (unsigned int)mem[arg3];
|
|
arg5 = p2/p3;
|
|
arg6 = p1/arg5;
|
|
if (arg6*arg5!=p1 || arg5*p3!=p2) {
|
|
_cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Types of first and second arguments ('%s' and '%s') "
|
|
"do not match with third argument 'nb_colsB=%u', "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
s_type(arg1)._data,s_type(arg2)._data,p3,s0);
|
|
}
|
|
pos = vector(arg6*p3);
|
|
CImg<ulongT>::vector((ulongT)mp_solve,pos,arg1,arg2,arg6,arg5,p3,arg4).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"sort(",5)) { // Sort vector
|
|
_cimg_mp_op("Function 'sort()'");
|
|
s1 = ss5; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss5,s1,depth1,0,block_flags);
|
|
arg2 = arg4 = 1; arg3 = ~0U;
|
|
if (s1<se1) {
|
|
s0 = ++s1; while (s0<se1 && (*s0!=',' || level[s0 - expr._data]!=clevel1)) ++s0;
|
|
arg2 = compile(s1,s0,depth1,0,block_flags);
|
|
if (s0<se1) {
|
|
s1 = ++s0; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg3 = compile(s0,s1,depth1,0,block_flags);
|
|
arg4 = s1<se1?compile(++s1,se1,depth1,0,block_flags):1;
|
|
}
|
|
}
|
|
_cimg_mp_check_type(arg1,1,2,0);
|
|
_cimg_mp_check_type(arg2,2,1,0);
|
|
if (arg3!=~0U) _cimg_mp_check_type(arg3,3,1,0);
|
|
_cimg_mp_check_type(arg4,4,1,0);
|
|
p1 = _cimg_mp_size(arg1);
|
|
pos = vector(p1);
|
|
CImg<ulongT>::vector((ulongT)mp_sort,pos,arg1,p1,arg2,arg3,arg4).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"sqr(",4)) { // Square
|
|
_cimg_mp_op("Function 'sqr()'");
|
|
arg1 = compile(ss4,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_sqr,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(cimg::sqr(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_sqr,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"sqrt(",5)) { // Square root
|
|
_cimg_mp_op("Function 'sqrt()'");
|
|
arg1 = compile(ss5,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_sqrt,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(std::sqrt(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_sqrt,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"srand(",6)) { // Set RNG seed
|
|
_cimg_mp_op("Function 'srand()'");
|
|
arg1 = ss6<se1?compile(ss6,se1,depth1,0,block_flags):~0U;
|
|
if (arg1!=~0U) { _cimg_mp_check_type(arg1,1,1,0); _cimg_mp_scalar1(mp_srand,arg1); }
|
|
_cimg_mp_scalar0(mp_srand0);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"stats(",6)) { // Image statistics
|
|
_cimg_mp_op("Function 'stats()'");
|
|
if (*ss6=='#') { // Index specified
|
|
p1 = compile(ss7,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_list();
|
|
} else { if (ss6!=se1) break; p1 = ~0U; }
|
|
pos = vector(14);
|
|
CImg<ulongT>::vector((ulongT)mp_image_stats,pos,p1).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
#ifdef cimg_mp_func_store
|
|
if (!std::strncmp(ss,"store(",6)) { // Store vector to variable
|
|
_cimg_mp_op("Function 'store()'");
|
|
s1 = ss6; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss6,s1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,2,2,0);
|
|
p1 = _cimg_mp_size(arg1);
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg2 = compile(s1,s2,depth1,0,block_flags);
|
|
p2 = _cimg_mp_size(arg2);
|
|
p3 = std::max(1U,p2);
|
|
|
|
arg3 = ~0U; arg4 = arg5 = arg6 = 1U; pos = 0;
|
|
if (s2<se1) {
|
|
s1 = ++s2; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg3 = compile(s2,s1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg3,3,1,0);
|
|
arg4 = arg5 = arg6 = 1U;
|
|
if (s1<se1) {
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg4 = compile(s1,s2,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg4,4,1,0);
|
|
if (s2<se1) {
|
|
s1 = ++s2; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg5 = compile(s2,s1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg5,5,1,0);
|
|
if (s1<se1) {
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg6 = compile(s1,s2,depth1,0,block_flags);
|
|
pos = s2<se1?compile(++s2,se1,depth1,0,block_flags):0;
|
|
_cimg_mp_check_type(arg6,6,1,0);
|
|
_cimg_mp_check_type(pos,7,1,0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (arg3==~0U) arg3 = const_scalar(p3);
|
|
CImg<ulongT>::vector((ulongT)mp_store,_cimg_mp_slot_nan,arg2,p2,arg1,p1,
|
|
arg3,arg4,arg5,arg6,pos).move_to(code);
|
|
_cimg_mp_return_nan();
|
|
}
|
|
#endif
|
|
|
|
if (!std::strncmp(ss,"s2v(",4)) { // String to double
|
|
_cimg_mp_op("Function 's2v()'");
|
|
s1 = ss4; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss4,s1,depth1,0,block_flags);
|
|
arg2 = arg3 = 0;
|
|
if (s1<se1) {
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg2 = compile(s1,s2,depth1,0,block_flags);
|
|
arg3 = s2<se1?compile(++s2,se1,depth1,0,block_flags):0;
|
|
}
|
|
_cimg_mp_check_type(arg2,2,1,0);
|
|
_cimg_mp_check_type(arg3,3,1,0);
|
|
p1 = _cimg_mp_size(arg1);
|
|
pos = scalar();
|
|
CImg<ulongT>::vector((ulongT)mp_s2v,pos,arg1,p1,arg2,arg3).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"string(",7)) { // Construct string from list of arguments
|
|
_cimg_mp_op("Function 'string()'");
|
|
CImg<ulongT>::vector((ulongT)mp_string,0,0,0).move_to(l_opcode);
|
|
|
|
if (*ss7=='#') { // Output vector size specified, with '#'
|
|
s0 = ss8; while (s0<se1 && (*s0!=',' || level[s0 - expr._data]!=clevel1)) ++s0;
|
|
arg1 = compile(ss8,s0++,depth1,0,block_flags);
|
|
_cimg_mp_check_const_scalar(arg1,1,3);
|
|
arg1 = (unsigned int)mem[arg1];
|
|
s = s0;
|
|
} else { arg1=~0U; s = ss7; }
|
|
|
|
p1 = 0;
|
|
for (; s<se; ++s) {
|
|
ns = s; while (ns<se && (*ns!=',' || level[ns - expr._data]!=clevel1) &&
|
|
(*ns!=')' || level[ns - expr._data]!=clevel)) ++ns;
|
|
arg2 = compile(s,ns,depth1,0,block_flags);
|
|
p2 = _cimg_mp_size(arg2);
|
|
if (p2) p1+=p2;
|
|
else {
|
|
if (_cimg_mp_is_const_scalar(arg2)) p1+=cimg_snprintf(variable_name.assign(24),24,"%.17g",mem[arg2]);
|
|
else p1+=23;
|
|
}
|
|
CImg<ulongT>::vector(arg2,p2).move_to(l_opcode);
|
|
s = ns;
|
|
}
|
|
if (arg1==~0U) arg1 = p1;
|
|
pos = vector(arg1,0);
|
|
(l_opcode>'y').move_to(opcode);
|
|
opcode[1] = pos;
|
|
opcode[2] = arg1;
|
|
opcode[3] = opcode._height;
|
|
opcode.move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"svd(",4)) { // Matrix SVD
|
|
_cimg_mp_op("Function 'svd()'");
|
|
s1 = ss4; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss4,s1,depth1,0,block_flags);
|
|
arg2 = s1<se1?compile(++s1,se1,depth1,0,block_flags):1;
|
|
_cimg_mp_check_type(arg1,1,2,0);
|
|
_cimg_mp_check_const_scalar(arg2,2,3);
|
|
p1 = _cimg_mp_size(arg1);
|
|
p2 = (unsigned int)mem[arg2];
|
|
p3 = p1/p2;
|
|
if (p3*p2!=p1) {
|
|
_cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Type of first argument ('%s') "
|
|
"does not match with second argument 'nb_colsA=%u', "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
s_type(arg1)._data,p2,s0);
|
|
}
|
|
pos = vector(p1 + p2 + p2*p2);
|
|
CImg<ulongT>::vector((ulongT)mp_matrix_svd,pos,arg1,p2,p3).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"swap(",5)) { // Swap values
|
|
_cimg_mp_op("Function 'swap()'");
|
|
s1 = ss5; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
ref.assign(14);
|
|
arg1 = compile(ss5,s1,depth1,ref,block_flags);
|
|
arg2 = compile(++s1,se1,depth1,ref._data + 7,block_flags);
|
|
p1 = _cimg_mp_size(arg1);
|
|
_cimg_mp_check_type(arg2,2,p1?2:1,p1);
|
|
if (_cimg_mp_is_const_scalar(arg1) || _cimg_mp_is_const_scalar(arg2)) {
|
|
_cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: %s argument cannot be a constant, "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
_cimg_mp_is_const_scalar(arg1)?"First":"Second",s0);
|
|
}
|
|
CImg<ulongT>::vector((ulongT)mp_swap,arg1,arg2,p1).move_to(code);
|
|
|
|
// Write back values of linked arg1 and arg2.
|
|
const unsigned int *_ref = ref;
|
|
is_sth = true; // Is first argument?
|
|
do {
|
|
switch (*_ref) {
|
|
case 1 : // arg1: V[k]
|
|
arg3 = _ref[1]; // Vector slot
|
|
arg4 = _ref[2]; // Index
|
|
CImg<ulongT>::vector((ulongT)mp_vector_set_off,arg1,arg3,(ulongT)_cimg_mp_size(arg3),arg4).
|
|
move_to(code);
|
|
break;
|
|
case 2 : // arg1: i/j[_#ind,off]
|
|
if (!is_inside_critical) is_parallelizable = false;
|
|
p1 = _ref[1]; // Index
|
|
is_relative = (bool)_ref[2];
|
|
arg3 = _ref[3]; // Offset
|
|
if (p1!=~0U) {
|
|
if (imglist)
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_set_joff:mp_list_set_ioff),
|
|
arg1,p1,arg3).move_to(code);
|
|
} else {
|
|
if (imgout)
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_set_joff:mp_set_ioff),
|
|
arg1,arg3).move_to(code);
|
|
}
|
|
break;
|
|
case 3 : // arg1: i/j(_#ind,_x,_y,_z,_c)
|
|
if (!is_inside_critical) is_parallelizable = false;
|
|
p1 = _ref[1]; // Index
|
|
is_relative = (bool)_ref[2];
|
|
arg3 = _ref[3]; // X
|
|
arg4 = _ref[4]; // Y
|
|
arg5 = _ref[5]; // Z
|
|
arg6 = _ref[6]; // C
|
|
if (p1!=~0U) {
|
|
if (imglist)
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_set_jxyzc:mp_list_set_ixyzc),
|
|
arg1,p1,arg3,arg4,arg5,arg6).move_to(code);
|
|
} else {
|
|
if (imgout)
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_set_jxyzc:mp_set_ixyzc),
|
|
arg1,arg3,arg4,arg5,arg6).move_to(code);
|
|
}
|
|
break;
|
|
case 4: // arg1: I/J[_#ind,off]
|
|
if (!is_inside_critical) is_parallelizable = false;
|
|
p1 = _ref[1]; // Index
|
|
is_relative = (bool)_ref[2];
|
|
arg3 = _ref[3]; // Offset
|
|
if (p1!=~0U) {
|
|
if (imglist) {
|
|
if (_cimg_mp_is_scalar(arg1))
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_set_Joff_s:mp_list_set_Ioff_s),
|
|
arg1,p1,arg3).move_to(code);
|
|
else {
|
|
_cimg_mp_check_const_index(p1);
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_set_Joff_v:mp_list_set_Ioff_v),
|
|
arg1,p1,arg3,_cimg_mp_size(arg1)).move_to(code);
|
|
}
|
|
}
|
|
} else {
|
|
if (imgout) {
|
|
if (_cimg_mp_is_scalar(arg1))
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_set_Joff_s:mp_set_Ioff_s),
|
|
arg1,arg3).move_to(code);
|
|
else
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_set_Joff_v:mp_set_Ioff_v),
|
|
arg1,arg3,_cimg_mp_size(arg1)).move_to(code);
|
|
}
|
|
}
|
|
break;
|
|
case 5 : // arg1: I/J(_#ind,_x,_y,_z,_c)
|
|
if (!is_inside_critical) is_parallelizable = false;
|
|
p1 = _ref[1]; // Index
|
|
is_relative = (bool)_ref[2];
|
|
arg3 = _ref[3]; // X
|
|
arg4 = _ref[4]; // Y
|
|
arg5 = _ref[5]; // Z
|
|
if (p1!=~0U) {
|
|
if (imglist) {
|
|
if (_cimg_mp_is_scalar(arg1))
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_set_Jxyz_s:mp_list_set_Ixyz_s),
|
|
arg1,p1,arg3,arg4,arg5).move_to(code);
|
|
else {
|
|
_cimg_mp_check_const_index(p1);
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_list_set_Jxyz_v:mp_list_set_Ixyz_v),
|
|
arg1,p1,arg3,arg4,arg5,_cimg_mp_size(arg1)).move_to(code);
|
|
}
|
|
}
|
|
} else {
|
|
if (imgout) {
|
|
if (_cimg_mp_is_scalar(arg1))
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_set_Jxyz_s:mp_set_Ixyz_s),
|
|
arg1,arg3,arg4,arg5).move_to(code);
|
|
else
|
|
CImg<ulongT>::vector((ulongT)(is_relative?mp_set_Jxyz_v:mp_set_Ixyz_v),
|
|
arg1,arg3,arg4,arg5,_cimg_mp_size(arg1)).move_to(code);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
_ref+=7;
|
|
arg1 = arg2;
|
|
is_sth = !is_sth;
|
|
} while (!is_sth);
|
|
|
|
if (p_ref) std::memcpy(p_ref,ref,siz_ref);
|
|
_cimg_mp_return_nan();
|
|
}
|
|
break;
|
|
|
|
case 't' :
|
|
if (!std::strncmp(ss,"tan(",4)) { // Tangent
|
|
_cimg_mp_op("Function 'tan()'");
|
|
arg1 = compile(ss4,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_tan,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(std::tan(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_tan,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"tanh(",5)) { // Hyperbolic tangent
|
|
_cimg_mp_op("Function 'tanh()'");
|
|
arg1 = compile(ss5,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_tanh,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(std::tanh(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_tanh,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"trace(",6)) { // Matrix trace
|
|
_cimg_mp_op("Function 'trace()'");
|
|
arg1 = compile(ss6,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_matrix_square(arg1,1);
|
|
p1 = (unsigned int)cimg::round(std::sqrt((float)_cimg_mp_size(arg1)));
|
|
_cimg_mp_scalar2(mp_trace,arg1,p1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"transpose(",10)) { // Matrix transpose
|
|
_cimg_mp_op("Function 'transpose()'");
|
|
s1 = ss + 10; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss + 10,s1,depth1,0,block_flags);
|
|
arg2 = compile(++s1,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,1,2,0);
|
|
_cimg_mp_check_const_scalar(arg2,2,3);
|
|
p1 = _cimg_mp_size(arg1);
|
|
p2 = (unsigned int)mem[arg2];
|
|
p3 = p1/p2;
|
|
if (p2*p3!=p1) {
|
|
_cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Size of first argument ('%s') does not match "
|
|
"second argument 'nb_cols=%u', in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
s_type(arg1)._data,p2,s0);
|
|
}
|
|
pos = vector(p3*p2);
|
|
CImg<ulongT>::vector((ulongT)mp_transpose,pos,arg1,p2,p3).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
break;
|
|
|
|
case 'u' :
|
|
if (*ss1=='(') { // Random value with uniform distribution in specified range
|
|
_cimg_mp_op("Function 'u()'");
|
|
if (*ss2==')') _cimg_mp_scalar2(mp_u,0,1);
|
|
s1 = ss2; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss2,s1,depth1,0,block_flags);
|
|
arg3 = arg4 = 1;
|
|
if (s1<se1) {
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg2 = compile(s1,s2,depth1,0,block_flags);
|
|
if (s2<se1) {
|
|
s1 = ++s2; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg3 = compile(s2,s1,depth1,0,block_flags);
|
|
arg4 = s1<se1?compile(++s1,se1,depth1,0,block_flags):1;
|
|
}
|
|
} else { arg2 = arg1; arg1 = 0; }
|
|
_cimg_mp_check_type(arg2,2,3,_cimg_mp_size(arg1));
|
|
_cimg_mp_check_type(arg3,3,1,0);
|
|
_cimg_mp_check_type(arg4,4,1,0);
|
|
if (arg3==1 && arg4==1) { // Fastest version (closed set)
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2))
|
|
_cimg_mp_vector2_vv(mp_u,arg1,arg2);
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2))
|
|
_cimg_mp_vector2_vs(mp_u,arg1,arg2);
|
|
if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2))
|
|
_cimg_mp_vector2_sv(mp_u,arg1,arg2);
|
|
_cimg_mp_scalar2(mp_u,arg1,arg2);
|
|
} else { // Slower version (open set)
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2))
|
|
_cimg_mp_vector4_vvss(mp_u_ext,arg1,arg2,arg3,arg4);
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2))
|
|
_cimg_mp_vector4_vsss(mp_u_ext,arg1,arg2,arg3,arg4);
|
|
if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2))
|
|
_cimg_mp_vector4_svss(mp_u_ext,arg1,arg2,arg3,arg4);
|
|
_cimg_mp_scalar4(mp_u_ext,arg1,arg2,arg3,arg4);
|
|
}
|
|
}
|
|
|
|
if (!std::strncmp(ss,"ui2f(",5)) { // Special uint->float conversion
|
|
_cimg_mp_op("Function 'ui2f()'");
|
|
arg1 = compile(ss5,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_ui2f,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1))
|
|
_cimg_mp_const_scalar((double)cimg::uint2float((unsigned int)mem[arg1]));
|
|
_cimg_mp_scalar1(mp_ui2f,arg1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"unref(",6)) { // Un-reference variable
|
|
_cimg_mp_op("Function 'unref()'");
|
|
arg1=~0U;
|
|
for (s0 = ss6; s0<se1; s0 = s1) {
|
|
if (s0>ss6 && *s0==',') ++s0;
|
|
s1 = s0; while (s1<se1 && *s1!=',') ++s1;
|
|
c1 = *s1;
|
|
if (s1>s0) {
|
|
*s1 = 0;
|
|
get_variable_pos(s0,arg1,arg2);
|
|
if (arg2!=~0U) reserved_label[arg2] = ~0U;
|
|
else if (arg1!=~0U) {
|
|
variable_def.remove(arg1);
|
|
if (arg1<variable_pos._width - 1)
|
|
std::memmove(variable_pos._data + arg1,variable_pos._data + arg1 + 1,
|
|
sizeof(uintT)*(variable_pos._width - arg1 - 1));
|
|
--variable_pos._width;
|
|
}
|
|
*s1 = c1;
|
|
} else compile(s0,s1,depth1,0,block_flags); // Will throw a 'missing argument' exception
|
|
}
|
|
_cimg_mp_return(arg1!=~0U?arg1:_cimg_mp_slot_nan); // Return value of last specified variable
|
|
}
|
|
|
|
if (!std::strncmp(ss,"uppercase(",10)) { // Upper case
|
|
_cimg_mp_op("Function 'uppercase()'");
|
|
arg1 = compile(ss + 10,se1,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_uppercase,arg1);
|
|
if (_cimg_mp_is_const_scalar(arg1)) _cimg_mp_const_scalar(cimg::uppercase(mem[arg1]));
|
|
_cimg_mp_scalar1(mp_uppercase,arg1);
|
|
}
|
|
break;
|
|
|
|
case 'v' :
|
|
if ((cimg_sscanf(ss,"vector%u%c",&(arg1=~0U),&sep)==2 && sep=='(' && arg1>0) ||
|
|
!std::strncmp(ss,"vector(",7) ||
|
|
(!std::strncmp(ss,"vector",6) && ss7<se1 && (s=std::strchr(ss7,'('))!=0)) { // Vector
|
|
_cimg_mp_op("Function 'vector()'");
|
|
arg2 = 0; // Number of specified values
|
|
if (arg1==~0U && *ss6!='(') {
|
|
arg1 = compile(ss6,s++,depth1,0,block_flags);
|
|
_cimg_mp_check_const_scalar(arg1,0,3);
|
|
arg1 = (unsigned int)mem[arg1];
|
|
} else s = std::strchr(ss6,'(') + 1;
|
|
|
|
if (arg1==~0U && *s=='#') { // Number of elements specified as first argument with '#'
|
|
s0 = ++s; while (s0<se1 && (*s0!=',' || level[s0 - expr._data]!=clevel1)) ++s0;
|
|
arg1 = compile(s,s0++,depth1,0,block_flags);
|
|
_cimg_mp_check_const_scalar(arg1,1,3);
|
|
arg1 = (unsigned int)mem[arg1];
|
|
s = s0;
|
|
}
|
|
|
|
if (s<se1 || arg1==~0U) for ( ; s<se; ++s) {
|
|
ns = s; while (ns<se && (*ns!=',' || level[ns - expr._data]!=clevel1) &&
|
|
(*ns!=')' || level[ns - expr._data]!=clevel)) ++ns;
|
|
arg3 = compile(s,ns,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg3)) {
|
|
arg4 = _cimg_mp_size(arg3);
|
|
CImg<ulongT>::sequence(arg4,arg3 + 1,arg3 + arg4).move_to(l_opcode);
|
|
arg2+=arg4;
|
|
} else { CImg<ulongT>::vector(arg3).move_to(l_opcode); ++arg2; }
|
|
s = ns;
|
|
}
|
|
if (arg1==~0U) arg1 = arg2;
|
|
if (!arg1) _cimg_mp_return(0);
|
|
pos = vector(arg1);
|
|
l_opcode.insert(CImg<ulongT>::vector((ulongT)mp_vector_init,pos,0,arg1),0);
|
|
(l_opcode>'y').move_to(opcode);
|
|
opcode[2] = opcode._height;
|
|
opcode.move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"vmax(",5) || !std::strncmp(ss,"vmin(",5) ||
|
|
!std::strncmp(ss,"vmaxabs(",8) || !std::strncmp(ss,"vminabs(",8) ||
|
|
!std::strncmp(ss,"vmed(",5) || !std::strncmp(ss,"vkth(",5) ||
|
|
!std::strncmp(ss,"vsum(",5) || !std::strncmp(ss,"vavg(",5) ||
|
|
!std::strncmp(ss,"vstd(",5) || !std::strncmp(ss,"vvar(",5) ||
|
|
!std::strncmp(ss,"vprod(",6) ||
|
|
!std::strncmp(ss,"vargmin(",8) || !std::strncmp(ss,"vargmax(",8) ||
|
|
!std::strncmp(ss,"vargminabs(",11) || !std::strncmp(ss,"vargmaxabs(",11) ||
|
|
!std::strncmp(ss,"vargkth(",8)) { // Multi-argument vector functions
|
|
_cimg_mp_op(ss[1]=='a'?(ss[2]=='v'?"Function 'vavg()'":
|
|
ss[4]=='k'?"Function 'vargkth()'":
|
|
ss[5]=='i' && ss[7]=='('?"Function 'vargmin()'":
|
|
ss[5]=='i'?"Function vargminabs()'":
|
|
ss[7]=='('?"Function 'vargmax()'":
|
|
"Function 'vargmaxabs()'"):
|
|
ss[1]=='s'?(ss[2]=='u'?"Function 'vsum()'":"Function 'vstd()'"):
|
|
ss[1]=='k'?"Function 'vkth()'":
|
|
ss[1]=='p'?"Function 'vprod()'":
|
|
ss[1]=='v'?"Function 'vvar()'":
|
|
ss[2]=='i'?(ss[4]=='('?"Function 'vmin()'":
|
|
"Function 'vminabs()'"):
|
|
ss[2]=='a'?(ss[4]=='('?"Function 'vmax()'":
|
|
"Function 'vmaxabs()'"):
|
|
"Function 'vmed()'");
|
|
op = ss[1]=='a'?(ss[2]=='v'?mp_vavg:
|
|
ss[4]=='k'?mp_vargkth:
|
|
ss[5]=='i' && ss[7]=='('?mp_vargmin:
|
|
ss[5]=='i'?mp_vargminabs:
|
|
ss[7]=='('?mp_vargmax:mp_vargmaxabs):
|
|
ss[1]=='s'?(ss[2]=='u'?mp_vsum:mp_vstd):
|
|
ss[1]=='k'?mp_vkth:
|
|
ss[1]=='p'?mp_vprod:
|
|
ss[1]=='v'?mp_vvar:
|
|
ss[2]=='i'?(ss[4]=='('?mp_vmin:mp_vminabs):
|
|
ss[2]=='a'?(ss[4]=='('?mp_vmax:mp_vmaxabs):
|
|
mp_vmedian;
|
|
CImg<ulongT>::vector((ulongT)op,0,0,0).move_to(l_opcode);
|
|
p1 = ~0U;
|
|
p3 = 1;
|
|
for (s = std::strchr(ss,'(') + 1; s<se; ++s) {
|
|
ns = s; while (ns<se && (*ns!=',' || level[ns - expr._data]!=clevel1) &&
|
|
(*ns!=')' || level[ns - expr._data]!=clevel)) ++ns;
|
|
arg2 = compile(s,ns,depth1,0,block_flags);
|
|
p2 = _cimg_mp_size(arg2);
|
|
if (p1==~0U) { if (_cimg_mp_is_vector(arg2)) p1 = p2; }
|
|
else _cimg_mp_check_type(arg2,p3,3,p1);
|
|
CImg<ulongT>::vector(arg2,p2).move_to(l_opcode);
|
|
s = ns;
|
|
++p3;
|
|
}
|
|
(l_opcode>'y').move_to(opcode);
|
|
if (p1==~0U) { pos = scalar(); p1 = 0; } else pos = vector(p1);
|
|
opcode[1] = pos;
|
|
opcode[2] = p1;
|
|
opcode[3] = opcode._height;
|
|
opcode.move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"v2s(",4)) { // Double(s) to string
|
|
_cimg_mp_op("Function 'v2s()'");
|
|
s1 = ss4; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss4,s1,depth1,0,block_flags);
|
|
arg2 = 0; arg3 = ~0U;
|
|
if (s1<se1) {
|
|
s2 = ++s1; while (s2<se1 && (*s2!=',' || level[s2 - expr._data]!=clevel1)) ++s2;
|
|
arg2 = compile(s1,s2,depth1,0,block_flags);
|
|
arg3 = s2<se1?compile(++s2,se1,depth1,0,block_flags):~0U;
|
|
}
|
|
_cimg_mp_check_type(arg2,2,1,0);
|
|
if (arg3==~0U) { // Auto-guess best output vector size
|
|
p1 = _cimg_mp_size(arg1);
|
|
p1 = p1?25*p1 - 1:24;
|
|
} else {
|
|
_cimg_mp_check_const_scalar(arg3,3,3);
|
|
p1 = (unsigned int)mem[arg3];
|
|
}
|
|
pos = vector(p1);
|
|
CImg<ulongT>::vector((ulongT)mp_v2s,pos,p1,arg1,_cimg_mp_size(arg1),arg2).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
break;
|
|
|
|
case 'w' :
|
|
if (*ss1=='(') { // Image width
|
|
_cimg_mp_op("Function 'w()'");
|
|
if (*ss2=='#') { // Index specified
|
|
p1 = compile(ss3,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_list();
|
|
} else { if (ss2!=se1) break; p1 = ~0U; }
|
|
_cimg_mp_scalar1(mp_image_w,p1);
|
|
}
|
|
|
|
if (*ss1=='h' && *ss2=='(') { // Image width*height
|
|
_cimg_mp_op("Function 'wh()'");
|
|
if (*ss3=='#') { // Index specified
|
|
p1 = compile(ss4,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_list();
|
|
} else { if (ss3!=se1) break; p1 = ~0U; }
|
|
_cimg_mp_scalar1(mp_image_wh,p1);
|
|
}
|
|
|
|
if (*ss1=='h' && *ss2=='d' && *ss3=='(') { // Image width*height*depth
|
|
_cimg_mp_op("Function 'whd()'");
|
|
if (*ss4=='#') { // Index specified
|
|
p1 = compile(ss5,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_list();
|
|
} else { if (ss4!=se1) break; p1 = ~0U; }
|
|
_cimg_mp_scalar1(mp_image_whd,p1);
|
|
}
|
|
|
|
if (*ss1=='h' && *ss2=='d' && *ss3=='s' && *ss4=='(') { // Image width*height*depth*spectrum
|
|
_cimg_mp_op("Function 'whds()'");
|
|
if (*ss5=='#') { // Index specified
|
|
p1 = compile(ss6,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_list();
|
|
} else { if (ss5!=se1) break; p1 = ~0U; }
|
|
_cimg_mp_scalar1(mp_image_whds,p1);
|
|
}
|
|
|
|
if (!std::strncmp(ss,"while(",6)) { // While...do
|
|
_cimg_mp_op("Function 'while()'");
|
|
s0 = *ss5=='('?ss6:ss8;
|
|
s1 = s0; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
p1 = code._width;
|
|
arg1 = compile(s0,s1,depth1,0,block_flags);
|
|
p2 = code._width;
|
|
arg6 = mempos;
|
|
pos = compile(++s1,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg1,1,1,0);
|
|
arg2 = _cimg_mp_size(pos);
|
|
CImg<ulongT>::vector((ulongT)mp_while,pos,arg1,p2 - p1,code._width - p2,arg2,
|
|
pos>=arg6 && !_cimg_mp_is_const_scalar(pos),
|
|
arg1>=arg6 && !_cimg_mp_is_const_scalar(arg1)).move_to(code,p1);
|
|
_cimg_mp_return(pos);
|
|
}
|
|
break;
|
|
|
|
case 'x' :
|
|
if (!std::strncmp(ss,"xor(",4)) { // Xor
|
|
_cimg_mp_op("Function 'xor()'");
|
|
s1 = ss4; while (s1<se1 && (*s1!=',' || level[s1 - expr._data]!=clevel1)) ++s1;
|
|
arg1 = compile(ss4,s1,depth1,0,block_flags);
|
|
arg2 = compile(++s1,se1,depth1,0,block_flags);
|
|
_cimg_mp_check_type(arg2,2,3,_cimg_mp_size(arg1));
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_bitwise_xor,arg1,arg2);
|
|
if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_bitwise_xor,arg1,arg2);
|
|
if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_bitwise_xor,arg1,arg2);
|
|
if (_cimg_mp_is_const_scalar(arg1) && _cimg_mp_is_const_scalar(arg2))
|
|
_cimg_mp_const_scalar((longT)mem[arg1] ^ (longT)mem[arg2]);
|
|
_cimg_mp_scalar2(mp_bitwise_xor,arg1,arg2);
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (!std::strncmp(ss,"max(",4) || !std::strncmp(ss,"min(",4) ||
|
|
!std::strncmp(ss,"maxabs(",7) || !std::strncmp(ss,"minabs(",7) ||
|
|
!std::strncmp(ss,"med(",4) || !std::strncmp(ss,"kth(",4) ||
|
|
!std::strncmp(ss,"sum(",4) || !std::strncmp(ss,"avg(",4) ||
|
|
!std::strncmp(ss,"std(",4) || !std::strncmp(ss,"var(",4) ||
|
|
!std::strncmp(ss,"prod(",5) ||
|
|
!std::strncmp(ss,"argmin(",7) || !std::strncmp(ss,"argmax(",7) ||
|
|
!std::strncmp(ss,"argminabs(",10) || !std::strncmp(ss,"argmaxabs(",10) ||
|
|
!std::strncmp(ss,"argkth(",7)) { // Multi-argument functions
|
|
_cimg_mp_op(*ss=='a'?(ss[1]=='v'?"Function 'avg()'":
|
|
ss[3]=='k'?"Function 'argkth()'":
|
|
ss[4]=='i' && ss[6]=='('?"Function 'argmin()'":
|
|
ss[4]=='i'?"Function argminabs()'":
|
|
ss[6]=='('?"Function 'argmax()'":
|
|
"Function 'argmaxabs()'"):
|
|
*ss=='s'?(ss[1]=='u'?"Function 'sum()'":"Function 'std()'"):
|
|
*ss=='k'?"Function 'kth()'":
|
|
*ss=='p'?"Function 'prod()'":
|
|
*ss=='v'?"Function 'var()'":
|
|
ss[1]=='i'?(ss[3]=='('?"Function 'min()'":
|
|
"Function 'minabs()'"):
|
|
ss[1]=='a'?(ss[3]=='('?"Function 'max()'":
|
|
"Function 'maxabs()'"):
|
|
"Function 'med()'");
|
|
op = *ss=='a'?(ss[1]=='v'?mp_avg:
|
|
ss[3]=='k'?mp_argkth:
|
|
ss[4]=='i' && ss[6]=='('?mp_argmin:
|
|
ss[4]=='i'?mp_argminabs:
|
|
ss[6]=='('?mp_argmax:mp_argmaxabs):
|
|
*ss=='s'?(ss[1]=='u'?mp_sum:mp_std):
|
|
*ss=='k'?mp_kth:
|
|
*ss=='p'?mp_prod:
|
|
*ss=='v'?mp_var:
|
|
ss[1]=='i'?(ss[3]=='('?mp_min:mp_minabs):
|
|
ss[1]=='a'?(ss[3]=='('?mp_max:mp_maxabs):
|
|
mp_median;
|
|
is_sth = true; // Tell if all arguments are constant
|
|
pos = scalar();
|
|
CImg<ulongT>::vector((ulongT)op,pos,0).move_to(l_opcode);
|
|
for (s = std::strchr(ss,'(') + 1; s<se; ++s) {
|
|
ns = s; while (ns<se && (*ns!=',' || level[ns - expr._data]!=clevel1) &&
|
|
(*ns!=')' || level[ns - expr._data]!=clevel)) ++ns;
|
|
arg2 = compile(s,ns,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg2))
|
|
CImg<ulongT>::sequence(_cimg_mp_size(arg2),arg2 + 1,
|
|
arg2 + (ulongT)_cimg_mp_size(arg2)).
|
|
move_to(l_opcode);
|
|
else CImg<ulongT>::vector(arg2).move_to(l_opcode);
|
|
is_sth&=_cimg_mp_is_const_scalar(arg2);
|
|
s = ns;
|
|
}
|
|
(l_opcode>'y').move_to(opcode);
|
|
opcode[2] = opcode._height;
|
|
if (is_sth) _cimg_mp_const_scalar(op(*this));
|
|
opcode.move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
// No corresponding built-in function -> Look for a user-defined macro call.
|
|
s0 = strchr(ss,'(');
|
|
if (s0) {
|
|
variable_name.assign(ss,(unsigned int)(s0 - ss + 1)).back() = 0;
|
|
|
|
// Count number of specified arguments.
|
|
p1 = 0;
|
|
for (s = s0 + 1; s<=se1; ++p1, s = ns + 1) {
|
|
while (*s && cimg::is_blank(*s)) ++s;
|
|
if (*s==')' && !p1) break;
|
|
ns = s; while (ns<se && (*ns!=',' || level[ns - expr._data]!=clevel1) &&
|
|
(*ns!=')' || level[ns - expr._data]!=clevel)) ++ns;
|
|
}
|
|
|
|
char mb = 0;
|
|
arg3 = 0; // Number of possible name matches
|
|
cimglist_for(macro_def,l) if (!std::strcmp(macro_def[l],variable_name) && ++arg3 &&
|
|
((mb = macro_def[l].back())==(char)p1 || mb==(char)-1)) {
|
|
const bool is_variadic = mb==(char)-1;
|
|
p2 = is_variadic?1U:(unsigned int)mb; // Number of required arguments
|
|
CImg<charT> _expr = macro_body[l]; // Expression to be substituted
|
|
|
|
p1 = 1; // Index of current parsed argument
|
|
for (s = s0 + 1; s<=se1; ++p1, s = ns + 1) { // Parse function arguments
|
|
while (*s && cimg::is_blank(*s)) ++s;
|
|
if (!is_variadic && *s==')' && p1==1) break; // Function has no arguments
|
|
if (p1>p2) { ++p1; break; }
|
|
|
|
if (is_variadic) ns = se1;
|
|
else {
|
|
ns = s; while (ns<se && (*ns!=',' || level[ns - expr._data]!=clevel1) &&
|
|
(*ns!=')' || level[ns - expr._data]!=clevel)) ++ns;
|
|
}
|
|
variable_name.assign(s,(unsigned int)(ns - s + 1)).back() = 0; // Argument to write
|
|
|
|
arg2 = 0;
|
|
cimg_forX(_expr,k) {
|
|
if (_expr[k]==(char)p1) { // Perform argument substitution
|
|
arg1 = _expr._width;
|
|
if (variable_name._width>1) {
|
|
_expr.resize(arg1 + variable_name._width - 2,1,1,1,0);
|
|
std::memmove(_expr._data + k + variable_name._width - 1,_expr._data + k + 1,arg1 - k - 1);
|
|
std::memcpy(_expr._data + k,variable_name,variable_name._width - 1);
|
|
k+=variable_name._width - 2;
|
|
} else {
|
|
std::memmove(_expr._data + k,_expr._data + k + 1,arg1 - k - 1);
|
|
--k;
|
|
}
|
|
}
|
|
++arg2;
|
|
}
|
|
}
|
|
|
|
// Recompute 'pexpr' and 'level' for evaluating substituted expression.
|
|
CImg<charT> _pexpr(_expr._width);
|
|
ns = _pexpr._data;
|
|
for (ps = _expr._data, c1 = ' '; *ps; ++ps) {
|
|
if (!cimg::is_blank(*ps)) c1 = *ps;
|
|
*(ns++) = c1;
|
|
}
|
|
*ns = 0;
|
|
|
|
CImg<uintT> _level = get_level(_expr);
|
|
expr.swap(_expr);
|
|
pexpr.swap(_pexpr);
|
|
level.swap(_level);
|
|
s0 = user_macro;
|
|
user_macro = macro_def[l];
|
|
pos = compile(expr._data,expr._data + expr._width - 1,depth1,p_ref,block_flags);
|
|
user_macro = s0;
|
|
level.swap(_level);
|
|
pexpr.swap(_pexpr);
|
|
expr.swap(_expr);
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
if (arg3) { // Macro name matched but number of arguments does not
|
|
CImg<uintT> sig_nargs(arg3);
|
|
arg1 = 0;
|
|
cimglist_for(macro_def,l) if (!std::strcmp(macro_def[l],variable_name))
|
|
sig_nargs[arg1++] = (unsigned int)macro_def[l].back();
|
|
_cimg_mp_strerr;
|
|
cimg::strellipsize(variable_name,64);
|
|
if (sig_nargs._width>1) {
|
|
sig_nargs.sort();
|
|
arg1 = sig_nargs.back();
|
|
--sig_nargs._width;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: Function '%s()': Number of specified arguments (%u) "
|
|
"does not match macro declaration (defined for %s or %u arguments), "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,variable_name._data,
|
|
p1,sig_nargs.value_string()._data,arg1,s0);
|
|
} else
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: Function '%s()': Number of specified arguments (%u) "
|
|
"does not match macro declaration (defined for %u argument%s), "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,variable_name._data,
|
|
p1,*sig_nargs,*sig_nargs!=1?"s":"",s0);
|
|
}
|
|
}
|
|
} // if (se1==')')
|
|
|
|
// Char / string initializer.
|
|
if (*se1=='\'' &&
|
|
((se1>ss && *ss=='\'') ||
|
|
(se1>ss1 && *ss=='_' && *ss1=='\''))) {
|
|
if (*ss=='_') { _cimg_mp_op("Char initializer"); s1 = ss2; }
|
|
else { _cimg_mp_op("String initializer"); s1 = ss1; }
|
|
arg1 = (unsigned int)(se1 - s1); // Original string length
|
|
if (arg1) {
|
|
CImg<charT>(s1,arg1 + 1).move_to(variable_name).back() = 0;
|
|
cimg::strunescape(variable_name);
|
|
arg1 = (unsigned int)std::strlen(variable_name);
|
|
}
|
|
if (!arg1) _cimg_mp_return(0); // Empty string -> 0
|
|
if (*ss=='_') {
|
|
if (arg1==1) _cimg_mp_const_scalar((unsigned char)*variable_name);
|
|
_cimg_mp_strerr;
|
|
cimg::strellipsize(variable_name,64);
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s: Literal %s contains more than one byte, "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,
|
|
ss1,s0);
|
|
}
|
|
pos = vector(arg1);
|
|
CImg<ulongT>::vector((ulongT)mp_string_init,pos,arg1).move_to(l_opcode);
|
|
CImg<ulongT>(1,arg1/sizeof(ulongT) + (arg1%sizeof(ulongT)?1:0)).move_to(l_opcode);
|
|
std::memcpy((char*)l_opcode[1]._data,variable_name,arg1);
|
|
(l_opcode>'y').move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
// Vector initializer [ ... ].
|
|
if (*ss=='[' && *se1==']') {
|
|
_cimg_mp_op("Vector initializer");
|
|
s1 = ss1; while (s1<se2 && cimg::is_blank(*s1)) ++s1;
|
|
s2 = se2; while (s2>s1 && cimg::is_blank(*s2)) --s2;
|
|
if (s2>s1 && *s1=='\'' && *s2=='\'') { // Vector values provided as a string
|
|
arg1 = (unsigned int)(s2 - s1 - 1); // Original string length
|
|
if (arg1) {
|
|
CImg<charT>(s1 + 1,arg1 + 1).move_to(variable_name).back() = 0;
|
|
cimg::strunescape(variable_name);
|
|
arg1 = (unsigned int)std::strlen(variable_name);
|
|
}
|
|
if (!arg1) _cimg_mp_return(0); // Empty string -> 0
|
|
pos = vector(arg1);
|
|
CImg<ulongT>::vector((ulongT)mp_string_init,pos,arg1).move_to(l_opcode);
|
|
CImg<ulongT>(1,arg1/sizeof(ulongT) + (arg1%sizeof(ulongT)?1:0)).move_to(l_opcode);
|
|
std::memcpy((char*)l_opcode[1]._data,variable_name,arg1);
|
|
(l_opcode>'y').move_to(code);
|
|
} else { // Vector values provided as list of items
|
|
arg1 = 0; // Number of specified values
|
|
if (*ss1!=']') for (s = ss1; s<se; ++s) {
|
|
ns = s; while (ns<se && (*ns!=',' || level[ns - expr._data]!=clevel1) &&
|
|
(*ns!=']' || level[ns - expr._data]!=clevel)) ++ns;
|
|
arg2 = compile(s,ns,depth1,0,block_flags);
|
|
if (_cimg_mp_is_vector(arg2)) {
|
|
arg3 = _cimg_mp_size(arg2);
|
|
CImg<ulongT>::sequence(arg3,arg2 + 1,arg2 + arg3).move_to(l_opcode);
|
|
arg1+=arg3;
|
|
} else { CImg<ulongT>::vector(arg2).move_to(l_opcode); ++arg1; }
|
|
s = ns;
|
|
}
|
|
if (!arg1) _cimg_mp_return(0);
|
|
pos = vector(arg1);
|
|
l_opcode.insert(CImg<ulongT>::vector((ulongT)mp_vector_init,pos,0,arg1),0);
|
|
(l_opcode>'y').move_to(opcode);
|
|
opcode[2] = opcode._height;
|
|
opcode.move_to(code);
|
|
}
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
}
|
|
|
|
// Variables related to the input list of images.
|
|
if (*ss1=='#' && ss2<se) {
|
|
arg1 = compile(ss2,se,depth1,0,block_flags);
|
|
p1 = (unsigned int)(imglist._width && _cimg_mp_is_const_scalar(arg1)?
|
|
cimg::mod((int)mem[arg1],imglist.width()):~0U);
|
|
switch (*ss) {
|
|
case 'w' : // w#ind
|
|
if (!imglist) _cimg_mp_return(0);
|
|
if (p1!=~0U) _cimg_mp_const_scalar(imglist[p1]._width);
|
|
_cimg_mp_scalar1(mp_list_width,arg1);
|
|
case 'h' : // h#ind
|
|
if (!imglist) _cimg_mp_return(0);
|
|
if (p1!=~0U) _cimg_mp_const_scalar(imglist[p1]._height);
|
|
_cimg_mp_scalar1(mp_list_height,arg1);
|
|
case 'd' : // d#ind
|
|
if (!imglist) _cimg_mp_return(0);
|
|
if (p1!=~0U) _cimg_mp_const_scalar(imglist[p1]._depth);
|
|
_cimg_mp_scalar1(mp_list_depth,arg1);
|
|
case 'r' : // r#ind
|
|
if (!imglist) _cimg_mp_return(0);
|
|
if (p1!=~0U) _cimg_mp_const_scalar(imglist[p1]._is_shared);
|
|
_cimg_mp_scalar1(mp_list_is_shared,arg1);
|
|
case 's' : // s#ind
|
|
if (!imglist) _cimg_mp_return(0);
|
|
if (p1!=~0U) _cimg_mp_const_scalar(imglist[p1]._spectrum);
|
|
_cimg_mp_scalar1(mp_list_spectrum,arg1);
|
|
case 'i' : // i#ind
|
|
if (!imglist) _cimg_mp_return(0);
|
|
_cimg_mp_scalar7(mp_list_ixyzc,arg1,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,_cimg_mp_slot_c,
|
|
0,_cimg_mp_boundary);
|
|
case 'I' : // I#ind
|
|
p2 = p1!=~0U?imglist[p1]._spectrum:imglist._width?~0U:0;
|
|
if (!p2) _cimg_mp_return(0);
|
|
pos = vector(p2);
|
|
CImg<ulongT>::vector((ulongT)mp_list_Joff,pos,p1,0,0,p2).move_to(code);
|
|
return_new_comp = true;
|
|
_cimg_mp_return(pos);
|
|
case 'R' : // R#ind
|
|
if (!imglist) _cimg_mp_return(0);
|
|
_cimg_mp_scalar7(mp_list_ixyzc,arg1,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,0,
|
|
0,_cimg_mp_boundary);
|
|
case 'G' : // G#ind
|
|
if (!imglist) _cimg_mp_return(0);
|
|
_cimg_mp_scalar7(mp_list_ixyzc,arg1,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,1,
|
|
0,_cimg_mp_boundary);
|
|
case 'B' : // B#ind
|
|
if (!imglist) _cimg_mp_return(0);
|
|
_cimg_mp_scalar7(mp_list_ixyzc,arg1,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,2,
|
|
0,_cimg_mp_boundary);
|
|
case 'A' : // A#ind
|
|
if (!imglist) _cimg_mp_return(0);
|
|
_cimg_mp_scalar7(mp_list_ixyzc,arg1,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,3,
|
|
0,_cimg_mp_boundary);
|
|
}
|
|
}
|
|
|
|
if (*ss1 && *ss2=='#' && ss3<se) {
|
|
arg1 = compile(ss3,se,depth1,0,block_flags);
|
|
p1 = (unsigned int)(imglist._width && _cimg_mp_is_const_scalar(arg1)?
|
|
cimg::mod((int)mem[arg1],imglist.width()):~0U);
|
|
if (*ss=='w' && *ss1=='h') { // wh#ind
|
|
if (!imglist) _cimg_mp_return(0);
|
|
if (p1!=~0U) _cimg_mp_const_scalar(imglist[p1]._width*imglist[p1]._height);
|
|
_cimg_mp_scalar1(mp_list_wh,arg1);
|
|
}
|
|
arg2 = ~0U;
|
|
|
|
if (*ss=='i') {
|
|
if (*ss1>='0' && *ss1<='9') { // i0#ind...i9#ind
|
|
if (!imglist) _cimg_mp_return(0);
|
|
_cimg_mp_scalar7(mp_list_ixyzc,arg1,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,*ss1 - '0',
|
|
0,_cimg_mp_boundary);
|
|
}
|
|
|
|
if (*ss1=='c') { // ic#ind
|
|
if (!imglist) _cimg_mp_return(0);
|
|
if (_cimg_mp_is_const_scalar(arg1)) {
|
|
if (!list_median) list_median.assign(imglist._width);
|
|
if (!list_median[p1]) CImg<doubleT>::vector(imglist[p1].median()).move_to(list_median[p1]);
|
|
_cimg_mp_const_scalar(*list_median[p1]);
|
|
}
|
|
_cimg_mp_scalar1(mp_list_median,arg1);
|
|
}
|
|
|
|
if (*ss1=='n') { // in#ind
|
|
if (!imglist) _cimg_mp_return(0);
|
|
if (_cimg_mp_is_const_scalar(arg1)) {
|
|
if (!list_norm) list_norm.assign(imglist._width);
|
|
if (!list_norm[p1]) CImg<doubleT>::vector(imglist[p1].magnitude()).move_to(list_norm[p1]);
|
|
_cimg_mp_const_scalar(*list_norm[p1]);
|
|
}
|
|
_cimg_mp_scalar1(mp_list_norm,arg1);
|
|
}
|
|
|
|
switch (*ss1) {
|
|
case 'm' : arg2 = 0; break; // im#ind
|
|
case 'M' : arg2 = 1; break; // iM#ind
|
|
case 'a' : arg2 = 2; break; // ia#ind
|
|
case 'v' : arg2 = 3; break; // iv#ind
|
|
case 's' : arg2 = 12; break; // is#ind
|
|
case 'p' : arg2 = 13; break; // ip#ind
|
|
}
|
|
} else if (*ss1=='m') switch (*ss) {
|
|
case 'x' : arg2 = 4; break; // xm#ind
|
|
case 'y' : arg2 = 5; break; // ym#ind
|
|
case 'z' : arg2 = 6; break; // zm#ind
|
|
case 'c' : arg2 = 7; break; // cm#ind
|
|
} else if (*ss1=='M') switch (*ss) {
|
|
case 'x' : arg2 = 8; break; // xM#ind
|
|
case 'y' : arg2 = 9; break; // yM#ind
|
|
case 'z' : arg2 = 10; break; // zM#ind
|
|
case 'c' : arg2 = 11; break; // cM#ind
|
|
}
|
|
if (arg2!=~0U) {
|
|
if (!imglist) _cimg_mp_return(0);
|
|
if (_cimg_mp_is_const_scalar(arg1)) {
|
|
if (!list_stats) list_stats.assign(imglist._width);
|
|
if (!list_stats[p1]) list_stats[p1].assign(1,14,1,1,0).fill(imglist[p1].get_stats(),false);
|
|
_cimg_mp_const_scalar(list_stats(p1,arg2));
|
|
}
|
|
_cimg_mp_scalar2(mp_list_stats,arg1,arg2);
|
|
}
|
|
}
|
|
|
|
if (*ss=='w' && *ss1=='h' && *ss2=='d' && *ss3=='#' && ss4<se) { // whd#ind
|
|
arg1 = compile(ss4,se,depth1,0,block_flags);
|
|
if (!imglist) _cimg_mp_return(0);
|
|
p1 = (unsigned int)(_cimg_mp_is_const_scalar(arg1)?cimg::mod((int)mem[arg1],imglist.width()):~0U);
|
|
if (p1!=~0U) _cimg_mp_const_scalar(imglist[p1]._width*imglist[p1]._height*imglist[p1]._depth);
|
|
_cimg_mp_scalar1(mp_list_whd,arg1);
|
|
}
|
|
if (*ss=='w' && *ss1=='h' && *ss2=='d' && *ss3=='s' && *ss4=='#' && ss5<se) { // whds#ind
|
|
arg1 = compile(ss5,se,depth1,0,block_flags);
|
|
if (!imglist) _cimg_mp_return(0);
|
|
p1 = (unsigned int)(_cimg_mp_is_const_scalar(arg1)?cimg::mod((int)mem[arg1],imglist.width()):~0U);
|
|
if (p1!=~0U)
|
|
_cimg_mp_const_scalar(imglist[p1]._width*imglist[p1]._height*imglist[p1]._depth*imglist[p1]._spectrum);
|
|
_cimg_mp_scalar1(mp_list_whds,arg1);
|
|
}
|
|
|
|
if (!std::strcmp(ss,"interpolation")) _cimg_mp_return(_cimg_mp_interpolation); // interpolation
|
|
if (!std::strcmp(ss,"boundary")) _cimg_mp_return(_cimg_mp_boundary); // boundary
|
|
|
|
variable_name.assign(ss,(unsigned int)(se + 1 - ss)).back() = 0;
|
|
|
|
#ifdef cimg_mp_operator_dollar
|
|
if (*ss=='$' && ss1<se) // External variable '$varname'.
|
|
_cimg_mp_const_scalar(cimg_mp_operator_dollar(variable_name._data + 1));
|
|
#endif
|
|
|
|
// No known item found, assuming this is an already initialized variable.
|
|
if (cimg::is_varname(variable_name)) { // Valid variable name
|
|
get_variable_pos(variable_name,arg1,arg2);
|
|
arg1 = arg2!=~0U?reserved_label[arg2]:arg1!=~0U?variable_pos[arg1]:~0U;
|
|
if (arg1!=~0U) _cimg_mp_return(arg1);
|
|
}
|
|
|
|
// Reached an unknown item -> error.
|
|
c1 = *se1;
|
|
_cimg_mp_strerr;
|
|
cimg::strellipsize(variable_name,64);
|
|
if (is_sth)
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: Undefined variable '%s' in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,
|
|
variable_name._data,s0);
|
|
s1 = std::strchr(ss,'(');
|
|
s_op = s1 && c1==')'?"function call":"item";
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: Unrecognized %s '%s' in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,
|
|
s_op,variable_name._data,s0);
|
|
}
|
|
|
|
// Evaluation procedure.
|
|
double operator()(const double x, const double y, const double z, const double c) {
|
|
mem[_cimg_mp_slot_x] = x; mem[_cimg_mp_slot_y] = y; mem[_cimg_mp_slot_z] = z; mem[_cimg_mp_slot_c] = c;
|
|
for (p_code = code; p_code<p_code_end; ++p_code) {
|
|
opcode._data = p_code->_data;
|
|
const ulongT target = opcode[1];
|
|
mem[target] = _cimg_mp_defunc(*this);
|
|
}
|
|
return *result;
|
|
}
|
|
|
|
// Evaluation procedure (return output values in vector 'output').
|
|
template<typename t>
|
|
void operator()(const double x, const double y, const double z, const double c, t *const output) {
|
|
mem[_cimg_mp_slot_x] = x; mem[_cimg_mp_slot_y] = y; mem[_cimg_mp_slot_z] = z; mem[_cimg_mp_slot_c] = c;
|
|
for (p_code = code; p_code<p_code_end; ++p_code) {
|
|
opcode._data = p_code->_data;
|
|
const ulongT target = opcode[1];
|
|
mem[target] = _cimg_mp_defunc(*this);
|
|
}
|
|
if (result_dim) {
|
|
const double *ptrs = result + 1;
|
|
t *ptrd = output;
|
|
for (unsigned int k = 0; k<result_dim; ++k) *(ptrd++) = (t)*(ptrs++);
|
|
} else *output = (t)*result;
|
|
}
|
|
|
|
// Evaluation procedure for begin_t() bloc.
|
|
void begin_t() {
|
|
if (!code_begin_t) return;
|
|
mem[_cimg_mp_slot_x] = mem[_cimg_mp_slot_y] = mem[_cimg_mp_slot_z] = mem[_cimg_mp_slot_c] = 0;
|
|
p_code_end = code_begin_t.end();
|
|
for (p_code = code_begin_t; p_code<p_code_end; ++p_code) {
|
|
opcode._data = p_code->_data;
|
|
const ulongT target = opcode[1];
|
|
mem[target] = _cimg_mp_defunc(*this);
|
|
}
|
|
p_code_end = code.end();
|
|
}
|
|
|
|
// Evaluation procedure for end_t() bloc.
|
|
void end_t() {
|
|
if (!code_end_t) return;
|
|
if (imgin) {
|
|
mem[_cimg_mp_slot_x] = imgin._width - 1.;
|
|
mem[_cimg_mp_slot_y] = imgin._height - 1.;
|
|
mem[_cimg_mp_slot_z] = imgin._depth - 1.;
|
|
mem[_cimg_mp_slot_c] = imgin._spectrum - 1.;
|
|
} else mem[_cimg_mp_slot_x] = mem[_cimg_mp_slot_y] = mem[_cimg_mp_slot_z] = mem[_cimg_mp_slot_c] = 0;
|
|
p_code_end = code_end_t.end();
|
|
for (p_code = code_end_t; p_code<p_code_end; ++p_code) {
|
|
opcode._data = p_code->_data;
|
|
const ulongT target = opcode[1];
|
|
mem[target] = _cimg_mp_defunc(*this);
|
|
}
|
|
}
|
|
|
|
// Evaluation procedure the end() bloc.
|
|
void end() {
|
|
if (!code_end) return;
|
|
if (imgin) {
|
|
mem[_cimg_mp_slot_x] = imgin._width - 1.;
|
|
mem[_cimg_mp_slot_y] = imgin._height - 1.;
|
|
mem[_cimg_mp_slot_z] = imgin._depth - 1.;
|
|
mem[_cimg_mp_slot_c] = imgin._spectrum - 1.;
|
|
} else mem[_cimg_mp_slot_x] = mem[_cimg_mp_slot_y] = mem[_cimg_mp_slot_z] = mem[_cimg_mp_slot_c] = 0;
|
|
p_code_end = code_end.end();
|
|
for (p_code = code_end; p_code<p_code_end; ++p_code) {
|
|
opcode._data = p_code->_data;
|
|
const ulongT target = opcode[1];
|
|
mem[target] = _cimg_mp_defunc(*this);
|
|
}
|
|
}
|
|
|
|
// Merge inter-thread variables.
|
|
// (argument 'mp' is the master instance).
|
|
void merge(_cimg_math_parser& mp) {
|
|
if (&mp==this) return;
|
|
cimg_rofY(mp.memmerge,k) {
|
|
const unsigned int
|
|
pos = (unsigned int)mp.memmerge(0,k),
|
|
siz = (unsigned int)mp.memmerge(1,k),
|
|
iop = (unsigned int)mp.memmerge(2,k);
|
|
if (!siz) switch (iop) { // Scalar value
|
|
case 0 : mp.mem[pos] = mem[pos]; break; // Assignment
|
|
case 1 : mp.mem[pos]+=mem[pos]; break; // Operator+
|
|
case 2 : mp.mem[pos]-=mem[pos]; break; // Operator-
|
|
case 3 : mp.mem[pos]*=mem[pos]; break; // Operator*
|
|
case 4 : mp.mem[pos]/=mem[pos]; break; // Operator/
|
|
case 5 : mp.mem[pos] = (double)((longT)mp.mem[pos] & (longT)mem[pos]); break; // Operator&
|
|
case 6 : mp.mem[pos] = (double)((longT)mp.mem[pos] | (longT)mem[pos]); break; // Operator|
|
|
case 7 : mp.mem[pos] = (double)((longT)mp.mem[pos] ^ (longT)mem[pos]); break; // Operator 'xor'
|
|
case 8 : mp.mem[pos] = mp.mem[pos] && mem[pos]; break; // Operator&&
|
|
case 9 : mp.mem[pos] = mp.mem[pos] || mem[pos]; break; // Operator||
|
|
case 10 : mp.mem[pos] = std::min(mp.mem[pos],mem[pos]); break; // Operator 'min'
|
|
case 11 : mp.mem[pos] = std::max(mp.mem[pos],mem[pos]); break; // Operator 'max'
|
|
} else switch (iop) { // Vector value
|
|
case 0 : // Assignment
|
|
CImg<doubleT>(&mp.mem[pos + 1],siz,1,1,1,true) = CImg<doubleT>(&mem[pos + 1],siz,1,1,1,true);
|
|
break;
|
|
case 1 : // Operator+
|
|
CImg<doubleT>(&mp.mem[pos + 1],siz,1,1,1,true)+=CImg<doubleT>(&mem[pos + 1],siz,1,1,1,true);
|
|
break;
|
|
case 2 : // Operator-
|
|
CImg<doubleT>(&mp.mem[pos + 1],siz,1,1,1,true)-=CImg<doubleT>(&mem[pos + 1],siz,1,1,1,true);
|
|
break;
|
|
case 3 : // Operator*
|
|
CImg<doubleT>(&mp.mem[pos + 1],siz,1,1,1,true)*=CImg<doubleT>(&mem[pos + 1],siz,1,1,1,true);
|
|
break;
|
|
case 4 : // Operator/
|
|
CImg<doubleT>(&mp.mem[pos + 1],siz,1,1,1,true)/=CImg<doubleT>(&mem[pos + 1],siz,1,1,1,true);
|
|
break;
|
|
case 5 : // Operator&
|
|
CImg<doubleT>(&mp.mem[pos + 1],siz,1,1,1,true)&=CImg<doubleT>(&mem[pos + 1],siz,1,1,1,true);
|
|
break;
|
|
case 6 : // Operator|
|
|
CImg<doubleT>(&mp.mem[pos + 1],siz,1,1,1,true)|=CImg<doubleT>(&mem[pos + 1],siz,1,1,1,true);
|
|
break;
|
|
case 7 : // Operator 'xor'
|
|
CImg<doubleT>(&mp.mem[pos + 1],siz,1,1,1,true)^=CImg<doubleT>(&mem[pos + 1],siz,1,1,1,true);
|
|
break;
|
|
case 8 : { // Operator&&
|
|
CImg<doubleT>
|
|
arg1(&mp.mem[pos + 1],siz,1,1,1,true),
|
|
arg2(&mem[pos + 1],siz,1,1,1,true);
|
|
cimg_foroff(arg1,off) arg1[off] = arg1[off] && arg2[off];
|
|
} break;
|
|
case 9 : { // Operator||
|
|
CImg<doubleT>
|
|
arg1(&mp.mem[pos + 1],siz,1,1,1,true),
|
|
arg2(&mem[pos + 1],siz,1,1,1,true);
|
|
cimg_foroff(arg1,off) arg1[off] = arg1[off] || arg2[off];
|
|
} break;
|
|
case 10 : // Operator 'min'
|
|
CImg<doubleT>(&mp.mem[pos + 1],siz,1,1,1,true).min(CImg<doubleT>(&mem[pos + 1],siz,1,1,1,true));
|
|
break;
|
|
case 11 : // Operator 'max'
|
|
CImg<doubleT>(&mp.mem[pos + 1],siz,1,1,1,true).max(CImg<doubleT>(&mem[pos + 1],siz,1,1,1,true));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Return specified argument number as a string.
|
|
static const char *s_argth(const unsigned int n_arg) {
|
|
const char
|
|
*_s_arg[] = { "", "First", "Second", "Third", "Fourth", "Fifth", "Sixth", "Seventh", "Eighth","Ninth",
|
|
"10th", "11th", "12th", "13th", "14th", "15th", "16th", "17th", "18th", "19th",
|
|
"20th", "21st", "22nd", "23rd", "24th", "25th", "26th", "27th", "28th", "One of the" };
|
|
return _s_arg[n_arg<sizeof(_s_arg)/sizeof(char*)?n_arg:sizeof(_s_arg)/sizeof(char*)-1];
|
|
}
|
|
|
|
// Return a string that defines the calling function + the user-defined function scope.
|
|
CImg<charT> s_calling_function() const {
|
|
CImg<charT> res;
|
|
const unsigned int
|
|
l1 = calling_function?(unsigned int)std::strlen(calling_function):0U,
|
|
l2 = user_macro?(unsigned int)std::strlen(user_macro):0U;
|
|
if (l2) {
|
|
res.assign(l1 + l2 + 48);
|
|
cimg_snprintf(res,res._width,"%s(): When substituting function '%s()'",calling_function,user_macro);
|
|
} else {
|
|
res.assign(l1 + l2 + 4);
|
|
cimg_snprintf(res,res._width,"%s()",calling_function);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// Return type of a memory slot as a string.
|
|
CImg<charT> s_type(const unsigned int arg) const {
|
|
CImg<charT> res;
|
|
if (_cimg_mp_is_vector(arg)) { // Vector
|
|
CImg<charT>::string("vectorXXXXXXXXXXXXXXXX").move_to(res);
|
|
cimg_snprintf(res._data + 6,res._width - 6,"%u",_cimg_mp_size(arg));
|
|
} else if (_cimg_mp_is_const_scalar(arg)) CImg<charT>::string("const scalar").move_to(res); // Const scalar
|
|
else CImg<charT>::string("scalar").move_to(res); // Scalar
|
|
return res;
|
|
}
|
|
|
|
// Return reference state of a memory slot as a string.
|
|
CImg<charT> s_ref(const unsigned int *const p_ref) const {
|
|
CImg<charT> res;
|
|
if (!p_ref || !*p_ref) return res.assign(1,1,1,1,0);
|
|
res.assign(32);
|
|
switch (p_ref[0]) {
|
|
case 1 : // Reference to vector value as a scalar
|
|
cimg_snprintf(res,res._width,", ref: ([%u])[%u]",
|
|
p_ref[1],p_ref[2]);
|
|
break;
|
|
case 2 : // Reference to image value as a scalar (offset)
|
|
if (p_ref[1]==~0U)
|
|
cimg_snprintf(res,res._width,", ref: %c[%u]",
|
|
p_ref[2]?'j':'i',p_ref[3]);
|
|
else
|
|
cimg_snprintf(res,res._width,", ref: %c[#%u,%u]",
|
|
p_ref[2]?'j':'i',p_ref[1],p_ref[3]);
|
|
break;
|
|
case 3 : // Reference to image value as a scalar (coordinates)
|
|
if (p_ref[1]==~0U)
|
|
cimg_snprintf(res,res._width,", ref: %c(%u,%u,%u,%u)",
|
|
p_ref[2]?'j':'i',p_ref[3],p_ref[4],p_ref[5],p_ref[6]);
|
|
else
|
|
cimg_snprintf(res,res._width,", ref: %c(#%u,%u,%u,%u,%u)",
|
|
p_ref[2]?'j':'i',p_ref[1],p_ref[3],p_ref[4],p_ref[5],p_ref[6]);
|
|
break;
|
|
case 4 : // Reference to image value as a vector (offset)
|
|
if (p_ref[1]==~0U)
|
|
cimg_snprintf(res,res._width,", ref: %c[%u]",
|
|
p_ref[2]?'J':'I',p_ref[3]);
|
|
else
|
|
cimg_snprintf(res,res._width,", ref: %c[#%u,%u]",
|
|
p_ref[2]?'J':'I',p_ref[1],p_ref[3]);
|
|
break;
|
|
case 5 : // Reference to image value as a vector (coordinates)
|
|
if (p_ref[1]==~0U)
|
|
cimg_snprintf(res,res._width,", ref: %c(%u,%u,%u)",
|
|
p_ref[2]?'J':'I',p_ref[3],p_ref[4],p_ref[5]);
|
|
else
|
|
cimg_snprintf(res,res._width,", ref: %c(#%u,%u,%u,%u)",
|
|
p_ref[2]?'J':'I',p_ref[1],p_ref[3],p_ref[4],p_ref[5]);
|
|
break;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// Count parentheses/brackets level of each character of the expression.
|
|
CImg<uintT> get_level(CImg<charT>& _expr) const {
|
|
bool is_escaped = false, next_is_escaped = false;
|
|
unsigned int mode = 0, next_mode = 0; // { 0=normal | 1=char-string | 2=vector-string
|
|
CImg<uintT> res(_expr._width - 1);
|
|
unsigned int *pd = res._data;
|
|
int _level = 0;
|
|
for (const char *ps = _expr._data; *ps && _level>=0; ++ps) {
|
|
if (!is_escaped && !next_is_escaped && *ps=='\\') next_is_escaped = true;
|
|
if (!is_escaped && *ps=='\'') { // Non-escaped character
|
|
if (!mode && ps>_expr._data && *(ps - 1)=='[') next_mode = mode = 2; // Start vector-string
|
|
else if (mode==2 && *(ps + 1)==']') next_mode = !mode; // End vector-string
|
|
else if (mode<2) next_mode = mode?(mode = 0):1; // Start/end char-string
|
|
}
|
|
*(pd++) = (unsigned int)(mode>=1 || is_escaped?_level + (mode==1):
|
|
*ps=='(' || *ps=='['?_level++:
|
|
*ps==')' || *ps==']'?--_level:
|
|
_level);
|
|
mode = next_mode;
|
|
is_escaped = next_is_escaped;
|
|
next_is_escaped = false;
|
|
}
|
|
if (mode) {
|
|
cimg::strellipsize(_expr,64);
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: Unterminated string literal, in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,
|
|
_expr._data);
|
|
}
|
|
if (_level) {
|
|
cimg::strellipsize(_expr,64);
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: Unbalanced parentheses/brackets, in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,
|
|
_expr._data);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// Find and return index of current image 'imgin' within image list 'imglist'.
|
|
unsigned int get_mem_img_index() {
|
|
if (mem_img_index==~0U) {
|
|
if (&imgout>imglist.data() && &imgout<imglist.end())
|
|
mem_img_index = const_scalar((double)(&imgout - imglist.data()));
|
|
else {
|
|
unsigned int pos = ~0U;
|
|
cimglist_for(imglist,l)
|
|
if (imgout._data==imglist[l]._data && imgout.is_sameXYZC(imglist[l])) { pos = l; break; }
|
|
if (pos!=~0U) mem_img_index = const_scalar((double)pos);
|
|
}
|
|
}
|
|
return mem_img_index;
|
|
}
|
|
|
|
// Return indices for accessing math parser variables.
|
|
void get_variable_pos(const char *variable_name, unsigned int &pos, unsigned int &rpos) {
|
|
char c1, c2, c3, c4;
|
|
pos = rpos = ~0U;
|
|
if (!variable_name || !*variable_name) return;
|
|
|
|
unsigned int rp = variable_name[1]?~0U:*variable_name; // One-char variable
|
|
if (variable_name[1] && !variable_name[2]) { // Two-chars variable
|
|
c1 = variable_name[0];
|
|
c2 = variable_name[1];
|
|
if (c1=='w' && c2=='h') rp = 0; // wh
|
|
else if (c1=='p' && c2=='i') rp = 3; // pi
|
|
else if (c1=='i') {
|
|
if (c2>='0' && c2<='9') rp = 21 + c2 - '0'; // i0...i9
|
|
else if (c2=='m') rp = 4; // im
|
|
else if (c2=='M') rp = 5; // iM
|
|
else if (c2=='a') rp = 6; // ia
|
|
else if (c2=='v') rp = 7; // iv
|
|
else if (c2=='d') rp = 8; // id
|
|
else if (c2=='s') rp = 9; // is
|
|
else if (c2=='p') rp = 10; // ip
|
|
else if (c2=='c') rp = 11; // ic
|
|
else if (c2=='n') rp = 12; // in
|
|
} else if (c2=='m') {
|
|
if (c1=='x') rp = 13; // xm
|
|
else if (c1=='y') rp = 14; // ym
|
|
else if (c1=='z') rp = 15; // zm
|
|
else if (c1=='c') rp = 16; // cm
|
|
} else if (c2=='M') {
|
|
if (c1=='x') rp = 17; // xM
|
|
else if (c1=='y') rp = 18; // yM
|
|
else if (c1=='z') rp = 19; // zM
|
|
else if (c1=='c') rp = 20; // cM
|
|
}
|
|
} else if (variable_name[1] && variable_name[2] && !variable_name[3]) { // Three-chars variable
|
|
c1 = variable_name[0];
|
|
c2 = variable_name[1];
|
|
c3 = variable_name[2];
|
|
if (c1=='w' && c2=='h' && c3=='d') rp = 1; // whd
|
|
} else if (variable_name[1] && variable_name[2] && variable_name[3] &&
|
|
!variable_name[4]) { // Four-chars variable
|
|
c1 = variable_name[0];
|
|
c2 = variable_name[1];
|
|
c3 = variable_name[2];
|
|
c4 = variable_name[3];
|
|
if (c1=='w' && c2=='h' && c3=='d' && c4=='s') rp = 2; // whds
|
|
} else if (!std::strcmp(variable_name,"interpolation")) rp = 31; // interpolation
|
|
else if (!std::strcmp(variable_name,"boundary")) rp = 32; // boundary
|
|
|
|
if (rp!=~0U) { rpos = rp; return; } // One of the reserved labels
|
|
|
|
// Multi-char variable name : check for existing variable with same name
|
|
cimglist_for(variable_def,i)
|
|
if (!std::strcmp(variable_name,variable_def[i])) { pos = i; break; }
|
|
}
|
|
|
|
// Return true if all values of a vector are computation values.
|
|
bool is_comp_vector(const unsigned int arg) const {
|
|
unsigned int siz = _cimg_mp_size(arg);
|
|
if (siz>128) return false;
|
|
const int *ptr = memtype.data(arg + 1);
|
|
bool is_tmp = true;
|
|
while (siz-->0) if (*(ptr++)) { is_tmp = false; break; }
|
|
return is_tmp;
|
|
}
|
|
|
|
// Check if a memory slot is a positive integer constant scalar value.
|
|
// 'mode' can be:
|
|
// { 0=constant | 1=integer constant | 2=positive integer constant | 3=strictly-positive integer constant }
|
|
void check_const_scalar(const unsigned int arg, const unsigned int n_arg,
|
|
const unsigned int mode,
|
|
char *const ss, char *const se, const char saved_char) {
|
|
_cimg_mp_check_type(arg,n_arg,1,0);
|
|
if (!_cimg_mp_is_const_scalar(arg)) {
|
|
const char *const s_arg = s_argth(n_arg);
|
|
char *s0; _cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s%s %s%s (of type '%s') is not a constant, "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,*s_op?":":"",
|
|
s_arg,*s_arg?" argument":" Argument",s_type(arg)._data,s0);
|
|
}
|
|
const double val = mem[arg];
|
|
|
|
if (!((!mode || (double)(int)mem[arg]==mem[arg]) &&
|
|
(mode<2 || mem[arg]>=(mode==3)))) {
|
|
const char *const s_arg = s_argth(n_arg);
|
|
char *s0; _cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s%s %s%s (of type '%s' and value %g) is not a%s constant, "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,*s_op?":":"",
|
|
s_arg,*s_arg?" argument":" Argument",s_type(arg)._data,val,
|
|
!mode?"":mode==1?"n integer":
|
|
mode==2?" positive integer":" strictly positive integer",s0);
|
|
}
|
|
}
|
|
|
|
// Check if an image index is a constant value.
|
|
void check_const_index(const unsigned int arg,
|
|
char *const ss, char *const se, const char saved_char) {
|
|
if (arg!=~0U && !_cimg_mp_is_const_scalar(arg)) {
|
|
char *s0; _cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s%s Specified image index is not a constant, "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,*s_op?":":"",s0);
|
|
}
|
|
}
|
|
|
|
// Check a matrix is square.
|
|
void check_matrix_square(const unsigned int arg, const unsigned int n_arg,
|
|
char *const ss, char *const se, const char saved_char) {
|
|
_cimg_mp_check_type(arg,n_arg,2,0);
|
|
const unsigned int
|
|
siz = _cimg_mp_size(arg),
|
|
n = (unsigned int)cimg::round(std::sqrt((float)siz));
|
|
if (n*n!=siz) {
|
|
const char *s_arg;
|
|
if (*s_op!='F') s_arg = !n_arg?"":n_arg==1?"Left-hand":"Right-hand";
|
|
else s_arg = !n_arg?"":n_arg==1?"First":n_arg==2?"Second":n_arg==3?"Third":"One";
|
|
char *s0; _cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s%s %s%s (of type '%s') "
|
|
"cannot be considered as a square matrix, in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,*s_op?":":"",
|
|
s_arg,*s_op=='F'?(*s_arg?" argument":" Argument"):(*s_arg?" operand":" Operand"),
|
|
s_type(arg)._data,s0);
|
|
}
|
|
}
|
|
|
|
// Check type compatibility for one argument.
|
|
// Bits of 'mode' tells what types are allowed:
|
|
// { 1 = scalar | 2 = vectorN }.
|
|
// If 'N' is not zero, it also restricts the vectors to be of size N only.
|
|
void check_type(const unsigned int arg, const unsigned int n_arg,
|
|
const unsigned int mode, const unsigned int N,
|
|
char *const ss, char *const se, const char saved_char) {
|
|
const bool
|
|
is_scalar = _cimg_mp_is_scalar(arg),
|
|
is_vector = _cimg_mp_is_vector(arg) && (!N || _cimg_mp_size(arg)==N);
|
|
bool cond = false;
|
|
if (mode&1) cond|=is_scalar;
|
|
if (mode&2) cond|=is_vector;
|
|
if (!cond) {
|
|
const char *s_arg;
|
|
if (*s_op!='F') s_arg = !n_arg?"":n_arg==1?"Left-hand":"Right-hand";
|
|
else s_arg = s_argth(n_arg);
|
|
CImg<charT> sb_type(32);
|
|
if (mode==1) cimg_snprintf(sb_type,sb_type._width,"'scalar'");
|
|
else if (mode==2) {
|
|
if (N) cimg_snprintf(sb_type,sb_type._width,"'vector%u'",N);
|
|
else cimg_snprintf(sb_type,sb_type._width,"'vector'");
|
|
} else {
|
|
if (N) cimg_snprintf(sb_type,sb_type._width,"'scalar' or 'vector%u'",N);
|
|
else cimg_snprintf(sb_type,sb_type._width,"'scalar' or 'vector'");
|
|
}
|
|
char *s0; _cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s%s %s%s has invalid type '%s' (should be %s), "
|
|
"in expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,*s_op?":":"",
|
|
s_arg,*s_op=='F'?(*s_arg?" argument":" Argument"):(*s_arg?" operand":" Operand"),
|
|
s_type(arg)._data,sb_type._data,s0);
|
|
}
|
|
}
|
|
|
|
// Check that imglist are not empty.
|
|
void check_list(char *const ss, char *const se, const char saved_char) {
|
|
if (!imglist) {
|
|
char *s0; _cimg_mp_strerr;
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>::%s: %s%s Image list cannot be empty, for expression '%s'.",
|
|
pixel_type(),_cimg_mp_calling_function,s_op,*s_op?":":"",s0);
|
|
}
|
|
}
|
|
|
|
static void mp_check_list(_cimg_math_parser& mp, const char *const funcname) {
|
|
if (!mp.imglist)
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] "
|
|
"CImg<%s>: Function '%s()': Images list cannot be empty.",
|
|
pixel_type(),funcname);
|
|
}
|
|
|
|
// Insert constant value in memory.
|
|
unsigned int const_scalar(const double val) {
|
|
|
|
// Search for built-in constant.
|
|
if (cimg::type<double>::is_nan(val)) return _cimg_mp_slot_nan;
|
|
if (val==(double)(int)val) {
|
|
if (val>=0 && val<=10) return (unsigned int)val;
|
|
if (val<0 && val>=-5) return (unsigned int)(10 - val);
|
|
}
|
|
if (val==0.5) return 16;
|
|
|
|
// Search for constant already requested before (in const cache).
|
|
unsigned int ind = ~0U;
|
|
if (constcache_size<1024) {
|
|
if (!constcache_size) {
|
|
constcache_vals.assign(16,1,1,1,0);
|
|
constcache_inds.assign(16,1,1,1,0);
|
|
*constcache_vals = val;
|
|
constcache_size = 1;
|
|
ind = 0;
|
|
} else { // Dichotomic search
|
|
const double val_beg = *constcache_vals, val_end = constcache_vals[constcache_size - 1];
|
|
if (val_beg>=val) ind = 0;
|
|
else if (val_end==val) ind = constcache_size - 1;
|
|
else if (val_end<val) ind = constcache_size;
|
|
else {
|
|
unsigned int i0 = 1, i1 = constcache_size - 2;
|
|
while (i0<=i1) {
|
|
const unsigned int mid = (i0 + i1)/2;
|
|
if (constcache_vals[mid]==val) { i0 = mid; break; }
|
|
else if (constcache_vals[mid]<val) i0 = mid + 1;
|
|
else i1 = mid - 1;
|
|
}
|
|
ind = i0;
|
|
}
|
|
|
|
if (ind>=constcache_size || constcache_vals[ind]!=val) {
|
|
++constcache_size;
|
|
if (constcache_size>constcache_vals._width) {
|
|
constcache_vals.resize(-200,1,1,1,0);
|
|
constcache_inds.resize(-200,1,1,1,0);
|
|
}
|
|
const int l = constcache_size - (int)ind - 1;
|
|
if (l>0) {
|
|
std::memmove(&constcache_vals[ind + 1],&constcache_vals[ind],l*sizeof(double));
|
|
std::memmove(&constcache_inds[ind + 1],&constcache_inds[ind],l*sizeof(unsigned int));
|
|
}
|
|
constcache_vals[ind] = val;
|
|
constcache_inds[ind] = 0;
|
|
}
|
|
}
|
|
if (constcache_inds[ind]) return constcache_inds[ind];
|
|
}
|
|
|
|
// Insert new constant in memory if necessary.
|
|
if (mempos>=mem._width) { mem.resize(-200,1,1,1,0); memtype.resize(-200,1,1,1,0); }
|
|
const unsigned int pos = mempos++;
|
|
mem[pos] = val;
|
|
memtype[pos] = 1; // Set constant property
|
|
if (ind!=~0U) constcache_inds[ind] = pos;
|
|
return pos;
|
|
}
|
|
|
|
// Insert new scalar in memory.
|
|
unsigned int scalar() {
|
|
if (mempos>=mem._width) { mem.resize(-200,1,1,1,0); memtype.resize(mem._width,1,1,1,0); }
|
|
return mempos++;
|
|
}
|
|
|
|
// Insert new vector of specified size in memory.
|
|
unsigned int vector(const unsigned int siz) {
|
|
if (mempos + siz>=mem._width) {
|
|
mem.resize(2*mem._width + siz,1,1,1,0);
|
|
memtype.resize(mem._width,1,1,1,0);
|
|
}
|
|
const unsigned int pos = mempos++;
|
|
mem[pos] = cimg::type<double>::nan();
|
|
memtype[pos] = siz + 1;
|
|
mempos+=siz;
|
|
return pos;
|
|
}
|
|
|
|
// Insert new initialized vector.
|
|
unsigned int vector(const unsigned int siz, const double value) {
|
|
const unsigned int pos = vector(siz);
|
|
double *ptr = &mem[pos] + 1;
|
|
for (unsigned int i = 0; i<siz; ++i) *(ptr++) = value;
|
|
return pos;
|
|
}
|
|
|
|
// Insert new copy of specified vector in memory.
|
|
unsigned int vector_copy(const unsigned int arg) {
|
|
const unsigned int
|
|
siz = _cimg_mp_size(arg),
|
|
pos = vector(siz);
|
|
CImg<ulongT>::vector((ulongT)mp_vector_copy,pos,arg,siz).move_to(code);
|
|
return pos;
|
|
}
|
|
|
|
// Set reserved status to all values of a vector.
|
|
void set_reserved_vector(const unsigned int arg) {
|
|
unsigned int siz = _cimg_mp_size(arg);
|
|
int *ptr = memtype.data(arg + 1);
|
|
while (siz-->0) *(ptr++) = -1;
|
|
}
|
|
|
|
unsigned int scalar0(const mp_func op) {
|
|
const unsigned int pos = scalar();
|
|
CImg<ulongT>::vector((ulongT)op,pos).move_to(code);
|
|
return_new_comp = true;
|
|
return pos;
|
|
}
|
|
|
|
unsigned int scalar1(const mp_func op, const unsigned int arg1) {
|
|
const unsigned int pos =
|
|
arg1!=~0U && arg1>_cimg_mp_slot_c && _cimg_mp_is_comp(arg1) && op!=mp_copy?arg1:
|
|
((return_new_comp = true), scalar());
|
|
CImg<ulongT>::vector((ulongT)op,pos,arg1).move_to(code);
|
|
return pos;
|
|
}
|
|
|
|
unsigned int scalar2(const mp_func op, const unsigned int arg1, const unsigned int arg2) {
|
|
const unsigned int pos =
|
|
arg1!=~0U && arg1>_cimg_mp_slot_c && _cimg_mp_is_comp(arg1)?arg1:
|
|
arg2!=~0U && arg2>_cimg_mp_slot_c && _cimg_mp_is_comp(arg2)?arg2:
|
|
((return_new_comp = true), scalar());
|
|
CImg<ulongT>::vector((ulongT)op,pos,arg1,arg2).move_to(code);
|
|
return pos;
|
|
}
|
|
|
|
unsigned int scalar3(const mp_func op,
|
|
const unsigned int arg1, const unsigned int arg2, const unsigned int arg3) {
|
|
const unsigned int pos =
|
|
arg1!=~0U && arg1>_cimg_mp_slot_c && _cimg_mp_is_comp(arg1)?arg1:
|
|
arg2!=~0U && arg2>_cimg_mp_slot_c && _cimg_mp_is_comp(arg2)?arg2:
|
|
arg3!=~0U && arg3>_cimg_mp_slot_c && _cimg_mp_is_comp(arg3)?arg3:
|
|
((return_new_comp = true), scalar());
|
|
CImg<ulongT>::vector((ulongT)op,pos,arg1,arg2,arg3).move_to(code);
|
|
return pos;
|
|
}
|
|
|
|
unsigned int scalar4(const mp_func op,
|
|
const unsigned int arg1, const unsigned int arg2, const unsigned int arg3,
|
|
const unsigned int arg4) {
|
|
const unsigned int pos =
|
|
arg1!=~0U && arg1>_cimg_mp_slot_c && _cimg_mp_is_comp(arg1)?arg1:
|
|
arg2!=~0U && arg2>_cimg_mp_slot_c && _cimg_mp_is_comp(arg2)?arg2:
|
|
arg3!=~0U && arg3>_cimg_mp_slot_c && _cimg_mp_is_comp(arg3)?arg3:
|
|
arg4!=~0U && arg4>_cimg_mp_slot_c && _cimg_mp_is_comp(arg4)?arg4:
|
|
((return_new_comp = true), scalar());
|
|
CImg<ulongT>::vector((ulongT)op,pos,arg1,arg2,arg3,arg4).move_to(code);
|
|
return pos;
|
|
}
|
|
|
|
unsigned int scalar5(const mp_func op,
|
|
const unsigned int arg1, const unsigned int arg2, const unsigned int arg3,
|
|
const unsigned int arg4, const unsigned int arg5) {
|
|
const unsigned int pos =
|
|
arg1!=~0U && arg1>_cimg_mp_slot_c && _cimg_mp_is_comp(arg1)?arg1:
|
|
arg2!=~0U && arg2>_cimg_mp_slot_c && _cimg_mp_is_comp(arg2)?arg2:
|
|
arg3!=~0U && arg3>_cimg_mp_slot_c && _cimg_mp_is_comp(arg3)?arg3:
|
|
arg4!=~0U && arg4>_cimg_mp_slot_c && _cimg_mp_is_comp(arg4)?arg4:
|
|
arg5!=~0U && arg5>_cimg_mp_slot_c && _cimg_mp_is_comp(arg5)?arg5:
|
|
((return_new_comp = true), scalar());
|
|
CImg<ulongT>::vector((ulongT)op,pos,arg1,arg2,arg3,arg4,arg5).move_to(code);
|
|
return pos;
|
|
}
|
|
|
|
unsigned int scalar6(const mp_func op,
|
|
const unsigned int arg1, const unsigned int arg2, const unsigned int arg3,
|
|
const unsigned int arg4, const unsigned int arg5, const unsigned int arg6) {
|
|
const unsigned int pos =
|
|
arg1!=~0U && arg1>_cimg_mp_slot_c && _cimg_mp_is_comp(arg1)?arg1:
|
|
arg2!=~0U && arg2>_cimg_mp_slot_c && _cimg_mp_is_comp(arg2)?arg2:
|
|
arg3!=~0U && arg3>_cimg_mp_slot_c && _cimg_mp_is_comp(arg3)?arg3:
|
|
arg4!=~0U && arg4>_cimg_mp_slot_c && _cimg_mp_is_comp(arg4)?arg4:
|
|
arg5!=~0U && arg5>_cimg_mp_slot_c && _cimg_mp_is_comp(arg5)?arg5:
|
|
arg6!=~0U && arg6>_cimg_mp_slot_c && _cimg_mp_is_comp(arg6)?arg6:
|
|
((return_new_comp = true), scalar());
|
|
CImg<ulongT>::vector((ulongT)op,pos,arg1,arg2,arg3,arg4,arg5,arg6).move_to(code);
|
|
return pos;
|
|
}
|
|
|
|
unsigned int scalar7(const mp_func op,
|
|
const unsigned int arg1, const unsigned int arg2, const unsigned int arg3,
|
|
const unsigned int arg4, const unsigned int arg5, const unsigned int arg6,
|
|
const unsigned int arg7) {
|
|
const unsigned int pos =
|
|
arg1!=~0U && arg1>_cimg_mp_slot_c && _cimg_mp_is_comp(arg1)?arg1:
|
|
arg2!=~0U && arg2>_cimg_mp_slot_c && _cimg_mp_is_comp(arg2)?arg2:
|
|
arg3!=~0U && arg3>_cimg_mp_slot_c && _cimg_mp_is_comp(arg3)?arg3:
|
|
arg4!=~0U && arg4>_cimg_mp_slot_c && _cimg_mp_is_comp(arg4)?arg4:
|
|
arg5!=~0U && arg5>_cimg_mp_slot_c && _cimg_mp_is_comp(arg5)?arg5:
|
|
arg6!=~0U && arg6>_cimg_mp_slot_c && _cimg_mp_is_comp(arg6)?arg6:
|
|
arg7!=~0U && arg7>_cimg_mp_slot_c && _cimg_mp_is_comp(arg7)?arg7:
|
|
((return_new_comp = true), scalar());
|
|
CImg<ulongT>::vector((ulongT)op,pos,arg1,arg2,arg3,arg4,arg5,arg6,arg7).move_to(code);
|
|
return pos;
|
|
}
|
|
|
|
void self_vector_s(const unsigned int pos, const mp_func op, const unsigned int arg1) {
|
|
const unsigned int siz = _cimg_mp_size(pos);
|
|
if (siz>24) CImg<ulongT>::vector((ulongT)mp_self_map_vector_s,pos,siz,(ulongT)op,arg1).move_to(code);
|
|
else {
|
|
code.insert(siz);
|
|
for (unsigned int k = 1; k<=siz; ++k)
|
|
CImg<ulongT>::vector((ulongT)op,pos + k,arg1).move_to(code[code._width - 1 - siz + k]);
|
|
}
|
|
}
|
|
|
|
void self_vector_v(const unsigned int pos, const mp_func op, const unsigned int arg1) {
|
|
const unsigned int siz = _cimg_mp_size(pos);
|
|
if (siz>24) CImg<ulongT>::vector((ulongT)mp_self_map_vector_v,pos,siz,(ulongT)op,arg1).move_to(code);
|
|
else {
|
|
code.insert(siz);
|
|
for (unsigned int k = 1; k<=siz; ++k)
|
|
CImg<ulongT>::vector((ulongT)op,pos + k,arg1 + k).move_to(code[code._width - 1 - siz + k]);
|
|
}
|
|
}
|
|
|
|
unsigned int vector1_v(const mp_func op, const unsigned int arg1) {
|
|
const unsigned int
|
|
siz = _cimg_mp_size(arg1),
|
|
pos = is_comp_vector(arg1)?arg1:
|
|
((return_new_comp = true), vector(siz));
|
|
if (siz>24) CImg<ulongT>::vector((ulongT)mp_vector_map_v,pos,1,siz,(ulongT)op,arg1).move_to(code);
|
|
else {
|
|
code.insert(siz);
|
|
for (unsigned int k = 1; k<=siz; ++k)
|
|
CImg<ulongT>::vector((ulongT)op,pos + k,arg1 + k).move_to(code[code._width - 1 - siz + k]);
|
|
}
|
|
return pos;
|
|
}
|
|
|
|
unsigned int vector2_vv(const mp_func op, const unsigned int arg1, const unsigned int arg2) {
|
|
const unsigned int
|
|
siz = _cimg_mp_size(arg1),
|
|
pos = is_comp_vector(arg1)?arg1:is_comp_vector(arg2)?arg2:
|
|
((return_new_comp = true), vector(siz));
|
|
if (siz>24) CImg<ulongT>::vector((ulongT)mp_vector_map_vv,pos,2,siz,(ulongT)op,arg1,arg2).move_to(code);
|
|
else {
|
|
code.insert(siz);
|
|
for (unsigned int k = 1; k<=siz; ++k)
|
|
CImg<ulongT>::vector((ulongT)op,pos + k,arg1 + k,arg2 + k).move_to(code[code._width - 1 - siz + k]);
|
|
}
|
|
return pos;
|
|
}
|
|
|
|
unsigned int vector2_vs(const mp_func op, const unsigned int arg1, const unsigned int arg2) {
|
|
const unsigned int
|
|
siz = _cimg_mp_size(arg1),
|
|
pos = is_comp_vector(arg1)?arg1:
|
|
((return_new_comp = true), vector(siz));
|
|
if (siz>24) CImg<ulongT>::vector((ulongT)mp_vector_map_v,pos,2,siz,(ulongT)op,arg1,arg2).move_to(code);
|
|
else {
|
|
code.insert(siz);
|
|
for (unsigned int k = 1; k<=siz; ++k)
|
|
CImg<ulongT>::vector((ulongT)op,pos + k,arg1 + k,arg2).move_to(code[code._width - 1 - siz + k]);
|
|
}
|
|
return pos;
|
|
}
|
|
|
|
unsigned int vector2_sv(const mp_func op, const unsigned int arg1, const unsigned int arg2) {
|
|
const unsigned int
|
|
siz = _cimg_mp_size(arg2),
|
|
pos = is_comp_vector(arg2)?arg2:
|
|
((return_new_comp = true), vector(siz));
|
|
if (siz>24) CImg<ulongT>::vector((ulongT)mp_vector_map_sv,pos,2,siz,(ulongT)op,arg1,arg2).move_to(code);
|
|
else {
|
|
code.insert(siz);
|
|
for (unsigned int k = 1; k<=siz; ++k)
|
|
CImg<ulongT>::vector((ulongT)op,pos + k,arg1,arg2 + k).move_to(code[code._width - 1 - siz + k]);
|
|
}
|
|
return pos;
|
|
}
|
|
|
|
unsigned int vector3_vss(const mp_func op, const unsigned int arg1, const unsigned int arg2,
|
|
const unsigned int arg3) {
|
|
const unsigned int
|
|
siz = _cimg_mp_size(arg1),
|
|
pos = is_comp_vector(arg1)?arg1:
|
|
((return_new_comp = true), vector(siz));
|
|
if (siz>24) CImg<ulongT>::vector((ulongT)mp_vector_map_v,pos,3,siz,(ulongT)op,arg1,arg2,arg3).move_to(code);
|
|
else {
|
|
code.insert(siz);
|
|
for (unsigned int k = 1; k<=siz; ++k)
|
|
CImg<ulongT>::vector((ulongT)op,pos + k,arg1 + k,arg2,arg3).move_to(code[code._width - 1 - siz + k]);
|
|
}
|
|
return pos;
|
|
}
|
|
|
|
unsigned int vector4_vvss(const mp_func op, const unsigned int arg1, const unsigned int arg2,
|
|
const unsigned int arg3, const unsigned int arg4) {
|
|
const unsigned int
|
|
siz = _cimg_mp_size(arg1),
|
|
pos = is_comp_vector(arg1)?arg1:is_comp_vector(arg2)?arg2:
|
|
((return_new_comp = true), vector(siz));
|
|
if (siz>24)
|
|
CImg<ulongT>::vector((ulongT)mp_vector_map_vv,pos,4,siz,(ulongT)op,arg1,arg2,arg3,arg4).move_to(code);
|
|
else {
|
|
code.insert(siz);
|
|
for (unsigned int k = 1; k<=siz; ++k)
|
|
CImg<ulongT>::vector((ulongT)op,pos + k,arg1 + k,arg2 + k,arg3,arg4).
|
|
move_to(code[code._width - 1 - siz + k]);
|
|
}
|
|
return pos;
|
|
}
|
|
|
|
unsigned int vector4_vsss(const mp_func op, const unsigned int arg1, const unsigned int arg2,
|
|
const unsigned int arg3, const unsigned int arg4) {
|
|
const unsigned int
|
|
siz = _cimg_mp_size(arg1),
|
|
pos = is_comp_vector(arg1)?arg1:
|
|
((return_new_comp = true), vector(siz));
|
|
if (siz>24)
|
|
CImg<ulongT>::vector((ulongT)mp_vector_map_v,pos,4,siz,(ulongT)op,arg1,arg2,arg3,arg4).move_to(code);
|
|
else {
|
|
code.insert(siz);
|
|
for (unsigned int k = 1; k<=siz; ++k)
|
|
CImg<ulongT>::vector((ulongT)op,pos + k,arg1 + k,arg2,arg3,arg4).
|
|
move_to(code[code._width - 1 - siz + k]);
|
|
}
|
|
return pos;
|
|
}
|
|
|
|
unsigned int vector4_svss(const mp_func op, const unsigned int arg1, const unsigned int arg2,
|
|
const unsigned int arg3, const unsigned int arg4) {
|
|
const unsigned int
|
|
siz = _cimg_mp_size(arg2),
|
|
pos = is_comp_vector(arg2)?arg2:
|
|
((return_new_comp = true), vector(siz));
|
|
if (siz>24)
|
|
CImg<ulongT>::vector((ulongT)mp_vector_map_sv,pos,4,siz,(ulongT)op,arg1,arg2,arg3,arg4).move_to(code);
|
|
else {
|
|
code.insert(siz);
|
|
for (unsigned int k = 1; k<=siz; ++k)
|
|
CImg<ulongT>::vector((ulongT)op,pos + k,arg1,arg2 + k,arg3,arg4).
|
|
move_to(code[code._width - 1 - siz + k]);
|
|
}
|
|
return pos;
|
|
}
|
|
|
|
// Evaluation functions, known by the parser.
|
|
// Defining these functions 'static' ensures that sizeof(mp_func)==sizeof(ulongT),
|
|
// so we can store pointers to them directly in the opcode vectors.
|
|
#ifdef _mp_arg
|
|
#undef _mp_arg
|
|
#endif
|
|
#define _mp_arg(x) mp.mem[mp.opcode[x]]
|
|
|
|
static double mp_abs(_cimg_math_parser& mp) {
|
|
return cimg::abs(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_add(_cimg_math_parser& mp) {
|
|
return _mp_arg(2) + _mp_arg(3);
|
|
}
|
|
|
|
static double mp_acos(_cimg_math_parser& mp) {
|
|
return std::acos(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_acosh(_cimg_math_parser& mp) {
|
|
return cimg::acosh(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_asinh(_cimg_math_parser& mp) {
|
|
return cimg::asinh(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_atanh(_cimg_math_parser& mp) {
|
|
return cimg::atanh(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_arg(_cimg_math_parser& mp) {
|
|
const int _ind = (int)_mp_arg(4);
|
|
const unsigned int
|
|
nb_args = (unsigned int)mp.opcode[2] - 4,
|
|
ind = _ind<0?_ind + nb_args:(unsigned int)_ind,
|
|
siz = (unsigned int)mp.opcode[3];
|
|
if (siz>0) {
|
|
if (ind>=nb_args) std::memset(&_mp_arg(1) + 1,0,siz*sizeof(double));
|
|
else std::memcpy(&_mp_arg(1) + 1,&_mp_arg(ind + 4) + 1,siz*sizeof(double));
|
|
return cimg::type<double>::nan();
|
|
}
|
|
if (ind>=nb_args) return 0;
|
|
return _mp_arg(ind + 4);
|
|
}
|
|
|
|
static double mp_arg0(_cimg_math_parser& mp) {
|
|
const int _ind = (int)_mp_arg(4);
|
|
const unsigned int
|
|
nb_args = (unsigned int)mp.opcode[2] - 4,
|
|
ind = _ind<0?_ind + nb_args:_ind + 1U,
|
|
siz = (unsigned int)mp.opcode[3];
|
|
if (siz>0) {
|
|
if (ind>=nb_args) std::memset(&_mp_arg(1) + 1,0,siz*sizeof(double));
|
|
else std::memcpy(&_mp_arg(1) + 1,&_mp_arg(ind + 4) + 1,siz*sizeof(double));
|
|
return cimg::type<double>::nan();
|
|
}
|
|
if (ind>=nb_args) return 0;
|
|
return _mp_arg(ind + 4);
|
|
}
|
|
|
|
static double mp_argkth(_cimg_math_parser& mp) {
|
|
const unsigned int i_end = (unsigned int)mp.opcode[2];
|
|
const double val = mp_kth(mp);
|
|
for (unsigned int i = 4; i<i_end; ++i) if (val==_mp_arg(i)) return i - 3.;
|
|
return 1.;
|
|
}
|
|
|
|
static double mp_argmin(_cimg_math_parser& mp) {
|
|
const unsigned int i_end = (unsigned int)mp.opcode[2];
|
|
double val = _mp_arg(3);
|
|
unsigned int argval = 0;
|
|
for (unsigned int i = 4; i<i_end; ++i) {
|
|
const double _val = _mp_arg(i);
|
|
if (_val<val) { val = _val; argval = i - 3; }
|
|
}
|
|
return (double)argval;
|
|
}
|
|
|
|
static double mp_argminabs(_cimg_math_parser& mp) {
|
|
const unsigned int i_end = (unsigned int)mp.opcode[2];
|
|
double val = _mp_arg(3), absval = cimg::abs(val);
|
|
unsigned int argval = 0;
|
|
for (unsigned int i = 4; i<i_end; ++i) {
|
|
const double _val = _mp_arg(i), _absval = cimg::abs(_val);
|
|
if (_absval<absval) { val = _val; absval = _absval; argval = i - 3; }
|
|
}
|
|
return (double)argval;
|
|
}
|
|
|
|
static double mp_argmax(_cimg_math_parser& mp) {
|
|
const unsigned int i_end = (unsigned int)mp.opcode[2];
|
|
double val = _mp_arg(3);
|
|
unsigned int argval = 0;
|
|
for (unsigned int i = 4; i<i_end; ++i) {
|
|
const double _val = _mp_arg(i);
|
|
if (_val>val) { val = _val; argval = i - 3; }
|
|
}
|
|
return (double)argval;
|
|
}
|
|
|
|
static double mp_argmaxabs(_cimg_math_parser& mp) {
|
|
const unsigned int i_end = (unsigned int)mp.opcode[2];
|
|
double val = _mp_arg(3), absval = cimg::abs(val);
|
|
unsigned int argval = 0;
|
|
for (unsigned int i = 4; i<i_end; ++i) {
|
|
const double _val = _mp_arg(i), _absval = cimg::abs(_val);
|
|
if (_absval>absval) { val = _val; absval = _absval; argval = i - 3; }
|
|
}
|
|
return (double)argval;
|
|
}
|
|
|
|
static double mp_asin(_cimg_math_parser& mp) {
|
|
return std::asin(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_atan(_cimg_math_parser& mp) {
|
|
return std::atan(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_atan2(_cimg_math_parser& mp) {
|
|
return std::atan2(_mp_arg(2),_mp_arg(3));
|
|
}
|
|
|
|
static double mp_avg(_cimg_math_parser& mp) {
|
|
const unsigned int i_end = (unsigned int)mp.opcode[2];
|
|
double val = _mp_arg(3);
|
|
for (unsigned int i = 4; i<i_end; ++i) val+=_mp_arg(i);
|
|
return val/(i_end - 3);
|
|
}
|
|
|
|
static double mp_bitwise_and(_cimg_math_parser& mp) {
|
|
return (double)((longT)_mp_arg(2) & (longT)_mp_arg(3));
|
|
}
|
|
|
|
static double mp_bitwise_left_shift(_cimg_math_parser& mp) {
|
|
return (double)((longT)_mp_arg(2)<<(unsigned int)_mp_arg(3));
|
|
}
|
|
|
|
static double mp_bitwise_not(_cimg_math_parser& mp) {
|
|
// Limit result to 32bits such that it can be entirely represented as a 'double'.
|
|
return (double)~(unsigned int)_mp_arg(2);
|
|
}
|
|
|
|
static double mp_bitwise_or(_cimg_math_parser& mp) {
|
|
return (double)((longT)_mp_arg(2) | (longT)_mp_arg(3));
|
|
}
|
|
|
|
static double mp_bitwise_right_shift(_cimg_math_parser& mp) {
|
|
return (double)((longT)_mp_arg(2)>>(unsigned int)_mp_arg(3));
|
|
}
|
|
|
|
static double mp_bitwise_xor(_cimg_math_parser& mp) {
|
|
return (double)((longT)_mp_arg(2) ^ (longT)_mp_arg(3));
|
|
}
|
|
|
|
static double mp_bool(_cimg_math_parser& mp) {
|
|
return (double)(bool)_mp_arg(2);
|
|
}
|
|
|
|
static double mp_break(_cimg_math_parser& mp) {
|
|
mp.break_type = 1;
|
|
mp.p_code = mp.p_break - 1;
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_breakpoint(_cimg_math_parser& mp) {
|
|
cimg_abort_init;
|
|
cimg_abort_test;
|
|
cimg::unused(mp);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
#ifdef cimg_mp_func_run
|
|
static double mp_run(_cimg_math_parser& mp) {
|
|
const unsigned int nb_args = (unsigned int)(mp.opcode[2] - 3)/2;
|
|
CImgList<charT> _str;
|
|
CImg<charT> it;
|
|
for (unsigned int n = 0; n<nb_args; ++n) {
|
|
const unsigned int siz = (unsigned int)mp.opcode[4 + 2*n];
|
|
if (siz) { // Vector argument -> string
|
|
const double *ptr = &_mp_arg(3 + 2*n) + 1;
|
|
unsigned int l = 0;
|
|
while (l<siz && ptr[l]) ++l;
|
|
CImg<doubleT>(ptr,l,1,1,1,true).move_to(_str);
|
|
} else { // Scalar argument -> number
|
|
it.assign(24);
|
|
cimg_snprintf(it,it._width,"%.17g",_mp_arg(3 + 2*n));
|
|
CImg<charT>::string(it,false,true).move_to(_str);
|
|
}
|
|
}
|
|
CImg(1,1,1,1,0).move_to(_str);
|
|
CImg<charT> str = _str>'x';
|
|
cimg_mp_func_run(str._data);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
#endif
|
|
|
|
static double mp_cbrt(_cimg_math_parser& mp) {
|
|
return cimg::cbrt(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_ceil(_cimg_math_parser& mp) {
|
|
return std::ceil(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_complex_abs(_cimg_math_parser& mp) {
|
|
return cimg::_hypot(_mp_arg(2),_mp_arg(3));
|
|
}
|
|
|
|
static double mp_complex_conj(_cimg_math_parser& mp) {
|
|
const double real = _mp_arg(2), imag = _mp_arg(3);
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
ptrd[0] = real;
|
|
ptrd[1] = -imag;
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_complex_div_sv(_cimg_math_parser& mp) {
|
|
const double
|
|
*ptr2 = &_mp_arg(3) + 1,
|
|
r1 = _mp_arg(2),
|
|
r2 = *(ptr2++), i2 = *ptr2;
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
const double denom = r2*r2 + i2*i2;
|
|
*(ptrd++) = r1*r2/denom;
|
|
*ptrd = -r1*i2/denom;
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_complex_div_vv(_cimg_math_parser& mp) {
|
|
const double
|
|
*ptr1 = &_mp_arg(2) + 1, *ptr2 = &_mp_arg(3) + 1,
|
|
r1 = *(ptr1++), i1 = *ptr1,
|
|
r2 = *(ptr2++), i2 = *ptr2;
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
const double denom = r2*r2 + i2*i2;
|
|
*(ptrd++) = (r1*r2 + i1*i2)/denom;
|
|
*ptrd = (r2*i1 - r1*i2)/denom;
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_complex_exp(_cimg_math_parser& mp) {
|
|
const double real = _mp_arg(2), imag = _mp_arg(3), exp_real = std::exp(real);
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
ptrd[0] = exp_real*std::cos(imag);
|
|
ptrd[1] = exp_real*std::sin(imag);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_complex_log(_cimg_math_parser& mp) {
|
|
const double real = _mp_arg(2), imag = _mp_arg(3);
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
ptrd[0] = 0.5*std::log(real*real + imag*imag);
|
|
ptrd[1] = std::atan2(imag,real);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_complex_mul(_cimg_math_parser& mp) {
|
|
const double
|
|
*ptr1 = &_mp_arg(2) + 1, *ptr2 = &_mp_arg(3) + 1,
|
|
r1 = *(ptr1++), i1 = *ptr1,
|
|
r2 = *(ptr2++), i2 = *ptr2;
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
*(ptrd++) = r1*r2 - i1*i2;
|
|
*(ptrd++) = r1*i2 + r2*i1;
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static void _mp_complex_pow(const double r1, const double i1,
|
|
const double r2, const double i2,
|
|
double *ptrd) {
|
|
double ro, io;
|
|
if (cimg::abs(i2)<1e-15) { // Exponent is real
|
|
if (cimg::abs(r1)<1e-15 && cimg::abs(i1)<1e-15) {
|
|
if (cimg::abs(r2)<1e-15) { ro = 1; io = 0; }
|
|
else ro = io = 0;
|
|
} else {
|
|
const double
|
|
mod1_2 = r1*r1 + i1*i1,
|
|
phi1 = std::atan2(i1,r1),
|
|
modo = std::pow(mod1_2,0.5*r2),
|
|
phio = r2*phi1;
|
|
ro = modo*std::cos(phio);
|
|
io = modo*std::sin(phio);
|
|
}
|
|
} else { // Exponent is complex
|
|
if (cimg::abs(r1)<1e-15 && cimg::abs(i1)<1e-15) ro = io = 0;
|
|
const double
|
|
mod1_2 = r1*r1 + i1*i1,
|
|
phi1 = std::atan2(i1,r1),
|
|
modo = std::pow(mod1_2,0.5*r2)*std::exp(-i2*phi1),
|
|
phio = r2*phi1 + 0.5*i2*std::log(mod1_2);
|
|
ro = modo*std::cos(phio);
|
|
io = modo*std::sin(phio);
|
|
}
|
|
*(ptrd++) = ro;
|
|
*ptrd = io;
|
|
}
|
|
|
|
static double mp_complex_pow_ss(_cimg_math_parser& mp) {
|
|
const double val1 = _mp_arg(2), val2 = _mp_arg(3);
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
_mp_complex_pow(val1,0,val2,0,ptrd);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_complex_pow_sv(_cimg_math_parser& mp) {
|
|
const double val1 = _mp_arg(2), *ptr2 = &_mp_arg(3) + 1;
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
_mp_complex_pow(val1,0,ptr2[0],ptr2[1],ptrd);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_complex_pow_vs(_cimg_math_parser& mp) {
|
|
const double *ptr1 = &_mp_arg(2) + 1, val2 = _mp_arg(3);
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
_mp_complex_pow(ptr1[0],ptr1[1],val2,0,ptrd);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_complex_pow_vv(_cimg_math_parser& mp) {
|
|
const double *ptr1 = &_mp_arg(2) + 1, *ptr2 = &_mp_arg(3) + 1;
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
_mp_complex_pow(ptr1[0],ptr1[1],ptr2[0],ptr2[1],ptrd);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_complex_cos(_cimg_math_parser& mp) {
|
|
const double real = _mp_arg(2), imag = _mp_arg(3);
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
ptrd[0] = std::cos(real)*std::cosh(imag);
|
|
ptrd[1] = -std::sin(real)*std::sinh(imag);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_complex_sin(_cimg_math_parser& mp) {
|
|
const double real = _mp_arg(2), imag = _mp_arg(3);
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
ptrd[0] = std::sin(real)*std::cosh(imag);
|
|
ptrd[1] = std::cos(real)*std::sinh(imag);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_complex_tan(_cimg_math_parser& mp) {
|
|
const double real = _mp_arg(2), imag = _mp_arg(3), denom = std::cos(2*real) + std::cosh(2*imag);
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
ptrd[0] = std::sin(2*real)/denom;
|
|
ptrd[1] = std::sinh(2*imag)/denom;
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_complex_cosh(_cimg_math_parser& mp) {
|
|
const double real = _mp_arg(2), imag = _mp_arg(3);
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
ptrd[0] = std::cosh(real)*std::cos(imag);
|
|
ptrd[1] = std::sinh(real)*std::sin(imag);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_complex_sinh(_cimg_math_parser& mp) {
|
|
const double real = _mp_arg(2), imag = _mp_arg(3);
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
ptrd[0] = std::sinh(real)*std::cos(imag);
|
|
ptrd[1] = std::cosh(real)*std::sin(imag);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_complex_tanh(_cimg_math_parser& mp) {
|
|
const double real = _mp_arg(2), imag = _mp_arg(3), denom = std::cosh(2*real) + std::cos(2*imag);
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
ptrd[0] = std::sinh(2*real)/denom;
|
|
ptrd[1] = std::sin(2*imag)/denom;
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_continue(_cimg_math_parser& mp) {
|
|
mp.break_type = 2;
|
|
mp.p_code = mp.p_break - 1;
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_convolve(_cimg_math_parser &mp) {
|
|
return _mp_correlate(mp,true);
|
|
}
|
|
|
|
static double mp_copy(_cimg_math_parser& mp) {
|
|
return _mp_arg(2);
|
|
}
|
|
|
|
static double mp_correlate(_cimg_math_parser &mp) {
|
|
return _mp_correlate(mp,false);
|
|
}
|
|
|
|
static double _mp_correlate(_cimg_math_parser &mp, bool is_convolve) {
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
const double *const ptrA = &_mp_arg(2) + 1, *const ptrM = &_mp_arg(7) + 1;
|
|
const unsigned int
|
|
wA = (unsigned int)mp.opcode[3],
|
|
hA = (unsigned int)mp.opcode[4],
|
|
dA = (unsigned int)mp.opcode[5],
|
|
sA = (unsigned int)mp.opcode[6],
|
|
wM = (unsigned int)mp.opcode[8],
|
|
hM = (unsigned int)mp.opcode[9],
|
|
dM = (unsigned int)mp.opcode[10],
|
|
sM = (unsigned int)mp.opcode[11],
|
|
boundary_conditions = (unsigned int)_mp_arg(12),
|
|
channel_mode = (unsigned int)mp.opcode[14];
|
|
const bool
|
|
is_normalized = (bool)_mp_arg(13),
|
|
interpolation_type = (bool)_mp_arg(30);
|
|
const int
|
|
xcenter = mp.opcode[15]!=~0U?(int)_mp_arg(15):(int)(~0U>>1),
|
|
ycenter = mp.opcode[16]!=~0U?(int)_mp_arg(16):(int)(~0U>>1),
|
|
zcenter = mp.opcode[17]!=~0U?(int)_mp_arg(17):(int)(~0U>>1),
|
|
xstart = (int)mp.opcode[18],
|
|
ystart = (int)mp.opcode[19],
|
|
zstart = (int)mp.opcode[20],
|
|
xend = (int)mp.opcode[21],
|
|
yend = (int)mp.opcode[22],
|
|
zend = (int)mp.opcode[23];
|
|
const float
|
|
xstride = (float)_mp_arg(24),
|
|
ystride = (float)_mp_arg(25),
|
|
zstride = (float)_mp_arg(26),
|
|
xdilation = (float)_mp_arg(27),
|
|
ydilation = (float)_mp_arg(28),
|
|
zdilation = (float)_mp_arg(29);
|
|
CImg<doubleT> res;
|
|
if (is_convolve) res = CImg<doubleT>(ptrA,wA,hA,dA,sA,true).
|
|
get_convolve(CImg<doubleT>(ptrM,wM,hM,dM,sM,true),
|
|
boundary_conditions,is_normalized,channel_mode,
|
|
xcenter,ycenter,zcenter,
|
|
xstart,ystart,zstart,
|
|
xend,yend,zend,
|
|
xstride,ystride,zstride,
|
|
xdilation,ydilation,zdilation,
|
|
interpolation_type);
|
|
else res = CImg<doubleT>(ptrA,wA,hA,dA,sA,true).
|
|
get_correlate(CImg<doubleT>(ptrM,wM,hM,dM,sM,true),
|
|
boundary_conditions,is_normalized,channel_mode,
|
|
xcenter,ycenter,zcenter,
|
|
xstart,ystart,zstart,
|
|
xend,yend,zend,
|
|
xstride,ystride,zstride,
|
|
xdilation,ydilation,zdilation,
|
|
interpolation_type);
|
|
CImg<doubleT>(ptrd,res._width,res._height,res._depth,res._spectrum,true) = res;
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_cos(_cimg_math_parser& mp) {
|
|
return std::cos(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_cosh(_cimg_math_parser& mp) {
|
|
return std::cosh(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_cov(_cimg_math_parser& mp) {
|
|
const unsigned int
|
|
_siz = (unsigned int)mp.opcode[4],
|
|
siz = std::max(_siz,1U),
|
|
off = _siz?1:0,
|
|
sizm1 = siz>1?siz - 1:1;
|
|
const CImg<doubleT>
|
|
A(&_mp_arg(2) + off,1,siz,1,1,true),
|
|
B(&_mp_arg(3) + off,1,siz,1,1,true);
|
|
const double
|
|
avgA = (unsigned int)mp.opcode[5]==~0U?A.mean():_mp_arg(5),
|
|
avgB = (unsigned int)mp.opcode[6]==~0U?B.mean():_mp_arg(6);
|
|
double res = 0;
|
|
cimg_forY(A,k) res+=(A[k] - avgA)*(B[k] - avgB);
|
|
return res/sizm1;
|
|
}
|
|
|
|
static double mp_critical(_cimg_math_parser& mp) {
|
|
const ulongT g_target = mp.opcode[1];
|
|
cimg_pragma_openmp(critical(mp_critical))
|
|
{
|
|
for (const CImg<ulongT> *const p_end = ++mp.p_code + mp.opcode[2];
|
|
mp.p_code<p_end; ++mp.p_code) { // Evaluate body
|
|
mp.opcode._data = mp.p_code->_data;
|
|
const ulongT target = mp.opcode[1];
|
|
mp.mem[target] = _cimg_mp_defunc(mp);
|
|
}
|
|
}
|
|
--mp.p_code;
|
|
return mp.mem[g_target];
|
|
}
|
|
|
|
static double mp_image_crop(_cimg_math_parser& mp) {
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
const int x = (int)_mp_arg(3), y = (int)_mp_arg(4), z = (int)_mp_arg(5), c = (int)_mp_arg(6);
|
|
const unsigned int
|
|
dx = (unsigned int)mp.opcode[7],
|
|
dy = (unsigned int)mp.opcode[8],
|
|
dz = (unsigned int)mp.opcode[9],
|
|
dc = (unsigned int)mp.opcode[10];
|
|
const unsigned int boundary_conditions = (unsigned int)_mp_arg(11);
|
|
unsigned int ind = (unsigned int)mp.opcode[2];
|
|
if (ind!=~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
const CImg<T> &img = ind==~0U?mp.imgin:mp.imglist[ind];
|
|
if (!img) std::memset(ptrd,0,dx*dy*dz*dc*sizeof(double));
|
|
else CImg<doubleT>(ptrd,dx,dy,dz,dc,true) = img.get_crop(x,y,z,c,
|
|
x + dx - 1,y + dy - 1,
|
|
z + dz - 1,c + dc - 1,
|
|
boundary_conditions);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_cross(_cimg_math_parser& mp) {
|
|
CImg<doubleT>
|
|
vout(&_mp_arg(1) + 1,1,3,1,1,true),
|
|
v1(&_mp_arg(2) + 1,1,3,1,1,true),
|
|
v2(&_mp_arg(3) + 1,1,3,1,1,true);
|
|
(vout = v1).cross(v2);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_cut(_cimg_math_parser& mp) {
|
|
double val = _mp_arg(2), cmin = _mp_arg(3), cmax = _mp_arg(4);
|
|
return val<cmin?cmin:val>cmax?cmax:val;
|
|
}
|
|
|
|
static double mp_da_back_or_pop(_cimg_math_parser& mp) {
|
|
const bool is_pop = (bool)mp.opcode[4];
|
|
const char *const s_op = is_pop?"da_pop":"da_back";
|
|
mp_check_list(mp,s_op);
|
|
const unsigned int
|
|
dim = (unsigned int)mp.opcode[2],
|
|
ind = (unsigned int)cimg::mod((int)_mp_arg(3),mp.imglist.width());
|
|
double *const ptrd = &_mp_arg(1) + (dim>1?1:0);
|
|
CImg<T> &img = mp.imglist[ind];
|
|
int siz = img?(int)img[img._height - 1]:0;
|
|
if (img && (img._width!=1 || img._depth!=1 || siz<0 || siz>img.height() - 1))
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function '%s()': "
|
|
"Specified image #%u of size (%d,%d,%d,%d) cannot be used as dynamic array%s.",
|
|
mp.imgout.pixel_type(),s_op,ind,
|
|
img.width(),img.height(),img.depth(),img.spectrum(),
|
|
img._width==1 && img._depth==1?"":" (contains invalid element counter)");
|
|
if (!siz)
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function '%s()': "
|
|
"Specified dynamic array #%u contains no elements.",
|
|
mp.imgout.pixel_type(),s_op,ind);
|
|
|
|
double ret = cimg::type<double>::nan();
|
|
if (dim<1) ret = img[siz - 1]; // Scalar element
|
|
else cimg_forC(img,c) ptrd[c] = img(0,siz - 1,0,c); // Vector element
|
|
if (is_pop) { // Remove element from array
|
|
--siz;
|
|
if (img.height()>32 && siz<2*img.height()/3) // Reduce size of dynamic array
|
|
img.resize(1,std::max(2*siz + 1,32),1,-100,0);
|
|
img[img._height - 1] = (T)siz;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static double mp_da_freeze(_cimg_math_parser& mp) {
|
|
const char *const s_op = "da_freeze";
|
|
mp_check_list(mp,s_op);
|
|
const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
CImg<T> &img = mp.imglist[ind];
|
|
int siz = img?(int)img[img._height - 1]:0;
|
|
if (img && (img._width!=1 || img._depth!=1 || siz<0 || siz>img.height() - 1))
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function '%s()': "
|
|
"Specified image #%u of size (%d,%d,%d,%d) cannot be used as dynamic array%s.",
|
|
mp.imgout.pixel_type(),s_op,ind,
|
|
img.width(),img.height(),img.depth(),img.spectrum(),
|
|
img._width==1 && img._depth==1?"":" (contains invalid element counter)");
|
|
if (siz) img.resize(1,siz,1,-100,0,0); else img.assign();
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_da_insert_or_push(_cimg_math_parser& mp) {
|
|
const char *const s_op = mp.opcode[3]==~0U?"da_push":"da_insert";
|
|
mp_check_list(mp,s_op);
|
|
const unsigned int
|
|
dim = (unsigned int)mp.opcode[4],
|
|
_dim = std::max(1U,dim),
|
|
nb_elts = (unsigned int)mp.opcode[5] - 6,
|
|
ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
CImg<T> &img = mp.imglist[ind];
|
|
const int
|
|
siz = img?(int)img[img._height - 1]:0,
|
|
pos0 = mp.opcode[3]==~0U?siz:(int)_mp_arg(3),
|
|
pos = pos0<0?pos0 + siz:pos0;
|
|
|
|
if (img && _dim!=img._spectrum)
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function '%s()': "
|
|
"Element to insert has invalid size %u (should be %u).",
|
|
mp.imgout.pixel_type(),s_op,_dim,img._spectrum);
|
|
if (img && (img._width!=1 || img._depth!=1 || siz<0 || siz>img.height() - 1))
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function '%s()': "
|
|
"Specified image #%u of size (%d,%d,%d,%d) cannot be used as dynamic array%s.",
|
|
mp.imgout.pixel_type(),s_op,ind,
|
|
img.width(),img.height(),img.depth(),img.spectrum(),
|
|
img._width==1 && img._depth==1?"":" (contains invalid element counter)");
|
|
if (pos<0 || pos>siz)
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function '%s()': "
|
|
"Invalid position %d (not in range -%d...%d).",
|
|
mp.imgout.pixel_type(),s_op,pos0,siz,siz);
|
|
|
|
if (siz + nb_elts + 1>=img._height) // Increase size of dynamic array, if necessary
|
|
img.resize(1,2*siz + nb_elts + 1,1,_dim,0);
|
|
|
|
if (pos!=siz) // Move existing data in dynamic array
|
|
cimg_forC(img,c) std::memmove(img.data(0,pos + nb_elts,0,c),img.data(0,pos,0,c),(siz - pos)*sizeof(T));
|
|
|
|
if (!dim) // Scalar or vector1() elements
|
|
for (unsigned int k = 0; k<nb_elts; ++k) img[pos + k] = (T)_mp_arg(6 + k);
|
|
else // vectorN() elements, with N>1
|
|
for (unsigned int k = 0; k<nb_elts; ++k) {
|
|
double *ptrs = &_mp_arg(6 + k) + 1;
|
|
cimg_forC(img,c) img(0,pos + k,0,c) = ptrs[c];
|
|
}
|
|
img[img._height - 1] = (T)(siz + nb_elts);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_da_remove(_cimg_math_parser& mp) {
|
|
mp_check_list(mp,"da_remove");
|
|
const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
CImg<T> &img = mp.imglist[ind];
|
|
int siz = img?(int)img[img._height - 1]:0;
|
|
if (img && (img._width!=1 || img._depth!=1 || siz<0 || siz>img.height() - 1))
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'da_remove()': "
|
|
"Specified image #%u of size (%d,%d,%d,%d) cannot be used as dynamic array%s.",
|
|
mp.imgout.pixel_type(),ind,
|
|
img.width(),img.height(),img.depth(),img.spectrum(),
|
|
img._width==1 && img._depth==1?"":" (contains invalid element counter)");
|
|
if (!siz)
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'da_remove()': "
|
|
"Dynamic array is empty.",
|
|
mp.imgout.pixel_type());
|
|
int
|
|
start0 = mp.opcode[3]==~0U?siz - 1:_mp_arg(3),
|
|
end0 = mp.opcode[4]==~0U?start0:_mp_arg(4),
|
|
start = start0<0?start0 + siz:start0,
|
|
end = end0<0?end0 + siz:end0;
|
|
if (start<0 || start>=siz || end<0 || end>=siz || start>end)
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'da_remove()': "
|
|
"Invalid starting (%d) and ending (%d) positions "
|
|
"(not ordered, in range -%d...%d).",
|
|
mp.imgout.pixel_type(),start0,end0,siz,siz - 1);
|
|
if (end<siz - 1) // Move remaining data in dynamic array
|
|
cimg_forC(img,c) std::memmove(img.data(0,start,0,c),img.data(0,end + 1,0,c),(siz - 1 - end)*sizeof(T));
|
|
siz-=end - start + 1;
|
|
if (img.height()>32 && siz<2*img.height()/3) // Reduce size of dynamic array
|
|
img.resize(1,std::max(2*siz + 1,32),1,-100,0);
|
|
img[img._height - 1] = (T)siz;
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_da_size(_cimg_math_parser& mp) {
|
|
mp_check_list(mp,"da_size");
|
|
const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
CImg<T> &img = mp.imglist[ind];
|
|
const int siz = img?(int)img[img._height - 1]:0;
|
|
if (img && (img._width!=1 || img._depth!=1 || siz<0 || siz>img.height() - 1))
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'da_size()': "
|
|
"Specified image #%u of size (%d,%d,%d,%d) cannot be used as dynamic array%s.",
|
|
mp.imgout.pixel_type(),ind,
|
|
img.width(),img.height(),img.depth(),img.spectrum(),
|
|
img._width==1 && img._depth==1?"":" (contains invalid element counter)");
|
|
return siz;
|
|
}
|
|
|
|
static double mp_date(_cimg_math_parser& mp) {
|
|
const unsigned int
|
|
siz_out = (unsigned int)mp.opcode[2],
|
|
siz_arg1 = (unsigned int)mp.opcode[4],
|
|
siz_arg2 = (unsigned int)mp.opcode[6];
|
|
double *ptr_out = &_mp_arg(1) + (siz_out?1:0);
|
|
const double
|
|
*ptr_arg1 = siz_arg1==~0U?0:&_mp_arg(3) + (siz_arg1?1:0),
|
|
*ptr_arg2 = siz_arg2==~0U?0:&_mp_arg(5) + 1;
|
|
|
|
if (!ptr_arg2) { // No filename specified
|
|
if (!siz_arg1) return cimg::date((unsigned int)*ptr_arg1);
|
|
if (siz_arg1==~0U) for (unsigned int k = 0; k<siz_out; ++k) ptr_out[k] = k;
|
|
else for (unsigned int k = 0; k<siz_out; ++k) ptr_out[k] = ptr_arg1[k];
|
|
cimg::date(ptr_out,siz_out);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
// Filename specified.
|
|
CImg<charT> ss(siz_arg2 + 1);
|
|
cimg_forX(ss,i) ss[i] = (char)ptr_arg2[i];
|
|
ss.back() = 0;
|
|
if (!siz_arg1) return cimg::fdate(ss,(unsigned int)*ptr_arg1);
|
|
for (unsigned int k = 0; k<siz_out; ++k) ptr_out[k] = ptr_arg1[k];
|
|
cimg::fdate(ss,ptr_out,siz_out);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_debug(_cimg_math_parser& mp) {
|
|
CImg<charT> expr(mp.opcode[2] - 4);
|
|
{
|
|
const ulongT *ptrs = mp.opcode._data + 4;
|
|
cimg_for(expr,ptrd,char) *ptrd = (char)*(ptrs++);
|
|
}
|
|
cimg::strellipsize(expr);
|
|
const ulongT g_target = mp.opcode[1];
|
|
|
|
#if cimg_use_openmp==0
|
|
const unsigned int n_thread = 0;
|
|
#else
|
|
const unsigned int n_thread = omp_get_thread_num();
|
|
#endif
|
|
cimg_pragma_openmp(critical(mp_debug))
|
|
{
|
|
std::fprintf(cimg::output(),
|
|
"\n[" cimg_appname "_math_parser] %p[thread #%u]:%*c"
|
|
"Start debugging '%s', code length: %u -> mem[%u] (memsize: %u)",
|
|
(void*)&mp,n_thread,mp.debug_indent,' ',
|
|
expr._data,(unsigned int)mp.opcode[3],(unsigned int)g_target,mp.mem._width);
|
|
std::fflush(cimg::output());
|
|
mp.debug_indent+=3;
|
|
}
|
|
const CImg<ulongT> *const p_end = ++mp.p_code + mp.opcode[3];
|
|
CImg<ulongT> _op;
|
|
for ( ; mp.p_code<p_end; ++mp.p_code) {
|
|
const CImg<ulongT> &op = *mp.p_code;
|
|
mp.opcode._data = op._data;
|
|
|
|
_op.assign(1,op._height - 1);
|
|
const ulongT *ptrs = op._data + 1;
|
|
for (ulongT *ptrd = _op._data, *const ptrde = _op._data + _op._height; ptrd<ptrde; ++ptrd)
|
|
*ptrd = *(ptrs++);
|
|
|
|
const ulongT target = mp.opcode[1];
|
|
mp.mem[target] = _cimg_mp_defunc(mp);
|
|
cimg_pragma_openmp(critical(mp_debug))
|
|
{
|
|
std::fprintf(cimg::output(),
|
|
"\n[" cimg_appname "_math_parser] %p[thread #%u]:%*c"
|
|
"Opcode %p = [ %p,%s ] -> mem[%u] = %.17g",
|
|
(void*)&mp,n_thread,mp.debug_indent,' ',
|
|
(void*)mp.opcode._data,(void*)*mp.opcode,_op.value_string().data(),
|
|
(unsigned int)target,mp.mem[target]);
|
|
std::fflush(cimg::output());
|
|
}
|
|
}
|
|
cimg_pragma_openmp(critical(mp_debug))
|
|
{
|
|
mp.debug_indent-=3;
|
|
std::fprintf(cimg::output(),
|
|
"\n[" cimg_appname "_math_parser] %p[thread #%u]:%*c"
|
|
"End debugging '%s' -> mem[%u] = %.17g (memsize: %u)",
|
|
(void*)&mp,n_thread,mp.debug_indent,' ',
|
|
expr._data,(unsigned int)g_target,mp.mem[g_target],mp.mem._width);
|
|
std::fflush(cimg::output());
|
|
}
|
|
--mp.p_code;
|
|
return mp.mem[g_target];
|
|
}
|
|
|
|
static double mp_decrement(_cimg_math_parser& mp) {
|
|
return _mp_arg(2) - 1;
|
|
}
|
|
|
|
static double mp_deg2rad(_cimg_math_parser& mp) {
|
|
return _mp_arg(2)*cimg::PI/180;
|
|
}
|
|
|
|
static double mp_det(_cimg_math_parser& mp) {
|
|
const double *ptrs = &_mp_arg(2) + 1;
|
|
const unsigned int k = (unsigned int)mp.opcode[3];
|
|
return CImg<doubleT>(ptrs,k,k,1,1,true).det();
|
|
}
|
|
|
|
static double mp_diag(_cimg_math_parser& mp) {
|
|
const unsigned int i_end = (unsigned int)mp.opcode[2], siz = mp.opcode[2] - 3;
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
std::memset(ptrd,0,siz*siz*sizeof(double));
|
|
for (unsigned int i = 3; i<i_end; ++i) { *(ptrd++) = _mp_arg(i); ptrd+=siz; }
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_display_memory(_cimg_math_parser& mp) {
|
|
cimg::unused(mp);
|
|
std::fputc('\n',cimg::output());
|
|
CImg<charT> title(128);
|
|
cimg_snprintf(title,title._width,"%s (%u)","[" cimg_appname "_math_parser] Memory snapshot",mp.mem._width);
|
|
mp.mem.display(title);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_display(_cimg_math_parser& mp) {
|
|
const unsigned int
|
|
_siz = (unsigned int)mp.opcode[3],
|
|
siz = _siz?_siz:1;
|
|
const double *const ptr = &_mp_arg(1) + (_siz?1:0);
|
|
const int
|
|
w = (int)_mp_arg(4),
|
|
h = (int)_mp_arg(5),
|
|
d = (int)_mp_arg(6),
|
|
s = (int)_mp_arg(7);
|
|
CImg<doubleT> img;
|
|
if (w>0 && h>0 && d>0 && s>0) {
|
|
if ((unsigned int)w*h*d*s<=siz) img.assign(ptr,w,h,d,s,true);
|
|
else img.assign(ptr,siz).resize(w,h,d,s,-1);
|
|
} else img.assign(ptr,1,siz,1,1,true);
|
|
|
|
CImg<charT> expr(mp.opcode[2] - 8);
|
|
const ulongT *ptrs = mp.opcode._data + 8;
|
|
cimg_for(expr,ptrd,char) *ptrd = (char)*(ptrs++);
|
|
((CImg<charT>::string("[" cimg_appname "_math_parser] ",false,true),expr)>'x').move_to(expr);
|
|
cimg::strellipsize(expr);
|
|
std::fputc('\n',cimg::output());
|
|
img.display(expr._data);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_div(_cimg_math_parser& mp) {
|
|
return _mp_arg(2)/_mp_arg(3);
|
|
}
|
|
|
|
static double mp_dot(_cimg_math_parser& mp) {
|
|
const unsigned int siz = (unsigned int)mp.opcode[4];
|
|
return CImg<doubleT>(&_mp_arg(2) + 1,1,siz,1,1,true).
|
|
dot(CImg<doubleT>(&_mp_arg(3) + 1,1,siz,1,1,true));
|
|
}
|
|
|
|
static double mp_do(_cimg_math_parser& mp) {
|
|
const ulongT
|
|
mem_body = mp.opcode[1],
|
|
mem_cond = mp.opcode[2];
|
|
const CImg<ulongT>
|
|
*const p_body = ++mp.p_code,
|
|
*const p_cond = p_body + mp.opcode[3],
|
|
*const p_end = p_cond + mp.opcode[4];
|
|
const unsigned int vsiz = (unsigned int)mp.opcode[5];
|
|
if (mp.opcode[6]) { // Set default value for result and condition if necessary
|
|
if (vsiz) CImg<doubleT>(&mp.mem[mem_body] + 1,vsiz,1,1,1,true).fill(cimg::type<double>::nan());
|
|
else mp.mem[mem_body] = cimg::type<double>::nan();
|
|
}
|
|
if (mp.opcode[7]) mp.mem[mem_cond] = 0;
|
|
|
|
const unsigned int _break_type = mp.break_type;
|
|
mp.break_type = 0;
|
|
do {
|
|
for (mp.p_code = p_body; mp.p_code<p_cond; ++mp.p_code) { // Evaluate body
|
|
mp.opcode._data = mp.p_code->_data;
|
|
const ulongT target = mp.opcode[1];
|
|
mp.mem[target] = _cimg_mp_defunc(mp);
|
|
}
|
|
if (mp.break_type==1) break; else if (mp.break_type==2) mp.break_type = 0;
|
|
for (mp.p_code = p_cond; mp.p_code<p_end; ++mp.p_code) { // Evaluate condition
|
|
mp.opcode._data = mp.p_code->_data;
|
|
const ulongT target = mp.opcode[1];
|
|
mp.mem[target] = _cimg_mp_defunc(mp);
|
|
}
|
|
if (mp.break_type==1) break; else if (mp.break_type==2) mp.break_type = 0;
|
|
} while (mp.mem[mem_cond]);
|
|
mp.break_type = _break_type;
|
|
mp.p_code = p_end - 1;
|
|
return mp.mem[mem_body];
|
|
}
|
|
|
|
static double mp_echo(_cimg_math_parser& mp) {
|
|
const unsigned int nb_args = (unsigned int)(mp.opcode[2] - 3)/2;
|
|
if (!nb_args) { std::fputc('\n',cimg::output()); return cimg::type<double>::nan(); } // No arguments
|
|
CImgList<charT> _str;
|
|
CImg<charT> it;
|
|
for (unsigned int n = 0; n<nb_args; ++n) {
|
|
const unsigned int siz = (unsigned int)mp.opcode[4 + 2*n];
|
|
if (siz) { // Vector argument -> string
|
|
const double *ptr = &_mp_arg(3 + 2*n) + 1;
|
|
unsigned int l = 0;
|
|
while (l<siz && ptr[l]) ++l;
|
|
CImg<doubleT>(ptr,l,1,1,1,true).move_to(_str);
|
|
} else { // Scalar argument -> number
|
|
it.assign(24);
|
|
cimg_snprintf(it,it._width,"%.17g",_mp_arg(3 + 2*n));
|
|
CImg<charT>::string(it,false,true).move_to(_str);
|
|
}
|
|
}
|
|
CImg(1,1,1,1,0).move_to(_str);
|
|
const CImg<charT> str = _str>'x';
|
|
std::fprintf(cimg::output(),"\n%s",str._data);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_ellipse(_cimg_math_parser& mp) {
|
|
mp_check_list(mp,"ellipse");
|
|
const unsigned int i_end = (unsigned int)mp.opcode[2];
|
|
unsigned int ind = (unsigned int)mp.opcode[3];
|
|
if (ind!=~0U) {
|
|
if (!mp.imglist.width()) return cimg::type<double>::nan();
|
|
ind = (unsigned int)cimg::mod((int)_mp_arg(3),mp.imglist.width());
|
|
}
|
|
CImg<T> &img = ind==~0U?mp.imgout:mp.imglist[ind];
|
|
CImg<T> color(img._spectrum,1,1,1,0);
|
|
bool is_invalid_arguments = false, is_outlined = false;
|
|
float r1 = 0, r2 = 0, angle = 0, opacity = 1;
|
|
unsigned int i = 4, pattern = ~0U;
|
|
int x0 = 0, y0 = 0;
|
|
if (i>=i_end) is_invalid_arguments = true;
|
|
else {
|
|
x0 = (int)cimg::round(_mp_arg(i++));
|
|
if (i>=i_end) is_invalid_arguments = true;
|
|
else {
|
|
y0 = (int)cimg::round(_mp_arg(i++));
|
|
if (i>=i_end) is_invalid_arguments = true;
|
|
else {
|
|
r1 = (float)_mp_arg(i++);
|
|
if (i>=i_end) r2 = r1;
|
|
else {
|
|
r2 = (float)_mp_arg(i++);
|
|
if (i<i_end) {
|
|
angle = (float)(_mp_arg(i++)*180/cimg::PI);
|
|
if (i<i_end) {
|
|
opacity = (float)_mp_arg(i++);
|
|
if (r1<0 && r2<0) {
|
|
pattern = (unsigned int)_mp_arg(i++);
|
|
is_outlined = true;
|
|
r1 = -r1; r2 = -r2;
|
|
}
|
|
if (i<i_end) {
|
|
cimg_forX(color,k) if (i<i_end) color[k] = (T)_mp_arg(i++);
|
|
else { color.resize(k,1,1,1,-1); break; }
|
|
color.resize(img._spectrum,1,1,1,0,2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (!is_invalid_arguments) {
|
|
if (is_outlined) img.draw_ellipse(x0,y0,r1,r2,angle,color._data,opacity,pattern);
|
|
else img.draw_ellipse(x0,y0,r1,r2,angle,color._data,opacity);
|
|
} else {
|
|
CImg<doubleT> args(i_end - 4);
|
|
cimg_forX(args,k) args[k] = _mp_arg(4 + k);
|
|
if (ind==~0U)
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'ellipse()': "
|
|
"Invalid arguments '%s'. ",
|
|
mp.imgin.pixel_type(),args.value_string()._data);
|
|
else
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'ellipse()': "
|
|
"Invalid arguments '#%u%s%s'. ",
|
|
mp.imgin.pixel_type(),ind,args._width?",":"",args.value_string()._data);
|
|
}
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_eq(_cimg_math_parser& mp) {
|
|
return (double)(_mp_arg(2)==_mp_arg(3));
|
|
}
|
|
|
|
static double mp_erf(_cimg_math_parser& mp) {
|
|
return std::erf(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_erfinv(_cimg_math_parser& mp) {
|
|
return cimg::erfinv(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_exp(_cimg_math_parser& mp) {
|
|
return std::exp(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_expr(_cimg_math_parser& mp) {
|
|
const unsigned int
|
|
sizs = (unsigned int)mp.opcode[3],
|
|
w = (unsigned int)mp.opcode[4],
|
|
h = (unsigned int)mp.opcode[5],
|
|
d = (unsigned int)mp.opcode[6],
|
|
s = (unsigned int)mp.opcode[7],
|
|
sizd = w*h*d*s;
|
|
const double *ptrs = &_mp_arg(2) + 1;
|
|
double *ptrd = &_mp_arg(1);
|
|
CImg<charT> ss(sizs + 1);
|
|
cimg_for_inX(ss,0,ss.width() - 1,i) ss[i] = (char)ptrs[i];
|
|
ss.back() = 0;
|
|
if (!sizd) return CImg<T>(w,h,d,s,0).eval(ss,0,0,0,0,&mp.imglist); // Scalar result
|
|
CImg<doubleT>(++ptrd,w,h,d,s,true) = CImg<T>(w,h,d,s,0).fill(ss,true,true,&mp.imglist);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_eye(_cimg_math_parser& mp) {
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
const unsigned int k = (unsigned int)mp.opcode[2];
|
|
CImg<doubleT>(ptrd,k,k,1,1,true).identity_matrix();
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_f2ui(_cimg_math_parser& mp) {
|
|
return (double)cimg::float2uint((float)_mp_arg(2));
|
|
}
|
|
|
|
static double mp_factorial(_cimg_math_parser& mp) {
|
|
return cimg::factorial((int)_mp_arg(2));
|
|
}
|
|
|
|
static double mp_fibonacci(_cimg_math_parser& mp) {
|
|
return cimg::fibonacci((int)_mp_arg(2));
|
|
}
|
|
|
|
static double mp_fill(_cimg_math_parser& mp) {
|
|
unsigned int siz = (unsigned int)mp.opcode[2];
|
|
double
|
|
*ptrd = &_mp_arg(1),
|
|
*const ptrc = mp.opcode[3]!=~0U?&_mp_arg(3):0,
|
|
*const ptrs = &_mp_arg(4);
|
|
if (siz) ++ptrd; else ++siz; // Fill vector-valued slot
|
|
const CImg<ulongT>
|
|
*const p_body = ++mp.p_code,
|
|
*const p_end = p_body + mp.opcode[5];
|
|
const unsigned int _break_type = mp.break_type;
|
|
mp.break_type = 0;
|
|
|
|
unsigned int it = 0;
|
|
if (ptrc) { // Version with loop variable (3 arguments)
|
|
while (it<siz) {
|
|
*ptrc = (double)it;
|
|
for (mp.p_code = p_body; mp.p_code<p_end; ++mp.p_code) {
|
|
mp.opcode._data = mp.p_code->_data;
|
|
const ulongT target = mp.opcode[1];
|
|
mp.mem[target] = _cimg_mp_defunc(mp);
|
|
}
|
|
if (mp.break_type==1) break; else if (mp.break_type==2) mp.break_type = 0;
|
|
else ptrd[it] = *ptrs;
|
|
++it;
|
|
}
|
|
*ptrc = (double)it;
|
|
} else // Version without loop variable (2 arguments)
|
|
while (it<siz) {
|
|
for (mp.p_code = p_body; mp.p_code<p_end; ++mp.p_code) {
|
|
mp.opcode._data = mp.p_code->_data;
|
|
const ulongT target = mp.opcode[1];
|
|
mp.mem[target] = _cimg_mp_defunc(mp);
|
|
}
|
|
if (mp.break_type==1) break; else if (mp.break_type==2) mp.break_type = 0;
|
|
else ptrd[it] = *ptrs;
|
|
++it;
|
|
}
|
|
|
|
mp.break_type = _break_type;
|
|
mp.p_code = p_end - 1;
|
|
return *ptrd;
|
|
}
|
|
|
|
static double mp_find(_cimg_math_parser& mp) {
|
|
const int _step = (int)_mp_arg(6), step = _step?_step:-1;
|
|
const ulongT siz = (ulongT)mp.opcode[3];
|
|
longT ind = (longT)(mp.opcode[5]!=_cimg_mp_slot_nan?_mp_arg(5):step>0?0:siz - 1);
|
|
if (ind<0 || ind>=(longT)siz) return -1.;
|
|
const double
|
|
*const ptrb = &_mp_arg(2) + 1,
|
|
*const ptre = ptrb + siz,
|
|
val = _mp_arg(4),
|
|
*ptr = ptrb + ind;
|
|
|
|
// Forward search
|
|
if (step>0) {
|
|
while (ptr<ptre && *ptr!=val) ptr+=step;
|
|
return ptr>=ptre?-1.:(double)(ptr - ptrb);
|
|
}
|
|
|
|
// Backward search.
|
|
while (ptr>=ptrb && *ptr!=val) ptr+=step;
|
|
return ptr<ptrb?-1.:(double)(ptr - ptrb);
|
|
}
|
|
|
|
static double mp_find_seq(_cimg_math_parser& mp) {
|
|
const int _step = (int)_mp_arg(7), step = _step?_step:-1;
|
|
const ulongT
|
|
siz1 = (ulongT)mp.opcode[3],
|
|
siz2 = (ulongT)mp.opcode[5];
|
|
longT ind = (longT)(mp.opcode[6]!=_cimg_mp_slot_nan?_mp_arg(6):step>0?0:siz1 - 1);
|
|
if (ind<0 || ind>=(longT)siz1) return -1.;
|
|
const double
|
|
*const ptr1b = &_mp_arg(2) + 1,
|
|
*const ptr1e = ptr1b + siz1,
|
|
*const ptr2b = &_mp_arg(4) + 1,
|
|
*const ptr2e = ptr2b + siz2,
|
|
*ptr1 = ptr1b + ind,
|
|
*p1 = 0,
|
|
*p2 = 0;
|
|
|
|
// Forward search.
|
|
if (step>0) {
|
|
do {
|
|
while (ptr1<ptr1e && *ptr1!=*ptr2b) ptr1+=step;
|
|
if (ptr1>=ptr1e) return -1.;
|
|
p1 = ptr1 + 1;
|
|
p2 = ptr2b + 1;
|
|
while (p1<ptr1e && p2<ptr2e && *p1==*p2) { ++p1; ++p2; }
|
|
} while (p2<ptr2e && (ptr1+=step)<ptr1e);
|
|
return p2<ptr2e?-1.:(double)(ptr1 - ptr1b);
|
|
}
|
|
|
|
// Backward search.
|
|
do {
|
|
while (ptr1>=ptr1b && *ptr1!=*ptr2b) ptr1+=step;
|
|
if (ptr1<ptr1b) return -1.;
|
|
p1 = ptr1 + 1;
|
|
p2 = ptr2b + 1;
|
|
while (p1<ptr1e && p2<ptr2e && *p1==*p2) { ++p1; ++p2; }
|
|
} while (p2<ptr2e && (ptr1+=step)>=ptr1b);
|
|
return p2<ptr2e?-1.:(double)(ptr1 - ptr1b);
|
|
}
|
|
|
|
static double mp_floor(_cimg_math_parser& mp) {
|
|
return std::floor(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_for(_cimg_math_parser& mp) {
|
|
const ulongT
|
|
mem_body = mp.opcode[1],
|
|
mem_cond = mp.opcode[3];
|
|
const CImg<ulongT>
|
|
*const p_init = ++mp.p_code,
|
|
*const p_cond = p_init + mp.opcode[4],
|
|
*const p_body = p_cond + mp.opcode[5],
|
|
*const p_post = p_body + mp.opcode[6],
|
|
*const p_end = p_post + mp.opcode[7];
|
|
const unsigned int vsiz = (unsigned int)mp.opcode[2];
|
|
bool is_cond = false;
|
|
if (mp.opcode[8]) { // Set default value for result and condition if necessary
|
|
if (vsiz) CImg<doubleT>(&mp.mem[mem_body] + 1,vsiz,1,1,1,true).fill(cimg::type<double>::nan());
|
|
else mp.mem[mem_body] = cimg::type<double>::nan();
|
|
}
|
|
if (mp.opcode[9]) mp.mem[mem_cond] = 0;
|
|
const unsigned int _break_type = mp.break_type;
|
|
mp.break_type = 0;
|
|
|
|
for (mp.p_code = p_init; mp.p_code<p_cond; ++mp.p_code) { // Evaluate init
|
|
mp.opcode._data = mp.p_code->_data;
|
|
const ulongT target = mp.opcode[1];
|
|
mp.mem[target] = _cimg_mp_defunc(mp);
|
|
}
|
|
|
|
if (!mp.break_type) do {
|
|
for (mp.p_code = p_cond; mp.p_code<p_body; ++mp.p_code) { // Evaluate condition
|
|
mp.opcode._data = mp.p_code->_data;
|
|
const ulongT target = mp.opcode[1];
|
|
mp.mem[target] = _cimg_mp_defunc(mp);
|
|
}
|
|
if (mp.break_type==1) break;
|
|
|
|
is_cond = (bool)mp.mem[mem_cond];
|
|
if (is_cond && !mp.break_type) {
|
|
for (mp.p_code = p_body; mp.p_code<p_post; ++mp.p_code) { // Evaluate body
|
|
mp.opcode._data = mp.p_code->_data;
|
|
const ulongT target = mp.opcode[1];
|
|
mp.mem[target] = _cimg_mp_defunc(mp);
|
|
}
|
|
if (mp.break_type==1) break; else if (mp.break_type==2) mp.break_type = 0;
|
|
|
|
for (mp.p_code = p_post; mp.p_code<p_end; ++mp.p_code) { // Evaluate post-code
|
|
mp.opcode._data = mp.p_code->_data;
|
|
const ulongT target = mp.opcode[1];
|
|
mp.mem[target] = _cimg_mp_defunc(mp);
|
|
}
|
|
if (mp.break_type==1) break; else if (mp.break_type==2) mp.break_type = 0;
|
|
}
|
|
} while (is_cond);
|
|
|
|
mp.break_type = _break_type;
|
|
mp.p_code = p_end - 1;
|
|
return mp.mem[mem_body];
|
|
}
|
|
|
|
static double mp_fsize(_cimg_math_parser& mp) {
|
|
const double *ptrs = &_mp_arg(2) + 1;
|
|
const ulongT siz = (ulongT)mp.opcode[3];
|
|
CImg<charT> ss(siz + 1);
|
|
cimg_forX(ss,i) ss[i] = (char)ptrs[i];
|
|
ss.back() = 0;
|
|
return (double)cimg::fsize(ss);
|
|
}
|
|
|
|
static double mp_g(_cimg_math_parser& mp) {
|
|
cimg::unused(mp);
|
|
return cimg::grand(&mp.rng);
|
|
}
|
|
|
|
static double mp_gauss(_cimg_math_parser& mp) {
|
|
const double x = _mp_arg(2), s = _mp_arg(3);
|
|
return std::exp(-x*x/(2*s*s))/(_mp_arg(4)?std::sqrt(2*s*s*cimg::PI):1);
|
|
}
|
|
|
|
#ifdef cimg_mp_func_get
|
|
static double mp_get(_cimg_math_parser& mp) {
|
|
const double *ptrs = &_mp_arg(2) + 1;
|
|
double *ptrd = &_mp_arg(1);
|
|
const unsigned int
|
|
sizs = (unsigned int)mp.opcode[3],
|
|
sizd = (unsigned int)mp.opcode[4];
|
|
const bool to_string = (bool)mp.opcode[5];
|
|
CImg<charT> ss(sizs + 1);
|
|
cimg_for_inX(ss,0,ss.width() - 1,i) ss[i] = (char)ptrs[i];
|
|
ss.back() = 0;
|
|
if (sizd) cimg_mp_func_get(ptrd + 1,sizd,to_string,ss._data);
|
|
else cimg_mp_func_get(ptrd,0,to_string,ss._data);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
#endif
|
|
|
|
static double mp_gcd(_cimg_math_parser& mp) {
|
|
return cimg::gcd((long)_mp_arg(2),(long)_mp_arg(3));
|
|
}
|
|
|
|
#ifdef cimg_mp_func_name
|
|
static double mp_name(_cimg_math_parser& mp) {
|
|
double *const ptr = &_mp_arg(1) + 1;
|
|
const unsigned int siz = (unsigned int)mp.opcode[3];
|
|
unsigned int ind = (unsigned int)mp.opcode[2];
|
|
if (ind==~0U) std::memset(ptr,0,siz*sizeof(double));
|
|
else {
|
|
ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
cimg_mp_func_name(ind,ptr,siz);
|
|
}
|
|
return cimg::type<double>::nan();
|
|
}
|
|
#endif
|
|
|
|
static double mp_gt(_cimg_math_parser& mp) {
|
|
return (double)(_mp_arg(2)>_mp_arg(3));
|
|
}
|
|
|
|
static double mp_gte(_cimg_math_parser& mp) {
|
|
return (double)(_mp_arg(2)>=_mp_arg(3));
|
|
}
|
|
|
|
static double mp_i(_cimg_math_parser& mp) {
|
|
return (double)mp.imgin.atXYZC((int)mp.mem[_cimg_mp_slot_x],(int)mp.mem[_cimg_mp_slot_y],
|
|
(int)mp.mem[_cimg_mp_slot_z],(int)mp.mem[_cimg_mp_slot_c],(T)0);
|
|
}
|
|
|
|
static double mp_if(_cimg_math_parser& mp) {
|
|
const bool is_cond = (bool)_mp_arg(2);
|
|
const ulongT
|
|
mem_left = mp.opcode[3],
|
|
mem_right = mp.opcode[4];
|
|
const CImg<ulongT>
|
|
*const p_right = ++mp.p_code + mp.opcode[5],
|
|
*const p_end = p_right + mp.opcode[6];
|
|
const unsigned int vtarget = (unsigned int)mp.opcode[1], vsiz = (unsigned int)mp.opcode[7];
|
|
if (is_cond) for ( ; mp.p_code<p_right; ++mp.p_code) {
|
|
mp.opcode._data = mp.p_code->_data;
|
|
const ulongT target = mp.opcode[1];
|
|
mp.mem[target] = _cimg_mp_defunc(mp);
|
|
}
|
|
else for (mp.p_code = p_right; mp.p_code<p_end; ++mp.p_code) {
|
|
mp.opcode._data = mp.p_code->_data;
|
|
const ulongT target = mp.opcode[1];
|
|
mp.mem[target] = _cimg_mp_defunc(mp);
|
|
}
|
|
if (mp.p_code==mp.p_break) --mp.p_code;
|
|
else mp.p_code = p_end - 1;
|
|
if (vsiz) std::memcpy(&mp.mem[vtarget] + 1,&mp.mem[is_cond?mem_left:mem_right] + 1,sizeof(double)*vsiz);
|
|
return mp.mem[is_cond?mem_left:mem_right];
|
|
}
|
|
|
|
static double mp_image_d(_cimg_math_parser& mp) {
|
|
unsigned int ind = (unsigned int)mp.opcode[2];
|
|
if (ind!=~0U) {
|
|
if (!mp.imglist.width()) return cimg::type<double>::nan();
|
|
ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
}
|
|
const CImg<T> &img = ind==~0U?mp.imgout:mp.imglist[ind];
|
|
return (double)img.depth();
|
|
}
|
|
|
|
static double mp_image_display(_cimg_math_parser& mp) {
|
|
mp_check_list(mp,"display");
|
|
const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
cimg::mutex(6);
|
|
CImg<T> &img = mp.imglist[ind];
|
|
CImg<charT> title(256);
|
|
std::fputc('\n',cimg::output());
|
|
cimg_snprintf(title,title._width,"[ Image #%u ]",ind);
|
|
img.display(title);
|
|
cimg::mutex(6,0);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_image_draw(_cimg_math_parser& mp) {
|
|
const int x = (int)_mp_arg(4), y = (int)_mp_arg(5), z = (int)_mp_arg(6), c = (int)_mp_arg(7);
|
|
unsigned int ind = (unsigned int)mp.opcode[3];
|
|
if (ind!=~0U) {
|
|
if (!mp.imglist.width()) return cimg::type<double>::nan();
|
|
ind = (unsigned int)cimg::mod((int)_mp_arg(3),mp.imglist.width());
|
|
}
|
|
CImg<T> &img = ind==~0U?mp.imgout:mp.imglist[ind];
|
|
unsigned int
|
|
dx = (unsigned int)mp.opcode[8],
|
|
dy = (unsigned int)mp.opcode[9],
|
|
dz = (unsigned int)mp.opcode[10],
|
|
dc = (unsigned int)mp.opcode[11];
|
|
dx = dx==~0U?img._width:(unsigned int)_mp_arg(8);
|
|
dy = dy==~0U?img._height:(unsigned int)_mp_arg(9);
|
|
dz = dz==~0U?img._depth:(unsigned int)_mp_arg(10);
|
|
dc = dc==~0U?img._spectrum:(unsigned int)_mp_arg(11);
|
|
|
|
const ulongT sizS = mp.opcode[2];
|
|
if (sizS<(ulongT)dx*dy*dz*dc)
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'draw()': "
|
|
"Sprite vector (%lu values) and its specified geometry (%u,%u,%u,%u) "
|
|
"(%lu values) do not match.",
|
|
mp.imgin.pixel_type(),sizS,dx,dy,dz,dc,(ulongT)dx*dy*dz*dc);
|
|
const CImg<doubleT> S(&_mp_arg(1) + 1,dx,dy,dz,dc,true);
|
|
const float opacity = (float)_mp_arg(12);
|
|
|
|
if (img._data) {
|
|
if (mp.opcode[13]!=~0U) { // Opacity mask specified
|
|
const ulongT sizM = mp.opcode[14];
|
|
if (sizM<(ulongT)dx*dy*dz)
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'draw()': "
|
|
"Mask vector (%lu values) and specified sprite geometry (%u,%u,%u,%u) "
|
|
"(%lu values) do not match.",
|
|
mp.imgin.pixel_type(),sizS,dx,dy,dz,dc,(ulongT)dx*dy*dz*dc);
|
|
const CImg<doubleT> M(&_mp_arg(13) + 1,dx,dy,dz,(unsigned int)(sizM/(dx*dy*dz)),true);
|
|
img.draw_image(x,y,z,c,S,M,opacity,(float)_mp_arg(15));
|
|
} else img.draw_image(x,y,z,c,S,opacity);
|
|
}
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_image_h(_cimg_math_parser& mp) {
|
|
unsigned int ind = (unsigned int)mp.opcode[2];
|
|
if (ind!=~0U) {
|
|
if (!mp.imglist.width()) return cimg::type<double>::nan();
|
|
ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
}
|
|
const CImg<T> &img = ind==~0U?mp.imgout:mp.imglist[ind];
|
|
return (double)img.height();
|
|
}
|
|
|
|
static double mp_image_median(_cimg_math_parser& mp) {
|
|
unsigned int ind = (unsigned int)mp.opcode[2];
|
|
if (ind!=~0U) {
|
|
if (!mp.imglist.width()) return cimg::type<double>::nan();
|
|
ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
}
|
|
const CImg<T> &img = ind==~0U?mp.imgout:mp.imglist[ind];
|
|
return (double)img.median();
|
|
}
|
|
|
|
static double mp_image_norm(_cimg_math_parser& mp) {
|
|
unsigned int ind = (unsigned int)mp.opcode[2];
|
|
if (ind!=~0U) {
|
|
if (!mp.imglist.width()) return cimg::type<double>::nan();
|
|
ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
}
|
|
const CImg<T> &img = ind==~0U?mp.imgout:mp.imglist[ind];
|
|
return (double)img.magnitude();
|
|
}
|
|
|
|
static double mp_image_print(_cimg_math_parser& mp) {
|
|
mp_check_list(mp,"print");
|
|
const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
cimg::mutex(6);
|
|
CImg<T> &img = mp.imglist[ind];
|
|
CImg<charT> title(256);
|
|
std::fputc('\n',cimg::output());
|
|
cimg_snprintf(title,title._width,"[ Image #%u ]",ind);
|
|
img.print(title);
|
|
cimg::mutex(6,0);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_image_resize(_cimg_math_parser& mp) {
|
|
mp_check_list(mp,"resize");
|
|
const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
cimg::mutex(6);
|
|
CImg<T> &img = mp.imglist[ind];
|
|
const double
|
|
_w = mp.opcode[3]==~0U?-100:_mp_arg(3),
|
|
_h = mp.opcode[4]==~0U?-100:_mp_arg(4),
|
|
_d = mp.opcode[5]==~0U?-100:_mp_arg(5),
|
|
_s = mp.opcode[6]==~0U?-100:_mp_arg(6);
|
|
const unsigned int
|
|
w = (unsigned int)(_w>=0?_w:-_w*img.width()/100),
|
|
h = (unsigned int)(_h>=0?_h:-_h*img.height()/100),
|
|
d = (unsigned int)(_d>=0?_d:-_d*img.depth()/100),
|
|
s = (unsigned int)(_s>=0?_s:-_s*img.spectrum()/100),
|
|
interp = (int)_mp_arg(7);
|
|
if (mp.is_fill && img._data==mp.imgout._data) {
|
|
cimg::mutex(6,0);
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'resize()': "
|
|
"Cannot both fill and resize image (%u,%u,%u,%u) "
|
|
"to new dimensions (%u,%u,%u,%u).",
|
|
img.pixel_type(),img._width,img._height,img._depth,img._spectrum,w,h,d,s);
|
|
}
|
|
const unsigned int
|
|
boundary = (int)_mp_arg(8);
|
|
const float
|
|
cx = (float)_mp_arg(9),
|
|
cy = (float)_mp_arg(10),
|
|
cz = (float)_mp_arg(11),
|
|
cc = (float)_mp_arg(12);
|
|
img.resize(w,h,d,s,interp,boundary,cx,cy,cz,cc);
|
|
cimg::mutex(6,0);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_image_s(_cimg_math_parser& mp) {
|
|
unsigned int ind = (unsigned int)mp.opcode[2];
|
|
if (ind!=~0U) {
|
|
if (!mp.imglist.width()) return cimg::type<double>::nan();
|
|
ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
}
|
|
const CImg<T> &img = ind==~0U?mp.imgout:mp.imglist[ind];
|
|
return (double)img.spectrum();
|
|
}
|
|
|
|
static double mp_image_sort(_cimg_math_parser& mp) {
|
|
mp_check_list(mp,"sort");
|
|
const bool is_increasing = (bool)_mp_arg(3);
|
|
const unsigned int
|
|
ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()),
|
|
axis = (unsigned int)_mp_arg(4);
|
|
cimg::mutex(6);
|
|
CImg<T> &img = mp.imglist[ind];
|
|
img.sort(is_increasing,
|
|
axis==0 || axis=='x'?'x':
|
|
axis==1 || axis=='y'?'y':
|
|
axis==2 || axis=='z'?'z':
|
|
axis==3 || axis=='c'?'c':0);
|
|
cimg::mutex(6,0);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_image_stats(_cimg_math_parser& mp) {
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
unsigned int ind = (unsigned int)mp.opcode[2];
|
|
if (ind==~0U)
|
|
CImg<doubleT>(ptrd,14,1,1,1,true) = mp.imgout.get_stats();
|
|
else {
|
|
if (!mp.imglist.width()) return cimg::type<double>::nan();
|
|
ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
CImg<doubleT>(ptrd,14,1,1,1,true) = mp.imglist[ind].get_stats();
|
|
}
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_image_w(_cimg_math_parser& mp) {
|
|
unsigned int ind = (unsigned int)mp.opcode[2];
|
|
if (ind!=~0U) {
|
|
if (!mp.imglist.width()) return cimg::type<double>::nan();
|
|
ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
}
|
|
const CImg<T> &img = ind==~0U?mp.imgout:mp.imglist[ind];
|
|
return (double)img.width();
|
|
}
|
|
|
|
static double mp_image_wh(_cimg_math_parser& mp) {
|
|
unsigned int ind = (unsigned int)mp.opcode[2];
|
|
if (ind!=~0U) {
|
|
if (!mp.imglist.width()) return cimg::type<double>::nan();
|
|
ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
}
|
|
const CImg<T> &img = ind==~0U?mp.imgout:mp.imglist[ind];
|
|
return (double)img.width()*img.height();
|
|
}
|
|
|
|
static double mp_image_whd(_cimg_math_parser& mp) {
|
|
unsigned int ind = (unsigned int)mp.opcode[2];
|
|
if (ind!=~0U) {
|
|
if (!mp.imglist.width()) return cimg::type<double>::nan();
|
|
ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
}
|
|
const CImg<T> &img = ind==~0U?mp.imgout:mp.imglist[ind];
|
|
return (double)img.width()*img.height()*img.depth();
|
|
}
|
|
|
|
static double mp_image_whds(_cimg_math_parser& mp) {
|
|
unsigned int ind = (unsigned int)mp.opcode[2];
|
|
if (ind!=~0U) {
|
|
if (!mp.imglist.width()) return cimg::type<double>::nan();
|
|
ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
}
|
|
const CImg<T> &img = ind==~0U?mp.imgout:mp.imglist[ind];
|
|
return (double)img.width()*img.height()*img.depth()*img.spectrum();
|
|
}
|
|
|
|
static double mp_increment(_cimg_math_parser& mp) {
|
|
return _mp_arg(2) + 1;
|
|
}
|
|
|
|
static double mp_inrange(_cimg_math_parser& mp) {
|
|
const unsigned int sizd = (unsigned int)mp.opcode[2];
|
|
const bool
|
|
include_m = (bool)_mp_arg(9),
|
|
include_M = (bool)_mp_arg(10);
|
|
if (!sizd) { // Scalar result
|
|
const double val = _mp_arg(3);
|
|
const double m = _mp_arg(5), M = _mp_arg(7);
|
|
if (M>=m) return (double)((include_m?(val>=m):(val>m)) && (include_M?(val<=M):(val<M)));
|
|
else return (double)((include_M?(val>=M):(val>M)) && (include_m?(val<=m):(val<m)));
|
|
}
|
|
|
|
// Vector result
|
|
const unsigned int
|
|
siz1 = (unsigned int)mp.opcode[4],
|
|
siz2 = (unsigned int)mp.opcode[6],
|
|
siz3 = (unsigned int)mp.opcode[8],
|
|
off1 = siz1?1:0,
|
|
off2 = siz2?1:0,
|
|
off3 = siz3?1:0;
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
const double
|
|
*ptr1 = &_mp_arg(3) + off1,
|
|
*ptr2 = &_mp_arg(5) + off2,
|
|
*ptr3 = &_mp_arg(7) + off3;
|
|
for (unsigned int k = 0; k<sizd; ++k) {
|
|
const double val = *ptr1;
|
|
const double m = *ptr2, M = *ptr3;
|
|
if (M>=m)
|
|
ptrd[k] = (double)((include_m?(val>=m):(val>m)) && (include_M?(val<=M):(val<M)));
|
|
else
|
|
ptrd[k] = (double)((include_M?(val>=M):(val>M)) && (include_m?(val<=m):(val<m)));
|
|
ptr1+=off1;
|
|
ptr2+=off2;
|
|
ptr3+=off3;
|
|
}
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_int(_cimg_math_parser& mp) {
|
|
return (double)(longT)_mp_arg(2);
|
|
}
|
|
|
|
static double mp_ioff(_cimg_math_parser& mp) {
|
|
const unsigned int
|
|
boundary_conditions = (unsigned int)_mp_arg(3);
|
|
const CImg<T> &img = mp.imgin;
|
|
const longT
|
|
off = (longT)_mp_arg(2),
|
|
whds = (longT)img.size();
|
|
if (off>=0 && off<whds) return (double)img[off];
|
|
if (img._data) switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const longT whds2 = 2*whds, moff = cimg::mod(off,whds2);
|
|
return (double)img[moff<whds?moff:whds2 - moff - 1];
|
|
}
|
|
case 2 : // Periodic
|
|
return (double)img[cimg::mod(off,whds)];
|
|
case 1 : // Neumann
|
|
return (double)img[off<0?0:whds - 1];
|
|
default : // Dirichlet
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static double mp_isbool(_cimg_math_parser& mp) {
|
|
const double val = _mp_arg(2);
|
|
return (double)(val==0. || val==1.);
|
|
}
|
|
|
|
static double mp_isdir(_cimg_math_parser& mp) {
|
|
const unsigned int siz = (unsigned int)mp.opcode[3];
|
|
const double *const ptrs = &_mp_arg(2) + (siz?1:0);
|
|
if (!siz) { char str[2] = {}; *str = *ptrs; return (double)cimg::is_directory(str); }
|
|
CImg<charT> ss(siz + 1);
|
|
cimg_forX(ss,i) ss[i] = (char)ptrs[i];
|
|
ss.back() = 0;
|
|
return (double)cimg::is_directory(ss);
|
|
}
|
|
|
|
static double mp_isin(_cimg_math_parser& mp) {
|
|
const unsigned int
|
|
i_end = (unsigned int)mp.opcode[2],
|
|
siz_ref = (unsigned int)mp.opcode[4];
|
|
bool res = false;
|
|
if (siz_ref) { // Reference value is a vector
|
|
const CImg<doubleT> ref(&_mp_arg(3) + 1,siz_ref,1,1,1,true);
|
|
for (unsigned int i = 5; i<i_end; i+=2) {
|
|
const unsigned int siz = (unsigned int)mp.opcode[i + 1];
|
|
if (siz==siz_ref && CImg<doubleT>(&_mp_arg(i) + 1,siz,1,1,1,true)==ref) { res = true; break; }
|
|
}
|
|
} else { // Reference value is a scalar
|
|
const double ref = _mp_arg(3);
|
|
for (unsigned i = 5; i<i_end; i+=2) {
|
|
const unsigned int siz = (unsigned int)mp.opcode[i + 1];
|
|
if (!siz && _mp_arg(i)==ref) { res = true; break; }
|
|
}
|
|
}
|
|
return res?1.:0.;
|
|
}
|
|
|
|
static double mp_isinf(_cimg_math_parser& mp) {
|
|
return (double)cimg::type<double>::is_inf(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_isint(_cimg_math_parser& mp) {
|
|
return (double)((double)(longT)_mp_arg(2)==_mp_arg(2));
|
|
}
|
|
|
|
static double mp_isfile(_cimg_math_parser& mp) {
|
|
const unsigned int siz = (unsigned int)mp.opcode[3];
|
|
const double *const ptrs = &_mp_arg(2) + (siz?1:0);
|
|
if (!siz) { char str[2] = {}; *str = *ptrs; return (double)cimg::is_file(str); }
|
|
CImg<charT> ss(siz + 1);
|
|
cimg_forX(ss,i) ss[i] = (char)ptrs[i];
|
|
ss.back() = 0;
|
|
return (double)cimg::is_file(ss);
|
|
}
|
|
|
|
static double mp_isnan(_cimg_math_parser& mp) {
|
|
return (double)cimg::type<double>::is_nan(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_isvarname(_cimg_math_parser& mp) {
|
|
const unsigned int siz = (unsigned int)mp.opcode[3];
|
|
const double *ptrs = &_mp_arg(2) + (siz?1:0);
|
|
if (!siz) {
|
|
const char c = (char)*ptrs;
|
|
return (c>='a' && c<='z') || (c>='A' && c<='Z') || c=='_';
|
|
}
|
|
if (*ptrs>='0' && *ptrs<='9') return 0;
|
|
for (unsigned int k = 0; k<siz; ++k) if (!cimg::is_varchar((char)ptrs[k])) return 0;
|
|
return 1;
|
|
}
|
|
|
|
static double mp_ixyzc(_cimg_math_parser& mp) {
|
|
const unsigned int
|
|
interpolation = (unsigned int)_mp_arg(6),
|
|
boundary_conditions = (unsigned int)_mp_arg(7);
|
|
const CImg<T> &img = mp.imgin;
|
|
const double
|
|
x = _mp_arg(2), y = _mp_arg(3),
|
|
z = _mp_arg(4), c = _mp_arg(5);
|
|
switch (interpolation) {
|
|
case 2 : // Cubic interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const float
|
|
w2 = 2.f*img.width(), h2 = 2.f*img.height(), d2 = 2.f*img.depth(), s2 = 2.f*img.spectrum(),
|
|
mx = cimg::mod((float)x,w2), my = cimg::mod((float)y,h2),
|
|
mz = cimg::mod((float)z,d2), mc = cimg::mod((float)c,s2);
|
|
return (double)img._cubic_atXYZ(mx<img.width()?mx:w2 - mx - 1,
|
|
my<img.height()?my:h2 - my - 1,
|
|
mz<img.depth()?mz:d2 - mz - 1,
|
|
(int)(mc<img.spectrum()?mc:s2 - mc - 1));
|
|
}
|
|
case 2 : // Periodic
|
|
return (double)img._cubic_atXYZ_p((float)x,(float)y,(float)z,
|
|
(int)cimg::mod(c,(double)img._spectrum));
|
|
case 1 : // Neumann
|
|
return (double)img._cubic_atXYZ((float)x,(float)y,(float)z,
|
|
(int)(c<0?0:c>=img._spectrum?img._spectrum - 1:c));
|
|
default : // Dirichlet
|
|
if (c<0 || c>=img._spectrum) return (T)0;
|
|
return (double)img.cubic_atXYZ((float)x,(float)y,(float)z,(int)c,(T)0);
|
|
}
|
|
case 1 : // Linear interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const float
|
|
w2 = 2.f*img.width(), h2 = 2.f*img.height(), d2 = 2.f*img.depth(), s2 = 2.f*img.spectrum(),
|
|
mx = cimg::mod((float)x,w2), my = cimg::mod((float)y,h2),
|
|
mz = cimg::mod((float)z,d2), mc = cimg::mod((float)c,s2);
|
|
return (double)img._linear_atXYZ(mx<img.width()?mx:w2 - mx - 1,
|
|
my<img.height()?my:h2 - my - 1,
|
|
mz<img.depth()?mz:d2 - mz - 1,
|
|
(int)(mc<img.spectrum()?mc:s2 - mc - 1));
|
|
}
|
|
case 2 : // Periodic
|
|
return (double)img._linear_atXYZ_p((float)x,(float)y,(float)z,
|
|
(int)cimg::mod(c,(double)img._spectrum));
|
|
case 1 : // Neumann
|
|
return (double)img._linear_atXYZ((float)x,(float)y,(float)z,
|
|
(int)(c<0?0:c>=img._spectrum?img._spectrum - 1:c));
|
|
default : // Dirichlet
|
|
if (c<0 || c>=img._spectrum) return (T)0;
|
|
return (double)img.linear_atXYZ((float)x,(float)y,(float)z,(int)c,(T)0);
|
|
}
|
|
default : // Nearest neighbor interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const int
|
|
w2 = 2*img.width(), h2 = 2*img.height(), d2 = 2*img.depth(), s2 = 2*img.spectrum(),
|
|
mx = cimg::mod((int)x,w2), my = cimg::mod((int)y,h2),
|
|
mz = cimg::mod((int)z,d2), mc = cimg::mod((int)c,s2);
|
|
return (double)img(mx<img.width()?mx:w2 - mx - 1,
|
|
my<img.height()?my:h2 - my - 1,
|
|
mz<img.depth()?mz:d2 - mz - 1,
|
|
mc<img.spectrum()?mc:s2 - mc - 1);
|
|
}
|
|
case 2 : // Periodic
|
|
return (double)img((int)cimg::mod(x,(double)img._width),
|
|
(int)cimg::mod(y,(double)img._height),
|
|
(int)cimg::mod(z,(double)img._depth),
|
|
(int)cimg::mod(c,(double)img._spectrum));
|
|
case 1 : // Neumann
|
|
return (double)img._atXYZC((int)x,(int)y,(int)z,(int)c);
|
|
default : // Dirichlet
|
|
return (double)img.atXYZC((int)x,(int)y,(int)z,(int)c,(T)0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static double mp_joff(_cimg_math_parser& mp) {
|
|
const unsigned int
|
|
boundary_conditions = (unsigned int)_mp_arg(3);
|
|
const int
|
|
ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y],
|
|
oz = (int)mp.mem[_cimg_mp_slot_z], oc = (int)mp.mem[_cimg_mp_slot_c];
|
|
const CImg<T> &img = mp.imgin;
|
|
const longT
|
|
off = img.offset(ox,oy,oz,oc) + (longT)_mp_arg(2),
|
|
whds = (longT)img.size();
|
|
if (off>=0 && off<whds) return (double)img[off];
|
|
if (img._data) switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const longT whds2 = 2*whds, moff = cimg::mod(off,whds2);
|
|
return (double)img[moff<whds?moff:whds2 - moff - 1];
|
|
}
|
|
case 2 : // Periodic
|
|
return (double)img[cimg::mod(off,whds)];
|
|
case 1 : // Neumann
|
|
return (double)img[off<0?0:whds - 1];
|
|
default : // Dirichlet
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static double mp_jxyzc(_cimg_math_parser& mp) {
|
|
const unsigned int
|
|
interpolation = (unsigned int)_mp_arg(6),
|
|
boundary_conditions = (unsigned int)_mp_arg(7);
|
|
const CImg<T> &img = mp.imgin;
|
|
const double
|
|
ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y],
|
|
oz = mp.mem[_cimg_mp_slot_z], oc = mp.mem[_cimg_mp_slot_c],
|
|
x = ox + _mp_arg(2), y = oy + _mp_arg(3),
|
|
z = oz + _mp_arg(4), c = oc + _mp_arg(5);
|
|
switch (interpolation) {
|
|
case 2 : // Cubic interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const float
|
|
w2 = 2.f*img.width(), h2 = 2.f*img.height(), d2 = 2.f*img.depth(), s2 = 2.f*img.spectrum(),
|
|
mx = cimg::mod((float)x,w2), my = cimg::mod((float)y,h2),
|
|
mz = cimg::mod((float)z,d2), mc = cimg::mod((float)c,s2);
|
|
return (double)img._cubic_atXYZ(mx<img.width()?mx:w2 - mx - 1,
|
|
my<img.height()?my:h2 - my - 1,
|
|
mz<img.depth()?mz:d2 - mz - 1,
|
|
(int)(mc<img.spectrum()?mc:s2 - mc - 1));
|
|
}
|
|
case 2 : // Periodic
|
|
return (double)img._cubic_atXYZ_p((float)x,(float)y,(float)z,
|
|
(int)cimg::mod(c,(double)img._spectrum));
|
|
case 1 : // Neumann
|
|
return (double)img._cubic_atXYZ((float)x,(float)y,(float)z,
|
|
(int)(c<0?0:c>=img._spectrum?img._spectrum - 1:c));
|
|
default : // Dirichlet
|
|
if (c<0 || c>=img._spectrum) return (T)0;
|
|
return (double)img.cubic_atXYZ((float)x,(float)y,(float)z,(int)c,(T)0);
|
|
}
|
|
case 1 : // Linear interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const float
|
|
w2 = 2.f*img.width(), h2 = 2.f*img.height(), d2 = 2.f*img.depth(), s2 = 2.f*img.spectrum(),
|
|
mx = cimg::mod((float)x,w2), my = cimg::mod((float)y,h2),
|
|
mz = cimg::mod((float)z,d2), mc = cimg::mod((float)c,s2);
|
|
return (double)img._linear_atXYZ(mx<img.width()?mx:w2 - mx - 1,
|
|
my<img.height()?my:h2 - my - 1,
|
|
mz<img.depth()?mz:d2 - mz - 1,
|
|
(int)(mc<img.spectrum()?mc:s2 - mc - 1));
|
|
}
|
|
case 2 : // Periodic
|
|
return (double)img._linear_atXYZ_p((float)x,(float)y,(float)z,
|
|
(int)cimg::mod(c,(double)img._spectrum));
|
|
case 1 : // Neumann
|
|
return (double)img._linear_atXYZ((float)x,(float)y,(float)z,
|
|
(int)(c<0?0:c>=img._spectrum?img._spectrum - 1:c));
|
|
default : // Dirichlet
|
|
if (c<0 || c>=img._spectrum) return (T)0;
|
|
return (double)img.linear_atXYZ((float)x,(float)y,(float)z,(int)c,(T)0);
|
|
}
|
|
default : // Nearest neighbor interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const int
|
|
w2 = 2*img.width(), h2 = 2*img.height(), d2 = 2*img.depth(), s2 = 2*img.spectrum(),
|
|
mx = cimg::mod((int)x,w2), my = cimg::mod((int)y,h2),
|
|
mz = cimg::mod((int)z,d2), mc = cimg::mod((int)c,s2);
|
|
return (double)img(mx<img.width()?mx:w2 - mx - 1,
|
|
my<img.height()?my:h2 - my - 1,
|
|
mz<img.depth()?mz:d2 - mz - 1,
|
|
mc<img.spectrum()?mc:s2 - mc - 1);
|
|
}
|
|
case 2 : // Periodic
|
|
return (double)img((int)cimg::mod(x,(double)img._width),
|
|
(int)cimg::mod(y,(double)img._height),
|
|
(int)cimg::mod(z,(double)img._depth),
|
|
(int)cimg::mod(c,(double)img._spectrum));
|
|
case 1 : // Neumann
|
|
return (double)img._atXYZC((int)x,(int)y,(int)z,(int)c);
|
|
default : // Dirichlet
|
|
return (double)img.atXYZC((int)x,(int)y,(int)z,(int)c,(T)0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static double mp_kth(_cimg_math_parser& mp) {
|
|
const unsigned int i_end = (unsigned int)mp.opcode[2];
|
|
CImg<doubleT> vals(i_end - 4);
|
|
double *p = vals.data();
|
|
for (unsigned int i = 4; i<i_end; ++i) *(p++) = _mp_arg(i);
|
|
longT ind = (longT)cimg::round(_mp_arg(3));
|
|
if (ind<0) ind+=vals.width() + 1;
|
|
ind = cimg::cut(ind,(longT)1,(longT)vals.width());
|
|
return vals.kth_smallest((ulongT)(ind - 1));
|
|
}
|
|
|
|
static double mp_lerp(_cimg_math_parser& mp) {
|
|
const double t = _mp_arg(4);
|
|
return _mp_arg(2)*(1-t) + _mp_arg(3)*t;
|
|
}
|
|
|
|
static double mp_linear_add(_cimg_math_parser& mp) {
|
|
return _mp_arg(2)*_mp_arg(3) + _mp_arg(4);
|
|
}
|
|
|
|
static double mp_linear_sub_left(_cimg_math_parser& mp) {
|
|
return _mp_arg(2)*_mp_arg(3) - _mp_arg(4);
|
|
}
|
|
|
|
static double mp_linear_sub_right(_cimg_math_parser& mp) {
|
|
return _mp_arg(4) - _mp_arg(2)*_mp_arg(3);
|
|
}
|
|
|
|
static double mp_list_depth(_cimg_math_parser& mp) {
|
|
const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
return (double)mp.imglist[ind]._depth;
|
|
}
|
|
|
|
static double mp_list_find(_cimg_math_parser& mp) {
|
|
const unsigned int
|
|
indi = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
const CImg<T> &img = mp.imglist[indi];
|
|
const int _step = (int)_mp_arg(5), step = _step?_step:-1;
|
|
const ulongT siz = (ulongT)img.size();
|
|
longT ind = (longT)(mp.opcode[4]!=_cimg_mp_slot_nan?_mp_arg(4):step>0?0:siz - 1);
|
|
if (ind<0 || ind>=(longT)siz) return -1.;
|
|
const T
|
|
*const ptrb = img.data(),
|
|
*const ptre = img.end(),
|
|
*ptr = ptrb + ind;
|
|
const double val = _mp_arg(3);
|
|
|
|
// Forward search
|
|
if (step>0) {
|
|
while (ptr<ptre && (double)*ptr!=val) ptr+=step;
|
|
return ptr>=ptre?-1.:(double)(ptr - ptrb);
|
|
}
|
|
|
|
// Backward search.
|
|
while (ptr>=ptrb && (double)*ptr!=val) ptr+=step;
|
|
return ptr<ptrb?-1.:(double)(ptr - ptrb);
|
|
}
|
|
|
|
static double mp_list_find_seq(_cimg_math_parser& mp) {
|
|
const unsigned int
|
|
indi = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
const CImg<T> &img = mp.imglist[indi];
|
|
const int _step = (int)_mp_arg(6), step = _step?_step:-1;
|
|
const ulongT
|
|
siz1 = (ulongT)img.size(),
|
|
siz2 = (ulongT)mp.opcode[4];
|
|
longT ind = (longT)(mp.opcode[5]!=_cimg_mp_slot_nan?_mp_arg(5):step>0?0:siz1 - 1);
|
|
if (ind<0 || ind>=(longT)siz1) return -1.;
|
|
const T
|
|
*const ptr1b = img.data(),
|
|
*const ptr1e = ptr1b + siz1,
|
|
*ptr1 = ptr1b + ind,
|
|
*p1 = 0;
|
|
const double
|
|
*const ptr2b = &_mp_arg(3) + 1,
|
|
*const ptr2e = ptr2b + siz2,
|
|
*p2 = 0;
|
|
|
|
// Forward search.
|
|
if (step>0) {
|
|
do {
|
|
while (ptr1<ptr1e && *ptr1!=*ptr2b) ptr1+=step;
|
|
if (ptr1>=ptr1e) return -1.;
|
|
p1 = ptr1 + 1;
|
|
p2 = ptr2b + 1;
|
|
while (p1<ptr1e && p2<ptr2e && *p1==*p2) { ++p1; ++p2; }
|
|
} while (p2<ptr2e && (ptr1+=step)<ptr1e);
|
|
return p2<ptr2e?-1.:(double)(ptr1 - ptr1b);
|
|
}
|
|
|
|
// Backward search.
|
|
do {
|
|
while (ptr1>=ptr1b && *ptr1!=*ptr2b) ptr1+=step;
|
|
if (ptr1<ptr1b) return -1.;
|
|
p1 = ptr1 + 1;
|
|
p2 = ptr2b + 1;
|
|
while (p1<ptr1e && p2<ptr2e && *p1==*p2) { ++p1; ++p2; }
|
|
} while (p2<ptr2e && (ptr1+=step)>=ptr1b);
|
|
return p2<ptr2e?-1.:(double)(ptr1 - ptr1b);
|
|
}
|
|
|
|
static double mp_list_height(_cimg_math_parser& mp) {
|
|
const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
return (double)mp.imglist[ind]._height;
|
|
}
|
|
|
|
static double mp_list_ioff(_cimg_math_parser& mp) {
|
|
const unsigned int
|
|
ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()),
|
|
boundary_conditions = (unsigned int)_mp_arg(4);
|
|
const CImg<T> &img = mp.imglist[ind];
|
|
const longT
|
|
off = (longT)_mp_arg(3),
|
|
whds = (longT)img.size();
|
|
if (off>=0 && off<whds) return (double)img[off];
|
|
if (img._data) switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const longT whds2 = 2*whds, moff = cimg::mod(off,whds2);
|
|
return (double)img[moff<whds?moff:whds2 - moff - 1];
|
|
}
|
|
case 2 : // Periodic
|
|
return (double)img[cimg::mod(off,whds)];
|
|
case 1 : // Neumann
|
|
return (double)img[off<0?0:whds - 1];
|
|
default : // Dirichlet
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static double mp_list_is_shared(_cimg_math_parser& mp) {
|
|
const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
return (double)mp.imglist[ind]._is_shared;
|
|
}
|
|
|
|
static double mp_list_ixyzc(_cimg_math_parser& mp) {
|
|
const unsigned int
|
|
ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()),
|
|
interpolation = (unsigned int)_mp_arg(7),
|
|
boundary_conditions = (unsigned int)_mp_arg(8);
|
|
const CImg<T> &img = mp.imglist[ind];
|
|
const double
|
|
x = _mp_arg(3), y = _mp_arg(4),
|
|
z = _mp_arg(5), c = _mp_arg(6);
|
|
switch (interpolation) {
|
|
case 2 : // Cubic interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const float
|
|
w2 = 2.f*img.width(), h2 = 2.f*img.height(), d2 = 2.f*img.depth(), s2 = 2.f*img.spectrum(),
|
|
mx = cimg::mod((float)x,w2), my = cimg::mod((float)y,h2),
|
|
mz = cimg::mod((float)z,d2), mc = cimg::mod((float)c,s2);
|
|
return (double)img._cubic_atXYZ(mx<img.width()?mx:w2 - mx - 1,
|
|
my<img.height()?my:h2 - my - 1,
|
|
mz<img.depth()?mz:d2 - mz - 1,
|
|
(int)(mc<img.spectrum()?mc:s2 - mc - 1));
|
|
}
|
|
case 2 : // Periodic
|
|
return (double)img._cubic_atXYZ_p((float)x,(float)y,(float)z,
|
|
(int)cimg::mod(c,(double)img._spectrum));
|
|
case 1 : // Neumann
|
|
return (double)img._cubic_atXYZ((float)x,(float)y,(float)z,
|
|
(int)(c<0?0:c>=img._spectrum?img._spectrum - 1:c));
|
|
default : // Dirichlet
|
|
if (c<0 || c>=img._spectrum) return (T)0;
|
|
return (double)img.cubic_atXYZ((float)x,(float)y,(float)z,(int)c,(T)0);
|
|
}
|
|
case 1 : // Linear interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const float
|
|
w2 = 2.f*img.width(), h2 = 2.f*img.height(), d2 = 2.f*img.depth(), s2 = 2.f*img.spectrum(),
|
|
mx = cimg::mod((float)x,w2), my = cimg::mod((float)y,h2),
|
|
mz = cimg::mod((float)z,d2), mc = cimg::mod((float)c,s2);
|
|
return (double)img._linear_atXYZ(mx<img.width()?mx:w2 - mx - 1,
|
|
my<img.height()?my:h2 - my - 1,
|
|
mz<img.depth()?mz:d2 - mz - 1,
|
|
(int)(mc<img.spectrum()?mc:s2 - mc - 1));
|
|
}
|
|
case 2 : // Periodic
|
|
return (double)img._linear_atXYZ_p((float)x,(float)y,(float)z,
|
|
(int)cimg::mod(c,(double)img._spectrum));
|
|
case 1 : // Neumann
|
|
return (double)img._linear_atXYZ((float)x,(float)y,(float)z,
|
|
(int)(c<0?0:c>=img._spectrum?img._spectrum - 1:c));
|
|
default : // Dirichlet
|
|
if (c<0 || c>=img._spectrum) return (T)0;
|
|
return (double)img.linear_atXYZ((float)x,(float)y,(float)z,(int)c,(T)0);
|
|
}
|
|
default : // Nearest neighbor interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const int
|
|
w2 = 2*img.width(), h2 = 2*img.height(), d2 = 2*img.depth(), s2 = 2*img.spectrum(),
|
|
mx = cimg::mod((int)x,w2), my = cimg::mod((int)y,h2),
|
|
mz = cimg::mod((int)z,d2), mc = cimg::mod((int)c,s2);
|
|
return (double)img(mx<img.width()?mx:w2 - mx - 1,
|
|
my<img.height()?my:h2 - my - 1,
|
|
mz<img.depth()?mz:d2 - mz - 1,
|
|
mc<img.spectrum()?mc:s2 - mc - 1);
|
|
}
|
|
case 2 : // Periodic
|
|
return (double)img((int)cimg::mod(x,(double)img._width),
|
|
(int)cimg::mod(y,(double)img._height),
|
|
(int)cimg::mod(z,(double)img._depth),
|
|
(int)cimg::mod(c,(double)img._spectrum));
|
|
case 1 : // Neumann
|
|
return (double)img._atXYZC((int)x,(int)y,(int)z,(int)c);
|
|
default : // Dirichlet
|
|
return (double)img.atXYZC((int)x,(int)y,(int)z,(int)c,(T)0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static double mp_list_joff(_cimg_math_parser& mp) {
|
|
const unsigned int
|
|
ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()),
|
|
boundary_conditions = (unsigned int)_mp_arg(4);
|
|
const int
|
|
ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y],
|
|
oz = (int)mp.mem[_cimg_mp_slot_z], oc = (int)mp.mem[_cimg_mp_slot_c];
|
|
const CImg<T> &img = mp.imglist[ind];
|
|
const longT
|
|
off = img.offset(ox,oy,oz,oc) + (longT)_mp_arg(3),
|
|
whds = (longT)img.size();
|
|
if (off>=0 && off<whds) return (double)img[off];
|
|
if (img._data) switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const longT whds2 = 2*whds, moff = cimg::mod(off,whds2);
|
|
return (double)img[moff<whds?moff:whds2 - moff - 1];
|
|
}
|
|
case 2 : // Periodic
|
|
return (double)img[cimg::mod(off,whds)];
|
|
case 1 : // Neumann
|
|
return (double)img[off<0?0:whds - 1];
|
|
default : // Dirichlet
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static double mp_list_jxyzc(_cimg_math_parser& mp) {
|
|
const unsigned int
|
|
ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()),
|
|
interpolation = (unsigned int)_mp_arg(7),
|
|
boundary_conditions = (unsigned int)_mp_arg(8);
|
|
const CImg<T> &img = mp.imglist[ind];
|
|
const double
|
|
ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y],
|
|
oz = mp.mem[_cimg_mp_slot_z], oc = mp.mem[_cimg_mp_slot_c],
|
|
x = ox + _mp_arg(3), y = oy + _mp_arg(4),
|
|
z = oz + _mp_arg(5), c = oc + _mp_arg(6);
|
|
switch (interpolation) {
|
|
case 2 : // Cubic interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const float
|
|
w2 = 2.f*img.width(), h2 = 2.f*img.height(), d2 = 2.f*img.depth(), s2 = 2.f*img.spectrum(),
|
|
mx = cimg::mod((float)x,w2), my = cimg::mod((float)y,h2),
|
|
mz = cimg::mod((float)z,d2), mc = cimg::mod((float)c,s2);
|
|
return (double)img._cubic_atXYZ(mx<img.width()?mx:w2 - mx - 1,
|
|
my<img.height()?my:h2 - my - 1,
|
|
mz<img.depth()?mz:d2 - mz - 1,
|
|
(int)(mc<img.spectrum()?mc:s2 - mc - 1));
|
|
}
|
|
case 2 : // Periodic
|
|
return (double)img._cubic_atXYZ_p((float)x,(float)y,(float)z,
|
|
(int)cimg::mod(c,(double)img._spectrum));
|
|
case 1 : // Neumann
|
|
return (double)img._cubic_atXYZ((float)x,(float)y,(float)z,
|
|
(int)(c<0?0:c>=img._spectrum?img._spectrum - 1:c));
|
|
default : // Dirichlet
|
|
if (c<0 || c>=img._spectrum) return (T)0;
|
|
return (double)img.cubic_atXYZ((float)x,(float)y,(float)z,(int)c,(T)0);
|
|
}
|
|
case 1 : // Linear interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const float
|
|
w2 = 2.f*img.width(), h2 = 2.f*img.height(), d2 = 2.f*img.depth(), s2 = 2.f*img.spectrum(),
|
|
mx = cimg::mod((float)x,w2), my = cimg::mod((float)y,h2),
|
|
mz = cimg::mod((float)z,d2), mc = cimg::mod((float)c,s2);
|
|
return (double)img._linear_atXYZ(mx<img.width()?mx:w2 - mx - 1,
|
|
my<img.height()?my:h2 - my - 1,
|
|
mz<img.depth()?mz:d2 - mz - 1,
|
|
(int)(mc<img.spectrum()?mc:s2 - mc - 1));
|
|
}
|
|
case 2 : // Periodic
|
|
return (double)img._linear_atXYZ_p((float)x,(float)y,(float)z,
|
|
(int)cimg::mod(c,(double)img._spectrum));
|
|
case 1 : // Neumann
|
|
return (double)img._linear_atXYZ((float)x,(float)y,(float)z,
|
|
(int)(c<0?0:c>=img._spectrum?img._spectrum - 1:c));
|
|
default : // Dirichlet
|
|
if (c<0 || c>=img._spectrum) return (T)0;
|
|
return (double)img.linear_atXYZ((float)x,(float)y,(float)z,(int)c,(T)0);
|
|
}
|
|
default : // Nearest neighbor interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const int
|
|
w2 = 2*img.width(), h2 = 2*img.height(), d2 = 2*img.depth(), s2 = 2*img.spectrum(),
|
|
mx = cimg::mod((int)x,w2), my = cimg::mod((int)y,h2),
|
|
mz = cimg::mod((int)z,d2), mc = cimg::mod((int)c,s2);
|
|
return (double)img(mx<img.width()?mx:w2 - mx - 1,
|
|
my<img.height()?my:h2 - my - 1,
|
|
mz<img.depth()?mz:d2 - mz - 1,
|
|
mc<img.spectrum()?mc:s2 - mc - 1);
|
|
}
|
|
case 2 : // Periodic
|
|
return (double)img((int)cimg::mod(x,(double)img._width),
|
|
(int)cimg::mod(y,(double)img._height),
|
|
(int)cimg::mod(z,(double)img._depth),
|
|
(int)cimg::mod(c,(double)img._spectrum));
|
|
case 1 : // Neumann
|
|
return (double)img._atXYZC((int)x,(int)y,(int)z,(int)c);
|
|
default : // Dirichlet
|
|
return (double)img.atXYZC((int)x,(int)y,(int)z,(int)c,(T)0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static double mp_list_l(_cimg_math_parser& mp) {
|
|
return (double)mp.imglist.width();
|
|
}
|
|
|
|
static double mp_list_median(_cimg_math_parser& mp) {
|
|
const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
if (!mp.list_median) mp.list_median.assign(mp.imglist._width);
|
|
if (!mp.list_median[ind]) CImg<doubleT>::vector(mp.imglist[ind].median()).move_to(mp.list_median[ind]);
|
|
return *mp.list_median[ind];
|
|
}
|
|
|
|
static double mp_list_norm(_cimg_math_parser& mp) {
|
|
const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
if (!mp.list_norm) mp.list_norm.assign(mp.imglist._width);
|
|
if (!mp.list_norm[ind]) CImg<doubleT>::vector(mp.imglist[ind].magnitude()).move_to(mp.list_norm[ind]);
|
|
return *mp.list_norm[ind];
|
|
}
|
|
|
|
static double mp_list_set_ioff(_cimg_math_parser& mp) {
|
|
if (!mp.imglist.width()) return cimg::type<double>::nan();
|
|
const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
CImg<T> &img = mp.imglist[ind];
|
|
const longT
|
|
off = (longT)_mp_arg(3),
|
|
whds = (longT)img.size();
|
|
const double val = _mp_arg(1);
|
|
if (off>=0 && off<whds) img[off] = (T)val;
|
|
return val;
|
|
}
|
|
|
|
static double mp_list_set_ixyzc(_cimg_math_parser& mp) {
|
|
if (!mp.imglist.width()) return cimg::type<double>::nan();
|
|
const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
CImg<T> &img = mp.imglist[ind];
|
|
const int
|
|
x = (int)_mp_arg(3), y = (int)_mp_arg(4),
|
|
z = (int)_mp_arg(5), c = (int)_mp_arg(6);
|
|
const double val = _mp_arg(1);
|
|
if (x>=0 && x<img.width() && y>=0 && y<img.height() &&
|
|
z>=0 && z<img.depth() && c>=0 && c<img.spectrum())
|
|
img(x,y,z,c) = (T)val;
|
|
return val;
|
|
}
|
|
|
|
static double mp_list_set_joff(_cimg_math_parser& mp) {
|
|
if (!mp.imglist.width()) return cimg::type<double>::nan();
|
|
const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
CImg<T> &img = mp.imglist[ind];
|
|
const int
|
|
ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y],
|
|
oz = (int)mp.mem[_cimg_mp_slot_z], oc = (int)mp.mem[_cimg_mp_slot_c];
|
|
const longT
|
|
off = img.offset(ox,oy,oz,oc) + (longT)_mp_arg(3),
|
|
whds = (longT)img.size();
|
|
const double val = _mp_arg(1);
|
|
if (off>=0 && off<whds) img[off] = (T)val;
|
|
return val;
|
|
}
|
|
|
|
static double mp_list_set_jxyzc(_cimg_math_parser& mp) {
|
|
if (!mp.imglist.width()) return cimg::type<double>::nan();
|
|
const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
CImg<T> &img = mp.imglist[ind];
|
|
const double
|
|
ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y],
|
|
oz = mp.mem[_cimg_mp_slot_z], oc = mp.mem[_cimg_mp_slot_c];
|
|
const int
|
|
x = (int)(ox + _mp_arg(3)), y = (int)(oy + _mp_arg(4)),
|
|
z = (int)(oz + _mp_arg(5)), c = (int)(oc + _mp_arg(6));
|
|
const double val = _mp_arg(1);
|
|
if (x>=0 && x<img.width() && y>=0 && y<img.height() &&
|
|
z>=0 && z<img.depth() && c>=0 && c<img.spectrum())
|
|
img(x,y,z,c) = (T)val;
|
|
return val;
|
|
}
|
|
|
|
static double mp_list_set_Ioff_s(_cimg_math_parser& mp) {
|
|
if (!mp.imglist.width()) return cimg::type<double>::nan();
|
|
const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
CImg<T> &img = mp.imglist[ind];
|
|
const longT
|
|
off = (longT)_mp_arg(3),
|
|
whd = (longT)img.width()*img.height()*img.depth();
|
|
const T val = (T)_mp_arg(1);
|
|
if (off>=0 && off<whd) {
|
|
T *ptrd = &img[off];
|
|
cimg_forC(img,c) { *ptrd = val; ptrd+=whd; }
|
|
}
|
|
return _mp_arg(1);
|
|
}
|
|
|
|
static double mp_list_set_Ioff_v(_cimg_math_parser& mp) {
|
|
if (!mp.imglist.width()) return cimg::type<double>::nan();
|
|
const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
CImg<T> &img = mp.imglist[ind];
|
|
const longT
|
|
off = (longT)_mp_arg(3),
|
|
whd = (longT)img.width()*img.height()*img.depth();
|
|
const double *ptrs = &_mp_arg(1) + 1;
|
|
if (off>=0 && off<whd) {
|
|
const unsigned int vsiz = (unsigned int)mp.opcode[4];
|
|
T *ptrd = &img[off];
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *ptrd = (T)*(ptrs++); ptrd+=whd; }
|
|
}
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_list_set_Ixyz_s(_cimg_math_parser& mp) {
|
|
if (!mp.imglist.width()) return cimg::type<double>::nan();
|
|
const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
CImg<T> &img = mp.imglist[ind];
|
|
const int
|
|
x = (int)_mp_arg(3),
|
|
y = (int)_mp_arg(4),
|
|
z = (int)_mp_arg(5);
|
|
const T val = (T)_mp_arg(1);
|
|
if (x>=0 && x<img.width() && y>=0 && y<img.height() && z>=0 && z<img.depth()) {
|
|
T *ptrd = &img(x,y,z);
|
|
const ulongT whd = (ulongT)img._width*img._height*img._depth;
|
|
cimg_forC(img,c) { *ptrd = val; ptrd+=whd; }
|
|
}
|
|
return _mp_arg(1);
|
|
}
|
|
|
|
static double mp_list_set_Ixyz_v(_cimg_math_parser& mp) {
|
|
if (!mp.imglist.width()) return cimg::type<double>::nan();
|
|
const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
CImg<T> &img = mp.imglist[ind];
|
|
const int
|
|
x = (int)_mp_arg(3),
|
|
y = (int)_mp_arg(4),
|
|
z = (int)_mp_arg(5);
|
|
const double *ptrs = &_mp_arg(1) + 1;
|
|
if (x>=0 && x<img.width() && y>=0 && y<img.height() && z>=0 && z<img.depth()) {
|
|
const unsigned int vsiz = (unsigned int)mp.opcode[6];
|
|
T *ptrd = &img(x,y,z);
|
|
const ulongT whd = (ulongT)img._width*img._height*img._depth;
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *ptrd = (T)*(ptrs++); ptrd+=whd; }
|
|
}
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_list_set_Joff_s(_cimg_math_parser& mp) {
|
|
if (!mp.imglist.width()) return cimg::type<double>::nan();
|
|
const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
CImg<T> &img = mp.imglist[ind];
|
|
const int
|
|
ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y],
|
|
oz = (int)mp.mem[_cimg_mp_slot_z], oc = (int)mp.mem[_cimg_mp_slot_c];
|
|
const longT
|
|
off = img.offset(ox,oy,oz,oc) + (longT)_mp_arg(3),
|
|
whd = (longT)img.width()*img.height()*img.depth();
|
|
const T val = (T)_mp_arg(1);
|
|
if (off>=0 && off<whd) {
|
|
T *ptrd = &img[off];
|
|
cimg_forC(img,c) { *ptrd = val; ptrd+=whd; }
|
|
}
|
|
return _mp_arg(1);
|
|
}
|
|
|
|
static double mp_list_set_Joff_v(_cimg_math_parser& mp) {
|
|
if (!mp.imglist.width()) return cimg::type<double>::nan();
|
|
const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
CImg<T> &img = mp.imglist[ind];
|
|
const int
|
|
ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y],
|
|
oz = (int)mp.mem[_cimg_mp_slot_z], oc = (int)mp.mem[_cimg_mp_slot_c];
|
|
const longT
|
|
off = img.offset(ox,oy,oz,oc) + (longT)_mp_arg(3),
|
|
whd = (longT)img.width()*img.height()*img.depth();
|
|
const double *ptrs = &_mp_arg(1) + 1;
|
|
if (off>=0 && off<whd) {
|
|
const unsigned int vsiz = (unsigned int)mp.opcode[4];
|
|
T *ptrd = &img[off];
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *ptrd = (T)*(ptrs++); ptrd+=whd; }
|
|
}
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_list_set_Jxyz_s(_cimg_math_parser& mp) {
|
|
if (!mp.imglist.width()) return cimg::type<double>::nan();
|
|
const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
CImg<T> &img = mp.imglist[ind];
|
|
const double ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], oz = mp.mem[_cimg_mp_slot_z];
|
|
const int
|
|
x = (int)(ox + _mp_arg(3)),
|
|
y = (int)(oy + _mp_arg(4)),
|
|
z = (int)(oz + _mp_arg(5));
|
|
const T val = (T)_mp_arg(1);
|
|
if (x>=0 && x<img.width() && y>=0 && y<img.height() && z>=0 && z<img.depth()) {
|
|
T *ptrd = &img(x,y,z);
|
|
const ulongT whd = (ulongT)img._width*img._height*img._depth;
|
|
cimg_forC(img,c) { *ptrd = val; ptrd+=whd; }
|
|
}
|
|
return _mp_arg(1);
|
|
}
|
|
|
|
static double mp_list_set_Jxyz_v(_cimg_math_parser& mp) {
|
|
if (!mp.imglist.width()) return cimg::type<double>::nan();
|
|
const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
CImg<T> &img = mp.imglist[ind];
|
|
const double ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], oz = mp.mem[_cimg_mp_slot_z];
|
|
const int
|
|
x = (int)(ox + _mp_arg(3)),
|
|
y = (int)(oy + _mp_arg(4)),
|
|
z = (int)(oz + _mp_arg(5));
|
|
const double *ptrs = &_mp_arg(1) + 1;
|
|
if (x>=0 && x<img.width() && y>=0 && y<img.height() && z>=0 && z<img.depth()) {
|
|
const unsigned int vsiz = (unsigned int)mp.opcode[6];
|
|
T *ptrd = &img(x,y,z);
|
|
const ulongT whd = (ulongT)img._width*img._height*img._depth;
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *ptrd = (T)*(ptrs++); ptrd+=whd; }
|
|
}
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_list_spectrum(_cimg_math_parser& mp) {
|
|
const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
return (double)mp.imglist[ind]._spectrum;
|
|
}
|
|
|
|
static double mp_list_stats(_cimg_math_parser& mp) {
|
|
const unsigned int
|
|
ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()),
|
|
k = (unsigned int)mp.opcode[3];
|
|
bool get_stats = false;
|
|
cimg::mutex(13);
|
|
if (!mp.list_stats || mp.list_stats.size()!=mp.imglist._width) mp.list_stats.assign(mp.imglist._width);
|
|
if (!mp.list_stats[ind]) get_stats = true;
|
|
cimg::mutex(13,0);
|
|
|
|
if (get_stats) {
|
|
CImg<Tdouble> st = mp.imglist[ind].get_stats();
|
|
cimg::mutex(13);
|
|
st.move_to(mp.list_stats[ind]);
|
|
cimg::mutex(13,0);
|
|
}
|
|
return mp.list_stats(ind,k);
|
|
}
|
|
|
|
static double mp_list_wh(_cimg_math_parser& mp) {
|
|
const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
return (double)mp.imglist[ind]._width*mp.imglist[ind]._height;
|
|
}
|
|
|
|
static double mp_list_whd(_cimg_math_parser& mp) {
|
|
const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
return (double)mp.imglist[ind]._width*mp.imglist[ind]._height*mp.imglist[ind]._depth;
|
|
}
|
|
|
|
static double mp_list_whds(_cimg_math_parser& mp) {
|
|
const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
return (double)mp.imglist[ind]._width*mp.imglist[ind]._height*mp.imglist[ind]._depth*mp.imglist[ind]._spectrum;
|
|
}
|
|
|
|
static double mp_list_width(_cimg_math_parser& mp) {
|
|
const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width());
|
|
return (double)mp.imglist[ind]._width;
|
|
}
|
|
|
|
static double mp_list_Ioff(_cimg_math_parser& mp) {
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
const unsigned int
|
|
ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()),
|
|
boundary_conditions = (unsigned int)_mp_arg(4),
|
|
vsiz = (unsigned int)mp.opcode[5];
|
|
const CImg<T> &img = mp.imglist[ind];
|
|
const longT
|
|
off = (longT)_mp_arg(3),
|
|
whd = (longT)img.width()*img.height()*img.depth();
|
|
const T *ptrs;
|
|
if (off>=0 && off<whd) {
|
|
ptrs = &img[off];
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; }
|
|
return cimg::type<double>::nan();
|
|
}
|
|
if (img._data) switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const longT whd2 = 2*whd, moff = cimg::mod(off,whd2);
|
|
ptrs = &img[moff<whd?moff:whd2 - moff - 1];
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; }
|
|
return cimg::type<double>::nan();
|
|
}
|
|
case 2 : // Periodic
|
|
ptrs = &img[cimg::mod(off,whd)];
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; }
|
|
return cimg::type<double>::nan();
|
|
case 1 : // Neumann
|
|
ptrs = off<0?&img[0]:&img[whd - 1];
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; }
|
|
return cimg::type<double>::nan();
|
|
default : // Dirichlet
|
|
std::memset(ptrd,0,vsiz*sizeof(double));
|
|
return cimg::type<double>::nan();
|
|
}
|
|
std::memset(ptrd,0,vsiz*sizeof(double));
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_list_Ixyz(_cimg_math_parser& mp) {
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
const unsigned int
|
|
ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()),
|
|
interpolation = (unsigned int)_mp_arg(6),
|
|
boundary_conditions = (unsigned int)_mp_arg(7),
|
|
vsiz = (unsigned int)mp.opcode[8];
|
|
const CImg<T> &img = mp.imglist[ind];
|
|
const double x = _mp_arg(3), y = _mp_arg(4), z = _mp_arg(5);
|
|
const ulongT whd = (ulongT)img._width*img._height*img._depth;
|
|
const T *ptrs;
|
|
switch (interpolation) {
|
|
case 2 : // Cubic interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const float
|
|
w2 = 2.f*img.width(), h2 = 2.f*img.height(), d2 = 2.f*img.depth(),
|
|
mx = cimg::mod((float)x,w2), my = cimg::mod((float)y,h2), mz = cimg::mod((float)z,d2),
|
|
cx = mx<img.width()?mx:w2 - mx - 1,
|
|
cy = my<img.height()?my:h2 - my - 1,
|
|
cz = mz<img.depth()?mz:d2 - mz - 1;
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img._cubic_atXYZ(cx,cy,cz,c);
|
|
} break;
|
|
case 2 : // Periodic
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img._cubic_atXYZ_p((float)x,(float)y,(float)z,c);
|
|
break;
|
|
case 1 : // Neumann
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img._cubic_atXYZ((float)x,(float)y,(float)z,c);
|
|
break;
|
|
default : // Dirichlet
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img.cubic_atXYZ((float)x,(float)y,(float)z,c,(T)0);
|
|
} break;
|
|
case 1 : // Linear interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const float
|
|
w2 = 2.f*img.width(), h2 = 2.f*img.height(), d2 = 2.f*img.depth(),
|
|
mx = cimg::mod((float)x,w2), my = cimg::mod((float)y,h2), mz = cimg::mod((float)z,d2),
|
|
cx = mx<img.width()?mx:w2 - mx - 1,
|
|
cy = my<img.height()?my:h2 - my - 1,
|
|
cz = mz<img.depth()?mz:d2 - mz - 1;
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img._linear_atXYZ(cx,cy,cz,c);
|
|
} break;
|
|
case 2 : // Periodic
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img._linear_atXYZ_p((float)x,(float)y,(float)z,c);
|
|
break;
|
|
case 1 : // Neumann
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img._linear_atXYZ((float)x,(float)y,(float)z,c);
|
|
break;
|
|
default : // Dirichlet
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img.linear_atXYZ((float)x,(float)y,(float)z,c,(T)0);
|
|
} break;
|
|
default : // Nearest neighbor interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const int
|
|
w2 = 2*img.width(), h2 = 2*img.height(), d2 = 2*img.depth(),
|
|
mx = cimg::mod((int)x,w2), my = cimg::mod((int)y,h2), mz = cimg::mod((int)z,d2),
|
|
cx = mx<img.width()?mx:w2 - mx - 1,
|
|
cy = my<img.height()?my:h2 - my - 1,
|
|
cz = mz<img.depth()?mz:d2 - mz - 1;
|
|
ptrs = &img(cx,cy,cz);
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = (double)*ptrs; ptrs+=whd; }
|
|
} break;
|
|
case 2 : { // Periodic
|
|
const int
|
|
cx = (int)cimg::mod(x,(double)img._width),
|
|
cy = (int)cimg::mod(y,(double)img._height),
|
|
cz = (int)cimg::mod(z,(double)img._depth);
|
|
ptrs = &img(cx,cy,cz);
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = (double)*ptrs; ptrs+=whd; }
|
|
} break;
|
|
case 1 : { // Neumann
|
|
ptrs = &img._atXYZ((int)x,(int)y,(int)z);
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = (double)*ptrs; ptrs+=whd; }
|
|
} break;
|
|
default : // Dirichlet
|
|
if (img.containsXYZC((int)x,(int)y,(int)z)) {
|
|
ptrs = &img((int)x,(int)y,(int)z);
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = (double)*ptrs; ptrs+=whd; }
|
|
} else std::memset(ptrd,0,vsiz*sizeof(double));
|
|
}
|
|
}
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_list_Joff(_cimg_math_parser& mp) {
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
const unsigned int
|
|
ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()),
|
|
boundary_conditions = (unsigned int)_mp_arg(4),
|
|
vsiz = (unsigned int)mp.opcode[5];
|
|
const int
|
|
ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y], oz = (int)mp.mem[_cimg_mp_slot_z];
|
|
const CImg<T> &img = mp.imglist[ind];
|
|
const longT
|
|
off = img.offset(ox,oy,oz) + (longT)_mp_arg(3),
|
|
whd = (longT)img.width()*img.height()*img.depth();
|
|
const T *ptrs;
|
|
if (off>=0 && off<whd) {
|
|
ptrs = &img[off];
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; }
|
|
return cimg::type<double>::nan();
|
|
}
|
|
if (img._data) switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const longT whd2 = 2*whd, moff = cimg::mod(off,whd2);
|
|
ptrs = &img[moff<whd?moff:whd2 - moff - 1];
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; }
|
|
return cimg::type<double>::nan();
|
|
}
|
|
case 2 : // Periodic
|
|
ptrs = &img[cimg::mod(off,whd)];
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; }
|
|
return cimg::type<double>::nan();
|
|
case 1 : // Neumann
|
|
ptrs = off<0?&img[0]:&img[whd - 1];
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; }
|
|
return cimg::type<double>::nan();
|
|
default : // Dirichlet
|
|
std::memset(ptrd,0,vsiz*sizeof(double));
|
|
return cimg::type<double>::nan();
|
|
}
|
|
std::memset(ptrd,0,vsiz*sizeof(double));
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_list_Jxyz(_cimg_math_parser& mp) {
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
const unsigned int
|
|
ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()),
|
|
interpolation = (unsigned int)_mp_arg(6),
|
|
boundary_conditions = (unsigned int)_mp_arg(7),
|
|
vsiz = (unsigned int)mp.opcode[8];
|
|
const CImg<T> &img = mp.imglist[ind];
|
|
const double
|
|
ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], oz = mp.mem[_cimg_mp_slot_z],
|
|
x = ox + _mp_arg(3), y = oy + _mp_arg(4), z = oz + _mp_arg(5);
|
|
const ulongT whd = (ulongT)img._width*img._height*img._depth;
|
|
const T *ptrs;
|
|
switch (interpolation) {
|
|
case 2 : // Cubic interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const float
|
|
w2 = 2.f*img.width(), h2 = 2.f*img.height(), d2 = 2.f*img.depth(),
|
|
mx = cimg::mod((float)x,w2), my = cimg::mod((float)y,h2), mz = cimg::mod((float)z,d2),
|
|
cx = mx<img.width()?mx:w2 - mx - 1,
|
|
cy = my<img.height()?my:h2 - my - 1,
|
|
cz = mz<img.depth()?mz:d2 - mz - 1;
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img._cubic_atXYZ(cx,cy,cz,c);
|
|
} break;
|
|
case 2 : // Periodic
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img._cubic_atXYZ_p((float)x,(float)y,(float)z,c);
|
|
break;
|
|
case 1 : // Neumann
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img._cubic_atXYZ((float)x,(float)y,(float)z,c);
|
|
break;
|
|
default : // Dirichlet
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img.cubic_atXYZ((float)x,(float)y,(float)z,c,(T)0);
|
|
} break;
|
|
case 1 : // Linear interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const float
|
|
w2 = 2.f*img.width(), h2 = 2.f*img.height(), d2 = 2.f*img.depth(),
|
|
mx = cimg::mod((float)x,w2), my = cimg::mod((float)y,h2), mz = cimg::mod((float)z,d2),
|
|
cx = mx<img.width()?mx:w2 - mx - 1,
|
|
cy = my<img.height()?my:h2 - my - 1,
|
|
cz = mz<img.depth()?mz:d2 - mz - 1;
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img._linear_atXYZ(cx,cy,cz,c);
|
|
} break;
|
|
case 2 : // Periodic
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img._linear_atXYZ_p((float)x,(float)y,(float)z,c);
|
|
break;
|
|
case 1 : // Neumann
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img._linear_atXYZ((float)x,(float)y,(float)z,c);
|
|
break;
|
|
default : // Dirichlet
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img.linear_atXYZ((float)x,(float)y,(float)z,c,(T)0);
|
|
} break;
|
|
case 0 : // Nearest neighbor interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const int
|
|
w2 = 2*img.width(), h2 = 2*img.height(), d2 = 2*img.depth(),
|
|
mx = cimg::mod((int)x,w2), my = cimg::mod((int)y,h2), mz = cimg::mod((int)z,d2),
|
|
cx = mx<img.width()?mx:w2 - mx - 1,
|
|
cy = my<img.height()?my:h2 - my - 1,
|
|
cz = mz<img.depth()?mz:d2 - mz - 1;
|
|
ptrs = &img(cx,cy,cz);
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = (double)*ptrs; ptrs+=whd; }
|
|
} break;
|
|
case 2 : { // Periodic
|
|
const int
|
|
cx = (int)cimg::mod(x,(double)img._width),
|
|
cy = (int)cimg::mod(y,(double)img._height),
|
|
cz = (int)cimg::mod(z,(double)img._depth);
|
|
ptrs = &img(cx,cy,cz);
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = (double)*ptrs; ptrs+=whd; }
|
|
} break;
|
|
case 1 : { // Neumann
|
|
ptrs = &img._atXYZ((int)x,(int)y,(int)z);
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = (double)*ptrs; ptrs+=whd; }
|
|
} break;
|
|
default : // Dirichlet
|
|
if (img.containsXYZC((int)x,(int)y,(int)z)) {
|
|
ptrs = &img((int)x,(int)y,(int)z);
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = (double)*ptrs; ptrs+=whd; }
|
|
} else std::memset(ptrd,0,vsiz*sizeof(double));
|
|
}
|
|
}
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_log(_cimg_math_parser& mp) {
|
|
return std::log(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_log10(_cimg_math_parser& mp) {
|
|
return std::log10(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_log2(_cimg_math_parser& mp) {
|
|
return cimg::log2(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_logical_and(_cimg_math_parser& mp) {
|
|
const bool val_left = (bool)_mp_arg(2);
|
|
const CImg<ulongT> *const p_end = ++mp.p_code + mp.opcode[4];
|
|
if (!val_left) { mp.p_code = p_end - 1; return 0; }
|
|
const ulongT mem_right = mp.opcode[3];
|
|
for ( ; mp.p_code<p_end; ++mp.p_code) {
|
|
mp.opcode._data = mp.p_code->_data;
|
|
const ulongT target = mp.opcode[1];
|
|
mp.mem[target] = _cimg_mp_defunc(mp);
|
|
}
|
|
--mp.p_code;
|
|
return (double)(bool)mp.mem[mem_right];
|
|
}
|
|
|
|
static double mp_logical_not(_cimg_math_parser& mp) {
|
|
return (double)!_mp_arg(2);
|
|
}
|
|
|
|
static double mp_logical_or(_cimg_math_parser& mp) {
|
|
const bool val_left = (bool)_mp_arg(2);
|
|
const CImg<ulongT> *const p_end = ++mp.p_code + mp.opcode[4];
|
|
if (val_left) { mp.p_code = p_end - 1; return 1; }
|
|
const ulongT mem_right = mp.opcode[3];
|
|
for ( ; mp.p_code<p_end; ++mp.p_code) {
|
|
mp.opcode._data = mp.p_code->_data;
|
|
const ulongT target = mp.opcode[1];
|
|
mp.mem[target] = _cimg_mp_defunc(mp);
|
|
}
|
|
--mp.p_code;
|
|
return (double)(bool)mp.mem[mem_right];
|
|
}
|
|
|
|
static double mp_lowercase(_cimg_math_parser& mp) {
|
|
return cimg::lowercase(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_lt(_cimg_math_parser& mp) {
|
|
return (double)(_mp_arg(2)<_mp_arg(3));
|
|
}
|
|
|
|
static double mp_lte(_cimg_math_parser& mp) {
|
|
return (double)(_mp_arg(2)<=_mp_arg(3));
|
|
}
|
|
|
|
static double mp_map(_cimg_math_parser& mp) {
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
const double
|
|
*ptrX = &_mp_arg(2) + 1,
|
|
*ptrP = &_mp_arg(3) + 1;
|
|
const unsigned int
|
|
sizX = (unsigned int)mp.opcode[4],
|
|
sizP = (unsigned int)mp.opcode[5],
|
|
nb_channelsX = (unsigned int)mp.opcode[6],
|
|
nb_channelsP = (unsigned int)mp.opcode[7],
|
|
boundary_conditions = (unsigned int)_mp_arg(8);
|
|
CImg<doubleT>(ptrd,sizX/nb_channelsX,1,1,nb_channelsX*nb_channelsP,true) =
|
|
CImg<doubleT>(ptrX,sizX/nb_channelsX,1,1,nb_channelsX,true).
|
|
get_map(CImg<doubleT>(ptrP,sizP/nb_channelsP,1,1,nb_channelsP,true),boundary_conditions);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_matrix_eig(_cimg_math_parser& mp) {
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
const double *ptr1 = &_mp_arg(2) + 1;
|
|
const unsigned int k = (unsigned int)mp.opcode[3];
|
|
CImg<doubleT> val, vec;
|
|
CImg<doubleT>(ptr1,k,k,1,1,true).symmetric_eigen(val,vec);
|
|
CImg<doubleT>(ptrd,1,k,1,1,true) = val;
|
|
CImg<doubleT>(ptrd + k,k,k,1,1,true) = vec.get_transpose();
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_matrix_invert(_cimg_math_parser& mp) {
|
|
double *const ptrd = &_mp_arg(1) + 1;
|
|
const double *const ptr1 = &_mp_arg(2) + 1;
|
|
const unsigned int
|
|
w = (unsigned int)mp.opcode[3],
|
|
h = (unsigned int)mp.opcode[4];
|
|
const bool use_LU = (bool)_mp_arg(5);
|
|
const float lambda = (float)_mp_arg(6);
|
|
CImg<doubleT>(ptrd,h,w,1,1,true) = CImg<doubleT>(ptr1,w,h,1,1,true).get_invert(use_LU,lambda);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_matrix_mul(_cimg_math_parser& mp) {
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
const double
|
|
*ptr1 = &_mp_arg(2) + 1,
|
|
*ptr2 = &_mp_arg(3) + 1;
|
|
const unsigned int
|
|
k = (unsigned int)mp.opcode[4],
|
|
l = (unsigned int)mp.opcode[5],
|
|
m = (unsigned int)mp.opcode[6];
|
|
CImg<doubleT>(ptrd,m,k,1,1,true) = CImg<doubleT>(ptr1,l,k,1,1,true)*CImg<doubleT>(ptr2,m,l,1,1,true);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_matrix_svd(_cimg_math_parser& mp) {
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
const double *ptr1 = &_mp_arg(2) + 1;
|
|
const unsigned int
|
|
k = (unsigned int)mp.opcode[3],
|
|
l = (unsigned int)mp.opcode[4];
|
|
CImg<doubleT> U, S, V;
|
|
CImg<doubleT>(ptr1,k,l,1,1,true).SVD(U,S,V);
|
|
CImg<doubleT>(ptrd,k,l,1,1,true) = U;
|
|
CImg<doubleT>(ptrd + k*l,1,k,1,1,true) = S;
|
|
CImg<doubleT>(ptrd + k*l + k,k,k,1,1,true) = V;
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_max(_cimg_math_parser& mp) {
|
|
const unsigned int i_end = (unsigned int)mp.opcode[2];
|
|
double val = _mp_arg(3);
|
|
for (unsigned int i = 4; i<i_end; ++i) val = std::max(val,_mp_arg(i));
|
|
return val;
|
|
}
|
|
|
|
static double mp_maxabs(_cimg_math_parser& mp) {
|
|
const unsigned int i_end = (unsigned int)mp.opcode[2];
|
|
double val = _mp_arg(3), absval = cimg::abs(val);
|
|
for (unsigned int i = 4; i<i_end; ++i) {
|
|
const double _val = _mp_arg(i), _absval = cimg::abs(_val);
|
|
if (_absval>absval) { val = _val; absval = _absval; }
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static double* _mp_memcopy_double(_cimg_math_parser& mp, const unsigned int ind, const ulongT *const p_ref,
|
|
const longT siz, const long inc) {
|
|
const longT
|
|
off = *p_ref?p_ref[1] + (longT)mp.mem[(longT)p_ref[2]] + 1:ind,
|
|
eoff = off + (siz - 1)*inc;
|
|
if (off<0 || eoff>=mp.mem.width())
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'copy()': "
|
|
"Out-of-bounds variable pointer "
|
|
"(length: %ld, increment: %ld, offset start: %ld, "
|
|
"offset end: %ld, offset max: %u).",
|
|
mp.imgin.pixel_type(),siz,inc,off,eoff,mp.mem._width - 1);
|
|
return &mp.mem[off];
|
|
}
|
|
|
|
static float* _mp_memcopy_float(_cimg_math_parser& mp, const ulongT *const p_ref,
|
|
const longT siz, const long inc, const bool is_out) {
|
|
const unsigned ind = (unsigned int)p_ref[1];
|
|
const CImg<T> &img = is_out?
|
|
(ind==~0U?mp.imgout:mp.imglist[cimg::mod((int)mp.mem[ind],mp.imglist.width())]):
|
|
(ind==~0U?mp.imgin:mp.imglist[cimg::mod((int)mp.mem[ind],mp.imglist.width())]);
|
|
const bool is_relative = (bool)p_ref[2];
|
|
int ox, oy, oz, oc;
|
|
longT off = 0;
|
|
if (is_relative) {
|
|
ox = (int)mp.mem[_cimg_mp_slot_x];
|
|
oy = (int)mp.mem[_cimg_mp_slot_y];
|
|
oz = (int)mp.mem[_cimg_mp_slot_z];
|
|
oc = (int)mp.mem[_cimg_mp_slot_c];
|
|
off = img.offset(ox,oy,oz,oc);
|
|
}
|
|
if ((*p_ref)%2) {
|
|
const int
|
|
x = (int)mp.mem[p_ref[3]],
|
|
y = (int)mp.mem[p_ref[4]],
|
|
z = (int)mp.mem[p_ref[5]],
|
|
c = *p_ref==5?0:(int)mp.mem[p_ref[6]];
|
|
off+=img.offset(x,y,z,c);
|
|
} else off+=(longT)mp.mem[p_ref[3]];
|
|
const longT eoff = off + (siz - 1)*inc;
|
|
if (off<0 || eoff>=(longT)img.size())
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'copy()': "
|
|
"Out-of-bounds image pointer "
|
|
"(length: %ld, increment: %ld, offset start: %ld, "
|
|
"offset end: %ld, offset max: %lu).",
|
|
mp.imgin.pixel_type(),siz,inc,off,eoff,img.size() - 1);
|
|
return (float*)&img[off];
|
|
}
|
|
|
|
static double mp_memcopy(_cimg_math_parser& mp) {
|
|
longT siz = (longT)_mp_arg(4);
|
|
const longT inc_d = (longT)_mp_arg(5), inc_s = (longT)_mp_arg(6);
|
|
const float
|
|
_opacity = (float)_mp_arg(7),
|
|
opacity = (float)cimg::abs(_opacity),
|
|
omopacity = 1 - std::max(_opacity,0.f);
|
|
if (siz>0) {
|
|
const bool
|
|
is_doubled = mp.opcode[8]<=1,
|
|
is_doubles = mp.opcode[15]<=1;
|
|
if (is_doubled && is_doubles) { // (double*) <- (double*)
|
|
double *ptrd = _mp_memcopy_double(mp,(unsigned int)mp.opcode[2],&mp.opcode[8],siz,inc_d);
|
|
const double *ptrs = _mp_memcopy_double(mp,(unsigned int)mp.opcode[3],&mp.opcode[15],siz,inc_s);
|
|
if (inc_d==1 && inc_s==1 && _opacity>=1) {
|
|
if (ptrs + siz - 1<ptrd || ptrs>ptrd + siz - 1) std::memcpy(ptrd,ptrs,siz*sizeof(double));
|
|
else std::memmove(ptrd,ptrs,siz*sizeof(double));
|
|
} else {
|
|
if (ptrs + (siz - 1)*inc_s<ptrd || ptrs>ptrd + (siz - 1)*inc_d) {
|
|
if (_opacity>=1) while (siz-->0) { *ptrd = *ptrs; ptrd+=inc_d; ptrs+=inc_s; }
|
|
else while (siz-->0) { *ptrd = omopacity**ptrd + opacity**ptrs; ptrd+=inc_d; ptrs+=inc_s; }
|
|
} else { // Overlapping buffers
|
|
CImg<doubleT> buf((unsigned int)siz);
|
|
cimg_for(buf,ptr,double) { *ptr = *ptrs; ptrs+=inc_s; }
|
|
ptrs = buf;
|
|
if (_opacity>=1) while (siz-->0) { *ptrd = *(ptrs++); ptrd+=inc_d; }
|
|
else while (siz-->0) { *ptrd = omopacity**ptrd + opacity**(ptrs++); ptrd+=inc_d; }
|
|
}
|
|
}
|
|
} else if (is_doubled && !is_doubles) { // (double*) <- (float*)
|
|
double *ptrd = _mp_memcopy_double(mp,(unsigned int)mp.opcode[2],&mp.opcode[8],siz,inc_d);
|
|
const float *ptrs = _mp_memcopy_float(mp,&mp.opcode[15],siz,inc_s,false);
|
|
if (_opacity>=1) while (siz-->0) { *ptrd = *ptrs; ptrd+=inc_d; ptrs+=inc_s; }
|
|
else while (siz-->0) { *ptrd = omopacity**ptrd + _opacity**ptrs; ptrd+=inc_d; ptrs+=inc_s; }
|
|
} else if (!is_doubled && is_doubles) { // (float*) <- (double*)
|
|
float *ptrd = _mp_memcopy_float(mp,&mp.opcode[8],siz,inc_d,true);
|
|
const double *ptrs = _mp_memcopy_double(mp,(unsigned int)mp.opcode[3],&mp.opcode[15],siz,inc_s);
|
|
if (_opacity>=1) while (siz-->0) { *ptrd = (float)*ptrs; ptrd+=inc_d; ptrs+=inc_s; }
|
|
else while (siz-->0) { *ptrd = (float)(omopacity**ptrd + opacity**ptrs); ptrd+=inc_d; ptrs+=inc_s; }
|
|
} else { // (float*) <- (float*)
|
|
float *ptrd = _mp_memcopy_float(mp,&mp.opcode[8],siz,inc_d,true);
|
|
const float *ptrs = _mp_memcopy_float(mp,&mp.opcode[15],siz,inc_s,false);
|
|
if (inc_d==1 && inc_s==1 && _opacity>=1) {
|
|
if (ptrs + siz - 1<ptrd || ptrs>ptrd + siz - 1) std::memcpy(ptrd,ptrs,siz*sizeof(float));
|
|
else std::memmove(ptrd,ptrs,siz*sizeof(float));
|
|
} else {
|
|
if (ptrs + (siz - 1)*inc_s<ptrd || ptrs>ptrd + (siz - 1)*inc_d) {
|
|
if (_opacity>=1) while (siz-->0) { *ptrd = *ptrs; ptrd+=inc_d; ptrs+=inc_s; }
|
|
else while (siz-->0) { *ptrd = omopacity**ptrd + opacity**ptrs; ptrd+=inc_d; ptrs+=inc_s; }
|
|
} else { // Overlapping buffers
|
|
CImg<floatT> buf((unsigned int)siz);
|
|
cimg_for(buf,ptr,float) { *ptr = *ptrs; ptrs+=inc_s; }
|
|
ptrs = buf;
|
|
if (_opacity>=1) while (siz-->0) { *ptrd = *(ptrs++); ptrd+=inc_d; }
|
|
else while (siz-->0) { *ptrd = omopacity**ptrd + opacity**(ptrs++); ptrd+=inc_d; }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return _mp_arg(1);
|
|
}
|
|
|
|
static double mp_min(_cimg_math_parser& mp) {
|
|
const unsigned int i_end = (unsigned int)mp.opcode[2];
|
|
double val = _mp_arg(3);
|
|
for (unsigned int i = 4; i<i_end; ++i) val = std::min(val,_mp_arg(i));
|
|
return val;
|
|
}
|
|
|
|
static double mp_minabs(_cimg_math_parser& mp) {
|
|
const unsigned int i_end = (unsigned int)mp.opcode[2];
|
|
double val = _mp_arg(3), absval = cimg::abs(val);
|
|
for (unsigned int i = 4; i<i_end; ++i) {
|
|
const double _val = _mp_arg(i), _absval = cimg::abs(_val);
|
|
if (_absval<absval) { val = _val; absval = _absval; }
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static double mp_minus(_cimg_math_parser& mp) {
|
|
return -_mp_arg(2);
|
|
}
|
|
|
|
static double mp_median(_cimg_math_parser& mp) {
|
|
const unsigned int i_end = (unsigned int)mp.opcode[2];
|
|
switch (i_end - 3) {
|
|
case 1 : return _mp_arg(3);
|
|
case 2 : return cimg::median(_mp_arg(3),_mp_arg(4));
|
|
case 3 : return cimg::median(_mp_arg(3),_mp_arg(4),_mp_arg(5));
|
|
case 5 : return cimg::median(_mp_arg(3),_mp_arg(4),_mp_arg(5),_mp_arg(6),_mp_arg(7));
|
|
case 7 : return cimg::median(_mp_arg(3),_mp_arg(4),_mp_arg(5),_mp_arg(6),_mp_arg(7),_mp_arg(8),_mp_arg(9));
|
|
case 9 : return cimg::median(_mp_arg(3),_mp_arg(4),_mp_arg(5),_mp_arg(6),_mp_arg(7),_mp_arg(8),_mp_arg(9),
|
|
_mp_arg(10),_mp_arg(11));
|
|
case 13 : return cimg::median(_mp_arg(3),_mp_arg(4),_mp_arg(5),_mp_arg(6),_mp_arg(7),_mp_arg(8),_mp_arg(9),
|
|
_mp_arg(10),_mp_arg(11),_mp_arg(12),_mp_arg(13),_mp_arg(14),_mp_arg(15));
|
|
}
|
|
CImg<doubleT> vals(i_end - 3);
|
|
double *p = vals.data();
|
|
for (unsigned int i = 3; i<i_end; ++i) *(p++) = _mp_arg(i);
|
|
return vals.median();
|
|
}
|
|
|
|
static double mp_modulo(_cimg_math_parser& mp) {
|
|
return cimg::mod(_mp_arg(2),_mp_arg(3));
|
|
}
|
|
|
|
static double mp_mproj(_cimg_math_parser& mp) {
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
const double
|
|
*ptrS = &_mp_arg(2) + 1,
|
|
*ptrD = &_mp_arg(5) + 1;
|
|
const unsigned int
|
|
wS = (unsigned int)mp.opcode[3],
|
|
hS = (unsigned int)mp.opcode[4],
|
|
wD = (unsigned int)mp.opcode[6];
|
|
const int
|
|
method = std::max(0,(int)_mp_arg(7)),
|
|
max_iter = std::max(0,(int)_mp_arg(8));
|
|
const double
|
|
max_residual = std::max(0.,_mp_arg(9));
|
|
|
|
CImg<doubleT>(ptrd,wS,wD,1,1,true) = CImg<doubleT>(ptrS,wS,hS,1,1,false).
|
|
project_matrix(CImg<doubleT>(ptrD,wD,hS,1,1,true),method,max_iter,max_residual);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_mse(_cimg_math_parser& mp) {
|
|
const unsigned int
|
|
_siz = (unsigned int)mp.opcode[4],
|
|
siz = std::max(_siz,1U),
|
|
off = _siz?1:0;
|
|
return CImg<doubleT>(&_mp_arg(2) + off,1,siz,1,1,true).
|
|
MSE(CImg<doubleT>(&_mp_arg(3) + off,1,siz,1,1,true));
|
|
}
|
|
|
|
static double mp_mul(_cimg_math_parser& mp) {
|
|
return _mp_arg(2)*_mp_arg(3);
|
|
}
|
|
|
|
static double mp_mul2(_cimg_math_parser& mp) {
|
|
return _mp_arg(2)*_mp_arg(3)*_mp_arg(4);
|
|
}
|
|
|
|
static double mp_neq(_cimg_math_parser& mp) {
|
|
return (double)(_mp_arg(2)!=_mp_arg(3));
|
|
}
|
|
|
|
static double mp_norm0(_cimg_math_parser& mp) {
|
|
const unsigned int i_end = (unsigned int)mp.opcode[2];
|
|
switch (i_end - 3) {
|
|
case 1 : return _mp_arg(3)!=0;
|
|
case 2 : return (_mp_arg(3)!=0) + (_mp_arg(4)!=0);
|
|
}
|
|
double res = 0;
|
|
for (unsigned int i = 3; i<i_end; ++i)
|
|
res+=_mp_arg(i)==0?0:1;
|
|
return res;
|
|
}
|
|
|
|
static double mp_norm1(_cimg_math_parser& mp) {
|
|
const unsigned int i_end = (unsigned int)mp.opcode[2];
|
|
switch (i_end - 3) {
|
|
case 1 : return cimg::abs(_mp_arg(3));
|
|
case 2 : return cimg::abs(_mp_arg(3)) + cimg::abs(_mp_arg(4));
|
|
}
|
|
double res = 0;
|
|
for (unsigned int i = 3; i<i_end; ++i)
|
|
res+=cimg::abs(_mp_arg(i));
|
|
return res;
|
|
}
|
|
|
|
static double mp_norm2(_cimg_math_parser& mp) {
|
|
const unsigned int i_end = (unsigned int)mp.opcode[2];
|
|
switch (i_end - 3) {
|
|
case 1 : return cimg::abs(_mp_arg(3));
|
|
case 2 : return cimg::_hypot(_mp_arg(3),_mp_arg(4));
|
|
}
|
|
double res = 0;
|
|
for (unsigned int i = 3; i<i_end; ++i)
|
|
res+=cimg::sqr(_mp_arg(i));
|
|
return std::sqrt(res);
|
|
}
|
|
|
|
static double mp_norminf(_cimg_math_parser& mp) {
|
|
const unsigned int i_end = (unsigned int)mp.opcode[2];
|
|
switch (i_end - 3) {
|
|
case 1 : return cimg::abs(_mp_arg(3));
|
|
case 2 : return std::max(cimg::abs(_mp_arg(3)),cimg::abs(_mp_arg(4)));
|
|
}
|
|
double res = 0;
|
|
for (unsigned int i = 3; i<i_end; ++i) {
|
|
const double val = cimg::abs(_mp_arg(i));
|
|
if (val>res) res = val;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static double mp_normp(_cimg_math_parser& mp) {
|
|
const unsigned int i_end = (unsigned int)mp.opcode[2];
|
|
if (i_end==4) return cimg::abs(_mp_arg(3));
|
|
const double p = (double)mp.opcode[3];
|
|
double res = 0;
|
|
for (unsigned int i = 4; i<i_end; ++i)
|
|
res+=std::pow(cimg::abs(_mp_arg(i)),p);
|
|
res = std::pow(res,1/p);
|
|
return res>0?res:0.;
|
|
}
|
|
|
|
static double mp_permutations(_cimg_math_parser& mp) {
|
|
return cimg::permutations((int)_mp_arg(2),(int)_mp_arg(3),(bool)_mp_arg(4));
|
|
}
|
|
|
|
static double mp_polygon(_cimg_math_parser& mp) {
|
|
const unsigned int i_end = (unsigned int)mp.opcode[2];
|
|
unsigned int ind = (unsigned int)mp.opcode[3];
|
|
if (ind!=~0U) {
|
|
if (!mp.imglist.width()) return cimg::type<double>::nan();
|
|
ind = (unsigned int)cimg::mod((int)_mp_arg(3),mp.imglist.width());
|
|
}
|
|
CImg<T> &img = ind==~0U?mp.imgout:mp.imglist[ind];
|
|
bool is_invalid_arguments = i_end<=4, is_outlined = false;
|
|
if (!is_invalid_arguments) {
|
|
int nbv = (int)_mp_arg(4);
|
|
if (!nbv) is_invalid_arguments = true;
|
|
else {
|
|
if (nbv<0) { nbv = -nbv; is_outlined = true; }
|
|
CImg<intT> points(nbv,2,1,1,0);
|
|
CImg<T> color(img._spectrum,1,1,1,0);
|
|
float opacity = 1;
|
|
unsigned int i = 5, pattern=~0U;
|
|
cimg_foroff(points,k) if (i<i_end) points(k/2,k%2) = (int)cimg::round(_mp_arg(i++));
|
|
else { is_invalid_arguments = true; break; }
|
|
if (!is_invalid_arguments) {
|
|
if (i<i_end) opacity = (float)_mp_arg(i++);
|
|
if (is_outlined && i<i_end) pattern = (unsigned int)_mp_arg(i++);
|
|
cimg_forX(color,k) if (i<i_end) color[k] = (T)_mp_arg(i++);
|
|
else { color.resize(k,1,1,1,-1); break; }
|
|
color.resize(img._spectrum,1,1,1,0,2);
|
|
if (is_outlined) img.draw_polygon(points,color._data,opacity,pattern);
|
|
else img.draw_polygon(points,color._data,opacity);
|
|
}
|
|
}
|
|
}
|
|
if (is_invalid_arguments) {
|
|
CImg<doubleT> args(i_end - 4);
|
|
cimg_forX(args,k) args[k] = _mp_arg(4 + k);
|
|
if (ind==~0U)
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'polygon()': "
|
|
"Invalid arguments '%s'. ",
|
|
mp.imgin.pixel_type(),args.value_string()._data);
|
|
else
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'polygon()': "
|
|
"Invalid arguments '#%u%s%s'. ",
|
|
mp.imgin.pixel_type(),ind,args._width?",":"",args.value_string()._data);
|
|
}
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_pow(_cimg_math_parser& mp) {
|
|
const double v = _mp_arg(2), p = _mp_arg(3);
|
|
return std::pow(v,p);
|
|
}
|
|
|
|
static double mp_pow0_25(_cimg_math_parser& mp) {
|
|
const double val = _mp_arg(2);
|
|
return std::sqrt(std::sqrt(val));
|
|
}
|
|
|
|
static double mp_pow3(_cimg_math_parser& mp) {
|
|
const double val = _mp_arg(2);
|
|
return val*val*val;
|
|
}
|
|
|
|
static double mp_pow4(_cimg_math_parser& mp) {
|
|
const double val = _mp_arg(2);
|
|
return val*val*val*val;
|
|
}
|
|
|
|
static double mp_print(_cimg_math_parser& mp) {
|
|
const double val = _mp_arg(1);
|
|
const bool print_char = (bool)mp.opcode[3];
|
|
cimg_pragma_openmp(critical(mp_print))
|
|
{
|
|
CImg<charT> _expr(mp.opcode[2] - 4);
|
|
const ulongT *ptrs = mp.opcode._data + 4;
|
|
cimg_for(_expr,ptrd,char) *ptrd = (char)*(ptrs++);
|
|
cimg::strellipsize(_expr);
|
|
cimg::mutex(6);
|
|
if (print_char)
|
|
std::fprintf(cimg::output(),"\n[" cimg_appname "_math_parser] %s = %.17g = '%c'",
|
|
_expr._data,val,(int)val);
|
|
else
|
|
std::fprintf(cimg::output(),"\n[" cimg_appname "_math_parser] %s = %.17g",
|
|
_expr._data,val);
|
|
std::fflush(cimg::output());
|
|
cimg::mutex(6,0);
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static double mp_prod(_cimg_math_parser& mp) {
|
|
const unsigned int i_end = (unsigned int)mp.opcode[2];
|
|
double val = _mp_arg(3);
|
|
for (unsigned int i = 4; i<i_end; ++i) val*=_mp_arg(i);
|
|
return val;
|
|
}
|
|
|
|
static double mp_rad2deg(_cimg_math_parser& mp) {
|
|
return _mp_arg(2)*180/cimg::PI;
|
|
}
|
|
|
|
static double mp_repeat(_cimg_math_parser& mp) {
|
|
const double nb_it = _mp_arg(2);
|
|
double
|
|
*const ptrc = mp.opcode[3]!=~0U?&_mp_arg(3):0,
|
|
*const ptrs = &_mp_arg(1);
|
|
const CImg<ulongT>
|
|
*const p_body = ++mp.p_code,
|
|
*const p_end = p_body + mp.opcode[4];
|
|
|
|
if (nb_it>0) {
|
|
const unsigned int _break_type = mp.break_type;
|
|
mp.break_type = 0;
|
|
|
|
double it = 0;
|
|
if (ptrc) { // Version with loop variable (3 arguments)
|
|
while (it<nb_it) {
|
|
*ptrc = it;
|
|
for (mp.p_code = p_body; mp.p_code<p_end; ++mp.p_code) {
|
|
mp.opcode._data = mp.p_code->_data;
|
|
const ulongT target = mp.opcode[1];
|
|
mp.mem[target] = _cimg_mp_defunc(mp);
|
|
}
|
|
if (mp.break_type==1) break; else if (mp.break_type==2) mp.break_type = 0;
|
|
++it;
|
|
}
|
|
*ptrc = it;
|
|
} else // Version without loop variable (2 arguments)
|
|
while (it<nb_it) {
|
|
for (mp.p_code = p_body; mp.p_code<p_end; ++mp.p_code) {
|
|
mp.opcode._data = mp.p_code->_data;
|
|
const ulongT target = mp.opcode[1];
|
|
mp.mem[target] = _cimg_mp_defunc(mp);
|
|
}
|
|
if (mp.break_type==1) break; else if (mp.break_type==2) mp.break_type = 0;
|
|
++it;
|
|
}
|
|
mp.break_type = _break_type;
|
|
}
|
|
|
|
mp.p_code = p_end - 1;
|
|
return *ptrs;
|
|
}
|
|
|
|
static double mp_rol(_cimg_math_parser& mp) {
|
|
return cimg::rol(_mp_arg(2),(unsigned int)_mp_arg(3));
|
|
}
|
|
|
|
static double mp_ror(_cimg_math_parser& mp) {
|
|
return cimg::ror(_mp_arg(2),(unsigned int)_mp_arg(3));
|
|
}
|
|
|
|
static double mp_rot2d(_cimg_math_parser& mp) {
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
const float
|
|
theta = (float)_mp_arg(2),
|
|
ca = std::cos(theta),
|
|
sa = std::sin(theta);
|
|
*(ptrd++) = ca;
|
|
*(ptrd++) = -sa;
|
|
*(ptrd++) = sa;
|
|
*ptrd = ca;
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_rot3d(_cimg_math_parser& mp) {
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
const float
|
|
x = (float)_mp_arg(2),
|
|
y = (float)_mp_arg(3),
|
|
z = (float)_mp_arg(4),
|
|
theta = (float)_mp_arg(5);
|
|
CImg<doubleT>(ptrd,3,3,1,1,true) = CImg<doubleT>::rotation_matrix(x,y,z,theta*180/cimg::PI);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_round(_cimg_math_parser& mp) {
|
|
return cimg::round(_mp_arg(2),_mp_arg(3),(int)_mp_arg(4));
|
|
}
|
|
|
|
static double mp_self_add(_cimg_math_parser& mp) {
|
|
return _mp_arg(1)+=_mp_arg(2);
|
|
}
|
|
|
|
static double mp_self_bitwise_and(_cimg_math_parser& mp) {
|
|
double &val = _mp_arg(1);
|
|
return val = (double)((longT)val & (longT)_mp_arg(2));
|
|
}
|
|
|
|
static double mp_self_bitwise_left_shift(_cimg_math_parser& mp) {
|
|
double &val = _mp_arg(1);
|
|
return val = (double)((longT)val<<(unsigned int)_mp_arg(2));
|
|
}
|
|
|
|
static double mp_self_bitwise_or(_cimg_math_parser& mp) {
|
|
double &val = _mp_arg(1);
|
|
return val = (double)((longT)val | (longT)_mp_arg(2));
|
|
}
|
|
|
|
static double mp_self_bitwise_right_shift(_cimg_math_parser& mp) {
|
|
double &val = _mp_arg(1);
|
|
return val = (double)((longT)val>>(unsigned int)_mp_arg(2));
|
|
}
|
|
|
|
static double mp_self_decrement(_cimg_math_parser& mp) {
|
|
return --_mp_arg(1);
|
|
}
|
|
|
|
static double mp_self_increment(_cimg_math_parser& mp) {
|
|
return ++_mp_arg(1);
|
|
}
|
|
|
|
static double mp_self_map_vector_s(_cimg_math_parser& mp) { // Vector += scalar
|
|
unsigned int
|
|
ptrd = (unsigned int)mp.opcode[1] + 1,
|
|
siz = (unsigned int)mp.opcode[2];
|
|
mp_func op = (mp_func)mp.opcode[3];
|
|
CImg<ulongT> l_opcode(1,3);
|
|
l_opcode[2] = mp.opcode[4]; // Scalar argument
|
|
l_opcode.swap(mp.opcode);
|
|
ulongT &target = mp.opcode[1];
|
|
while (siz-->0) { target = ptrd++; (*op)(mp); }
|
|
l_opcode.swap(mp.opcode);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_self_map_vector_v(_cimg_math_parser& mp) { // Vector += vector
|
|
unsigned int
|
|
ptrd = (unsigned int)mp.opcode[1] + 1,
|
|
siz = (unsigned int)mp.opcode[2],
|
|
ptrs = (unsigned int)mp.opcode[4] + 1;
|
|
mp_func op = (mp_func)mp.opcode[3];
|
|
CImg<ulongT> l_opcode(1,4);
|
|
l_opcode.swap(mp.opcode);
|
|
ulongT &target = mp.opcode[1], &argument = mp.opcode[2];
|
|
while (siz-->0) { target = ptrd++; argument = ptrs++; (*op)(mp); }
|
|
l_opcode.swap(mp.opcode);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_self_mul(_cimg_math_parser& mp) {
|
|
return _mp_arg(1)*=_mp_arg(2);
|
|
}
|
|
|
|
static double mp_self_div(_cimg_math_parser& mp) {
|
|
return _mp_arg(1)/=_mp_arg(2);
|
|
}
|
|
|
|
static double mp_self_modulo(_cimg_math_parser& mp) {
|
|
double &val = _mp_arg(1);
|
|
return val = cimg::mod(val,_mp_arg(2));
|
|
}
|
|
|
|
static double mp_self_pow(_cimg_math_parser& mp) {
|
|
double &val = _mp_arg(1);
|
|
return val = std::pow(val,_mp_arg(2));
|
|
}
|
|
|
|
static double mp_self_sub(_cimg_math_parser& mp) {
|
|
return _mp_arg(1)-=_mp_arg(2);
|
|
}
|
|
|
|
#ifdef cimg_mp_func_set
|
|
static double mp_set(_cimg_math_parser& mp) {
|
|
const double *ptrs = &_mp_arg(1);
|
|
double *ptrd = &_mp_arg(3) + 1;
|
|
const unsigned int
|
|
sizs = (unsigned int)mp.opcode[2],
|
|
sizd = (unsigned int)mp.opcode[4];
|
|
CImg<charT> sd(sizd + 1);
|
|
cimg_for_inX(sd,0,sd.width() - 1,i) sd[i] = (char)ptrd[i];
|
|
sd.back() = 0;
|
|
if (sizs) cimg_mp_func_set(ptrs + 1,sizs,sd._data);
|
|
else cimg_mp_func_set(ptrs,0,sd._data);
|
|
return *ptrs;
|
|
}
|
|
#endif
|
|
|
|
static double mp_set_ioff(_cimg_math_parser& mp) {
|
|
CImg<T> &img = mp.imgout;
|
|
const longT
|
|
off = (longT)_mp_arg(2),
|
|
whds = (longT)img.size();
|
|
const double val = _mp_arg(1);
|
|
if (off>=0 && off<whds) img[off] = (T)val;
|
|
return val;
|
|
}
|
|
|
|
static double mp_set_ixyzc(_cimg_math_parser& mp) {
|
|
CImg<T> &img = mp.imgout;
|
|
const int
|
|
x = (int)_mp_arg(2), y = (int)_mp_arg(3),
|
|
z = (int)_mp_arg(4), c = (int)_mp_arg(5);
|
|
const double val = _mp_arg(1);
|
|
if (x>=0 && x<img.width() && y>=0 && y<img.height() &&
|
|
z>=0 && z<img.depth() && c>=0 && c<img.spectrum())
|
|
img(x,y,z,c) = (T)val;
|
|
return val;
|
|
}
|
|
|
|
static double mp_set_joff(_cimg_math_parser& mp) {
|
|
CImg<T> &img = mp.imgout;
|
|
const int
|
|
ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y],
|
|
oz = (int)mp.mem[_cimg_mp_slot_z], oc = (int)mp.mem[_cimg_mp_slot_c];
|
|
const longT
|
|
off = img.offset(ox,oy,oz,oc) + (longT)_mp_arg(2),
|
|
whds = (longT)img.size();
|
|
const double val = _mp_arg(1);
|
|
if (off>=0 && off<whds) img[off] = (T)val;
|
|
return val;
|
|
}
|
|
|
|
static double mp_set_jxyzc(_cimg_math_parser& mp) {
|
|
CImg<T> &img = mp.imgout;
|
|
const double
|
|
ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y],
|
|
oz = mp.mem[_cimg_mp_slot_z], oc = mp.mem[_cimg_mp_slot_c];
|
|
const int
|
|
x = (int)(ox + _mp_arg(2)), y = (int)(oy + _mp_arg(3)),
|
|
z = (int)(oz + _mp_arg(4)), c = (int)(oc + _mp_arg(5));
|
|
const double val = _mp_arg(1);
|
|
if (x>=0 && x<img.width() && y>=0 && y<img.height() &&
|
|
z>=0 && z<img.depth() && c>=0 && c<img.spectrum())
|
|
img(x,y,z,c) = (T)val;
|
|
return val;
|
|
}
|
|
|
|
static double mp_set_Ioff_s(_cimg_math_parser& mp) {
|
|
CImg<T> &img = mp.imgout;
|
|
const longT
|
|
off = (longT)_mp_arg(2),
|
|
whd = (longT)img.width()*img.height()*img.depth();
|
|
const T val = (T)_mp_arg(1);
|
|
if (off>=0 && off<whd) {
|
|
T *ptrd = &img[off];
|
|
cimg_forC(img,c) { *ptrd = val; ptrd+=whd; }
|
|
}
|
|
return _mp_arg(1);
|
|
}
|
|
|
|
static double mp_set_Ioff_v(_cimg_math_parser& mp) {
|
|
CImg<T> &img = mp.imgout;
|
|
const longT
|
|
off = (longT)_mp_arg(2),
|
|
whd = (longT)img.width()*img.height()*img.depth();
|
|
const double *ptrs = &_mp_arg(1) + 1;
|
|
if (off>=0 && off<whd) {
|
|
const unsigned int vsiz = (unsigned int)mp.opcode[3];
|
|
T *ptrd = &img[off];
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *ptrd = (T)*(ptrs++); ptrd+=whd; }
|
|
}
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_set_Ixyz_s(_cimg_math_parser& mp) {
|
|
CImg<T> &img = mp.imgout;
|
|
const int
|
|
x = (int)_mp_arg(2),
|
|
y = (int)_mp_arg(3),
|
|
z = (int)_mp_arg(4);
|
|
const T val = (T)_mp_arg(1);
|
|
if (x>=0 && x<img.width() && y>=0 && y<img.height() && z>=0 && z<img.depth()) {
|
|
T *ptrd = &img(x,y,z);
|
|
const ulongT whd = (ulongT)img._width*img._height*img._depth;
|
|
cimg_forC(img,c) { *ptrd = val; ptrd+=whd; }
|
|
}
|
|
return _mp_arg(1);
|
|
}
|
|
|
|
static double mp_set_Ixyz_v(_cimg_math_parser& mp) {
|
|
CImg<T> &img = mp.imgout;
|
|
const int
|
|
x = (int)_mp_arg(2),
|
|
y = (int)_mp_arg(3),
|
|
z = (int)_mp_arg(4);
|
|
const double *ptrs = &_mp_arg(1) + 1;
|
|
if (x>=0 && x<img.width() && y>=0 && y<img.height() && z>=0 && z<img.depth()) {
|
|
const unsigned int vsiz = (unsigned int)mp.opcode[5];
|
|
T *ptrd = &img(x,y,z);
|
|
const ulongT whd = (ulongT)img._width*img._height*img._depth;
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *ptrd = (T)*(ptrs++); ptrd+=whd; }
|
|
}
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_set_Joff_s(_cimg_math_parser& mp) {
|
|
CImg<T> &img = mp.imgout;
|
|
const int
|
|
ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y],
|
|
oz = (int)mp.mem[_cimg_mp_slot_z], oc = (int)mp.mem[_cimg_mp_slot_c];
|
|
const longT
|
|
off = img.offset(ox,oy,oz,oc) + (longT)_mp_arg(2),
|
|
whd = (longT)img.width()*img.height()*img.depth();
|
|
const T val = (T)_mp_arg(1);
|
|
if (off>=0 && off<whd) {
|
|
T *ptrd = &img[off];
|
|
cimg_forC(img,c) { *ptrd = val; ptrd+=whd; }
|
|
}
|
|
return _mp_arg(1);
|
|
}
|
|
|
|
static double mp_set_Joff_v(_cimg_math_parser& mp) {
|
|
CImg<T> &img = mp.imgout;
|
|
const int
|
|
ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y],
|
|
oz = (int)mp.mem[_cimg_mp_slot_z], oc = (int)mp.mem[_cimg_mp_slot_c];
|
|
const longT
|
|
off = img.offset(ox,oy,oz,oc) + (longT)_mp_arg(2),
|
|
whd = (longT)img.width()*img.height()*img.depth();
|
|
const double *ptrs = &_mp_arg(1) + 1;
|
|
if (off>=0 && off<whd) {
|
|
const unsigned int vsiz = (unsigned int)mp.opcode[3];
|
|
T *ptrd = &img[off];
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *ptrd = (T)*(ptrs++); ptrd+=whd; }
|
|
}
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_set_Jxyz_s(_cimg_math_parser& mp) {
|
|
CImg<T> &img = mp.imgout;
|
|
const double ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], oz = mp.mem[_cimg_mp_slot_z];
|
|
const int
|
|
x = (int)(ox + _mp_arg(2)),
|
|
y = (int)(oy + _mp_arg(3)),
|
|
z = (int)(oz + _mp_arg(4));
|
|
const T val = (T)_mp_arg(1);
|
|
if (x>=0 && x<img.width() && y>=0 && y<img.height() && z>=0 && z<img.depth()) {
|
|
T *ptrd = &img(x,y,z);
|
|
const ulongT whd = (ulongT)img._width*img._height*img._depth;
|
|
cimg_forC(img,c) { *ptrd = val; ptrd+=whd; }
|
|
}
|
|
return _mp_arg(1);
|
|
}
|
|
|
|
static double mp_set_Jxyz_v(_cimg_math_parser& mp) {
|
|
CImg<T> &img = mp.imgout;
|
|
const double ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], oz = mp.mem[_cimg_mp_slot_z];
|
|
const int
|
|
x = (int)(ox + _mp_arg(2)),
|
|
y = (int)(oy + _mp_arg(3)),
|
|
z = (int)(oz + _mp_arg(4));
|
|
const double *ptrs = &_mp_arg(1) + 1;
|
|
if (x>=0 && x<img.width() && y>=0 && y<img.height() && z>=0 && z<img.depth()) {
|
|
const unsigned int vsiz = (unsigned int)mp.opcode[5];
|
|
T *ptrd = &img(x,y,z);
|
|
const ulongT whd = (ulongT)img._width*img._height*img._depth;
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *ptrd = (T)*(ptrs++); ptrd+=whd; }
|
|
}
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_shift(_cimg_math_parser& mp) {
|
|
double *const ptrd = &_mp_arg(1) + 1;
|
|
const double *const ptrs = &_mp_arg(2) + 1;
|
|
const unsigned int siz = (unsigned int)mp.opcode[3];
|
|
const int
|
|
shift = (int)_mp_arg(4),
|
|
boundary_conditions = (int)_mp_arg(5);
|
|
CImg<doubleT>(ptrd,siz,1,1,1,true) = CImg<doubleT>(ptrs,siz,1,1,1,true).shift(shift,0,0,0,boundary_conditions);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_sign(_cimg_math_parser& mp) {
|
|
return cimg::sign(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_sin(_cimg_math_parser& mp) {
|
|
return std::sin(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_sinc(_cimg_math_parser& mp) {
|
|
return cimg::sinc(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_sinh(_cimg_math_parser& mp) {
|
|
return std::sinh(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_solve(_cimg_math_parser& mp) {
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
const double
|
|
*ptr1 = &_mp_arg(2) + 1,
|
|
*ptr2 = &_mp_arg(3) + 1;
|
|
const unsigned int
|
|
k = (unsigned int)mp.opcode[4],
|
|
l = (unsigned int)mp.opcode[5],
|
|
m = (unsigned int)mp.opcode[6];
|
|
const bool use_LU = (bool)_mp_arg(7);
|
|
CImg<doubleT>(ptrd,m,k,1,1,true) = CImg<doubleT>(ptr2,m,l,1,1,false).
|
|
solve(CImg<doubleT>(ptr1,k,l,1,1,true),use_LU);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_sort(_cimg_math_parser& mp) {
|
|
double *const ptrd = &_mp_arg(1) + 1;
|
|
const double *const ptrs = &_mp_arg(2) + 1;
|
|
const bool is_increasing = (bool)_mp_arg(4);
|
|
const unsigned int
|
|
siz = (unsigned int)mp.opcode[3],
|
|
nb_elts = mp.opcode[5]==~0U?siz:(unsigned int)_mp_arg(5),
|
|
siz_elt = (unsigned int)_mp_arg(6);
|
|
const ulongT sn = siz_elt*nb_elts;
|
|
if (sn>siz || siz_elt<1)
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'sort()': "
|
|
"Arguments 'nb_elts=%g' and 'siz_elt=%g' are invalid "
|
|
"for sorting a vector of size %u.",
|
|
mp.imgin.pixel_type(),_mp_arg(5),_mp_arg(6),siz);
|
|
CImg<doubleT>(ptrd,siz_elt,nb_elts,1,1,true) = CImg<doubleT>(ptrs,siz_elt,nb_elts,1,1,true).
|
|
get_sort(is_increasing,siz_elt>1?'y':0);
|
|
if (sn<siz) CImg<doubleT>(ptrd + sn,siz - sn,1,1,1,true) = CImg<doubleT>(ptrs + sn,siz - sn,1,1,1,true);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_sqr(_cimg_math_parser& mp) {
|
|
return cimg::sqr(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_sqrt(_cimg_math_parser& mp) {
|
|
return std::sqrt(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_srand(_cimg_math_parser& mp) {
|
|
mp.rng = (cimg_uint64)_mp_arg(2);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_srand0(_cimg_math_parser& mp) {
|
|
cimg::srand(&mp.rng);
|
|
|
|
#if cimg_use_openmp!=0
|
|
mp.rng+=omp_get_thread_num();
|
|
#endif
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_std(_cimg_math_parser& mp) {
|
|
const unsigned int i_end = (unsigned int)mp.opcode[2];
|
|
CImg<doubleT> vals(i_end - 3);
|
|
double *p = vals.data();
|
|
for (unsigned int i = 3; i<i_end; ++i) *(p++) = _mp_arg(i);
|
|
return std::sqrt(vals.variance());
|
|
}
|
|
|
|
static double mp_string_init(_cimg_math_parser& mp) {
|
|
const unsigned char *ptrs = (unsigned char*)&mp.opcode[3];
|
|
unsigned int
|
|
ptrd = (unsigned int)mp.opcode[1] + 1,
|
|
siz = (unsigned int)mp.opcode[2];
|
|
while (siz-->0) mp.mem[ptrd++] = (double)*(ptrs++);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
#ifdef cimg_mp_func_store
|
|
static double mp_store(_cimg_math_parser& mp) {
|
|
const double
|
|
*ptr1 = &_mp_arg(2),
|
|
*ptr2 = &_mp_arg(4) + 1;
|
|
const unsigned int
|
|
siz1 = (unsigned int)mp.opcode[3],
|
|
siz2 = (unsigned int)mp.opcode[5];
|
|
const int
|
|
w = (int)_mp_arg(6),
|
|
h = (int)_mp_arg(7),
|
|
d = (int)_mp_arg(8),
|
|
s = (int)_mp_arg(9);
|
|
|
|
const bool is_compressed = (bool)_mp_arg(10);
|
|
if (w<0 || h<0 || d<0 || s<0)
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'store()': "
|
|
"Specified image dimensions (%d,%d,%d,%d) are invalid.",
|
|
pixel_type(),w,h,d,s);
|
|
CImg<charT> ss(siz2 + 1);
|
|
cimg_for_inX(ss,0,ss.width() - 1,i) ss[i] = (char)ptr2[i];
|
|
ss.back() = 0;
|
|
if (siz1) cimg_mp_func_store(ptr1 + 1,siz1,
|
|
(unsigned int)w,(unsigned int)h,(unsigned int)d,(unsigned int)s,
|
|
is_compressed,ss._data);
|
|
else cimg_mp_func_store(ptr1,1,(unsigned int)w,(unsigned int)h,(unsigned int)d,(unsigned int)s,
|
|
is_compressed,ss._data);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
#endif
|
|
|
|
static double mp_s2v(_cimg_math_parser& mp) {
|
|
const double *ptrs = &_mp_arg(2);
|
|
const ulongT siz = (ulongT)mp.opcode[3];
|
|
longT ind = (longT)_mp_arg(4);
|
|
const bool is_strict = (bool)_mp_arg(5);
|
|
double val = cimg::type<double>::nan();
|
|
if (ind<0 || ind>=(longT)siz) return val;
|
|
if (!siz) return *ptrs>='0' && *ptrs<='9'?*ptrs - '0':val;
|
|
|
|
CImg<charT> ss(siz + 1 - ind);
|
|
ptrs+=1 + ind;
|
|
cimg_forX(ss,i) ss[i] = (char)ptrs[i];
|
|
ss.back() = 0;
|
|
|
|
const char *s = ss._data;
|
|
while (*s && *s<=32) ++s;
|
|
const bool is_negative = *s=='-';
|
|
if (is_negative || *s=='+') ++s;
|
|
int err = 0;
|
|
char sep;
|
|
|
|
if (*s=='0' && (s[1]=='x' || s[1]=='X') && s[2]>32) { // Hexadecimal number
|
|
unsigned int ival;
|
|
err = cimg_sscanf(s + 2,"%x%c",&ival,&sep);
|
|
if (err>0) val = (double)ival;
|
|
} else if (*s>32) { // Decimal number
|
|
err = cimg_sscanf(s,"%lf%c",&val,&sep);
|
|
#if cimg_OS==2
|
|
// Check for +/-NaN and +/-inf as Microsoft's sscanf() version is not able
|
|
// to read those particular values.
|
|
if (!err && (*s=='i' || *s=='I' || *s=='n' || *s=='N')) {
|
|
if (!cimg::strncasecmp(s,"inf",3)) { val = cimg::type<double>::inf(); err = 1 + (s[3]!=0); }
|
|
else if (!cimg::strncasecmp(s,"nan",3)) { val = cimg::type<double>::nan(); err = 1 + (s[3]!=0); }
|
|
}
|
|
#endif
|
|
}
|
|
if (err<=0 || (is_strict && err!=1)) return cimg::type<double>::nan();
|
|
if (is_negative) val = -val;
|
|
return val;
|
|
}
|
|
|
|
static double mp_string(_cimg_math_parser& mp) {
|
|
double *const ptrd = &_mp_arg(1) + 1;
|
|
const unsigned int nb_args = (unsigned int)(mp.opcode[3] - 3)/2;
|
|
CImgList<charT> _str;
|
|
CImg<charT> it;
|
|
for (unsigned int n = 0; n<nb_args; ++n) {
|
|
const unsigned int siz = (unsigned int)mp.opcode[5 + 2*n];
|
|
if (siz) { // Vector argument -> string
|
|
const double *ptr = &_mp_arg(4 + 2*n) + 1;
|
|
unsigned int l = 0;
|
|
while (l<siz && ptr[l]) ++l;
|
|
CImg<doubleT>(ptr,l,1,1,1,true).move_to(_str);
|
|
} else { // Scalar argument -> number
|
|
it.assign(24);
|
|
cimg_snprintf(it,it._width,"%.17g",_mp_arg(4 + 2*n));
|
|
CImg<charT>::string(it,false,true).move_to(_str);
|
|
}
|
|
}
|
|
const CImg<charT> str = _str>'x';
|
|
const unsigned int sizd = std::min(str._width,(unsigned int)mp.opcode[2]);
|
|
std::memset(ptrd,0,mp.opcode[2]*sizeof(double));
|
|
for (unsigned int k = 0; k<sizd; ++k) ptrd[k] = (double)str[k];
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_sub(_cimg_math_parser& mp) {
|
|
return _mp_arg(2) - _mp_arg(3);
|
|
}
|
|
|
|
static double mp_sum(_cimg_math_parser& mp) {
|
|
const unsigned int i_end = (unsigned int)mp.opcode[2];
|
|
double val = _mp_arg(3);
|
|
for (unsigned int i = 4; i<i_end; ++i) val+=_mp_arg(i);
|
|
return val;
|
|
}
|
|
|
|
static double mp_swap(_cimg_math_parser& mp) {
|
|
const unsigned int siz = (unsigned int)mp.opcode[3];
|
|
if (!siz) { // Scalar
|
|
double &arg1 = _mp_arg(1), &arg2 = _mp_arg(2);
|
|
cimg::swap(arg1,arg2);
|
|
} else { // Vector
|
|
double *const ptr1 = &_mp_arg(1) + 1, *const ptr2 = &_mp_arg(2) + 1;
|
|
for (unsigned int k = 0; k<siz; ++k) cimg::swap(ptr1[k],ptr2[k]);
|
|
}
|
|
return _mp_arg(1);
|
|
}
|
|
|
|
static double mp_tan(_cimg_math_parser& mp) {
|
|
return std::tan(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_tanh(_cimg_math_parser& mp) {
|
|
return std::tanh(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_trace(_cimg_math_parser& mp) {
|
|
const double *ptrs = &_mp_arg(2) + 1;
|
|
const unsigned int k = (unsigned int)mp.opcode[3];
|
|
return CImg<doubleT>(ptrs,k,k,1,1,true).trace();
|
|
}
|
|
|
|
static double mp_transpose(_cimg_math_parser& mp) {
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
const double *ptrs = &_mp_arg(2) + 1;
|
|
const unsigned int
|
|
k = (unsigned int)mp.opcode[3],
|
|
l = (unsigned int)mp.opcode[4];
|
|
CImg<doubleT>(ptrd,l,k,1,1,true) = CImg<doubleT>(ptrs,k,l,1,1,true).get_transpose();
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_u(_cimg_math_parser& mp) {
|
|
return cimg::rand(_mp_arg(2),_mp_arg(3),&mp.rng);
|
|
}
|
|
|
|
static double mp_u_ext(_cimg_math_parser& mp) { // Extended version with extremum control
|
|
const double eps = 1e-5;
|
|
const bool
|
|
include_min = (bool)_mp_arg(4),
|
|
include_max = (bool)_mp_arg(5);
|
|
double
|
|
m = _mp_arg(2),
|
|
M = _mp_arg(3);
|
|
if (m>M) cimg::swap(m,M);
|
|
if (!include_min) m = m>0?m*(1 + eps):m<0?m*(1 - eps):eps;
|
|
if (!include_max) M = M>0?M*(1 - eps):M<0?M*(1 + eps):-eps;
|
|
return cimg::rand(m,M,&mp.rng);
|
|
}
|
|
|
|
static double mp_ui2f(_cimg_math_parser& mp) {
|
|
return (double)cimg::uint2float((unsigned int)_mp_arg(2));
|
|
}
|
|
|
|
static double mp_uppercase(_cimg_math_parser& mp) {
|
|
return cimg::uppercase(_mp_arg(2));
|
|
}
|
|
|
|
static double mp_var(_cimg_math_parser& mp) {
|
|
const unsigned int i_end = (unsigned int)mp.opcode[2];
|
|
CImg<doubleT> vals(i_end - 3);
|
|
double *p = vals.data();
|
|
for (unsigned int i = 3; i<i_end; ++i) *(p++) = _mp_arg(i);
|
|
return vals.variance();
|
|
}
|
|
|
|
static double mp_vector_copy(_cimg_math_parser& mp) {
|
|
std::memcpy(&_mp_arg(1) + 1,&_mp_arg(2) + 1,sizeof(double)*mp.opcode[3]);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_vector_crop(_cimg_math_parser& mp) {
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
const double *ptrs = &_mp_arg(2) + 1;
|
|
const longT
|
|
length = (longT)mp.opcode[3],
|
|
start = (longT)_mp_arg(4),
|
|
sublength = (longT)mp.opcode[5],
|
|
step = (longT)_mp_arg(6);
|
|
if (start<0 || start + step*(sublength-1)>=length)
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Value accessor '[]': "
|
|
"Out-of-bounds sub-vector request "
|
|
"(length: %ld, start: %ld, sub-length: %ld, step: %ld).",
|
|
mp.imgin.pixel_type(),length,start,sublength,step);
|
|
ptrs+=start;
|
|
if (step==1) std::memcpy(ptrd,ptrs,sublength*sizeof(double));
|
|
else for (longT k = 0; k<sublength; ++k) { *(ptrd++) = *ptrs; ptrs+=step; }
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_vector_crop_ext(_cimg_math_parser& mp) {
|
|
double *const ptrd = &_mp_arg(1) + 1;
|
|
const double *const ptrs = &_mp_arg(2) + 1;
|
|
const unsigned int
|
|
w = (unsigned int)mp.opcode[3],
|
|
h = (unsigned int)mp.opcode[4],
|
|
d = (unsigned int)mp.opcode[5],
|
|
s = (unsigned int)mp.opcode[6],
|
|
dx = (unsigned int)mp.opcode[11],
|
|
dy = (unsigned int)mp.opcode[12],
|
|
dz = (unsigned int)mp.opcode[13],
|
|
dc = (unsigned int)mp.opcode[14],
|
|
boundary_conditions = (int)_mp_arg(15);
|
|
const int x = (int)_mp_arg(7), y = (int)_mp_arg(8), z = (int)_mp_arg(9), c = (int)_mp_arg(10);
|
|
CImg<doubleT>(ptrd,dx,dy,dz,dc,true) = CImg<doubleT>(ptrs,w,h,d,s,true).
|
|
get_crop(x,y,z,c,x + dx - 1,y + dy - 1,z + dz - 1,c + dc - 1,boundary_conditions);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_vector_draw(_cimg_math_parser& mp) {
|
|
double *const ptrd = &_mp_arg(1) + 1;
|
|
const double *const ptrs = &_mp_arg(7) + 1;
|
|
const unsigned int
|
|
sizD = (unsigned int)mp.opcode[2],
|
|
sizS = (unsigned int)mp.opcode[8];
|
|
const int
|
|
w = (int)_mp_arg(3), h = (int)_mp_arg(4), d = (int)_mp_arg(5), s = (int)_mp_arg(6),
|
|
x = (int)_mp_arg(9), y = (int)_mp_arg(10), z = (int)_mp_arg(11), c = (int)_mp_arg(12);
|
|
int dx = (int)mp.opcode[13], dy = (int)mp.opcode[14], dz = (int)mp.opcode[15], dc = (int)mp.opcode[16];
|
|
dx = (unsigned int)dx==~0U?w:(int)_mp_arg(13);
|
|
dy = (unsigned int)dy==~0U?h:(int)_mp_arg(14);
|
|
dz = (unsigned int)dz==~0U?d:(int)_mp_arg(15);
|
|
dc = (unsigned int)dc==~0U?s:(int)_mp_arg(16);
|
|
|
|
if (w<=0 || h<=0 || d<=0 || s<=0)
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'draw()': "
|
|
"Invalid specified target vector geometry (%d,%d,%d,%d).",
|
|
mp.imgin.pixel_type(),w,h,d,s);
|
|
if (sizD<(ulongT)w*h*d*s)
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'draw()': "
|
|
"Target vector (%lu values) and its specified target geometry (%d,%d,%d,%d) "
|
|
"(%lu values) do not match.",
|
|
mp.imgin.pixel_type(),sizD,w,h,d,s,(ulongT)w*h*d*s);
|
|
if (dx<=0 || dy<=0 || dz<=0 || dc<=0)
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'draw()': "
|
|
"Invalid specified sprite geometry (%d,%d,%d,%d).",
|
|
mp.imgin.pixel_type(),dx,dy,dz,dc);
|
|
if (sizS<(ulongT)dx*dy*dz*dc)
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'draw()': "
|
|
"Sprite vector (%lu values) and its specified sprite geometry (%d,%d,%d,%d) "
|
|
"(%lu values) do not match.",
|
|
mp.imgin.pixel_type(),sizS,dx,dy,dz,dc,(ulongT)dx*dy*dz*dc);
|
|
|
|
CImg<doubleT> D(ptrd,w,h,d,s,true);
|
|
const CImg<doubleT> S(ptrs,dx,dy,dz,dc,true);
|
|
const float opacity = (float)_mp_arg(17);
|
|
|
|
if (mp.opcode[18]!=~0U) { // Opacity mask specified
|
|
const ulongT sizM = mp.opcode[19];
|
|
if (sizM<(ulongT)dx*dy*dz)
|
|
throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'draw()': "
|
|
"Mask vector (%lu values) and specified sprite geometry (%u,%u,%u,%u) "
|
|
"(%lu values) do not match.",
|
|
mp.imgin.pixel_type(),sizS,dx,dy,dz,dc,(ulongT)dx*dy*dz*dc);
|
|
const CImg<doubleT> M(&_mp_arg(18) + 1,dx,dy,dz,(unsigned int)(sizM/(dx*dy*dz)),true);
|
|
D.draw_image(x,y,z,c,S,M,opacity,(float)_mp_arg(20));
|
|
} else D.draw_image(x,y,z,c,S,opacity);
|
|
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_vector_init(_cimg_math_parser& mp) {
|
|
unsigned int
|
|
ptrs = 4U,
|
|
ptrd = (unsigned int)mp.opcode[1] + 1,
|
|
siz = (unsigned int)mp.opcode[3];
|
|
switch (mp.opcode[2] - 4) {
|
|
case 0 : std::memset(mp.mem._data + ptrd,0,siz*sizeof(double)); break; // 0 values given
|
|
case 1 : { const double val = _mp_arg(ptrs); while (siz-->0) mp.mem[ptrd++] = val; } break;
|
|
default : while (siz-->0) { mp.mem[ptrd++] = _mp_arg(ptrs++); if (ptrs>=mp.opcode[2]) ptrs = 4U; }
|
|
}
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_vector_eq(_cimg_math_parser& mp) {
|
|
const double
|
|
*ptr1 = &_mp_arg(2) + 1,
|
|
*ptr2 = &_mp_arg(4) + 1;
|
|
unsigned int p1 = (unsigned int)mp.opcode[3], p2 = (unsigned int)mp.opcode[5], n;
|
|
const int N = (int)_mp_arg(6);
|
|
const bool case_sensitive = (bool)_mp_arg(7);
|
|
bool still_equal = true;
|
|
double value;
|
|
if (!N) return true;
|
|
|
|
// Compare all values.
|
|
if (N<0) {
|
|
if (p1>0 && p2>0) { // Vector == vector
|
|
if (p1!=p2) return false;
|
|
if (case_sensitive)
|
|
while (still_equal && p1--) still_equal = *(ptr1++)==*(ptr2++);
|
|
else
|
|
while (still_equal && p1--)
|
|
still_equal = cimg::lowercase(*(ptr1++))==cimg::lowercase(*(ptr2++));
|
|
return still_equal;
|
|
} else if (p1>0 && !p2) { // Vector == scalar
|
|
value = _mp_arg(4);
|
|
if (!case_sensitive) value = cimg::lowercase(value);
|
|
while (still_equal && p1--) still_equal = *(ptr1++)==value;
|
|
return still_equal;
|
|
} else if (!p1 && p2>0) { // Scalar == vector
|
|
value = _mp_arg(2);
|
|
if (!case_sensitive) value = cimg::lowercase(value);
|
|
while (still_equal && p2--) still_equal = *(ptr2++)==value;
|
|
return still_equal;
|
|
} else { // Scalar == scalar
|
|
if (case_sensitive) return _mp_arg(2)==_mp_arg(4);
|
|
else return cimg::lowercase(_mp_arg(2))==cimg::lowercase(_mp_arg(4));
|
|
}
|
|
}
|
|
|
|
// Compare only first N values.
|
|
if (p1>0 && p2>0) { // Vector == vector
|
|
n = cimg::min((unsigned int)N,p1,p2);
|
|
if (case_sensitive)
|
|
while (still_equal && n--) still_equal = *(ptr1++)==(*ptr2++);
|
|
else
|
|
while (still_equal && n--) still_equal = cimg::lowercase(*(ptr1++))==cimg::lowercase(*(ptr2++));
|
|
return still_equal;
|
|
} else if (p1>0 && !p2) { // Vector == scalar
|
|
n = std::min((unsigned int)N,p1);
|
|
value = _mp_arg(4);
|
|
if (!case_sensitive) value = cimg::lowercase(value);
|
|
while (still_equal && n--) still_equal = *(ptr1++)==value;
|
|
return still_equal;
|
|
} else if (!p1 && p2>0) { // Scalar == vector
|
|
n = std::min((unsigned int)N,p2);
|
|
value = _mp_arg(2);
|
|
if (!case_sensitive) value = cimg::lowercase(value);
|
|
while (still_equal && n--) still_equal = *(ptr2++)==value;
|
|
return still_equal;
|
|
} // Scalar == scalar
|
|
if (case_sensitive) return _mp_arg(2)==_mp_arg(4);
|
|
return cimg::lowercase(_mp_arg(2))==cimg::lowercase(_mp_arg(4));
|
|
}
|
|
|
|
static double mp_vector_lerp(_cimg_math_parser& mp) {
|
|
unsigned int siz = (unsigned int)mp.opcode[2];
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
const double
|
|
*ptrs1 = &_mp_arg(3) + 1,
|
|
*ptrs2 = &_mp_arg(4) + 1,
|
|
t = _mp_arg(5);
|
|
for (unsigned int k = 0; k<siz; ++k) ptrd[k] = ptrs1[k]*(1-t) + ptrs2[k]*t;
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_vector_off(_cimg_math_parser& mp) {
|
|
const unsigned int
|
|
ptr = (unsigned int)mp.opcode[2] + 1,
|
|
siz = (unsigned int)mp.opcode[3];
|
|
const int off = (int)_mp_arg(4);
|
|
return off>=0 && off<(int)siz?mp.mem[ptr + off]:cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_vector_map_sv(_cimg_math_parser& mp) { // Operator(scalar,vector,[...])
|
|
unsigned int
|
|
nb_args = (unsigned int)mp.opcode[2],
|
|
siz_vector = (unsigned int)mp.opcode[3],
|
|
ptrs = (unsigned int)mp.opcode[6] + 1;
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
mp_func op = (mp_func)mp.opcode[4];
|
|
CImg<ulongT> l_opcode(mp.opcode._data + 3,nb_args + 2);
|
|
l_opcode[0] = mp.opcode[1];
|
|
l_opcode.swap(mp.opcode);
|
|
ulongT &argument2 = mp.opcode[3];
|
|
while (siz_vector-->0) { argument2 = ptrs++; *(ptrd++) = (*op)(mp); }
|
|
l_opcode.swap(mp.opcode);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_vector_map_v(_cimg_math_parser& mp) { // Operator(vector,[...])
|
|
unsigned int
|
|
nb_args = (unsigned int)mp.opcode[2],
|
|
siz_vector = (unsigned int)mp.opcode[3],
|
|
ptrs = (unsigned int)mp.opcode[5] + 1;
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
mp_func op = (mp_func)mp.opcode[4];
|
|
CImg<ulongT> l_opcode(mp.opcode._data + 3,nb_args + 2);
|
|
l_opcode[0] = l_opcode[1];
|
|
l_opcode.swap(mp.opcode);
|
|
ulongT &argument = mp.opcode[2];
|
|
while (siz_vector-->0) { argument = ptrs++; *(ptrd++) = (*op)(mp); }
|
|
l_opcode.swap(mp.opcode);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_vector_map_vv(_cimg_math_parser& mp) { // Operator(vector,vector,[...])
|
|
unsigned int
|
|
nb_args = (unsigned int)mp.opcode[2],
|
|
siz_vector = (unsigned int)mp.opcode[3],
|
|
ptrs1 = (unsigned int)mp.opcode[5] + 1,
|
|
ptrs2 = (unsigned int)mp.opcode[6] + 1;
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
mp_func op = (mp_func)mp.opcode[4];
|
|
CImg<ulongT> l_opcode(mp.opcode._data + 3,nb_args + 2);
|
|
l_opcode[0] = l_opcode[1];
|
|
l_opcode.swap(mp.opcode);
|
|
ulongT &argument1 = mp.opcode[2], &argument2 = mp.opcode[3];
|
|
while (siz_vector-->0) { argument1 = ptrs1++; argument2 = ptrs2++; *(ptrd++) = (*op)(mp); }
|
|
l_opcode.swap(mp.opcode);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_vector_neq(_cimg_math_parser& mp) {
|
|
return !mp_vector_eq(mp);
|
|
}
|
|
|
|
static double mp_vector_print(_cimg_math_parser& mp) {
|
|
const bool print_string = (bool)mp.opcode[4];
|
|
cimg_pragma_openmp(critical(mp_vector_print))
|
|
{
|
|
CImg<charT> _expr(mp.opcode[2] - 5);
|
|
const ulongT *ptrs = mp.opcode._data + 5;
|
|
cimg_for(_expr,ptrd,char) *ptrd = (char)*(ptrs++);
|
|
cimg::strellipsize(_expr);
|
|
unsigned int
|
|
ptr = (unsigned int)mp.opcode[1] + 1,
|
|
siz0 = (unsigned int)mp.opcode[3],
|
|
siz = siz0;
|
|
cimg::mutex(6);
|
|
std::fprintf(cimg::output(),"\n[" cimg_appname "_math_parser] %s = [ ",_expr._data);
|
|
unsigned int count = 0;
|
|
while (siz-->0) {
|
|
if (count>=64 && siz>=64) {
|
|
std::fprintf(cimg::output(),"...,");
|
|
ptr = (unsigned int)mp.opcode[1] + 1 + siz0 - 64;
|
|
siz = 64;
|
|
} else std::fprintf(cimg::output(),"%.17g%s",mp.mem[ptr++],siz?",":"");
|
|
++count;
|
|
}
|
|
if (print_string) {
|
|
CImg<charT> str(siz0 + 1);
|
|
ptr = (unsigned int)mp.opcode[1] + 1;
|
|
for (unsigned int k = 0; k<siz0; ++k) str[k] = (char)mp.mem[ptr++];
|
|
str[siz0] = 0;
|
|
cimg::strellipsize(str,1024,false);
|
|
std::fprintf(cimg::output()," ] = '%s' (size: %u)",str._data,siz0);
|
|
} else std::fprintf(cimg::output()," ] (size: %u)",siz0);
|
|
std::fflush(cimg::output());
|
|
cimg::mutex(6,0);
|
|
}
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_vector_resize(_cimg_math_parser& mp) {
|
|
double *const ptrd = &_mp_arg(1) + 1;
|
|
const unsigned int p1 = (unsigned int)mp.opcode[2], p2 = (unsigned int)mp.opcode[4];
|
|
const int
|
|
interpolation = (int)_mp_arg(5),
|
|
boundary_conditions = (int)_mp_arg(6);
|
|
if (p2) { // Resize vector
|
|
const double *const ptrs = &_mp_arg(3) + 1;
|
|
CImg<doubleT>(ptrd,p1,1,1,1,true) = CImg<doubleT>(ptrs,p2,1,1,1,true).
|
|
get_resize(p1,1,1,1,interpolation,boundary_conditions);
|
|
} else { // Resize scalar
|
|
const double value = _mp_arg(3);
|
|
CImg<doubleT>(ptrd,p1,1,1,1,true) = CImg<doubleT>(1,1,1,1,value).resize(p1,1,1,1,interpolation,
|
|
boundary_conditions);
|
|
}
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_vector_resize_ext(_cimg_math_parser& mp) {
|
|
double *const ptrd = &_mp_arg(1) + 1;
|
|
const unsigned int
|
|
siz = (unsigned int)mp.opcode[2],
|
|
ow = (unsigned int)mp.opcode[4],
|
|
oh = (unsigned int)mp.opcode[5],
|
|
od = (unsigned int)mp.opcode[6],
|
|
os = (unsigned int)mp.opcode[7],
|
|
nw = (unsigned int)mp.opcode[8],
|
|
nh = (unsigned int)mp.opcode[9],
|
|
nd = (unsigned int)mp.opcode[10],
|
|
ns = (unsigned int)mp.opcode[11];
|
|
const int
|
|
interpolation = (int)_mp_arg(12),
|
|
boundary_conditions = (int)_mp_arg(13);
|
|
const float
|
|
ax = (float)_mp_arg(14),
|
|
ay = (float)_mp_arg(15),
|
|
az = (float)_mp_arg(16),
|
|
ac = (float)_mp_arg(17);
|
|
if (siz) { // Resize vector
|
|
const double *const ptrs = &_mp_arg(3) + 1;
|
|
CImg<doubleT>(ptrd,nw,nh,nd,ns,true) = CImg<doubleT>(ptrs,ow,oh,od,os,true).
|
|
get_resize(nw,nh,nd,ns,interpolation,boundary_conditions,ax,ay,az,ac);
|
|
} else { // Resize scalar
|
|
const double value = _mp_arg(3);
|
|
CImg<doubleT>(ptrd,nw,nh,nd,ns,true) = CImg<doubleT>(1,1,1,1,value).
|
|
resize(nw,nh,nd,ns,interpolation,boundary_conditions,ax,ay,az,ac);
|
|
}
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_vector_reverse(_cimg_math_parser& mp) {
|
|
double *const ptrd = &_mp_arg(1) + 1;
|
|
const double *const ptrs = &_mp_arg(2) + 1;
|
|
const unsigned int p1 = (unsigned int)mp.opcode[3];
|
|
CImg<doubleT>(ptrd,p1,1,1,1,true) = CImg<doubleT>(ptrs,p1,1,1,1,true).get_mirror('x');
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_vector_set_off(_cimg_math_parser& mp) {
|
|
const unsigned int
|
|
ptr = (unsigned int)mp.opcode[2] + 1,
|
|
siz = (unsigned int)mp.opcode[3];
|
|
const int off = (int)_mp_arg(4);
|
|
if (off>=0 && off<(int)siz) mp.mem[ptr + off] = _mp_arg(1);
|
|
return _mp_arg(1);
|
|
}
|
|
|
|
#define _cimg_mp_vfunc(func) \
|
|
const longT sizd = (longT)mp.opcode[2];\
|
|
const unsigned int nbargs = (unsigned int)(mp.opcode[3] - 4)/2; \
|
|
double *const ptrd = &_mp_arg(1) + (sizd?1:0); \
|
|
cimg_pragma_openmp(parallel cimg_openmp_if_size(sizd,256)) \
|
|
{ CImg<doubleT> vec(nbargs); double res; \
|
|
cimg_pragma_openmp(for) for (longT k = sizd?sizd - 1:0; k>=0; --k) { \
|
|
cimg_forX(vec,n) vec[n] = *(&_mp_arg(4 + 2*n) + (k+1)*(mp.opcode[4 + 2*n + 1]?1:0)); \
|
|
func; ptrd[k] = res; \
|
|
}} \
|
|
return sizd?cimg::type<double>::nan():*ptrd;
|
|
|
|
static double _mp_vargkth(CImg<doubleT>& vec) {
|
|
const double val = (+vec).get_shared_points(1,vec.width() - 1).
|
|
kth_smallest((ulongT)cimg::cut((longT)*vec - 1,(longT)0,(longT)vec.width() - 2));
|
|
cimg_for_inX(vec,1,vec.width()-1,ind) if (vec[ind]==val) return ind - 1.;
|
|
return 1.;
|
|
}
|
|
|
|
static double mp_vargkth(_cimg_math_parser& mp) {
|
|
_cimg_mp_vfunc(res = _mp_vargkth(vec));
|
|
}
|
|
|
|
static double mp_vargmax(_cimg_math_parser& mp) {
|
|
_cimg_mp_vfunc(res = (double)(&vec.max() - vec.data()));
|
|
}
|
|
|
|
static double mp_vargmaxabs(_cimg_math_parser& mp) {
|
|
_cimg_mp_vfunc(res = (double)(&vec.maxabs() - vec.data()));
|
|
}
|
|
|
|
static double mp_vargmin(_cimg_math_parser& mp) {
|
|
_cimg_mp_vfunc(res = (double)(&vec.min() - vec.data()));
|
|
}
|
|
|
|
static double mp_vargminabs(_cimg_math_parser& mp) {
|
|
_cimg_mp_vfunc(res = (double)(&vec.minabs() - vec.data()));
|
|
}
|
|
|
|
static double mp_vavg(_cimg_math_parser& mp) {
|
|
_cimg_mp_vfunc(res = vec.mean());
|
|
}
|
|
|
|
static double mp_vkth(_cimg_math_parser& mp) {
|
|
_cimg_mp_vfunc(res = vec.get_shared_points(1,vec.width() - 1).
|
|
kth_smallest((ulongT)cimg::cut((longT)*vec - 1,(longT)0,(longT)vec.width() - 2)));
|
|
}
|
|
|
|
static double mp_vmax(_cimg_math_parser& mp) {
|
|
_cimg_mp_vfunc(res = vec.max());
|
|
}
|
|
|
|
static double mp_vmaxabs(_cimg_math_parser& mp) {
|
|
_cimg_mp_vfunc(res = vec.maxabs());
|
|
}
|
|
|
|
static double mp_vmedian(_cimg_math_parser& mp) {
|
|
_cimg_mp_vfunc(res = vec.median());
|
|
}
|
|
|
|
static double mp_vmin(_cimg_math_parser& mp) {
|
|
_cimg_mp_vfunc(res = vec.min());
|
|
}
|
|
|
|
static double mp_vminabs(_cimg_math_parser& mp) {
|
|
_cimg_mp_vfunc(res = vec.minabs());
|
|
}
|
|
|
|
static double mp_vprod(_cimg_math_parser& mp) {
|
|
_cimg_mp_vfunc(res = vec.product());
|
|
}
|
|
|
|
static double mp_vstd(_cimg_math_parser& mp) {
|
|
_cimg_mp_vfunc(res = std::sqrt(vec.get_stats()[3]));
|
|
}
|
|
|
|
static double mp_vsum(_cimg_math_parser& mp) {
|
|
_cimg_mp_vfunc(res = vec.sum());
|
|
}
|
|
|
|
static double mp_vvar(_cimg_math_parser& mp) {
|
|
_cimg_mp_vfunc(res = vec.get_stats()[3]);
|
|
}
|
|
|
|
static double mp_v2s(_cimg_math_parser& mp) {
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
const unsigned int
|
|
sizd = (unsigned int)mp.opcode[2],
|
|
sizs = (unsigned int)mp.opcode[4];
|
|
std::memset(ptrd,0,sizd*sizeof(double));
|
|
const int nb_digits = (int)_mp_arg(5);
|
|
CImg<charT> format(8);
|
|
switch (nb_digits) {
|
|
case -1 : std::strcpy(format,"%g"); break;
|
|
case 0 : std::strcpy(format,"%.17g"); break;
|
|
default : cimg_snprintf(format,format._width,"%%.%dg",nb_digits);
|
|
}
|
|
CImg<charT> str;
|
|
if (sizs) { // Vector expression
|
|
const double *ptrs = &_mp_arg(3) + 1;
|
|
CImg<doubleT>(ptrs,sizs,1,1,1,true).value_string(',',sizd + 1,format).move_to(str);
|
|
} else { // Scalar expression
|
|
str.assign(sizd + 1);
|
|
cimg_snprintf(str,sizd + 1,format,_mp_arg(3));
|
|
}
|
|
const unsigned int l = std::min(sizd,(unsigned int)std::strlen(str) + 1);
|
|
CImg<doubleT>(ptrd,l,1,1,1,true) = str.get_shared_points(0,l - 1);
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_while(_cimg_math_parser& mp) {
|
|
const ulongT
|
|
mem_body = mp.opcode[1],
|
|
mem_cond = mp.opcode[2];
|
|
const CImg<ulongT>
|
|
*const p_cond = ++mp.p_code,
|
|
*const p_body = p_cond + mp.opcode[3],
|
|
*const p_end = p_body + mp.opcode[4];
|
|
const unsigned int vsiz = (unsigned int)mp.opcode[5];
|
|
bool is_cond = false;
|
|
if (mp.opcode[6]) { // Set default value for result and condition if necessary
|
|
if (vsiz) CImg<doubleT>(&mp.mem[mem_body] + 1,vsiz,1,1,1,true).fill(cimg::type<double>::nan());
|
|
else mp.mem[mem_body] = cimg::type<double>::nan();
|
|
}
|
|
if (mp.opcode[7]) mp.mem[mem_cond] = 0;
|
|
const unsigned int _break_type = mp.break_type;
|
|
mp.break_type = 0;
|
|
do {
|
|
for (mp.p_code = p_cond; mp.p_code<p_body; ++mp.p_code) { // Evaluate condition
|
|
mp.opcode._data = mp.p_code->_data;
|
|
const ulongT target = mp.opcode[1];
|
|
mp.mem[target] = _cimg_mp_defunc(mp);
|
|
}
|
|
if (mp.break_type==1) break;
|
|
is_cond = (bool)mp.mem[mem_cond];
|
|
if (is_cond && !mp.break_type) // Evaluate body
|
|
for (mp.p_code = p_body; mp.p_code<p_end; ++mp.p_code) {
|
|
mp.opcode._data = mp.p_code->_data;
|
|
const ulongT target = mp.opcode[1];
|
|
mp.mem[target] = _cimg_mp_defunc(mp);
|
|
}
|
|
if (mp.break_type==1) break; else if (mp.break_type==2) mp.break_type = 0;
|
|
} while (is_cond);
|
|
|
|
mp.break_type = _break_type;
|
|
mp.p_code = p_end - 1;
|
|
return mp.mem[mem_body];
|
|
}
|
|
|
|
static double mp_Ioff(_cimg_math_parser& mp) {
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
const unsigned int
|
|
boundary_conditions = (unsigned int)_mp_arg(3),
|
|
vsiz = (unsigned int)mp.opcode[4];
|
|
const CImg<T> &img = mp.imgin;
|
|
const longT
|
|
off = (longT)_mp_arg(2),
|
|
whd = (longT)img.width()*img.height()*img.depth();
|
|
const T *ptrs;
|
|
if (off>=0 && off<whd) {
|
|
ptrs = &img[off];
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; }
|
|
return cimg::type<double>::nan();
|
|
}
|
|
if (img._data) switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const longT whd2 = 2*whd, moff = cimg::mod(off,whd2);
|
|
ptrs = &img[moff<whd?moff:whd2 - moff - 1];
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; }
|
|
return cimg::type<double>::nan();
|
|
}
|
|
case 2 : // Periodic
|
|
ptrs = &img[cimg::mod(off,whd)];
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; }
|
|
return cimg::type<double>::nan();
|
|
case 1 : // Neumann
|
|
ptrs = off<0?&img[0]:&img[whd - 1];
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; }
|
|
return cimg::type<double>::nan();
|
|
default : // Dirichlet
|
|
std::memset(ptrd,0,vsiz*sizeof(double));
|
|
return cimg::type<double>::nan();
|
|
}
|
|
std::memset(ptrd,0,vsiz*sizeof(double));
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_Ixyz(_cimg_math_parser& mp) {
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
const unsigned int
|
|
interpolation = (unsigned int)_mp_arg(5),
|
|
boundary_conditions = (unsigned int)_mp_arg(6),
|
|
vsiz = (unsigned int)mp.opcode[7];
|
|
const CImg<T> &img = mp.imgin;
|
|
const double x = _mp_arg(2), y = _mp_arg(3), z = _mp_arg(4);
|
|
const ulongT whd = (ulongT)img._width*img._height*img._depth;
|
|
const T *ptrs;
|
|
switch (interpolation) {
|
|
case 2 : // Cubic interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const float
|
|
w2 = 2.f*img.width(), h2 = 2.f*img.height(), d2 = 2.f*img.depth(),
|
|
mx = cimg::mod((float)x,w2), my = cimg::mod((float)y,h2), mz = cimg::mod((float)z,d2),
|
|
cx = mx<img.width()?mx:w2 - mx - 1,
|
|
cy = my<img.height()?my:h2 - my - 1,
|
|
cz = mz<img.depth()?mz:d2 - mz - 1;
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img._cubic_atXYZ(cx,cy,cz,c);
|
|
} break;
|
|
case 2 : // Periodic
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img._cubic_atXYZ_p((float)x,(float)y,(float)z,c);
|
|
break;
|
|
case 1 : // Neumann
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img._cubic_atXYZ((float)x,(float)y,(float)z,c);
|
|
break;
|
|
default : // Dirichlet
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img.cubic_atXYZ((float)x,(float)y,(float)z,c,(T)0);
|
|
} break;
|
|
case 1 : // Linear interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const float
|
|
w2 = 2.f*img.width(), h2 = 2.f*img.height(), d2 = 2.f*img.depth(),
|
|
mx = cimg::mod((float)x,w2), my = cimg::mod((float)y,h2), mz = cimg::mod((float)z,d2),
|
|
cx = mx<img.width()?mx:w2 - mx - 1,
|
|
cy = my<img.height()?my:h2 - my - 1,
|
|
cz = mz<img.depth()?mz:d2 - mz - 1;
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img._linear_atXYZ(cx,cy,cz,c);
|
|
} break;
|
|
case 2 : // Periodic
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img._linear_atXYZ_p((float)x,(float)y,(float)z,c);
|
|
break;
|
|
case 1 : // Neumann
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img._linear_atXYZ((float)x,(float)y,(float)z,c);
|
|
break;
|
|
default : // Dirichlet
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img.linear_atXYZ((float)x,(float)y,(float)z,c,(T)0);
|
|
} break;
|
|
default : // Nearest neighbor interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const int
|
|
w2 = 2*img.width(), h2 = 2*img.height(), d2 = 2*img.depth(),
|
|
mx = cimg::mod((int)x,w2), my = cimg::mod((int)y,h2), mz = cimg::mod((int)z,d2),
|
|
cx = mx<img.width()?mx:w2 - mx - 1,
|
|
cy = my<img.height()?my:h2 - my - 1,
|
|
cz = mz<img.depth()?mz:d2 - mz - 1;
|
|
ptrs = &img(cx,cy,cz);
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = (double)*ptrs; ptrs+=whd; }
|
|
} break;
|
|
case 2 : { // Periodic
|
|
const int
|
|
cx = (int)cimg::mod(x,(double)img._width),
|
|
cy = (int)cimg::mod(y,(double)img._height),
|
|
cz = (int)cimg::mod(z,(double)img._depth);
|
|
ptrs = &img(cx,cy,cz);
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = (double)*ptrs; ptrs+=whd; }
|
|
} break;
|
|
case 1 : { // Neumann
|
|
ptrs = &img._atXYZ((int)x,(int)y,(int)z);
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = (double)*ptrs; ptrs+=whd; }
|
|
} break;
|
|
default : // Dirichlet
|
|
if (img.containsXYZC((int)x,(int)y,(int)z)) {
|
|
ptrs = &img((int)x,(int)y,(int)z);
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = (double)*ptrs; ptrs+=whd; }
|
|
} else std::memset(ptrd,0,vsiz*sizeof(double));
|
|
}
|
|
}
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_Joff(_cimg_math_parser& mp) {
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
const unsigned int
|
|
boundary_conditions = (unsigned int)_mp_arg(3),
|
|
vsiz = (unsigned int)mp.opcode[4];
|
|
const CImg<T> &img = mp.imgin;
|
|
const int
|
|
ox = (int)mp.mem[_cimg_mp_slot_x],
|
|
oy = (int)mp.mem[_cimg_mp_slot_y],
|
|
oz = (int)mp.mem[_cimg_mp_slot_z];
|
|
const longT
|
|
off = img.offset(ox,oy,oz) + (longT)_mp_arg(2),
|
|
whd = (longT)img.width()*img.height()*img.depth();
|
|
const T *ptrs;
|
|
if (off>=0 && off<whd) {
|
|
ptrs = &img[off];
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; }
|
|
return cimg::type<double>::nan();
|
|
}
|
|
if (img._data) switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const longT whd2 = 2*whd, moff = cimg::mod(off,whd2);
|
|
ptrs = &img[moff<whd?moff:whd2 - moff - 1];
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; }
|
|
return cimg::type<double>::nan();
|
|
}
|
|
case 2 : // Periodic
|
|
ptrs = &img[cimg::mod(off,whd)];
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; }
|
|
return cimg::type<double>::nan();
|
|
case 1 : // Neumann
|
|
ptrs = off<0?&img[0]:&img[whd - 1];
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; }
|
|
return cimg::type<double>::nan();
|
|
default : // Dirichlet
|
|
std::memset(ptrd,0,vsiz*sizeof(double));
|
|
return cimg::type<double>::nan();
|
|
}
|
|
std::memset(ptrd,0,vsiz*sizeof(double));
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
static double mp_Jxyz(_cimg_math_parser& mp) {
|
|
double *ptrd = &_mp_arg(1) + 1;
|
|
const unsigned int
|
|
interpolation = (unsigned int)_mp_arg(5),
|
|
boundary_conditions = (unsigned int)_mp_arg(6),
|
|
vsiz = (unsigned int)mp.opcode[7];
|
|
const CImg<T> &img = mp.imgin;
|
|
const double
|
|
ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], oz = mp.mem[_cimg_mp_slot_z],
|
|
x = ox + _mp_arg(2), y = oy + _mp_arg(3), z = oz + _mp_arg(4);
|
|
const ulongT whd = (ulongT)img._width*img._height*img._depth;
|
|
const T *ptrs;
|
|
switch (interpolation) {
|
|
case 2 : // Cubic interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const float
|
|
w2 = 2.f*img.width(), h2 = 2.f*img.height(), d2 = 2.f*img.depth(),
|
|
mx = cimg::mod((float)x,w2), my = cimg::mod((float)y,h2), mz = cimg::mod((float)z,d2),
|
|
cx = mx<img.width()?mx:w2 - mx - 1,
|
|
cy = my<img.height()?my:h2 - my - 1,
|
|
cz = mz<img.depth()?mz:d2 - mz - 1;
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img._cubic_atXYZ(cx,cy,cz,c);
|
|
} break;
|
|
case 2 : // Periodic
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img._cubic_atXYZ_p((float)x,(float)y,(float)z,c);
|
|
break;
|
|
case 1 : // Neumann
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img._cubic_atXYZ((float)x,(float)y,(float)z,c);
|
|
break;
|
|
default : // Dirichlet
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img.cubic_atXYZ((float)x,(float)y,(float)z,c,(T)0);
|
|
} break;
|
|
case 1 : // Linear interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const float
|
|
w2 = 2.f*img.width(), h2 = 2.f*img.height(), d2 = 2.f*img.depth(),
|
|
mx = cimg::mod((float)x,w2), my = cimg::mod((float)y,h2), mz = cimg::mod((float)z,d2),
|
|
cx = mx<img.width()?mx:w2 - mx - 1,
|
|
cy = my<img.height()?my:h2 - my - 1,
|
|
cz = mz<img.depth()?mz:d2 - mz - 1;
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img._linear_atXYZ(cx,cy,cz,c);
|
|
} break;
|
|
case 2 : // Periodic
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img._linear_atXYZ_p((float)x,(float)y,(float)z,c);
|
|
break;
|
|
case 1 : // Neumann
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img._linear_atXYZ((float)x,(float)y,(float)z,c);
|
|
break;
|
|
default : // Dirichlet
|
|
cimg_for_inC(img,0,vsiz - 1,c) *(ptrd++) = (double)img.linear_atXYZ((float)x,(float)y,(float)z,c,(T)0);
|
|
} break;
|
|
default : // Nearest neighbor interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const int
|
|
w2 = 2*img.width(), h2 = 2*img.height(), d2 = 2*img.depth(),
|
|
mx = cimg::mod((int)x,w2), my = cimg::mod((int)y,h2), mz = cimg::mod((int)z,d2),
|
|
cx = mx<img.width()?mx:w2 - mx - 1,
|
|
cy = my<img.height()?my:h2 - my - 1,
|
|
cz = mz<img.depth()?mz:d2 - mz - 1;
|
|
ptrs = &img(cx,cy,cz);
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = (double)*ptrs; ptrs+=whd; }
|
|
} break;
|
|
case 2 : { // Periodic
|
|
const int
|
|
cx = (int)cimg::mod(x,(double)img._width),
|
|
cy = (int)cimg::mod(y,(double)img._height),
|
|
cz = (int)cimg::mod(z,(double)img._depth);
|
|
ptrs = &img(cx,cy,cz);
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = (double)*ptrs; ptrs+=whd; }
|
|
} break;
|
|
case 1 : { // Neumann
|
|
ptrs = &img._atXYZ((int)x,(int)y,(int)z);
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = (double)*ptrs; ptrs+=whd; }
|
|
} break;
|
|
default : // Dirichlet
|
|
if (img.containsXYZC((int)x,(int)y,(int)z)) {
|
|
ptrs = &img((int)x,(int)y,(int)z);
|
|
cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = (double)*ptrs; ptrs+=whd; }
|
|
} else std::memset(ptrd,0,vsiz*sizeof(double));
|
|
}
|
|
}
|
|
return cimg::type<double>::nan();
|
|
}
|
|
|
|
#undef _mp_arg
|
|
|
|
}; // struct _cimg_math_parser {}
|
|
|
|
#define _cimg_create_pointwise_functions(name,func,min_size) \
|
|
CImg<T>& name() { \
|
|
if (is_empty()) return *this; \
|
|
cimg_openmp_for(*this,func((typename cimg::superset<T,float>::type)*ptr),min_size); \
|
|
return *this; \
|
|
} \
|
|
CImg<Tfloat> get_##name() const { \
|
|
return CImg<Tfloat>(*this,false).name(); \
|
|
}
|
|
|
|
//! Compute the square value of each pixel value.
|
|
/**
|
|
Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its square value \f$I_{(x,y,z,c)}^2\f$.
|
|
\note
|
|
- The \inplace of this method statically casts the computed values to the pixel type \c T.
|
|
- The \newinstance returns a \c CImg<float> image, if the pixel type \c T is \e not float-valued.
|
|
\par Example
|
|
\code
|
|
const CImg<float> img("reference.jpg");
|
|
(img,img.get_sqr().normalize(0,255)).display();
|
|
\endcode
|
|
\image html ref_sqr.jpg
|
|
**/
|
|
_cimg_create_pointwise_functions(sqr,cimg::sqr,524288)
|
|
|
|
//! Compute the square root of each pixel value.
|
|
/**
|
|
Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its square root \f$\sqrt{I_{(x,y,z,c)}}\f$.
|
|
\note
|
|
- The \inplace of this method statically casts the computed values to the pixel type \c T.
|
|
- The \newinstance returns a \c CImg<float> image, if the pixel type \c T is \e not float-valued.
|
|
\par Example
|
|
\code
|
|
const CImg<float> img("reference.jpg");
|
|
(img,img.get_sqrt().normalize(0,255)).display();
|
|
\endcode
|
|
\image html ref_sqrt.jpg
|
|
**/
|
|
_cimg_create_pointwise_functions(sqrt,std::sqrt,8192)
|
|
|
|
//! Compute the exponential of each pixel value.
|
|
/**
|
|
Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its exponential \f$e^{I_{(x,y,z,c)}}\f$.
|
|
\note
|
|
- The \inplace of this method statically casts the computed values to the pixel type \c T.
|
|
- The \newinstance returns a \c CImg<float> image, if the pixel type \c T is \e not float-valued.
|
|
**/
|
|
_cimg_create_pointwise_functions(exp,std::exp,4096)
|
|
|
|
//! Compute the error function of each pixel value.
|
|
/**
|
|
Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its error function.
|
|
\note
|
|
- The \inplace of this method statically casts the computed values to the pixel type \c T.
|
|
- The \newinstance returns a \c CImg<float> image, if the pixel type \c T is \e not float-valued.
|
|
**/
|
|
_cimg_create_pointwise_functions(erf,std::erf,4096)
|
|
|
|
//! Compute the logarithm of each pixel value.
|
|
/**
|
|
Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its logarithm
|
|
\f$\mathrm{log}_{e}(I_{(x,y,z,c)})\f$.
|
|
\note
|
|
- The \inplace of this method statically casts the computed values to the pixel type \c T.
|
|
- The \newinstance returns a \c CImg<float> image, if the pixel type \c T is \e not float-valued.
|
|
**/
|
|
_cimg_create_pointwise_functions(log,std::log,262144)
|
|
|
|
//! Compute the base-2 logarithm of each pixel value.
|
|
/**
|
|
Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its base-2 logarithm
|
|
\f$\mathrm{log}_{2}(I_{(x,y,z,c)})\f$.
|
|
\note
|
|
- The \inplace of this method statically casts the computed values to the pixel type \c T.
|
|
- The \newinstance returns a \c CImg<float> image, if the pixel type \c T is \e not float-valued.
|
|
**/
|
|
_cimg_create_pointwise_functions(log2,cimg::log2,4096)
|
|
|
|
//! Compute the base-10 logarithm of each pixel value.
|
|
/**
|
|
Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its base-10 logarithm
|
|
\f$\mathrm{log}_{10}(I_{(x,y,z,c)})\f$.
|
|
\note
|
|
- The \inplace of this method statically casts the computed values to the pixel type \c T.
|
|
- The \newinstance returns a \c CImg<float> image, if the pixel type \c T is \e not float-valued.
|
|
**/
|
|
_cimg_create_pointwise_functions(log10,std::log10,4096)
|
|
|
|
//! Compute the absolute value of each pixel value.
|
|
/**
|
|
Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its absolute value \f$|I_{(x,y,z,c)}|\f$.
|
|
\note
|
|
- The \inplace of this method statically casts the computed values to the pixel type \c T.
|
|
- The \newinstance returns a \c CImg<float> image, if the pixel type \c T is \e not float-valued.
|
|
**/
|
|
_cimg_create_pointwise_functions(abs,cimg::abs,524288)
|
|
|
|
//! Compute the sign of each pixel value.
|
|
/**
|
|
Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its sign
|
|
\f$\mathrm{sign}(I_{(x,y,z,c)})\f$.
|
|
\note
|
|
- The sign is set to:
|
|
- \c 1 if pixel value is strictly positive.
|
|
- \c -1 if pixel value is strictly negative.
|
|
- \c 0 if pixel value is equal to \c 0.
|
|
- The \inplace of this method statically casts the computed values to the pixel type \c T.
|
|
- The \newinstance returns a \c CImg<float> image, if the pixel type \c T is \e not float-valued.
|
|
**/
|
|
_cimg_create_pointwise_functions(sign,cimg::sign,32768)
|
|
|
|
//! Compute the cosine of each pixel value.
|
|
/**
|
|
Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its cosine \f$\cos(I_{(x,y,z,c)})\f$.
|
|
\note
|
|
- Pixel values are regarded as being in \e radian.
|
|
- The \inplace of this method statically casts the computed values to the pixel type \c T.
|
|
- The \newinstance returns a \c CImg<float> image, if the pixel type \c T is \e not float-valued.
|
|
**/
|
|
_cimg_create_pointwise_functions(cos,std::cos,8192)
|
|
|
|
//! Compute the sine of each pixel value.
|
|
/**
|
|
Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its sine \f$\sin(I_{(x,y,z,c)})\f$.
|
|
\note
|
|
- Pixel values are regarded as being in \e radian.
|
|
- The \inplace of this method statically casts the computed values to the pixel type \c T.
|
|
- The \newinstance returns a \c CImg<float> image, if the pixel type \c T is \e not float-valued.
|
|
**/
|
|
_cimg_create_pointwise_functions(sin,std::sin,8192)
|
|
|
|
//! Compute the sinc of each pixel value.
|
|
/**
|
|
Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its sinc
|
|
\f$\mathrm{sinc}(I_{(x,y,z,c)})\f$.
|
|
\note
|
|
- Pixel values are regarded as being exin \e radian.
|
|
- The \inplace of this method statically casts the computed values to the pixel type \c T.
|
|
- The \newinstance returns a \c CImg<float> image, if the pixel type \c T is \e not float-valued.
|
|
**/
|
|
_cimg_create_pointwise_functions(sinc,cimg::sinc,2048)
|
|
|
|
//! Compute the tangent of each pixel value.
|
|
/**
|
|
Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its tangent \f$\tan(I_{(x,y,z,c)})\f$.
|
|
\note
|
|
- Pixel values are regarded as being exin \e radian.
|
|
- The \inplace of this method statically casts the computed values to the pixel type \c T.
|
|
- The \newinstance returns a \c CImg<float> image, if the pixel type \c T is \e not float-valued.
|
|
**/
|
|
_cimg_create_pointwise_functions(tan,std::tan,2048)
|
|
|
|
//! Compute the hyperbolic cosine of each pixel value.
|
|
/**
|
|
Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its hyperbolic cosine
|
|
\f$\mathrm{cosh}(I_{(x,y,z,c)})\f$.
|
|
\note
|
|
- The \inplace of this method statically casts the computed values to the pixel type \c T.
|
|
- The \newinstance returns a \c CImg<float> image, if the pixel type \c T is \e not float-valued.
|
|
**/
|
|
_cimg_create_pointwise_functions(cosh,std::cosh,2048)
|
|
|
|
//! Compute the hyperbolic sine of each pixel value.
|
|
/**
|
|
Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its hyperbolic sine
|
|
\f$\mathrm{sinh}(I_{(x,y,z,c)})\f$.
|
|
\note
|
|
- The \inplace of this method statically casts the computed values to the pixel type \c T.
|
|
- The \newinstance returns a \c CImg<float> image, if the pixel type \c T is \e not float-valued.
|
|
**/
|
|
_cimg_create_pointwise_functions(sinh,std::sinh,2048)
|
|
|
|
//! Compute the hyperbolic tangent of each pixel value.
|
|
/**
|
|
Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its hyperbolic tangent
|
|
\f$\mathrm{tanh}(I_{(x,y,z,c)})\f$.
|
|
\note
|
|
- The \inplace of this method statically casts the computed values to the pixel type \c T.
|
|
- The \newinstance returns a \c CImg<float> image, if the pixel type \c T is \e not float-valued.
|
|
**/
|
|
_cimg_create_pointwise_functions(tanh,std::tanh,2048)
|
|
|
|
//! Compute the arccosine of each pixel value.
|
|
/**
|
|
Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its arccosine
|
|
\f$\mathrm{acos}(I_{(x,y,z,c)})\f$.
|
|
\note
|
|
- The \inplace of this method statically casts the computed values to the pixel type \c T.
|
|
- The \newinstance returns a \c CImg<float> image, if the pixel type \c T is \e not float-valued.
|
|
**/
|
|
_cimg_create_pointwise_functions(acos,std::acos,8192)
|
|
|
|
//! Compute the arcsine of each pixel value.
|
|
/**
|
|
Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its arcsine
|
|
\f$\mathrm{asin}(I_{(x,y,z,c)})\f$.
|
|
\note
|
|
- The \inplace of this method statically casts the computed values to the pixel type \c T.
|
|
- The \newinstance returns a \c CImg<float> image, if the pixel type \c T is \e not float-valued.
|
|
**/
|
|
_cimg_create_pointwise_functions(asin,std::asin,8192)
|
|
|
|
//! Compute the arctangent of each pixel value.
|
|
/**
|
|
Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its arctangent
|
|
\f$\mathrm{atan}(I_{(x,y,z,c)})\f$.
|
|
\note
|
|
- The \inplace of this method statically casts the computed values to the pixel type \c T.
|
|
- The \newinstance returns a \c CImg<float> image, if the pixel type \c T is \e not float-valued.
|
|
**/
|
|
_cimg_create_pointwise_functions(atan,std::atan,8192)
|
|
|
|
//! Compute the arctangent2 of each pixel value.
|
|
/**
|
|
Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its arctangent2
|
|
\f$\mathrm{atan2}(I_{(x,y,z,c)})\f$.
|
|
\param img Image whose pixel values specify the second argument of the \c atan2() function.
|
|
\note
|
|
- The \inplace of this method statically casts the computed values to the pixel type \c T.
|
|
- The \newinstance returns a \c CImg<float> image, if the pixel type \c T is \e not float-valued.
|
|
\par Example
|
|
\code
|
|
const CImg<float>
|
|
img_x(100,100,1,1,"x-w/2",false), // Define an horizontal centered gradient, from '-width/2' to 'width/2'
|
|
img_y(100,100,1,1,"y-h/2",false), // Define a vertical centered gradient, from '-height/2' to 'height/2'
|
|
img_atan2 = img_y.get_atan2(img_x); // Compute atan2(y,x) for each pixel value
|
|
(img_x,img_y,img_atan2).display();
|
|
\endcode
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& atan2(const CImg<t>& img) {
|
|
const ulongT siz = size(), isiz = img.size();
|
|
if (siz && isiz) {
|
|
if (is_overlapped(img)) return atan2(+img);
|
|
T *ptrd = _data, *const ptre = _data + siz;
|
|
if (siz>isiz) for (ulongT n = siz/isiz; n; --n)
|
|
for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs<ptrs_end; ++ptrd)
|
|
*ptrd = (T)std::atan2((double)*ptrd,(double)*(ptrs++));
|
|
for (const t *ptrs = img._data; ptrd<ptre; ++ptrd) *ptrd = (T)std::atan2((double)*ptrd,(double)*(ptrs++));
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Compute the arctangent2 of each pixel value \newinstance.
|
|
template<typename t>
|
|
CImg<Tfloat> get_atan2(const CImg<t>& img) const {
|
|
return CImg<Tfloat>(*this,false).atan2(img);
|
|
}
|
|
|
|
//! Compute the hyperbolic arccosine of each pixel value.
|
|
/**
|
|
Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its arccosineh
|
|
\f$\mathrm{acosh}(I_{(x,y,z,c)})\f$.
|
|
\note
|
|
- The \inplace of this method statically casts the computed values to the pixel type \c T.
|
|
- The \newinstance returns a \c CImg<float> image, if the pixel type \c T is \e not float-valued.
|
|
**/
|
|
_cimg_create_pointwise_functions(acosh,cimg::acosh,8192)
|
|
|
|
//! Compute the hyperbolic arcsine of each pixel value.
|
|
/**
|
|
Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its hyperbolic arcsine
|
|
\f$\mathrm{asinh}(I_{(x,y,z,c)})\f$.
|
|
\note
|
|
- The \inplace of this method statically casts the computed values to the pixel type \c T.
|
|
- The \newinstance returns a \c CImg<float> image, if the pixel type \c T is \e not float-valued.
|
|
**/
|
|
_cimg_create_pointwise_functions(asinh,cimg::asinh,8192)
|
|
|
|
//! Compute the hyperbolic arctangent of each pixel value.
|
|
/**
|
|
Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its hyperbolic arctangent
|
|
\f$\mathrm{atanh}(I_{(x,y,z,c)})\f$.
|
|
\note
|
|
- The \inplace of this method statically casts the computed values to the pixel type \c T.
|
|
- The \newinstance returns a \c CImg<float> image, if the pixel type \c T is \e not float-valued.
|
|
**/
|
|
_cimg_create_pointwise_functions(atanh,cimg::atanh,8192)
|
|
|
|
//! In-place pointwise multiplication.
|
|
/**
|
|
Compute the pointwise multiplication between the image instance and the specified input image \c img.
|
|
\param img Input image, as the second operand of the multiplication.
|
|
\note
|
|
- Similar to operator+=(const CImg<t>&), except that it performs a pointwise multiplication
|
|
instead of an addition.
|
|
- It does \e not perform a \e matrix multiplication. For this purpose, use operator*=(const CImg<t>&) instead.
|
|
\par Example
|
|
\code
|
|
CImg<float>
|
|
img("reference.jpg"),
|
|
shade(img.width,img.height(),1,1,"-(x-w/2)^2-(y-h/2)^2",false);
|
|
shade.normalize(0,1);
|
|
(img,shade,img.get_mul(shade)).display();
|
|
\endcode
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& mul(const CImg<t>& img) {
|
|
const ulongT siz = size(), isiz = img.size();
|
|
if (siz && isiz) {
|
|
if (is_overlapped(img)) return mul(+img);
|
|
T *ptrd = _data, *const ptre = _data + siz;
|
|
if (siz>isiz) for (ulongT n = siz/isiz; n; --n)
|
|
for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs<ptrs_end; ++ptrd)
|
|
*ptrd = (T)(*ptrd * *(ptrs++));
|
|
for (const t *ptrs = img._data; ptrd<ptre; ++ptrd) *ptrd = (T)(*ptrd * *(ptrs++));
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! In-place pointwise multiplication \newinstance.
|
|
template<typename t>
|
|
CImg<_cimg_Tt> get_mul(const CImg<t>& img) const {
|
|
return CImg<_cimg_Tt>(*this,false).mul(img);
|
|
}
|
|
|
|
//! In-place pointwise division.
|
|
/**
|
|
Similar to mul(const CImg<t>&), except that it performs a pointwise division instead of a multiplication.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& div(const CImg<t>& img) {
|
|
const ulongT siz = size(), isiz = img.size();
|
|
if (siz && isiz) {
|
|
if (is_overlapped(img)) return div(+img);
|
|
T *ptrd = _data, *const ptre = _data + siz;
|
|
if (siz>isiz) for (ulongT n = siz/isiz; n; --n)
|
|
for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs<ptrs_end; ++ptrd)
|
|
*ptrd = (T)(*ptrd / *(ptrs++));
|
|
for (const t *ptrs = img._data; ptrd<ptre; ++ptrd) *ptrd = (T)(*ptrd / *(ptrs++));
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! In-place pointwise division \newinstance.
|
|
template<typename t>
|
|
CImg<_cimg_Tt> get_div(const CImg<t>& img) const {
|
|
return CImg<_cimg_Tt>(*this,false).div(img);
|
|
}
|
|
|
|
//! Raise each pixel value to a specified power.
|
|
/**
|
|
Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its power \f$I_{(x,y,z,c)}^p\f$.
|
|
\param p Exponent value.
|
|
\note
|
|
- The \inplace of this method statically casts the computed values to the pixel type \c T.
|
|
- The \newinstance returns a \c CImg<float> image, if the pixel type \c T is \e not float-valued.
|
|
\par Example
|
|
\code
|
|
const CImg<float>
|
|
img0("reference.jpg"), // Load reference color image
|
|
img1 = (img0/255).pow(1.8)*=255, // Compute gamma correction, with gamma = 1.8
|
|
img2 = (img0/255).pow(0.5)*=255; // Compute gamma correction, with gamma = 0.5
|
|
(img0,img1,img2).display();
|
|
\endcode
|
|
**/
|
|
CImg<T>& pow(const double p) {
|
|
if (is_empty()) return *this;
|
|
if (p==-4) { cimg_openmp_for(*this,1/(Tfloat)cimg::pow4(*ptr),32768); return *this; }
|
|
if (p==-3) { cimg_openmp_for(*this,1/(Tfloat)cimg::pow3(*ptr),32768); return *this; }
|
|
if (p==-2) { cimg_openmp_for(*this,1/(Tfloat)cimg::sqr(*ptr),32768); return *this; }
|
|
if (p==-1) { cimg_openmp_for(*this,1/(Tfloat)*ptr,32768); return *this; }
|
|
if (p==-0.5) { cimg_openmp_for(*this,1/std::sqrt((Tfloat)*ptr),8192); return *this; }
|
|
if (p==0) return fill((T)1);
|
|
if (p==0.5) return sqrt();
|
|
if (p==1) return *this;
|
|
if (p==2) return sqr();
|
|
if (p==3) { cimg_openmp_for(*this,cimg::pow3(*ptr),262144); return *this; }
|
|
if (p==4) { cimg_openmp_for(*this,cimg::pow4(*ptr),131072); return *this; }
|
|
cimg_openmp_for(*this,std::pow((Tfloat)*ptr,(Tfloat)p),1024);
|
|
return *this;
|
|
}
|
|
|
|
//! Raise each pixel value to a specified power \newinstance.
|
|
CImg<Tfloat> get_pow(const double p) const {
|
|
return CImg<Tfloat>(*this,false).pow(p);
|
|
}
|
|
|
|
//! Raise each pixel value to a power, specified from an expression.
|
|
/**
|
|
Similar to operator+=(const char*), except it performs a pointwise exponentiation instead of an addition.
|
|
**/
|
|
CImg<T>& pow(const char *const expression) {
|
|
return pow((+*this)._fill(expression,true,1,0,0,"pow",this));
|
|
}
|
|
|
|
//! Raise each pixel value to a power, specified from an expression \newinstance.
|
|
CImg<Tfloat> get_pow(const char *const expression) const {
|
|
return CImg<Tfloat>(*this,false).pow(expression);
|
|
}
|
|
|
|
//! Raise each pixel value to a power, pointwisely specified from another image.
|
|
/**
|
|
Similar to operator+=(const CImg<t>& img), except that it performs an exponentiation instead of an addition.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& pow(const CImg<t>& img) {
|
|
const ulongT siz = size(), isiz = img.size();
|
|
if (siz && isiz) {
|
|
if (is_overlapped(img)) return pow(+img);
|
|
T *ptrd = _data, *const ptre = _data + siz;
|
|
if (siz>isiz) for (ulongT n = siz/isiz; n; --n)
|
|
for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs<ptrs_end; ++ptrd)
|
|
*ptrd = (T)std::pow((double)*ptrd,(double)(*(ptrs++)));
|
|
for (const t *ptrs = img._data; ptrd<ptre; ++ptrd) *ptrd = (T)std::pow((double)*ptrd,(double)(*(ptrs++)));
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Raise each pixel value to a power, pointwisely specified from another image \newinstance.
|
|
template<typename t>
|
|
CImg<Tfloat> get_pow(const CImg<t>& img) const {
|
|
return CImg<Tfloat>(*this,false).pow(img);
|
|
}
|
|
|
|
//! Compute the bitwise left rotation of each pixel value.
|
|
/**
|
|
Similar to operator<<=(unsigned int), except that it performs a left rotation instead of a left shift.
|
|
**/
|
|
CImg<T>& rol(const unsigned int n=1) {
|
|
if (is_empty()) return *this;
|
|
cimg_openmp_for(*this,cimg::rol(*ptr,n),32768);
|
|
return *this;
|
|
}
|
|
|
|
//! Compute the bitwise left rotation of each pixel value \newinstance.
|
|
CImg<T> get_rol(const unsigned int n=1) const {
|
|
return (+*this).rol(n);
|
|
}
|
|
|
|
//! Compute the bitwise left rotation of each pixel value.
|
|
/**
|
|
Similar to operator<<=(const char*), except that it performs a left rotation instead of a left shift.
|
|
**/
|
|
CImg<T>& rol(const char *const expression) {
|
|
return rol((+*this)._fill(expression,true,1,0,0,"rol",this));
|
|
}
|
|
|
|
//! Compute the bitwise left rotation of each pixel value \newinstance.
|
|
CImg<T> get_rol(const char *const expression) const {
|
|
return (+*this).rol(expression);
|
|
}
|
|
|
|
//! Compute the bitwise left rotation of each pixel value.
|
|
/**
|
|
Similar to operator<<=(const CImg<t>&), except that it performs a left rotation instead of a left shift.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& rol(const CImg<t>& img) {
|
|
const ulongT siz = size(), isiz = img.size();
|
|
if (siz && isiz) {
|
|
if (is_overlapped(img)) return rol(+img);
|
|
T *ptrd = _data, *const ptre = _data + siz;
|
|
if (siz>isiz) for (ulongT n = siz/isiz; n; --n)
|
|
for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs<ptrs_end; ++ptrd)
|
|
*ptrd = (T)cimg::rol(*ptrd,(unsigned int)(*(ptrs++)));
|
|
for (const t *ptrs = img._data; ptrd<ptre; ++ptrd) *ptrd = (T)cimg::rol(*ptrd,(unsigned int)(*(ptrs++)));
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Compute the bitwise left rotation of each pixel value \newinstance.
|
|
template<typename t>
|
|
CImg<T> get_rol(const CImg<t>& img) const {
|
|
return (+*this).rol(img);
|
|
}
|
|
|
|
//! Compute the bitwise right rotation of each pixel value.
|
|
/**
|
|
Similar to operator>>=(unsigned int), except that it performs a right rotation instead of a right shift.
|
|
**/
|
|
CImg<T>& ror(const unsigned int n=1) {
|
|
if (is_empty()) return *this;
|
|
cimg_openmp_for(*this,cimg::ror(*ptr,n),32768);
|
|
return *this;
|
|
}
|
|
|
|
//! Compute the bitwise right rotation of each pixel value \newinstance.
|
|
CImg<T> get_ror(const unsigned int n=1) const {
|
|
return (+*this).ror(n);
|
|
}
|
|
|
|
//! Compute the bitwise right rotation of each pixel value.
|
|
/**
|
|
Similar to operator>>=(const char*), except that it performs a right rotation instead of a right shift.
|
|
**/
|
|
CImg<T>& ror(const char *const expression) {
|
|
return ror((+*this)._fill(expression,true,1,0,0,"ror",this));
|
|
}
|
|
|
|
//! Compute the bitwise right rotation of each pixel value \newinstance.
|
|
CImg<T> get_ror(const char *const expression) const {
|
|
return (+*this).ror(expression);
|
|
}
|
|
|
|
//! Compute the bitwise right rotation of each pixel value.
|
|
/**
|
|
Similar to operator>>=(const CImg<t>&), except that it performs a right rotation instead of a right shift.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& ror(const CImg<t>& img) {
|
|
const ulongT siz = size(), isiz = img.size();
|
|
if (siz && isiz) {
|
|
if (is_overlapped(img)) return ror(+img);
|
|
T *ptrd = _data, *const ptre = _data + siz;
|
|
if (siz>isiz) for (ulongT n = siz/isiz; n; --n)
|
|
for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs<ptrs_end; ++ptrd)
|
|
*ptrd = (T)cimg::ror(*ptrd,(unsigned int)(*(ptrs++)));
|
|
for (const t *ptrs = img._data; ptrd<ptre; ++ptrd) *ptrd = (T)cimg::ror(*ptrd,(unsigned int)(*(ptrs++)));
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Compute the bitwise right rotation of each pixel value \newinstance.
|
|
template<typename t>
|
|
CImg<T> get_ror(const CImg<t>& img) const {
|
|
return (+*this).ror(img);
|
|
}
|
|
|
|
//! Pointwise min operator between instance image and a value.
|
|
/**
|
|
\param val Value used as the reference argument of the min operator.
|
|
\note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by
|
|
\f$\mathrm{min}(I_{(x,y,z,c)},\mathrm{val})\f$.
|
|
**/
|
|
CImg<T>& min(const T& value) {
|
|
if (is_empty()) return *this;
|
|
cimg_openmp_for(*this,std::min(*ptr,value),65536);
|
|
return *this;
|
|
}
|
|
|
|
//! Pointwise min operator between instance image and a value \newinstance.
|
|
CImg<T> get_min(const T& value) const {
|
|
return (+*this).min(value);
|
|
}
|
|
|
|
//! Pointwise min operator between two images.
|
|
/**
|
|
\param img Image used as the reference argument of the min operator.
|
|
\note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by
|
|
\f$\mathrm{min}(I_{(x,y,z,c)},\mathrm{img}_{(x,y,z,c)})\f$.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& min(const CImg<t>& img) {
|
|
const ulongT siz = size(), isiz = img.size();
|
|
if (siz && isiz) {
|
|
if (is_overlapped(img)) return min(+img);
|
|
T *ptrd = _data, *const ptre = _data + siz;
|
|
if (siz>isiz) for (ulongT n = siz/isiz; n; --n)
|
|
for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs<ptrs_end; ++ptrd)
|
|
*ptrd = std::min((T)*(ptrs++),*ptrd);
|
|
for (const t *ptrs = img._data; ptrd<ptre; ++ptrd) *ptrd = std::min((T)*(ptrs++),*ptrd);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Pointwise min operator between two images \newinstance.
|
|
template<typename t>
|
|
CImg<_cimg_Tt> get_min(const CImg<t>& img) const {
|
|
return CImg<_cimg_Tt>(*this,false).min(img);
|
|
}
|
|
|
|
//! Pointwise min operator between an image and an expression.
|
|
/**
|
|
\param expression Math formula as a C-string.
|
|
\note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by
|
|
\f$\mathrm{min}(I_{(x,y,z,c)},\mathrm{expr}_{(x,y,z,c)})\f$.
|
|
**/
|
|
CImg<T>& min(const char *const expression) {
|
|
return min((+*this)._fill(expression,true,1,0,0,"min",this));
|
|
}
|
|
|
|
//! Pointwise min operator between an image and an expression \newinstance.
|
|
CImg<Tfloat> get_min(const char *const expression) const {
|
|
return CImg<Tfloat>(*this,false).min(expression);
|
|
}
|
|
|
|
//! Pointwise max operator between instance image and a value.
|
|
/**
|
|
\param val Value used as the reference argument of the max operator.
|
|
\note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by
|
|
\f$\mathrm{max}(I_{(x,y,z,c)},\mathrm{val})\f$.
|
|
**/
|
|
CImg<T>& max(const T& value) {
|
|
if (is_empty()) return *this;
|
|
cimg_openmp_for(*this,std::max(*ptr,value),65536);
|
|
return *this;
|
|
}
|
|
|
|
//! Pointwise max operator between instance image and a value \newinstance.
|
|
CImg<T> get_max(const T& value) const {
|
|
return (+*this).max(value);
|
|
}
|
|
|
|
//! Pointwise max operator between two images.
|
|
/**
|
|
\param img Image used as the reference argument of the max operator.
|
|
\note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by
|
|
\f$\mathrm{max}(I_{(x,y,z,c)},\mathrm{img}_{(x,y,z,c)})\f$.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& max(const CImg<t>& img) {
|
|
const ulongT siz = size(), isiz = img.size();
|
|
if (siz && isiz) {
|
|
if (is_overlapped(img)) return max(+img);
|
|
T *ptrd = _data, *const ptre = _data + siz;
|
|
if (siz>isiz) for (ulongT n = siz/isiz; n; --n)
|
|
for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs<ptrs_end; ++ptrd)
|
|
*ptrd = std::max((T)*(ptrs++),*ptrd);
|
|
for (const t *ptrs = img._data; ptrd<ptre; ++ptrd) *ptrd = std::max((T)*(ptrs++),*ptrd);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Pointwise max operator between two images \newinstance.
|
|
template<typename t>
|
|
CImg<_cimg_Tt> get_max(const CImg<t>& img) const {
|
|
return CImg<_cimg_Tt>(*this,false).max(img);
|
|
}
|
|
|
|
//! Pointwise max operator between an image and an expression.
|
|
/**
|
|
\param expression Math formula as a C-string.
|
|
\note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by
|
|
\f$\mathrm{max}(I_{(x,y,z,c)},\mathrm{expr}_{(x,y,z,c)})\f$.
|
|
**/
|
|
CImg<T>& max(const char *const expression) {
|
|
return max((+*this)._fill(expression,true,1,0,0,"max",this));
|
|
}
|
|
|
|
//! Pointwise max operator between an image and an expression \newinstance.
|
|
CImg<Tfloat> get_max(const char *const expression) const {
|
|
return CImg<Tfloat>(*this,false).max(expression);
|
|
}
|
|
|
|
//! Pointwise minabs operator between instance image and a value.
|
|
/**
|
|
\param val Value used as the reference argument of the minabs operator.
|
|
\note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by
|
|
\f$\mathrm{minabs}(I_{(x,y,z,c)},\mathrm{val})\f$.
|
|
**/
|
|
CImg<T>& minabs(const T& value) {
|
|
if (is_empty()) return *this;
|
|
const T absvalue = cimg::abs(value);
|
|
cimg_openmp_for(*this,cimg::minabs(*ptr,value,absvalue),65536);
|
|
return *this;
|
|
}
|
|
|
|
//! Pointwise minabs operator between instance image and a value \newinstance.
|
|
CImg<T> get_minabs(const T& value) const {
|
|
return (+*this).minabs(value);
|
|
}
|
|
|
|
//! Pointwise minabs operator between two images.
|
|
/**
|
|
\param img Image used as the reference argument of the minabs operator.
|
|
\note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by
|
|
\f$\mathrm{minabs}(I_{(x,y,z,c)},\mathrm{img}_{(x,y,z,c)})\f$.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& minabs(const CImg<t>& img) {
|
|
const ulongT siz = size(), isiz = img.size();
|
|
if (siz && isiz) {
|
|
if (is_overlapped(img)) return minabs(+img);
|
|
T *ptrd = _data, *const ptre = _data + siz;
|
|
if (siz>isiz) for (ulongT n = siz/isiz; n; --n)
|
|
for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs<ptrs_end; ++ptrd)
|
|
*ptrd = cimg::minabs((T)*(ptrs++),*ptrd);
|
|
for (const t *ptrs = img._data; ptrd<ptre; ++ptrd) *ptrd = cimg::minabs((T)*(ptrs++),*ptrd);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Pointwise minabs operator between two images \newinstance.
|
|
template<typename t>
|
|
CImg<_cimg_Tt> get_minabs(const CImg<t>& img) const {
|
|
return CImg<_cimg_Tt>(*this,false).minabs(img);
|
|
}
|
|
|
|
//! Pointwise minabs operator between an image and an expression.
|
|
/**
|
|
\param expression Math formula as a C-string.
|
|
\note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by
|
|
\f$\mathrm{minabs}(I_{(x,y,z,c)},\mathrm{expr}_{(x,y,z,c)})\f$.
|
|
**/
|
|
CImg<T>& minabs(const char *const expression) {
|
|
return minabs((+*this)._fill(expression,true,1,0,0,"minabs",this));
|
|
}
|
|
|
|
//! Pointwise minabs operator between an image and an expression \newinstance.
|
|
CImg<Tfloat> get_minabs(const char *const expression) const {
|
|
return CImg<Tfloat>(*this,false).minabs(expression);
|
|
}
|
|
|
|
//! Pointwise maxabs operator between instance image and a value.
|
|
/**
|
|
\param val Value used as the reference argument of the maxabs operator.
|
|
\note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by
|
|
\f$\mathrm{maxabs}(I_{(x,y,z,c)},\mathrm{val})\f$.
|
|
**/
|
|
CImg<T>& maxabs(const T& value) {
|
|
if (is_empty()) return *this;
|
|
const T absvalue = cimg::abs(value);
|
|
cimg_openmp_for(*this,cimg::maxabs(*ptr,value,absvalue),65536);
|
|
return *this;
|
|
}
|
|
|
|
//! Pointwise maxabs operator between instance image and a value \newinstance.
|
|
CImg<T> get_maxabs(const T& value) const {
|
|
return (+*this).maxabs(value);
|
|
}
|
|
|
|
//! Pointwise maxabs operator between two images.
|
|
/**
|
|
\param img Image used as the reference argument of the maxabs operator.
|
|
\note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by
|
|
\f$\mathrm{maxabs}(I_{(x,y,z,c)},\mathrm{img}_{(x,y,z,c)})\f$.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& maxabs(const CImg<t>& img) {
|
|
const ulongT siz = size(), isiz = img.size();
|
|
if (siz && isiz) {
|
|
if (is_overlapped(img)) return maxabs(+img);
|
|
T *ptrd = _data, *const ptre = _data + siz;
|
|
if (siz>isiz) for (ulongT n = siz/isiz; n; --n)
|
|
for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs<ptrs_end; ++ptrd)
|
|
*ptrd = cimg::maxabs((T)*(ptrs++),*ptrd);
|
|
for (const t *ptrs = img._data; ptrd<ptre; ++ptrd) *ptrd = cimg::maxabs((T)*(ptrs++),*ptrd);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Pointwise maxabs operator between two images \newinstance.
|
|
template<typename t>
|
|
CImg<_cimg_Tt> get_maxabs(const CImg<t>& img) const {
|
|
return CImg<_cimg_Tt>(*this,false).maxabs(img);
|
|
}
|
|
|
|
//! Pointwise maxabs operator between an image and an expression.
|
|
/**
|
|
\param expression Math formula as a C-string.
|
|
\note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by
|
|
\f$\mathrm{maxabs}(I_{(x,y,z,c)},\mathrm{expr}_{(x,y,z,c)})\f$.
|
|
**/
|
|
CImg<T>& maxabs(const char *const expression) {
|
|
return maxabs((+*this)._fill(expression,true,1,0,0,"maxabs",this));
|
|
}
|
|
|
|
//! Pointwise maxabs operator between an image and an expression \newinstance.
|
|
CImg<Tfloat> get_maxabs(const char *const expression) const {
|
|
return CImg<Tfloat>(*this,false).maxabs(expression);
|
|
}
|
|
|
|
//! Return a reference to the minimum pixel value.
|
|
/**
|
|
**/
|
|
T& min() {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"min(): Empty instance.",
|
|
cimg_instance);
|
|
T *ptr_min = _data;
|
|
T min_value = *ptr_min;
|
|
cimg_for(*this,ptrs,T) if (*ptrs<min_value) min_value = *(ptr_min=ptrs);
|
|
return *ptr_min;
|
|
}
|
|
|
|
//! Return a reference to the minimum pixel value \const.
|
|
const T& min() const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"min(): Empty instance.",
|
|
cimg_instance);
|
|
const T *ptr_min = _data;
|
|
T min_value = *ptr_min;
|
|
cimg_for(*this,ptrs,T) if (*ptrs<min_value) min_value = *(ptr_min=ptrs);
|
|
return *ptr_min;
|
|
}
|
|
|
|
//! Return a reference to the minimum pixel value in absolute value.
|
|
/**
|
|
**/
|
|
T& minabs() {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"minabs(): Empty instance.",
|
|
cimg_instance);
|
|
T *ptr_minabs = _data;
|
|
T minabs_value = *ptr_minabs;
|
|
cimg_for(*this,ptrs,T) {
|
|
const T ma = cimg::abs(*ptrs);
|
|
if (ma<minabs_value) { minabs_value = ma; ptr_minabs = ptrs; }
|
|
}
|
|
return *ptr_minabs;
|
|
}
|
|
|
|
//! Return a reference to the minimum pixel value in absolute value \const.
|
|
const T& minabs() const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"minabs(): Empty instance.",
|
|
cimg_instance);
|
|
const T *ptr_minabs = _data;
|
|
T minabs_value = *ptr_minabs;
|
|
cimg_for(*this,ptrs,T) {
|
|
const T ma = cimg::abs(*ptrs);
|
|
if (ma<minabs_value) { minabs_value = ma; ptr_minabs = ptrs; }
|
|
}
|
|
return *ptr_minabs;
|
|
}
|
|
|
|
//! Return a reference to the maximum pixel value.
|
|
/**
|
|
**/
|
|
T& max() {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"max(): Empty instance.",
|
|
cimg_instance);
|
|
T *ptr_max = _data;
|
|
T max_value = *ptr_max;
|
|
cimg_for(*this,ptrs,T) if (*ptrs>max_value) max_value = *(ptr_max=ptrs);
|
|
return *ptr_max;
|
|
}
|
|
|
|
//! Return a reference to the maximum pixel value \const.
|
|
const T& max() const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"max(): Empty instance.",
|
|
cimg_instance);
|
|
const T *ptr_max = _data;
|
|
T max_value = *ptr_max;
|
|
cimg_for(*this,ptrs,T) if (*ptrs>max_value) max_value = *(ptr_max=ptrs);
|
|
return *ptr_max;
|
|
}
|
|
|
|
//! Return a reference to the maximum pixel value in absolute value.
|
|
/**
|
|
**/
|
|
T& maxabs() {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"maxabs(): Empty instance.",
|
|
cimg_instance);
|
|
T *ptr_maxabs = _data;
|
|
T maxabs_value = *ptr_maxabs;
|
|
cimg_for(*this,ptrs,T) {
|
|
const T ma = cimg::abs(*ptrs);
|
|
if (ma>maxabs_value) { maxabs_value = ma; ptr_maxabs = ptrs; }
|
|
}
|
|
return *ptr_maxabs;
|
|
}
|
|
|
|
//! Return a reference to the maximum pixel value in absolute value \const.
|
|
const T& maxabs() const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"maxabs(): Empty instance.",
|
|
cimg_instance);
|
|
const T *ptr_maxabs = _data;
|
|
T maxabs_value = *ptr_maxabs;
|
|
cimg_for(*this,ptrs,T) {
|
|
const T ma = cimg::abs(*ptrs);
|
|
if (ma>maxabs_value) { maxabs_value = ma; ptr_maxabs = ptrs; }
|
|
}
|
|
return *ptr_maxabs;
|
|
}
|
|
|
|
//! Return a reference to the minimum pixel value as well as the maximum pixel value.
|
|
/**
|
|
\param[out] max_val Maximum pixel value.
|
|
**/
|
|
template<typename t>
|
|
T& min_max(t& max_val) {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"min_max(): Empty instance.",
|
|
cimg_instance);
|
|
T *ptr_min = _data;
|
|
T min_value = *ptr_min, max_value = min_value;
|
|
cimg_for(*this,ptrs,T) {
|
|
const T val = *ptrs;
|
|
if (val<min_value) { min_value = val; ptr_min = ptrs; }
|
|
if (val>max_value) max_value = val;
|
|
}
|
|
max_val = (t)max_value;
|
|
return *ptr_min;
|
|
}
|
|
|
|
//! Return a reference to the minimum pixel value as well as the maximum pixel value \const.
|
|
template<typename t>
|
|
const T& min_max(t& max_val) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"min_max(): Empty instance.",
|
|
cimg_instance);
|
|
const T *ptr_min = _data;
|
|
T min_value = *ptr_min, max_value = min_value;
|
|
cimg_for(*this,ptrs,T) {
|
|
const T val = *ptrs;
|
|
if (val<min_value) { min_value = val; ptr_min = ptrs; }
|
|
if (val>max_value) max_value = val;
|
|
}
|
|
max_val = (t)max_value;
|
|
return *ptr_min;
|
|
}
|
|
|
|
//! Return a reference to the maximum pixel value as well as the minimum pixel value.
|
|
/**
|
|
\param[out] min_val Minimum pixel value.
|
|
**/
|
|
template<typename t>
|
|
T& max_min(t& min_val) {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"max_min(): Empty instance.",
|
|
cimg_instance);
|
|
T *ptr_max = _data;
|
|
T max_value = *ptr_max, min_value = max_value;
|
|
cimg_for(*this,ptrs,T) {
|
|
const T val = *ptrs;
|
|
if (val>max_value) { max_value = val; ptr_max = ptrs; }
|
|
if (val<min_value) min_value = val;
|
|
}
|
|
min_val = (t)min_value;
|
|
return *ptr_max;
|
|
}
|
|
|
|
//! Return a reference to the maximum pixel value as well as the minimum pixel value \const.
|
|
template<typename t>
|
|
const T& max_min(t& min_val) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"max_min(): Empty instance.",
|
|
cimg_instance);
|
|
const T *ptr_max = _data;
|
|
T max_value = *ptr_max, min_value = max_value;
|
|
cimg_for(*this,ptrs,T) {
|
|
const T val = *ptrs;
|
|
if (val>max_value) { max_value = val; ptr_max = ptrs; }
|
|
if (val<min_value) min_value = val;
|
|
}
|
|
min_val = (t)min_value;
|
|
return *ptr_max;
|
|
}
|
|
|
|
//! Return the kth smallest pixel value.
|
|
/**
|
|
\param k Rank of the smallest element searched.
|
|
**/
|
|
T kth_smallest(const ulongT k) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"kth_smallest(): Empty instance.",
|
|
cimg_instance);
|
|
if (k>=size()) return max();
|
|
CImg<T> arr(*this,false);
|
|
ulongT l = 0, ir = size() - 1;
|
|
for ( ; ; ) {
|
|
if (ir<=l + 1) {
|
|
if (ir==l + 1 && arr[ir]<arr[l]) cimg::swap(arr[l],arr[ir]);
|
|
return arr[k];
|
|
} else {
|
|
const ulongT mid = (l + ir)>>1;
|
|
cimg::swap(arr[mid],arr[l + 1]);
|
|
if (arr[l]>arr[ir]) cimg::swap(arr[l],arr[ir]);
|
|
if (arr[l + 1]>arr[ir]) cimg::swap(arr[l + 1],arr[ir]);
|
|
if (arr[l]>arr[l + 1]) cimg::swap(arr[l],arr[l + 1]);
|
|
ulongT i = l + 1, j = ir;
|
|
const T pivot = arr[l + 1];
|
|
for ( ; ; ) {
|
|
do ++i; while (arr[i]<pivot);
|
|
do --j; while (arr[j]>pivot);
|
|
if (j<i) break;
|
|
cimg::swap(arr[i],arr[j]);
|
|
}
|
|
arr[l + 1] = arr[j];
|
|
arr[j] = pivot;
|
|
if (j>=k) ir = j - 1;
|
|
if (j<=k) l = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
//! Return the median pixel value.
|
|
/**
|
|
**/
|
|
T median() const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"median(): Empty instance.",
|
|
cimg_instance);
|
|
const ulongT s = size();
|
|
switch (s) {
|
|
case 1 : return _data[0];
|
|
case 2 : return cimg::median(_data[0],_data[1]);
|
|
case 3 : return cimg::median(_data[0],_data[1],_data[2]);
|
|
case 5 : return cimg::median(_data[0],_data[1],_data[2],_data[3],_data[4]);
|
|
case 7 : return cimg::median(_data[0],_data[1],_data[2],_data[3],_data[4],_data[5],_data[6]);
|
|
case 9 : return cimg::median(_data[0],_data[1],_data[2],_data[3],_data[4],_data[5],_data[6],_data[7],_data[8]);
|
|
case 13 : return cimg::median(_data[0],_data[1],_data[2],_data[3],_data[4],_data[5],_data[6],_data[7],_data[8],
|
|
_data[9],_data[10],_data[11],_data[12]);
|
|
}
|
|
const T res = kth_smallest(s>>1);
|
|
return (s%2)?res:(T)((res + kth_smallest((s>>1) - 1))/2);
|
|
}
|
|
|
|
//! Return the product of all the pixel values.
|
|
/**
|
|
**/
|
|
double product() const {
|
|
if (is_empty()) return 0;
|
|
double res = 1;
|
|
cimg_for(*this,ptrs,T) res*=(double)*ptrs;
|
|
return res;
|
|
}
|
|
|
|
//! Return the sum of all the pixel values.
|
|
/**
|
|
**/
|
|
double sum() const {
|
|
double res = 0;
|
|
cimg_for(*this,ptrs,T) res+=(double)*ptrs;
|
|
return res;
|
|
}
|
|
|
|
//! Return the average pixel value.
|
|
/**
|
|
**/
|
|
double mean() const {
|
|
double res = 0;
|
|
cimg_for(*this,ptrs,T) res+=(double)*ptrs;
|
|
return res/size();
|
|
}
|
|
|
|
//! Return the variance of the pixel values.
|
|
/**
|
|
\param variance_method Method used to estimate the variance. Can be:
|
|
- \c 0: Second moment, computed as
|
|
\f$1/N \sum\limits_{k=1}^{N} (x_k - \bar x)^2 =
|
|
1/N \left( \sum\limits_{k=1}^N x_k^2 - \left( \sum\limits_{k=1}^N x_k \right)^2 / N \right)\f$
|
|
with \f$ \bar x = 1/N \sum\limits_{k=1}^N x_k \f$.
|
|
- \c 1: Best unbiased estimator, computed as \f$\frac{1}{N - 1} \sum\limits_{k=1}^{N} (x_k - \bar x)^2 \f$.
|
|
- \c 2: Least median of squares.
|
|
- \c 3: Least trimmed of squares.
|
|
**/
|
|
double variance(const unsigned int variance_method=1) const {
|
|
double foo;
|
|
return variance_mean(variance_method,foo);
|
|
}
|
|
|
|
//! Return the variance as well as the average of the pixel values.
|
|
/**
|
|
\param variance_method Method used to estimate the variance (see variance(const unsigned int) const).
|
|
\param[out] mean Average pixel value.
|
|
**/
|
|
template<typename t>
|
|
double variance_mean(const unsigned int variance_method, t& mean) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"variance_mean(): Empty instance.",
|
|
cimg_instance);
|
|
|
|
double variance = 0, average = 0;
|
|
const ulongT siz = size();
|
|
switch (variance_method) {
|
|
case 0 : { // Least mean square (standard definition)
|
|
double S = 0, S2 = 0;
|
|
cimg_for(*this,ptrs,T) { const double val = (double)*ptrs; S+=val; S2+=val*val; }
|
|
variance = (S2 - S*S/siz)/siz;
|
|
average = S;
|
|
} break;
|
|
case 1 : { // Least mean square (robust definition)
|
|
double S = 0, S2 = 0;
|
|
cimg_for(*this,ptrs,T) { const double val = (double)*ptrs; S+=val; S2+=val*val; }
|
|
variance = siz>1?(S2 - S*S/siz)/(siz - 1):0;
|
|
average = S;
|
|
} break;
|
|
case 2 : { // Least Median of Squares (MAD)
|
|
CImg<Tfloat> buf(*this,false);
|
|
buf.sort();
|
|
const ulongT siz2 = siz>>1;
|
|
const double med_i = (double)buf[siz2];
|
|
cimg_for(buf,ptrs,Tfloat) {
|
|
const double val = (double)*ptrs; *ptrs = (Tfloat)cimg::abs(val - med_i); average+=val;
|
|
}
|
|
buf.sort();
|
|
const double sig = (double)(1.4828*buf[siz2]);
|
|
variance = sig*sig;
|
|
} break;
|
|
default : { // Least trimmed of Squares
|
|
CImg<Tfloat> buf(*this,false);
|
|
const ulongT siz2 = siz>>1;
|
|
cimg_for(buf,ptrs,Tfloat) {
|
|
const double val = (double)*ptrs; (*ptrs)=(Tfloat)((*ptrs)*val); average+=val;
|
|
}
|
|
buf.sort();
|
|
double a = 0;
|
|
const Tfloat *ptrs = buf._data;
|
|
for (ulongT j = 0; j<siz2; ++j) a+=(double)*(ptrs++);
|
|
const double sig = (double)(2.6477*std::sqrt(a/siz2));
|
|
variance = sig*sig;
|
|
}
|
|
}
|
|
mean = (t)(average/siz);
|
|
return variance>0?variance:0;
|
|
}
|
|
|
|
//! Return estimated variance of the noise.
|
|
/**
|
|
\param variance_method Method used to compute the variance (see variance(const unsigned int) const).
|
|
\note Because of structures such as edges in images it is
|
|
recommended to use a robust variance estimation. The variance of the
|
|
noise is estimated by computing the variance of the Laplacian \f$(\Delta
|
|
I)^2 \f$ scaled by a factor \f$c\f$ insuring \f$ c E[(\Delta I)^2]=
|
|
\sigma^2\f$ where \f$\sigma\f$ is the noise variance.
|
|
**/
|
|
double variance_noise(const unsigned int variance_method=2) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"variance_noise(): Empty instance.",
|
|
cimg_instance);
|
|
|
|
const ulongT siz = size();
|
|
if (!siz || !_data) return 0;
|
|
if (variance_method>1) { // Compute a scaled version of the Laplacian
|
|
CImg<Tdouble> tmp(*this,false);
|
|
if (_depth==1) {
|
|
const double cste = 1./std::sqrt(20.); // Depends on how the Laplacian is computed
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*262144 &&
|
|
_spectrum>=2))
|
|
cimg_forC(*this,c) {
|
|
CImg_3x3(I,T);
|
|
cimg_for3x3(*this,x,y,0,c,I,T) {
|
|
tmp(x,y,c) = cste*((double)Inc + (double)Ipc + (double)Icn +
|
|
(double)Icp - 4*(double)Icc);
|
|
}
|
|
}
|
|
} else {
|
|
const double cste = 1./std::sqrt(42.); // Depends on how the Laplacian is computed
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*262144 &&
|
|
_spectrum>=2))
|
|
cimg_forC(*this,c) {
|
|
CImg_3x3x3(I,T);
|
|
cimg_for3x3x3(*this,x,y,z,c,I,T) {
|
|
tmp(x,y,z,c) = cste*(
|
|
(double)Incc + (double)Ipcc + (double)Icnc + (double)Icpc +
|
|
(double)Iccn + (double)Iccp - 6*(double)Iccc);
|
|
}
|
|
}
|
|
}
|
|
return tmp.variance(variance_method);
|
|
}
|
|
|
|
// Version that doesn't need intermediate images.
|
|
double variance = 0, S = 0, S2 = 0;
|
|
if (_depth==1) {
|
|
const double cste = 1./std::sqrt(20.);
|
|
CImg_3x3(I,T);
|
|
cimg_forC(*this,c) cimg_for3x3(*this,x,y,0,c,I,T) {
|
|
const double val = cste*((double)Inc + (double)Ipc +
|
|
(double)Icn + (double)Icp - 4*(double)Icc);
|
|
S+=val; S2+=val*val;
|
|
}
|
|
} else {
|
|
const double cste = 1./std::sqrt(42.);
|
|
CImg_3x3x3(I,T);
|
|
cimg_forC(*this,c) cimg_for3x3x3(*this,x,y,z,c,I,T) {
|
|
const double val = cste *
|
|
((double)Incc + (double)Ipcc + (double)Icnc +
|
|
(double)Icpc +
|
|
(double)Iccn + (double)Iccp - 6*(double)Iccc);
|
|
S+=val; S2+=val*val;
|
|
}
|
|
}
|
|
if (variance_method) variance = siz>1?(S2 - S*S/siz)/(siz - 1):0;
|
|
else variance = (S2 - S*S/siz)/siz;
|
|
return variance>0?variance:0;
|
|
}
|
|
|
|
//! Compute the MSE (Mean-Squared Error) between two images.
|
|
/**
|
|
\param img Image used as the second argument of the MSE operator.
|
|
**/
|
|
template<typename t>
|
|
double MSE(const CImg<t>& img) const {
|
|
if (img.size()!=size())
|
|
throw CImgArgumentException(_cimg_instance
|
|
"MSE(): Instance and specified image (%u,%u,%u,%u,%p) have different dimensions.",
|
|
cimg_instance,
|
|
img._width,img._height,img._depth,img._spectrum,img._data);
|
|
double vMSE = 0;
|
|
const t* ptr2 = img._data;
|
|
cimg_for(*this,ptr1,T) {
|
|
const double diff = (double)*ptr1 - (double)*(ptr2++);
|
|
vMSE+=diff*diff;
|
|
}
|
|
const ulongT siz = img.size();
|
|
if (siz) vMSE/=siz;
|
|
return vMSE;
|
|
}
|
|
|
|
//! Compute the PSNR (Peak Signal-to-Noise Ratio) between two images.
|
|
/**
|
|
\param img Image used as the second argument of the PSNR operator.
|
|
\param max_value Maximum theoretical value of the signal.
|
|
**/
|
|
template<typename t>
|
|
double PSNR(const CImg<t>& img, const double max_value=255) const {
|
|
const double vMSE = (double)std::sqrt(MSE(img));
|
|
return (vMSE!=0)?(double)(20*std::log10(max_value/vMSE)):(double)(cimg::type<double>::max());
|
|
}
|
|
|
|
//! Evaluate math formula.
|
|
/**
|
|
\param expression Math formula, as a C-string.
|
|
\param x Value of the pre-defined variable \c x.
|
|
\param y Value of the pre-defined variable \c y.
|
|
\param z Value of the pre-defined variable \c z.
|
|
\param c Value of the pre-defined variable \c c.
|
|
\param list_images A list of images attached to the specified math formula.
|
|
**/
|
|
double eval(const char *const expression,
|
|
const double x=0, const double y=0, const double z=0, const double c=0,
|
|
CImgList<T> *const list_images=0) {
|
|
return _eval(this,expression,x,y,z,c,list_images);
|
|
}
|
|
|
|
//! Evaluate math formula \const.
|
|
double eval(const char *const expression,
|
|
const double x=0, const double y=0, const double z=0, const double c=0,
|
|
CImgList<T> *const list_images=0) const {
|
|
return _eval(0,expression,x,y,z,c,list_images);
|
|
}
|
|
|
|
// Fast function to pre-evaluate common expressions.
|
|
// (return 'true' in case of success, and set value of 'res').
|
|
template<typename t>
|
|
bool __eval(const char *const expression, t &res) const {
|
|
if (!expression || !*expression) { res = (t)0; return true; }
|
|
const char c = *expression;
|
|
bool is_success = false;
|
|
char sep, end;
|
|
double val,val2;
|
|
int err;
|
|
if ((c>='0' && c<='9') || c=='.') { // Possible value
|
|
if (!expression[1]) { // Single digit
|
|
res = (t)(c - '0');
|
|
is_success = true;
|
|
} else if ((err = std::sscanf(expression,"%lf %c%lf %c",&val,&sep,&val2,&end))==1) { // Single value
|
|
res = (t)val;
|
|
is_success = true;
|
|
} else if (err==3) { // Value1 Operator Value2
|
|
switch (sep) {
|
|
case '+' : res = (t)(val + val2); is_success = true; break;
|
|
case '-' : res = (t)(val - val2); is_success = true; break;
|
|
case '*' : res = (t)(val*val2); is_success = true; break;
|
|
case '/' : res = (t)(val/val2); is_success = true; break;
|
|
case '%' : res = (t)cimg::mod(val,val2); is_success = true; break;
|
|
case '&' : res = (t)((long)val & (long)val2); is_success = true; break;
|
|
case '|' : res = (t)((long)val | (long)val2); is_success = true; break;
|
|
case '>' : res = (t)(val>val2); is_success = true; break;
|
|
case '<' : res = (t)(val<val2); is_success = true; break;
|
|
case ';' : res = (t)val2; is_success = true; break;
|
|
case '^' : res = (t)std::pow(val,val2); is_success = true; break;
|
|
}
|
|
}
|
|
} else if ((c=='+' || c=='-' || c=='!') && // +Value, -Value or !Value
|
|
(((sep = expression[1])>='0' && sep<='9') || sep=='.')) {
|
|
if (!expression[2]) { // [+-!] + Single digit
|
|
const int ival = sep - '0';
|
|
res = (t)(c=='+'?ival:c=='-'?-ival:!ival);
|
|
is_success = true;
|
|
} else if ((err = std::sscanf(expression + 1,"%lf %c%lf %c",&val,&sep,&val2,&end))==1) { // [+-!] Single value
|
|
res = (t)(c=='+'?val:c=='-'?-val:(double)!val);
|
|
is_success = true;
|
|
} else if (err==3) { // [+-!] Value1 Operator Value2
|
|
const double val1 = c=='+'?val:c=='-'?-val:(double)!val;
|
|
switch (sep) {
|
|
case '+' : res = (t)(val1 + val2); is_success = true; break;
|
|
case '-' : res = (t)(val1 - val2); is_success = true; break;
|
|
case '*' : res = (t)(val1*val2); is_success = true; break;
|
|
case '/' : res = (t)(val1/val2); is_success = true; break;
|
|
case '%' : res = (t)cimg::mod(val1,val2); is_success = true; break;
|
|
case '&' : res = (t)((long)val1 & (long)val2); is_success = true; break;
|
|
case '|' : res = (t)((long)val1 | (long)val2); is_success = true; break;
|
|
case '>' : res = (t)(val1>val2); is_success = true; break;
|
|
case '<' : res = (t)(val1<val2); is_success = true; break;
|
|
case ';' : res = (t)val2; is_success = true; break;
|
|
case '^' : val = std::pow(val,val2); res = (t)(c=='+'?val:c=='-'?-val:!val); is_success = true; break;
|
|
}
|
|
}
|
|
} else if (!expression[1]) switch (*expression) { // Other common single-char expressions
|
|
case 'w' : res = (t)_width; is_success = true; break;
|
|
case 'h' : res = (t)_height; is_success = true; break;
|
|
case 'd' : res = (t)_depth; is_success = true; break;
|
|
case 's' : res = (t)_spectrum; is_success = true; break;
|
|
case 'r' : res = (t)_is_shared; is_success = true; break;
|
|
}
|
|
return is_success;
|
|
}
|
|
|
|
double _eval(CImg<T> *const img_output, const char *const expression,
|
|
const double x, const double y, const double z, const double c,
|
|
CImgList<T> *const list_images) const {
|
|
if (!expression || !*expression) return 0;
|
|
double _val = 0;
|
|
if (__eval(expression,_val)) return _val;
|
|
_cimg_math_parser mp(expression + (*expression=='>' || *expression=='<' ||
|
|
*expression=='*' || *expression==':'),"eval",
|
|
*this,img_output,list_images,false);
|
|
mp.begin_t();
|
|
const double val = mp(x,y,z,c);
|
|
mp.end_t();
|
|
mp.end();
|
|
return val;
|
|
}
|
|
|
|
//! Evaluate math formula.
|
|
/**
|
|
\param[out] output Contains values of output vector returned by the evaluated expression
|
|
(or is empty if the returned type is scalar).
|
|
\param expression Math formula, as a C-string.
|
|
\param x Value of the pre-defined variable \c x.
|
|
\param y Value of the pre-defined variable \c y.
|
|
\param z Value of the pre-defined variable \c z.
|
|
\param c Value of the pre-defined variable \c c.
|
|
\param list_images A list of input images attached to the specified math formula.
|
|
**/
|
|
template<typename t>
|
|
void eval(CImg<t> &output, const char *const expression,
|
|
const double x=0, const double y=0, const double z=0, const double c=0,
|
|
CImgList<T> *const list_images=0) {
|
|
_eval(output,this,expression,x,y,z,c,list_images);
|
|
}
|
|
|
|
//! Evaluate math formula \const.
|
|
template<typename t>
|
|
void eval(CImg<t>& output, const char *const expression,
|
|
const double x=0, const double y=0, const double z=0, const double c=0,
|
|
CImgList<T> *const list_images=0) const {
|
|
_eval(output,0,expression,x,y,z,c,list_images);
|
|
}
|
|
|
|
template<typename t>
|
|
void _eval(CImg<t>& output, CImg<T> *const img_output, const char *const expression,
|
|
const double x, const double y, const double z, const double c,
|
|
CImgList<T> *const list_images) const {
|
|
if (!expression || !*expression) { output.assign(1); *output = 0; return; }
|
|
double _val = 0;
|
|
if (__eval(expression,_val)) { output.assign(1); *output = _val; return; }
|
|
_cimg_math_parser mp(expression + (*expression=='>' || *expression=='<' ||
|
|
*expression=='*' || *expression==':'),"eval",
|
|
*this,img_output,list_images,false);
|
|
output.assign(1,std::max(1U,mp.result_dim));
|
|
mp.begin_t();
|
|
mp(x,y,z,c,output._data);
|
|
mp.end_t();
|
|
mp.end();
|
|
}
|
|
|
|
//! Evaluate math formula on a set of variables.
|
|
/**
|
|
\param expression Math formula, as a C-string.
|
|
\param xyzc Set of values (x,y,z,c) used for the evaluation.
|
|
\param list_images A list of input images attached to the specified math formula.
|
|
**/
|
|
template<typename t>
|
|
CImg<doubleT> eval(const char *const expression, const CImg<t>& xyzc,
|
|
CImgList<T> *const list_images=0) {
|
|
return _eval(this,expression,xyzc,list_images);
|
|
}
|
|
|
|
//! Evaluate math formula on a set of variables \const.
|
|
template<typename t>
|
|
CImg<doubleT> eval(const char *const expression, const CImg<t>& xyzc,
|
|
CImgList<T> *const list_images=0) const {
|
|
return _eval(0,expression,xyzc,list_images);
|
|
}
|
|
|
|
template<typename t>
|
|
CImg<doubleT> _eval(CImg<T> *const output, const char *const expression, const CImg<t>& xyzc,
|
|
CImgList<T> *const list_images=0) const {
|
|
CImg<doubleT> res(1,xyzc.size()/4);
|
|
if (!expression || !*expression) return res.fill(0);
|
|
_cimg_math_parser mp(expression,"eval",*this,output,list_images,false);
|
|
|
|
#if cimg_use_openmp!=0
|
|
cimg_pragma_openmp(parallel if (res._height>=512))
|
|
{
|
|
_cimg_math_parser
|
|
*const _mp = omp_get_thread_num()?new _cimg_math_parser(mp):&mp,
|
|
&lmp = *_mp;
|
|
cimg_pragma_openmp(barrier)
|
|
lmp.begin_t();
|
|
cimg_pragma_openmp(for)
|
|
for (int i = 0; i<res.height(); ++i) {
|
|
const unsigned int i4 = 4*i;
|
|
const double
|
|
x = (double)xyzc[i4], y = (double)xyzc[i4 + 1],
|
|
z = (double)xyzc[i4 + 2], c = (double)xyzc[i4 + 3];
|
|
res[i] = lmp(x,y,z,c);
|
|
}
|
|
lmp.end_t();
|
|
cimg_pragma_openmp(barrier) cimg_pragma_openmp(critical) { lmp.merge(mp); }
|
|
if (&lmp!=&mp) delete &lmp;
|
|
}
|
|
#else
|
|
mp.begin_t();
|
|
const t *ps = xyzc._data;
|
|
cimg_for(res,pd,double) {
|
|
const double x = (double)*(ps++), y = (double)*(ps++), z = (double)*(ps++), c = (double)*(ps++);
|
|
*pd = mp(x,y,z,c);
|
|
}
|
|
mp.end_t();
|
|
#endif
|
|
mp.end();
|
|
return res;
|
|
}
|
|
|
|
//! Compute statistics vector from the pixel values.
|
|
/**
|
|
\param variance_method Method used to compute the variance (see variance(const unsigned int) const).
|
|
\return Statistics vector as
|
|
<tt>[min, max, mean, variance, xmin, ymin, zmin, cmin, xmax, ymax, zmax, cmax, sum, product]</tt>.
|
|
**/
|
|
CImg<Tdouble> get_stats(const unsigned int variance_method=1) const {
|
|
if (is_empty()) return CImg<doubleT>();
|
|
const ulongT siz = size();
|
|
const longT off_end = (longT)siz;
|
|
double S = 0, S2 = 0, P = 1;
|
|
longT offm = 0, offM = 0;
|
|
T m = *_data, M = m;
|
|
|
|
cimg_pragma_openmp(parallel reduction(+:S,S2) reduction(*:P) cimg_openmp_if_size(siz,131072)) {
|
|
longT loffm = 0, loffM = 0;
|
|
T lm = *_data, lM = lm;
|
|
cimg_pragma_openmp(for)
|
|
for (longT off = 0; off<off_end; ++off) {
|
|
const T val = _data[off];
|
|
const double _val = (double)val;
|
|
if (val<lm) { lm = val; loffm = off; }
|
|
if (val>lM) { lM = val; loffM = off; }
|
|
S+=_val;
|
|
S2+=_val*_val;
|
|
P*=_val;
|
|
}
|
|
cimg_pragma_openmp(critical(get_stats)) {
|
|
if (lm<m || (lm==m && loffm<offm)) { m = lm; offm = loffm; }
|
|
if (lM>M || (lM==M && loffM<offM)) { M = lM; offM = loffM; }
|
|
}
|
|
}
|
|
|
|
const double
|
|
mean_value = S/siz,
|
|
_variance_value = variance_method==0?(S2 - S*S/siz)/siz:
|
|
(variance_method==1?(siz>1?(S2 - S*S/siz)/(siz - 1):0):
|
|
variance(variance_method)),
|
|
variance_value = _variance_value>0?_variance_value:0;
|
|
int
|
|
xm = 0, ym = 0, zm = 0, cm = 0,
|
|
xM = 0, yM = 0, zM = 0, cM = 0;
|
|
contains(_data[offm],xm,ym,zm,cm);
|
|
contains(_data[offM],xM,yM,zM,cM);
|
|
return CImg<Tdouble>(1,14).fill((double)m,(double)M,mean_value,variance_value,
|
|
(double)xm,(double)ym,(double)zm,(double)cm,
|
|
(double)xM,(double)yM,(double)zM,(double)cM,
|
|
S,P);
|
|
}
|
|
|
|
//! Compute statistics vector from the pixel values \inplace.
|
|
CImg<T>& stats(const unsigned int variance_method=1) {
|
|
return get_stats(variance_method).move_to(*this);
|
|
}
|
|
|
|
//@}
|
|
//-------------------------------------
|
|
//
|
|
//! \name Vector / Matrix Operations
|
|
//@{
|
|
//-------------------------------------
|
|
|
|
//! Compute norm of the image, viewed as a matrix.
|
|
/**
|
|
\param magnitude_type Norm type. Can be:
|
|
- \c -1: Linf-norm
|
|
- \c 0: L0-norm
|
|
- \c 1: L1-norm
|
|
- \c 2: L2-norm
|
|
**/
|
|
double magnitude(const int magnitude_type=2) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"magnitude(): Empty instance.",
|
|
cimg_instance);
|
|
const ulongT siz = size();
|
|
double res = 0;
|
|
switch (magnitude_type) {
|
|
case -1 : {
|
|
cimg_for(*this,ptrs,T) { const double val = (double)cimg::abs(*ptrs); if (val>res) res = val; }
|
|
} break;
|
|
case 1 : {
|
|
cimg_pragma_openmp(parallel for reduction(+:res) cimg_openmp_if_size(size(),8192))
|
|
for (longT off = 0; off<(longT)siz; ++off) res+=(double)cimg::abs(_data[off]);
|
|
} break;
|
|
default : {
|
|
cimg_pragma_openmp(parallel for reduction(+:res) cimg_openmp_if_size(size(),8192))
|
|
for (longT off = 0; off<(longT)siz; ++off) res+=(double)cimg::sqr(_data[off]);
|
|
res = (double)std::sqrt(res);
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Compute the trace of the image, viewed as a matrix.
|
|
/**
|
|
**/
|
|
double trace() const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"trace(): Empty instance.",
|
|
cimg_instance);
|
|
double res = 0;
|
|
cimg_forX(*this,k) res+=(double)(*this)(k,k);
|
|
return res;
|
|
}
|
|
|
|
//! Compute the determinant of the image, viewed as a matrix.
|
|
/**
|
|
**/
|
|
double det() const {
|
|
if (is_empty() || _width!=_height || _depth!=1 || _spectrum!=1)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"det(): Instance is not a square matrix.",
|
|
cimg_instance);
|
|
|
|
switch (_width) {
|
|
case 1 : return (double)((*this)(0,0));
|
|
case 2 : return (double)((*this)(0,0))*(double)((*this)(1,1)) - (double)((*this)(0,1))*(double)((*this)(1,0));
|
|
case 3 : {
|
|
const double
|
|
a = (double)_data[0], d = (double)_data[1], g = (double)_data[2],
|
|
b = (double)_data[3], e = (double)_data[4], h = (double)_data[5],
|
|
c = (double)_data[6], f = (double)_data[7], i = (double)_data[8];
|
|
return i*a*e - a*h*f - i*b*d + b*g*f + c*d*h - c*g*e;
|
|
}
|
|
default : {
|
|
CImg<Tfloat> lu(*this,false);
|
|
CImg<uintT> indx;
|
|
bool d;
|
|
lu._LU(indx,d);
|
|
double res = d?(double)1:(double)-1;
|
|
cimg_forX(lu,i) res*=lu(i,i);
|
|
return res;
|
|
}
|
|
}
|
|
}
|
|
|
|
//! Compute the dot product between instance and argument, viewed as matrices.
|
|
/**
|
|
\param img Image used as a second argument of the dot product.
|
|
**/
|
|
template<typename t>
|
|
double dot(const CImg<t>& img) const {
|
|
const ulongT nb = std::min(size(),img.size());
|
|
double res = 0;
|
|
cimg_pragma_openmp(parallel for reduction(+:res) cimg_openmp_if_size(nb,8192))
|
|
for (longT off = 0; off<(longT)nb; ++off) res+=(double)_data[off]*(double)img[off];
|
|
return res;
|
|
}
|
|
|
|
//! Get vector-valued pixel located at specified position.
|
|
/**
|
|
\param x X-coordinate of the pixel value.
|
|
\param y Y-coordinate of the pixel value.
|
|
\param z Z-coordinate of the pixel value.
|
|
**/
|
|
CImg<T> get_vector_at(const unsigned int x, const unsigned int y=0, const unsigned int z=0) const {
|
|
CImg<T> res;
|
|
if (res._height!=_spectrum) res.assign(1,_spectrum);
|
|
const ulongT whd = (ulongT)_width*_height*_depth;
|
|
const T *ptrs = data(x,y,z);
|
|
T *ptrd = res._data;
|
|
cimg_forC(*this,c) { *(ptrd++) = *ptrs; ptrs+=whd; }
|
|
return res;
|
|
}
|
|
|
|
//! Get (square) matrix-valued pixel located at specified position.
|
|
/**
|
|
\param x X-coordinate of the pixel value.
|
|
\param y Y-coordinate of the pixel value.
|
|
\param z Z-coordinate of the pixel value.
|
|
\note - The spectrum() of the image must be a square.
|
|
**/
|
|
CImg<T> get_matrix_at(const unsigned int x=0, const unsigned int y=0, const unsigned int z=0) const {
|
|
const int n = (int)cimg::round(std::sqrt((double)_spectrum));
|
|
const T *ptrs = data(x,y,z,0);
|
|
const ulongT whd = (ulongT)_width*_height*_depth;
|
|
CImg<T> res(n,n);
|
|
T *ptrd = res._data;
|
|
cimg_forC(*this,c) { *(ptrd++) = *ptrs; ptrs+=whd; }
|
|
return res;
|
|
}
|
|
|
|
//! Get tensor-valued pixel located at specified position.
|
|
/**
|
|
\param x X-coordinate of the pixel value.
|
|
\param y Y-coordinate of the pixel value.
|
|
\param z Z-coordinate of the pixel value.
|
|
**/
|
|
CImg<T> get_tensor_at(const unsigned int x, const unsigned int y=0, const unsigned int z=0) const {
|
|
const T *ptrs = data(x,y,z,0);
|
|
const ulongT whd = (ulongT)_width*_height*_depth;
|
|
if (_spectrum==6)
|
|
return tensor(*ptrs,*(ptrs + whd),*(ptrs + 2*whd),*(ptrs + 3*whd),*(ptrs + 4*whd),*(ptrs + 5*whd));
|
|
if (_spectrum==3)
|
|
return tensor(*ptrs,*(ptrs + whd),*(ptrs + 2*whd));
|
|
return tensor(*ptrs);
|
|
}
|
|
|
|
//! Set vector-valued pixel at specified position.
|
|
/**
|
|
\param vec Vector to put on the instance image.
|
|
\param x X-coordinate of the pixel value.
|
|
\param y Y-coordinate of the pixel value.
|
|
\param z Z-coordinate of the pixel value.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& set_vector_at(const CImg<t>& vec, const unsigned int x, const unsigned int y=0, const unsigned int z=0) {
|
|
if (x<_width && y<_height && z<_depth) {
|
|
const t *ptrs = vec._data;
|
|
const ulongT whd = (ulongT)_width*_height*_depth;
|
|
T *ptrd = data(x,y,z);
|
|
for (unsigned int k = std::min((unsigned int)vec.size(),_spectrum); k; --k) {
|
|
*ptrd = (T)*(ptrs++); ptrd+=whd;
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Set (square) matrix-valued pixel at specified position.
|
|
/**
|
|
\param mat Matrix to put on the instance image.
|
|
\param x X-coordinate of the pixel value.
|
|
\param y Y-coordinate of the pixel value.
|
|
\param z Z-coordinate of the pixel value.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& set_matrix_at(const CImg<t>& mat, const unsigned int x=0, const unsigned int y=0, const unsigned int z=0) {
|
|
return set_vector_at(mat,x,y,z);
|
|
}
|
|
|
|
//! Set tensor-valued pixel at specified position.
|
|
/**
|
|
\param ten Tensor to put on the instance image.
|
|
\param x X-coordinate of the pixel value.
|
|
\param y Y-coordinate of the pixel value.
|
|
\param z Z-coordinate of the pixel value.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& set_tensor_at(const CImg<t>& ten, const unsigned int x=0, const unsigned int y=0, const unsigned int z=0) {
|
|
T *ptrd = data(x,y,z,0);
|
|
const ulongT siz = (ulongT)_width*_height*_depth;
|
|
if (ten._height==2) {
|
|
*ptrd = (T)ten[0]; ptrd+=siz;
|
|
*ptrd = (T)ten[1]; ptrd+=siz;
|
|
*ptrd = (T)ten[3];
|
|
}
|
|
else {
|
|
*ptrd = (T)ten[0]; ptrd+=siz;
|
|
*ptrd = (T)ten[1]; ptrd+=siz;
|
|
*ptrd = (T)ten[2]; ptrd+=siz;
|
|
*ptrd = (T)ten[4]; ptrd+=siz;
|
|
*ptrd = (T)ten[5]; ptrd+=siz;
|
|
*ptrd = (T)ten[8];
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Resize image to become a diagonal matrix.
|
|
/**
|
|
\note Transform the image as a diagonal matrix so that each of its initial value becomes a diagonal coefficient.
|
|
**/
|
|
CImg<T>& diagonal() {
|
|
return get_diagonal().move_to(*this);
|
|
}
|
|
|
|
//! Resize image to become a diagonal matrix \newinstance.
|
|
CImg<T> get_diagonal() const {
|
|
if (is_empty()) return *this;
|
|
const unsigned int siz = (unsigned int)size();
|
|
CImg<T> res(siz,siz,1,1,0);
|
|
cimg_foroff(*this,off) res((unsigned int)off,(unsigned int)off) = (*this)[off];
|
|
return res;
|
|
}
|
|
|
|
//! Replace the image by an identity matrix.
|
|
/**
|
|
\note If the instance image is not square, it is resized to a square matrix using its maximum
|
|
dimension as a reference.
|
|
**/
|
|
CImg<T>& identity_matrix() {
|
|
return identity_matrix(std::max(_width,_height)).move_to(*this);
|
|
}
|
|
|
|
//! Replace the image by an identity matrix \newinstance.
|
|
CImg<T> get_identity_matrix() const {
|
|
return identity_matrix(std::max(_width,_height));
|
|
}
|
|
|
|
//! Fill image with a linear sequence of values.
|
|
/**
|
|
\param a0 Starting value of the sequence.
|
|
\param a1 Ending value of the sequence.
|
|
**/
|
|
CImg<T>& sequence(const T& a0, const T& a1) {
|
|
if (is_empty()) return *this;
|
|
const ulongT siz = size() - 1;
|
|
T* ptr = _data;
|
|
if (siz) {
|
|
const double delta = (double)a1 - (double)a0;
|
|
cimg_foroff(*this,l) *(ptr++) = (T)(a0 + delta*l/siz);
|
|
} else *ptr = a0;
|
|
return *this;
|
|
}
|
|
|
|
//! Fill image with a linear sequence of values \newinstance.
|
|
CImg<T> get_sequence(const T& a0, const T& a1) const {
|
|
return (+*this).sequence(a0,a1);
|
|
}
|
|
|
|
//! Transpose the image, viewed as a matrix.
|
|
/**
|
|
\note Equivalent to \code permute_axes("yxzc"); \endcode.
|
|
**/
|
|
CImg<T>& transpose() {
|
|
if (_width==1) { _width = _height; _height = 1; return *this; }
|
|
if (_height==1) { _height = _width; _width = 1; return *this; }
|
|
if (_width==_height) {
|
|
cimg_forYZC(*this,y,z,c) for (int x = y; x<width(); ++x) cimg::swap((*this)(x,y,z,c),(*this)(y,x,z,c));
|
|
return *this;
|
|
}
|
|
return get_transpose().move_to(*this);
|
|
}
|
|
|
|
//! Transpose the image, viewed as a matrix \newinstance.
|
|
CImg<T> get_transpose() const {
|
|
return get_permute_axes("yxzc");
|
|
}
|
|
|
|
//! Compute the cross product between two \c 1x3 images, viewed as 3D vectors.
|
|
/**
|
|
\param img Image used as the second argument of the cross product.
|
|
\note The first argument of the cross product is \c *this.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& cross(const CImg<t>& img) {
|
|
if (_width!=1 || _height<3 || img._width!=1 || img._height<3)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"cross(): Instance and/or specified image (%u,%u,%u,%u,%p) are not 3D vectors.",
|
|
cimg_instance,
|
|
img._width,img._height,img._depth,img._spectrum,img._data);
|
|
|
|
const T x = (*this)[0], y = (*this)[1], z = (*this)[2];
|
|
(*this)[0] = (T)(y*img[2] - z*img[1]);
|
|
(*this)[1] = (T)(z*img[0] - x*img[2]);
|
|
(*this)[2] = (T)(x*img[1] - y*img[0]);
|
|
return *this;
|
|
}
|
|
|
|
//! Compute the cross product between two \c 1x3 images, viewed as 3D vectors \newinstance.
|
|
template<typename t>
|
|
CImg<_cimg_Tt> get_cross(const CImg<t>& img) const {
|
|
return CImg<_cimg_Tt>(*this).cross(img);
|
|
}
|
|
|
|
//! Invert the instance image, viewed as a matrix.
|
|
/**
|
|
If the instance matrix is not square, the Moore-Penrose pseudo-inverse is computed instead.
|
|
\param use_LU Choose the inverting algorithm. Can be:
|
|
- \c true: LU solver (faster but less precise).
|
|
- \c false: SVD solver (more precise but slower).
|
|
\param lambda is used only in the Moore-Penrose pseudoinverse for estimating A^t.(A^t.A + lambda.Id)^-1.
|
|
**/
|
|
CImg<T>& invert(const bool use_LU=false, const float lambda=0) {
|
|
if (_depth!=1 || _spectrum!=1)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"invert(): Instance is not a matrix.",
|
|
cimg_instance);
|
|
if (lambda<0)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"invert(): Specified lambda (%g) should be >=0.",
|
|
cimg_instance);
|
|
|
|
if (_width!=_height) return get_invert(use_LU,lambda).move_to(*this); // Non-square matrix: Pseudoinverse
|
|
|
|
// Square matrix.
|
|
const double dete = _width>3?-1.:det();
|
|
if (dete!=0. && _width==2) {
|
|
const double
|
|
a = _data[0], c = _data[1],
|
|
b = _data[2], d = _data[3];
|
|
_data[0] = (T)(d/dete); _data[1] = (T)(-c/dete);
|
|
_data[2] = (T)(-b/dete); _data[3] = (T)(a/dete);
|
|
} else if (dete!=0. && _width==3) {
|
|
const double
|
|
a = _data[0], d = _data[1], g = _data[2],
|
|
b = _data[3], e = _data[4], h = _data[5],
|
|
c = _data[6], f = _data[7], i = _data[8];
|
|
_data[0] = (T)((i*e - f*h)/dete), _data[1] = (T)((g*f - i*d)/dete), _data[2] = (T)((d*h - g*e)/dete);
|
|
_data[3] = (T)((h*c - i*b)/dete), _data[4] = (T)((i*a - c*g)/dete), _data[5] = (T)((g*b - a*h)/dete);
|
|
_data[6] = (T)((b*f - e*c)/dete), _data[7] = (T)((d*c - a*f)/dete), _data[8] = (T)((a*e - d*b)/dete);
|
|
} else {
|
|
|
|
#ifdef cimg_use_lapack
|
|
int INFO = (int)use_LU, N = _width, LWORK = 4*N, *const IPIV = new int[N];
|
|
Tfloat
|
|
*const lapA = new Tfloat[N*N],
|
|
*const WORK = new Tfloat[LWORK];
|
|
cimg_forXY(*this,k,l) lapA[k*N + l] = (Tfloat)((*this)(k,l));
|
|
cimg::getrf(N,lapA,IPIV,INFO);
|
|
if (INFO)
|
|
cimg::warn(_cimg_instance
|
|
"invert(): LAPACK function dgetrf_() returned error code %d.",
|
|
cimg_instance,
|
|
INFO);
|
|
else {
|
|
cimg::getri(N,lapA,IPIV,WORK,LWORK,INFO);
|
|
if (INFO)
|
|
cimg::warn(_cimg_instance
|
|
"invert(): LAPACK function dgetri_() returned error code %d.",
|
|
cimg_instance,
|
|
INFO);
|
|
}
|
|
if (!INFO) cimg_forXY(*this,k,l) (*this)(k,l) = (T)(lapA[k*N + l]); else fill(0);
|
|
delete[] IPIV; delete[] lapA; delete[] WORK;
|
|
#else
|
|
if (use_LU) { // LU solver
|
|
CImg<Tfloat> A(*this,false), indx;
|
|
bool d;
|
|
A._LU(indx,d);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(_width*_height,16*16))
|
|
cimg_forX(*this,j) {
|
|
CImg<Tfloat> col(1,_width,1,1,0);
|
|
col(j) = 1;
|
|
col._solve(A,indx);
|
|
cimg_forX(*this,i) (*this)(j,i) = (T)col(i);
|
|
}
|
|
} else _get_invert_svd(false).move_to(*this); // SVD solver
|
|
#endif
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Invert the instance image, viewed as a matrix \newinstance.
|
|
CImg<Tfloat> get_invert(const bool use_LU=false, const float lambda=0) const {
|
|
if (_depth!=1 || _spectrum!=1)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"invert(): Instance is not a matrix.",
|
|
cimg_instance);
|
|
if (lambda<0)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"invert(): Specified lambda (%g) should be >=0.",
|
|
cimg_instance);
|
|
|
|
if (_width==_height) return CImg<Tfloat>(*this,false).invert(use_LU,lambda); // Square matrix
|
|
|
|
// Non-square matrix: Pseudoinverse
|
|
if (use_LU) {
|
|
if (_width<_height) { // under-solved system -> (A^t.A)^-1.A^t
|
|
CImg<Tfloat> AtA(width(),width());
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(_width*_height,128*128))
|
|
cimg_forY(AtA,i)
|
|
for (int j = 0; j<=i; ++j) {
|
|
double res = 0;
|
|
cimg_forY(*this,k) res+=(*this)(i,k)*(*this)(j,k);
|
|
AtA(j,i) = AtA(i,j) = (Tfloat)res;
|
|
}
|
|
if (lambda!=0) cimg_forY(AtA,i) AtA(i,i)+=lambda;
|
|
AtA.invert(true);
|
|
return AtA*get_transpose();
|
|
} else { // over-resolved linear system -> A^t.(A.A^t)^-1
|
|
CImg<Tfloat> AAt(height(),height());
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(_width*_height,128*128))
|
|
cimg_forY(AAt,i)
|
|
for (int j = 0; j<=i; ++j) {
|
|
double res = 0;
|
|
cimg_forX(*this,k) res+=(*this)(k,i)*(*this)(k,j);
|
|
AAt(j,i) = AAt(i,j) = (Tfloat)res;
|
|
}
|
|
if (lambda!=0) cimg_forY(AAt,i) AAt(i,i)+=lambda;
|
|
AAt.invert(true);
|
|
return get_transpose()*AAt;
|
|
}
|
|
}
|
|
return _get_invert_svd(lambda);
|
|
}
|
|
|
|
// SVD solver, both used for inverse and pseudoinverse.
|
|
CImg<Tfloat> _get_invert_svd(const float lambda) const {
|
|
CImg<Tfloat> U, S, V;
|
|
SVD(U,S,V,false);
|
|
const Tfloat epsilon = (sizeof(Tfloat)<=4?5.96e-8f:1.11e-16f)*std::max(_width,_height)*S.max();
|
|
cimg_forX(V,x) {
|
|
const Tfloat s = S(x), invs = lambda?1/(lambda + s):s>epsilon?1/s:0;
|
|
cimg_forY(V,y) V(x,y)*=invs;
|
|
}
|
|
return V*U.transpose();
|
|
}
|
|
|
|
//! Solve a system of linear equations.
|
|
/**
|
|
\param A Matrix of the linear system.
|
|
\param use_LU In case of non square system (least-square solution),
|
|
choose between SVD (\c false) or LU (\c true) solver.
|
|
LU solver is faster for large matrices, but numerically less stable.
|
|
\note Solve \c AX = B where \c B=*this.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& solve(const CImg<t>& A, const bool use_LU=false) {
|
|
if (_depth!=1 || _spectrum!=1 || _height!=A._height || A._depth!=1 || A._spectrum!=1)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"solve(): Instance and specified matrix (%u,%u,%u,%u,%p) have "
|
|
"incompatible dimensions.",
|
|
cimg_instance,
|
|
A._width,A._height,A._depth,A._spectrum,A._data);
|
|
typedef _cimg_Ttfloat Ttfloat;
|
|
|
|
if (A.size()==1) return (*this)/=A[0];
|
|
if (A._width==2 && A._height==2 && _height==2) { // 2x2 linear system
|
|
const double a = (double)A[0], b = (double)A[1], c = (double)A[2], d = (double)A[3],
|
|
fa = std::fabs(a), fb = std::fabs(b), fc = std::fabs(c), fd = std::fabs(d),
|
|
det = a*d - b*c, fM = cimg::max(fa,fb,fc,fd);
|
|
if (fM==fa)
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=256))
|
|
cimg_forX(*this,k) {
|
|
const double u = (double)(*this)(k,0), v = (double)(*this)(k,1), y = (a*v - c*u)/det;
|
|
(*this)(k,0) = (T)((u - b*y)/a); (*this)(k,1) = (T)y;
|
|
} else if (fM==fc)
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=256))
|
|
cimg_forX(*this,k) {
|
|
const double u = (double)(*this)(k,0), v = (double)(*this)(k,1), y = (a*v - c*u)/det;
|
|
(*this)(k,0) = (T)((v - d*y)/c); (*this)(k,1) = (T)y;
|
|
} else if (fM==fb)
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=256))
|
|
cimg_forX(*this,k) {
|
|
const double u = (double)(*this)(k,0), v = (double)(*this)(k,1), x = (d*u - b*v)/det;
|
|
(*this)(k,0) = (T)x; (*this)(k,1) = (T)((u - a*x)/b);
|
|
} else
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=256))
|
|
cimg_forX(*this,k) {
|
|
const double u = (double)(*this)(k,0), v = (double)(*this)(k,1), x = (d*u - b*v)/det;
|
|
(*this)(k,0) = (T)x; (*this)(k,1) = (T)((v - c*x)/d);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
if (A._width==A._height) { // Square linear system
|
|
#ifdef cimg_use_lapack
|
|
char TRANS = 'N';
|
|
int INFO, N = _height, LWORK = 4*N, *const IPIV = new int[N];
|
|
Ttfloat
|
|
*const lapA = new Ttfloat[N*N],
|
|
*const lapB = new Ttfloat[N],
|
|
*const WORK = new Ttfloat[LWORK];
|
|
cimg_forXY(A,k,l) lapA[k*N + l] = (Ttfloat)(A(k,l));
|
|
cimg_forX(*this,i) {
|
|
cimg_forY(*this,j) lapB[j] = (Ttfloat)((*this)(i,j));
|
|
cimg::getrf(N,lapA,IPIV,INFO);
|
|
if (INFO)
|
|
cimg::warn(_cimg_instance
|
|
"solve(): LAPACK library function dgetrf_() returned error code %d.",
|
|
cimg_instance,
|
|
INFO);
|
|
else {
|
|
cimg::getrs(TRANS,N,lapA,IPIV,lapB,INFO);
|
|
if (INFO)
|
|
cimg::warn(_cimg_instance
|
|
"solve(): LAPACK library function dgetrs_() returned error code %d.",
|
|
cimg_instance,
|
|
INFO);
|
|
}
|
|
if (!INFO) cimg_forY(*this,j) (*this)(i,j) = (T)(lapB[j]); else cimg_forY(*this,j) (*this)(i,j) = (T)0;
|
|
}
|
|
delete[] IPIV; delete[] lapA; delete[] lapB; delete[] WORK;
|
|
#else
|
|
CImg<Ttfloat> lu(A,false);
|
|
CImg<Ttfloat> indx;
|
|
bool d;
|
|
lu._LU(indx,d);
|
|
CImg<T> res(_width,A._width);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(_width*_height,16))
|
|
cimg_forX(*this,i) res.draw_image(i,get_column(i)._solve(lu,indx));
|
|
res.move_to(*this);
|
|
#endif
|
|
} else { // Least-square solution for non-square systems
|
|
|
|
#ifdef cimg_use_lapack
|
|
char TRANS = 'N';
|
|
int INFO, N = A._width, M = A._height, LWORK = -1, LDA = M, LDB = M, NRHS = _width;
|
|
Ttfloat WORK_QUERY;
|
|
Ttfloat
|
|
* const lapA = new Ttfloat[M*N],
|
|
* const lapB = new Ttfloat[M*NRHS];
|
|
cimg::sgels(TRANS, M, N, NRHS, lapA, LDA, lapB, LDB, &WORK_QUERY, LWORK, INFO);
|
|
LWORK = (int) WORK_QUERY;
|
|
Ttfloat *const WORK = new Ttfloat[LWORK];
|
|
cimg_forXY(A,k,l) lapA[k*M + l] = (Ttfloat)(A(k,l));
|
|
cimg_forXY(*this,k,l) lapB[k*M + l] = (Ttfloat)((*this)(k,l));
|
|
cimg::sgels(TRANS, M, N, NRHS, lapA, LDA, lapB, LDB, WORK, LWORK, INFO);
|
|
if (INFO != 0)
|
|
cimg::warn(_cimg_instance
|
|
"solve(): LAPACK library function sgels() returned error code %d.",
|
|
cimg_instance,
|
|
INFO);
|
|
assign(NRHS, N);
|
|
if (!INFO) cimg_forXY(*this,k,l) (*this)(k,l) = (T)lapB[k*M + l];
|
|
else (A.get_invert(use_LU)*(*this)).move_to(*this);
|
|
delete[] lapA; delete[] lapB; delete[] WORK;
|
|
#else
|
|
(A.get_invert(use_LU)*(*this)).move_to(*this);
|
|
#endif
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Solve a system of linear equations \newinstance.
|
|
template<typename t>
|
|
CImg<_cimg_Ttfloat> get_solve(const CImg<t>& A, const bool use_LU=false) const {
|
|
typedef _cimg_Ttfloat Ttfloat;
|
|
return CImg<Ttfloat>(*this,false).solve(A,use_LU);
|
|
}
|
|
|
|
template<typename t, typename ti>
|
|
CImg<T>& _solve(const CImg<t>& A, const CImg<ti>& indx) {
|
|
typedef _cimg_Ttfloat Ttfloat;
|
|
const int N = height();
|
|
int ii = -1;
|
|
Ttfloat sum;
|
|
for (int i = 0; i<N; ++i) {
|
|
const int ip = (int)indx[i];
|
|
sum = (*this)(ip);
|
|
(*this)(ip) = (*this)(i);
|
|
if (ii>=0) for (int j = ii; j<=i - 1; ++j) sum-=A(j,i)*(*this)(j);
|
|
else if (sum!=0) ii = i;
|
|
(*this)(i) = (T)sum;
|
|
}
|
|
for (int i = N - 1; i>=0; --i) {
|
|
sum = (*this)(i);
|
|
for (int j = i + 1; j<N; ++j) sum-=A(j,i)*(*this)(j);
|
|
(*this)(i) = (T)(sum/A(i,i));
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Solve a tridiagonal system of linear equations.
|
|
/**
|
|
\param A Coefficients of the tridiagonal system.
|
|
A is a tridiagonal matrix A = [ b0,c0,0,...; a1,b1,c1,0,... ; ... ; ...,0,aN,bN ],
|
|
stored as a 3 columns matrix
|
|
\note Solve AX=B where \c B=*this, using the Thomas algorithm.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& solve_tridiagonal(const CImg<t>& A) {
|
|
const unsigned int siz = (unsigned int)size();
|
|
if (A._width!=3 || A._height!=siz)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"solve_tridiagonal(): Instance and tridiagonal matrix "
|
|
"(%u,%u,%u,%u,%p) have incompatible dimensions.",
|
|
cimg_instance,
|
|
A._width,A._height,A._depth,A._spectrum,A._data);
|
|
typedef _cimg_Ttfloat Ttfloat;
|
|
const Ttfloat epsilon = 1e-4f;
|
|
CImg<Ttfloat> B = A.get_column(1), V(*this,false);
|
|
for (int i = 1; i<(int)siz; ++i) {
|
|
const Ttfloat m = A(0,i)/(B[i - 1]?B[i - 1]:epsilon);
|
|
B[i] -= m*A(2,i - 1);
|
|
V[i] -= m*V[i - 1];
|
|
}
|
|
(*this)[siz - 1] = (T)(V[siz - 1]/(B[siz - 1]?B[siz - 1]:epsilon));
|
|
for (int i = (int)siz - 2; i>=0; --i) (*this)[i] = (T)((V[i] - A(2,i)*(*this)[i + 1])/(B[i]?B[i]:epsilon));
|
|
return *this;
|
|
}
|
|
|
|
//! Solve a tridiagonal system of linear equations \newinstance.
|
|
template<typename t>
|
|
CImg<_cimg_Ttfloat> get_solve_tridiagonal(const CImg<t>& A) const {
|
|
return CImg<_cimg_Ttfloat>(*this,false).solve_tridiagonal(A);
|
|
}
|
|
|
|
//! Compute eigenvalues and eigenvectors of the instance image, viewed as a matrix.
|
|
/**
|
|
\param[out] val Vector of the estimated eigenvalues, in decreasing order.
|
|
\param[out] vec Matrix of the estimated eigenvectors, sorted by columns.
|
|
**/
|
|
template<typename t>
|
|
const CImg<T>& eigen(CImg<t>& val, CImg<t> &vec) const {
|
|
if (is_empty()) { val.assign(); vec.assign(); }
|
|
else {
|
|
if (_width!=_height || _depth>1 || _spectrum>1)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"eigen(): Instance is not a square matrix.",
|
|
cimg_instance);
|
|
|
|
if (val.size()<(ulongT)_width) val.assign(1,_width);
|
|
if (vec.size()<(ulongT)_width*_width) vec.assign(_width,_width);
|
|
switch (_width) {
|
|
case 1 : { val[0] = (t)(*this)[0]; vec[0] = (t)1; } break;
|
|
case 2 : {
|
|
const double a = (*this)[0], b = (*this)[1], c = (*this)[2], d = (*this)[3], e = a + d;
|
|
double f = e*e - 4*(a*d - b*c);
|
|
if (f<0) cimg::warn(_cimg_instance
|
|
"eigen(): Complex eigenvalues found.",
|
|
cimg_instance);
|
|
f = std::sqrt(f);
|
|
const double
|
|
l1 = 0.5*(e - f),
|
|
l2 = 0.5*(e + f),
|
|
b2 = b*b,
|
|
norm1 = std::sqrt(cimg::sqr(l2 - a) + b2),
|
|
norm2 = std::sqrt(cimg::sqr(l1 - a) + b2);
|
|
val[0] = (t)l2;
|
|
val[1] = (t)l1;
|
|
if (norm1>0) { vec(0,0) = (t)(b/norm1); vec(0,1) = (t)((l2 - a)/norm1); } else { vec(0,0) = 1; vec(0,1) = 0; }
|
|
if (norm2>0) { vec(1,0) = (t)(b/norm2); vec(1,1) = (t)((l1 - a)/norm2); } else { vec(1,0) = 1; vec(1,1) = 0; }
|
|
} break;
|
|
default :
|
|
throw CImgInstanceException(_cimg_instance
|
|
"eigen(): Eigenvalues computation of general matrices is limited "
|
|
"to 2x2 matrices.",
|
|
cimg_instance);
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Compute eigenvalues and eigenvectors of the instance image, viewed as a matrix.
|
|
/**
|
|
\return A list of two images <tt>[val; vec]</tt>, whose meaning is similar as in eigen(CImg<t>&,CImg<t>&) const.
|
|
**/
|
|
CImgList<Tfloat> get_eigen() const {
|
|
CImgList<Tfloat> res(2);
|
|
eigen(res[0],res[1]);
|
|
return res;
|
|
}
|
|
|
|
//! Compute eigenvalues and eigenvectors of the instance image, viewed as a symmetric matrix.
|
|
/**
|
|
\param[out] val Vector of the estimated eigenvalues, in decreasing order.
|
|
\param[out] vec Matrix of the estimated eigenvectors, sorted by columns.
|
|
**/
|
|
template<typename t>
|
|
const CImg<T>& symmetric_eigen(CImg<t>& val, CImg<t>& vec) const {
|
|
if (is_empty()) { val.assign(); vec.assign(); return *this; }
|
|
if (_width!=_height || _depth>1 || _spectrum>1)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"eigen(): Instance is not a square matrix.",
|
|
cimg_instance);
|
|
val.assign(1,_width);
|
|
vec.assign(_width,_width);
|
|
|
|
if (_width==1) { val[0] = cimg::abs((*this)[0]); vec[0] = 1; return *this; }
|
|
if (_width==2) {
|
|
const double
|
|
a = (*this)[0], b = (*this)[1], c = (*this)[2], d = (*this)[3],
|
|
e = a + d, f = std::sqrt(std::max(e*e - 4*(a*d - b*c),0.0)),
|
|
l1 = 0.5*(e - f), l2 = 0.5*(e + f),
|
|
n = std::sqrt(cimg::sqr(l2 - a) + b*b);
|
|
val[0] = (t)l2;
|
|
val[1] = (t)l1;
|
|
if (n>0) { vec[0] = (t)(b/n); vec[2] = (t)((l2 - a)/n); } else { vec[0] = 1; vec[2] = 0; }
|
|
vec[1] = -vec[2];
|
|
vec[3] = vec[0];
|
|
return *this;
|
|
}
|
|
|
|
#ifdef cimg_use_lapack
|
|
char JOB = 'V', UPLO = 'U';
|
|
int N = _width, LWORK = 4*N, INFO;
|
|
Tfloat
|
|
*const lapA = new Tfloat[N*N],
|
|
*const lapW = new Tfloat[N],
|
|
*const WORK = new Tfloat[LWORK];
|
|
cimg_forXY(*this,k,l) lapA[k*N + l] = (Tfloat)((*this)(k,l));
|
|
cimg::syev(JOB,UPLO,N,lapA,lapW,WORK,LWORK,INFO);
|
|
if (INFO)
|
|
cimg::warn(_cimg_instance
|
|
"symmetric_eigen(): LAPACK library function dsyev_() returned error code %d.",
|
|
cimg_instance,
|
|
INFO);
|
|
if (!INFO) {
|
|
cimg_forY(val,i) val(i) = (T)lapW[N - 1 -i];
|
|
cimg_forXY(vec,k,l) vec(k,l) = (T)(lapA[(N - 1 - k)*N + l]);
|
|
} else { val.fill(0); vec.fill(0); }
|
|
delete[] lapA; delete[] lapW; delete[] WORK;
|
|
|
|
#else
|
|
CImg<t> V(_width,_width);
|
|
Tfloat M = 0, m = (Tfloat)min_max(M), maxabs = cimg::max((Tfloat)1,cimg::abs(m),cimg::abs(M));
|
|
(CImg<Tfloat>(*this,false)/=maxabs).SVD(vec,val,V,false);
|
|
if (maxabs!=1) val*=maxabs;
|
|
|
|
bool is_ambiguous = false;
|
|
float eig = 0;
|
|
cimg_forY(val,p) { // Check for ambiguous cases
|
|
if (val[p]>eig) eig = (float)val[p];
|
|
t scal = 0;
|
|
cimg_forY(vec,y) scal+=vec(p,y)*V(p,y);
|
|
if (cimg::abs(scal)<0.9f) is_ambiguous = true;
|
|
if (scal<0) val[p] = -val[p];
|
|
}
|
|
if (is_ambiguous) {
|
|
++(eig*=2);
|
|
SVD(vec,val,V,false,40,eig);
|
|
val-=eig;
|
|
}
|
|
|
|
CImg<intT> permutations; // Sort eigenvalues in decreasing order
|
|
CImg<t> tmp(_width);
|
|
val.sort(permutations,false);
|
|
cimg_forY(vec,k) {
|
|
cimg_forY(permutations,y) tmp(y) = vec(permutations(y),k);
|
|
std::memcpy(vec.data(0,k),tmp._data,sizeof(t)*_width);
|
|
}
|
|
#endif
|
|
return *this;
|
|
}
|
|
|
|
//! Compute eigenvalues and eigenvectors of the instance image, viewed as a symmetric matrix.
|
|
/**
|
|
\return A list of two images <tt>[val; vec]</tt>, whose meaning are similar as in
|
|
symmetric_eigen(CImg<t>&,CImg<t>&) const.
|
|
**/
|
|
CImgList<Tfloat> get_symmetric_eigen() const {
|
|
CImgList<Tfloat> res(2);
|
|
symmetric_eigen(res[0],res[1]);
|
|
return res;
|
|
}
|
|
|
|
//! Sort pixel values and get sorting permutations.
|
|
/**
|
|
\param[out] permutations Permutation map used for the sorting.
|
|
\param is_increasing Tells if pixel values are sorted in an increasing (\c true) or decreasing (\c false) way.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& sort(CImg<t>& permutations, const bool is_increasing=true) {
|
|
permutations.assign(_width,_height,_depth,_spectrum);
|
|
if (is_empty()) return *this;
|
|
cimg_foroff(permutations,off) permutations[off] = (t)off;
|
|
return _quicksort(0,size() - 1,permutations,is_increasing,true);
|
|
}
|
|
|
|
//! Sort pixel values and get sorting permutations \newinstance.
|
|
template<typename t>
|
|
CImg<T> get_sort(CImg<t>& permutations, const bool is_increasing=true) const {
|
|
return (+*this).sort(permutations,is_increasing);
|
|
}
|
|
|
|
//! Sort pixel values.
|
|
/**
|
|
\param is_increasing Tells if pixel values are sorted in an increasing (\c true) or decreasing (\c false) way.
|
|
\param axis Tells if the value sorting must be done along a specific axis. Can be:
|
|
- \c 0: All pixel values are sorted, independently on their initial position.
|
|
- \c 'x': Image columns are sorted, according to the first value in each column.
|
|
- \c 'y': Image rows are sorted, according to the first value in each row.
|
|
- \c 'z': Image slices are sorted, according to the first value in each slice.
|
|
- \c 'c': Image channels are sorted, according to the first value in each channel.
|
|
**/
|
|
CImg<T>& sort(const bool is_increasing=true, const char axis=0) {
|
|
if (is_empty()) return *this;
|
|
CImg<uintT> perm;
|
|
switch (cimg::lowercase(axis)) {
|
|
case 0 :
|
|
_quicksort(0,size() - 1,perm,is_increasing,false);
|
|
break;
|
|
case 'x' : {
|
|
perm.assign(_width);
|
|
get_crop(0,0,0,0,_width - 1,0,0,0).sort(perm,is_increasing);
|
|
CImg<T> img(*this,false);
|
|
cimg_forXYZC(*this,x,y,z,c) (*this)(x,y,z,c) = img(perm[x],y,z,c);
|
|
} break;
|
|
case 'y' : {
|
|
perm.assign(_height);
|
|
get_crop(0,0,0,0,0,_height - 1,0,0).sort(perm,is_increasing);
|
|
CImg<T> img(*this,false);
|
|
cimg_forXYZC(*this,x,y,z,c) (*this)(x,y,z,c) = img(x,perm[y],z,c);
|
|
} break;
|
|
case 'z' : {
|
|
perm.assign(_depth);
|
|
get_crop(0,0,0,0,0,0,_depth - 1,0).sort(perm,is_increasing);
|
|
CImg<T> img(*this,false);
|
|
cimg_forXYZC(*this,x,y,z,c) (*this)(x,y,z,c) = img(x,y,perm[z],c);
|
|
} break;
|
|
case 'c' : {
|
|
perm.assign(_spectrum);
|
|
get_crop(0,0,0,0,0,0,0,_spectrum - 1).sort(perm,is_increasing);
|
|
CImg<T> img(*this,false);
|
|
cimg_forXYZC(*this,x,y,z,c) (*this)(x,y,z,c) = img(x,y,z,perm[c]);
|
|
} break;
|
|
default :
|
|
throw CImgArgumentException(_cimg_instance
|
|
"sort(): Invalid specified axis '%c' "
|
|
"(should be { x | y | z | c }).",
|
|
cimg_instance,axis);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Sort pixel values \newinstance.
|
|
CImg<T> get_sort(const bool is_increasing=true, const char axis=0) const {
|
|
return (+*this).sort(is_increasing,axis);
|
|
}
|
|
|
|
template<typename t>
|
|
CImg<T>& _quicksort(const long indm, const long indM, CImg<t>& permutations,
|
|
const bool is_increasing, const bool is_permutations) {
|
|
if (indm<indM) {
|
|
const long mid = (indm + indM)/2;
|
|
if (is_increasing) {
|
|
if ((*this)[indm]>(*this)[mid]) {
|
|
cimg::swap((*this)[indm],(*this)[mid]);
|
|
if (is_permutations) cimg::swap(permutations[indm],permutations[mid]);
|
|
}
|
|
if ((*this)[mid]>(*this)[indM]) {
|
|
cimg::swap((*this)[indM],(*this)[mid]);
|
|
if (is_permutations) cimg::swap(permutations[indM],permutations[mid]);
|
|
}
|
|
if ((*this)[indm]>(*this)[mid]) {
|
|
cimg::swap((*this)[indm],(*this)[mid]);
|
|
if (is_permutations) cimg::swap(permutations[indm],permutations[mid]);
|
|
}
|
|
} else {
|
|
if ((*this)[indm]<(*this)[mid]) {
|
|
cimg::swap((*this)[indm],(*this)[mid]);
|
|
if (is_permutations) cimg::swap(permutations[indm],permutations[mid]);
|
|
}
|
|
if ((*this)[mid]<(*this)[indM]) {
|
|
cimg::swap((*this)[indM],(*this)[mid]);
|
|
if (is_permutations) cimg::swap(permutations[indM],permutations[mid]);
|
|
}
|
|
if ((*this)[indm]<(*this)[mid]) {
|
|
cimg::swap((*this)[indm],(*this)[mid]);
|
|
if (is_permutations) cimg::swap(permutations[indm],permutations[mid]);
|
|
}
|
|
}
|
|
if (indM - indm>=3) {
|
|
const T pivot = (*this)[mid];
|
|
long i = indm, j = indM;
|
|
if (is_increasing) {
|
|
do {
|
|
while ((*this)[i]<pivot) ++i;
|
|
while ((*this)[j]>pivot) --j;
|
|
if (i<=j) {
|
|
if (is_permutations) cimg::swap(permutations[i],permutations[j]);
|
|
cimg::swap((*this)[i++],(*this)[j--]);
|
|
}
|
|
} while (i<=j);
|
|
} else {
|
|
do {
|
|
while ((*this)[i]>pivot) ++i;
|
|
while ((*this)[j]<pivot) --j;
|
|
if (i<=j) {
|
|
if (is_permutations) cimg::swap(permutations[i],permutations[j]);
|
|
cimg::swap((*this)[i++],(*this)[j--]);
|
|
}
|
|
} while (i<=j);
|
|
}
|
|
if (indm<j) _quicksort(indm,j,permutations,is_increasing,is_permutations);
|
|
if (i<indM) _quicksort(i,indM,permutations,is_increasing,is_permutations);
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Compute the SVD of the instance image, viewed as a general matrix.
|
|
/**
|
|
Compute the SVD decomposition \c *this=U*S*V' where \c U and \c V are orthogonal matrices
|
|
and \c S is a diagonal matrix. \c V' denotes the matrix transpose of \c V.
|
|
\param[out] U First matrix of the SVD product.
|
|
\param[out] S Coefficients of the second (diagonal) matrix of the SVD product.
|
|
These coefficients are stored as a vector.
|
|
\param[out] V Third matrix of the SVD product.
|
|
\param sorting Tells if the diagonal coefficients are sorted (in decreasing order).
|
|
\param max_iteration Maximum number of iterations considered for the algorithm convergence.
|
|
\param lambda Epsilon used for the algorithm convergence.
|
|
\note The instance matrix can be computed from \c U,\c S and \c V by
|
|
\code
|
|
const CImg<> A; // Input matrix (assumed to contain some values)
|
|
CImg<> U,S,V;
|
|
A.SVD(U,S,V)
|
|
\endcode
|
|
**/
|
|
template<typename t>
|
|
const CImg<T>& SVD(CImg<t>& U, CImg<t>& S, CImg<t>& V, const bool sorting=true,
|
|
const unsigned int max_iteration=40, const float lambda=0) const {
|
|
typedef _cimg_Ttfloat Ttfloat;
|
|
const Ttfloat epsilon = (Ttfloat)1e-25;
|
|
|
|
if (is_empty()) { U.assign(); S.assign(); V.assign(); }
|
|
else if (_depth!=1 || _spectrum!=1)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"SVD(): Instance has invalid dimensions (depth or channels different from 1).",
|
|
cimg_instance);
|
|
else {
|
|
U = *this;
|
|
if (lambda!=0) {
|
|
const unsigned int delta = std::min(U._width,U._height);
|
|
for (unsigned int i = 0; i<delta; ++i) U(i,i) = (t)(U(i,i) + lambda);
|
|
}
|
|
if (S.size()<_width) S.assign(1,_width);
|
|
if (V._width<_width || V._height<_height) V.assign(_width,_width);
|
|
CImg<t> rv1(_width);
|
|
Ttfloat anorm = 0, c, f, g = 0, h, s, scale = 0;
|
|
int l = 0;
|
|
|
|
cimg_forX(U,i) {
|
|
l = i + 1;
|
|
rv1[i] = scale*g;
|
|
g = s = scale = 0;
|
|
if (i<height()) {
|
|
for (int k = i; k<height(); ++k) scale+=cimg::abs(U(i,k));
|
|
if (scale) {
|
|
for (int k = i; k<height(); ++k) {
|
|
U(i,k)/=scale;
|
|
s+=U(i,k)*U(i,k);
|
|
}
|
|
f = U(i,i);
|
|
g = (Ttfloat)((f>=0?-1:1)*std::sqrt(s));
|
|
h = f*g - s;
|
|
U(i,i) = f - g;
|
|
for (int j = l; j<width(); ++j) {
|
|
s = 0;
|
|
for (int k=i; k<height(); ++k) s+=U(i,k)*U(j,k);
|
|
f = s/h;
|
|
for (int k = i; k<height(); ++k) U(j,k)+=f*U(i,k);
|
|
}
|
|
for (int k = i; k<height(); ++k) U(i,k)*=scale;
|
|
}
|
|
}
|
|
S[i] = scale*g;
|
|
|
|
g = s = scale = 0;
|
|
if (i<height() && i!=width() - 1) {
|
|
for (int k = l; k<width(); ++k) scale+=cimg::abs(U(k,i));
|
|
if (scale) {
|
|
for (int k = l; k<width(); ++k) {
|
|
U(k,i)/=scale;
|
|
s+=U(k,i)*U(k,i);
|
|
}
|
|
f = U(l,i);
|
|
g = (Ttfloat)((f>=0?-1:1)*std::sqrt(s));
|
|
h = f*g - s;
|
|
U(l,i) = f - g;
|
|
for (int k = l; k<width(); ++k) rv1[k] = U(k,i)/h;
|
|
for (int j = l; j<height(); ++j) {
|
|
s = 0;
|
|
for (int k = l; k<width(); ++k) s+=U(k,j)*U(k,i);
|
|
for (int k = l; k<width(); ++k) U(k,j)+=s*rv1[k];
|
|
}
|
|
for (int k = l; k<width(); ++k) U(k,i)*=scale;
|
|
}
|
|
}
|
|
anorm = (Ttfloat)std::max((float)anorm,(float)(cimg::abs(S[i]) + cimg::abs(rv1[i])));
|
|
}
|
|
|
|
for (int i = width() - 1; i>=0; --i) {
|
|
if (i<width() - 1) {
|
|
if (g) {
|
|
for (int j = l; j<width(); ++j) V(i,j) =(U(j,i)/U(l,i))/g;
|
|
for (int j = l; j<width(); ++j) {
|
|
s = 0;
|
|
for (int k = l; k<width(); ++k) s+=U(k,i)*V(j,k);
|
|
for (int k = l; k<width(); ++k) V(j,k)+=s*V(i,k);
|
|
}
|
|
}
|
|
for (int j = l; j<width(); ++j) V(j,i) = V(i,j) = (t)0.;
|
|
}
|
|
V(i,i) = (t)1;
|
|
g = rv1[i];
|
|
l = i;
|
|
}
|
|
|
|
for (int i = std::min(width(),height()) - 1; i>=0; --i) {
|
|
l = i + 1;
|
|
g = S[i];
|
|
for (int j = l; j<width(); ++j) U(j,i) = 0;
|
|
if (g) {
|
|
g = 1/g;
|
|
for (int j = l; j<width(); ++j) {
|
|
s = 0;
|
|
for (int k = l; k<height(); ++k) s+=U(i,k)*U(j,k);
|
|
f = (s/U(i,i))*g;
|
|
for (int k = i; k<height(); ++k) U(j,k)+=f*U(i,k);
|
|
}
|
|
for (int j = i; j<height(); ++j) U(i,j)*= g;
|
|
} else for (int j = i; j<height(); ++j) U(i,j) = 0;
|
|
++U(i,i);
|
|
}
|
|
|
|
for (int k = width() - 1; k>=0; --k) {
|
|
int nm = 0;
|
|
for (unsigned int its = 0; its<max_iteration; ++its) {
|
|
bool flag = true;
|
|
for (l = k; l>=1; --l) {
|
|
nm = l - 1;
|
|
if ((cimg::abs(rv1[l]) + anorm)==anorm) { flag = false; break; }
|
|
if ((cimg::abs(S[nm]) + anorm)==anorm) break;
|
|
}
|
|
if (flag) {
|
|
c = 0;
|
|
s = 1;
|
|
for (int i = l; i<=k; ++i) {
|
|
f = s*rv1[i];
|
|
rv1[i] = c*rv1[i];
|
|
if ((cimg::abs(f) + anorm)==anorm) break;
|
|
g = S[i];
|
|
h = cimg::_hypot(f,g);
|
|
S[i] = h;
|
|
h = 1/h;
|
|
c = g*h;
|
|
s = -f*h;
|
|
cimg_forY(U,j) {
|
|
const t y = U(nm,j), z = U(i,j);
|
|
U(nm,j) = y*c + z*s;
|
|
U(i,j) = z*c - y*s;
|
|
}
|
|
}
|
|
}
|
|
|
|
const t z = S[k];
|
|
if (l==k) { if (z<0) { S[k] = -z; cimg_forX(U,j) V(k,j) = -V(k,j); } break; }
|
|
nm = k - 1;
|
|
t x = S[l], y = S[nm];
|
|
g = rv1[nm];
|
|
h = rv1[k];
|
|
f = ((y - z)*(y + z) + (g - h)*(g + h))/std::max(epsilon,(Ttfloat)2*h*y);
|
|
g = cimg::_hypot(f,(Ttfloat)1);
|
|
f = ((x - z)*(x + z) + h*((y/(f + (f>=0?g:-g))) - h))/std::max(epsilon,(Ttfloat)x);
|
|
c = s = 1;
|
|
for (int j = l; j<=nm; ++j) {
|
|
const int i = j + 1;
|
|
g = rv1[i];
|
|
h = s*g;
|
|
g = c*g;
|
|
t y1 = S[i], z1 = cimg::_hypot(f,h);
|
|
rv1[j] = z1;
|
|
c = f/std::max(epsilon,(Ttfloat)z1);
|
|
s = h/std::max(epsilon,(Ttfloat)z1);
|
|
f = x*c + g*s;
|
|
g = g*c - x*s;
|
|
h = y1*s;
|
|
y1*=c;
|
|
cimg_forX(U,jj) {
|
|
const t x2 = V(j,jj), z2 = V(i,jj);
|
|
V(j,jj) = x2*c + z2*s;
|
|
V(i,jj) = z2*c - x2*s;
|
|
}
|
|
z1 = cimg::_hypot(f,h);
|
|
S[j] = z1;
|
|
if (z1) {
|
|
z1 = 1/std::max(epsilon,(Ttfloat)z1);
|
|
c = f*z1;
|
|
s = h*z1;
|
|
}
|
|
f = c*g + s*y1;
|
|
x = c*y1 - s*g;
|
|
cimg_forY(U,jj) {
|
|
const t y2 = U(j,jj), z2 = U(i,jj);
|
|
U(j,jj) = y2*c + z2*s;
|
|
U(i,jj) = z2*c - y2*s;
|
|
}
|
|
}
|
|
rv1[l] = 0;
|
|
rv1[k] = f;
|
|
S[k] = x;
|
|
}
|
|
}
|
|
|
|
if (sorting) {
|
|
CImg<intT> permutations;
|
|
CImg<t> tmp(_width);
|
|
S.sort(permutations,false);
|
|
cimg_forY(U,k) {
|
|
cimg_forY(permutations,y) tmp(y) = U(permutations(y),k);
|
|
std::memcpy(U.data(0,k),tmp._data,sizeof(t)*_width);
|
|
}
|
|
cimg_forY(V,k) {
|
|
cimg_forY(permutations,y) tmp(y) = V(permutations(y),k);
|
|
std::memcpy(V.data(0,k),tmp._data,sizeof(t)*_width);
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Compute the SVD of the instance image, viewed as a general matrix.
|
|
/**
|
|
\return A list of three images <tt>[U; S; V]</tt>, whose meaning is similar as in
|
|
SVD(CImg<t>&,CImg<t>&,CImg<t>&,bool,unsigned int,float) const.
|
|
**/
|
|
CImgList<Tfloat> get_SVD(const bool sorting=true,
|
|
const unsigned int max_iteration=40, const float lambda=0) const {
|
|
CImgList<Tfloat> res(3);
|
|
SVD(res[0],res[1],res[2],sorting,max_iteration,lambda);
|
|
return res;
|
|
}
|
|
|
|
// [internal] Compute the LU decomposition of a permuted matrix.
|
|
template<typename t>
|
|
CImg<T>& _LU(CImg<t>& indx, bool& d) {
|
|
const int N = width();
|
|
int imax = 0;
|
|
CImg<Tfloat> vv(N);
|
|
indx.assign(N);
|
|
d = true;
|
|
|
|
bool return0 = false;
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height>=512))
|
|
cimg_forX(*this,i) {
|
|
Tfloat vmax = 0;
|
|
cimg_forX(*this,j) {
|
|
const Tfloat tmp = cimg::abs((*this)(j,i));
|
|
if (tmp>vmax) vmax = tmp;
|
|
}
|
|
if (vmax==0) return0 = true; else vv[i] = 1/vmax;
|
|
}
|
|
if (return0) { indx.fill(0); return fill(0); }
|
|
|
|
cimg_forX(*this,j) {
|
|
for (int i = 0; i<j; ++i) {
|
|
Tfloat sum = (*this)(j,i);
|
|
for (int k = 0; k<i; ++k) sum-=(*this)(k,i)*(*this)(j,k);
|
|
(*this)(j,i) = (T)sum;
|
|
}
|
|
|
|
Tfloat vmax = 0;
|
|
for (int i = j; i<width(); ++i) {
|
|
Tfloat sum = (*this)(j,i);
|
|
for (int k = 0; k<j; ++k) sum-=(*this)(k,i)*(*this)(j,k);
|
|
(*this)(j,i) = (T)sum;
|
|
const Tfloat tmp = vv[i]*cimg::abs(sum);
|
|
if (tmp>=vmax) { vmax = tmp; imax = i; }
|
|
}
|
|
if (j!=imax) {
|
|
cimg_forX(*this,k) cimg::swap((*this)(k,imax),(*this)(k,j));
|
|
d = !d;
|
|
vv[imax] = vv[j];
|
|
}
|
|
indx[j] = (t)imax;
|
|
if ((*this)(j,j)==0) (*this)(j,j) = (T)1e-20;
|
|
if (j<N) {
|
|
const Tfloat tmp = 1/(Tfloat)(*this)(j,j);
|
|
for (int i = j + 1; i<N; ++i) (*this)(j,i) = (T)((*this)(j,i)*tmp);
|
|
}
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
//! Compute the projection of the instance matrix onto the specified dictionary.
|
|
/**
|
|
Find the best matching projection of selected matrix onto the span of an over-complete dictionary D,
|
|
using the orthogonal projection or (opt. Orthogonal) Matching Pursuit algorithm.
|
|
Instance image must a 2D-matrix in which each column represent a signal to project.
|
|
\param dictionary A matrix in which each column is an element of the dictionary D.
|
|
\param method Tell what projection method is applied. It can be:
|
|
- 0 = orthogonal projection (default).
|
|
- 1 = matching pursuit.
|
|
- 2 = matching pursuit, with a single orthogonal projection step at the end.
|
|
- >=3 = orthogonal matching pursuit where an orthogonal projection step is performed
|
|
every 'method-2' iterations.
|
|
\param max_iter Sets the max number of iterations processed for each signal.
|
|
If set to '0' (default), 'max_iter' is set to the number of dictionary columns.
|
|
(only meaningful for matching pursuit and its variants).
|
|
\param max_residual Gives a stopping criterion on signal reconstruction accuracy.
|
|
(only meaningful for matching pursuit and its variants).
|
|
\return A matrix W whose columns correspond to the sparse weights of associated to each input matrix column.
|
|
Thus, the matrix product D*W is an approximation of the input matrix.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& project_matrix(const CImg<t>& dictionary, const unsigned int method=0,
|
|
const unsigned int max_iter=0, const double max_residual=1e-6) {
|
|
return get_project_matrix(dictionary,method,max_iter,max_residual).move_to(*this);
|
|
}
|
|
|
|
template<typename t>
|
|
CImg<Tfloat> get_project_matrix(const CImg<t>& dictionary, const unsigned int method=0,
|
|
const unsigned int max_iter=0, const double max_residual=1e-6) const {
|
|
if (_depth!=1 || _spectrum!=1)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"project_matrix(): Instance image is not a matrix.",
|
|
cimg_instance);
|
|
if (dictionary._height!=_height || dictionary._depth!=1 || dictionary._spectrum!=1)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"project_matrix(): Specified dictionary (%u,%u,%u,%u) has an invalid size.",
|
|
cimg_instance,
|
|
dictionary._width,dictionary._height,dictionary._depth,dictionary._spectrum);
|
|
|
|
if (!method) return get_solve(dictionary);
|
|
CImg<Tfloat> W(_width,dictionary._width,1,1,0);
|
|
|
|
// Compute dictionary norm and normalize it.
|
|
CImg<Tfloat> D(dictionary,false), Dnorm(D._width);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=2 && _width*_height>=32))
|
|
cimg_forX(Dnorm,d) {
|
|
Tfloat norm = 0;
|
|
cimg_forY(D,y) norm+=cimg::sqr(D(d,y));
|
|
Dnorm[d] = std::max((Tfloat)1e-8,std::sqrt(norm));
|
|
}
|
|
cimg_forXY(D,d,y) D(d,y)/=Dnorm[d];
|
|
|
|
// Matching pursuit.
|
|
const unsigned int proj_step = method<3?1:method - 2;
|
|
bool is_orthoproj = false;
|
|
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=2 && _width*_height>=32))
|
|
cimg_forX(*this,x) {
|
|
CImg<Tfloat> S = get_column(x);
|
|
const CImg<Tfloat> S0 = method<2?CImg<Tfloat>():S;
|
|
Tfloat residual = S.magnitude()/S._height;
|
|
const unsigned int nmax = max_iter?max_iter:D._width;
|
|
|
|
for (unsigned int n = 0; n<nmax && residual>max_residual; ++n) {
|
|
|
|
// Find best matching column in D.
|
|
int dmax = 0;
|
|
Tfloat absdotmax = 0, dotmax = 0;
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(D._width>=2 && D._width*D._height>=32))
|
|
cimg_forX(D,d) {
|
|
Tfloat _dot = 0;
|
|
cimg_forY(D,y) _dot+=S[y]*D(d,y);
|
|
Tfloat absdot = cimg::abs(_dot);
|
|
cimg_pragma_openmp(critical(get_project_matrix)) {
|
|
if (absdot>absdotmax) {
|
|
absdotmax = absdot;
|
|
dotmax = _dot;
|
|
dmax = d;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!n || method<3 || n%proj_step) {
|
|
// Matching Pursuit: Subtract component to signal.
|
|
W(x,dmax)+=dotmax;
|
|
residual = 0;
|
|
cimg_forY(S,y) {
|
|
S[y]-=dotmax*D(dmax,y);
|
|
residual+=cimg::sqr(S[y]);
|
|
}
|
|
residual = std::sqrt(residual)/S._height;
|
|
is_orthoproj = false;
|
|
|
|
} else {
|
|
// Orthogonal Matching Pursuit: Orthogonal projection step.
|
|
W(x,dmax) = 1; // Used as a marker only.
|
|
unsigned int nbW = 0;
|
|
cimg_forY(W,d) if (W(x,d)) ++nbW;
|
|
CImg<Tfloat> sD(nbW,D._height);
|
|
CImg<uintT> inds(nbW);
|
|
int sd = 0;
|
|
cimg_forY(W,d) if (W(x,d)) {
|
|
cimg_forY(sD,y) sD(sd,y) = D(d,y);
|
|
inds[sd++] = d;
|
|
}
|
|
S0.get_solve(sD).move_to(sD); // sD is now a one-column vector of weights
|
|
|
|
// Recompute residual signal.
|
|
S = S0;
|
|
cimg_forY(sD,k) {
|
|
const Tfloat weight = sD[k];
|
|
const unsigned int ind = inds[k];
|
|
W(x,ind) = weight;
|
|
cimg_forY(S,y) S[y]-=weight*D(ind,y);
|
|
}
|
|
residual = S.magnitude()/S._height;
|
|
is_orthoproj = true;
|
|
}
|
|
}
|
|
|
|
// Perform last orthoprojection step if needed.
|
|
if (method>=2 && !is_orthoproj) {
|
|
unsigned int nbW = 0;
|
|
cimg_forY(W,d) if (W(x,d)) ++nbW;
|
|
if (nbW) { // Avoid degenerated case where 0 coefs are used
|
|
CImg<Tfloat> sD(nbW,D._height);
|
|
CImg<uintT> inds(nbW);
|
|
int sd = 0;
|
|
cimg_forY(W,d) if (W(x,d)) {
|
|
cimg_forY(sD,y) sD(sd,y) = D(d,y);
|
|
inds[sd++] = d;
|
|
}
|
|
S0.get_solve(sD).move_to(sD);
|
|
cimg_forY(sD,k) W(x,inds[k]) = sD[k];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Normalize resulting coefficients according to initial (non-normalized) dictionary.
|
|
cimg_forXY(W,x,y) W(x,y)/=Dnorm[y];
|
|
return W;
|
|
}
|
|
|
|
//! Compute minimal path in a graph, using the Dijkstra algorithm.
|
|
/**
|
|
\param distance An object having operator()(unsigned int i, unsigned int j) which returns distance
|
|
between two nodes (i,j).
|
|
\param nb_nodes Number of graph nodes.
|
|
\param starting_node Index of the starting node.
|
|
\param ending_node Index of the ending node (set to ~0U to ignore ending node).
|
|
\param previous_node Array that gives the previous node index in the path to the starting node
|
|
(optional parameter).
|
|
\return Array of distances of each node to the starting node.
|
|
**/
|
|
template<typename tf, typename t>
|
|
static CImg<T> dijkstra(const tf& distance, const unsigned int nb_nodes,
|
|
const unsigned int starting_node, const unsigned int ending_node,
|
|
CImg<t>& previous_node) {
|
|
if (starting_node>=nb_nodes)
|
|
throw CImgArgumentException("CImg<%s>::dijkstra(): Specified index of starting node %u is higher "
|
|
"than number of nodes %u.",
|
|
pixel_type(),starting_node,nb_nodes);
|
|
CImg<T> dist(1,nb_nodes,1,1,cimg::type<T>::max());
|
|
dist(starting_node) = 0;
|
|
previous_node.assign(1,nb_nodes,1,1,(t)-1);
|
|
previous_node(starting_node) = (t)starting_node;
|
|
CImg<uintT> Q(nb_nodes);
|
|
cimg_forX(Q,u) Q(u) = (unsigned int)u;
|
|
cimg::swap(Q(starting_node),Q(0));
|
|
unsigned int sizeQ = nb_nodes;
|
|
while (sizeQ) {
|
|
// Update neighbors from minimal vertex
|
|
const unsigned int umin = Q(0);
|
|
if (umin==ending_node) sizeQ = 0;
|
|
else {
|
|
const T dmin = dist(umin);
|
|
const T infty = cimg::type<T>::max();
|
|
for (unsigned int q = 1; q<sizeQ; ++q) {
|
|
const unsigned int v = Q(q);
|
|
const T d = (T)distance(v,umin);
|
|
if (d<infty) {
|
|
const T alt = dmin + d;
|
|
if (alt<dist(v)) {
|
|
dist(v) = alt;
|
|
previous_node(v) = (t)umin;
|
|
const T distpos = dist(Q(q));
|
|
for (unsigned int pos = q, par = 0; pos && distpos<dist(Q(par=(pos + 1)/2 - 1)); pos=par)
|
|
cimg::swap(Q(pos),Q(par));
|
|
}
|
|
}
|
|
}
|
|
// Remove minimal vertex from queue
|
|
Q(0) = Q(--sizeQ);
|
|
const T distpos = dist(Q(0));
|
|
for (unsigned int pos = 0, left = 0, right = 0;
|
|
((right=2*(pos + 1),(left=right - 1))<sizeQ && distpos>dist(Q(left))) ||
|
|
(right<sizeQ && distpos>dist(Q(right)));) {
|
|
if (right<sizeQ) {
|
|
if (dist(Q(left))<dist(Q(right))) { cimg::swap(Q(pos),Q(left)); pos = left; }
|
|
else { cimg::swap(Q(pos),Q(right)); pos = right; }
|
|
} else { cimg::swap(Q(pos),Q(left)); pos = left; }
|
|
}
|
|
}
|
|
}
|
|
return dist;
|
|
}
|
|
|
|
//! Return minimal path in a graph, using the Dijkstra algorithm.
|
|
template<typename tf, typename t>
|
|
static CImg<T> dijkstra(const tf& distance, const unsigned int nb_nodes,
|
|
const unsigned int starting_node, const unsigned int ending_node=~0U) {
|
|
CImg<uintT> foo;
|
|
return dijkstra(distance,nb_nodes,starting_node,ending_node,foo);
|
|
}
|
|
|
|
//! Return minimal path in a graph, using the Dijkstra algorithm.
|
|
/**
|
|
\param starting_node Index of the starting node.
|
|
\param ending_node Index of the ending node.
|
|
\param previous_node Array that gives the previous node index in the path to the starting node
|
|
(optional parameter).
|
|
\return Array of distances of each node to the starting node.
|
|
\note image instance corresponds to the adjacency matrix of the graph.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& dijkstra(const unsigned int starting_node, const unsigned int ending_node,
|
|
CImg<t>& previous_node) {
|
|
return get_dijkstra(starting_node,ending_node,previous_node).move_to(*this);
|
|
}
|
|
|
|
//! Return minimal path in a graph, using the Dijkstra algorithm \newinstance.
|
|
template<typename t>
|
|
CImg<T> get_dijkstra(const unsigned int starting_node, const unsigned int ending_node,
|
|
CImg<t>& previous_node) const {
|
|
if (_width!=_height || _depth!=1 || _spectrum!=1)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"dijkstra(): Instance is not a graph adjacency matrix.",
|
|
cimg_instance);
|
|
|
|
return dijkstra(*this,_width,starting_node,ending_node,previous_node);
|
|
}
|
|
|
|
//! Return minimal path in a graph, using the Dijkstra algorithm.
|
|
CImg<T>& dijkstra(const unsigned int starting_node, const unsigned int ending_node=~0U) {
|
|
return get_dijkstra(starting_node,ending_node).move_to(*this);
|
|
}
|
|
|
|
//! Return minimal path in a graph, using the Dijkstra algorithm \newinstance.
|
|
CImg<Tfloat> get_dijkstra(const unsigned int starting_node, const unsigned int ending_node=~0U) const {
|
|
CImg<uintT> foo;
|
|
return get_dijkstra(starting_node,ending_node,foo);
|
|
}
|
|
|
|
//! Return an image containing the character codes of specified string.
|
|
/**
|
|
\param str input C-string to encode as an image.
|
|
\param is_last_zero Tells if the ending \c '0' character appear in the resulting image.
|
|
\param is_shared Return result that shares its buffer with \p str.
|
|
**/
|
|
static CImg<T> string(const char *const str, const bool is_last_zero=true, const bool is_shared=false) {
|
|
if (!str) return CImg<T>();
|
|
return CImg<T>(str,(unsigned int)std::strlen(str) + (is_last_zero?1:0),1,1,1,is_shared);
|
|
}
|
|
|
|
//! Return a \c 1x1 image containing specified value.
|
|
/**
|
|
\param a0 First vector value.
|
|
**/
|
|
static CImg<T> row_vector(const T& a0) {
|
|
return vector(a0);
|
|
}
|
|
|
|
//! Return a \c 2x1 image containing specified values.
|
|
/**
|
|
\param a0 First vector value.
|
|
\param a1 Second vector value.
|
|
**/
|
|
static CImg<T> row_vector(const T& a0, const T& a1) {
|
|
CImg<T> r(2,1);
|
|
r[0] = a0; r[1] = a1;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 3x1 image containing specified values.
|
|
/**
|
|
\param a0 First vector value.
|
|
\param a1 Second vector value.
|
|
\param a2 Third vector value.
|
|
**/
|
|
static CImg<T> row_vector(const T& a0, const T& a1, const T& a2) {
|
|
CImg<T> r(3,1);
|
|
r[0] = a0; r[1] = a1; r[2] = a2;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 4x1 image containing specified values.
|
|
/**
|
|
\param a0 First vector value.
|
|
\param a1 Second vector value.
|
|
\param a2 Third vector value.
|
|
\param a3 Fourth vector value.
|
|
**/
|
|
static CImg<T> row_vector(const T& a0, const T& a1, const T& a2, const T& a3) {
|
|
CImg<T> r(4,1);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 5x1 image containing specified values.
|
|
static CImg<T> row_vector(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4) {
|
|
CImg<T> r(5,1);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 6x1 image containing specified values.
|
|
static CImg<T> row_vector(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4, const T& a5) {
|
|
CImg<T> r(6,1);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 7x1 image containing specified values.
|
|
static CImg<T> row_vector(const T& a0, const T& a1, const T& a2, const T& a3,
|
|
const T& a4, const T& a5, const T& a6) {
|
|
CImg<T> r(7,1);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 8x1 image containing specified values.
|
|
static CImg<T> row_vector(const T& a0, const T& a1, const T& a2, const T& a3,
|
|
const T& a4, const T& a5, const T& a6, const T& a7) {
|
|
CImg<T> r(8,1);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 9x1 image containing specified values.
|
|
static CImg<T> row_vector(const T& a0, const T& a1, const T& a2, const T& a3,
|
|
const T& a4, const T& a5, const T& a6, const T& a7,
|
|
const T& a8) {
|
|
CImg<T> r(9,1);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 10x1 image containing specified values.
|
|
static CImg<T> row_vector(const T& a0, const T& a1, const T& a2, const T& a3,
|
|
const T& a4, const T& a5, const T& a6, const T& a7,
|
|
const T& a8, const T& a9) {
|
|
CImg<T> r(10,1);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 11x1 image containing specified values.
|
|
static CImg<T> row_vector(const T& a0, const T& a1, const T& a2, const T& a3,
|
|
const T& a4, const T& a5, const T& a6, const T& a7,
|
|
const T& a8, const T& a9, const T& a10) {
|
|
CImg<T> r(11,1);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9;
|
|
r[10] = a10;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 12x1 image containing specified values.
|
|
static CImg<T> row_vector(const T& a0, const T& a1, const T& a2, const T& a3,
|
|
const T& a4, const T& a5, const T& a6, const T& a7,
|
|
const T& a8, const T& a9, const T& a10, const T& a11) {
|
|
CImg<T> r(12,1);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9;
|
|
r[10] = a10; r[11] = a11;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 13x1 image containing specified values.
|
|
static CImg<T> row_vector(const T& a0, const T& a1, const T& a2, const T& a3,
|
|
const T& a4, const T& a5, const T& a6, const T& a7,
|
|
const T& a8, const T& a9, const T& a10, const T& a11,
|
|
const T& a12) {
|
|
CImg<T> r(13,1);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9;
|
|
r[10] = a10; r[11] = a11; r[12] = a12;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 14x1 image containing specified values.
|
|
static CImg<T> row_vector(const T& a0, const T& a1, const T& a2, const T& a3,
|
|
const T& a4, const T& a5, const T& a6, const T& a7,
|
|
const T& a8, const T& a9, const T& a10, const T& a11,
|
|
const T& a12, const T& a13) {
|
|
CImg<T> r(14,1);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9;
|
|
r[10] = a10; r[11] = a11; r[12] = a12; r[13] = a13;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 15x1 image containing specified values.
|
|
static CImg<T> row_vector(const T& a0, const T& a1, const T& a2, const T& a3,
|
|
const T& a4, const T& a5, const T& a6, const T& a7,
|
|
const T& a8, const T& a9, const T& a10, const T& a11,
|
|
const T& a12, const T& a13, const T& a14) {
|
|
CImg<T> r(15,1);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9;
|
|
r[10] = a10; r[11] = a11; r[12] = a12; r[13] = a13; r[14] = a14;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 16x1 image containing specified values.
|
|
static CImg<T> row_vector(const T& a0, const T& a1, const T& a2, const T& a3,
|
|
const T& a4, const T& a5, const T& a6, const T& a7,
|
|
const T& a8, const T& a9, const T& a10, const T& a11,
|
|
const T& a12, const T& a13, const T& a14, const T& a15) {
|
|
CImg<T> r(16,1);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9;
|
|
r[10] = a10; r[11] = a11; r[12] = a12; r[13] = a13; r[14] = a14; r[15] = a15;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 1x1 image containing specified value.
|
|
/**
|
|
\param a0 First vector value.
|
|
**/
|
|
static CImg<T> vector(const T& a0) {
|
|
CImg<T> r(1,1);
|
|
r[0] = a0;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 1x2 image containing specified values.
|
|
/**
|
|
\param a0 First vector value.
|
|
\param a1 Second vector value.
|
|
**/
|
|
static CImg<T> vector(const T& a0, const T& a1) {
|
|
CImg<T> r(1,2);
|
|
r[0] = a0; r[1] = a1;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 1x3 image containing specified values.
|
|
/**
|
|
\param a0 First vector value.
|
|
\param a1 Second vector value.
|
|
\param a2 Third vector value.
|
|
**/
|
|
static CImg<T> vector(const T& a0, const T& a1, const T& a2) {
|
|
CImg<T> r(1,3);
|
|
r[0] = a0; r[1] = a1; r[2] = a2;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 1x4 image containing specified values.
|
|
/**
|
|
\param a0 First vector value.
|
|
\param a1 Second vector value.
|
|
\param a2 Third vector value.
|
|
\param a3 Fourth vector value.
|
|
**/
|
|
static CImg<T> vector(const T& a0, const T& a1, const T& a2, const T& a3) {
|
|
CImg<T> r(1,4);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 1x5 image containing specified values.
|
|
static CImg<T> vector(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4) {
|
|
CImg<T> r(1,5);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 1x6 image containing specified values.
|
|
static CImg<T> vector(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4, const T& a5) {
|
|
CImg<T> r(1,6);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 1x7 image containing specified values.
|
|
static CImg<T> vector(const T& a0, const T& a1, const T& a2, const T& a3,
|
|
const T& a4, const T& a5, const T& a6) {
|
|
CImg<T> r(1,7);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 1x8 image containing specified values.
|
|
static CImg<T> vector(const T& a0, const T& a1, const T& a2, const T& a3,
|
|
const T& a4, const T& a5, const T& a6, const T& a7) {
|
|
CImg<T> r(1,8);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 1x9 image containing specified values.
|
|
static CImg<T> vector(const T& a0, const T& a1, const T& a2, const T& a3,
|
|
const T& a4, const T& a5, const T& a6, const T& a7,
|
|
const T& a8) {
|
|
CImg<T> r(1,9);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 1x10 image containing specified values.
|
|
static CImg<T> vector(const T& a0, const T& a1, const T& a2, const T& a3,
|
|
const T& a4, const T& a5, const T& a6, const T& a7,
|
|
const T& a8, const T& a9) {
|
|
CImg<T> r(1,10);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 1x11 image containing specified values.
|
|
static CImg<T> vector(const T& a0, const T& a1, const T& a2, const T& a3,
|
|
const T& a4, const T& a5, const T& a6, const T& a7,
|
|
const T& a8, const T& a9, const T& a10) {
|
|
CImg<T> r(1,11);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9;
|
|
r[10] = a10;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 1x12 image containing specified values.
|
|
static CImg<T> vector(const T& a0, const T& a1, const T& a2, const T& a3,
|
|
const T& a4, const T& a5, const T& a6, const T& a7,
|
|
const T& a8, const T& a9, const T& a10, const T& a11) {
|
|
CImg<T> r(1,12);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9;
|
|
r[10] = a10; r[11] = a11;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 1x13 image containing specified values.
|
|
static CImg<T> vector(const T& a0, const T& a1, const T& a2, const T& a3,
|
|
const T& a4, const T& a5, const T& a6, const T& a7,
|
|
const T& a8, const T& a9, const T& a10, const T& a11,
|
|
const T& a12) {
|
|
CImg<T> r(1,13);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9;
|
|
r[10] = a10; r[11] = a11; r[12] = a12;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 1x14 image containing specified values.
|
|
static CImg<T> vector(const T& a0, const T& a1, const T& a2, const T& a3,
|
|
const T& a4, const T& a5, const T& a6, const T& a7,
|
|
const T& a8, const T& a9, const T& a10, const T& a11,
|
|
const T& a12, const T& a13) {
|
|
CImg<T> r(1,14);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9;
|
|
r[10] = a10; r[11] = a11; r[12] = a12; r[13] = a13;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 1x15 image containing specified values.
|
|
static CImg<T> vector(const T& a0, const T& a1, const T& a2, const T& a3,
|
|
const T& a4, const T& a5, const T& a6, const T& a7,
|
|
const T& a8, const T& a9, const T& a10, const T& a11,
|
|
const T& a12, const T& a13, const T& a14) {
|
|
CImg<T> r(1,15);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9;
|
|
r[10] = a10; r[11] = a11; r[12] = a12; r[13] = a13; r[14] = a14;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 1x16 image containing specified values.
|
|
static CImg<T> vector(const T& a0, const T& a1, const T& a2, const T& a3,
|
|
const T& a4, const T& a5, const T& a6, const T& a7,
|
|
const T& a8, const T& a9, const T& a10, const T& a11,
|
|
const T& a12, const T& a13, const T& a14, const T& a15) {
|
|
CImg<T> r(1,16);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9;
|
|
r[10] = a10; r[11] = a11; r[12] = a12; r[13] = a13; r[14] = a14; r[15] = a15;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 1x17 image containing specified values.
|
|
static CImg<T> vector(const T& a0, const T& a1, const T& a2, const T& a3,
|
|
const T& a4, const T& a5, const T& a6, const T& a7,
|
|
const T& a8, const T& a9, const T& a10, const T& a11,
|
|
const T& a12, const T& a13, const T& a14, const T& a15,
|
|
const T& a16) {
|
|
CImg<T> r(1,17);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9;
|
|
r[10] = a10; r[11] = a11; r[12] = a12; r[13] = a13; r[14] = a14; r[15] = a15; r[16] = a16;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 1x18 image containing specified values.
|
|
static CImg<T> vector(const T& a0, const T& a1, const T& a2, const T& a3,
|
|
const T& a4, const T& a5, const T& a6, const T& a7,
|
|
const T& a8, const T& a9, const T& a10, const T& a11,
|
|
const T& a12, const T& a13, const T& a14, const T& a15,
|
|
const T& a16, const T& a17) {
|
|
CImg<T> r(1,18);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9;
|
|
r[10] = a10; r[11] = a11; r[12] = a12; r[13] = a13; r[14] = a14; r[15] = a15; r[16] = a16; r[17] = a17;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 1x19 image containing specified values.
|
|
static CImg<T> vector(const T& a0, const T& a1, const T& a2, const T& a3,
|
|
const T& a4, const T& a5, const T& a6, const T& a7,
|
|
const T& a8, const T& a9, const T& a10, const T& a11,
|
|
const T& a12, const T& a13, const T& a14, const T& a15,
|
|
const T& a16, const T& a17, const T& a18) {
|
|
CImg<T> r(1,19);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9;
|
|
r[10] = a10; r[11] = a11; r[12] = a12; r[13] = a13; r[14] = a14; r[15] = a15; r[16] = a16; r[17] = a17;
|
|
r[18] = a18;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 1x20 image containing specified values.
|
|
static CImg<T> vector(const T& a0, const T& a1, const T& a2, const T& a3,
|
|
const T& a4, const T& a5, const T& a6, const T& a7,
|
|
const T& a8, const T& a9, const T& a10, const T& a11,
|
|
const T& a12, const T& a13, const T& a14, const T& a15,
|
|
const T& a16, const T& a17, const T& a18, const T& a19) {
|
|
CImg<T> r(1,20);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9;
|
|
r[10] = a10; r[11] = a11; r[12] = a12; r[13] = a13; r[14] = a14; r[15] = a15; r[16] = a16; r[17] = a17;
|
|
r[18] = a18; r[19] = a19;
|
|
return r;
|
|
}
|
|
|
|
//! Return a \c 1x21 image containing specified values.
|
|
static CImg<T> vector(const T& a0, const T& a1, const T& a2, const T& a3,
|
|
const T& a4, const T& a5, const T& a6, const T& a7,
|
|
const T& a8, const T& a9, const T& a10, const T& a11,
|
|
const T& a12, const T& a13, const T& a14, const T& a15,
|
|
const T& a16, const T& a17, const T& a18, const T& a19,
|
|
const T& a20) {
|
|
CImg<T> r(1,21);
|
|
r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9;
|
|
r[10] = a10; r[11] = a11; r[12] = a12; r[13] = a13; r[14] = a14; r[15] = a15; r[16] = a16; r[17] = a17;
|
|
r[18] = a18; r[19] = a19; r[20] = a20;
|
|
return r;
|
|
}
|
|
|
|
//! Return a 1x1 matrix containing specified coefficients.
|
|
/**
|
|
\param a0 First matrix value.
|
|
\note Equivalent to vector(const T&).
|
|
**/
|
|
static CImg<T> matrix(const T& a0) {
|
|
return vector(a0);
|
|
}
|
|
|
|
//! Return a 2x2 matrix containing specified coefficients.
|
|
/**
|
|
\param a0 First matrix value.
|
|
\param a1 Second matrix value.
|
|
\param a2 Third matrix value.
|
|
\param a3 Fourth matrix value.
|
|
**/
|
|
static CImg<T> matrix(const T& a0, const T& a1,
|
|
const T& a2, const T& a3) {
|
|
CImg<T> r(2,2); T *ptr = r._data;
|
|
*(ptr++) = a0; *(ptr++) = a1;
|
|
*(ptr++) = a2; *(ptr++) = a3;
|
|
return r;
|
|
}
|
|
|
|
//! Return a 3x3 matrix containing specified coefficients.
|
|
/**
|
|
\param a0 First matrix value.
|
|
\param a1 Second matrix value.
|
|
\param a2 Third matrix value.
|
|
\param a3 Fourth matrix value.
|
|
\param a4 Fifth matrix value.
|
|
\param a5 Sixth matrix value.
|
|
\param a6 Seventh matrix value.
|
|
\param a7 Eighth matrix value.
|
|
\param a8 Ninth matrix value.
|
|
**/
|
|
static CImg<T> matrix(const T& a0, const T& a1, const T& a2,
|
|
const T& a3, const T& a4, const T& a5,
|
|
const T& a6, const T& a7, const T& a8) {
|
|
CImg<T> r(3,3); T *ptr = r._data;
|
|
*(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2;
|
|
*(ptr++) = a3; *(ptr++) = a4; *(ptr++) = a5;
|
|
*(ptr++) = a6; *(ptr++) = a7; *(ptr++) = a8;
|
|
return r;
|
|
}
|
|
|
|
//! Return a 4x4 matrix containing specified coefficients.
|
|
static CImg<T> matrix(const T& a0, const T& a1, const T& a2, const T& a3,
|
|
const T& a4, const T& a5, const T& a6, const T& a7,
|
|
const T& a8, const T& a9, const T& a10, const T& a11,
|
|
const T& a12, const T& a13, const T& a14, const T& a15) {
|
|
CImg<T> r(4,4); T *ptr = r._data;
|
|
*(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3;
|
|
*(ptr++) = a4; *(ptr++) = a5; *(ptr++) = a6; *(ptr++) = a7;
|
|
*(ptr++) = a8; *(ptr++) = a9; *(ptr++) = a10; *(ptr++) = a11;
|
|
*(ptr++) = a12; *(ptr++) = a13; *(ptr++) = a14; *(ptr++) = a15;
|
|
return r;
|
|
}
|
|
|
|
//! Return a 5x5 matrix containing specified coefficients.
|
|
static CImg<T> matrix(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4,
|
|
const T& a5, const T& a6, const T& a7, const T& a8, const T& a9,
|
|
const T& a10, const T& a11, const T& a12, const T& a13, const T& a14,
|
|
const T& a15, const T& a16, const T& a17, const T& a18, const T& a19,
|
|
const T& a20, const T& a21, const T& a22, const T& a23, const T& a24) {
|
|
CImg<T> r(5,5); T *ptr = r._data;
|
|
*(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; *(ptr++) = a4;
|
|
*(ptr++) = a5; *(ptr++) = a6; *(ptr++) = a7; *(ptr++) = a8; *(ptr++) = a9;
|
|
*(ptr++) = a10; *(ptr++) = a11; *(ptr++) = a12; *(ptr++) = a13; *(ptr++) = a14;
|
|
*(ptr++) = a15; *(ptr++) = a16; *(ptr++) = a17; *(ptr++) = a18; *(ptr++) = a19;
|
|
*(ptr++) = a20; *(ptr++) = a21; *(ptr++) = a22; *(ptr++) = a23; *(ptr++) = a24;
|
|
return r;
|
|
}
|
|
|
|
//! Return a 1x1 symmetric matrix containing specified coefficients.
|
|
/**
|
|
\param a0 First matrix value.
|
|
\note Equivalent to vector(const T&).
|
|
**/
|
|
static CImg<T> tensor(const T& a0) {
|
|
return matrix(a0);
|
|
}
|
|
|
|
//! Return a 2x2 symmetric matrix tensor containing specified coefficients.
|
|
static CImg<T> tensor(const T& a0, const T& a1, const T& a2) {
|
|
return matrix(a0,a1,a1,a2);
|
|
}
|
|
|
|
//! Return a 3x3 symmetric matrix containing specified coefficients.
|
|
static CImg<T> tensor(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4, const T& a5) {
|
|
return matrix(a0,a1,a2,a1,a3,a4,a2,a4,a5);
|
|
}
|
|
|
|
//! Return a 1x1 diagonal matrix containing specified coefficients.
|
|
static CImg<T> diagonal(const T& a0) {
|
|
return matrix(a0);
|
|
}
|
|
|
|
//! Return a 2x2 diagonal matrix containing specified coefficients.
|
|
static CImg<T> diagonal(const T& a0, const T& a1) {
|
|
return matrix(a0,0,0,a1);
|
|
}
|
|
|
|
//! Return a 3x3 diagonal matrix containing specified coefficients.
|
|
static CImg<T> diagonal(const T& a0, const T& a1, const T& a2) {
|
|
return matrix(a0,0,0,0,a1,0,0,0,a2);
|
|
}
|
|
|
|
//! Return a 4x4 diagonal matrix containing specified coefficients.
|
|
static CImg<T> diagonal(const T& a0, const T& a1, const T& a2, const T& a3) {
|
|
return matrix(a0,0,0,0,0,a1,0,0,0,0,a2,0,0,0,0,a3);
|
|
}
|
|
|
|
//! Return a 5x5 diagonal matrix containing specified coefficients.
|
|
static CImg<T> diagonal(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4) {
|
|
return matrix(a0,0,0,0,0,0,a1,0,0,0,0,0,a2,0,0,0,0,0,a3,0,0,0,0,0,a4);
|
|
}
|
|
|
|
//! Return a NxN identity matrix.
|
|
/**
|
|
\param N Dimension of the matrix.
|
|
**/
|
|
static CImg<T> identity_matrix(const unsigned int N) {
|
|
CImg<T> res(N,N,1,1,0);
|
|
cimg_forX(res,x) res(x,x) = 1;
|
|
return res;
|
|
}
|
|
|
|
//! Return a N-numbered sequence vector from \p a0 to \p a1.
|
|
/**
|
|
\param N Size of the resulting vector.
|
|
\param a0 Starting value of the sequence.
|
|
\param a1 Ending value of the sequence.
|
|
**/
|
|
static CImg<T> sequence(const unsigned int N, const T& a0, const T& a1) {
|
|
if (N) return CImg<T>(1,N).sequence(a0,a1);
|
|
return CImg<T>();
|
|
}
|
|
|
|
//! Return a 3x3 rotation matrix from an { axis + angle } or a quaternion.
|
|
/**
|
|
\param x X-coordinate of the rotation axis, or first quaternion coordinate.
|
|
\param y Y-coordinate of the rotation axis, or second quaternion coordinate.
|
|
\param z Z-coordinate of the rotation axis, or third quaternion coordinate.
|
|
\param w Angle of the rotation axis (in degree), or fourth quaternion coordinate.
|
|
\param is_quaternion Tell is the four arguments denotes a set { axis + angle } or a quaternion (x,y,z,w).
|
|
**/
|
|
static CImg<T> rotation_matrix(const float x, const float y, const float z, const float w,
|
|
const bool is_quaternion=false) {
|
|
double X, Y, Z, W, N;
|
|
if (is_quaternion) {
|
|
N = std::sqrt((double)x*x + (double)y*y + (double)z*z + (double)w*w);
|
|
if (N>0) { X = x/N; Y = y/N; Z = z/N; W = w/N; }
|
|
else { X = Y = Z = 0; W = 1; }
|
|
return CImg<T>::matrix((T)(X*X + Y*Y - Z*Z - W*W),(T)(2*Y*Z - 2*X*W),(T)(2*X*Z + 2*Y*W),
|
|
(T)(2*X*W + 2*Y*Z),(T)(X*X - Y*Y + Z*Z - W*W),(T)(2*Z*W - 2*X*Y),
|
|
(T)(2*Y*W - 2*X*Z),(T)(2*X*Y + 2*Z*W),(T)(X*X - Y*Y - Z*Z + W*W));
|
|
}
|
|
N = cimg::hypot((double)x,(double)y,(double)z);
|
|
if (N>0) { X = x/N; Y = y/N; Z = z/N; }
|
|
else { X = Y = 0; Z = 1; }
|
|
const double ang = w*cimg::PI/180, c = std::cos(ang), omc = 1 - c, s = std::sin(ang);
|
|
return CImg<T>::matrix((T)(X*X*omc + c),(T)(X*Y*omc - Z*s),(T)(X*Z*omc + Y*s),
|
|
(T)(X*Y*omc + Z*s),(T)(Y*Y*omc + c),(T)(Y*Z*omc - X*s),
|
|
(T)(X*Z*omc - Y*s),(T)(Y*Z*omc + X*s),(T)(Z*Z*omc + c));
|
|
}
|
|
|
|
//@}
|
|
//-----------------------------------
|
|
//
|
|
//! \name Value Manipulation
|
|
//@{
|
|
//-----------------------------------
|
|
|
|
//! Fill all pixel values with specified value.
|
|
/**
|
|
\param val Fill value.
|
|
**/
|
|
CImg<T>& fill(const T& val) {
|
|
if (is_empty()) return *this;
|
|
if (val && sizeof(T)!=1) cimg_for(*this,ptrd,T) *ptrd = val;
|
|
else std::memset(_data,(int)(ulongT)val,sizeof(T)*size()); // Double cast to allow val to be (void*)
|
|
return *this;
|
|
}
|
|
|
|
//! Fill all pixel values with specified value \newinstance.
|
|
CImg<T> get_fill(const T& val) const {
|
|
return CImg<T>(_width,_height,_depth,_spectrum).fill(val);
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values.
|
|
/**
|
|
\param val0 First fill value.
|
|
\param val1 Second fill value.
|
|
**/
|
|
CImg<T>& fill(const T& val0, const T& val1) {
|
|
if (is_empty()) return *this;
|
|
T *ptrd, *ptre = end() - 1;
|
|
for (ptrd = _data; ptrd<ptre; ) { *(ptrd++) = val0; *(ptrd++) = val1; }
|
|
if (ptrd!=ptre + 1) *(ptrd++) = val0;
|
|
return *this;
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values \newinstance.
|
|
CImg<T> get_fill(const T& val0, const T& val1) const {
|
|
return CImg<T>(_width,_height,_depth,_spectrum).fill(val0,val1);
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values \overloading.
|
|
CImg<T>& fill(const T& val0, const T& val1, const T& val2) {
|
|
if (is_empty()) return *this;
|
|
T *ptrd, *ptre = end() - 2;
|
|
for (ptrd = _data; ptrd<ptre; ) { *(ptrd++) = val0; *(ptrd++) = val1; *(ptrd++) = val2; }
|
|
ptre+=2;
|
|
switch (ptre - ptrd) {
|
|
case 2 : *(--ptre) = val1; // Fallthrough
|
|
case 1 : *(--ptre) = val0; // Fallthrough
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values \newinstance.
|
|
CImg<T> get_fill(const T& val0, const T& val1, const T& val2) const {
|
|
return CImg<T>(_width,_height,_depth,_spectrum).fill(val0,val1,val2);
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values \overloading.
|
|
CImg<T>& fill(const T& val0, const T& val1, const T& val2, const T& val3) {
|
|
if (is_empty()) return *this;
|
|
T *ptrd, *ptre = end() - 3;
|
|
for (ptrd = _data; ptrd<ptre; ) { *(ptrd++) = val0; *(ptrd++) = val1; *(ptrd++) = val2; *(ptrd++) = val3; }
|
|
ptre+=3;
|
|
switch (ptre - ptrd) {
|
|
case 3 : *(--ptre) = val2; // Fallthrough
|
|
case 2 : *(--ptre) = val1; // Fallthrough
|
|
case 1 : *(--ptre) = val0; // Fallthrough
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values \newinstance.
|
|
CImg<T> get_fill(const T& val0, const T& val1, const T& val2, const T& val3) const {
|
|
return CImg<T>(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3);
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values \overloading.
|
|
CImg<T>& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4) {
|
|
if (is_empty()) return *this;
|
|
T *ptrd, *ptre = end() - 4;
|
|
for (ptrd = _data; ptrd<ptre; ) {
|
|
*(ptrd++) = val0; *(ptrd++) = val1; *(ptrd++) = val2; *(ptrd++) = val3; *(ptrd++) = val4;
|
|
}
|
|
ptre+=4;
|
|
switch (ptre - ptrd) {
|
|
case 4 : *(--ptre) = val3; // Fallthrough
|
|
case 3 : *(--ptre) = val2; // Fallthrough
|
|
case 2 : *(--ptre) = val1; // Fallthrough
|
|
case 1 : *(--ptre) = val0; // Fallthrough
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values \newinstance.
|
|
CImg<T> get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4) const {
|
|
return CImg<T>(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4);
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values \overloading.
|
|
CImg<T>& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5) {
|
|
if (is_empty()) return *this;
|
|
T *ptrd, *ptre = end() - 5;
|
|
for (ptrd = _data; ptrd<ptre; ) {
|
|
*(ptrd++) = val0; *(ptrd++) = val1; *(ptrd++) = val2; *(ptrd++) = val3; *(ptrd++) = val4; *(ptrd++) = val5;
|
|
}
|
|
ptre+=5;
|
|
switch (ptre - ptrd) {
|
|
case 5 : *(--ptre) = val4; // Fallthrough
|
|
case 4 : *(--ptre) = val3; // Fallthrough
|
|
case 3 : *(--ptre) = val2; // Fallthrough
|
|
case 2 : *(--ptre) = val1; // Fallthrough
|
|
case 1 : *(--ptre) = val0; // Fallthrough
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values \newinstance.
|
|
CImg<T> get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5) const {
|
|
return CImg<T>(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5);
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values \overloading.
|
|
CImg<T>& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5,
|
|
const T& val6) {
|
|
if (is_empty()) return *this;
|
|
T *ptrd, *ptre = end() - 6;
|
|
for (ptrd = _data; ptrd<ptre; ) {
|
|
*(ptrd++) = val0; *(ptrd++) = val1; *(ptrd++) = val2; *(ptrd++) = val3; *(ptrd++) = val4; *(ptrd++) = val5;
|
|
*(ptrd++) = val6;
|
|
}
|
|
ptre+=6;
|
|
switch (ptre - ptrd) {
|
|
case 6 : *(--ptre) = val5; // Fallthrough
|
|
case 5 : *(--ptre) = val4; // Fallthrough
|
|
case 4 : *(--ptre) = val3; // Fallthrough
|
|
case 3 : *(--ptre) = val2; // Fallthrough
|
|
case 2 : *(--ptre) = val1; // Fallthrough
|
|
case 1 : *(--ptre) = val0; // Fallthrough
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values \newinstance.
|
|
CImg<T> get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5,
|
|
const T& val6) const {
|
|
return CImg<T>(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6);
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values \overloading.
|
|
CImg<T>& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5,
|
|
const T& val6, const T& val7) {
|
|
if (is_empty()) return *this;
|
|
T *ptrd, *ptre = end() - 7;
|
|
for (ptrd = _data; ptrd<ptre; ) {
|
|
*(ptrd++) = val0; *(ptrd++) = val1; *(ptrd++) = val2; *(ptrd++) = val3;
|
|
*(ptrd++) = val4; *(ptrd++) = val5; *(ptrd++) = val6; *(ptrd++) = val7;
|
|
}
|
|
ptre+=7;
|
|
switch (ptre - ptrd) {
|
|
case 7 : *(--ptre) = val6; // Fallthrough
|
|
case 6 : *(--ptre) = val5; // Fallthrough
|
|
case 5 : *(--ptre) = val4; // Fallthrough
|
|
case 4 : *(--ptre) = val3; // Fallthrough
|
|
case 3 : *(--ptre) = val2; // Fallthrough
|
|
case 2 : *(--ptre) = val1; // Fallthrough
|
|
case 1 : *(--ptre) = val0; // Fallthrough
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values \newinstance.
|
|
CImg<T> get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5,
|
|
const T& val6, const T& val7) const {
|
|
return CImg<T>(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6,val7);
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values \overloading.
|
|
CImg<T>& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5,
|
|
const T& val6, const T& val7, const T& val8) {
|
|
if (is_empty()) return *this;
|
|
T *ptrd, *ptre = end() - 8;
|
|
for (ptrd = _data; ptrd<ptre; ) {
|
|
*(ptrd++) = val0; *(ptrd++) = val1; *(ptrd++) = val2;
|
|
*(ptrd++) = val3; *(ptrd++) = val4; *(ptrd++) = val5;
|
|
*(ptrd++) = val6; *(ptrd++) = val7; *(ptrd++) = val8;
|
|
}
|
|
ptre+=8;
|
|
switch (ptre - ptrd) {
|
|
case 8 : *(--ptre) = val7; // Fallthrough
|
|
case 7 : *(--ptre) = val6; // Fallthrough
|
|
case 6 : *(--ptre) = val5; // Fallthrough
|
|
case 5 : *(--ptre) = val4; // Fallthrough
|
|
case 4 : *(--ptre) = val3; // Fallthrough
|
|
case 3 : *(--ptre) = val2; // Fallthrough
|
|
case 2 : *(--ptre) = val1; // Fallthrough
|
|
case 1 : *(--ptre) = val0; // Fallthrough
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values \newinstance.
|
|
CImg<T> get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5,
|
|
const T& val6, const T& val7, const T& val8) const {
|
|
return CImg<T>(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6,val7,val8);
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values \overloading.
|
|
CImg<T>& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5,
|
|
const T& val6, const T& val7, const T& val8, const T& val9) {
|
|
if (is_empty()) return *this;
|
|
T *ptrd, *ptre = end() - 9;
|
|
for (ptrd = _data; ptrd<ptre; ) {
|
|
*(ptrd++) = val0; *(ptrd++) = val1; *(ptrd++) = val2; *(ptrd++) = val3; *(ptrd++) = val4;
|
|
*(ptrd++) = val5; *(ptrd++) = val6; *(ptrd++) = val7; *(ptrd++) = val8; *(ptrd++) = val9;
|
|
}
|
|
ptre+=9;
|
|
switch (ptre - ptrd) {
|
|
case 9 : *(--ptre) = val8; // Fallthrough
|
|
case 8 : *(--ptre) = val7; // Fallthrough
|
|
case 7 : *(--ptre) = val6; // Fallthrough
|
|
case 6 : *(--ptre) = val5; // Fallthrough
|
|
case 5 : *(--ptre) = val4; // Fallthrough
|
|
case 4 : *(--ptre) = val3; // Fallthrough
|
|
case 3 : *(--ptre) = val2; // Fallthrough
|
|
case 2 : *(--ptre) = val1; // Fallthrough
|
|
case 1 : *(--ptre) = val0; // Fallthrough
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values \newinstance.
|
|
CImg<T> get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5,
|
|
const T& val6, const T& val7, const T& val8, const T& val9) const {
|
|
return CImg<T>(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6,val7,val8,val9);
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values \overloading.
|
|
CImg<T>& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5,
|
|
const T& val6, const T& val7, const T& val8, const T& val9, const T& val10) {
|
|
if (is_empty()) return *this;
|
|
T *ptrd, *ptre = end() - 10;
|
|
for (ptrd = _data; ptrd<ptre; ) {
|
|
*(ptrd++) = val0; *(ptrd++) = val1; *(ptrd++) = val2; *(ptrd++) = val3; *(ptrd++) = val4;
|
|
*(ptrd++) = val5; *(ptrd++) = val6; *(ptrd++) = val7; *(ptrd++) = val8; *(ptrd++) = val9;
|
|
*(ptrd++) = val10;
|
|
}
|
|
ptre+=10;
|
|
switch (ptre - ptrd) {
|
|
case 10 : *(--ptre) = val9; // Fallthrough
|
|
case 9 : *(--ptre) = val8; // Fallthrough
|
|
case 8 : *(--ptre) = val7; // Fallthrough
|
|
case 7 : *(--ptre) = val6; // Fallthrough
|
|
case 6 : *(--ptre) = val5; // Fallthrough
|
|
case 5 : *(--ptre) = val4; // Fallthrough
|
|
case 4 : *(--ptre) = val3; // Fallthrough
|
|
case 3 : *(--ptre) = val2; // Fallthrough
|
|
case 2 : *(--ptre) = val1; // Fallthrough
|
|
case 1 : *(--ptre) = val0; // Fallthrough
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values \newinstance.
|
|
CImg<T> get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5,
|
|
const T& val6, const T& val7, const T& val8, const T& val9, const T& val10) const {
|
|
return CImg<T>(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6,val7,val8,val9,val10);
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values \overloading.
|
|
CImg<T>& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5,
|
|
const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11) {
|
|
if (is_empty()) return *this;
|
|
T *ptrd, *ptre = end() - 11;
|
|
for (ptrd = _data; ptrd<ptre; ) {
|
|
*(ptrd++) = val0; *(ptrd++) = val1; *(ptrd++) = val2; *(ptrd++) = val3; *(ptrd++) = val4; *(ptrd++) = val5;
|
|
*(ptrd++) = val6; *(ptrd++) = val7; *(ptrd++) = val8; *(ptrd++) = val9; *(ptrd++) = val10; *(ptrd++) = val11;
|
|
}
|
|
ptre+=11;
|
|
switch (ptre - ptrd) {
|
|
case 11 : *(--ptre) = val10; // Fallthrough
|
|
case 10 : *(--ptre) = val9; // Fallthrough
|
|
case 9 : *(--ptre) = val8; // Fallthrough
|
|
case 8 : *(--ptre) = val7; // Fallthrough
|
|
case 7 : *(--ptre) = val6; // Fallthrough
|
|
case 6 : *(--ptre) = val5; // Fallthrough
|
|
case 5 : *(--ptre) = val4; // Fallthrough
|
|
case 4 : *(--ptre) = val3; // Fallthrough
|
|
case 3 : *(--ptre) = val2; // Fallthrough
|
|
case 2 : *(--ptre) = val1; // Fallthrough
|
|
case 1 : *(--ptre) = val0; // Fallthrough
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values \newinstance.
|
|
CImg<T> get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5,
|
|
const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11) const {
|
|
return CImg<T>(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6,val7,val8,val9,val10,
|
|
val11);
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values \overloading.
|
|
CImg<T>& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5,
|
|
const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11,
|
|
const T& val12) {
|
|
if (is_empty()) return *this;
|
|
T *ptrd, *ptre = end() - 12;
|
|
for (ptrd = _data; ptrd<ptre; ) {
|
|
*(ptrd++) = val0; *(ptrd++) = val1; *(ptrd++) = val2; *(ptrd++) = val3; *(ptrd++) = val4; *(ptrd++) = val5;
|
|
*(ptrd++) = val6; *(ptrd++) = val7; *(ptrd++) = val8; *(ptrd++) = val9; *(ptrd++) = val10; *(ptrd++) = val11;
|
|
*(ptrd++) = val12;
|
|
}
|
|
ptre+=12;
|
|
switch (ptre - ptrd) {
|
|
case 12 : *(--ptre) = val11; // Fallthrough
|
|
case 11 : *(--ptre) = val10; // Fallthrough
|
|
case 10 : *(--ptre) = val9; // Fallthrough
|
|
case 9 : *(--ptre) = val8; // Fallthrough
|
|
case 8 : *(--ptre) = val7; // Fallthrough
|
|
case 7 : *(--ptre) = val6; // Fallthrough
|
|
case 6 : *(--ptre) = val5; // Fallthrough
|
|
case 5 : *(--ptre) = val4; // Fallthrough
|
|
case 4 : *(--ptre) = val3; // Fallthrough
|
|
case 3 : *(--ptre) = val2; // Fallthrough
|
|
case 2 : *(--ptre) = val1; // Fallthrough
|
|
case 1 : *(--ptre) = val0; // Fallthrough
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values \newinstance.
|
|
CImg<T> get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5,
|
|
const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11,
|
|
const T& val12) const {
|
|
return CImg<T>(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6,val7,val8,val9,val10,
|
|
val11,val12);
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values \overloading.
|
|
CImg<T>& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5,
|
|
const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11,
|
|
const T& val12, const T& val13) {
|
|
if (is_empty()) return *this;
|
|
T *ptrd, *ptre = end() - 13;
|
|
for (ptrd = _data; ptrd<ptre; ) {
|
|
*(ptrd++) = val0; *(ptrd++) = val1; *(ptrd++) = val2; *(ptrd++) = val3; *(ptrd++) = val4; *(ptrd++) = val5;
|
|
*(ptrd++) = val6; *(ptrd++) = val7; *(ptrd++) = val8; *(ptrd++) = val9; *(ptrd++) = val10; *(ptrd++) = val11;
|
|
*(ptrd++) = val12; *(ptrd++) = val13;
|
|
}
|
|
ptre+=13;
|
|
switch (ptre - ptrd) {
|
|
case 13 : *(--ptre) = val12; // Fallthrough
|
|
case 12 : *(--ptre) = val11; // Fallthrough
|
|
case 11 : *(--ptre) = val10; // Fallthrough
|
|
case 10 : *(--ptre) = val9; // Fallthrough
|
|
case 9 : *(--ptre) = val8; // Fallthrough
|
|
case 8 : *(--ptre) = val7; // Fallthrough
|
|
case 7 : *(--ptre) = val6; // Fallthrough
|
|
case 6 : *(--ptre) = val5; // Fallthrough
|
|
case 5 : *(--ptre) = val4; // Fallthrough
|
|
case 4 : *(--ptre) = val3; // Fallthrough
|
|
case 3 : *(--ptre) = val2; // Fallthrough
|
|
case 2 : *(--ptre) = val1; // Fallthrough
|
|
case 1 : *(--ptre) = val0; // Fallthrough
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values \newinstance.
|
|
CImg<T> get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5,
|
|
const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11,
|
|
const T& val12, const T& val13) const {
|
|
return CImg<T>(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6,val7,val8,val9,val10,
|
|
val11,val12,val13);
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values \overloading.
|
|
CImg<T>& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5,
|
|
const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11,
|
|
const T& val12, const T& val13, const T& val14) {
|
|
if (is_empty()) return *this;
|
|
T *ptrd, *ptre = end() - 14;
|
|
for (ptrd = _data; ptrd<ptre; ) {
|
|
*(ptrd++) = val0; *(ptrd++) = val1; *(ptrd++) = val2; *(ptrd++) = val3; *(ptrd++) = val4; *(ptrd++) = val5;
|
|
*(ptrd++) = val6; *(ptrd++) = val7; *(ptrd++) = val8; *(ptrd++) = val9; *(ptrd++) = val10; *(ptrd++) = val11;
|
|
*(ptrd++) = val12; *(ptrd++) = val13; *(ptrd++) = val14;
|
|
}
|
|
ptre+=14;
|
|
switch (ptre - ptrd) {
|
|
case 14 : *(--ptre) = val13; // Fallthrough
|
|
case 13 : *(--ptre) = val12; // Fallthrough
|
|
case 12 : *(--ptre) = val11; // Fallthrough
|
|
case 11 : *(--ptre) = val10; // Fallthrough
|
|
case 10 : *(--ptre) = val9; // Fallthrough
|
|
case 9 : *(--ptre) = val8; // Fallthrough
|
|
case 8 : *(--ptre) = val7; // Fallthrough
|
|
case 7 : *(--ptre) = val6; // Fallthrough
|
|
case 6 : *(--ptre) = val5; // Fallthrough
|
|
case 5 : *(--ptre) = val4; // Fallthrough
|
|
case 4 : *(--ptre) = val3; // Fallthrough
|
|
case 3 : *(--ptre) = val2; // Fallthrough
|
|
case 2 : *(--ptre) = val1; // Fallthrough
|
|
case 1 : *(--ptre) = val0; // Fallthrough
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values \newinstance.
|
|
CImg<T> get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5,
|
|
const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11,
|
|
const T& val12, const T& val13, const T& val14) const {
|
|
return CImg<T>(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6,val7,val8,val9,val10,
|
|
val11,val12,val13,val14);
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values \overloading.
|
|
CImg<T>& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5,
|
|
const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11,
|
|
const T& val12, const T& val13, const T& val14, const T& val15) {
|
|
if (is_empty()) return *this;
|
|
T *ptrd, *ptre = end() - 15;
|
|
for (ptrd = _data; ptrd<ptre; ) {
|
|
*(ptrd++) = val0; *(ptrd++) = val1; *(ptrd++) = val2; *(ptrd++) = val3; *(ptrd++) = val4; *(ptrd++) = val5;
|
|
*(ptrd++) = val6; *(ptrd++) = val7; *(ptrd++) = val8; *(ptrd++) = val9; *(ptrd++) = val10; *(ptrd++) = val11;
|
|
*(ptrd++) = val12; *(ptrd++) = val13; *(ptrd++) = val14; *(ptrd++) = val15;
|
|
}
|
|
ptre+=15;
|
|
switch (ptre - ptrd) {
|
|
case 15 : *(--ptre) = val14; // Fallthrough
|
|
case 14 : *(--ptre) = val13; // Fallthrough
|
|
case 13 : *(--ptre) = val12; // Fallthrough
|
|
case 12 : *(--ptre) = val11; // Fallthrough
|
|
case 11 : *(--ptre) = val10; // Fallthrough
|
|
case 10 : *(--ptre) = val9; // Fallthrough
|
|
case 9 : *(--ptre) = val8; // Fallthrough
|
|
case 8 : *(--ptre) = val7; // Fallthrough
|
|
case 7 : *(--ptre) = val6; // Fallthrough
|
|
case 6 : *(--ptre) = val5; // Fallthrough
|
|
case 5 : *(--ptre) = val4; // Fallthrough
|
|
case 4 : *(--ptre) = val3; // Fallthrough
|
|
case 3 : *(--ptre) = val2; // Fallthrough
|
|
case 2 : *(--ptre) = val1; // Fallthrough
|
|
case 1 : *(--ptre) = val0; // Fallthrough
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Fill sequentially all pixel values with specified values \newinstance.
|
|
CImg<T> get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5,
|
|
const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11,
|
|
const T& val12, const T& val13, const T& val14, const T& val15) const {
|
|
return CImg<T>(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6,val7,val8,val9,val10,
|
|
val11,val12,val13,val14,val15);
|
|
}
|
|
|
|
//! Fill sequentially pixel values according to a given expression.
|
|
/**
|
|
\param expression C-string describing a math formula, or a sequence of values.
|
|
\param repeat_values In case a list of values is provided, tells if this list must be repeated for the filling.
|
|
\param allow_formula Tells that mathematical formulas are authorized for the filling.
|
|
\param list_images In case of a mathematical expression, attach a list of images to the specified expression.
|
|
**/
|
|
CImg<T>& fill(const char *const expression, const bool repeat_values, const bool allow_formula=true,
|
|
CImgList<T> *const list_images=0) {
|
|
return _fill(expression,repeat_values,allow_formula?1:0,list_images,"fill",0);
|
|
}
|
|
|
|
// 'formula_mode' = { 0 = does not allow formula | 1 = allow formula |
|
|
// 2 = allow formula and do not fill image values }.
|
|
CImg<T>& _fill(const char *const expression, const bool repeat_values, const unsigned int formula_mode,
|
|
CImgList<T> *const list_images, const char *const calling_function, const CImg<T> *provides_copy) {
|
|
if (is_empty() || !expression || !*expression) return *this;
|
|
const unsigned int omode = cimg::exception_mode();
|
|
cimg::exception_mode(0);
|
|
CImg<charT> is_error_expr;
|
|
bool is_error_seq = false, is_value_sequence = false;
|
|
cimg_abort_init;
|
|
|
|
if (formula_mode) {
|
|
|
|
// Try to pre-detect regular value sequence to avoid exception thrown by _cimg_math_parser.
|
|
double value;
|
|
char sep;
|
|
const int err = cimg_sscanf(expression,"%lf %c",&value,&sep);
|
|
if (err==1 || (err==2 && sep==',')) {
|
|
if (err==1) { if (formula_mode==2) return *this; return fill((T)value); }
|
|
else is_value_sequence = true;
|
|
}
|
|
|
|
// Try to fill values according to a formula.
|
|
_cimg_abort_init_openmp;
|
|
if (!is_value_sequence) try {
|
|
CImg<T> base = provides_copy?provides_copy->get_shared():get_shared();
|
|
_cimg_math_parser mp(expression + (*expression=='>' || *expression=='<' ||
|
|
*expression=='*' || *expression==':'),
|
|
calling_function,base,this,list_images,true);
|
|
if (!provides_copy && expression && *expression!='>' && *expression!='<' && *expression!=':' &&
|
|
mp.need_input_copy)
|
|
base.assign().assign(*this,false); // Needs input copy
|
|
|
|
// Determine 2nd largest image dimension (used as axis for inner loop in parallelized evaluation).
|
|
unsigned int M;
|
|
if (mp.result_dim) {
|
|
M = cimg::max(_width,_height,_depth);
|
|
M = M==_width?std::max(_height,_depth):M==_height?std::max(_width,_depth):std::max(_width,_height);
|
|
} else {
|
|
M = cimg::max(_width,_height,_depth,_spectrum);
|
|
M = M==_width?cimg::max(_height,_depth,_spectrum):
|
|
M==_height?cimg::max(_width,_depth,_spectrum):
|
|
M==_depth?cimg::max(_width,_height,_spectrum):cimg::max(_width,_height,_depth);
|
|
}
|
|
|
|
bool do_in_parallel = false;
|
|
#if cimg_use_openmp!=0
|
|
if (mp.is_noncritical_run && (*expression=='*' || *expression==':'))
|
|
throw CImgArgumentException(_cimg_instance
|
|
"%s(): Cannot evaluate expression '%s' in parallel, "
|
|
"as 'run()' is used outside a 'critical()' section.",
|
|
cimg_instance,calling_function,expression);
|
|
cimg_openmp_if(!mp.is_noncritical_run &&
|
|
(*expression=='*' || *expression==':' ||
|
|
(mp.is_parallelizable && M>=(cimg_openmp_sizefactor)*320 && size()/M>=2)))
|
|
do_in_parallel = true;
|
|
#endif
|
|
if (mp.result_dim) { // Vector-valued expression
|
|
const unsigned int N = std::min(mp.result_dim,_spectrum);
|
|
const ulongT whd = (ulongT)_width*_height*_depth;
|
|
T *ptrd = *expression=='<'?_data + _width*_height*_depth - 1:_data;
|
|
|
|
if (*expression=='<') {
|
|
CImg<doubleT> res(1,mp.result_dim);
|
|
mp.begin_t();
|
|
cimg_rofYZ(*this,y,z) {
|
|
cimg_abort_test;
|
|
if (formula_mode==2) cimg_rofX(*this,x) mp(x,y,z,0);
|
|
else cimg_rofX(*this,x) {
|
|
mp(x,y,z,0,res._data);
|
|
const double *ptrs = res._data;
|
|
T *_ptrd = ptrd--; for (unsigned int n = N; n>0; --n) { *_ptrd = (T)(*ptrs++); _ptrd+=whd; }
|
|
}
|
|
}
|
|
mp.end_t();
|
|
|
|
} else if (*expression=='>' || !do_in_parallel) {
|
|
CImg<doubleT> res(1,mp.result_dim);
|
|
mp.begin_t();
|
|
cimg_forYZ(*this,y,z) {
|
|
cimg_abort_test;
|
|
if (formula_mode==2) cimg_forX(*this,x) mp(x,y,z,0);
|
|
else cimg_forX(*this,x) {
|
|
mp(x,y,z,0,res._data);
|
|
const double *ptrs = res._data;
|
|
T *_ptrd = ptrd++; for (unsigned int n = N; n>0; --n) { *_ptrd = (T)(*ptrs++); _ptrd+=whd; }
|
|
}
|
|
}
|
|
mp.end_t();
|
|
|
|
} else {
|
|
|
|
#if cimg_use_openmp!=0
|
|
cimg_pragma_openmp(parallel)
|
|
{
|
|
_cimg_math_parser
|
|
*const _mp = omp_get_thread_num()?new _cimg_math_parser(mp):&mp,
|
|
&lmp = *_mp;
|
|
lmp.is_fill = true;
|
|
cimg_pragma_openmp(barrier)
|
|
lmp.begin_t();
|
|
|
|
#define _cimg_fill_openmp_vector(_YZ,_y,_z,_X,_x,_sx,_sy,_sz,_off) \
|
|
cimg_pragma_openmp(for cimg_openmp_collapse(2)) \
|
|
cimg_for##_YZ(*this,_y,_z) _cimg_abort_try_openmp { \
|
|
cimg_abort_test; \
|
|
if (formula_mode==2) cimg_for##_X(*this,_x) lmp(x,y,z,0); \
|
|
else { \
|
|
CImg<doubleT> res(1,lmp.result_dim); \
|
|
T *__ptrd = data(_sx,_sy,_sz,0); \
|
|
const ulongT off = (ulongT)_off; \
|
|
cimg_for##_X(*this,_x) { \
|
|
lmp(x,y,z,0,res._data); \
|
|
const double *ptrs = res._data; \
|
|
T *_ptrd = __ptrd; \
|
|
for (unsigned int n = N; n>0; --n) { *_ptrd = (T)(*ptrs++); _ptrd+=whd; } \
|
|
__ptrd+=off; \
|
|
} \
|
|
} \
|
|
} _cimg_abort_catch_openmp _cimg_abort_catch_fill_openmp
|
|
|
|
if (M==_width) { _cimg_fill_openmp_vector(YZ,y,z,X,x,0,y,z,1) }
|
|
else if (M==_height) { _cimg_fill_openmp_vector(XZ,x,z,Y,y,x,0,z,_width) }
|
|
else { _cimg_fill_openmp_vector(XY,x,y,Z,z,x,y,0,_width*_height) }
|
|
|
|
lmp.end_t();
|
|
cimg_pragma_openmp(barrier) cimg_pragma_openmp(critical) { lmp.merge(mp); }
|
|
if (&lmp!=&mp) delete &lmp;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
} else { // Scalar-valued expression
|
|
T *ptrd = *expression=='<'?end() - 1:_data;
|
|
if (*expression=='<') {
|
|
mp.begin_t();
|
|
if (formula_mode==2) cimg_rofYZC(*this,y,z,c) { cimg_abort_test; cimg_rofX(*this,x) mp(x,y,z,c); }
|
|
else cimg_rofYZC(*this,y,z,c) { cimg_abort_test; cimg_rofX(*this,x) *(ptrd--) = (T)mp(x,y,z,c); }
|
|
mp.end_t();
|
|
|
|
} else if (*expression=='>' || !do_in_parallel) {
|
|
mp.begin_t();
|
|
if (formula_mode==2) cimg_forYZC(*this,y,z,c) { cimg_abort_test; cimg_forX(*this,x) mp(x,y,z,c); }
|
|
else cimg_forYZC(*this,y,z,c) { cimg_abort_test; cimg_forX(*this,x) *(ptrd++) = (T)mp(x,y,z,c); }
|
|
mp.end_t();
|
|
|
|
} else {
|
|
|
|
#if cimg_use_openmp!=0
|
|
cimg_pragma_openmp(parallel)
|
|
{
|
|
_cimg_math_parser
|
|
*const _mp = omp_get_thread_num()?new _cimg_math_parser(mp):&mp,
|
|
&lmp = *_mp;
|
|
lmp.is_fill = true;
|
|
cimg_pragma_openmp(barrier)
|
|
lmp.begin_t();
|
|
|
|
#define _cimg_fill_openmp_scalar(_YZC,_y,_z,_c,_X,_x,_sx,_sy,_sz,_sc,_off) \
|
|
cimg_pragma_openmp(for cimg_openmp_collapse(3)) \
|
|
cimg_for##_YZC(*this,_y,_z,_c) _cimg_abort_try_openmp { \
|
|
cimg_abort_test; \
|
|
if (formula_mode==2) cimg_for##_X(*this,_x) lmp(x,y,z,c); \
|
|
else { \
|
|
T *_ptrd = data(_sx,_sy,_sz,_sc); \
|
|
const ulongT off = (ulongT)_off; \
|
|
cimg_for##_X(*this,_x) { *_ptrd = (T)lmp(x,y,z,c); _ptrd+=off; } \
|
|
} \
|
|
} _cimg_abort_catch_openmp _cimg_abort_catch_fill_openmp
|
|
|
|
if (M==_width) { _cimg_fill_openmp_scalar(YZC,y,z,c,X,x,0,y,z,c,1) }
|
|
else if (M==_height) { _cimg_fill_openmp_scalar(XZC,x,z,c,Y,y,x,0,z,c,_width) }
|
|
else if (M==_depth) { _cimg_fill_openmp_scalar(XYC,x,y,c,Z,z,x,y,0,c,_width*_height) }
|
|
else { _cimg_fill_openmp_scalar(XYZ,x,y,z,C,c,x,y,z,0,_width*_height*_depth) }
|
|
|
|
lmp.end_t();
|
|
cimg_pragma_openmp(barrier) cimg_pragma_openmp(critical) { lmp.merge(mp); }
|
|
if (&lmp!=&mp) delete &lmp;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
mp.end();
|
|
} catch (CImgException& e) { CImg<charT>::string(e._message).move_to(is_error_expr); }
|
|
}
|
|
|
|
// Try to fill values according to a value sequence.
|
|
if (!formula_mode || is_value_sequence || is_error_expr) {
|
|
is_error_seq = _fill_from_values(expression,repeat_values);
|
|
cimg::exception_mode(omode);
|
|
if (is_error_seq) {
|
|
if (is_error_expr) throw CImgArgumentException("%s",is_error_expr._data);
|
|
else throw CImgArgumentException(_cimg_instance
|
|
"%s(): Invalid sequence of filling values '%s'.",
|
|
cimg_instance,calling_function,expression);
|
|
}
|
|
}
|
|
cimg::exception_mode(omode);
|
|
cimg_abort_test;
|
|
return *this;
|
|
}
|
|
|
|
//! Fill sequentially pixel values according to a given expression \newinstance.
|
|
CImg<T> get_fill(const char *const expression, const bool repeat_values, const bool allow_formula=true,
|
|
CImgList<T> *const list_images=0) const {
|
|
return (+*this).fill(expression,repeat_values,allow_formula?1:0,list_images);
|
|
}
|
|
|
|
//! Fill sequentially pixel values according to a value sequence, given as a string.
|
|
/**
|
|
\param values C-string describing a sequence of values.
|
|
\param repeat_values Tells if this sequence must be repeated when filling.
|
|
**/
|
|
CImg<T>& fill_from_values(const char *const values, const bool repeat_values) {
|
|
if (_fill_from_values(values,repeat_values))
|
|
throw CImgArgumentException(_cimg_instance
|
|
"Invalid sequence of filling values '%s'.",
|
|
cimg_instance,values);
|
|
return *this;
|
|
}
|
|
|
|
//! Fill sequentially pixel values according to a value sequence, given as a string \newinstance.
|
|
CImg<T> get_fill_from_values(const char *const values, const bool repeat_values) const {
|
|
return (+*this).fill_from_values(values,repeat_values);
|
|
}
|
|
|
|
// Fill image according to a value sequence, given as a string.
|
|
// Return 'true' if an error occured.
|
|
bool _fill_from_values(const char *const values, const bool repeat_values) {
|
|
CImg<charT> item(256);
|
|
const char *nvalues = values;
|
|
const ulongT siz = size();
|
|
T *ptrd = _data;
|
|
ulongT nb = 0;
|
|
char sep = 0;
|
|
for (double val = 0; *nvalues && nb<siz; ++nb) {
|
|
sep = 0;
|
|
const int err = cimg_sscanf(nvalues,"%255[ \n\t0-9.eEinfa+-]%c",item._data,&sep);
|
|
if (err>0 && cimg_sscanf(item,"%lf",&val)==1 && (sep==',' || sep==';' || err==1)) {
|
|
nvalues+=std::strlen(item) + (err>1);
|
|
*(ptrd++) = (T)val;
|
|
} else break;
|
|
}
|
|
if (nb<siz && (sep || *nvalues)) return true;
|
|
if (repeat_values && nb && nb<siz)
|
|
for (T *ptrs = _data, *const ptre = _data + siz; ptrd<ptre; ++ptrs) *(ptrd++) = *ptrs;
|
|
return false;
|
|
}
|
|
|
|
//! Fill sequentially pixel values according to the values found in another image.
|
|
/**
|
|
\param values Image containing the values used for the filling.
|
|
\param repeat_values In case there are less values than necessary in \c values, tells if these values must be
|
|
repeated for the filling.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& fill(const CImg<t>& values, const bool repeat_values=true) {
|
|
if (is_empty() || !values) return *this;
|
|
T *ptrd = _data, *ptre = ptrd + size();
|
|
for (t *ptrs = values._data, *ptrs_end = ptrs + values.size(); ptrs<ptrs_end && ptrd<ptre; ++ptrs)
|
|
*(ptrd++) = (T)*ptrs;
|
|
if (repeat_values && ptrd<ptre) for (T *ptrs = _data; ptrd<ptre; ++ptrs) *(ptrd++) = *ptrs;
|
|
return *this;
|
|
}
|
|
|
|
//! Fill sequentially pixel values according to the values found in another image \newinstance.
|
|
template<typename t>
|
|
CImg<T> get_fill(const CImg<t>& values, const bool repeat_values=true) const {
|
|
return repeat_values?CImg<T>(_width,_height,_depth,_spectrum).fill(values,repeat_values):
|
|
(+*this).fill(values,repeat_values);
|
|
}
|
|
|
|
//! Fill pixel values along the X-axis at a specified pixel position.
|
|
/**
|
|
\param y Y-coordinate of the filled column.
|
|
\param z Z-coordinate of the filled column.
|
|
\param c C-coordinate of the filled column.
|
|
\param a0 First fill value.
|
|
**/
|
|
CImg<T>& fillX(const unsigned int y, const unsigned int z, const unsigned int c, const int a0, ...) {
|
|
#define _cimg_fill1(x,y,z,c,off,siz,t) { \
|
|
va_list ap; va_start(ap,a0); T *ptrd = data(x,y,z,c); *ptrd = (T)a0; \
|
|
for (unsigned int k = 1; k<siz; ++k) { ptrd+=off; *ptrd = (T)va_arg(ap,t); } \
|
|
va_end(ap); }
|
|
if (y<_height && z<_depth && c<_spectrum) _cimg_fill1(0,y,z,c,1,_width,int);
|
|
return *this;
|
|
}
|
|
|
|
//! Fill pixel values along the X-axis at a specified pixel position \overloading.
|
|
CImg<T>& fillX(const unsigned int y, const unsigned int z, const unsigned int c, const double a0, ...) {
|
|
if (y<_height && z<_depth && c<_spectrum) _cimg_fill1(0,y,z,c,1,_width,double);
|
|
return *this;
|
|
}
|
|
|
|
//! Fill pixel values along the Y-axis at a specified pixel position.
|
|
/**
|
|
\param x X-coordinate of the filled row.
|
|
\param z Z-coordinate of the filled row.
|
|
\param c C-coordinate of the filled row.
|
|
\param a0 First fill value.
|
|
**/
|
|
CImg<T>& fillY(const unsigned int x, const unsigned int z, const unsigned int c, const int a0, ...) {
|
|
if (x<_width && z<_depth && c<_spectrum) _cimg_fill1(x,0,z,c,_width,_height,int);
|
|
return *this;
|
|
}
|
|
|
|
//! Fill pixel values along the Y-axis at a specified pixel position \overloading.
|
|
CImg<T>& fillY(const unsigned int x, const unsigned int z, const unsigned int c, const double a0, ...) {
|
|
if (x<_width && z<_depth && c<_spectrum) _cimg_fill1(x,0,z,c,_width,_height,double);
|
|
return *this;
|
|
}
|
|
|
|
//! Fill pixel values along the Z-axis at a specified pixel position.
|
|
/**
|
|
\param x X-coordinate of the filled slice.
|
|
\param y Y-coordinate of the filled slice.
|
|
\param c C-coordinate of the filled slice.
|
|
\param a0 First fill value.
|
|
**/
|
|
CImg<T>& fillZ(const unsigned int x, const unsigned int y, const unsigned int c, const int a0, ...) {
|
|
const ulongT wh = (ulongT)_width*_height;
|
|
if (x<_width && y<_height && c<_spectrum) _cimg_fill1(x,y,0,c,wh,_depth,int);
|
|
return *this;
|
|
}
|
|
|
|
//! Fill pixel values along the Z-axis at a specified pixel position \overloading.
|
|
CImg<T>& fillZ(const unsigned int x, const unsigned int y, const unsigned int c, const double a0, ...) {
|
|
const ulongT wh = (ulongT)_width*_height;
|
|
if (x<_width && y<_height && c<_spectrum) _cimg_fill1(x,y,0,c,wh,_depth,double);
|
|
return *this;
|
|
}
|
|
|
|
//! Fill pixel values along the C-axis at a specified pixel position.
|
|
/**
|
|
\param x X-coordinate of the filled channel.
|
|
\param y Y-coordinate of the filled channel.
|
|
\param z Z-coordinate of the filled channel.
|
|
\param a0 First filling value.
|
|
**/
|
|
CImg<T>& fillC(const unsigned int x, const unsigned int y, const unsigned int z, const int a0, ...) {
|
|
const ulongT whd = (ulongT)_width*_height*_depth;
|
|
if (x<_width && y<_height && z<_depth) _cimg_fill1(x,y,z,0,whd,_spectrum,int);
|
|
return *this;
|
|
}
|
|
|
|
//! Fill pixel values along the C-axis at a specified pixel position \overloading.
|
|
CImg<T>& fillC(const unsigned int x, const unsigned int y, const unsigned int z, const double a0, ...) {
|
|
const ulongT whd = (ulongT)_width*_height*_depth;
|
|
if (x<_width && y<_height && z<_depth) _cimg_fill1(x,y,z,0,whd,_spectrum,double);
|
|
return *this;
|
|
}
|
|
|
|
//! Discard specified sequence of values in the image buffer, along a specific axis.
|
|
/**
|
|
\param values Sequence of values to discard.
|
|
\param axis Axis along which the values are discarded. If set to \c 0 (default value)
|
|
the method does it for all the buffer values and returns a one-column vector.
|
|
\note Discarded values will change the image geometry, so the resulting image
|
|
is returned as a one-column vector.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& discard(const CImg<t>& values, const char axis=0) {
|
|
if (is_empty() || !values) return *this;
|
|
return get_discard(values,axis).move_to(*this);
|
|
}
|
|
|
|
template<typename t>
|
|
CImg<T> get_discard(const CImg<t>& values, const char axis=0) const {
|
|
if (!values) return +*this;
|
|
CImg<T> res;
|
|
if (is_empty()) return res;
|
|
const ulongT vsiz = values.size();
|
|
const char _axis = cimg::lowercase(axis);
|
|
ulongT j = 0;
|
|
unsigned int k = 0;
|
|
int i0 = 0;
|
|
res.assign(width(),height(),depth(),spectrum());
|
|
switch (_axis) {
|
|
case 'x' : {
|
|
cimg_forX(*this,i) {
|
|
if ((*this)(i)!=(T)values[j]) {
|
|
if (j) --i;
|
|
res.draw_image(k,get_columns(i0,i));
|
|
k+=i - i0 + 1; i0 = i + 1; j = 0;
|
|
} else { ++j; if (j>=vsiz) { j = 0; i0 = i + 1; } }
|
|
}
|
|
if (i0<width()) { res.draw_image(k,get_columns(i0,width() - 1)); k+=width() - i0; }
|
|
res.resize(k,-100,-100,-100,0);
|
|
} break;
|
|
case 'y' : {
|
|
cimg_forY(*this,i) {
|
|
if ((*this)(0,i)!=(T)values[j]) {
|
|
if (j) --i;
|
|
res.draw_image(0,k,get_rows(i0,i));
|
|
k+=i - i0 + 1; i0 = i + 1; j = 0;
|
|
} else { ++j; if (j>=vsiz) { j = 0; i0 = i + 1; } }
|
|
}
|
|
if (i0<height()) { res.draw_image(0,k,get_rows(i0,height() - 1)); k+=height() - i0; }
|
|
res.resize(-100,k,-100,-100,0);
|
|
} break;
|
|
case 'z' : {
|
|
cimg_forZ(*this,i) {
|
|
if ((*this)(0,0,i)!=(T)values[j]) {
|
|
if (j) --i;
|
|
res.draw_image(0,0,k,get_slices(i0,i));
|
|
k+=i - i0 + 1; i0 = i + 1; j = 0;
|
|
} else { ++j; if (j>=vsiz) { j = 0; i0 = i + 1; } }
|
|
}
|
|
if (i0<depth()) { res.draw_image(0,0,k,get_slices(i0,height() - 1)); k+=depth() - i0; }
|
|
res.resize(-100,-100,k,-100,0);
|
|
} break;
|
|
case 'c' : {
|
|
cimg_forC(*this,i) {
|
|
if ((*this)(0,0,0,i)!=(T)values[j]) {
|
|
if (j) --i;
|
|
res.draw_image(0,0,0,k,get_channels(i0,i));
|
|
k+=i - i0 + 1; i0 = i + 1; j = 0;
|
|
} else { ++j; if (j>=vsiz) { j = 0; i0 = i + 1; } }
|
|
}
|
|
if (i0<spectrum()) { res.draw_image(0,0,k,get_channels(i0,height() - 1)); k+=spectrum() - i0; }
|
|
res.resize(-100,-100,-100,k,0);
|
|
} break;
|
|
default : {
|
|
const ulongT siz = size();
|
|
res.unroll('y');
|
|
if (vsiz==1) { // Optimized version for a single discard value
|
|
const T val = (T)values[0];
|
|
cimg_foroff(*this,i) {
|
|
const T _val = (T)_data[i];
|
|
if (_val!=val) res[k++] = _val;
|
|
}
|
|
} else { // Generic version
|
|
cimg_foroff(*this,i) {
|
|
if ((*this)[i]!=(T)values[j]) {
|
|
if (j) --i;
|
|
std::memcpy(res._data + k,_data + i0,(i - i0 + 1)*sizeof(T));
|
|
k+=i - i0 + 1; i0 = (int)i + 1; j = 0;
|
|
} else { ++j; if (j>=vsiz) { j = 0; i0 = (int)i + 1; }}
|
|
}
|
|
if ((ulongT)i0<siz) { std::memcpy(res._data + k,_data + i0,(siz - i0)*sizeof(T)); k+=siz - i0; }
|
|
}
|
|
res.resize(1,k,1,1,0);
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Discard neighboring duplicates in the image buffer, along the specified axis.
|
|
CImg<T>& discard(const char axis=0) {
|
|
return get_discard(axis).move_to(*this);
|
|
}
|
|
|
|
//! Discard neighboring duplicates in the image buffer, along the specified axis \newinstance.
|
|
CImg<T> get_discard(const char axis=0) const {
|
|
CImg<T> res;
|
|
if (is_empty()) return res;
|
|
const char _axis = cimg::lowercase(axis);
|
|
T current = *_data?(T)0:(T)1;
|
|
int j = 0;
|
|
res.assign(width(),height(),depth(),spectrum());
|
|
switch (_axis) {
|
|
case 'x' : {
|
|
cimg_forX(*this,i)
|
|
if ((*this)(i)!=current) { res.draw_image(j++,get_column(i)); current = (*this)(i); }
|
|
res.resize(j,-100,-100,-100,0);
|
|
} break;
|
|
case 'y' : {
|
|
cimg_forY(*this,i)
|
|
if ((*this)(0,i)!=current) { res.draw_image(0,j++,get_row(i)); current = (*this)(0,i); }
|
|
res.resize(-100,j,-100,-100,0);
|
|
} break;
|
|
case 'z' : {
|
|
cimg_forZ(*this,i)
|
|
if ((*this)(0,0,i)!=current) { res.draw_image(0,0,j++,get_slice(i)); current = (*this)(0,0,i); }
|
|
res.resize(-100,-100,j,-100,0);
|
|
} break;
|
|
case 'c' : {
|
|
cimg_forC(*this,i)
|
|
if ((*this)(0,0,0,i)!=current) { res.draw_image(0,0,0,j++,get_channel(i)); current = (*this)(0,0,0,i); }
|
|
res.resize(-100,-100,-100,j,0);
|
|
} break;
|
|
default : {
|
|
res.unroll('y');
|
|
cimg_foroff(*this,i) {
|
|
const T val = (*this)[i];
|
|
if (val!=current) res[j++] = current = val;
|
|
}
|
|
res.resize(-100,j,-100,-100,0);
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Invert endianness of all pixel values.
|
|
/**
|
|
**/
|
|
CImg<T>& invert_endianness() {
|
|
cimg::invert_endianness(_data,size());
|
|
return *this;
|
|
}
|
|
|
|
//! Invert endianness of all pixel values \newinstance.
|
|
CImg<T> get_invert_endianness() const {
|
|
return (+*this).invert_endianness();
|
|
}
|
|
|
|
//! Fill image with random values in specified range.
|
|
/**
|
|
\param val_min Minimal authorized random value.
|
|
\param val_max Maximal authorized random value.
|
|
\note Random variables are uniformly distributed in [val_min,val_max].
|
|
**/
|
|
CImg<T>& rand(const T& val_min, const T& val_max) {
|
|
const float delta = (float)val_max - (float)val_min + (cimg::type<T>::is_float()?0:1);
|
|
if (cimg::type<T>::is_float()) cimg_pragma_openmp(parallel cimg_openmp_if_size(size(),524288)) {
|
|
cimg_uint64 rng = (cimg::_rand(),cimg::rng());
|
|
|
|
#if cimg_use_openmp!=0
|
|
rng+=omp_get_thread_num();
|
|
#endif
|
|
cimg_pragma_openmp(for)
|
|
cimg_rofoff(*this,off) _data[off] = (T)(val_min + delta*cimg::rand(1,&rng));
|
|
cimg::srand(rng);
|
|
} else cimg_pragma_openmp(parallel cimg_openmp_if_size(size(),524288)) {
|
|
cimg_uint64 rng = (cimg::_rand(),cimg::rng());
|
|
|
|
#if cimg_use_openmp!=0
|
|
rng+=omp_get_thread_num();
|
|
#endif
|
|
cimg_pragma_openmp(for)
|
|
cimg_rofoff(*this,off) _data[off] = std::min(val_max,(T)(val_min + delta*cimg::rand(1,&rng)));
|
|
cimg::srand(rng);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Fill image with random values in specified range \newinstance.
|
|
CImg<T> get_rand(const T& val_min, const T& val_max) const {
|
|
return (+*this).rand(val_min,val_max);
|
|
}
|
|
|
|
//! Round pixel values.
|
|
/**
|
|
\param y Rounding precision.
|
|
\param rounding_type Rounding type. Can be:
|
|
- \c -1: Backward.
|
|
- \c 0: Nearest.
|
|
- \c 1: Forward.
|
|
**/
|
|
CImg<T>& round(const double y=1, const int rounding_type=0) {
|
|
if (y>0) cimg_openmp_for(*this,cimg::round(*ptr,y,rounding_type),8192);
|
|
return *this;
|
|
}
|
|
|
|
//! Round pixel values \newinstance.
|
|
CImg<T> get_round(const double y=1, const unsigned int rounding_type=0) const {
|
|
return (+*this).round(y,rounding_type);
|
|
}
|
|
|
|
//! Add random noise to pixel values.
|
|
/**
|
|
\param sigma Amplitude of the random additive noise. If \p sigma<0, it stands for a percentage of the
|
|
global value range.
|
|
\param noise_type Type of additive noise (can be \p 0=gaussian, \p 1=uniform, \p 2=Salt and Pepper,
|
|
\p 3=Poisson or \p 4=Rician).
|
|
\return A reference to the modified image instance.
|
|
\note
|
|
- For Poisson noise (\p noise_type=3), parameter \p sigma is ignored, as Poisson noise only depends on
|
|
the image value itself.
|
|
- Function \p CImg<T>::get_noise() is also defined. It returns a non-shared modified copy of the image instance.
|
|
\par Example
|
|
\code
|
|
const CImg<float> img("reference.jpg"), res = img.get_noise(40);
|
|
(img,res.normalize(0,255)).display();
|
|
\endcode
|
|
\image html ref_noise.jpg
|
|
**/
|
|
CImg<T>& noise(const double sigma, const unsigned int noise_type=0) {
|
|
if (is_empty()) return *this;
|
|
const Tfloat vmin = (Tfloat)cimg::type<T>::min(), vmax = (Tfloat)cimg::type<T>::max();
|
|
Tfloat nsigma = (Tfloat)sigma, m = 0, M = 0;
|
|
if (nsigma==0 && noise_type!=3) return *this;
|
|
if (nsigma<0 || noise_type==2) m = (Tfloat)min_max(M);
|
|
if (nsigma<0) nsigma = (Tfloat)(-nsigma*(M-m)/100.);
|
|
switch (noise_type) {
|
|
case 0 : { // Gaussian noise
|
|
cimg_pragma_openmp(parallel cimg_openmp_if_size(size(),131072)) {
|
|
cimg_uint64 rng = (cimg::_rand(),cimg::rng());
|
|
|
|
#if cimg_use_openmp!=0
|
|
rng+=omp_get_thread_num();
|
|
#endif
|
|
cimg_pragma_openmp(for)
|
|
cimg_rofoff(*this,off) {
|
|
Tfloat val = (Tfloat)(_data[off] + nsigma*cimg::grand(&rng));
|
|
if (val>vmax) val = vmax;
|
|
if (val<vmin) val = vmin;
|
|
_data[off] = (T)val;
|
|
}
|
|
cimg::srand(rng);
|
|
}
|
|
} break;
|
|
case 1 : { // Uniform noise
|
|
cimg_pragma_openmp(parallel cimg_openmp_if_size(size(),131072)) {
|
|
cimg_uint64 rng = (cimg::_rand(),cimg::rng());
|
|
|
|
#if cimg_use_openmp!=0
|
|
rng+=omp_get_thread_num();
|
|
#endif
|
|
cimg_pragma_openmp(for)
|
|
cimg_rofoff(*this,off) {
|
|
Tfloat val = (Tfloat)(_data[off] + nsigma*cimg::rand(-1,1,&rng));
|
|
if (val>vmax) val = vmax;
|
|
if (val<vmin) val = vmin;
|
|
_data[off] = (T)val;
|
|
}
|
|
cimg::srand(rng);
|
|
}
|
|
} break;
|
|
case 2 : { // Salt & Pepper noise
|
|
if (nsigma<0) nsigma = -nsigma;
|
|
if (M==m) {
|
|
if (cimg::type<T>::is_float()) { --m; ++M; }
|
|
else { m = (Tfloat)cimg::type<T>::min(); M = (Tfloat)cimg::type<T>::max(); }
|
|
}
|
|
cimg_pragma_openmp(parallel cimg_openmp_if_size(size(),131072)) {
|
|
cimg_uint64 rng = (cimg::_rand(),cimg::rng());
|
|
|
|
#if cimg_use_openmp!=0
|
|
rng+=omp_get_thread_num();
|
|
#endif
|
|
cimg_pragma_openmp(for)
|
|
cimg_rofoff(*this,off) if (cimg::rand(100,&rng)<nsigma) _data[off] = (T)(cimg::rand(1,&rng)<0.5?M:m);
|
|
cimg::srand(rng);
|
|
}
|
|
} break;
|
|
case 3 : { // Poisson Noise
|
|
cimg_pragma_openmp(parallel cimg_openmp_if_size(size(),131072)) {
|
|
cimg_uint64 rng = (cimg::_rand(),cimg::rng());
|
|
|
|
#if cimg_use_openmp!=0
|
|
rng+=omp_get_thread_num();
|
|
#endif
|
|
cimg_pragma_openmp(for)
|
|
cimg_rofoff(*this,off) _data[off] = (T)cimg::prand(_data[off],&rng);
|
|
cimg::srand(rng);
|
|
}
|
|
} break;
|
|
case 4 : { // Rice noise
|
|
const Tfloat sqrt2 = (Tfloat)std::sqrt(2.);
|
|
cimg_pragma_openmp(parallel cimg_openmp_if_size(size(),131072)) {
|
|
cimg_uint64 rng = (cimg::_rand(),cimg::rng());
|
|
|
|
#if cimg_use_openmp!=0
|
|
rng+=omp_get_thread_num();
|
|
#endif
|
|
cimg_pragma_openmp(for)
|
|
cimg_rofoff(*this,off) {
|
|
const Tfloat
|
|
val0 = (Tfloat)_data[off]/sqrt2,
|
|
re = (Tfloat)(val0 + nsigma*cimg::grand(&rng)),
|
|
im = (Tfloat)(val0 + nsigma*cimg::grand(&rng));
|
|
Tfloat val = cimg::hypot(re,im);
|
|
if (val>vmax) val = vmax;
|
|
if (val<vmin) val = vmin;
|
|
_data[off] = (T)val;
|
|
}
|
|
cimg::srand(rng);
|
|
}
|
|
} break;
|
|
default :
|
|
throw CImgArgumentException(_cimg_instance
|
|
"noise(): Invalid specified noise type %d "
|
|
"(should be { 0=gaussian | 1=uniform | 2=salt&Pepper | 3=poisson }).",
|
|
cimg_instance,
|
|
noise_type);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Add random noise to pixel values \newinstance.
|
|
CImg<T> get_noise(const double sigma, const unsigned int noise_type=0) const {
|
|
return (+*this).noise(sigma,noise_type);
|
|
}
|
|
|
|
//! Linearly normalize pixel values.
|
|
/**
|
|
\param min_value Minimum desired value of the resulting image.
|
|
\param max_value Maximum desired value of the resulting image.
|
|
\param constant_case_ratio In case of instance image having a constant value, tell what ratio
|
|
of [min_value,max_value] is used to fill the normalized image
|
|
(=0 for min_value, =1 for max_value, =0.5 for (min_value + max_value)/2).
|
|
\par Example
|
|
\code
|
|
const CImg<float> img("reference.jpg"), res = img.get_normalize(160,220);
|
|
(img,res).display();
|
|
\endcode
|
|
\image html ref_normalize2.jpg
|
|
**/
|
|
CImg<T>& normalize(const T& min_value, const T& max_value,
|
|
const float constant_case_ratio=0) {
|
|
if (is_empty()) return *this;
|
|
const T a = min_value<max_value?min_value:max_value, b = min_value<max_value?max_value:min_value;
|
|
T m, M = max_min(m);
|
|
const Tfloat fm = (Tfloat)m, fM = (Tfloat)M;
|
|
if (m==M)
|
|
return fill(constant_case_ratio==0?a:
|
|
constant_case_ratio==1?b:
|
|
(T)((1 - constant_case_ratio)*a + constant_case_ratio*b));
|
|
if (m!=a || M!=b) cimg_rof(*this,ptrd,T) *ptrd = (T)((*ptrd - fm)/(fM - fm)*(b - a) + a);
|
|
return *this;
|
|
}
|
|
|
|
//! Linearly normalize pixel values \newinstance.
|
|
CImg<Tfloat> get_normalize(const T& min_value, const T& max_value,
|
|
const float ratio_if_constant_image=0) const {
|
|
return CImg<Tfloat>(*this,false).normalize((Tfloat)min_value,(Tfloat)max_value,ratio_if_constant_image);
|
|
}
|
|
|
|
//! Normalize multi-valued pixels of the image instance, with respect to their L2-norm.
|
|
/**
|
|
\par Example
|
|
\code
|
|
const CImg<float> img("reference.jpg"), res = img.get_normalize();
|
|
(img,res.normalize(0,255)).display();
|
|
\endcode
|
|
\image html ref_normalize.jpg
|
|
**/
|
|
CImg<T>& normalize() {
|
|
const ulongT whd = (ulongT)_width*_height*_depth;
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*512 &&
|
|
_height*_depth>=16))
|
|
cimg_forYZ(*this,y,z) {
|
|
T *ptrd = data(0,y,z,0);
|
|
cimg_forX(*this,x) {
|
|
const T *ptrs = ptrd;
|
|
float n = 0;
|
|
cimg_forC(*this,c) { n+=cimg::sqr((float)*ptrs); ptrs+=whd; }
|
|
n = (float)std::sqrt(n);
|
|
T *_ptrd = ptrd++;
|
|
if (n>0) cimg_forC(*this,c) { *_ptrd = (T)(*_ptrd/n); _ptrd+=whd; }
|
|
else cimg_forC(*this,c) { *_ptrd = (T)0; _ptrd+=whd; }
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Normalize multi-valued pixels of the image instance, with respect to their L2-norm \newinstance.
|
|
CImg<Tfloat> get_normalize() const {
|
|
return CImg<Tfloat>(*this,false).normalize();
|
|
}
|
|
|
|
//! Compute Lp-norm of each multi-valued pixel of the image instance.
|
|
/**
|
|
\param norm_type Type of computed vector norm (can be \p -1=Linf, or \p greater or equal than 0).
|
|
\par Example
|
|
\code
|
|
const CImg<float> img("reference.jpg"), res = img.get_norm();
|
|
(img,res.normalize(0,255)).display();
|
|
\endcode
|
|
\image html ref_norm.jpg
|
|
**/
|
|
CImg<T>& norm(const int norm_type=2) {
|
|
if (_spectrum==1 && norm_type) return abs();
|
|
return get_norm(norm_type).move_to(*this);
|
|
}
|
|
|
|
//! Compute L2-norm of each multi-valued pixel of the image instance \newinstance.
|
|
CImg<Tfloat> get_norm(const int norm_type=2) const {
|
|
if (is_empty()) return *this;
|
|
if (_spectrum==1 && norm_type) return get_abs();
|
|
const ulongT whd = (ulongT)_width*_height*_depth;
|
|
CImg<Tfloat> res(_width,_height,_depth);
|
|
switch (norm_type) {
|
|
case -1 : { // Linf-norm
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*512 &&
|
|
_height*_depth>=16))
|
|
cimg_forYZ(*this,y,z) {
|
|
const ulongT off = (ulongT)offset(0,y,z);
|
|
const T *ptrs = _data + off;
|
|
Tfloat *ptrd = res._data + off;
|
|
cimg_forX(*this,x) {
|
|
Tfloat n = 0;
|
|
const T *_ptrs = ptrs++;
|
|
cimg_forC(*this,c) { const Tfloat val = (Tfloat)cimg::abs(*_ptrs); if (val>n) n = val; _ptrs+=whd; }
|
|
*(ptrd++) = n;
|
|
}
|
|
}
|
|
} break;
|
|
case 0 : { // L0-norm
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*512 &&
|
|
_height*_depth>=16))
|
|
cimg_forYZ(*this,y,z) {
|
|
const ulongT off = (ulongT)offset(0,y,z);
|
|
const T *ptrs = _data + off;
|
|
Tfloat *ptrd = res._data + off;
|
|
cimg_forX(*this,x) {
|
|
unsigned int n = 0;
|
|
const T *_ptrs = ptrs++;
|
|
cimg_forC(*this,c) { n+=*_ptrs==0?0:1; _ptrs+=whd; }
|
|
*(ptrd++) = (Tfloat)n;
|
|
}
|
|
}
|
|
} break;
|
|
case 1 : { // L1-norm
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*512 &&
|
|
_height*_depth>=16))
|
|
cimg_forYZ(*this,y,z) {
|
|
const ulongT off = (ulongT)offset(0,y,z);
|
|
const T *ptrs = _data + off;
|
|
Tfloat *ptrd = res._data + off;
|
|
cimg_forX(*this,x) {
|
|
Tfloat n = 0;
|
|
const T *_ptrs = ptrs++;
|
|
cimg_forC(*this,c) { n+=cimg::abs(*_ptrs); _ptrs+=whd; }
|
|
*(ptrd++) = n;
|
|
}
|
|
}
|
|
} break;
|
|
case 2 : { // L2-norm
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*512 &&
|
|
_height*_depth>=16))
|
|
cimg_forYZ(*this,y,z) {
|
|
const ulongT off = (ulongT)offset(0,y,z);
|
|
const T *ptrs = _data + off;
|
|
Tfloat *ptrd = res._data + off;
|
|
cimg_forX(*this,x) {
|
|
Tfloat n = 0;
|
|
const T *_ptrs = ptrs++;
|
|
cimg_forC(*this,c) { n+=cimg::sqr((Tfloat)*_ptrs); _ptrs+=whd; }
|
|
*(ptrd++) = (Tfloat)std::sqrt((Tfloat)n);
|
|
}
|
|
}
|
|
} break;
|
|
default : { // Linf-norm
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*512 &&
|
|
_height*_depth>=16))
|
|
cimg_forYZ(*this,y,z) {
|
|
const ulongT off = (ulongT)offset(0,y,z);
|
|
const T *ptrs = _data + off;
|
|
Tfloat *ptrd = res._data + off;
|
|
cimg_forX(*this,x) {
|
|
Tfloat n = 0;
|
|
const T *_ptrs = ptrs++;
|
|
cimg_forC(*this,c) { n+=std::pow(cimg::abs((Tfloat)*_ptrs),(Tfloat)norm_type); _ptrs+=whd; }
|
|
*(ptrd++) = (Tfloat)std::pow((Tfloat)n,1/(Tfloat)norm_type);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Cut pixel values in specified range.
|
|
/**
|
|
\param min_value Minimum desired value of the resulting image.
|
|
\param max_value Maximum desired value of the resulting image.
|
|
\par Example
|
|
\code
|
|
const CImg<float> img("reference.jpg"), res = img.get_cut(160,220);
|
|
(img,res).display();
|
|
\endcode
|
|
\image html ref_cut.jpg
|
|
**/
|
|
CImg<T>& cut(const T& min_value, const T& max_value) {
|
|
if (is_empty()) return *this;
|
|
const T a = min_value<max_value?min_value:max_value, b = min_value<max_value?max_value:min_value;
|
|
cimg_openmp_for(*this,cimg::cut(*ptr,a,b),32768);
|
|
return *this;
|
|
}
|
|
|
|
//! Cut pixel values in specified range \newinstance.
|
|
CImg<T> get_cut(const T& min_value, const T& max_value) const {
|
|
return (+*this).cut(min_value,max_value);
|
|
}
|
|
|
|
//! Uniformly quantize pixel values.
|
|
/**
|
|
\param nb_levels Number of quantization levels.
|
|
\param keep_range Tells if resulting values keep the same range as the original ones.
|
|
\par Example
|
|
\code
|
|
const CImg<float> img("reference.jpg"), res = img.get_quantize(4);
|
|
(img,res).display();
|
|
\endcode
|
|
\image html ref_quantize.jpg
|
|
**/
|
|
CImg<T>& quantize(const unsigned int nb_levels, const bool keep_range=true) {
|
|
if (!nb_levels)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"quantize(): Invalid quantization request with 0 values.",
|
|
cimg_instance);
|
|
|
|
if (is_empty()) return *this;
|
|
Tfloat m, M = (Tfloat)max_min(m), range = M - m;
|
|
if (range>0) {
|
|
if (keep_range)
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),32768))
|
|
cimg_rofoff(*this,off) {
|
|
const unsigned int val = (unsigned int)((_data[off] - m)*nb_levels/range);
|
|
_data[off] = (T)(m + std::min(val,nb_levels - 1)*range/nb_levels);
|
|
} else
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),32768))
|
|
cimg_rofoff(*this,off) {
|
|
const unsigned int val = (unsigned int)((_data[off] - m)*nb_levels/range);
|
|
_data[off] = (T)std::min(val,nb_levels - 1);
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Uniformly quantize pixel values \newinstance.
|
|
CImg<T> get_quantize(const unsigned int n, const bool keep_range=true) const {
|
|
return (+*this).quantize(n,keep_range);
|
|
}
|
|
|
|
//! Return the Otsu threshold.
|
|
/**
|
|
\param nb_levels Number of histogram levels used for the estimation.
|
|
**/
|
|
T otsu(const unsigned int nb_levels=256) const {
|
|
T m,M = max_min(m);
|
|
CImg<ulongT> hist = get_histogram(nb_levels,m,M);
|
|
ulongT sum = 0, sumB = 0, wB = 0;
|
|
double best_variance = 0;
|
|
unsigned int best_t = 0;
|
|
cimg_forX(hist,t) sum+=t*hist[t];
|
|
cimg_forX(hist,t) {
|
|
wB+=hist[t];
|
|
if (wB) {
|
|
const ulongT wF = size() - wB;
|
|
if (!wF) break;
|
|
sumB+=t*hist[t];
|
|
const double
|
|
mB = (double)sumB/wB,
|
|
mF = (double)(sum - sumB)/wF,
|
|
variance = wB*wF*cimg::sqr(mB - mF);
|
|
if (variance>best_variance) { best_variance = variance; best_t = t; }
|
|
}
|
|
}
|
|
return m + best_t*(M - m)/(hist.width() - 1);
|
|
}
|
|
|
|
//! Threshold pixel values.
|
|
/**
|
|
\param value Threshold value
|
|
\param soft_threshold Tells if soft thresholding must be applied (instead of hard one).
|
|
\param strict_threshold Tells if threshold value is strict.
|
|
\par Example
|
|
\code
|
|
const CImg<float> img("reference.jpg"), res = img.get_threshold(128);
|
|
(img,res.normalize(0,255)).display();
|
|
\endcode
|
|
\image html ref_threshold.jpg
|
|
**/
|
|
CImg<T>& threshold(const T& value, const bool soft_threshold=false, const bool strict_threshold=false) {
|
|
if (is_empty()) return *this;
|
|
if (strict_threshold) {
|
|
if (soft_threshold)
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),32768))
|
|
cimg_rofoff(*this,off) {
|
|
const T v = _data[off];
|
|
_data[off] = v>value?(T)(v-value):v<-(float)value?(T)(v + value):(T)0;
|
|
}
|
|
else
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),65536))
|
|
cimg_rofoff(*this,off) _data[off] = _data[off]>value?(T)1:(T)0;
|
|
} else {
|
|
if (soft_threshold)
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),32768))
|
|
cimg_rofoff(*this,off) {
|
|
const T v = _data[off];
|
|
_data[off] = v>=value?(T)(v-value):v<=-(float)value?(T)(v + value):(T)0;
|
|
}
|
|
else
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),65536))
|
|
cimg_rofoff(*this,off) _data[off] = _data[off]>=value?(T)1:(T)0;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Threshold pixel values \newinstance.
|
|
CImg<T> get_threshold(const T& value, const bool soft_threshold=false, const bool strict_threshold=false) const {
|
|
return (+*this).threshold(value,soft_threshold,strict_threshold);
|
|
}
|
|
|
|
//! Compute the histogram of pixel values.
|
|
/**
|
|
\param nb_levels Number of desired histogram levels.
|
|
\param min_value Minimum pixel value considered for the histogram computation.
|
|
All pixel values lower than \p min_value will not be counted.
|
|
\param max_value Maximum pixel value considered for the histogram computation.
|
|
All pixel values higher than \p max_value will not be counted.
|
|
\note
|
|
- The histogram H of an image I is the 1D function where H(x) counts the number of occurrences of the value x
|
|
in the image I.
|
|
- The resulting histogram is always defined in 1D. Histograms of multi-valued images are not multi-dimensional.
|
|
\par Example
|
|
\code
|
|
const CImg<float> img = CImg<float>("reference.jpg").histogram(256);
|
|
img.display_graph(0,3);
|
|
\endcode
|
|
\image html ref_histogram.jpg
|
|
**/
|
|
CImg<T>& histogram(const unsigned int nb_levels, const T& min_value, const T& max_value) {
|
|
return get_histogram(nb_levels,min_value,max_value).move_to(*this);
|
|
}
|
|
|
|
//! Compute the histogram of pixel values \overloading.
|
|
CImg<T>& histogram(const unsigned int nb_levels) {
|
|
return get_histogram(nb_levels).move_to(*this);
|
|
}
|
|
|
|
//! Compute the histogram of pixel values \newinstance.
|
|
CImg<ulongT> get_histogram(const unsigned int nb_levels, const T& min_value, const T& max_value) const {
|
|
if (!nb_levels || is_empty()) return CImg<ulongT>();
|
|
const double
|
|
vmin = (double)(min_value<max_value?min_value:max_value),
|
|
vmax = (double)(min_value<max_value?max_value:min_value);
|
|
CImg<ulongT> res(nb_levels,1,1,1,0);
|
|
cimg_rof(*this,ptrs,T) {
|
|
const T val = *ptrs;
|
|
if (val>=vmin && val<=vmax) ++res[val==vmax?nb_levels - 1:(unsigned int)((val - vmin)*nb_levels/(vmax - vmin))];
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Compute the histogram of pixel values \newinstance.
|
|
CImg<ulongT> get_histogram(const unsigned int nb_levels) const {
|
|
if (!nb_levels || is_empty()) return CImg<ulongT>();
|
|
T vmax = 0, vmin = min_max(vmax);
|
|
return get_histogram(nb_levels,vmin,vmax);
|
|
}
|
|
|
|
//! Equalize histogram of pixel values.
|
|
/**
|
|
\param nb_levels Number of histogram levels used for the equalization.
|
|
\param min_value Minimum pixel value considered for the histogram computation.
|
|
All pixel values lower than \p min_value will not be counted.
|
|
\param max_value Maximum pixel value considered for the histogram computation.
|
|
All pixel values higher than \p max_value will not be counted.
|
|
\par Example
|
|
\code
|
|
const CImg<float> img("reference.jpg"), res = img.get_equalize(256);
|
|
(img,res).display();
|
|
\endcode
|
|
\image html ref_equalize.jpg
|
|
**/
|
|
CImg<T>& equalize(const unsigned int nb_levels, const T& min_value, const T& max_value) {
|
|
if (!nb_levels || is_empty()) return *this;
|
|
const T
|
|
vmin = min_value<max_value?min_value:max_value,
|
|
vmax = min_value<max_value?max_value:min_value;
|
|
CImg<ulongT> hist = get_histogram(nb_levels,vmin,vmax);
|
|
ulongT cumul = 0;
|
|
cimg_forX(hist,pos) { cumul+=hist[pos]; hist[pos] = cumul; }
|
|
if (!cumul) cumul = 1;
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),1048576))
|
|
cimg_rofoff(*this,off) {
|
|
const int pos = (int)((_data[off] - vmin)*(nb_levels - 1.)/(vmax - vmin));
|
|
if (pos>=0 && pos<(int)nb_levels) _data[off] = (T)(vmin + (vmax - vmin)*hist[pos]/cumul);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Equalize histogram of pixel values \overloading.
|
|
CImg<T>& equalize(const unsigned int nb_levels) {
|
|
if (!nb_levels || is_empty()) return *this;
|
|
T vmax = 0, vmin = min_max(vmax);
|
|
return equalize(nb_levels,vmin,vmax);
|
|
}
|
|
|
|
//! Equalize histogram of pixel values \newinstance.
|
|
CImg<T> get_equalize(const unsigned int nblevels, const T& val_min, const T& val_max) const {
|
|
return (+*this).equalize(nblevels,val_min,val_max);
|
|
}
|
|
|
|
//! Equalize histogram of pixel values \newinstance.
|
|
CImg<T> get_equalize(const unsigned int nblevels) const {
|
|
return (+*this).equalize(nblevels);
|
|
}
|
|
|
|
//! Index multi-valued pixels regarding to a specified palette.
|
|
/**
|
|
\param colormap Multi-valued colormap used as the basis for multi-valued pixel indexing.
|
|
\param dithering Level of dithering (0=disable, 1=standard level).
|
|
\param map_indexes Tell if the values of the resulting image are the colormap indices or the colormap vectors.
|
|
\note
|
|
- \p img.index(colormap,dithering,1) is equivalent to <tt>img.index(colormap,dithering,0).map(colormap)</tt>.
|
|
\par Example
|
|
\code
|
|
const CImg<float> img("reference.jpg"), colormap(3,1,1,3, 0,128,255, 0,128,255, 0,128,255);
|
|
const CImg<float> res = img.get_index(colormap,1,true);
|
|
(img,res).display();
|
|
\endcode
|
|
\image html ref_index.jpg
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& index(const CImg<t>& colormap, const float dithering=1, const bool map_indexes=false) {
|
|
return get_index(colormap,dithering,map_indexes).move_to(*this);
|
|
}
|
|
|
|
//! Index multi-valued pixels regarding to a specified colormap \newinstance.
|
|
template<typename t>
|
|
CImg<typename CImg<t>::Tuint>
|
|
get_index(const CImg<t>& colormap, const float dithering=1, const bool map_indexes=true) const {
|
|
if (colormap._spectrum!=_spectrum)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"index(): Instance and specified colormap (%u,%u,%u,%u,%p) "
|
|
"have incompatible dimensions.",
|
|
cimg_instance,
|
|
colormap._width,colormap._height,colormap._depth,colormap._spectrum,colormap._data);
|
|
|
|
typedef typename CImg<t>::Tuint tuint;
|
|
if (is_empty()) return CImg<tuint>();
|
|
const ulongT
|
|
whd = (ulongT)_width*_height*_depth,
|
|
pwhd = (ulongT)colormap._width*colormap._height*colormap._depth;
|
|
CImg<tuint> res(_width,_height,_depth,map_indexes?_spectrum:1);
|
|
if (dithering>0) { // Dithered versions
|
|
tuint *ptrd = res._data;
|
|
const float ndithering = cimg::cut(dithering,0,1)/16;
|
|
Tfloat valm = 0, valM = (Tfloat)max_min(valm);
|
|
if (valm==valM && valm>=0 && valM<=255) { valm = 0; valM = 255; }
|
|
CImg<Tfloat> cache = get_crop(-1,0,0,0,_width,1,0,_spectrum - 1);
|
|
Tfloat *cache_current = cache.data(1,0,0,0), *cache_next = cache.data(1,1,0,0);
|
|
const ulongT cwhd = (ulongT)cache._width*cache._height*cache._depth;
|
|
switch (_spectrum) {
|
|
case 1 : { // Optimized for scalars
|
|
cimg_forYZ(*this,y,z) {
|
|
if (y<height() - 2) {
|
|
Tfloat *ptrc0 = cache_next; const T *ptrs0 = data(0,y + 1,z,0);
|
|
cimg_forX(*this,x) *(ptrc0++) = (Tfloat)*(ptrs0++);
|
|
}
|
|
Tfloat *ptrs0 = cache_current, *ptrsn0 = cache_next;
|
|
cimg_forX(*this,x) {
|
|
const Tfloat _val0 = (Tfloat)*ptrs0, val0 = _val0<valm?valm:_val0>valM?valM:_val0;
|
|
Tfloat distmin = cimg::type<Tfloat>::max(); const t *ptrmin0 = colormap._data;
|
|
for (const t *ptrp0 = colormap._data, *ptrp_end = ptrp0 + pwhd; ptrp0<ptrp_end; ) {
|
|
const Tfloat pval0 = (Tfloat)*(ptrp0++) - val0, dist = pval0*pval0;
|
|
if (dist<distmin) { ptrmin0 = ptrp0 - 1; distmin = dist; }
|
|
}
|
|
const Tfloat err0 = ((*(ptrs0++)=val0) - (Tfloat)*ptrmin0)*ndithering;
|
|
*ptrs0+=7*err0; *(ptrsn0 - 1)+=3*err0; *(ptrsn0++)+=5*err0; *ptrsn0+=err0;
|
|
if (map_indexes) *(ptrd++) = (tuint)*ptrmin0; else *(ptrd++) = (tuint)(ptrmin0 - colormap._data);
|
|
}
|
|
cimg::swap(cache_current,cache_next);
|
|
}
|
|
} break;
|
|
case 2 : { // Optimized for 2D vectors
|
|
tuint *ptrd1 = ptrd + whd;
|
|
cimg_forYZ(*this,y,z) {
|
|
if (y<height() - 2) {
|
|
Tfloat *ptrc0 = cache_next, *ptrc1 = ptrc0 + cwhd;
|
|
const T *ptrs0 = data(0,y + 1,z,0), *ptrs1 = ptrs0 + whd;
|
|
cimg_forX(*this,x) { *(ptrc0++) = (Tfloat)*(ptrs0++); *(ptrc1++) = (Tfloat)*(ptrs1++); }
|
|
}
|
|
Tfloat
|
|
*ptrs0 = cache_current, *ptrs1 = ptrs0 + cwhd,
|
|
*ptrsn0 = cache_next, *ptrsn1 = ptrsn0 + cwhd;
|
|
cimg_forX(*this,x) {
|
|
const Tfloat
|
|
_val0 = (Tfloat)*ptrs0, val0 = _val0<valm?valm:_val0>valM?valM:_val0,
|
|
_val1 = (Tfloat)*ptrs1, val1 = _val1<valm?valm:_val1>valM?valM:_val1;
|
|
Tfloat distmin = cimg::type<Tfloat>::max(); const t *ptrmin0 = colormap._data;
|
|
for (const t *ptrp0 = colormap._data, *ptrp1 = ptrp0 + pwhd, *ptrp_end = ptrp1; ptrp0<ptrp_end; ) {
|
|
const Tfloat
|
|
pval0 = (Tfloat)*(ptrp0++) - val0, pval1 = (Tfloat)*(ptrp1++) - val1,
|
|
dist = pval0*pval0 + pval1*pval1;
|
|
if (dist<distmin) { ptrmin0 = ptrp0 - 1; distmin = dist; }
|
|
}
|
|
const t *const ptrmin1 = ptrmin0 + pwhd;
|
|
const Tfloat
|
|
err0 = ((*(ptrs0++)=val0) - (Tfloat)*ptrmin0)*ndithering,
|
|
err1 = ((*(ptrs1++)=val1) - (Tfloat)*ptrmin1)*ndithering;
|
|
*ptrs0+=7*err0; *ptrs1+=7*err1;
|
|
*(ptrsn0 - 1)+=3*err0; *(ptrsn1 - 1)+=3*err1;
|
|
*(ptrsn0++)+=5*err0; *(ptrsn1++)+=5*err1;
|
|
*ptrsn0+=err0; *ptrsn1+=err1;
|
|
if (map_indexes) { *(ptrd++) = (tuint)*ptrmin0; *(ptrd1++) = (tuint)*ptrmin1; }
|
|
else *(ptrd++) = (tuint)(ptrmin0 - colormap._data);
|
|
}
|
|
cimg::swap(cache_current,cache_next);
|
|
}
|
|
} break;
|
|
case 3 : { // Optimized for 3D vectors (colors)
|
|
tuint *ptrd1 = ptrd + whd, *ptrd2 = ptrd1 + whd;
|
|
cimg_forYZ(*this,y,z) {
|
|
if (y<height() - 2) {
|
|
Tfloat *ptrc0 = cache_next, *ptrc1 = ptrc0 + cwhd, *ptrc2 = ptrc1 + cwhd;
|
|
const T *ptrs0 = data(0,y + 1,z,0), *ptrs1 = ptrs0 + whd, *ptrs2 = ptrs1 + whd;
|
|
cimg_forX(*this,x) {
|
|
*(ptrc0++) = (Tfloat)*(ptrs0++); *(ptrc1++) = (Tfloat)*(ptrs1++); *(ptrc2++) = (Tfloat)*(ptrs2++);
|
|
}
|
|
}
|
|
Tfloat
|
|
*ptrs0 = cache_current, *ptrs1 = ptrs0 + cwhd, *ptrs2 = ptrs1 + cwhd,
|
|
*ptrsn0 = cache_next, *ptrsn1 = ptrsn0 + cwhd, *ptrsn2 = ptrsn1 + cwhd;
|
|
cimg_forX(*this,x) {
|
|
const Tfloat
|
|
_val0 = (Tfloat)*ptrs0, val0 = _val0<valm?valm:_val0>valM?valM:_val0,
|
|
_val1 = (Tfloat)*ptrs1, val1 = _val1<valm?valm:_val1>valM?valM:_val1,
|
|
_val2 = (Tfloat)*ptrs2, val2 = _val2<valm?valm:_val2>valM?valM:_val2;
|
|
Tfloat distmin = cimg::type<Tfloat>::max(); const t *ptrmin0 = colormap._data;
|
|
for (const t *ptrp0 = colormap._data, *ptrp1 = ptrp0 + pwhd, *ptrp2 = ptrp1 + pwhd,
|
|
*ptrp_end = ptrp1; ptrp0<ptrp_end; ) {
|
|
const Tfloat
|
|
pval0 = (Tfloat)*(ptrp0++) - val0,
|
|
pval1 = (Tfloat)*(ptrp1++) - val1,
|
|
pval2 = (Tfloat)*(ptrp2++) - val2,
|
|
dist = pval0*pval0 + pval1*pval1 + pval2*pval2;
|
|
if (dist<distmin) { ptrmin0 = ptrp0 - 1; distmin = dist; }
|
|
}
|
|
const t *const ptrmin1 = ptrmin0 + pwhd, *const ptrmin2 = ptrmin1 + pwhd;
|
|
const Tfloat
|
|
err0 = ((*(ptrs0++)=val0) - (Tfloat)*ptrmin0)*ndithering,
|
|
err1 = ((*(ptrs1++)=val1) - (Tfloat)*ptrmin1)*ndithering,
|
|
err2 = ((*(ptrs2++)=val2) - (Tfloat)*ptrmin2)*ndithering;
|
|
|
|
*ptrs0+=7*err0; *ptrs1+=7*err1; *ptrs2+=7*err2;
|
|
*(ptrsn0 - 1)+=3*err0; *(ptrsn1 - 1)+=3*err1; *(ptrsn2 - 1)+=3*err2;
|
|
*(ptrsn0++)+=5*err0; *(ptrsn1++)+=5*err1; *(ptrsn2++)+=5*err2;
|
|
*ptrsn0+=err0; *ptrsn1+=err1; *ptrsn2+=err2;
|
|
|
|
if (map_indexes) {
|
|
*(ptrd++) = (tuint)*ptrmin0; *(ptrd1++) = (tuint)*ptrmin1; *(ptrd2++) = (tuint)*ptrmin2;
|
|
} else *(ptrd++) = (tuint)(ptrmin0 - colormap._data);
|
|
}
|
|
cimg::swap(cache_current,cache_next);
|
|
}
|
|
} break;
|
|
default : // Generic version
|
|
cimg_forYZ(*this,y,z) {
|
|
if (y<height() - 2) {
|
|
Tfloat *ptrc = cache_next;
|
|
cimg_forC(*this,c) {
|
|
Tfloat *_ptrc = ptrc; const T *_ptrs = data(0,y + 1,z,c);
|
|
cimg_forX(*this,x) *(_ptrc++) = (Tfloat)*(_ptrs++);
|
|
ptrc+=cwhd;
|
|
}
|
|
}
|
|
Tfloat *ptrs = cache_current, *ptrsn = cache_next;
|
|
cimg_forX(*this,x) {
|
|
Tfloat distmin = cimg::type<Tfloat>::max(); const t *ptrmin = colormap._data;
|
|
for (const t *ptrp = colormap._data, *ptrp_end = ptrp + pwhd; ptrp<ptrp_end; ++ptrp) {
|
|
Tfloat dist = 0; Tfloat *_ptrs = ptrs; const t *_ptrp = ptrp;
|
|
cimg_forC(*this,c) {
|
|
const Tfloat _val = *_ptrs, val = _val<valm?valm:_val>valM?valM:_val;
|
|
dist+=cimg::sqr((*_ptrs=val) - (Tfloat)*_ptrp); _ptrs+=cwhd; _ptrp+=pwhd;
|
|
}
|
|
if (dist<distmin) { ptrmin = ptrp; distmin = dist; }
|
|
}
|
|
const t *_ptrmin = ptrmin; Tfloat *_ptrs = ptrs++, *_ptrsn = (ptrsn++) - 1;
|
|
cimg_forC(*this,c) {
|
|
const Tfloat err = (*(_ptrs++) - (Tfloat)*_ptrmin)*ndithering;
|
|
*_ptrs+=7*err; *(_ptrsn++)+=3*err; *(_ptrsn++)+=5*err; *_ptrsn+=err;
|
|
_ptrmin+=pwhd; _ptrs+=cwhd - 1; _ptrsn+=cwhd - 2;
|
|
}
|
|
if (map_indexes) {
|
|
tuint *_ptrd = ptrd++;
|
|
cimg_forC(*this,c) { *_ptrd = (tuint)*ptrmin; _ptrd+=whd; ptrmin+=pwhd; }
|
|
}
|
|
else *(ptrd++) = (tuint)(ptrmin - colormap._data);
|
|
}
|
|
cimg::swap(cache_current,cache_next);
|
|
}
|
|
}
|
|
} else { // Non-dithered versions
|
|
switch (_spectrum) {
|
|
case 1 : { // Optimized for scalars
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*64 &&
|
|
_height*_depth>=16 && pwhd>=16))
|
|
cimg_forYZ(*this,y,z) {
|
|
tuint *ptrd = res.data(0,y,z);
|
|
for (const T *ptrs0 = data(0,y,z), *ptrs_end = ptrs0 + _width; ptrs0<ptrs_end; ) {
|
|
const Tfloat val0 = (Tfloat)*(ptrs0++);
|
|
Tfloat distmin = cimg::type<Tfloat>::max(); const t *ptrmin0 = colormap._data;
|
|
for (const t *ptrp0 = colormap._data, *ptrp_end = ptrp0 + pwhd; ptrp0<ptrp_end; ) {
|
|
const Tfloat pval0 = (Tfloat)*(ptrp0++) - val0, dist = pval0*pval0;
|
|
if (dist<distmin) { ptrmin0 = ptrp0 - 1; distmin = dist; }
|
|
}
|
|
if (map_indexes) *(ptrd++) = (tuint)*ptrmin0; else *(ptrd++) = (tuint)(ptrmin0 - colormap._data);
|
|
}
|
|
}
|
|
} break;
|
|
case 2 : { // Optimized for 2D vectors
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*64 &&
|
|
_height*_depth>=16 && pwhd>=16))
|
|
cimg_forYZ(*this,y,z) {
|
|
tuint *ptrd = res.data(0,y,z), *ptrd1 = ptrd + whd;
|
|
for (const T *ptrs0 = data(0,y,z), *ptrs1 = ptrs0 + whd, *ptrs_end = ptrs0 + _width; ptrs0<ptrs_end; ) {
|
|
const Tfloat val0 = (Tfloat)*(ptrs0++), val1 = (Tfloat)*(ptrs1++);
|
|
Tfloat distmin = cimg::type<Tfloat>::max(); const t *ptrmin0 = colormap._data;
|
|
for (const t *ptrp0 = colormap._data, *ptrp1 = ptrp0 + pwhd, *ptrp_end = ptrp1; ptrp0<ptrp_end; ) {
|
|
const Tfloat
|
|
pval0 = (Tfloat)*(ptrp0++) - val0, pval1 = (Tfloat)*(ptrp1++) - val1,
|
|
dist = pval0*pval0 + pval1*pval1;
|
|
if (dist<distmin) { ptrmin0 = ptrp0 - 1; distmin = dist; }
|
|
}
|
|
if (map_indexes) { *(ptrd++) = (tuint)*ptrmin0; *(ptrd1++) = (tuint)*(ptrmin0 + pwhd); }
|
|
else *(ptrd++) = (tuint)(ptrmin0 - colormap._data);
|
|
}
|
|
}
|
|
} break;
|
|
case 3 : { // Optimized for 3D vectors (colors)
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*64 &&
|
|
_height*_depth>=16 && pwhd>=16))
|
|
cimg_forYZ(*this,y,z) {
|
|
tuint *ptrd = res.data(0,y,z), *ptrd1 = ptrd + whd, *ptrd2 = ptrd1 + whd;
|
|
for (const T *ptrs0 = data(0,y,z), *ptrs1 = ptrs0 + whd, *ptrs2 = ptrs1 + whd,
|
|
*ptrs_end = ptrs0 + _width; ptrs0<ptrs_end; ) {
|
|
const Tfloat val0 = (Tfloat)*(ptrs0++), val1 = (Tfloat)*(ptrs1++), val2 = (Tfloat)*(ptrs2++);
|
|
Tfloat distmin = cimg::type<Tfloat>::max(); const t *ptrmin0 = colormap._data;
|
|
for (const t *ptrp0 = colormap._data, *ptrp1 = ptrp0 + pwhd, *ptrp2 = ptrp1 + pwhd,
|
|
*ptrp_end = ptrp1; ptrp0<ptrp_end; ) {
|
|
const Tfloat
|
|
pval0 = (Tfloat)*(ptrp0++) - val0,
|
|
pval1 = (Tfloat)*(ptrp1++) - val1,
|
|
pval2 = (Tfloat)*(ptrp2++) - val2,
|
|
dist = pval0*pval0 + pval1*pval1 + pval2*pval2;
|
|
if (dist<distmin) { ptrmin0 = ptrp0 - 1; distmin = dist; }
|
|
}
|
|
if (map_indexes) {
|
|
*(ptrd++) = (tuint)*ptrmin0;
|
|
*(ptrd1++) = (tuint)*(ptrmin0 + pwhd);
|
|
*(ptrd2++) = (tuint)*(ptrmin0 + 2*pwhd);
|
|
} else *(ptrd++) = (tuint)(ptrmin0 - colormap._data);
|
|
}
|
|
}
|
|
} break;
|
|
default : // Generic version
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*64 &&
|
|
_height*_depth>=16 && pwhd>=16))
|
|
cimg_forYZ(*this,y,z) {
|
|
tuint *ptrd = res.data(0,y,z);
|
|
for (const T *ptrs = data(0,y,z), *ptrs_end = ptrs + _width; ptrs<ptrs_end; ++ptrs) {
|
|
Tfloat distmin = cimg::type<Tfloat>::max(); const t *ptrmin = colormap._data;
|
|
for (const t *ptrp = colormap._data, *ptrp_end = ptrp + pwhd; ptrp<ptrp_end; ++ptrp) {
|
|
Tfloat dist = 0; const T *_ptrs = ptrs; const t *_ptrp = ptrp;
|
|
cimg_forC(*this,c) { dist+=cimg::sqr((Tfloat)*_ptrs - (Tfloat)*_ptrp); _ptrs+=whd; _ptrp+=pwhd; }
|
|
if (dist<distmin) { ptrmin = ptrp; distmin = dist; }
|
|
}
|
|
if (map_indexes) {
|
|
tuint *_ptrd = ptrd++;
|
|
cimg_forC(*this,c) { *_ptrd = (tuint)*ptrmin; _ptrd+=whd; ptrmin+=pwhd; }
|
|
}
|
|
else *(ptrd++) = (tuint)(ptrmin - colormap._data);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Map predefined palette on the scalar (indexed) image instance.
|
|
/**
|
|
\param palette Multi-valued palette used for mapping the indexes.
|
|
\param boundary_conditions Boundary conditions.
|
|
Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }.
|
|
\par Example
|
|
\code
|
|
const CImg<float> img("reference.jpg"),
|
|
palette1(3,1,1,3, 0,128,255, 0,128,255, 0,128,255),
|
|
palette2(3,1,1,3, 255,0,0, 0,255,0, 0,0,255),
|
|
res = img.get_index(palette1,0).map(palette2);
|
|
(img,res).display();
|
|
\endcode
|
|
\image html ref_map.jpg
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& map(const CImg<t>& palette, const unsigned int boundary_conditions=0) {
|
|
return get_map(palette,boundary_conditions).move_to(*this);
|
|
}
|
|
|
|
//! Map predefined palette on the scalar (indexed) image instance \newinstance.
|
|
template<typename t>
|
|
CImg<t> get_map(const CImg<t>& palette, const unsigned int boundary_conditions=0) const {
|
|
const ulongT
|
|
whd = (ulongT)_width*_height*_depth, siz = size(),
|
|
cwhd = (ulongT)palette._width*palette._height*palette._depth,
|
|
cwhd2 = 2*cwhd;
|
|
CImg<t> res(_width,_height,_depth,_spectrum*palette._spectrum);
|
|
switch (palette._spectrum) {
|
|
|
|
case 1 : { // Optimized for scalars
|
|
switch (boundary_conditions) {
|
|
case 3 : // Mirror
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256))
|
|
for (longT off = 0; off<(longT)siz; ++off) {
|
|
const ulongT ind = ((ulongT)_data[off])%cwhd2;
|
|
res[off] = palette[ind<cwhd?ind:cwhd2 - ind - 1];
|
|
}
|
|
break;
|
|
case 2 : // Periodic
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256))
|
|
for (longT off = 0; off<(longT)siz; ++off) {
|
|
const ulongT ind = (ulongT)_data[off];
|
|
res[off] = palette[ind%cwhd];
|
|
}
|
|
break;
|
|
case 1 : // Neumann
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256))
|
|
for (longT off = 0; off<(longT)siz; ++off) {
|
|
const longT ind = (longT)_data[off];
|
|
res[off] = palette[cimg::cut(ind,(longT)0,(longT)cwhd - 1)];
|
|
} break;
|
|
default : // Dirichlet
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256))
|
|
for (longT off = 0; off<(longT)siz; ++off) {
|
|
const ulongT ind = (ulongT)_data[off];
|
|
res[off] = ind<cwhd?palette[ind]:(t)0;
|
|
}
|
|
}
|
|
} break;
|
|
|
|
case 2 : { // Optimized for 2D vectors
|
|
const t *const ptrp0 = palette._data, *const ptrp1 = ptrp0 + cwhd;
|
|
switch (boundary_conditions) {
|
|
case 3 : // Mirror
|
|
cimg_forC(*this,c) {
|
|
t *const ptrd0 = res.data(0,0,0,2*c), *const ptrd1 = ptrd0 + whd;
|
|
const T *const ptrs = data(0,0,0,c);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256))
|
|
for (longT off = 0; off<(longT)whd; ++off) {
|
|
const ulongT
|
|
_ind = ((ulongT)ptrs[off])%cwhd2,
|
|
ind = _ind<cwhd?_ind:cwhd2 - _ind - 1;
|
|
ptrd0[off] = ptrp0[ind]; ptrd1[off] = ptrp1[ind];
|
|
}
|
|
} break;
|
|
case 2 : // Periodic
|
|
cimg_forC(*this,c) {
|
|
t *const ptrd0 = res.data(0,0,0,2*c), *const ptrd1 = ptrd0 + whd;
|
|
const T *const ptrs = data(0,0,0,c);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256))
|
|
for (longT off = 0; off<(longT)whd; ++off) {
|
|
const ulongT ind = ((ulongT)ptrs[off])%cwhd;
|
|
ptrd0[off] = ptrp0[ind]; ptrd1[off] = ptrp1[ind];
|
|
}
|
|
} break;
|
|
case 1 : // Neumann
|
|
cimg_forC(*this,c) {
|
|
t *const ptrd0 = res.data(0,0,0,2*c), *const ptrd1 = ptrd0 + whd;
|
|
const T *const ptrs = data(0,0,0,c);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256))
|
|
for (longT off = 0; off<(longT)whd; ++off) {
|
|
const longT ind = cimg::cut((longT)ptrs[off],(longT)0,(longT)cwhd - 1);
|
|
ptrd0[off] = ptrp0[ind]; ptrd1[off] = ptrp1[ind];
|
|
}
|
|
} break;
|
|
default : // Dirichlet
|
|
cimg_forC(*this,c) {
|
|
t *const ptrd0 = res.data(0,0,0,2*c), *const ptrd1 = ptrd0 + whd;
|
|
const T *const ptrs = data(0,0,0,c);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256))
|
|
for (longT off = 0; off<(longT)whd; ++off) {
|
|
const ulongT ind = (ulongT)ptrs[off];
|
|
if (ind<cwhd) { ptrd0[off] = ptrp0[ind]; ptrd1[off] = ptrp1[ind]; }
|
|
else ptrd0[off] = ptrd1[off] = (t)0;
|
|
}
|
|
}
|
|
}
|
|
} break;
|
|
|
|
case 3 : { // Optimized for 3D vectors (colors)
|
|
const t *const ptrp0 = palette._data, *ptrp1 = ptrp0 + cwhd, *ptrp2 = ptrp0 + 2*cwhd;
|
|
switch (boundary_conditions) {
|
|
case 3 : // Mirror
|
|
cimg_forC(*this,c) {
|
|
t *const ptrd0 = res.data(0,0,0,3*c), *const ptrd1 = ptrd0 + whd, *const ptrd2 = ptrd1 + whd;
|
|
const T *const ptrs = data(0,0,0,c);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256))
|
|
for (longT off = 0; off<(longT)whd; ++off) {
|
|
const ulongT
|
|
_ind = ((ulongT)ptrs[off])%cwhd2,
|
|
ind = _ind<cwhd?_ind:cwhd2 - _ind - 1;
|
|
ptrd0[off] = ptrp0[ind]; ptrd1[off] = ptrp1[ind]; ptrd2[off] = ptrp2[ind];
|
|
}
|
|
} break;
|
|
case 2 : // Periodic
|
|
cimg_forC(*this,c) {
|
|
t *const ptrd0 = res.data(0,0,0,3*c), *const ptrd1 = ptrd0 + whd, *const ptrd2 = ptrd1 + whd;
|
|
const T *const ptrs = data(0,0,0,c);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256))
|
|
for (longT off = 0; off<(longT)whd; ++off) {
|
|
const ulongT ind = ((ulongT)ptrs[off])%cwhd;
|
|
ptrd0[off] = ptrp0[ind]; ptrd1[off] = ptrp1[ind]; ptrd2[off] = ptrp2[ind];
|
|
}
|
|
} break;
|
|
case 1 : // Neumann
|
|
cimg_forC(*this,c) {
|
|
t *const ptrd0 = res.data(0,0,0,3*c), *const ptrd1 = ptrd0 + whd, *const ptrd2 = ptrd1 + whd;
|
|
const T *const ptrs = data(0,0,0,c);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256))
|
|
for (longT off = 0; off<(longT)whd; ++off) {
|
|
const longT ind = cimg::cut((longT)ptrs[off],(longT)0,(longT)cwhd - 1);
|
|
ptrd0[off] = ptrp0[ind]; ptrd1[off] = ptrp1[ind]; ptrd2[off] = ptrp2[ind];
|
|
}
|
|
} break;
|
|
default : // Dirichlet
|
|
cimg_forC(*this,c) {
|
|
t *const ptrd0 = res.data(0,0,0,3*c), *const ptrd1 = ptrd0 + whd, *const ptrd2 = ptrd1 + whd;
|
|
const T *const ptrs = data(0,0,0,c);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256))
|
|
for (longT off = 0; off<(longT)whd; ++off) {
|
|
const ulongT ind = (ulongT)ptrs[off];
|
|
if (ind<cwhd) { ptrd0[off] = ptrp0[ind]; ptrd1[off] = ptrp1[ind]; ptrd2[off] = ptrp2[ind]; }
|
|
else ptrd0[off] = ptrd1[off] = ptrd2[off] = (t)0;
|
|
}
|
|
}
|
|
}
|
|
} break;
|
|
|
|
default : { // Generic version
|
|
switch (boundary_conditions) {
|
|
case 3 : // Mirror
|
|
cimg_forC(*this,c) {
|
|
t *const ptrd = res.data(0,0,0,palette._spectrum*c);
|
|
const T *const ptrs = data(0,0,0,c);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256))
|
|
for (longT off = 0; off<(longT)whd; ++off) {
|
|
const ulongT
|
|
_ind = ((ulongT)ptrs[off])%cwhd,
|
|
ind = _ind<cwhd?_ind:cwhd2 - _ind - 1;
|
|
t *const _ptrd = ptrd + off;
|
|
const t *const ptrp = &palette[ind];
|
|
cimg_forC(palette,k) _ptrd[k*whd] = ptrp[k*cwhd];
|
|
}
|
|
} break;
|
|
case 2 : // Periodic
|
|
cimg_forC(*this,c) {
|
|
t *const ptrd = res.data(0,0,0,palette._spectrum*c);
|
|
const T *const ptrs = data(0,0,0,c);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256))
|
|
for (longT off = 0; off<(longT)whd; ++off) {
|
|
const ulongT ind = ((ulongT)ptrs[off])%cwhd;
|
|
t *const _ptrd = ptrd + off;
|
|
const t *const ptrp = &palette[ind];
|
|
cimg_forC(palette,k) _ptrd[k*whd] = ptrp[k*cwhd];
|
|
}
|
|
} break;
|
|
case 1 : // Neumann
|
|
cimg_forC(*this,c) {
|
|
t *const ptrd = res.data(0,0,0,palette._spectrum*c);
|
|
const T *const ptrs = data(0,0,0,c);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256))
|
|
for (longT off = 0; off<(longT)whd; ++off) {
|
|
const longT ind = cimg::cut((longT)ptrs[off],(longT)0,(longT)cwhd - 1);
|
|
t *const _ptrd = ptrd + off;
|
|
const t *const ptrp = &palette[ind];
|
|
cimg_forC(palette,k) _ptrd[k*whd] = ptrp[k*cwhd];
|
|
}
|
|
} break;
|
|
default : // Dirichlet
|
|
cimg_forC(*this,c) {
|
|
t *const ptrd = res.data(0,0,0,palette._spectrum*c);
|
|
const T *const ptrs = data(0,0,0,c);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256))
|
|
for (longT off = 0; off<(longT)whd; ++off) {
|
|
const ulongT ind = (ulongT)ptrs[off];
|
|
t *const _ptrd = ptrd + off;
|
|
if (ind<cwhd) {
|
|
const t *const ptrp = &palette[ind];
|
|
cimg_forC(palette,k) _ptrd[k*whd] = ptrp[k*cwhd];
|
|
} else cimg_forC(palette,k) _ptrd[k*whd] = (t)0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Label connected components.
|
|
/**
|
|
\param is_high_connectivity Boolean that choose between 4(false)- or 8(true)-connectivity
|
|
in 2D case, and between 6(false)- or 26(true)-connectivity in 3D case.
|
|
\param tolerance Tolerance used to determine if two neighboring pixels belong to the same region.
|
|
\param is_L2_norm If true, tolerance is compared against L2 difference, otherwise L1 is used.
|
|
\note The algorithm of connected components computation has been primarily done
|
|
by A. Meijster, according to the publication:
|
|
'W.H. Hesselink, A. Meijster, C. Bron, "Concurrent Determination of Connected Components.",
|
|
In: Science of Computer Programming 41 (2001), pp. 173--194'.
|
|
The submitted code has then been modified to fit CImg coding style and constraints.
|
|
**/
|
|
CImg<T>& label(const bool is_high_connectivity=false, const Tfloat tolerance=0,
|
|
const bool is_L2_norm=true) {
|
|
if (is_empty()) return *this;
|
|
return get_label(is_high_connectivity,tolerance,is_L2_norm).move_to(*this);
|
|
}
|
|
|
|
//! Label connected components \newinstance.
|
|
CImg<ulongT> get_label(const bool is_high_connectivity=false, const Tfloat tolerance=0,
|
|
const bool is_L2_norm=true) const {
|
|
if (is_empty()) return CImg<ulongT>();
|
|
|
|
// Create neighborhood tables.
|
|
int dx[13], dy[13], dz[13], nb = 0;
|
|
dx[nb] = 1; dy[nb] = 0; dz[nb++] = 0;
|
|
dx[nb] = 0; dy[nb] = 1; dz[nb++] = 0;
|
|
if (is_high_connectivity) {
|
|
dx[nb] = 1; dy[nb] = 1; dz[nb++] = 0;
|
|
dx[nb] = 1; dy[nb] = -1; dz[nb++] = 0;
|
|
}
|
|
if (_depth>1) { // 3D version
|
|
dx[nb] = 0; dy[nb] = 0; dz[nb++]=1;
|
|
if (is_high_connectivity) {
|
|
dx[nb] = 1; dy[nb] = 1; dz[nb++] = -1;
|
|
dx[nb] = 1; dy[nb] = 0; dz[nb++] = -1;
|
|
dx[nb] = 1; dy[nb] = -1; dz[nb++] = -1;
|
|
dx[nb] = 0; dy[nb] = 1; dz[nb++] = -1;
|
|
|
|
dx[nb] = 0; dy[nb] = 1; dz[nb++] = 1;
|
|
dx[nb] = 1; dy[nb] = -1; dz[nb++] = 1;
|
|
dx[nb] = 1; dy[nb] = 0; dz[nb++] = 1;
|
|
dx[nb] = 1; dy[nb] = 1; dz[nb++] = 1;
|
|
}
|
|
}
|
|
return _label(nb,dx,dy,dz,tolerance,is_L2_norm);
|
|
}
|
|
|
|
//! Label connected components \overloading.
|
|
/**
|
|
\param connectivity_mask Mask of the neighboring pixels.
|
|
\param tolerance Tolerance used to determine if two neighboring pixels belong to the same region.
|
|
\param is_L2_norm If true, tolerance is compared against L2 difference, otherwise L1 is used.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& label(const CImg<t>& connectivity_mask, const Tfloat tolerance=0,
|
|
const bool is_L2_norm=true) {
|
|
if (is_empty()) return *this;
|
|
return get_label(connectivity_mask,tolerance,is_L2_norm).move_to(*this);
|
|
}
|
|
|
|
//! Label connected components \newinstance.
|
|
template<typename t>
|
|
CImg<ulongT> get_label(const CImg<t>& connectivity_mask, const Tfloat tolerance=0,
|
|
const bool is_L2_norm=true) const {
|
|
if (is_empty()) return CImg<ulongT>();
|
|
int nb = 0;
|
|
cimg_for(connectivity_mask,ptr,t) if (*ptr) ++nb;
|
|
CImg<intT> dx(nb,1,1,1,0), dy(nb,1,1,1,0), dz(nb,1,1,1,0);
|
|
nb = 0;
|
|
cimg_forXYZ(connectivity_mask,x,y,z) if ((x || y || z) &&
|
|
connectivity_mask(x,y,z)) {
|
|
dx[nb] = x; dy[nb] = y; dz[nb++] = z;
|
|
}
|
|
return _label(nb,dx,dy,dz,tolerance,is_L2_norm);
|
|
}
|
|
|
|
CImg<ulongT> _label(const unsigned int nb, const int *const dx,
|
|
const int *const dy, const int *const dz,
|
|
const Tfloat tolerance, const bool is_L2_norm) const {
|
|
CImg<ulongT> res(_width,_height,_depth);
|
|
const Tfloat _tolerance = _spectrum>1 && is_L2_norm?cimg::sqr(tolerance):tolerance;
|
|
|
|
// Init label numbers.
|
|
ulongT *ptr = res.data();
|
|
cimg_foroff(res,p) *(ptr++) = p;
|
|
|
|
// For each neighbour-direction, label.
|
|
for (unsigned int n = 0; n<nb; ++n) {
|
|
const int _dx = dx[n], _dy = dy[n], _dz = dz[n];
|
|
if (_dx || _dy || _dz) {
|
|
const int
|
|
x0 = _dx<0?-_dx:0,
|
|
x1 = _dx<0?width():width() - _dx,
|
|
y0 = _dy<0?-_dy:0,
|
|
y1 = _dy<0?height():height() - _dy,
|
|
z0 = _dz<0?-_dz:0,
|
|
z1 = _dz<0?depth():depth() - _dz;
|
|
const longT
|
|
wh = (longT)width()*height(),
|
|
whd = (longT)width()*height()*depth(),
|
|
offset = _dz*wh + _dy*width() + _dx;
|
|
for (longT z = z0, nz = z0 + _dz, pz = z0*wh; z<z1; ++z, ++nz, pz+=wh) {
|
|
for (longT y = y0, ny = y0 + _dy, py = y0*width() + pz; y<y1; ++y, ++ny, py+=width()) {
|
|
for (longT x = x0, nx = x0 + _dx, p = x0 + py; x<x1; ++x, ++nx, ++p) {
|
|
Tfloat diff;
|
|
switch (_spectrum) {
|
|
case 1 :
|
|
diff = cimg::abs((Tfloat)(*this)(x,y,z,0,wh,whd) - (Tfloat)(*this)(nx,ny,nz,0,wh,whd));
|
|
break;
|
|
case 2 :
|
|
if (is_L2_norm)
|
|
diff = cimg::sqr((Tfloat)(*this)(x,y,z,0,wh,whd) - (Tfloat)(*this)(nx,ny,nz,0,wh,whd)) +
|
|
cimg::sqr((Tfloat)(*this)(x,y,z,1,wh,whd) - (Tfloat)(*this)(nx,ny,nz,1,wh,whd));
|
|
else
|
|
diff = cimg::abs((Tfloat)(*this)(x,y,z,0,wh,whd) - (Tfloat)(*this)(nx,ny,nz,0,wh,whd)) +
|
|
cimg::abs((Tfloat)(*this)(x,y,z,1,wh,whd) - (Tfloat)(*this)(nx,ny,nz,1,wh,whd));
|
|
break;
|
|
case 3 :
|
|
if (is_L2_norm)
|
|
diff = cimg::sqr((Tfloat)(*this)(x,y,z,0,wh,whd) - (Tfloat)(*this)(nx,ny,nz,0,wh,whd)) +
|
|
cimg::sqr((Tfloat)(*this)(x,y,z,1,wh,whd) - (Tfloat)(*this)(nx,ny,nz,1,wh,whd)) +
|
|
cimg::sqr((Tfloat)(*this)(x,y,z,2,wh,whd) - (Tfloat)(*this)(nx,ny,nz,2,wh,whd));
|
|
else
|
|
diff = cimg::abs((Tfloat)(*this)(x,y,z,0,wh,whd) - (Tfloat)(*this)(nx,ny,nz,0,wh,whd)) +
|
|
cimg::abs((Tfloat)(*this)(x,y,z,1,wh,whd) - (Tfloat)(*this)(nx,ny,nz,1,wh,whd)) +
|
|
cimg::abs((Tfloat)(*this)(x,y,z,2,wh,whd) - (Tfloat)(*this)(nx,ny,nz,2,wh,whd));
|
|
break;
|
|
case 4 :
|
|
if (is_L2_norm)
|
|
diff = cimg::sqr((Tfloat)(*this)(x,y,z,0,wh,whd) - (Tfloat)(*this)(nx,ny,nz,0,wh,whd)) +
|
|
cimg::sqr((Tfloat)(*this)(x,y,z,1,wh,whd) - (Tfloat)(*this)(nx,ny,nz,1,wh,whd)) +
|
|
cimg::sqr((Tfloat)(*this)(x,y,z,2,wh,whd) - (Tfloat)(*this)(nx,ny,nz,2,wh,whd)) +
|
|
cimg::sqr((Tfloat)(*this)(x,y,z,3,wh,whd) - (Tfloat)(*this)(nx,ny,nz,3,wh,whd));
|
|
else
|
|
diff = cimg::abs((Tfloat)(*this)(x,y,z,0,wh,whd) - (Tfloat)(*this)(nx,ny,nz,0,wh,whd)) +
|
|
cimg::abs((Tfloat)(*this)(x,y,z,1,wh,whd) - (Tfloat)(*this)(nx,ny,nz,1,wh,whd)) +
|
|
cimg::abs((Tfloat)(*this)(x,y,z,2,wh,whd) - (Tfloat)(*this)(nx,ny,nz,2,wh,whd)) +
|
|
cimg::abs((Tfloat)(*this)(x,y,z,3,wh,whd) - (Tfloat)(*this)(nx,ny,nz,3,wh,whd));
|
|
break;
|
|
default :
|
|
diff = 0;
|
|
if (is_L2_norm)
|
|
cimg_forC(*this,c)
|
|
diff+=cimg::sqr((Tfloat)(*this)(x,y,z,c,wh,whd) - (Tfloat)(*this)(nx,ny,nz,c,wh,whd));
|
|
else
|
|
cimg_forC(*this,c)
|
|
diff+=cimg::abs((Tfloat)(*this)(x,y,z,c,wh,whd) - (Tfloat)(*this)(nx,ny,nz,c,wh,whd));
|
|
}
|
|
|
|
if (diff<=_tolerance) {
|
|
const longT q = p + offset;
|
|
ulongT xk, yk;
|
|
for (xk = (ulongT)(p<q?q:p), yk = (ulongT)(p<q?p:q); xk!=yk && res[xk]!=xk; ) {
|
|
xk = res[xk]; if (xk<yk) cimg::swap(xk,yk);
|
|
}
|
|
if (xk!=yk) res[xk] = (ulongT)yk;
|
|
for (ulongT _p = (ulongT)p; _p!=yk; ) {
|
|
const ulongT h = res[_p];
|
|
res[_p] = (ulongT)yk;
|
|
_p = h;
|
|
}
|
|
for (ulongT _q = (ulongT)q; _q!=yk; ) {
|
|
const ulongT h = res[_q];
|
|
res[_q] = (ulongT)yk;
|
|
_q = h;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Resolve equivalences.
|
|
ulongT counter = 0;
|
|
ptr = res.data();
|
|
cimg_foroff(res,p) { *ptr = *ptr==p?counter++:res[*ptr]; ++ptr; }
|
|
return res;
|
|
}
|
|
|
|
// [internal] Replace possibly malicious characters for commands to be called by system() by their escaped version.
|
|
CImg<T>& _system_strescape() {
|
|
#define cimg_system_strescape(c,s) case c : if (p!=ptrs) CImg<T>(ptrs,(unsigned int)(p-ptrs),1,1,1,false).\
|
|
move_to(list); \
|
|
CImg<T>(s,(unsigned int)std::strlen(s),1,1,1,false).move_to(list); ptrs = p + 1; break
|
|
CImgList<T> list;
|
|
const T *ptrs = _data;
|
|
cimg_for(*this,p,T) switch ((int)*p) {
|
|
cimg_system_strescape('\\',"\\\\");
|
|
cimg_system_strescape('\"',"\\\"");
|
|
cimg_system_strescape('!',"\"\\!\"");
|
|
cimg_system_strescape('`',"\\`");
|
|
cimg_system_strescape('$',"\\$");
|
|
}
|
|
if (ptrs<end()) CImg<T>(ptrs,(unsigned int)(end()-ptrs),1,1,1,false).move_to(list);
|
|
return (list>'x').move_to(*this);
|
|
}
|
|
|
|
//@}
|
|
//---------------------------------
|
|
//
|
|
//! \name Color Base Management
|
|
//@{
|
|
//---------------------------------
|
|
|
|
//! Return palette \e "default", containing 256 colors entries in RGB.
|
|
/**
|
|
\return The following \c 256x1x1x3 palette is returned:
|
|
\image html ref_colormap_default.jpg
|
|
**/
|
|
static const CImg<Tuchar>& default_LUT256() {
|
|
static CImg<Tuchar> palette;
|
|
cimg::mutex(8);
|
|
if (!palette) {
|
|
palette.assign(1,256,1,3);
|
|
for (unsigned int index = 0, r = 16; r<256; r+=32)
|
|
for (unsigned int g = 16; g<256; g+=32)
|
|
for (unsigned int b = 32; b<256; b+=64) {
|
|
palette(0,index,0) = (Tuchar)r;
|
|
palette(0,index,1) = (Tuchar)g;
|
|
palette(0,index++,2) = (Tuchar)b;
|
|
}
|
|
}
|
|
cimg::mutex(8,0);
|
|
return palette;
|
|
}
|
|
|
|
//! Return palette \e "HSV", containing 256 colors entries in RGB.
|
|
/**
|
|
\return The following \c 256x1x1x3 palette is returned:
|
|
\image html ref_colormap_hsv.jpg
|
|
**/
|
|
static const CImg<Tuchar>& HSV_LUT256() {
|
|
static CImg<Tuchar> palette;
|
|
cimg::mutex(8);
|
|
if (!palette) {
|
|
CImg<Tint> tmp(1,256,1,3,1);
|
|
tmp.get_shared_channel(0).sequence(0,359);
|
|
palette = tmp.HSVtoRGB();
|
|
}
|
|
cimg::mutex(8,0);
|
|
return palette;
|
|
}
|
|
|
|
//! Return palette \e "lines", containing 256 colors entries in RGB.
|
|
/**
|
|
\return The following \c 256x1x1x3 palette is returned:
|
|
\image html ref_colormap_lines.jpg
|
|
**/
|
|
static const CImg<Tuchar>& lines_LUT256() {
|
|
static const unsigned char pal[] = {
|
|
0,255,255,0,0,28,125,125,235,210,186,182,36,0,125,255,
|
|
53,32,255,210,89,186,65,45,125,210,210,97,130,194,0,125,
|
|
206,53,190,89,255,146,20,190,154,73,255,36,130,215,0,138,
|
|
101,210,61,194,206,0,77,45,255,154,174,0,190,239,89,125,
|
|
16,36,158,223,117,0,97,69,223,255,40,239,0,0,255,0,
|
|
97,170,93,255,138,40,117,210,0,170,53,158,186,255,0,121,
|
|
227,121,186,40,20,190,89,255,77,57,130,142,255,73,186,85,
|
|
210,8,32,166,243,130,210,40,255,45,61,142,223,49,121,255,
|
|
20,162,158,73,89,255,53,138,210,190,57,235,36,73,255,49,
|
|
210,0,210,85,57,97,255,121,85,174,40,255,162,178,0,121,
|
|
166,125,53,146,166,255,97,121,65,89,235,231,12,170,36,190,
|
|
85,255,166,97,198,77,20,146,109,166,255,28,40,202,121,81,
|
|
247,0,210,255,49,0,65,255,36,166,93,77,255,85,251,0,
|
|
170,178,0,182,255,0,162,16,154,142,162,223,223,0,0,81,
|
|
215,4,215,162,215,125,77,206,121,36,125,231,101,16,255,121,
|
|
0,57,190,215,65,125,89,142,255,101,73,53,146,223,125,125,
|
|
0,255,0,255,0,206,93,138,49,255,0,202,154,85,45,219,
|
|
251,53,0,255,40,130,219,158,16,117,186,130,202,49,65,239,
|
|
89,202,49,28,247,134,150,0,255,117,202,4,215,81,186,57,
|
|
202,89,73,210,40,93,45,251,206,28,223,142,40,134,162,125,
|
|
32,247,97,170,0,255,57,134,73,247,162,0,251,40,142,142,
|
|
8,166,206,81,154,194,93,89,125,243,28,109,227,0,190,65,
|
|
194,186,0,255,53,45,109,186,186,0,255,130,49,170,69,210,
|
|
154,0,109,227,45,255,125,105,81,81,255,0,219,134,170,85,
|
|
146,28,170,89,223,97,8,210,255,158,49,40,125,174,174,125,
|
|
0,227,166,28,219,130,0,93,239,0,85,255,81,178,125,49,
|
|
89,255,53,206,73,113,146,255,0,150,36,219,162,0,210,125,
|
|
69,134,255,85,40,89,235,49,215,121,0,206,36,223,174,69,
|
|
40,182,178,130,69,45,255,210,85,77,215,0,231,146,0,194,
|
|
125,174,0,255,40,89,121,206,57,0,206,170,231,150,81,0,
|
|
125,255,4,174,4,190,121,255,4,166,109,130,49,239,170,93,
|
|
16,174,210,0,255,16,105,158,93,255,0,125,0,255,158,85,
|
|
0,255,0,0,255,170,166,61,121,28,198,215,45,243,61,97,
|
|
255,53,81,130,109,255,8,117,235,121,40,178,174,0,182,49,
|
|
162,121,255,69,206,0,219,125,0,101,255,239,121,32,210,130,
|
|
36,231,32,125,81,142,215,158,4,178,255,0,40,251,125,125,
|
|
219,89,130,0,166,255,24,65,194,125,255,125,77,125,93,125,
|
|
202,24,138,174,178,32,255,85,194,40,85,36,174,174,125,210,
|
|
85,255,53,16,93,206,40,130,170,202,93,255,0,24,117,255,
|
|
97,113,105,81,255,186,194,57,69,206,57,53,223,190,4,255,
|
|
85,97,130,255,85,0,125,223,85,219,0,215,146,77,40,239,
|
|
89,36,142,154,227,0,255,85,162,0,162,0,235,178,45,166,
|
|
0,247,255,20,69,210,89,142,53,255,40,146,166,255,69,0,
|
|
174,154,142,130,162,0,215,255,0,89,40,255,166,61,146,69,
|
|
162,40,255,32,121,255,117,178,0,186,206,0,57,215,215,81,
|
|
158,77,166,210,77,89,210,0,24,202,150,186,0,255,20,97,
|
|
57,170,235,251,16,73,142,251,93,0,202,0,255,121,219,4,
|
|
73,219,8,162,206,16,219,93,117,0,255,8,130,174,223,45 };
|
|
static const CImg<Tuchar> palette(pal,1,256,1,3,false);
|
|
return palette;
|
|
}
|
|
|
|
//! Return palette \e "hot", containing 256 colors entries in RGB.
|
|
/**
|
|
\return The following \c 256x1x1x3 palette is returned:
|
|
\image html ref_colormap_hot.jpg
|
|
**/
|
|
static const CImg<Tuchar>& hot_LUT256() {
|
|
static CImg<Tuchar> palette;
|
|
cimg::mutex(8);
|
|
if (!palette) {
|
|
palette.assign(1,4,1,3,(T)0);
|
|
palette[1] = palette[2] = palette[3] = palette[6] = palette[7] = palette[11] = 255;
|
|
palette.resize(1,256,1,3,3);
|
|
}
|
|
cimg::mutex(8,0);
|
|
return palette;
|
|
}
|
|
|
|
//! Return palette \e "cool", containing 256 colors entries in RGB.
|
|
/**
|
|
\return The following \c 256x1x1x3 palette is returned:
|
|
\image html ref_colormap_cool.jpg
|
|
**/
|
|
static const CImg<Tuchar>& cool_LUT256() {
|
|
static CImg<Tuchar> palette;
|
|
cimg::mutex(8);
|
|
if (!palette) palette.assign(1,2,1,3).fill((T)0,(T)255,(T)255,(T)0,(T)255,(T)255).resize(1,256,1,3,3);
|
|
cimg::mutex(8,0);
|
|
return palette;
|
|
}
|
|
|
|
//! Return palette \e "jet", containing 256 colors entries in RGB.
|
|
/**
|
|
\return The following \c 256x1x1x3 palette is returned:
|
|
\image html ref_colormap_jet.jpg
|
|
**/
|
|
static const CImg<Tuchar>& jet_LUT256() {
|
|
static CImg<Tuchar> palette;
|
|
cimg::mutex(8);
|
|
if (!palette) {
|
|
palette.assign(1,4,1,3,(T)0);
|
|
palette[2] = palette[3] = palette[5] = palette[6] = palette[8] = palette[9] = 255;
|
|
palette.resize(1,256,1,3,3);
|
|
}
|
|
cimg::mutex(8,0);
|
|
return palette;
|
|
}
|
|
|
|
//! Return palette \e "flag", containing 256 colors entries in RGB.
|
|
/**
|
|
\return The following \c 256x1x1x3 colormap is returned:
|
|
\image html ref_palette_flag.jpg
|
|
**/
|
|
static const CImg<Tuchar>& flag_LUT256() {
|
|
static CImg<Tuchar> palette;
|
|
cimg::mutex(8);
|
|
if (!palette) {
|
|
palette.assign(1,4,1,3,(T)0);
|
|
palette[0] = palette[1] = palette[5] = palette[9] = palette[10] = 255;
|
|
palette.resize(1,256,1,3,0,2);
|
|
}
|
|
cimg::mutex(8,0);
|
|
return palette;
|
|
}
|
|
|
|
//! Return palette \e "cube", containing 256 colors entries in RGB.
|
|
/**
|
|
\return The following \c 256x1x1x3 palette is returned:
|
|
\image html ref_colormap_cube.jpg
|
|
**/
|
|
static const CImg<Tuchar>& cube_LUT256() {
|
|
static CImg<Tuchar> palette;
|
|
cimg::mutex(8);
|
|
if (!palette) {
|
|
palette.assign(1,8,1,3,(T)0);
|
|
palette[1] = palette[3] = palette[5] = palette[7] =
|
|
palette[10] = palette[11] = palette[12] = palette[13] =
|
|
palette[20] = palette[21] = palette[22] = palette[23] = 255;
|
|
palette.resize(1,256,1,3,3);
|
|
}
|
|
cimg::mutex(8,0);
|
|
return palette;
|
|
}
|
|
|
|
//! Convert pixel values from sRGB to RGB color spaces.
|
|
CImg<T>& sRGBtoRGB() {
|
|
if (is_empty()) return *this;
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),32))
|
|
cimg_rofoff(*this,off) {
|
|
const Tfloat
|
|
sval = (Tfloat)_data[off]/255,
|
|
val = (Tfloat)(sval<=0.04045f?sval/12.92f:std::pow((sval + 0.055f)/(1.055f),2.4f));
|
|
_data[off] = (T)cimg::cut(val*255,0,255);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Convert pixel values from sRGB to RGB color spaces \newinstance.
|
|
CImg<Tfloat> get_sRGBtoRGB() const {
|
|
return CImg<Tfloat>(*this,false).sRGBtoRGB();
|
|
}
|
|
|
|
//! Convert pixel values from RGB to sRGB color spaces.
|
|
CImg<T>& RGBtosRGB() {
|
|
if (is_empty()) return *this;
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),32))
|
|
cimg_rofoff(*this,off) {
|
|
const Tfloat
|
|
val = (Tfloat)_data[off]/255,
|
|
sval = (Tfloat)(val<=0.0031308f?val*12.92f:1.055f*std::pow(val,0.416667f) - 0.055f);
|
|
_data[off] = (T)cimg::cut(sval*255,0,255);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Convert pixel values from RGB to sRGB color spaces \newinstance.
|
|
CImg<Tfloat> get_RGBtosRGB() const {
|
|
return CImg<Tfloat>(*this,false).RGBtosRGB();
|
|
}
|
|
|
|
//! Convert pixel values from RGB to HSI color spaces.
|
|
CImg<T>& RGBtoHSI() {
|
|
if (_spectrum!=3)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"RGBtoHSI(): Instance is not a RGB image.",
|
|
cimg_instance);
|
|
|
|
T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2);
|
|
const longT whd = (longT)width()*height()*depth();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,256))
|
|
for (longT N = 0; N<whd; ++N) {
|
|
const Tfloat
|
|
R = (Tfloat)p1[N],
|
|
G = (Tfloat)p2[N],
|
|
B = (Tfloat)p3[N],
|
|
m = cimg::min(R,G,B),
|
|
M = cimg::max(R,G,B),
|
|
C = M - m,
|
|
sum = R + G + B,
|
|
H = 60*(C==0?0:M==R?cimg::mod((G - B)/C,(Tfloat)6):M==G?(B - R)/C + 2:(R - G)/C + 4),
|
|
S = sum<=0?0:1 - 3*m/sum,
|
|
I = sum/(3*255);
|
|
p1[N] = (T)H;
|
|
p2[N] = (T)S;
|
|
p3[N] = (T)I;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Convert pixel values from RGB to HSI color spaces \newinstance.
|
|
CImg<Tfloat> get_RGBtoHSI() const {
|
|
return CImg<Tfloat>(*this,false).RGBtoHSI();
|
|
}
|
|
|
|
//! Convert pixel values from HSI to RGB color spaces.
|
|
CImg<T>& HSItoRGB() {
|
|
if (_spectrum!=3)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"HSItoRGB(): Instance is not a HSI image.",
|
|
cimg_instance);
|
|
|
|
T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2);
|
|
const longT whd = (longT)width()*height()*depth();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,256))
|
|
for (longT N = 0; N<whd; ++N) {
|
|
const Tfloat
|
|
H = cimg::mod((Tfloat)p1[N]/60,(Tfloat)6),
|
|
S = (Tfloat)p2[N],
|
|
I = (Tfloat)p3[N],
|
|
Z = 1 - cimg::abs(cimg::mod(H,(Tfloat)2) - 1),
|
|
C = I*S/(1 + Z),
|
|
X = C*Z,
|
|
m = I*(1 - S)/3;
|
|
Tfloat R, G, B;
|
|
switch ((int)H) {
|
|
case 0 : R = C; G = X; B = 0; break;
|
|
case 1 : R = X; G = C; B = 0; break;
|
|
case 2 : R = 0; G = C; B = X; break;
|
|
case 3 : R = 0; G = X; B = C; break;
|
|
case 4 : R = X; G = 0; B = C; break;
|
|
default : R = C; G = 0; B = X;
|
|
}
|
|
p1[N] = (T)((R + m)*3*255);
|
|
p2[N] = (T)((G + m)*3*255);
|
|
p3[N] = (T)((B + m)*3*255);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Convert pixel values from HSI to RGB color spaces \newinstance.
|
|
CImg<Tfloat> get_HSItoRGB() const {
|
|
return CImg< Tuchar>(*this,false).HSItoRGB();
|
|
}
|
|
|
|
//! Convert pixel values from RGB to HSL color spaces.
|
|
CImg<T>& RGBtoHSL() {
|
|
if (_spectrum!=3)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"RGBtoHSL(): Instance is not a RGB image.",
|
|
cimg_instance);
|
|
|
|
T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2);
|
|
const longT whd = (longT)width()*height()*depth();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,256))
|
|
for (longT N = 0; N<whd; ++N) {
|
|
const Tfloat
|
|
R = (Tfloat)p1[N],
|
|
G = (Tfloat)p2[N],
|
|
B = (Tfloat)p3[N],
|
|
m = cimg::min(R,G,B),
|
|
M = cimg::max(R,G,B),
|
|
C = M - m,
|
|
H = 60*(C==0?0:M==R?cimg::mod((G - B)/C,(Tfloat)6):M==G?(B - R)/C + 2:(R - G)/C + 4),
|
|
L = 0.5f*(m + M)/255,
|
|
S = L==1 || L==0?0:C/(1 - cimg::abs(2*L - 1))/255;
|
|
p1[N] = (T)H;
|
|
p2[N] = (T)S;
|
|
p3[N] = (T)L;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Convert pixel values from RGB to HSL color spaces \newinstance.
|
|
CImg<Tfloat> get_RGBtoHSL() const {
|
|
return CImg<Tfloat>(*this,false).RGBtoHSL();
|
|
}
|
|
|
|
//! Convert pixel values from HSL to RGB color spaces.
|
|
CImg<T>& HSLtoRGB() {
|
|
if (_spectrum!=3)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"HSLtoRGB(): Instance is not a HSL image.",
|
|
cimg_instance);
|
|
|
|
T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2);
|
|
const longT whd = (longT)width()*height()*depth();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,256))
|
|
for (longT N = 0; N<whd; ++N) {
|
|
const Tfloat
|
|
H = cimg::mod((Tfloat)p1[N]/60,(Tfloat)6),
|
|
S = (Tfloat)p2[N],
|
|
L = (Tfloat)p3[N],
|
|
C = (1 - cimg::abs(2*L - 1))*S,
|
|
X = C*(1 - cimg::abs(cimg::mod(H,(Tfloat)2) - 1)),
|
|
m = L - C/2;
|
|
Tfloat R, G, B;
|
|
switch ((int)H) {
|
|
case 0 : R = C; G = X; B = 0; break;
|
|
case 1 : R = X; G = C; B = 0; break;
|
|
case 2 : R = 0; G = C; B = X; break;
|
|
case 3 : R = 0; G = X; B = C; break;
|
|
case 4 : R = X; G = 0; B = C; break;
|
|
default : R = C; G = 0; B = X;
|
|
}
|
|
p1[N] = (T)((R + m)*255);
|
|
p2[N] = (T)((G + m)*255);
|
|
p3[N] = (T)((B + m)*255);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Convert pixel values from HSL to RGB color spaces \newinstance.
|
|
CImg<Tuchar> get_HSLtoRGB() const {
|
|
return CImg<Tuchar>(*this,false).HSLtoRGB();
|
|
}
|
|
|
|
//! Convert pixel values from RGB to HSV color spaces.
|
|
CImg<T>& RGBtoHSV() {
|
|
if (_spectrum!=3)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"RGBtoHSV(): Instance is not a RGB image.",
|
|
cimg_instance);
|
|
|
|
T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2);
|
|
const longT whd = (longT)width()*height()*depth();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,256))
|
|
for (longT N = 0; N<whd; ++N) {
|
|
const Tfloat
|
|
R = (Tfloat)p1[N],
|
|
G = (Tfloat)p2[N],
|
|
B = (Tfloat)p3[N],
|
|
M = cimg::max(R,G,B),
|
|
C = M - cimg::min(R,G,B),
|
|
H = 60*(C==0?0:M==R?cimg::mod((G-B)/C,(Tfloat)6):M==G?(B - R)/C + 2:(R - G)/C + 4),
|
|
S = M<=0?0:C/M;
|
|
p1[N] = (T)H;
|
|
p2[N] = (T)S;
|
|
p3[N] = (T)(M/255);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Convert pixel values from RGB to HSV color spaces \newinstance.
|
|
CImg<Tfloat> get_RGBtoHSV() const {
|
|
return CImg<Tfloat>(*this,false).RGBtoHSV();
|
|
}
|
|
|
|
//! Convert pixel values from HSV to RGB color spaces.
|
|
CImg<T>& HSVtoRGB() {
|
|
if (_spectrum!=3)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"HSVtoRGB(): Instance is not a HSV image.",
|
|
cimg_instance);
|
|
|
|
T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2);
|
|
const longT whd = (longT)width()*height()*depth();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,256))
|
|
for (longT N = 0; N<whd; ++N) {
|
|
Tfloat
|
|
H = cimg::mod((Tfloat)p1[N]/60,(Tfloat)6),
|
|
S = (Tfloat)p2[N],
|
|
V = (Tfloat)p3[N],
|
|
C = V*S,
|
|
X = C*(1 - cimg::abs(cimg::mod(H,(Tfloat)2) - 1)),
|
|
m = V - C;
|
|
Tfloat R, G, B;
|
|
switch ((int)H) {
|
|
case 0 : R = C; G = X; B = 0; break;
|
|
case 1 : R = X; G = C; B = 0; break;
|
|
case 2 : R = 0; G = C; B = X; break;
|
|
case 3 : R = 0; G = X; B = C; break;
|
|
case 4 : R = X; G = 0; B = C; break;
|
|
default : R = C; G = 0; B = X;
|
|
}
|
|
p1[N] = (T)((R + m)*255);
|
|
p2[N] = (T)((G + m)*255);
|
|
p3[N] = (T)((B + m)*255);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Convert pixel values from HSV to RGB color spaces \newinstance.
|
|
CImg<Tuchar> get_HSVtoRGB() const {
|
|
return CImg<Tuchar>(*this,false).HSVtoRGB();
|
|
}
|
|
|
|
//! Convert pixel values from RGB to YCbCr color spaces.
|
|
CImg<T>& RGBtoYCbCr() {
|
|
if (_spectrum!=3)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"RGBtoYCbCr(): Instance is not a RGB image.",
|
|
cimg_instance);
|
|
|
|
T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2);
|
|
const longT whd = (longT)width()*height()*depth();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,512))
|
|
for (longT N = 0; N<whd; ++N) {
|
|
const Tfloat
|
|
R = (Tfloat)p1[N],
|
|
G = (Tfloat)p2[N],
|
|
B = (Tfloat)p3[N],
|
|
Y = (66*R + 129*G + 25*B + 128)/256 + 16,
|
|
Cb = (-38*R - 74*G + 112*B + 128)/256 + 128,
|
|
Cr = (112*R - 94*G - 18*B + 128)/256 + 128;
|
|
p1[N] = (T)cimg::cut(Y,0,255),
|
|
p2[N] = (T)cimg::cut(Cb,0,255),
|
|
p3[N] = (T)cimg::cut(Cr,0,255);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Convert pixel values from RGB to YCbCr color spaces \newinstance.
|
|
CImg<Tuchar> get_RGBtoYCbCr() const {
|
|
return CImg<Tuchar>(*this,false).RGBtoYCbCr();
|
|
}
|
|
|
|
//! Convert pixel values from RGB to YCbCr color spaces.
|
|
CImg<T>& YCbCrtoRGB() {
|
|
if (_spectrum!=3)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"YCbCrtoRGB(): Instance is not a YCbCr image.",
|
|
cimg_instance);
|
|
|
|
T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2);
|
|
const longT whd = (longT)width()*height()*depth();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,512))
|
|
for (longT N = 0; N<whd; ++N) {
|
|
const Tfloat
|
|
Y = (Tfloat)p1[N] - 16,
|
|
Cb = (Tfloat)p2[N] - 128,
|
|
Cr = (Tfloat)p3[N] - 128,
|
|
R = (298*Y + 409*Cr + 128)/256,
|
|
G = (298*Y - 100*Cb - 208*Cr + 128)/256,
|
|
B = (298*Y + 516*Cb + 128)/256;
|
|
p1[N] = (T)cimg::cut(R,0,255),
|
|
p2[N] = (T)cimg::cut(G,0,255),
|
|
p3[N] = (T)cimg::cut(B,0,255);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Convert pixel values from RGB to YCbCr color spaces \newinstance.
|
|
CImg<Tuchar> get_YCbCrtoRGB() const {
|
|
return CImg<Tuchar>(*this,false).YCbCrtoRGB();
|
|
}
|
|
|
|
//! Convert pixel values from RGB to YUV color spaces.
|
|
CImg<T>& RGBtoYUV() {
|
|
if (_spectrum!=3)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"RGBtoYUV(): Instance is not a RGB image.",
|
|
cimg_instance);
|
|
|
|
T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2);
|
|
const longT whd = (longT)width()*height()*depth();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,16384))
|
|
for (longT N = 0; N<whd; ++N) {
|
|
const Tfloat
|
|
R = (Tfloat)p1[N]/255,
|
|
G = (Tfloat)p2[N]/255,
|
|
B = (Tfloat)p3[N]/255,
|
|
Y = 0.299f*R + 0.587f*G + 0.114f*B;
|
|
p1[N] = (T)Y;
|
|
p2[N] = (T)(0.492f*(B - Y));
|
|
p3[N] = (T)(0.877*(R - Y));
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Convert pixel values from RGB to YUV color spaces \newinstance.
|
|
CImg<Tfloat> get_RGBtoYUV() const {
|
|
return CImg<Tfloat>(*this,false).RGBtoYUV();
|
|
}
|
|
|
|
//! Convert pixel values from YUV to RGB color spaces.
|
|
CImg<T>& YUVtoRGB() {
|
|
if (_spectrum!=3)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"YUVtoRGB(): Instance is not a YUV image.",
|
|
cimg_instance);
|
|
|
|
T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2);
|
|
const longT whd = (longT)width()*height()*depth();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,16384))
|
|
for (longT N = 0; N<whd; ++N) {
|
|
const Tfloat
|
|
Y = (Tfloat)p1[N],
|
|
U = (Tfloat)p2[N],
|
|
V = (Tfloat)p3[N],
|
|
R = (Y + 1.140f*V)*255,
|
|
G = (Y - 0.395f*U - 0.581f*V)*255,
|
|
B = (Y + 2.032f*U)*255;
|
|
p1[N] = (T)cimg::cut(R,0,255),
|
|
p2[N] = (T)cimg::cut(G,0,255),
|
|
p3[N] = (T)cimg::cut(B,0,255);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Convert pixel values from YUV to RGB color spaces \newinstance.
|
|
CImg<Tuchar> get_YUVtoRGB() const {
|
|
return CImg< Tuchar>(*this,false).YUVtoRGB();
|
|
}
|
|
|
|
//! Convert pixel values from RGB to CMY color spaces.
|
|
CImg<T>& RGBtoCMY() {
|
|
if (_spectrum!=3)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"RGBtoCMY(): Instance is not a RGB image.",
|
|
cimg_instance);
|
|
|
|
T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2);
|
|
const longT whd = (longT)width()*height()*depth();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,2048))
|
|
for (longT N = 0; N<whd; ++N) {
|
|
const Tfloat
|
|
R = (Tfloat)p1[N],
|
|
G = (Tfloat)p2[N],
|
|
B = (Tfloat)p3[N],
|
|
C = 255 - R,
|
|
M = 255 - G,
|
|
Y = 255 - B;
|
|
p1[N] = (T)cimg::cut(C,0,255),
|
|
p2[N] = (T)cimg::cut(M,0,255),
|
|
p3[N] = (T)cimg::cut(Y,0,255);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Convert pixel values from RGB to CMY color spaces \newinstance.
|
|
CImg<Tuchar> get_RGBtoCMY() const {
|
|
return CImg<Tfloat>(*this,false).RGBtoCMY();
|
|
}
|
|
|
|
//! Convert pixel values from CMY to RGB color spaces.
|
|
CImg<T>& CMYtoRGB() {
|
|
if (_spectrum!=3)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"CMYtoRGB(): Instance is not a CMY image.",
|
|
cimg_instance);
|
|
|
|
T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2);
|
|
const longT whd = (longT)width()*height()*depth();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,2048))
|
|
for (longT N = 0; N<whd; ++N) {
|
|
const Tfloat
|
|
C = (Tfloat)p1[N],
|
|
M = (Tfloat)p2[N],
|
|
Y = (Tfloat)p3[N],
|
|
R = 255 - C,
|
|
G = 255 - M,
|
|
B = 255 - Y;
|
|
p1[N] = (T)cimg::cut(R,0,255),
|
|
p2[N] = (T)cimg::cut(G,0,255),
|
|
p3[N] = (T)cimg::cut(B,0,255);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Convert pixel values from CMY to RGB color spaces \newinstance.
|
|
CImg<Tuchar> get_CMYtoRGB() const {
|
|
return CImg<Tuchar>(*this,false).CMYtoRGB();
|
|
}
|
|
|
|
//! Convert pixel values from CMY to CMYK color spaces.
|
|
CImg<T>& CMYtoCMYK() {
|
|
return get_CMYtoCMYK().move_to(*this);
|
|
}
|
|
|
|
//! Convert pixel values from CMY to CMYK color spaces \newinstance.
|
|
CImg<Tuchar> get_CMYtoCMYK() const {
|
|
if (_spectrum!=3)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"CMYtoCMYK(): Instance is not a CMY image.",
|
|
cimg_instance);
|
|
|
|
CImg<Tfloat> res(_width,_height,_depth,4);
|
|
const T *ps1 = data(0,0,0,0), *ps2 = data(0,0,0,1), *ps3 = data(0,0,0,2);
|
|
Tfloat *pd1 = res.data(0,0,0,0), *pd2 = res.data(0,0,0,1), *pd3 = res.data(0,0,0,2), *pd4 = res.data(0,0,0,3);
|
|
const longT whd = (longT)width()*height()*depth();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,1024))
|
|
for (longT N = 0; N<whd; ++N) {
|
|
Tfloat
|
|
C = (Tfloat)ps1[N],
|
|
M = (Tfloat)ps2[N],
|
|
Y = (Tfloat)ps3[N],
|
|
K = cimg::min(C,M,Y);
|
|
if (K>=255) C = M = Y = 0;
|
|
else { const Tfloat K1 = 255 - K; C = 255*(C - K)/K1; M = 255*(M - K)/K1; Y = 255*(Y - K)/K1; }
|
|
pd1[N] = (Tfloat)cimg::cut(C,0,255),
|
|
pd2[N] = (Tfloat)cimg::cut(M,0,255),
|
|
pd3[N] = (Tfloat)cimg::cut(Y,0,255),
|
|
pd4[N] = (Tfloat)cimg::cut(K,0,255);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Convert pixel values from CMYK to CMY color spaces.
|
|
CImg<T>& CMYKtoCMY() {
|
|
return get_CMYKtoCMY().move_to(*this);
|
|
}
|
|
|
|
//! Convert pixel values from CMYK to CMY color spaces \newinstance.
|
|
CImg<Tfloat> get_CMYKtoCMY() const {
|
|
if (_spectrum!=4)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"CMYKtoCMY(): Instance is not a CMYK image.",
|
|
cimg_instance);
|
|
|
|
CImg<Tfloat> res(_width,_height,_depth,3);
|
|
const T *ps1 = data(0,0,0,0), *ps2 = data(0,0,0,1), *ps3 = data(0,0,0,2), *ps4 = data(0,0,0,3);
|
|
Tfloat *pd1 = res.data(0,0,0,0), *pd2 = res.data(0,0,0,1), *pd3 = res.data(0,0,0,2);
|
|
const longT whd = (longT)width()*height()*depth();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,1024))
|
|
for (longT N = 0; N<whd; ++N) {
|
|
const Tfloat
|
|
C = (Tfloat)ps1[N],
|
|
M = (Tfloat)ps2[N],
|
|
Y = (Tfloat)ps3[N],
|
|
K = (Tfloat)ps4[N],
|
|
K1 = 1 - K/255,
|
|
nC = C*K1 + K,
|
|
nM = M*K1 + K,
|
|
nY = Y*K1 + K;
|
|
pd1[N] = (Tfloat)cimg::cut(nC,0,255),
|
|
pd2[N] = (Tfloat)cimg::cut(nM,0,255),
|
|
pd3[N] = (Tfloat)cimg::cut(nY,0,255);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Convert pixel values from RGB to XYZ color spaces.
|
|
/**
|
|
\param use_D65 Tell to use the D65 illuminant (D50 otherwise).
|
|
**/
|
|
CImg<T>& RGBtoXYZ(const bool use_D65=true) {
|
|
if (_spectrum!=3)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"RGBtoXYZ(): Instance is not a RGB image.",
|
|
cimg_instance);
|
|
|
|
T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2);
|
|
const longT whd = (longT)width()*height()*depth();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,2048))
|
|
for (longT N = 0; N<whd; ++N) {
|
|
const Tfloat
|
|
R = (Tfloat)p1[N]/255,
|
|
G = (Tfloat)p2[N]/255,
|
|
B = (Tfloat)p3[N]/255;
|
|
if (use_D65) { // D65
|
|
p1[N] = (T)(0.4124564*R + 0.3575761*G + 0.1804375*B);
|
|
p2[N] = (T)(0.2126729*R + 0.7151522*G + 0.0721750*B);
|
|
p3[N] = (T)(0.0193339*R + 0.1191920*G + 0.9503041*B);
|
|
} else { // D50
|
|
p1[N] = (T)(0.43603516*R + 0.38511658*G + 0.14305115*B);
|
|
p2[N] = (T)(0.22248840*R + 0.71690369*G + 0.06060791*B);
|
|
p3[N] = (T)(0.01391602*R + 0.09706116*G + 0.71392822*B);
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Convert pixel values from RGB to XYZ color spaces \newinstance.
|
|
CImg<Tfloat> get_RGBtoXYZ(const bool use_D65=true) const {
|
|
return CImg<Tfloat>(*this,false).RGBtoXYZ(use_D65);
|
|
}
|
|
|
|
//! Convert pixel values from XYZ to RGB color spaces.
|
|
/**
|
|
\param use_D65 Tell to use the D65 illuminant (D50 otherwise).
|
|
**/
|
|
CImg<T>& XYZtoRGB(const bool use_D65=true) {
|
|
if (_spectrum!=3)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"XYZtoRGB(): Instance is not a XYZ image.",
|
|
cimg_instance);
|
|
|
|
T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2);
|
|
const longT whd = (longT)width()*height()*depth();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,2048))
|
|
for (longT N = 0; N<whd; ++N) {
|
|
const Tfloat
|
|
X = (Tfloat)p1[N]*255,
|
|
Y = (Tfloat)p2[N]*255,
|
|
Z = (Tfloat)p3[N]*255;
|
|
if (use_D65) {
|
|
p1[N] = (T)cimg::cut(3.2404542*X - 1.5371385*Y - 0.4985314*Z,0,255);
|
|
p2[N] = (T)cimg::cut(-0.9692660*X + 1.8760108*Y + 0.0415560*Z,0,255);
|
|
p3[N] = (T)cimg::cut(0.0556434*X - 0.2040259*Y + 1.0572252*Z,0,255);
|
|
} else {
|
|
p1[N] = (T)cimg::cut(3.134274799724*X - 1.617275708956*Y - 0.490724283042*Z,0,255);
|
|
p2[N] = (T)cimg::cut(-0.978795575994*X + 1.916161689117*Y + 0.033453331711*Z,0,255);
|
|
p3[N] = (T)cimg::cut(0.071976988401*X - 0.228984974402*Y + 1.405718224383*Z,0,255);
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Convert pixel values from XYZ to RGB color spaces \newinstance.
|
|
CImg<Tuchar> get_XYZtoRGB(const bool use_D65=true) const {
|
|
return CImg<Tuchar>(*this,false).XYZtoRGB(use_D65);
|
|
}
|
|
|
|
//! Convert pixel values from XYZ to Lab color spaces.
|
|
CImg<T>& XYZtoLab(const bool use_D65=true) {
|
|
#define _cimg_Labf(x) (24389*(x)>216?cimg::cbrt(x):(24389*(x)/27 + 16)/116)
|
|
|
|
if (_spectrum!=3)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"XYZtoLab(): Instance is not a XYZ image.",
|
|
cimg_instance);
|
|
const CImg<Tfloat> white = CImg<Tfloat>(1,1,1,3,255).RGBtoXYZ(use_D65);
|
|
T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2);
|
|
const longT whd = (longT)width()*height()*depth();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,128))
|
|
for (longT N = 0; N<whd; ++N) {
|
|
const Tfloat
|
|
X = (Tfloat)(p1[N]/white[0]),
|
|
Y = (Tfloat)(p2[N]/white[1]),
|
|
Z = (Tfloat)(p3[N]/white[2]),
|
|
fX = (Tfloat)_cimg_Labf(X),
|
|
fY = (Tfloat)_cimg_Labf(Y),
|
|
fZ = (Tfloat)_cimg_Labf(Z);
|
|
p1[N] = (T)cimg::cut(116*fY - 16,0,100);
|
|
p2[N] = (T)(500*(fX - fY));
|
|
p3[N] = (T)(200*(fY - fZ));
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Convert pixel values from XYZ to Lab color spaces \newinstance.
|
|
CImg<Tfloat> get_XYZtoLab(const bool use_D65=true) const {
|
|
return CImg<Tfloat>(*this,false).XYZtoLab(use_D65);
|
|
}
|
|
|
|
//! Convert pixel values from Lab to XYZ color spaces.
|
|
CImg<T>& LabtoXYZ(const bool use_D65=true) {
|
|
if (_spectrum!=3)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"LabtoXYZ(): Instance is not a Lab image.",
|
|
cimg_instance);
|
|
const CImg<Tfloat> white = CImg<Tfloat>(1,1,1,3,255).RGBtoXYZ(use_D65);
|
|
T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2);
|
|
const longT whd = (longT)width()*height()*depth();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,128))
|
|
for (longT N = 0; N<whd; ++N) {
|
|
const Tfloat
|
|
L = (Tfloat)p1[N],
|
|
a = (Tfloat)p2[N],
|
|
b = (Tfloat)p3[N],
|
|
cY = (L + 16)/116,
|
|
cZ = cY - b/200,
|
|
cX = a/500 + cY,
|
|
X = (Tfloat)(24389*cX>216?cX*cX*cX:(116*cX - 16)*27/24389),
|
|
Y = (Tfloat)(27*L>216?cY*cY*cY:27*L/24389),
|
|
Z = (Tfloat)(24389*cZ>216?cZ*cZ*cZ:(116*cZ - 16)*27/24389);
|
|
p1[N] = (T)(X*white[0]);
|
|
p2[N] = (T)(Y*white[1]);
|
|
p3[N] = (T)(Z*white[2]);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Convert pixel values from Lab to XYZ color spaces \newinstance.
|
|
CImg<Tfloat> get_LabtoXYZ(const bool use_D65=true) const {
|
|
return CImg<Tfloat>(*this,false).LabtoXYZ(use_D65);
|
|
}
|
|
|
|
//! Convert pixel values from XYZ to xyY color spaces.
|
|
CImg<T>& XYZtoxyY() {
|
|
if (_spectrum!=3)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"XYZtoxyY(): Instance is not a XYZ image.",
|
|
cimg_instance);
|
|
|
|
T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2);
|
|
const longT whd = (longT)width()*height()*depth();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,4096))
|
|
for (longT N = 0; N<whd; ++N) {
|
|
const Tfloat
|
|
X = (Tfloat)p1[N],
|
|
Y = (Tfloat)p2[N],
|
|
Z = (Tfloat)p3[N],
|
|
sum = X + Y + Z,
|
|
nsum = sum>0?sum:1;
|
|
p1[N] = (T)(X/nsum);
|
|
p2[N] = (T)(Y/nsum);
|
|
p3[N] = (T)Y;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Convert pixel values from XYZ to xyY color spaces \newinstance.
|
|
CImg<Tfloat> get_XYZtoxyY() const {
|
|
return CImg<Tfloat>(*this,false).XYZtoxyY();
|
|
}
|
|
|
|
//! Convert pixel values from xyY pixels to XYZ color spaces.
|
|
CImg<T>& xyYtoXYZ() {
|
|
if (_spectrum!=3)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"xyYtoXYZ(): Instance is not a xyY image.",
|
|
cimg_instance);
|
|
|
|
T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2);
|
|
const longT whd = (longT)width()*height()*depth();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,4096))
|
|
for (longT N = 0; N<whd; ++N) {
|
|
const Tfloat
|
|
px = (Tfloat)p1[N],
|
|
py = (Tfloat)p2[N],
|
|
Y = (Tfloat)p3[N],
|
|
ny = py>0?py:1;
|
|
p1[N] = (T)(px*Y/ny);
|
|
p2[N] = (T)Y;
|
|
p3[N] = (T)((1 - px - py)*Y/ny);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Convert pixel values from xyY pixels to XYZ color spaces \newinstance.
|
|
CImg<Tfloat> get_xyYtoXYZ() const {
|
|
return CImg<Tfloat>(*this,false).xyYtoXYZ();
|
|
}
|
|
|
|
//! Convert pixel values from RGB to Lab color spaces.
|
|
CImg<T>& RGBtoLab(const bool use_D65=true) {
|
|
return RGBtoXYZ(use_D65).XYZtoLab(use_D65);
|
|
}
|
|
|
|
//! Convert pixel values from RGB to Lab color spaces \newinstance.
|
|
CImg<Tfloat> get_RGBtoLab(const bool use_D65=true) const {
|
|
return CImg<Tfloat>(*this,false).RGBtoLab(use_D65);
|
|
}
|
|
|
|
//! Convert pixel values from Lab to RGB color spaces.
|
|
CImg<T>& LabtoRGB(const bool use_D65=true) {
|
|
return LabtoXYZ().XYZtoRGB(use_D65);
|
|
}
|
|
|
|
//! Convert pixel values from Lab to RGB color spaces \newinstance.
|
|
CImg<Tuchar> get_LabtoRGB(const bool use_D65=true) const {
|
|
return CImg<Tuchar>(*this,false).LabtoRGB(use_D65);
|
|
}
|
|
|
|
//! Convert pixel values from RGB to xyY color spaces.
|
|
CImg<T>& RGBtoxyY(const bool use_D65=true) {
|
|
return RGBtoXYZ(use_D65).XYZtoxyY();
|
|
}
|
|
|
|
//! Convert pixel values from RGB to xyY color spaces \newinstance.
|
|
CImg<Tfloat> get_RGBtoxyY(const bool use_D65=true) const {
|
|
return CImg<Tfloat>(*this,false).RGBtoxyY(use_D65);
|
|
}
|
|
|
|
//! Convert pixel values from xyY to RGB color spaces.
|
|
CImg<T>& xyYtoRGB(const bool use_D65=true) {
|
|
return xyYtoXYZ().XYZtoRGB(use_D65);
|
|
}
|
|
|
|
//! Convert pixel values from xyY to RGB color spaces \newinstance.
|
|
CImg<Tuchar> get_xyYtoRGB(const bool use_D65=true) const {
|
|
return CImg<Tuchar>(*this,false).xyYtoRGB(use_D65);
|
|
}
|
|
|
|
//! Convert pixel values from RGB to CMYK color spaces.
|
|
CImg<T>& RGBtoCMYK() {
|
|
return RGBtoCMY().CMYtoCMYK();
|
|
}
|
|
|
|
//! Convert pixel values from RGB to CMYK color spaces \newinstance.
|
|
CImg<Tfloat> get_RGBtoCMYK() const {
|
|
return CImg<Tfloat>(*this,false).RGBtoCMYK();
|
|
}
|
|
|
|
//! Convert pixel values from CMYK to RGB color spaces.
|
|
CImg<T>& CMYKtoRGB() {
|
|
return CMYKtoCMY().CMYtoRGB();
|
|
}
|
|
|
|
//! Convert pixel values from CMYK to RGB color spaces \newinstance.
|
|
CImg<Tuchar> get_CMYKtoRGB() const {
|
|
return CImg<Tuchar>(*this,false).CMYKtoRGB();
|
|
}
|
|
|
|
//@}
|
|
//------------------------------------------
|
|
//
|
|
//! \name Geometric / Spatial Manipulation
|
|
//@{
|
|
//------------------------------------------
|
|
|
|
static float _cimg_lanczos(const float x) {
|
|
if (x<=-2 || x>=2) return 0;
|
|
const float a = (float)cimg::PI*x, b = 0.5f*a;
|
|
return (float)(x?std::sin(a)*std::sin(b)/(a*b):1);
|
|
}
|
|
|
|
//! Resize image to new dimensions.
|
|
/**
|
|
\param size_x Number of columns (new size along the X-axis).
|
|
\param size_y Number of rows (new size along the Y-axis).
|
|
\param size_z Number of slices (new size along the Z-axis).
|
|
\param size_c Number of vector-channels (new size along the C-axis).
|
|
\param interpolation_type Method of interpolation:
|
|
- -1 = no interpolation: raw memory resizing.
|
|
- 0 = no interpolation: additional space is filled according to \p boundary_conditions.
|
|
- 1 = nearest-neighbor interpolation.
|
|
- 2 = moving average interpolation.
|
|
- 3 = linear interpolation.
|
|
- 4 = grid interpolation.
|
|
- 5 = cubic interpolation.
|
|
- 6 = lanczos interpolation.
|
|
\param boundary_conditions Type of boundary conditions used if necessary.
|
|
\param centering_x Set centering type (only if \p interpolation_type=0).
|
|
\param centering_y Set centering type (only if \p interpolation_type=0).
|
|
\param centering_z Set centering type (only if \p interpolation_type=0).
|
|
\param centering_c Set centering type (only if \p interpolation_type=0).
|
|
\note If pd[x,y,z,v]<0, it corresponds to a percentage of the original size (the default value is -100).
|
|
**/
|
|
CImg<T>& resize(const int size_x, const int size_y=-100,
|
|
const int size_z=-100, const int size_c=-100,
|
|
const int interpolation_type=1, const unsigned int boundary_conditions=0,
|
|
const float centering_x = 0, const float centering_y = 0,
|
|
const float centering_z = 0, const float centering_c = 0) {
|
|
if (!size_x || !size_y || !size_z || !size_c) return assign();
|
|
const unsigned int
|
|
_sx = (unsigned int)(size_x<0?-size_x*width()/100:size_x),
|
|
_sy = (unsigned int)(size_y<0?-size_y*height()/100:size_y),
|
|
_sz = (unsigned int)(size_z<0?-size_z*depth()/100:size_z),
|
|
_sc = (unsigned int)(size_c<0?-size_c*spectrum()/100:size_c),
|
|
sx = _sx?_sx:1, sy = _sy?_sy:1, sz = _sz?_sz:1, sc = _sc?_sc:1;
|
|
if (sx==_width && sy==_height && sz==_depth && sc==_spectrum) return *this;
|
|
if (is_empty()) return assign(sx,sy,sz,sc,(T)0);
|
|
if (interpolation_type==-1 && sx*sy*sz*sc==size()) {
|
|
_width = sx; _height = sy; _depth = sz; _spectrum = sc;
|
|
return *this;
|
|
}
|
|
return get_resize(sx,sy,sz,sc,interpolation_type,boundary_conditions,
|
|
centering_x,centering_y,centering_z,centering_c).move_to(*this);
|
|
}
|
|
|
|
//! Resize image to new dimensions \newinstance.
|
|
CImg<T> get_resize(const int size_x, const int size_y = -100,
|
|
const int size_z = -100, const int size_c = -100,
|
|
const int interpolation_type=1, const unsigned int boundary_conditions=0,
|
|
const float centering_x = 0, const float centering_y = 0,
|
|
const float centering_z = 0, const float centering_c = 0) const {
|
|
if (centering_x<0 || centering_x>1 || centering_y<0 || centering_y>1 ||
|
|
centering_z<0 || centering_z>1 || centering_c<0 || centering_c>1)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"resize(): Specified centering arguments (%g,%g,%g,%g) are outside range [0,1].",
|
|
cimg_instance,
|
|
centering_x,centering_y,centering_z,centering_c);
|
|
|
|
if (!size_x || !size_y || !size_z || !size_c) return CImg<T>();
|
|
const unsigned int
|
|
sx = std::max(1U,(unsigned int)(size_x>=0?size_x:-size_x*width()/100)),
|
|
sy = std::max(1U,(unsigned int)(size_y>=0?size_y:-size_y*height()/100)),
|
|
sz = std::max(1U,(unsigned int)(size_z>=0?size_z:-size_z*depth()/100)),
|
|
sc = std::max(1U,(unsigned int)(size_c>=0?size_c:-size_c*spectrum()/100));
|
|
if (sx==_width && sy==_height && sz==_depth && sc==_spectrum) return +*this;
|
|
if (is_empty()) return CImg<T>(sx,sy,sz,sc,(T)0);
|
|
CImg<T> res;
|
|
switch (interpolation_type) {
|
|
|
|
// Raw resizing.
|
|
//
|
|
case -1 :
|
|
std::memcpy(res.assign(sx,sy,sz,sc,(T)0)._data,_data,sizeof(T)*std::min(size(),(ulongT)sx*sy*sz*sc));
|
|
break;
|
|
|
|
// No interpolation.
|
|
//
|
|
case 0 : {
|
|
const int
|
|
xc = (int)(centering_x*((int)sx - width())),
|
|
yc = (int)(centering_y*((int)sy - height())),
|
|
zc = (int)(centering_z*((int)sz - depth())),
|
|
cc = (int)(centering_c*((int)sc - spectrum()));
|
|
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
res.assign(sx,sy,sz,sc);
|
|
const int w2 = 2*width(), h2 = 2*height(), d2 = 2*depth(), s2 = 2*spectrum();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1024*1024))
|
|
cimg_forXYZC(res,x,y,z,c) {
|
|
const int
|
|
mx = cimg::mod(x - xc,w2), my = cimg::mod(y - yc,h2),
|
|
mz = cimg::mod(z - zc,d2), mc = cimg::mod(c - cc,s2);
|
|
res(x,y,z,c) = (*this)(mx<width()?mx:w2 - mx - 1,
|
|
my<height()?my:h2 - my - 1,
|
|
mz<depth()?mz:d2 - mz - 1,
|
|
mc<spectrum()?mc:s2 - mc - 1);
|
|
}
|
|
} break;
|
|
case 2 : { // Periodic
|
|
res.assign(sx,sy,sz,sc);
|
|
const int
|
|
x0 = ((int)xc%width()) - width(),
|
|
y0 = ((int)yc%height()) - height(),
|
|
z0 = ((int)zc%depth()) - depth(),
|
|
c0 = ((int)cc%spectrum()) - spectrum(),
|
|
dx = width(), dy = height(), dz = depth(), dc = spectrum();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1024*1024))
|
|
for (int c = c0; c<(int)sc; c+=dc)
|
|
for (int z = z0; z<(int)sz; z+=dz)
|
|
for (int y = y0; y<(int)sy; y+=dy)
|
|
for (int x = x0; x<(int)sx; x+=dx)
|
|
res.draw_image(x,y,z,c,*this);
|
|
} break;
|
|
case 1 : { // Neumann
|
|
res.assign(sx,sy,sz,sc).draw_image(xc,yc,zc,cc,*this);
|
|
CImg<T> sprite;
|
|
if (xc>0) { // X-backward
|
|
res.get_crop(xc,yc,zc,cc,xc,yc + height() - 1,zc + depth() - 1,cc + spectrum() - 1).move_to(sprite);
|
|
for (int x = xc - 1; x>=0; --x) res.draw_image(x,yc,zc,cc,sprite);
|
|
}
|
|
if (xc + width()<(int)sx) { // X-forward
|
|
res.get_crop(xc + width() - 1,yc,zc,cc,xc + width() - 1,yc + height() - 1,
|
|
zc + depth() - 1,cc + spectrum() - 1).move_to(sprite);
|
|
for (int x = xc + width(); x<(int)sx; ++x) res.draw_image(x,yc,zc,cc,sprite);
|
|
}
|
|
if (yc>0) { // Y-backward
|
|
res.get_crop(0,yc,zc,cc,sx - 1,yc,zc + depth() - 1,cc + spectrum() - 1).move_to(sprite);
|
|
for (int y = yc - 1; y>=0; --y) res.draw_image(0,y,zc,cc,sprite);
|
|
}
|
|
if (yc + height()<(int)sy) { // Y-forward
|
|
res.get_crop(0,yc + height() - 1,zc,cc,sx - 1,yc + height() - 1,
|
|
zc + depth() - 1,cc + spectrum() - 1).move_to(sprite);
|
|
for (int y = yc + height(); y<(int)sy; ++y) res.draw_image(0,y,zc,cc,sprite);
|
|
}
|
|
if (zc>0) { // Z-backward
|
|
res.get_crop(0,0,zc,cc,sx - 1,sy - 1,zc,cc + spectrum() - 1).move_to(sprite);
|
|
for (int z = zc - 1; z>=0; --z) res.draw_image(0,0,z,cc,sprite);
|
|
}
|
|
if (zc + depth()<(int)sz) { // Z-forward
|
|
res.get_crop(0,0,zc +depth() - 1,cc,sx - 1,sy - 1,zc + depth() - 1,cc + spectrum() - 1).move_to(sprite);
|
|
for (int z = zc + depth(); z<(int)sz; ++z) res.draw_image(0,0,z,cc,sprite);
|
|
}
|
|
if (cc>0) { // C-backward
|
|
res.get_crop(0,0,0,cc,sx - 1,sy - 1,sz - 1,cc).move_to(sprite);
|
|
for (int c = cc - 1; c>=0; --c) res.draw_image(0,0,0,c,sprite);
|
|
}
|
|
if (cc + spectrum()<(int)sc) { // C-forward
|
|
res.get_crop(0,0,0,cc + spectrum() - 1,sx - 1,sy - 1,sz - 1,cc + spectrum() - 1).move_to(sprite);
|
|
for (int c = cc + spectrum(); c<(int)sc; ++c) res.draw_image(0,0,0,c,sprite);
|
|
}
|
|
} break;
|
|
default : // Dirichlet
|
|
res.assign(sx,sy,sz,sc,(T)0).draw_image(xc,yc,zc,cc,*this);
|
|
}
|
|
break;
|
|
} break;
|
|
|
|
// Nearest neighbor interpolation.
|
|
//
|
|
case 1 : {
|
|
res.assign(sx,sy,sz,sc);
|
|
CImg<ulongT> off_x(sx), off_y(sy + 1), off_z(sz + 1), off_c(sc + 1);
|
|
const ulongT
|
|
wh = (ulongT)_width*_height,
|
|
whd = (ulongT)_width*_height*_depth,
|
|
sxy = (ulongT)sx*sy,
|
|
sxyz = (ulongT)sx*sy*sz,
|
|
one = (ulongT)1;
|
|
if (sx==_width) off_x.fill(1);
|
|
else {
|
|
ulongT *poff_x = off_x._data, curr = 0;
|
|
cimg_forX(res,x) {
|
|
const ulongT old = curr;
|
|
curr = (x + one)*_width/sx;
|
|
*(poff_x++) = curr - old;
|
|
}
|
|
}
|
|
if (sy==_height) off_y.fill(_width);
|
|
else {
|
|
ulongT *poff_y = off_y._data, curr = 0;
|
|
cimg_forY(res,y) {
|
|
const ulongT old = curr;
|
|
curr = (y + one)*_height/sy;
|
|
*(poff_y++) = _width*(curr - old);
|
|
}
|
|
*poff_y = 0;
|
|
}
|
|
if (sz==_depth) off_z.fill(wh);
|
|
else {
|
|
ulongT *poff_z = off_z._data, curr = 0;
|
|
cimg_forZ(res,z) {
|
|
const ulongT old = curr;
|
|
curr = (z + one)*_depth/sz;
|
|
*(poff_z++) = wh*(curr - old);
|
|
}
|
|
*poff_z = 0;
|
|
}
|
|
if (sc==_spectrum) off_c.fill(whd);
|
|
else {
|
|
ulongT *poff_c = off_c._data, curr = 0;
|
|
cimg_forC(res,c) {
|
|
const ulongT old = curr;
|
|
curr = (c + one)*_spectrum/sc;
|
|
*(poff_c++) = whd*(curr - old);
|
|
}
|
|
*poff_c = 0;
|
|
}
|
|
|
|
T *ptrd = res._data;
|
|
const T* ptrc = _data;
|
|
const ulongT *poff_c = off_c._data;
|
|
for (unsigned int c = 0; c<sc; ) {
|
|
const T *ptrz = ptrc;
|
|
const ulongT *poff_z = off_z._data;
|
|
for (unsigned int z = 0; z<sz; ) {
|
|
const T *ptry = ptrz;
|
|
const ulongT *poff_y = off_y._data;
|
|
for (unsigned int y = 0; y<sy; ) {
|
|
const T *ptrx = ptry;
|
|
const ulongT *poff_x = off_x._data;
|
|
cimg_forX(res,x) { *(ptrd++) = *ptrx; ptrx+=*(poff_x++); }
|
|
++y;
|
|
ulongT dy = *(poff_y++);
|
|
for ( ; !dy && y<dy; std::memcpy(ptrd,ptrd - sx,sizeof(T)*sx), ++y, ptrd+=sx, dy = *(poff_y++)) {}
|
|
ptry+=dy;
|
|
}
|
|
++z;
|
|
ulongT dz = *(poff_z++);
|
|
for ( ; !dz && z<dz; std::memcpy(ptrd,ptrd - sxy,sizeof(T)*sxy), ++z, ptrd+=sxy, dz = *(poff_z++)) {}
|
|
ptrz+=dz;
|
|
}
|
|
++c;
|
|
ulongT dc = *(poff_c++);
|
|
for ( ; !dc && c<dc; std::memcpy(ptrd,ptrd - sxyz,sizeof(T)*sxyz), ++c, ptrd+=sxyz, dc = *(poff_c++)) {}
|
|
ptrc+=dc;
|
|
}
|
|
} break;
|
|
|
|
// Moving average.
|
|
//
|
|
case 2 : {
|
|
bool instance_first = true;
|
|
if (sx!=_width) {
|
|
if (sx>_width) get_resize(sx,_height,_depth,_spectrum,1).move_to(res);
|
|
else {
|
|
CImg<Tfloat> tmp(sx,_height,_depth,_spectrum,0);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3)
|
|
cimg_openmp_if(sx>=256 && _height*_depth*_spectrum>=256))
|
|
cimg_forYZC(tmp,y,z,v) {
|
|
for (unsigned int a = _width*sx, b = _width, c = sx, s = 0, t = 0; a; ) {
|
|
const unsigned int d = std::min(b,c);
|
|
a-=d; b-=d; c-=d;
|
|
tmp(t,y,z,v)+=(Tfloat)(*this)(s,y,z,v)*d;
|
|
if (!b) { tmp(t++,y,z,v)/=_width; b = _width; }
|
|
if (!c) { ++s; c = sx; }
|
|
}
|
|
}
|
|
tmp.move_to(res);
|
|
}
|
|
instance_first = false;
|
|
}
|
|
|
|
if (sy!=_height) {
|
|
if (sy>_height) get_resize(sx,sy,_depth,_spectrum,1).move_to(res);
|
|
else {
|
|
CImg<Tfloat> tmp(sx,sy,_depth,_spectrum,0);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3)
|
|
cimg_openmp_if(sy>=256 && _width*_depth*_spectrum>=256))
|
|
cimg_forXZC(tmp,x,z,v) {
|
|
for (unsigned int a = _height*sy, b = _height, c = sy, s = 0, t = 0; a; ) {
|
|
const unsigned int d = std::min(b,c);
|
|
a-=d; b-=d; c-=d;
|
|
if (instance_first) tmp(x,t,z,v)+=(Tfloat)(*this)(x,s,z,v)*d;
|
|
else tmp(x,t,z,v)+=(Tfloat)res(x,s,z,v)*d;
|
|
if (!b) { tmp(x,t++,z,v)/=_height; b = _height; }
|
|
if (!c) { ++s; c = sy; }
|
|
}
|
|
}
|
|
tmp.move_to(res);
|
|
}
|
|
instance_first = false;
|
|
}
|
|
|
|
if (sz!=_depth) {
|
|
if (sz>_depth) get_resize(sx,sy,sz,_spectrum,1).move_to(res);
|
|
else {
|
|
CImg<Tfloat> tmp(sx,sy,sz,_spectrum,0);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3)
|
|
cimg_openmp_if(sz>=256 && _width*_height*_spectrum>=256))
|
|
cimg_forXYC(tmp,x,y,v) {
|
|
for (unsigned int a = _depth*sz, b = _depth, c = sz, s = 0, t = 0; a; ) {
|
|
const unsigned int d = std::min(b,c);
|
|
a-=d; b-=d; c-=d;
|
|
if (instance_first) tmp(x,y,t,v)+=(Tfloat)(*this)(x,y,s,v)*d;
|
|
else tmp(x,y,t,v)+=(Tfloat)res(x,y,s,v)*d;
|
|
if (!b) { tmp(x,y,t++,v)/=_depth; b = _depth; }
|
|
if (!c) { ++s; c = sz; }
|
|
}
|
|
}
|
|
tmp.move_to(res);
|
|
}
|
|
instance_first = false;
|
|
}
|
|
|
|
if (sc!=_spectrum) {
|
|
if (sc>_spectrum) get_resize(sx,sy,sz,sc,1).move_to(res);
|
|
else {
|
|
CImg<Tfloat> tmp(sx,sy,sz,sc,0);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3)
|
|
cimg_openmp_if(sc>=256 && _width*_height*_depth>=256))
|
|
cimg_forXYZ(tmp,x,y,z) {
|
|
for (unsigned int a = _spectrum*sc, b = _spectrum, c = sc, s = 0, t = 0; a; ) {
|
|
const unsigned int d = std::min(b,c);
|
|
a-=d; b-=d; c-=d;
|
|
if (instance_first) tmp(x,y,z,t)+=(Tfloat)(*this)(x,y,z,s)*d;
|
|
else tmp(x,y,z,t)+=(Tfloat)res(x,y,z,s)*d;
|
|
if (!b) { tmp(x,y,z,t++)/=_spectrum; b = _spectrum; }
|
|
if (!c) { ++s; c = sc; }
|
|
}
|
|
}
|
|
tmp.move_to(res);
|
|
}
|
|
instance_first = false;
|
|
}
|
|
|
|
} break;
|
|
|
|
// Linear interpolation.
|
|
//
|
|
case 3 : {
|
|
CImg<uintT> off(cimg::max(sx,sy,sz,sc));
|
|
CImg<doubleT> foff(off._width);
|
|
CImg<T> resx, resy, resz, resc;
|
|
double curr, old;
|
|
|
|
if (sx!=_width) {
|
|
if (_width==1) get_resize(sx,_height,_depth,_spectrum,1).move_to(resx);
|
|
else if (_width>sx) get_resize(sx,_height,_depth,_spectrum,2).move_to(resx);
|
|
else {
|
|
const double fx = (!boundary_conditions && sx>_width)?(sx>1?(_width - 1.)/(sx - 1):0):
|
|
(double)_width/sx;
|
|
resx.assign(sx,_height,_depth,_spectrum);
|
|
curr = old = 0;
|
|
{
|
|
unsigned int *poff = off._data;
|
|
double *pfoff = foff._data;
|
|
cimg_forX(resx,x) {
|
|
*(pfoff++) = curr - (unsigned int)curr;
|
|
old = curr;
|
|
curr = std::min(width() - 1.,curr + fx);
|
|
*(poff++) = (unsigned int)curr - (unsigned int)old;
|
|
}
|
|
}
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3)
|
|
cimg_openmp_if(resx._width>=256 && resx._height*resx._depth*resx._spectrum>=256))
|
|
cimg_forYZC(resx,y,z,c) {
|
|
const T *ptrs = data(0,y,z,c), *const ptrsmax = ptrs + _width - 1;
|
|
T *ptrd = resx.data(0,y,z,c);
|
|
const unsigned int *poff = off._data;
|
|
const double *pfoff = foff._data;
|
|
cimg_forX(resx,x) {
|
|
const double alpha = *(pfoff++);
|
|
const T val1 = *ptrs, val2 = ptrs<ptrsmax?*(ptrs + 1):val1;
|
|
*(ptrd++) = (T)((1 - alpha)*val1 + alpha*val2);
|
|
ptrs+=*(poff++);
|
|
}
|
|
}
|
|
}
|
|
} else resx.assign(*this,true);
|
|
|
|
if (sy!=_height) {
|
|
if (_height==1) resx.get_resize(sx,sy,_depth,_spectrum,1).move_to(resy);
|
|
else {
|
|
if (_height>sy) resx.get_resize(sx,sy,_depth,_spectrum,2).move_to(resy);
|
|
else {
|
|
const double fy = (!boundary_conditions && sy>_height)?(sy>1?(_height - 1.)/(sy - 1):0):
|
|
(double)_height/sy;
|
|
resy.assign(sx,sy,_depth,_spectrum);
|
|
curr = old = 0;
|
|
{
|
|
unsigned int *poff = off._data;
|
|
double *pfoff = foff._data;
|
|
cimg_forY(resy,y) {
|
|
*(pfoff++) = curr - (unsigned int)curr;
|
|
old = curr;
|
|
curr = std::min(height() - 1.,curr + fy);
|
|
*(poff++) = sx*((unsigned int)curr - (unsigned int)old);
|
|
}
|
|
}
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3)
|
|
cimg_openmp_if(resy._height>=256 && resy._width*resy._depth*resy._spectrum>=256))
|
|
cimg_forXZC(resy,x,z,c) {
|
|
const T *ptrs = resx.data(x,0,z,c), *const ptrsmax = ptrs + (_height - 1)*sx;
|
|
T *ptrd = resy.data(x,0,z,c);
|
|
const unsigned int *poff = off._data;
|
|
const double *pfoff = foff._data;
|
|
cimg_forY(resy,y) {
|
|
const double alpha = *(pfoff++);
|
|
const T val1 = *ptrs, val2 = ptrs<ptrsmax?*(ptrs + sx):val1;
|
|
*ptrd = (T)((1 - alpha)*val1 + alpha*val2);
|
|
ptrd+=sx;
|
|
ptrs+=*(poff++);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
resx.assign();
|
|
} else resy.assign(resx,true);
|
|
|
|
if (sz!=_depth) {
|
|
if (_depth==1) resy.get_resize(sx,sy,sz,_spectrum,1).move_to(resz);
|
|
else {
|
|
if (_depth>sz) resy.get_resize(sx,sy,sz,_spectrum,2).move_to(resz);
|
|
else {
|
|
const double fz = (!boundary_conditions && sz>_depth)?(sz>1?(_depth - 1.)/(sz - 1):0):
|
|
(double)_depth/sz;
|
|
const unsigned int sxy = sx*sy;
|
|
resz.assign(sx,sy,sz,_spectrum);
|
|
curr = old = 0;
|
|
{
|
|
unsigned int *poff = off._data;
|
|
double *pfoff = foff._data;
|
|
cimg_forZ(resz,z) {
|
|
*(pfoff++) = curr - (unsigned int)curr;
|
|
old = curr;
|
|
curr = std::min(depth() - 1.,curr + fz);
|
|
*(poff++) = sxy*((unsigned int)curr - (unsigned int)old);
|
|
}
|
|
}
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3)
|
|
cimg_openmp_if(resz._depth>=256 && resz._width*resz._height*resz._spectrum>=256))
|
|
cimg_forXYC(resz,x,y,c) {
|
|
const T *ptrs = resy.data(x,y,0,c), *const ptrsmax = ptrs + (_depth - 1)*sxy;
|
|
T *ptrd = resz.data(x,y,0,c);
|
|
const unsigned int *poff = off._data;
|
|
const double *pfoff = foff._data;
|
|
cimg_forZ(resz,z) {
|
|
const double alpha = *(pfoff++);
|
|
const T val1 = *ptrs, val2 = ptrs<ptrsmax?*(ptrs + sxy):val1;
|
|
*ptrd = (T)((1 - alpha)*val1 + alpha*val2);
|
|
ptrd+=sxy;
|
|
ptrs+=*(poff++);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
resy.assign();
|
|
} else resz.assign(resy,true);
|
|
|
|
if (sc!=_spectrum) {
|
|
if (_spectrum==1) resz.get_resize(sx,sy,sz,sc,1).move_to(resc);
|
|
else {
|
|
if (_spectrum>sc) resz.get_resize(sx,sy,sz,sc,2).move_to(resc);
|
|
else {
|
|
const double fc = (!boundary_conditions && sc>_spectrum)?(sc>1?(_spectrum - 1.)/(sc - 1):0):
|
|
(double)_spectrum/sc;
|
|
const unsigned int sxyz = sx*sy*sz;
|
|
resc.assign(sx,sy,sz,sc);
|
|
curr = old = 0;
|
|
{
|
|
unsigned int *poff = off._data;
|
|
double *pfoff = foff._data;
|
|
cimg_forC(resc,c) {
|
|
*(pfoff++) = curr - (unsigned int)curr;
|
|
old = curr;
|
|
curr = std::min(spectrum() - 1.,curr + fc);
|
|
*(poff++) = sxyz*((unsigned int)curr - (unsigned int)old);
|
|
}
|
|
}
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3)
|
|
cimg_openmp_if(resc._spectrum>=256 && resc._width*resc._height*resc._depth>=256))
|
|
cimg_forXYZ(resc,x,y,z) {
|
|
const T *ptrs = resz.data(x,y,z,0), *const ptrsmax = ptrs + (_spectrum - 1)*sxyz;
|
|
T *ptrd = resc.data(x,y,z,0);
|
|
const unsigned int *poff = off._data;
|
|
const double *pfoff = foff._data;
|
|
cimg_forC(resc,c) {
|
|
const double alpha = *(pfoff++);
|
|
const T val1 = *ptrs, val2 = ptrs<ptrsmax?*(ptrs + sxyz):val1;
|
|
*ptrd = (T)((1 - alpha)*val1 + alpha*val2);
|
|
ptrd+=sxyz;
|
|
ptrs+=*(poff++);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
resz.assign();
|
|
} else resc.assign(resz,true);
|
|
return resc._is_shared?(resz._is_shared?(resy._is_shared?(resx._is_shared?(+(*this)):resx):resy):resz):resc;
|
|
} break;
|
|
|
|
// Grid interpolation.
|
|
//
|
|
case 4 : {
|
|
CImg<T> resx, resy, resz, resc;
|
|
if (sx!=_width) {
|
|
if (sx<_width) get_resize(sx,_height,_depth,_spectrum,1).move_to(resx);
|
|
else {
|
|
resx.assign(sx,_height,_depth,_spectrum,(T)0);
|
|
const int dx = (int)(2*sx), dy = 2*width();
|
|
int err = (int)(dy + centering_x*(sx*dy/width() - dy)), xs = 0;
|
|
cimg_forX(resx,x) if ((err-=dy)<=0) {
|
|
cimg_forYZC(resx,y,z,c) resx(x,y,z,c) = (*this)(xs,y,z,c);
|
|
++xs;
|
|
err+=dx;
|
|
}
|
|
}
|
|
} else resx.assign(*this,true);
|
|
|
|
if (sy!=_height) {
|
|
if (sy<_height) resx.get_resize(sx,sy,_depth,_spectrum,1).move_to(resy);
|
|
else {
|
|
resy.assign(sx,sy,_depth,_spectrum,(T)0);
|
|
const int dx = (int)(2*sy), dy = 2*height();
|
|
int err = (int)(dy + centering_y*(sy*dy/height() - dy)), ys = 0;
|
|
cimg_forY(resy,y) if ((err-=dy)<=0) {
|
|
cimg_forXZC(resy,x,z,c) resy(x,y,z,c) = resx(x,ys,z,c);
|
|
++ys;
|
|
err+=dx;
|
|
}
|
|
}
|
|
resx.assign();
|
|
} else resy.assign(resx,true);
|
|
|
|
if (sz!=_depth) {
|
|
if (sz<_depth) resy.get_resize(sx,sy,sz,_spectrum,1).move_to(resz);
|
|
else {
|
|
resz.assign(sx,sy,sz,_spectrum,(T)0);
|
|
const int dx = (int)(2*sz), dy = 2*depth();
|
|
int err = (int)(dy + centering_z*(sz*dy/depth() - dy)), zs = 0;
|
|
cimg_forZ(resz,z) if ((err-=dy)<=0) {
|
|
cimg_forXYC(resz,x,y,c) resz(x,y,z,c) = resy(x,y,zs,c);
|
|
++zs;
|
|
err+=dx;
|
|
}
|
|
}
|
|
resy.assign();
|
|
} else resz.assign(resy,true);
|
|
|
|
if (sc!=_spectrum) {
|
|
if (sc<_spectrum) resz.get_resize(sx,sy,sz,sc,1).move_to(resc);
|
|
else {
|
|
resc.assign(sx,sy,sz,sc,(T)0);
|
|
const int dx = (int)(2*sc), dy = 2*spectrum();
|
|
int err = (int)(dy + centering_c*(sc*dy/spectrum() - dy)), cs = 0;
|
|
cimg_forC(resc,c) if ((err-=dy)<=0) {
|
|
cimg_forXYZ(resc,x,y,z) resc(x,y,z,c) = resz(x,y,z,cs);
|
|
++cs;
|
|
err+=dx;
|
|
}
|
|
}
|
|
resz.assign();
|
|
} else resc.assign(resz,true);
|
|
|
|
return resc._is_shared?(resz._is_shared?(resy._is_shared?(resx._is_shared?(+(*this)):resx):resy):resz):resc;
|
|
} break;
|
|
|
|
// Cubic interpolation.
|
|
//
|
|
case 5 : {
|
|
const Tfloat vmin = (Tfloat)cimg::type<T>::min(), vmax = (Tfloat)cimg::type<T>::max();
|
|
CImg<uintT> off(cimg::max(sx,sy,sz,sc));
|
|
CImg<doubleT> foff(off._width);
|
|
CImg<T> resx, resy, resz, resc;
|
|
double curr, old;
|
|
|
|
if (sx!=_width) {
|
|
if (_width==1) get_resize(sx,_height,_depth,_spectrum,1).move_to(resx);
|
|
else {
|
|
if (_width>sx) get_resize(sx,_height,_depth,_spectrum,2).move_to(resx);
|
|
else {
|
|
const double fx = (!boundary_conditions && sx>_width)?(sx>1?(_width - 1.)/(sx - 1):0):
|
|
(double)_width/sx;
|
|
resx.assign(sx,_height,_depth,_spectrum);
|
|
curr = old = 0;
|
|
{
|
|
unsigned int *poff = off._data;
|
|
double *pfoff = foff._data;
|
|
cimg_forX(resx,x) {
|
|
*(pfoff++) = curr - (unsigned int)curr;
|
|
old = curr;
|
|
curr = std::min(width() - 1.,curr + fx);
|
|
*(poff++) = (unsigned int)curr - (unsigned int)old;
|
|
}
|
|
}
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3)
|
|
cimg_openmp_if(resx._width>=256 && resx._height*resx._depth*resx._spectrum>=256))
|
|
cimg_forYZC(resx,y,z,c) {
|
|
const T *const ptrs0 = data(0,y,z,c), *ptrs = ptrs0, *const ptrsmax = ptrs + (_width - 2);
|
|
T *ptrd = resx.data(0,y,z,c);
|
|
const unsigned int *poff = off._data;
|
|
const double *pfoff = foff._data;
|
|
cimg_forX(resx,x) {
|
|
const double
|
|
t = *(pfoff++),
|
|
val1 = (double)*ptrs,
|
|
val0 = ptrs>ptrs0?(double)*(ptrs - 1):val1,
|
|
val2 = ptrs<=ptrsmax?(double)*(ptrs + 1):val1,
|
|
val3 = ptrs<ptrsmax?(double)*(ptrs + 2):val2,
|
|
val = val1 + 0.5f*(t*(-val0 + val2) + t*t*(2*val0 - 5*val1 + 4*val2 - val3) +
|
|
t*t*t*(-val0 + 3*val1 - 3*val2 + val3));
|
|
*(ptrd++) = (T)(val<vmin?vmin:val>vmax?vmax:val);
|
|
ptrs+=*(poff++);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else resx.assign(*this,true);
|
|
|
|
if (sy!=_height) {
|
|
if (_height==1) resx.get_resize(sx,sy,_depth,_spectrum,1).move_to(resy);
|
|
else {
|
|
if (_height>sy) resx.get_resize(sx,sy,_depth,_spectrum,2).move_to(resy);
|
|
else {
|
|
const double fy = (!boundary_conditions && sy>_height)?(sy>1?(_height - 1.)/(sy - 1):0):
|
|
(double)_height/sy;
|
|
resy.assign(sx,sy,_depth,_spectrum);
|
|
curr = old = 0;
|
|
{
|
|
unsigned int *poff = off._data;
|
|
double *pfoff = foff._data;
|
|
cimg_forY(resy,y) {
|
|
*(pfoff++) = curr - (unsigned int)curr;
|
|
old = curr;
|
|
curr = std::min(height() - 1.,curr + fy);
|
|
*(poff++) = sx*((unsigned int)curr - (unsigned int)old);
|
|
}
|
|
}
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3)
|
|
cimg_openmp_if(resy._height>=256 && resy._width*resy._depth*resy._spectrum>=256))
|
|
cimg_forXZC(resy,x,z,c) {
|
|
const T *const ptrs0 = resx.data(x,0,z,c), *ptrs = ptrs0, *const ptrsmax = ptrs + (_height - 2)*sx;
|
|
T *ptrd = resy.data(x,0,z,c);
|
|
const unsigned int *poff = off._data;
|
|
const double *pfoff = foff._data;
|
|
cimg_forY(resy,y) {
|
|
const double
|
|
t = *(pfoff++),
|
|
val1 = (double)*ptrs,
|
|
val0 = ptrs>ptrs0?(double)*(ptrs - sx):val1,
|
|
val2 = ptrs<=ptrsmax?(double)*(ptrs + sx):val1,
|
|
val3 = ptrs<ptrsmax?(double)*(ptrs + 2*sx):val2,
|
|
val = val1 + 0.5f*(t*(-val0 + val2) + t*t*(2*val0 - 5*val1 + 4*val2 - val3) +
|
|
t*t*t*(-val0 + 3*val1 - 3*val2 + val3));
|
|
*ptrd = (T)(val<vmin?vmin:val>vmax?vmax:val);
|
|
ptrd+=sx;
|
|
ptrs+=*(poff++);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
resx.assign();
|
|
} else resy.assign(resx,true);
|
|
|
|
if (sz!=_depth) {
|
|
if (_depth==1) resy.get_resize(sx,sy,sz,_spectrum,1).move_to(resz);
|
|
else {
|
|
if (_depth>sz) resy.get_resize(sx,sy,sz,_spectrum,2).move_to(resz);
|
|
else {
|
|
const double fz = (!boundary_conditions && sz>_depth)?(sz>1?(_depth - 1.)/(sz - 1):0):
|
|
(double)_depth/sz;
|
|
const unsigned int sxy = sx*sy;
|
|
resz.assign(sx,sy,sz,_spectrum);
|
|
curr = old = 0;
|
|
{
|
|
unsigned int *poff = off._data;
|
|
double *pfoff = foff._data;
|
|
cimg_forZ(resz,z) {
|
|
*(pfoff++) = curr - (unsigned int)curr;
|
|
old = curr;
|
|
curr = std::min(depth() - 1.,curr + fz);
|
|
*(poff++) = sxy*((unsigned int)curr - (unsigned int)old);
|
|
}
|
|
}
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3)
|
|
cimg_openmp_if(resz._depth>=256 && resz._width*resz._height*resz._spectrum>=256))
|
|
cimg_forXYC(resz,x,y,c) {
|
|
const T *const ptrs0 = resy.data(x,y,0,c), *ptrs = ptrs0, *const ptrsmax = ptrs + (_depth - 2)*sxy;
|
|
T *ptrd = resz.data(x,y,0,c);
|
|
const unsigned int *poff = off._data;
|
|
const double *pfoff = foff._data;
|
|
cimg_forZ(resz,z) {
|
|
const double
|
|
t = *(pfoff++),
|
|
val1 = (double)*ptrs,
|
|
val0 = ptrs>ptrs0?(double)*(ptrs - sxy):val1,
|
|
val2 = ptrs<=ptrsmax?(double)*(ptrs + sxy):val1,
|
|
val3 = ptrs<ptrsmax?(double)*(ptrs + 2*sxy):val2,
|
|
val = val1 + 0.5f*(t*(-val0 + val2) + t*t*(2*val0 - 5*val1 + 4*val2 - val3) +
|
|
t*t*t*(-val0 + 3*val1 - 3*val2 + val3));
|
|
*ptrd = (T)(val<vmin?vmin:val>vmax?vmax:val);
|
|
ptrd+=sxy;
|
|
ptrs+=*(poff++);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
resy.assign();
|
|
} else resz.assign(resy,true);
|
|
|
|
if (sc!=_spectrum) {
|
|
if (_spectrum==1) resz.get_resize(sx,sy,sz,sc,1).move_to(resc);
|
|
else {
|
|
if (_spectrum>sc) resz.get_resize(sx,sy,sz,sc,2).move_to(resc);
|
|
else {
|
|
const double fc = (!boundary_conditions && sc>_spectrum)?(sc>1?(_spectrum - 1.)/(sc - 1):0):
|
|
(double)_spectrum/sc;
|
|
const unsigned int sxyz = sx*sy*sz;
|
|
resc.assign(sx,sy,sz,sc);
|
|
curr = old = 0;
|
|
{
|
|
unsigned int *poff = off._data;
|
|
double *pfoff = foff._data;
|
|
cimg_forC(resc,c) {
|
|
*(pfoff++) = curr - (unsigned int)curr;
|
|
old = curr;
|
|
curr = std::min(spectrum() - 1.,curr + fc);
|
|
*(poff++) = sxyz*((unsigned int)curr - (unsigned int)old);
|
|
}
|
|
}
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3)
|
|
cimg_openmp_if(resc._spectrum>=256 && resc._width*resc._height*resc._depth>=256))
|
|
cimg_forXYZ(resc,x,y,z) {
|
|
const T *const ptrs0 = resz.data(x,y,z,0), *ptrs = ptrs0, *const ptrsmax = ptrs + (_spectrum - 2)*sxyz;
|
|
T *ptrd = resc.data(x,y,z,0);
|
|
const unsigned int *poff = off._data;
|
|
const double *pfoff = foff._data;
|
|
cimg_forC(resc,c) {
|
|
const double
|
|
t = *(pfoff++),
|
|
val1 = (double)*ptrs,
|
|
val0 = ptrs>ptrs0?(double)*(ptrs - sxyz):val1,
|
|
val2 = ptrs<=ptrsmax?(double)*(ptrs + sxyz):val1,
|
|
val3 = ptrs<ptrsmax?(double)*(ptrs + 2*sxyz):val2,
|
|
val = val1 + 0.5f*(t*(-val0 + val2) + t*t*(2*val0 - 5*val1 + 4*val2 - val3) +
|
|
t*t*t*(-val0 + 3*val1 - 3*val2 + val3));
|
|
*ptrd = (T)(val<vmin?vmin:val>vmax?vmax:val);
|
|
ptrd+=sxyz;
|
|
ptrs+=*(poff++);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
resz.assign();
|
|
} else resc.assign(resz,true);
|
|
|
|
return resc._is_shared?(resz._is_shared?(resy._is_shared?(resx._is_shared?(+(*this)):resx):resy):resz):resc;
|
|
} break;
|
|
|
|
// Lanczos interpolation.
|
|
//
|
|
case 6 : {
|
|
const double vmin = (double)cimg::type<T>::min(), vmax = (double)cimg::type<T>::max();
|
|
CImg<uintT> off(cimg::max(sx,sy,sz,sc));
|
|
CImg<doubleT> foff(off._width);
|
|
CImg<T> resx, resy, resz, resc;
|
|
double curr, old;
|
|
|
|
if (sx!=_width) {
|
|
if (_width==1) get_resize(sx,_height,_depth,_spectrum,1).move_to(resx);
|
|
else {
|
|
if (_width>sx) get_resize(sx,_height,_depth,_spectrum,2).move_to(resx);
|
|
else {
|
|
const double fx = (!boundary_conditions && sx>_width)?(sx>1?(_width - 1.)/(sx - 1):0):
|
|
(double)_width/sx;
|
|
resx.assign(sx,_height,_depth,_spectrum);
|
|
curr = old = 0;
|
|
{
|
|
unsigned int *poff = off._data;
|
|
double *pfoff = foff._data;
|
|
cimg_forX(resx,x) {
|
|
*(pfoff++) = curr - (unsigned int)curr;
|
|
old = curr;
|
|
curr = std::min(width() - 1.,curr + fx);
|
|
*(poff++) = (unsigned int)curr - (unsigned int)old;
|
|
}
|
|
}
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3)
|
|
cimg_openmp_if(resx._width>=256 && resx._height*resx._depth*resx._spectrum>=256))
|
|
cimg_forYZC(resx,y,z,c) {
|
|
const T *const ptrs0 = data(0,y,z,c), *ptrs = ptrs0, *const ptrsmin = ptrs0 + 1,
|
|
*const ptrsmax = ptrs0 + (_width - 2);
|
|
T *ptrd = resx.data(0,y,z,c);
|
|
const unsigned int *poff = off._data;
|
|
const double *pfoff = foff._data;
|
|
cimg_forX(resx,x) {
|
|
const double
|
|
t = *(pfoff++),
|
|
w0 = _cimg_lanczos(t + 2),
|
|
w1 = _cimg_lanczos(t + 1),
|
|
w2 = _cimg_lanczos(t),
|
|
w3 = _cimg_lanczos(t - 1),
|
|
w4 = _cimg_lanczos(t - 2),
|
|
val2 = (double)*ptrs,
|
|
val1 = ptrs>=ptrsmin?(double)*(ptrs - 1):val2,
|
|
val0 = ptrs>ptrsmin?(double)*(ptrs - 2):val1,
|
|
val3 = ptrs<=ptrsmax?(double)*(ptrs + 1):val2,
|
|
val4 = ptrs<ptrsmax?(double)*(ptrs + 2):val3,
|
|
val = (val0*w0 + val1*w1 + val2*w2 + val3*w3 + val4*w4)/(w1 + w2 + w3 + w4);
|
|
*(ptrd++) = (T)(val<vmin?vmin:val>vmax?vmax:val);
|
|
ptrs+=*(poff++);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else resx.assign(*this,true);
|
|
|
|
if (sy!=_height) {
|
|
if (_height==1) resx.get_resize(sx,sy,_depth,_spectrum,1).move_to(resy);
|
|
else {
|
|
if (_height>sy) resx.get_resize(sx,sy,_depth,_spectrum,2).move_to(resy);
|
|
else {
|
|
const double fy = (!boundary_conditions && sy>_height)?(sy>1?(_height - 1.)/(sy - 1):0):
|
|
(double)_height/sy;
|
|
resy.assign(sx,sy,_depth,_spectrum);
|
|
curr = old = 0;
|
|
{
|
|
unsigned int *poff = off._data;
|
|
double *pfoff = foff._data;
|
|
cimg_forY(resy,y) {
|
|
*(pfoff++) = curr - (unsigned int)curr;
|
|
old = curr;
|
|
curr = std::min(height() - 1.,curr + fy);
|
|
*(poff++) = sx*((unsigned int)curr - (unsigned int)old);
|
|
}
|
|
}
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3)
|
|
cimg_openmp_if(resy._height>=256 && resy._width*resy._depth*resy._spectrum>=256))
|
|
cimg_forXZC(resy,x,z,c) {
|
|
const T *const ptrs0 = resx.data(x,0,z,c), *ptrs = ptrs0, *const ptrsmin = ptrs0 + sx,
|
|
*const ptrsmax = ptrs0 + (_height - 2)*sx;
|
|
T *ptrd = resy.data(x,0,z,c);
|
|
const unsigned int *poff = off._data;
|
|
const double *pfoff = foff._data;
|
|
cimg_forY(resy,y) {
|
|
const double
|
|
t = *(pfoff++),
|
|
w0 = _cimg_lanczos(t + 2),
|
|
w1 = _cimg_lanczos(t + 1),
|
|
w2 = _cimg_lanczos(t),
|
|
w3 = _cimg_lanczos(t - 1),
|
|
w4 = _cimg_lanczos(t - 2),
|
|
val2 = (double)*ptrs,
|
|
val1 = ptrs>=ptrsmin?(double)*(ptrs - sx):val2,
|
|
val0 = ptrs>ptrsmin?(double)*(ptrs - 2*sx):val1,
|
|
val3 = ptrs<=ptrsmax?(double)*(ptrs + sx):val2,
|
|
val4 = ptrs<ptrsmax?(double)*(ptrs + 2*sx):val3,
|
|
val = (val0*w0 + val1*w1 + val2*w2 + val3*w3 + val4*w4)/(w1 + w2 + w3 + w4);
|
|
*ptrd = (T)(val<vmin?vmin:val>vmax?vmax:val);
|
|
ptrd+=sx;
|
|
ptrs+=*(poff++);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
resx.assign();
|
|
} else resy.assign(resx,true);
|
|
|
|
if (sz!=_depth) {
|
|
if (_depth==1) resy.get_resize(sx,sy,sz,_spectrum,1).move_to(resz);
|
|
else {
|
|
if (_depth>sz) resy.get_resize(sx,sy,sz,_spectrum,2).move_to(resz);
|
|
else {
|
|
const double fz = (!boundary_conditions && sz>_depth)?(sz>1?(_depth - 1.)/(sz - 1):0):
|
|
(double)_depth/sz;
|
|
const unsigned int sxy = sx*sy;
|
|
resz.assign(sx,sy,sz,_spectrum);
|
|
curr = old = 0;
|
|
{
|
|
unsigned int *poff = off._data;
|
|
double *pfoff = foff._data;
|
|
cimg_forZ(resz,z) {
|
|
*(pfoff++) = curr - (unsigned int)curr;
|
|
old = curr;
|
|
curr = std::min(depth() - 1.,curr + fz);
|
|
*(poff++) = sxy*((unsigned int)curr - (unsigned int)old);
|
|
}
|
|
}
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3)
|
|
cimg_openmp_if(resz._depth>=256 && resz._width*resz._height*resz._spectrum>=256))
|
|
cimg_forXYC(resz,x,y,c) {
|
|
const T *const ptrs0 = resy.data(x,y,0,c), *ptrs = ptrs0, *const ptrsmin = ptrs0 + sxy,
|
|
*const ptrsmax = ptrs0 + (_depth - 2)*sxy;
|
|
T *ptrd = resz.data(x,y,0,c);
|
|
const unsigned int *poff = off._data;
|
|
const double *pfoff = foff._data;
|
|
cimg_forZ(resz,z) {
|
|
const double
|
|
t = *(pfoff++),
|
|
w0 = _cimg_lanczos(t + 2),
|
|
w1 = _cimg_lanczos(t + 1),
|
|
w2 = _cimg_lanczos(t),
|
|
w3 = _cimg_lanczos(t - 1),
|
|
w4 = _cimg_lanczos(t - 2),
|
|
val2 = (double)*ptrs,
|
|
val1 = ptrs>=ptrsmin?(double)*(ptrs - sxy):val2,
|
|
val0 = ptrs>ptrsmin?(double)*(ptrs - 2*sxy):val1,
|
|
val3 = ptrs<=ptrsmax?(double)*(ptrs + sxy):val2,
|
|
val4 = ptrs<ptrsmax?(double)*(ptrs + 2*sxy):val3,
|
|
val = (val0*w0 + val1*w1 + val2*w2 + val3*w3 + val4*w4)/(w1 + w2 + w3 + w4);
|
|
*ptrd = (T)(val<vmin?vmin:val>vmax?vmax:val);
|
|
ptrd+=sxy;
|
|
ptrs+=*(poff++);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
resy.assign();
|
|
} else resz.assign(resy,true);
|
|
|
|
if (sc!=_spectrum) {
|
|
if (_spectrum==1) resz.get_resize(sx,sy,sz,sc,1).move_to(resc);
|
|
else {
|
|
if (_spectrum>sc) resz.get_resize(sx,sy,sz,sc,2).move_to(resc);
|
|
else {
|
|
const double fc = (!boundary_conditions && sc>_spectrum)?(sc>1?(_spectrum - 1.)/(sc - 1):0):
|
|
(double)_spectrum/sc;
|
|
const unsigned int sxyz = sx*sy*sz;
|
|
resc.assign(sx,sy,sz,sc);
|
|
curr = old = 0;
|
|
{
|
|
unsigned int *poff = off._data;
|
|
double *pfoff = foff._data;
|
|
cimg_forC(resc,c) {
|
|
*(pfoff++) = curr - (unsigned int)curr;
|
|
old = curr;
|
|
curr = std::min(spectrum() - 1.,curr + fc);
|
|
*(poff++) = sxyz*((unsigned int)curr - (unsigned int)old);
|
|
}
|
|
}
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3)
|
|
cimg_openmp_if(resc._spectrum>=256 && resc._width*resc._height*resc._depth>=256))
|
|
cimg_forXYZ(resc,x,y,z) {
|
|
const T *const ptrs0 = resz.data(x,y,z,0), *ptrs = ptrs0, *const ptrsmin = ptrs0 + sxyz,
|
|
*const ptrsmax = ptrs + (_spectrum - 2)*sxyz;
|
|
T *ptrd = resc.data(x,y,z,0);
|
|
const unsigned int *poff = off._data;
|
|
const double *pfoff = foff._data;
|
|
cimg_forC(resc,c) {
|
|
const double
|
|
t = *(pfoff++),
|
|
w0 = _cimg_lanczos(t + 2),
|
|
w1 = _cimg_lanczos(t + 1),
|
|
w2 = _cimg_lanczos(t),
|
|
w3 = _cimg_lanczos(t - 1),
|
|
w4 = _cimg_lanczos(t - 2),
|
|
val2 = (double)*ptrs,
|
|
val1 = ptrs>=ptrsmin?(double)*(ptrs - sxyz):val2,
|
|
val0 = ptrs>ptrsmin?(double)*(ptrs - 2*sxyz):val1,
|
|
val3 = ptrs<=ptrsmax?(double)*(ptrs + sxyz):val2,
|
|
val4 = ptrs<ptrsmax?(double)*(ptrs + 2*sxyz):val3,
|
|
val = (val0*w0 + val1*w1 + val2*w2 + val3*w3 + val4*w4)/(w1 + w2 + w3 + w4);
|
|
*ptrd = (T)(val<vmin?vmin:val>vmax?vmax:val);
|
|
ptrd+=sxyz;
|
|
ptrs+=*(poff++);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
resz.assign();
|
|
} else resc.assign(resz,true);
|
|
|
|
return resc._is_shared?(resz._is_shared?(resy._is_shared?(resx._is_shared?(+(*this)):resx):resy):resz):resc;
|
|
} break;
|
|
|
|
// Unknown interpolation.
|
|
//
|
|
default :
|
|
throw CImgArgumentException(_cimg_instance
|
|
"resize(): Invalid specified interpolation %d "
|
|
"(should be { -1=raw | 0=none | 1=nearest | 2=average | 3=linear | 4=grid | "
|
|
"5=cubic | 6=lanczos }).",
|
|
cimg_instance,
|
|
interpolation_type);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Resize image to dimensions of another image.
|
|
/**
|
|
\param src Reference image used for dimensions.
|
|
\param interpolation_type Interpolation method.
|
|
\param boundary_conditions Boundary conditions.
|
|
Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }.
|
|
\param centering_x Set centering type (only if \p interpolation_type=0).
|
|
\param centering_y Set centering type (only if \p interpolation_type=0).
|
|
\param centering_z Set centering type (only if \p interpolation_type=0).
|
|
\param centering_c Set centering type (only if \p interpolation_type=0).
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& resize(const CImg<t>& src,
|
|
const int interpolation_type=1, const unsigned int boundary_conditions=0,
|
|
const float centering_x = 0, const float centering_y = 0,
|
|
const float centering_z = 0, const float centering_c = 0) {
|
|
return resize(src._width,src._height,src._depth,src._spectrum,interpolation_type,boundary_conditions,
|
|
centering_x,centering_y,centering_z,centering_c);
|
|
}
|
|
|
|
//! Resize image to dimensions of another image \newinstance.
|
|
template<typename t>
|
|
CImg<T> get_resize(const CImg<t>& src,
|
|
const int interpolation_type=1, const unsigned int boundary_conditions=0,
|
|
const float centering_x = 0, const float centering_y = 0,
|
|
const float centering_z = 0, const float centering_c = 0) const {
|
|
return get_resize(src._width,src._height,src._depth,src._spectrum,interpolation_type,boundary_conditions,
|
|
centering_x,centering_y,centering_z,centering_c);
|
|
}
|
|
|
|
//! Resize image to dimensions of a display window.
|
|
/**
|
|
\param disp Reference display window used for dimensions.
|
|
\param interpolation_type Interpolation method.
|
|
\param boundary_conditions Boundary conditions.
|
|
Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }.
|
|
\param centering_x Set centering type (only if \p interpolation_type=0).
|
|
\param centering_y Set centering type (only if \p interpolation_type=0).
|
|
\param centering_z Set centering type (only if \p interpolation_type=0).
|
|
\param centering_c Set centering type (only if \p interpolation_type=0).
|
|
**/
|
|
CImg<T>& resize(const CImgDisplay& disp,
|
|
const int interpolation_type=1, const unsigned int boundary_conditions=0,
|
|
const float centering_x = 0, const float centering_y = 0,
|
|
const float centering_z = 0, const float centering_c = 0) {
|
|
return resize(disp.width(),disp.height(),_depth,_spectrum,interpolation_type,boundary_conditions,
|
|
centering_x,centering_y,centering_z,centering_c);
|
|
}
|
|
|
|
//! Resize image to dimensions of a display window \newinstance.
|
|
CImg<T> get_resize(const CImgDisplay& disp,
|
|
const int interpolation_type=1, const unsigned int boundary_conditions=0,
|
|
const float centering_x = 0, const float centering_y = 0,
|
|
const float centering_z = 0, const float centering_c = 0) const {
|
|
return get_resize(disp.width(),disp.height(),_depth,_spectrum,interpolation_type,boundary_conditions,
|
|
centering_x,centering_y,centering_z,centering_c);
|
|
}
|
|
|
|
//! Resize image to half-size along XY axes, using an optimized filter.
|
|
CImg<T>& resize_halfXY() {
|
|
return get_resize_halfXY().move_to(*this);
|
|
}
|
|
|
|
//! Resize image to half-size along XY axes, using an optimized filter \newinstance.
|
|
CImg<T> get_resize_halfXY() const {
|
|
if (is_empty()) return *this;
|
|
static const Tfloat kernel[9] = { 0.07842776544f, 0.1231940459f, 0.07842776544f,
|
|
0.1231940459f, 0.1935127547f, 0.1231940459f,
|
|
0.07842776544f, 0.1231940459f, 0.07842776544f };
|
|
CImg<T> I(9), res(_width/2,_height/2,_depth,_spectrum);
|
|
T *ptrd = res._data;
|
|
cimg_forZC(*this,z,c) cimg_for3x3(*this,x,y,z,c,I,T)
|
|
if (x%2 && y%2) *(ptrd++) = (T)
|
|
(I[0]*kernel[0] + I[1]*kernel[1] + I[2]*kernel[2] +
|
|
I[3]*kernel[3] + I[4]*kernel[4] + I[5]*kernel[5] +
|
|
I[6]*kernel[6] + I[7]*kernel[7] + I[8]*kernel[8]);
|
|
return res;
|
|
}
|
|
|
|
//! Resize image to double-size, using the Scale2X algorithm.
|
|
/**
|
|
\note Use anisotropic upscaling algorithm
|
|
<a href="http://scale2x.sourceforge.net/algorithm.html">described here</a>.
|
|
**/
|
|
CImg<T>& resize_doubleXY() {
|
|
return get_resize_doubleXY().move_to(*this);
|
|
}
|
|
|
|
//! Resize image to double-size, using the Scale2X algorithm \newinstance.
|
|
CImg<T> get_resize_doubleXY() const {
|
|
#define _cimg_gs2x_for3(bound,i) \
|
|
for (int i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(bound)?(int)(bound) - 1:1; \
|
|
_n1##i<(int)(bound) || i==--_n1##i; \
|
|
_p1##i = i++, ++_n1##i, ptrd1+=(res)._width, ptrd2+=(res)._width)
|
|
|
|
#define _cimg_gs2x_for3x3(img,x,y,z,c,I,T) \
|
|
_cimg_gs2x_for3((img)._height,y) for (int x = 0, \
|
|
_p1##x = 0, \
|
|
_n1##x = (int)( \
|
|
(I[1] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[3] = I[4] = (T)(img)(0,y,z,c)), \
|
|
(I[7] = (T)(img)(0,_n1##y,z,c)), \
|
|
1>=(img)._width?(img).width() - 1:1); \
|
|
(_n1##x<(img).width() && ( \
|
|
(I[2] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[5] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[8] = (T)(img)(_n1##x,_n1##y,z,c)),1)) || \
|
|
x==--_n1##x; \
|
|
I[1] = I[2], \
|
|
I[3] = I[4], I[4] = I[5], \
|
|
I[7] = I[8], \
|
|
_p1##x = x++, ++_n1##x)
|
|
|
|
if (is_empty()) return *this;
|
|
CImg<T> res(_width<<1,_height<<1,_depth,_spectrum);
|
|
CImg_3x3(I,T);
|
|
cimg_forZC(*this,z,c) {
|
|
T
|
|
*ptrd1 = res.data(0,0,z,c),
|
|
*ptrd2 = ptrd1 + res._width;
|
|
_cimg_gs2x_for3x3(*this,x,y,z,c,I,T) {
|
|
if (Icp!=Icn && Ipc!=Inc) {
|
|
*(ptrd1++) = Ipc==Icp?Ipc:Icc;
|
|
*(ptrd1++) = Icp==Inc?Inc:Icc;
|
|
*(ptrd2++) = Ipc==Icn?Ipc:Icc;
|
|
*(ptrd2++) = Icn==Inc?Inc:Icc;
|
|
} else { *(ptrd1++) = Icc; *(ptrd1++) = Icc; *(ptrd2++) = Icc; *(ptrd2++) = Icc; }
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Resize image to triple-size, using the Scale3X algorithm.
|
|
/**
|
|
\note Use anisotropic upscaling algorithm
|
|
<a href="http://scale2x.sourceforge.net/algorithm.html">described here</a>.
|
|
**/
|
|
CImg<T>& resize_tripleXY() {
|
|
return get_resize_tripleXY().move_to(*this);
|
|
}
|
|
|
|
//! Resize image to triple-size, using the Scale3X algorithm \newinstance.
|
|
CImg<T> get_resize_tripleXY() const {
|
|
#define _cimg_gs3x_for3(bound,i) \
|
|
for (int i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(bound)?(int)(bound) - 1:1; \
|
|
_n1##i<(int)(bound) || i==--_n1##i; \
|
|
_p1##i = i++, ++_n1##i, ptrd1+=2*(res)._width, ptrd2+=2*(res)._width, ptrd3+=2*(res)._width)
|
|
|
|
#define _cimg_gs3x_for3x3(img,x,y,z,c,I,T) \
|
|
_cimg_gs3x_for3((img)._height,y) for (int x = 0, \
|
|
_p1##x = 0, \
|
|
_n1##x = (int)( \
|
|
(I[0] = I[1] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[3] = I[4] = (T)(img)(0,y,z,c)), \
|
|
(I[6] = I[7] = (T)(img)(0,_n1##y,z,c)), \
|
|
1>=(img)._width?(img).width() - 1:1); \
|
|
(_n1##x<(img).width() && ( \
|
|
(I[2] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[5] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[8] = (T)(img)(_n1##x,_n1##y,z,c)),1)) || \
|
|
x==--_n1##x; \
|
|
I[0] = I[1], I[1] = I[2], \
|
|
I[3] = I[4], I[4] = I[5], \
|
|
I[6] = I[7], I[7] = I[8], \
|
|
_p1##x = x++, ++_n1##x)
|
|
|
|
if (is_empty()) return *this;
|
|
CImg<T> res(3*_width,3*_height,_depth,_spectrum);
|
|
CImg_3x3(I,T);
|
|
cimg_forZC(*this,z,c) {
|
|
T
|
|
*ptrd1 = res.data(0,0,z,c),
|
|
*ptrd2 = ptrd1 + res._width,
|
|
*ptrd3 = ptrd2 + res._width;
|
|
_cimg_gs3x_for3x3(*this,x,y,z,c,I,T) {
|
|
if (Icp != Icn && Ipc != Inc) {
|
|
*(ptrd1++) = Ipc==Icp?Ipc:Icc;
|
|
*(ptrd1++) = (Ipc==Icp && Icc!=Inp) || (Icp==Inc && Icc!=Ipp)?Icp:Icc;
|
|
*(ptrd1++) = Icp==Inc?Inc:Icc;
|
|
*(ptrd2++) = (Ipc==Icp && Icc!=Ipn) || (Ipc==Icn && Icc!=Ipp)?Ipc:Icc;
|
|
*(ptrd2++) = Icc;
|
|
*(ptrd2++) = (Icp==Inc && Icc!=Inn) || (Icn==Inc && Icc!=Inp)?Inc:Icc;
|
|
*(ptrd3++) = Ipc==Icn?Ipc:Icc;
|
|
*(ptrd3++) = (Ipc==Icn && Icc!=Inn) || (Icn==Inc && Icc!=Ipn)?Icn:Icc;
|
|
*(ptrd3++) = Icn==Inc?Inc:Icc;
|
|
} else {
|
|
*(ptrd1++) = Icc; *(ptrd1++) = Icc; *(ptrd1++) = Icc;
|
|
*(ptrd2++) = Icc; *(ptrd2++) = Icc; *(ptrd2++) = Icc;
|
|
*(ptrd3++) = Icc; *(ptrd3++) = Icc; *(ptrd3++) = Icc;
|
|
}
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Mirror image content along specified axis.
|
|
/**
|
|
\param axis Mirror axis
|
|
**/
|
|
CImg<T>& mirror(const char axis) {
|
|
if (is_empty()) return *this;
|
|
T *pf, *pb, *buf = 0;
|
|
switch (cimg::lowercase(axis)) {
|
|
case 'x' : {
|
|
pf = _data; pb = data(_width - 1);
|
|
const unsigned int width2 = _width/2;
|
|
for (unsigned int yzv = 0; yzv<_height*_depth*_spectrum; ++yzv) {
|
|
for (unsigned int x = 0; x<width2; ++x) { const T val = *pf; *(pf++) = *pb; *(pb--) = val; }
|
|
pf+=_width - width2;
|
|
pb+=_width + width2;
|
|
}
|
|
} break;
|
|
case 'y' : {
|
|
buf = new T[_width];
|
|
pf = _data; pb = data(0,_height - 1);
|
|
const unsigned int height2 = _height/2;
|
|
for (unsigned int zv = 0; zv<_depth*_spectrum; ++zv) {
|
|
for (unsigned int y = 0; y<height2; ++y) {
|
|
std::memcpy(buf,pf,_width*sizeof(T));
|
|
std::memcpy(pf,pb,_width*sizeof(T));
|
|
std::memcpy(pb,buf,_width*sizeof(T));
|
|
pf+=_width;
|
|
pb-=_width;
|
|
}
|
|
pf+=(ulongT)_width*(_height - height2);
|
|
pb+=(ulongT)_width*(_height + height2);
|
|
}
|
|
} break;
|
|
case 'z' : {
|
|
buf = new T[(ulongT)_width*_height];
|
|
pf = _data; pb = data(0,0,_depth - 1);
|
|
const unsigned int depth2 = _depth/2;
|
|
cimg_forC(*this,c) {
|
|
for (unsigned int z = 0; z<depth2; ++z) {
|
|
std::memcpy(buf,pf,_width*_height*sizeof(T));
|
|
std::memcpy(pf,pb,_width*_height*sizeof(T));
|
|
std::memcpy(pb,buf,_width*_height*sizeof(T));
|
|
pf+=(ulongT)_width*_height;
|
|
pb-=(ulongT)_width*_height;
|
|
}
|
|
pf+=(ulongT)_width*_height*(_depth - depth2);
|
|
pb+=(ulongT)_width*_height*(_depth + depth2);
|
|
}
|
|
} break;
|
|
case 'c' : {
|
|
buf = new T[(ulongT)_width*_height*_depth];
|
|
pf = _data; pb = data(0,0,0,_spectrum - 1);
|
|
const unsigned int _spectrum2 = _spectrum/2;
|
|
for (unsigned int v = 0; v<_spectrum2; ++v) {
|
|
std::memcpy(buf,pf,_width*_height*_depth*sizeof(T));
|
|
std::memcpy(pf,pb,_width*_height*_depth*sizeof(T));
|
|
std::memcpy(pb,buf,_width*_height*_depth*sizeof(T));
|
|
pf+=(ulongT)_width*_height*_depth;
|
|
pb-=(ulongT)_width*_height*_depth;
|
|
}
|
|
} break;
|
|
default :
|
|
throw CImgArgumentException(_cimg_instance
|
|
"mirror(): Invalid specified axis '%c'.",
|
|
cimg_instance,
|
|
axis);
|
|
}
|
|
delete[] buf;
|
|
return *this;
|
|
}
|
|
|
|
//! Mirror image content along specified axis \newinstance.
|
|
CImg<T> get_mirror(const char axis) const {
|
|
return (+*this).mirror(axis);
|
|
}
|
|
|
|
//! Mirror image content along specified axes.
|
|
/**
|
|
\param axes Mirror axes, as a C-string.
|
|
\note \c axes may contains multiple characters, e.g. \c "xyz"
|
|
**/
|
|
CImg<T>& mirror(const char *const axes) {
|
|
for (const char *s = axes; *s; ++s) mirror(*s);
|
|
return *this;
|
|
}
|
|
|
|
//! Mirror image content along specified axes \newinstance.
|
|
CImg<T> get_mirror(const char *const axes) const {
|
|
return (+*this).mirror(axes);
|
|
}
|
|
|
|
//! Shift image content.
|
|
/**
|
|
\param delta_x Amount of displacement along the X-axis.
|
|
\param delta_y Amount of displacement along the Y-axis.
|
|
\param delta_z Amount of displacement along the Z-axis.
|
|
\param delta_c Amount of displacement along the C-axis.
|
|
\param boundary_conditions Boundary conditions.
|
|
Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }.
|
|
**/
|
|
CImg<T>& shift(const int delta_x, const int delta_y=0, const int delta_z=0, const int delta_c=0,
|
|
const unsigned int boundary_conditions=0) {
|
|
if (is_empty()) return *this;
|
|
if (boundary_conditions==3)
|
|
return get_crop(-delta_x,-delta_y,-delta_z,-delta_c,
|
|
width() - delta_x - 1,
|
|
height() - delta_y - 1,
|
|
depth() - delta_z - 1,
|
|
spectrum() - delta_c - 1,3).move_to(*this);
|
|
if (delta_x) // Shift along X-axis
|
|
switch (boundary_conditions) {
|
|
case 2 : { // Periodic
|
|
const int ml = cimg::mod(-delta_x,width()), ndelta_x = (ml<=width()/2)?ml:(ml-width());
|
|
if (!ndelta_x) return *this;
|
|
CImg<T> buf(cimg::abs(ndelta_x));
|
|
if (ndelta_x>0) cimg_forYZC(*this,y,z,c) {
|
|
std::memcpy(buf,data(0,y,z,c),ndelta_x*sizeof(T));
|
|
std::memmove(data(0,y,z,c),data(ndelta_x,y,z,c),(_width-ndelta_x)*sizeof(T));
|
|
std::memcpy(data(_width-ndelta_x,y,z,c),buf,ndelta_x*sizeof(T));
|
|
} else cimg_forYZC(*this,y,z,c) {
|
|
std::memcpy(buf,data(_width + ndelta_x,y,z,c),-ndelta_x*sizeof(T));
|
|
std::memmove(data(-ndelta_x,y,z,c),data(0,y,z,c),(_width + ndelta_x)*sizeof(T));
|
|
std::memcpy(data(0,y,z,c),buf,-ndelta_x*sizeof(T));
|
|
}
|
|
} break;
|
|
case 1 : // Neumann
|
|
if (delta_x<0) {
|
|
const int ndelta_x = (-delta_x>=width())?width() - 1:-delta_x;
|
|
if (!ndelta_x) return *this;
|
|
cimg_forYZC(*this,y,z,c) {
|
|
std::memmove(data(0,y,z,c),data(ndelta_x,y,z,c),(_width-ndelta_x)*sizeof(T));
|
|
T *ptrd = data(_width - 1,y,z,c);
|
|
const T val = *ptrd;
|
|
for (int l = 0; l<ndelta_x - 1; ++l) *(--ptrd) = val;
|
|
}
|
|
} else {
|
|
const int ndelta_x = (delta_x>=width())?width() - 1:delta_x;
|
|
if (!ndelta_x) return *this;
|
|
cimg_forYZC(*this,y,z,c) {
|
|
std::memmove(data(ndelta_x,y,z,c),data(0,y,z,c),(_width-ndelta_x)*sizeof(T));
|
|
T *ptrd = data(0,y,z,c);
|
|
const T val = *ptrd;
|
|
for (int l = 0; l<ndelta_x - 1; ++l) *(++ptrd) = val;
|
|
}
|
|
}
|
|
break;
|
|
default : // Dirichlet
|
|
if (delta_x<=-width() || delta_x>=width()) return fill((T)0);
|
|
if (delta_x<0) cimg_forYZC(*this,y,z,c) {
|
|
std::memmove(data(0,y,z,c),data(-delta_x,y,z,c),(_width + delta_x)*sizeof(T));
|
|
std::memset(data(_width + delta_x,y,z,c),0,-delta_x*sizeof(T));
|
|
} else cimg_forYZC(*this,y,z,c) {
|
|
std::memmove(data(delta_x,y,z,c),data(0,y,z,c),(_width-delta_x)*sizeof(T));
|
|
std::memset(data(0,y,z,c),0,delta_x*sizeof(T));
|
|
}
|
|
}
|
|
|
|
if (delta_y) // Shift along Y-axis
|
|
switch (boundary_conditions) {
|
|
case 2 : { // Periodic
|
|
const int ml = cimg::mod(-delta_y,height()), ndelta_y = (ml<=height()/2)?ml:(ml-height());
|
|
if (!ndelta_y) return *this;
|
|
CImg<T> buf(width(),cimg::abs(ndelta_y));
|
|
if (ndelta_y>0) cimg_forZC(*this,z,c) {
|
|
std::memcpy(buf,data(0,0,z,c),_width*ndelta_y*sizeof(T));
|
|
std::memmove(data(0,0,z,c),data(0,ndelta_y,z,c),_width*(_height-ndelta_y)*sizeof(T));
|
|
std::memcpy(data(0,_height-ndelta_y,z,c),buf,_width*ndelta_y*sizeof(T));
|
|
} else cimg_forZC(*this,z,c) {
|
|
std::memcpy(buf,data(0,_height + ndelta_y,z,c),-ndelta_y*_width*sizeof(T));
|
|
std::memmove(data(0,-ndelta_y,z,c),data(0,0,z,c),_width*(_height + ndelta_y)*sizeof(T));
|
|
std::memcpy(data(0,0,z,c),buf,-ndelta_y*_width*sizeof(T));
|
|
}
|
|
} break;
|
|
case 1 : // Neumann
|
|
if (delta_y<0) {
|
|
const int ndelta_y = (-delta_y>=height())?height() - 1:-delta_y;
|
|
if (!ndelta_y) return *this;
|
|
cimg_forZC(*this,z,c) {
|
|
std::memmove(data(0,0,z,c),data(0,ndelta_y,z,c),_width*(_height-ndelta_y)*sizeof(T));
|
|
T *ptrd = data(0,_height-ndelta_y,z,c), *ptrs = data(0,_height - 1,z,c);
|
|
for (int l = 0; l<ndelta_y - 1; ++l) { std::memcpy(ptrd,ptrs,_width*sizeof(T)); ptrd+=_width; }
|
|
}
|
|
} else {
|
|
const int ndelta_y = (delta_y>=height())?height() - 1:delta_y;
|
|
if (!ndelta_y) return *this;
|
|
cimg_forZC(*this,z,c) {
|
|
std::memmove(data(0,ndelta_y,z,c),data(0,0,z,c),_width*(_height-ndelta_y)*sizeof(T));
|
|
T *ptrd = data(0,1,z,c), *ptrs = data(0,0,z,c);
|
|
for (int l = 0; l<ndelta_y - 1; ++l) { std::memcpy(ptrd,ptrs,_width*sizeof(T)); ptrd+=_width; }
|
|
}
|
|
}
|
|
break;
|
|
default : // Dirichlet
|
|
if (delta_y<=-height() || delta_y>=height()) return fill((T)0);
|
|
if (delta_y<0) cimg_forZC(*this,z,c) {
|
|
std::memmove(data(0,0,z,c),data(0,-delta_y,z,c),_width*(_height + delta_y)*sizeof(T));
|
|
std::memset(data(0,_height + delta_y,z,c),0,-delta_y*_width*sizeof(T));
|
|
} else cimg_forZC(*this,z,c) {
|
|
std::memmove(data(0,delta_y,z,c),data(0,0,z,c),_width*(_height-delta_y)*sizeof(T));
|
|
std::memset(data(0,0,z,c),0,delta_y*_width*sizeof(T));
|
|
}
|
|
}
|
|
|
|
if (delta_z) // Shift along Z-axis
|
|
switch (boundary_conditions) {
|
|
case 2 : { // Periodic
|
|
const int ml = cimg::mod(-delta_z,depth()), ndelta_z = (ml<=depth()/2)?ml:(ml-depth());
|
|
if (!ndelta_z) return *this;
|
|
CImg<T> buf(width(),height(),cimg::abs(ndelta_z));
|
|
if (ndelta_z>0) cimg_forC(*this,c) {
|
|
std::memcpy(buf,data(0,0,0,c),_width*_height*ndelta_z*sizeof(T));
|
|
std::memmove(data(0,0,0,c),data(0,0,ndelta_z,c),_width*_height*(_depth-ndelta_z)*sizeof(T));
|
|
std::memcpy(data(0,0,_depth-ndelta_z,c),buf,_width*_height*ndelta_z*sizeof(T));
|
|
} else cimg_forC(*this,c) {
|
|
std::memcpy(buf,data(0,0,_depth + ndelta_z,c),-ndelta_z*_width*_height*sizeof(T));
|
|
std::memmove(data(0,0,-ndelta_z,c),data(0,0,0,c),_width*_height*(_depth + ndelta_z)*sizeof(T));
|
|
std::memcpy(data(0,0,0,c),buf,-ndelta_z*_width*_height*sizeof(T));
|
|
}
|
|
} break;
|
|
case 1 : // Neumann
|
|
if (delta_z<0) {
|
|
const int ndelta_z = (-delta_z>=depth())?depth() - 1:-delta_z;
|
|
if (!ndelta_z) return *this;
|
|
cimg_forC(*this,c) {
|
|
std::memmove(data(0,0,0,c),data(0,0,ndelta_z,c),_width*_height*(_depth-ndelta_z)*sizeof(T));
|
|
T *ptrd = data(0,0,_depth-ndelta_z,c), *ptrs = data(0,0,_depth - 1,c);
|
|
for (int l = 0; l<ndelta_z - 1; ++l) {
|
|
std::memcpy(ptrd,ptrs,_width*_height*sizeof(T)); ptrd+=(ulongT)_width*_height;
|
|
}
|
|
}
|
|
} else {
|
|
const int ndelta_z = (delta_z>=depth())?depth() - 1:delta_z;
|
|
if (!ndelta_z) return *this;
|
|
cimg_forC(*this,c) {
|
|
std::memmove(data(0,0,ndelta_z,c),data(0,0,0,c),_width*_height*(_depth-ndelta_z)*sizeof(T));
|
|
T *ptrd = data(0,0,1,c), *ptrs = data(0,0,0,c);
|
|
for (int l = 0; l<ndelta_z - 1; ++l) {
|
|
std::memcpy(ptrd,ptrs,_width*_height*sizeof(T)); ptrd+=(ulongT)_width*_height;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
default : // Dirichlet
|
|
if (delta_z<=-depth() || delta_z>=depth()) return fill((T)0);
|
|
if (delta_z<0) cimg_forC(*this,c) {
|
|
std::memmove(data(0,0,0,c),data(0,0,-delta_z,c),_width*_height*(_depth + delta_z)*sizeof(T));
|
|
std::memset(data(0,0,_depth + delta_z,c),0,_width*_height*(-delta_z)*sizeof(T));
|
|
} else cimg_forC(*this,c) {
|
|
std::memmove(data(0,0,delta_z,c),data(0,0,0,c),_width*_height*(_depth-delta_z)*sizeof(T));
|
|
std::memset(data(0,0,0,c),0,delta_z*_width*_height*sizeof(T));
|
|
}
|
|
}
|
|
|
|
if (delta_c) // Shift along C-axis
|
|
switch (boundary_conditions) {
|
|
case 2 : { // Periodic
|
|
const int ml = cimg::mod(-delta_c,spectrum()), ndelta_c = (ml<=spectrum()/2)?ml:(ml-spectrum());
|
|
if (!ndelta_c) return *this;
|
|
CImg<T> buf(width(),height(),depth(),cimg::abs(ndelta_c));
|
|
if (ndelta_c>0) {
|
|
std::memcpy(buf,_data,_width*_height*_depth*ndelta_c*sizeof(T));
|
|
std::memmove(_data,data(0,0,0,ndelta_c),_width*_height*_depth*(_spectrum-ndelta_c)*sizeof(T));
|
|
std::memcpy(data(0,0,0,_spectrum-ndelta_c),buf,_width*_height*_depth*ndelta_c*sizeof(T));
|
|
} else {
|
|
std::memcpy(buf,data(0,0,0,_spectrum + ndelta_c),-ndelta_c*_width*_height*_depth*sizeof(T));
|
|
std::memmove(data(0,0,0,-ndelta_c),_data,_width*_height*_depth*(_spectrum + ndelta_c)*sizeof(T));
|
|
std::memcpy(_data,buf,-ndelta_c*_width*_height*_depth*sizeof(T));
|
|
}
|
|
} break;
|
|
case 1 : // Neumann
|
|
if (delta_c<0) {
|
|
const int ndelta_c = (-delta_c>=spectrum())?spectrum() - 1:-delta_c;
|
|
if (!ndelta_c) return *this;
|
|
std::memmove(_data,data(0,0,0,ndelta_c),_width*_height*_depth*(_spectrum-ndelta_c)*sizeof(T));
|
|
T *ptrd = data(0,0,0,_spectrum-ndelta_c), *ptrs = data(0,0,0,_spectrum - 1);
|
|
for (int l = 0; l<ndelta_c - 1; ++l) {
|
|
std::memcpy(ptrd,ptrs,_width*_height*_depth*sizeof(T)); ptrd+=(ulongT)_width*_height*_depth;
|
|
}
|
|
} else {
|
|
const int ndelta_c = (delta_c>=spectrum())?spectrum() - 1:delta_c;
|
|
if (!ndelta_c) return *this;
|
|
std::memmove(data(0,0,0,ndelta_c),_data,_width*_height*_depth*(_spectrum-ndelta_c)*sizeof(T));
|
|
T *ptrd = data(0,0,0,1);
|
|
for (int l = 0; l<ndelta_c - 1; ++l) {
|
|
std::memcpy(ptrd,_data,_width*_height*_depth*sizeof(T)); ptrd+=(ulongT)_width*_height*_depth;
|
|
}
|
|
}
|
|
break;
|
|
default : // Dirichlet
|
|
if (delta_c<=-spectrum() || delta_c>=spectrum()) return fill((T)0);
|
|
if (delta_c<0) {
|
|
std::memmove(_data,data(0,0,0,-delta_c),_width*_height*_depth*(_spectrum + delta_c)*sizeof(T));
|
|
std::memset(data(0,0,0,_spectrum + delta_c),0,_width*_height*_depth*(-delta_c)*sizeof(T));
|
|
} else {
|
|
std::memmove(data(0,0,0,delta_c),_data,_width*_height*_depth*(_spectrum-delta_c)*sizeof(T));
|
|
std::memset(_data,0,delta_c*_width*_height*_depth*sizeof(T));
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Shift image content \newinstance.
|
|
CImg<T> get_shift(const int delta_x, const int delta_y=0, const int delta_z=0, const int delta_c=0,
|
|
const unsigned int boundary_conditions=0) const {
|
|
return (+*this).shift(delta_x,delta_y,delta_z,delta_c,boundary_conditions);
|
|
}
|
|
|
|
//! Permute axes order.
|
|
/**
|
|
\param axes_order Axes permutations, as a C-string of 4 characters.
|
|
This function permutes image content regarding the specified axes permutation.
|
|
**/
|
|
CImg<T>& permute_axes(const char *const axes_order) {
|
|
return get_permute_axes(axes_order).move_to(*this);
|
|
}
|
|
|
|
//! Permute axes order \newinstance.
|
|
CImg<T> get_permute_axes(const char *const axes_order) const {
|
|
const T foo = (T)0;
|
|
return _permute_axes(axes_order,foo);
|
|
}
|
|
|
|
template<typename t>
|
|
CImg<t> _permute_axes(const char *const axes_order, const t&) const {
|
|
if (is_empty() || !axes_order) return CImg<t>(*this,false);
|
|
CImg<t> res;
|
|
const T* ptrs = _data;
|
|
unsigned char s_code[4] = { 0,1,2,3 }, n_code[4] = {};
|
|
for (unsigned int l = 0; axes_order[l]; ++l) {
|
|
int c = cimg::lowercase(axes_order[l]);
|
|
if (l>=4 || (c!='x' && c!='y' && c!='z' && c!='c')) { *s_code = 4; break; }
|
|
else { ++n_code[c%=4]; s_code[l] = (unsigned char)c; }
|
|
}
|
|
if (*axes_order && *s_code<4 && *n_code<=1 && n_code[1]<=1 && n_code[2]<=1 && n_code[3]<=1) {
|
|
const unsigned int code = (s_code[0]<<12) | (s_code[1]<<8) | (s_code[2]<<4) | (s_code[3]);
|
|
ulongT wh, whd;
|
|
switch (code) {
|
|
case 0x0123 : // xyzc
|
|
return +*this;
|
|
case 0x0132 : // xycz
|
|
res.assign(_width,_height,_spectrum,_depth);
|
|
wh = (ulongT)res._width*res._height; whd = wh*res._depth;
|
|
cimg_forXYZC(*this,x,y,z,c) res(x,y,c,z,wh,whd) = (t)*(ptrs++);
|
|
break;
|
|
case 0x0213 : // xzyc
|
|
res.assign(_width,_depth,_height,_spectrum);
|
|
wh = (ulongT)res._width*res._height; whd = wh*res._depth;
|
|
cimg_forXYZC(*this,x,y,z,c) res(x,z,y,c,wh,whd) = (t)*(ptrs++);
|
|
break;
|
|
case 0x0231 : // xzcy
|
|
res.assign(_width,_depth,_spectrum,_height);
|
|
wh = (ulongT)res._width*res._height; whd = wh*res._depth;
|
|
cimg_forXYZC(*this,x,y,z,c) res(x,z,c,y,wh,whd) = (t)*(ptrs++);
|
|
break;
|
|
case 0x0312 : // xcyz
|
|
res.assign(_width,_spectrum,_height,_depth);
|
|
wh = (ulongT)res._width*res._height; whd = wh*res._depth;
|
|
cimg_forXYZC(*this,x,y,z,c) res(x,c,y,z,wh,whd) = (t)*(ptrs++);
|
|
break;
|
|
case 0x0321 : // xczy
|
|
res.assign(_width,_spectrum,_depth,_height);
|
|
wh = (ulongT)res._width*res._height; whd = wh*res._depth;
|
|
cimg_forXYZC(*this,x,y,z,c) res(x,c,z,y,wh,whd) = (t)*(ptrs++);
|
|
break;
|
|
case 0x1023 : // yxzc
|
|
res.assign(_height,_width,_depth,_spectrum);
|
|
wh = (ulongT)res._width*res._height; whd = wh*res._depth;
|
|
cimg_forXYZC(*this,x,y,z,c) res(y,x,z,c,wh,whd) = (t)*(ptrs++);
|
|
break;
|
|
case 0x1032 : // yxcz
|
|
res.assign(_height,_width,_spectrum,_depth);
|
|
wh = (ulongT)res._width*res._height; whd = wh*res._depth;
|
|
cimg_forXYZC(*this,x,y,z,c) res(y,x,c,z,wh,whd) = (t)*(ptrs++);
|
|
break;
|
|
case 0x1203 : // yzxc
|
|
res.assign(_height,_depth,_width,_spectrum);
|
|
wh = (ulongT)res._width*res._height; whd = wh*res._depth;
|
|
cimg_forXYZC(*this,x,y,z,c) res(y,z,x,c,wh,whd) = (t)*(ptrs++);
|
|
break;
|
|
case 0x1230 : // yzcx
|
|
res.assign(_height,_depth,_spectrum,_width);
|
|
switch (_width) {
|
|
case 1 : {
|
|
t *ptr_r = res.data(0,0,0,0);
|
|
for (unsigned int siz = _height*_depth*_spectrum; siz; --siz) {
|
|
*(ptr_r++) = (t)*(ptrs++);
|
|
}
|
|
} break;
|
|
case 2 : {
|
|
t *ptr_r = res.data(0,0,0,0), *ptr_g = res.data(0,0,0,1);
|
|
for (unsigned int siz = _height*_depth*_spectrum; siz; --siz) {
|
|
*(ptr_r++) = (t)ptrs[0];
|
|
*(ptr_g++) = (t)ptrs[1];
|
|
ptrs+=2;
|
|
}
|
|
} break;
|
|
case 3 : { // Optimization for the classical conversion from interleaved RGB to planar RGB
|
|
t *ptr_r = res.data(0,0,0,0), *ptr_g = res.data(0,0,0,1), *ptr_b = res.data(0,0,0,2);
|
|
for (unsigned int siz = _height*_depth*_spectrum; siz; --siz) {
|
|
*(ptr_r++) = (t)ptrs[0];
|
|
*(ptr_g++) = (t)ptrs[1];
|
|
*(ptr_b++) = (t)ptrs[2];
|
|
ptrs+=3;
|
|
}
|
|
} break;
|
|
case 4 : { // Optimization for the classical conversion from interleaved RGBA to planar RGBA
|
|
t
|
|
*ptr_r = res.data(0,0,0,0), *ptr_g = res.data(0,0,0,1),
|
|
*ptr_b = res.data(0,0,0,2), *ptr_a = res.data(0,0,0,3);
|
|
for (unsigned int siz = _height*_depth*_spectrum; siz; --siz) {
|
|
*(ptr_r++) = (t)ptrs[0];
|
|
*(ptr_g++) = (t)ptrs[1];
|
|
*(ptr_b++) = (t)ptrs[2];
|
|
*(ptr_a++) = (t)ptrs[3];
|
|
ptrs+=4;
|
|
}
|
|
} break;
|
|
default : {
|
|
wh = (ulongT)res._width*res._height; whd = wh*res._depth;
|
|
cimg_forXYZC(*this,x,y,z,c) res(y,z,c,x,wh,whd) = *(ptrs++);
|
|
return res;
|
|
}
|
|
}
|
|
break;
|
|
case 0x1302 : // ycxz
|
|
res.assign(_height,_spectrum,_width,_depth);
|
|
wh = (ulongT)res._width*res._height; whd = wh*res._depth;
|
|
cimg_forXYZC(*this,x,y,z,c) res(y,c,x,z,wh,whd) = (t)*(ptrs++);
|
|
break;
|
|
case 0x1320 : // yczx
|
|
res.assign(_height,_spectrum,_depth,_width);
|
|
wh = (ulongT)res._width*res._height; whd = wh*res._depth;
|
|
cimg_forXYZC(*this,x,y,z,c) res(y,c,z,x,wh,whd) = (t)*(ptrs++);
|
|
break;
|
|
case 0x2013 : // zxyc
|
|
res.assign(_depth,_width,_height,_spectrum);
|
|
wh = (ulongT)res._width*res._height; whd = wh*res._depth;
|
|
cimg_forXYZC(*this,x,y,z,c) res(z,x,y,c,wh,whd) = (t)*(ptrs++);
|
|
break;
|
|
case 0x2031 : // zxcy
|
|
res.assign(_depth,_width,_spectrum,_height);
|
|
wh = (ulongT)res._width*res._height; whd = wh*res._depth;
|
|
cimg_forXYZC(*this,x,y,z,c) res(z,x,c,y,wh,whd) = (t)*(ptrs++);
|
|
break;
|
|
case 0x2103 : // zyxc
|
|
res.assign(_depth,_height,_width,_spectrum);
|
|
wh = (ulongT)res._width*res._height; whd = wh*res._depth;
|
|
cimg_forXYZC(*this,x,y,z,c) res(z,y,x,c,wh,whd) = (t)*(ptrs++);
|
|
break;
|
|
case 0x2130 : // zycx
|
|
res.assign(_depth,_height,_spectrum,_width);
|
|
wh = (ulongT)res._width*res._height; whd = wh*res._depth;
|
|
cimg_forXYZC(*this,x,y,z,c) res(z,y,c,x,wh,whd) = (t)*(ptrs++);
|
|
break;
|
|
case 0x2301 : // zcxy
|
|
res.assign(_depth,_spectrum,_width,_height);
|
|
wh = (ulongT)res._width*res._height; whd = wh*res._depth;
|
|
cimg_forXYZC(*this,x,y,z,c) res(z,c,x,y,wh,whd) = (t)*(ptrs++);
|
|
break;
|
|
case 0x2310 : // zcyx
|
|
res.assign(_depth,_spectrum,_height,_width);
|
|
wh = (ulongT)res._width*res._height; whd = wh*res._depth;
|
|
cimg_forXYZC(*this,x,y,z,c) res(z,c,y,x,wh,whd) = (t)*(ptrs++);
|
|
break;
|
|
case 0x3012 : // cxyz
|
|
res.assign(_spectrum,_width,_height,_depth);
|
|
switch (_spectrum) {
|
|
case 1 : {
|
|
const T *ptr_r = data(0,0,0,0);
|
|
t *ptrd = res._data;
|
|
for (ulongT siz = (ulongT)_width*_height*_depth; siz; --siz) *(ptrd++) = (t)*(ptr_r++);
|
|
} break;
|
|
case 2 : {
|
|
const T *ptr_r = data(0,0,0,0), *ptr_g = data(0,0,0,1);
|
|
t *ptrd = res._data;
|
|
for (ulongT siz = (ulongT)_width*_height*_depth; siz; --siz) {
|
|
ptrd[0] = (t)*(ptr_r++);
|
|
ptrd[1] = (t)*(ptr_g++);
|
|
ptrd+=2;
|
|
}
|
|
} break;
|
|
case 3 : { // Optimization for the classical conversion from planar RGB to interleaved RGB
|
|
const T *ptr_r = data(0,0,0,0), *ptr_g = data(0,0,0,1), *ptr_b = data(0,0,0,2);
|
|
t *ptrd = res._data;
|
|
for (ulongT siz = (ulongT)_width*_height*_depth; siz; --siz) {
|
|
ptrd[0] = (t)*(ptr_r++);
|
|
ptrd[1] = (t)*(ptr_g++);
|
|
ptrd[2] = (t)*(ptr_b++);
|
|
ptrd+=3;
|
|
}
|
|
} break;
|
|
case 4 : { // Optimization for the classical conversion from planar RGBA to interleaved RGBA
|
|
const T *ptr_r = data(0,0,0,0), *ptr_g = data(0,0,0,1), *ptr_b = data(0,0,0,2), *ptr_a = data(0,0,0,3);
|
|
t *ptrd = res._data;
|
|
for (ulongT siz = (ulongT)_width*_height*_depth; siz; --siz) {
|
|
ptrd[0] = (t)*(ptr_r++);
|
|
ptrd[1] = (t)*(ptr_g++);
|
|
ptrd[2] = (t)*(ptr_b++);
|
|
ptrd[3] = (t)*(ptr_a++);
|
|
ptrd+=4;
|
|
}
|
|
} break;
|
|
default : {
|
|
wh = (ulongT)res._width*res._height; whd = wh*res._depth;
|
|
cimg_forXYZC(*this,x,y,z,c) res(c,x,y,z,wh,whd) = (t)*(ptrs++);
|
|
}
|
|
}
|
|
break;
|
|
case 0x3021 : // cxzy
|
|
res.assign(_spectrum,_width,_depth,_height);
|
|
wh = (ulongT)res._width*res._height; whd = wh*res._depth;
|
|
cimg_forXYZC(*this,x,y,z,c) res(c,x,z,y,wh,whd) = (t)*(ptrs++);
|
|
break;
|
|
case 0x3102 : // cyxz
|
|
res.assign(_spectrum,_height,_width,_depth);
|
|
wh = (ulongT)res._width*res._height; whd = wh*res._depth;
|
|
cimg_forXYZC(*this,x,y,z,c) res(c,y,x,z,wh,whd) = (t)*(ptrs++);
|
|
break;
|
|
case 0x3120 : // cyzx
|
|
res.assign(_spectrum,_height,_depth,_width);
|
|
wh = (ulongT)res._width*res._height; whd = wh*res._depth;
|
|
cimg_forXYZC(*this,x,y,z,c) res(c,y,z,x,wh,whd) = (t)*(ptrs++);
|
|
break;
|
|
case 0x3201 : // czxy
|
|
res.assign(_spectrum,_depth,_width,_height);
|
|
wh = (ulongT)res._width*res._height; whd = wh*res._depth;
|
|
cimg_forXYZC(*this,x,y,z,c) res(c,z,x,y,wh,whd) = (t)*(ptrs++);
|
|
break;
|
|
case 0x3210 : // czyx
|
|
res.assign(_spectrum,_depth,_height,_width);
|
|
wh = (ulongT)res._width*res._height; whd = wh*res._depth;
|
|
cimg_forXYZC(*this,x,y,z,c) res(c,z,y,x,wh,whd) = (t)*(ptrs++);
|
|
break;
|
|
}
|
|
}
|
|
if (!res)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"permute_axes(): Invalid specified axes order '%s'.",
|
|
cimg_instance,
|
|
axes_order);
|
|
return res;
|
|
}
|
|
|
|
//! Unroll pixel values along specified axis.
|
|
/**
|
|
\param axis Unroll axis (can be \c 'x', \c 'y', \c 'z' or c 'c').
|
|
**/
|
|
CImg<T>& unroll(const char axis) {
|
|
const unsigned int siz = (unsigned int)size();
|
|
if (siz) switch (cimg::lowercase(axis)) {
|
|
case 'x' : _width = siz; _height = _depth = _spectrum = 1; break;
|
|
case 'y' : _height = siz; _width = _depth = _spectrum = 1; break;
|
|
case 'z' : _depth = siz; _width = _height = _spectrum = 1; break;
|
|
case 'c' : _spectrum = siz; _width = _height = _depth = 1; break;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Unroll pixel values along specified axis \newinstance.
|
|
CImg<T> get_unroll(const char axis) const {
|
|
return (+*this).unroll(axis);
|
|
}
|
|
|
|
//! Rotate image with arbitrary angle.
|
|
/**
|
|
\param angle Rotation angle, in degrees.
|
|
\param interpolation Type of interpolation. Can be <tt>{ 0=nearest | 1=linear | 2=cubic }</tt>.
|
|
\param boundary_conditions Boundary conditions.
|
|
Can be <tt>{ 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }</tt>.
|
|
\note The size of the image is modified.
|
|
**/
|
|
CImg<T>& rotate(const float angle, const unsigned int interpolation=1,
|
|
const unsigned int boundary_conditions=0) {
|
|
const float nangle = cimg::mod(angle,360.f);
|
|
if (nangle==0.f) return *this;
|
|
return get_rotate(nangle,interpolation,boundary_conditions).move_to(*this);
|
|
}
|
|
|
|
//! Rotate image with arbitrary angle \newinstance.
|
|
CImg<T> get_rotate(const float angle, const unsigned int interpolation=1,
|
|
const unsigned int boundary_conditions=0) const {
|
|
if (is_empty()) return *this;
|
|
CImg<T> res;
|
|
const float nangle = cimg::mod(angle,360.f);
|
|
if (boundary_conditions!=1 && cimg::mod(nangle,90.f)==0) { // Optimized version for orthogonal angles
|
|
const int wm1 = width() - 1, hm1 = height() - 1;
|
|
const int iangle = (int)nangle/90;
|
|
switch (iangle) {
|
|
case 1 : { // 90 deg
|
|
res.assign(_height,_width,_depth,_spectrum);
|
|
T *ptrd = res._data;
|
|
cimg_forXYZC(res,x,y,z,c) *(ptrd++) = (*this)(y,hm1 - x,z,c);
|
|
} break;
|
|
case 2 : { // 180 deg
|
|
res.assign(_width,_height,_depth,_spectrum);
|
|
T *ptrd = res._data;
|
|
cimg_forXYZC(res,x,y,z,c) *(ptrd++) = (*this)(wm1 - x,hm1 - y,z,c);
|
|
} break;
|
|
case 3 : { // 270 deg
|
|
res.assign(_height,_width,_depth,_spectrum);
|
|
T *ptrd = res._data;
|
|
cimg_forXYZC(res,x,y,z,c) *(ptrd++) = (*this)(wm1 - y,x,z,c);
|
|
} break;
|
|
default : // 0 deg
|
|
return *this;
|
|
}
|
|
} else { // Generic angle
|
|
const float
|
|
rad = (float)(nangle*cimg::PI/180.),
|
|
ca = (float)std::cos(rad), sa = (float)std::sin(rad),
|
|
ux = cimg::abs((_width - 1)*ca), uy = cimg::abs((_width - 1)*sa),
|
|
vx = cimg::abs((_height - 1)*sa), vy = cimg::abs((_height - 1)*ca),
|
|
w2 = 0.5f*(_width - 1), h2 = 0.5f*(_height - 1);
|
|
res.assign((int)cimg::round(1 + ux + vx),(int)cimg::round(1 + uy + vy),_depth,_spectrum);
|
|
const float rw2 = 0.5f*(res._width - 1), rh2 = 0.5f*(res._height - 1);
|
|
_rotate(res,nangle,interpolation,boundary_conditions,w2,h2,rw2,rh2);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Rotate image with arbitrary angle, around a center point.
|
|
/**
|
|
\param angle Rotation angle, in degrees.
|
|
\param cx X-coordinate of the rotation center.
|
|
\param cy Y-coordinate of the rotation center.
|
|
\param interpolation Type of interpolation, <tt>{ 0=nearest | 1=linear | 2=cubic | 3=mirror }</tt>.
|
|
\param boundary_conditions Boundary conditions, <tt>{ 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }</tt>.
|
|
**/
|
|
CImg<T>& rotate(const float angle, const float cx, const float cy,
|
|
const unsigned int interpolation, const unsigned int boundary_conditions=0) {
|
|
return get_rotate(angle,cx,cy,interpolation,boundary_conditions).move_to(*this);
|
|
}
|
|
|
|
//! Rotate image with arbitrary angle, around a center point \newinstance.
|
|
CImg<T> get_rotate(const float angle, const float cx, const float cy,
|
|
const unsigned int interpolation, const unsigned int boundary_conditions=0) const {
|
|
if (is_empty()) return *this;
|
|
CImg<T> res(_width,_height,_depth,_spectrum);
|
|
_rotate(res,angle,interpolation,boundary_conditions,cx,cy,cx,cy);
|
|
return res;
|
|
}
|
|
|
|
// [internal] Perform 2D rotation with arbitrary angle.
|
|
void _rotate(CImg<T>& res, const float angle,
|
|
const unsigned int interpolation, const unsigned int boundary_conditions,
|
|
const float w2, const float h2,
|
|
const float rw2, const float rh2) const {
|
|
const float
|
|
rad = (float)(angle*cimg::PI/180.),
|
|
ca = (float)std::cos(rad), sa = (float)std::sin(rad);
|
|
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
|
|
switch (interpolation) {
|
|
case 2 : { // Cubic interpolation
|
|
const float ww = 2.f*width(), hh = 2.f*height();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),2048))
|
|
cimg_forXYZC(res,x,y,z,c) {
|
|
const float xc = x - rw2, yc = y - rh2,
|
|
mx = cimg::mod(w2 + xc*ca + yc*sa,ww),
|
|
my = cimg::mod(h2 - xc*sa + yc*ca,hh);
|
|
res(x,y,z,c) = _cubic_atXY_c(mx<width()?mx:ww - mx - 1,my<height()?my:hh - my - 1,z,c);
|
|
}
|
|
} break;
|
|
case 1 : { // Linear interpolation
|
|
const float ww = 2.f*width(), hh = 2.f*height();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),2048))
|
|
cimg_forXYZC(res,x,y,z,c) {
|
|
const float xc = x - rw2, yc = y - rh2,
|
|
mx = cimg::mod(w2 + xc*ca + yc*sa,ww),
|
|
my = cimg::mod(h2 - xc*sa + yc*ca,hh);
|
|
res(x,y,z,c) = (T)_linear_atXY(mx<width()?mx:ww - mx - 1,my<height()?my:hh - my - 1,z,c);
|
|
}
|
|
} break;
|
|
default : { // Nearest-neighbor interpolation
|
|
const int ww = 2*width(), hh = 2*height();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),2048))
|
|
cimg_forXYZC(res,x,y,z,c) {
|
|
const float xc = x - rw2, yc = y - rh2,
|
|
mx = cimg::mod((int)cimg::round(w2 + xc*ca + yc*sa),ww),
|
|
my = cimg::mod((int)cimg::round(h2 - xc*sa + yc*ca),hh);
|
|
res(x,y,z,c) = (*this)(mx<width()?mx:ww - mx - 1,my<height()?my:hh - my - 1,z,c);
|
|
}
|
|
}
|
|
}
|
|
} break;
|
|
|
|
case 2 : // Periodic
|
|
switch (interpolation) {
|
|
case 2 : { // Cubic interpolation
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),2048))
|
|
cimg_forXYZC(res,x,y,z,c) {
|
|
const float xc = x - rw2, yc = y - rh2;
|
|
res(x,y,z,c) = _cubic_atXY_pc(w2 + xc*ca + yc*sa,h2 - xc*sa + yc*ca,z,c);
|
|
}
|
|
} break;
|
|
case 1 : { // Linear interpolation
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),2048))
|
|
cimg_forXYZC(res,x,y,z,c) {
|
|
const float xc = x - rw2, yc = y - rh2;
|
|
res(x,y,z,c) = (T)_linear_atXY_p(w2 + xc*ca + yc*sa,h2 - xc*sa + yc*ca,z,c);
|
|
}
|
|
} break;
|
|
default : { // Nearest-neighbor interpolation
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),2048))
|
|
cimg_forXYZC(res,x,y,z,c) {
|
|
const float xc = x - rw2, yc = y - rh2;
|
|
res(x,y,z,c) = (*this)(cimg::mod((int)cimg::round(w2 + xc*ca + yc*sa),(float)width()),
|
|
cimg::mod((int)cimg::round(h2 - xc*sa + yc*ca),(float)height()),z,c);
|
|
}
|
|
}
|
|
} break;
|
|
|
|
case 1 : // Neumann
|
|
switch (interpolation) {
|
|
case 2 : { // Cubic interpolation
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),2048))
|
|
cimg_forXYZC(res,x,y,z,c) {
|
|
const float xc = x - rw2, yc = y - rh2;
|
|
res(x,y,z,c) = _cubic_atXY_c(w2 + xc*ca + yc*sa,h2 - xc*sa + yc*ca,z,c);
|
|
}
|
|
} break;
|
|
case 1 : { // Linear interpolation
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),2048))
|
|
cimg_forXYZC(res,x,y,z,c) {
|
|
const float xc = x - rw2, yc = y - rh2;
|
|
res(x,y,z,c) = (T)_linear_atXY(w2 + xc*ca + yc*sa,h2 - xc*sa + yc*ca,z,c);
|
|
}
|
|
} break;
|
|
default : { // Nearest-neighbor interpolation
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),2048))
|
|
cimg_forXYZC(res,x,y,z,c) {
|
|
const float xc = x - rw2, yc = y - rh2;
|
|
res(x,y,z,c) = _atXY((int)cimg::round(w2 + xc*ca + yc*sa),
|
|
(int)cimg::round(h2 - xc*sa + yc*ca),z,c);
|
|
}
|
|
}
|
|
} break;
|
|
|
|
default : // Dirichlet
|
|
switch (interpolation) {
|
|
case 2 : { // Cubic interpolation
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),2048))
|
|
cimg_forXYZC(res,x,y,z,c) {
|
|
const float xc = x - rw2, yc = y - rh2;
|
|
res(x,y,z,c) = cubic_atXY_c(w2 + xc*ca + yc*sa,h2 - xc*sa + yc*ca,z,c,(T)0);
|
|
}
|
|
} break;
|
|
case 1 : { // Linear interpolation
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),2048))
|
|
cimg_forXYZC(res,x,y,z,c) {
|
|
const float xc = x - rw2, yc = y - rh2;
|
|
res(x,y,z,c) = (T)linear_atXY(w2 + xc*ca + yc*sa,h2 - xc*sa + yc*ca,z,c,(T)0);
|
|
}
|
|
} break;
|
|
default : { // Nearest-neighbor interpolation
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),2048))
|
|
cimg_forXYZC(res,x,y,z,c) {
|
|
const float xc = x - rw2, yc = y - rh2;
|
|
res(x,y,z,c) = atXY((int)cimg::round(w2 + xc*ca + yc*sa),
|
|
(int)cimg::round(h2 - xc*sa + yc*ca),z,c,(T)0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//! Rotate volumetric image with arbitrary angle and axis.
|
|
/**
|
|
\param u X-coordinate of the 3D rotation axis.
|
|
\param v Y-coordinate of the 3D rotation axis.
|
|
\param w Z-coordinate of the 3D rotation axis.
|
|
\param angle Rotation angle, in degrees.
|
|
\param interpolation Type of interpolation. Can be <tt>{ 0=nearest | 1=linear | 2=cubic }</tt>.
|
|
\param boundary_conditions Boundary conditions.
|
|
Can be <tt>{ 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }</tt>.
|
|
\note Most of the time, size of the image is modified.
|
|
**/
|
|
CImg<T> rotate(const float u, const float v, const float w, const float angle,
|
|
const unsigned int interpolation, const unsigned int boundary_conditions) {
|
|
const float nangle = cimg::mod(angle,360.f);
|
|
if (nangle==0.f) return *this;
|
|
return get_rotate(u,v,w,nangle,interpolation,boundary_conditions).move_to(*this);
|
|
}
|
|
|
|
//! Rotate volumetric image with arbitrary angle and axis \newinstance.
|
|
CImg<T> get_rotate(const float u, const float v, const float w, const float angle,
|
|
const unsigned int interpolation, const unsigned int boundary_conditions) const {
|
|
if (is_empty()) return *this;
|
|
CImg<T> res;
|
|
const float
|
|
w1 = _width - 1, h1 = _height - 1, d1 = _depth -1,
|
|
w2 = 0.5f*w1, h2 = 0.5f*h1, d2 = 0.5f*d1;
|
|
CImg<floatT> R = CImg<floatT>::rotation_matrix(u,v,w,angle);
|
|
const CImg<Tfloat>
|
|
X = R*CImg<Tfloat>(8,3,1,1,
|
|
0.f,w1,w1,0.f,0.f,w1,w1,0.f,
|
|
0.f,0.f,h1,h1,0.f,0.f,h1,h1,
|
|
0.f,0.f,0.f,0.f,d1,d1,d1,d1);
|
|
float
|
|
xm, xM = X.get_shared_row(0).max_min(xm),
|
|
ym, yM = X.get_shared_row(1).max_min(ym),
|
|
zm, zM = X.get_shared_row(2).max_min(zm);
|
|
const int
|
|
dx = (int)cimg::round(xM - xm),
|
|
dy = (int)cimg::round(yM - ym),
|
|
dz = (int)cimg::round(zM - zm);
|
|
R.transpose();
|
|
res.assign(1 + dx,1 + dy,1 + dz,_spectrum);
|
|
const float rw2 = 0.5f*dx, rh2 = 0.5f*dy, rd2 = 0.5f*dz;
|
|
_rotate(res,R,interpolation,boundary_conditions,w2,h2,d2,rw2,rh2,rd2);
|
|
return res;
|
|
}
|
|
|
|
//! Rotate volumetric image with arbitrary angle and axis, around a center point.
|
|
/**
|
|
\param u X-coordinate of the 3D rotation axis.
|
|
\param v Y-coordinate of the 3D rotation axis.
|
|
\param w Z-coordinate of the 3D rotation axis.
|
|
\param angle Rotation angle, in degrees.
|
|
\param cx X-coordinate of the rotation center.
|
|
\param cy Y-coordinate of the rotation center.
|
|
\param cz Z-coordinate of the rotation center.
|
|
\param interpolation Type of interpolation. Can be <tt>{ 0=nearest | 1=linear | 2=cubic | 3=mirror }</tt>.
|
|
\param boundary_conditions Boundary conditions.
|
|
Can be <tt>{ 0=dirichlet | 1=neumann | 2=periodic }</tt>.
|
|
\note Most of the time, size of the image is modified.
|
|
**/
|
|
CImg<T> rotate(const float u, const float v, const float w, const float angle,
|
|
const float cx, const float cy, const float cz,
|
|
const unsigned int interpolation=1, const unsigned int boundary_conditions=0) {
|
|
const float nangle = cimg::mod(angle,360.f);
|
|
if (nangle==0.f) return *this;
|
|
return get_rotate(u,v,w,nangle,cx,cy,cz,interpolation,boundary_conditions).move_to(*this);
|
|
}
|
|
|
|
//! Rotate volumetric image with arbitrary angle and axis, around a center point \newinstance.
|
|
CImg<T> get_rotate(const float u, const float v, const float w, const float angle,
|
|
const float cx, const float cy, const float cz,
|
|
const unsigned int interpolation=1, const unsigned int boundary_conditions=0) const {
|
|
if (is_empty()) return *this;
|
|
CImg<T> res(_width,_height,_depth,_spectrum);
|
|
CImg<floatT> R = CImg<floatT>::rotation_matrix(u,v,w,-angle);
|
|
_rotate(res,R,interpolation,boundary_conditions,cx,cy,cz,cx,cy,cz);
|
|
return res;
|
|
}
|
|
|
|
// [internal] Perform 3D rotation with arbitrary axis and angle.
|
|
void _rotate(CImg<T>& res, const CImg<Tfloat>& R,
|
|
const unsigned int interpolation, const unsigned int boundary_conditions,
|
|
const float w2, const float h2, const float d2,
|
|
const float rw2, const float rh2, const float rd2) const {
|
|
switch (boundary_conditions) {
|
|
case 3 : // Mirror
|
|
switch (interpolation) {
|
|
case 2 : { // Cubic interpolation
|
|
const float ww = 2.f*width(), hh = 2.f*height(), dd = 2.f*depth();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(res.size(),2048))
|
|
cimg_forXYZ(res,x,y,z) {
|
|
const float
|
|
xc = x - rw2, yc = y - rh2, zc = z - rd2,
|
|
X = cimg::mod((float)(w2 + R(0,0)*xc + R(1,0)*yc + R(2,0)*zc),ww),
|
|
Y = cimg::mod((float)(h2 + R(0,1)*xc + R(1,1)*yc + R(2,1)*zc),hh),
|
|
Z = cimg::mod((float)(d2 + R(0,2)*xc + R(1,2)*yc + R(2,2)*zc),dd);
|
|
cimg_forC(res,c) res(x,y,z,c) = _cubic_atXYZ_c(X<width()?X:ww - X - 1,
|
|
Y<height()?Y:hh - Y - 1,
|
|
Z<depth()?Z:dd - Z - z,c);
|
|
}
|
|
} break;
|
|
case 1 : { // Linear interpolation
|
|
const float ww = 2.f*width(), hh = 2.f*height(), dd = 2.f*depth();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(res.size(),2048))
|
|
cimg_forXYZ(res,x,y,z) {
|
|
const float
|
|
xc = x - rw2, yc = y - rh2, zc = z - rd2,
|
|
X = cimg::mod((float)(w2 + R(0,0)*xc + R(1,0)*yc + R(2,0)*zc),ww),
|
|
Y = cimg::mod((float)(h2 + R(0,1)*xc + R(1,1)*yc + R(2,1)*zc),hh),
|
|
Z = cimg::mod((float)(d2 + R(0,2)*xc + R(1,2)*yc + R(2,2)*zc),dd);
|
|
cimg_forC(res,c) res(x,y,z,c) = (T)_linear_atXYZ(X<width()?X:ww - X - 1,
|
|
Y<height()?Y:hh - Y - 1,
|
|
Z<depth()?Z:dd - Z - 1,c);
|
|
}
|
|
} break;
|
|
default : { // Nearest-neighbor interpolation
|
|
const int ww = 2*width(), hh = 2*height(), dd = 2*depth();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(res.size(),2048))
|
|
cimg_forXYZ(res,x,y,z) {
|
|
const float xc = x - rw2, yc = y - rh2, zc = z - rd2;
|
|
const int
|
|
X = cimg::mod((int)cimg::round(w2 + R(0,0)*xc + R(1,0)*yc + R(2,0)*zc),ww),
|
|
Y = cimg::mod((int)cimg::round(h2 + R(0,1)*xc + R(1,1)*yc + R(2,1)*zc),hh),
|
|
Z = cimg::mod((int)cimg::round(d2 + R(0,2)*xc + R(1,2)*yc + R(2,2)*zc),dd);
|
|
cimg_forC(res,c) res(x,y,z,c) = (*this)(X<width()?X:ww - X - 1,
|
|
Y<height()?Y:hh - Y - 1,
|
|
Z<depth()?Z:dd - Z - 1,c);
|
|
}
|
|
}
|
|
} break;
|
|
|
|
case 2 : // Periodic
|
|
switch (interpolation) {
|
|
case 2 : { // Cubic interpolation
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(res.size(),2048))
|
|
cimg_forXYZ(res,x,y,z) {
|
|
const float
|
|
xc = x - rw2, yc = y - rh2, zc = z - rd2,
|
|
X = w2 + R(0,0)*xc + R(1,0)*yc + R(2,0)*zc,
|
|
Y = h2 + R(0,1)*xc + R(1,1)*yc + R(2,1)*zc,
|
|
Z = d2 + R(0,2)*xc + R(1,2)*yc + R(2,2)*zc;
|
|
cimg_forC(res,c) res(x,y,z,c) = _cubic_atXYZ_pc(X,Y,Z,c);
|
|
}
|
|
} break;
|
|
case 1 : { // Linear interpolation
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(res.size(),2048))
|
|
cimg_forXYZ(res,x,y,z) {
|
|
const float
|
|
xc = x - rw2, yc = y - rh2, zc = z - rd2,
|
|
X = w2 + R(0,0)*xc + R(1,0)*yc + R(2,0)*zc,
|
|
Y = h2 + R(0,1)*xc + R(1,1)*yc + R(2,1)*zc,
|
|
Z = d2 + R(0,2)*xc + R(1,2)*yc + R(2,2)*zc;
|
|
cimg_forC(res,c) res(x,y,z,c) = (T)_linear_atXYZ_p(X,Y,Z,c);
|
|
}
|
|
} break;
|
|
default : { // Nearest-neighbor interpolation
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(res.size(),2048))
|
|
cimg_forXYZ(res,x,y,z) {
|
|
const float xc = x - rw2, yc = y - rh2, zc = z - rd2;
|
|
const int
|
|
X = cimg::mod((int)cimg::round(w2 + R(0,0)*xc + R(1,0)*yc + R(2,0)*zc),width()),
|
|
Y = cimg::mod((int)cimg::round(h2 + R(0,1)*xc + R(1,1)*yc + R(2,1)*zc),height()),
|
|
Z = cimg::mod((int)cimg::round(d2 + R(0,2)*xc + R(1,2)*yc + R(2,2)*zc),depth());
|
|
cimg_forC(res,c) res(x,y,z,c) = (*this)(X,Y,Z,c);
|
|
}
|
|
}
|
|
} break;
|
|
|
|
case 1 : // Neumann
|
|
switch (interpolation) {
|
|
case 2 : { // Cubic interpolation
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(res.size(),2048))
|
|
cimg_forXYZ(res,x,y,z) {
|
|
const float
|
|
xc = x - rw2, yc = y - rh2, zc = z - rd2,
|
|
X = w2 + R(0,0)*xc + R(1,0)*yc + R(2,0)*zc,
|
|
Y = h2 + R(0,1)*xc + R(1,1)*yc + R(2,1)*zc,
|
|
Z = d2 + R(0,2)*xc + R(1,2)*yc + R(2,2)*zc;
|
|
cimg_forC(res,c) res(x,y,z,c) = _cubic_atXYZ_c(X,Y,Z,c);
|
|
}
|
|
} break;
|
|
case 1 : { // Linear interpolation
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(res.size(),2048))
|
|
cimg_forXYZ(res,x,y,z) {
|
|
const float
|
|
xc = x - rw2, yc = y - rh2, zc = z - rd2,
|
|
X = w2 + R(0,0)*xc + R(1,0)*yc + R(2,0)*zc,
|
|
Y = h2 + R(0,1)*xc + R(1,1)*yc + R(2,1)*zc,
|
|
Z = d2 + R(0,2)*xc + R(1,2)*yc + R(2,2)*zc;
|
|
cimg_forC(res,c) res(x,y,z,c) = _linear_atXYZ(X,Y,Z,c);
|
|
}
|
|
} break;
|
|
default : { // Nearest-neighbor interpolation
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(res.size(),2048))
|
|
cimg_forXYZ(res,x,y,z) {
|
|
const float xc = x - rw2, yc = y - rh2, zc = z - rd2;
|
|
const int
|
|
X = (int)cimg::round(w2 + R(0,0)*xc + R(1,0)*yc + R(2,0)*zc),
|
|
Y = (int)cimg::round(h2 + R(0,1)*xc + R(1,1)*yc + R(2,1)*zc),
|
|
Z = (int)cimg::round(d2 + R(0,2)*xc + R(1,2)*yc + R(2,2)*zc);
|
|
cimg_forC(res,c) res(x,y,z,c) = _atXYZ(X,Y,Z,c);
|
|
}
|
|
}
|
|
} break;
|
|
|
|
default : // Dirichlet
|
|
switch (interpolation) {
|
|
case 2 : { // Cubic interpolation
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(res.size(),2048))
|
|
cimg_forXYZ(res,x,y,z) {
|
|
const float
|
|
xc = x - rw2, yc = y - rh2, zc = z - rd2,
|
|
X = w2 + R(0,0)*xc + R(1,0)*yc + R(2,0)*zc,
|
|
Y = h2 + R(0,1)*xc + R(1,1)*yc + R(2,1)*zc,
|
|
Z = d2 + R(0,2)*xc + R(1,2)*yc + R(2,2)*zc;
|
|
cimg_forC(res,c) res(x,y,z,c) = cubic_atXYZ_c(X,Y,Z,c,(T)0);
|
|
}
|
|
} break;
|
|
case 1 : { // Linear interpolation
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(res.size(),2048))
|
|
cimg_forXYZ(res,x,y,z) {
|
|
const float
|
|
xc = x - rw2, yc = y - rh2, zc = z - rd2,
|
|
X = w2 + R(0,0)*xc + R(1,0)*yc + R(2,0)*zc,
|
|
Y = h2 + R(0,1)*xc + R(1,1)*yc + R(2,1)*zc,
|
|
Z = d2 + R(0,2)*xc + R(1,2)*yc + R(2,2)*zc;
|
|
cimg_forC(res,c) res(x,y,z,c) = linear_atXYZ(X,Y,Z,c,(T)0);
|
|
}
|
|
} break;
|
|
default : { // Nearest-neighbor interpolation
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(res.size(),2048))
|
|
cimg_forXYZ(res,x,y,z) {
|
|
const float xc = x - rw2, yc = y - rh2, zc = z - rd2;
|
|
const int
|
|
X = (int)cimg::round(w2 + R(0,0)*xc + R(1,0)*yc + R(2,0)*zc),
|
|
Y = (int)cimg::round(h2 + R(0,1)*xc + R(1,1)*yc + R(2,1)*zc),
|
|
Z = (int)cimg::round(d2 + R(0,2)*xc + R(1,2)*yc + R(2,2)*zc);
|
|
cimg_forC(res,c) res(x,y,z,c) = atXYZ(X,Y,Z,c,(T)0);
|
|
}
|
|
}
|
|
} break;
|
|
}
|
|
}
|
|
|
|
//! Warp image content by a warping field.
|
|
/**
|
|
\param warp Warping field.
|
|
\param mode Can be { 0=backward-absolute | 1=backward-relative | 2=forward-absolute | 3=foward-relative }
|
|
\param interpolation Can be <tt>{ 0=nearest | 1=linear | 2=cubic }</tt>.
|
|
\param boundary_conditions Boundary conditions <tt>{ 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }</tt>.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& warp(const CImg<t>& p_warp, const unsigned int mode=0,
|
|
const unsigned int interpolation=1, const unsigned int boundary_conditions=0) {
|
|
return get_warp(p_warp,mode,interpolation,boundary_conditions).move_to(*this);
|
|
}
|
|
|
|
//! Warp image content by a warping field \newinstance
|
|
template<typename t>
|
|
CImg<T> get_warp(const CImg<t>& p_warp, const unsigned int mode=0,
|
|
const unsigned int interpolation=1, const unsigned int boundary_conditions=0) const {
|
|
if (is_empty() || !p_warp) return *this;
|
|
if (mode && !is_sameXYZ(p_warp))
|
|
throw CImgArgumentException(_cimg_instance
|
|
"warp(): Instance and specified relative warping field (%u,%u,%u,%u,%p) "
|
|
"have different XYZ dimensions.",
|
|
cimg_instance,
|
|
p_warp._width,p_warp._height,p_warp._depth,p_warp._spectrum,p_warp._data);
|
|
|
|
CImg<T> res(p_warp._width,p_warp._height,p_warp._depth,_spectrum);
|
|
|
|
if (p_warp._spectrum==1) { // 1D warping
|
|
if (mode>=3) { // Forward-relative warp
|
|
res.fill((T)0);
|
|
if (interpolation>=1) // Linear interpolation
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z); const T *ptrs = data(0,y,z,c);
|
|
cimg_forX(res,x) res.set_linear_atX(*(ptrs++),x + (float)*(ptrs0++),y,z,c);
|
|
}
|
|
else // Nearest-neighbor interpolation
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z); const T *ptrs = data(0,y,z,c);
|
|
cimg_forX(res,x) {
|
|
const int X = x + (int)cimg::round(*(ptrs0++));
|
|
if (X>=0 && X<width()) res(X,y,z,c) = *(ptrs++);
|
|
}
|
|
}
|
|
} else if (mode==2) { // Forward-absolute warp
|
|
res.fill((T)0);
|
|
if (interpolation>=1) // Linear interpolation
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z); const T *ptrs = data(0,y,z,c);
|
|
cimg_forX(res,x) res.set_linear_atX(*(ptrs++),(float)*(ptrs0++),y,z,c);
|
|
}
|
|
else // Nearest-neighbor interpolation
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z); const T *ptrs = data(0,y,z,c);
|
|
cimg_forX(res,x) {
|
|
const int X = (int)cimg::round(*(ptrs0++));
|
|
if (X>=0 && X<width()) res(X,y,z,c) = *(ptrs++);
|
|
}
|
|
}
|
|
} else if (mode==1) { // Backward-relative warp
|
|
if (interpolation==2) // Cubic interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const float w2 = 2.f*width();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) {
|
|
const float mx = cimg::mod(x - (float)*(ptrs0++),w2);
|
|
*(ptrd++) = _cubic_atX_c(mx<width()?mx:w2 - mx - 1,y,z,c);
|
|
}
|
|
}
|
|
} break;
|
|
case 2 : // Periodic
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = _cubic_atX_pc(x - (float)*(ptrs0++),y,z,c);
|
|
}
|
|
break;
|
|
case 1 : // Neumann
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = _cubic_atX_c(x - (float)*(ptrs0++),y,z,c);
|
|
}
|
|
break;
|
|
default : // Dirichlet
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = cubic_atX_c(x - (float)*(ptrs0++),y,z,c,(T)0);
|
|
}
|
|
}
|
|
else if (interpolation==1) // Linear interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const float w2 = 2.f*width();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) {
|
|
const float mx = cimg::mod(x - (float)*(ptrs0++),w2);
|
|
*(ptrd++) = (T)_linear_atX(mx<width()?mx:w2 - mx - 1,y,z,c);
|
|
}
|
|
}
|
|
} break;
|
|
case 2 : // Periodic
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = (T)_linear_atX_p(x - (float)*(ptrs0++),y,z,c);
|
|
}
|
|
break;
|
|
case 1 : // Neumann
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = (T)_linear_atX(x - (float)*(ptrs0++),y,z,c);
|
|
}
|
|
break;
|
|
default : // Dirichlet
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = (T)linear_atX(x - (float)*(ptrs0++),y,z,c,(T)0);
|
|
}
|
|
}
|
|
else // Nearest-neighbor interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const int w2 = 2*width();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) {
|
|
const int mx = cimg::mod(x - (int)cimg::round(*(ptrs0++)),w2);
|
|
*(ptrd++) = (*this)(mx<width()?mx:w2 - mx - 1,y,z,c);
|
|
}
|
|
}
|
|
} break;
|
|
case 2 : // Periodic
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = (*this)(cimg::mod(x - (int)cimg::round(*(ptrs0++)),width()),y,z,c);
|
|
}
|
|
break;
|
|
case 1 : // Neumann
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = _atX(x - (int)cimg::round(*(ptrs0++)),y,z,c);
|
|
}
|
|
break;
|
|
default : // Dirichlet
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = atX(x - (int)cimg::round(*(ptrs0++)),y,z,c,(T)0);
|
|
}
|
|
}
|
|
}
|
|
else { // Backward-absolute warp
|
|
if (interpolation==2) // Cubic interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const float w2 = 2.f*width();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) {
|
|
const float mx = cimg::mod((float)*(ptrs0++),w2);
|
|
*(ptrd++) = _cubic_atX_c(mx<width()?mx:w2 - mx - 1,0,0,c);
|
|
}
|
|
}
|
|
} break;
|
|
case 2 : // Periodic
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = _cubic_atX_pc((float)*(ptrs0++),0,0,c);
|
|
}
|
|
break;
|
|
case 1 : // Neumann
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = _cubic_atX_c((float)*(ptrs0++),0,0,c);
|
|
}
|
|
break;
|
|
default : // Dirichlet
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = cubic_atX_c((float)*(ptrs0++),0,0,c,(T)0);
|
|
}
|
|
}
|
|
else if (interpolation==1) // Linear interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const float w2 = 2.f*width();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) {
|
|
const float mx = cimg::mod((float)*(ptrs0++),w2);
|
|
*(ptrd++) = (T)_linear_atX(mx<width()?mx:w2 - mx - 1,0,0,c);
|
|
}
|
|
}
|
|
} break;
|
|
case 2 : // Periodic
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = (T)_linear_atX_p((float)*(ptrs0++),0,0,c);
|
|
}
|
|
break;
|
|
case 1 : // Neumann
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = (T)_linear_atX((float)*(ptrs0++),0,0,c);
|
|
}
|
|
break;
|
|
default : // Dirichlet
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = (T)linear_atX((float)*(ptrs0++),0,0,c,(T)0);
|
|
}
|
|
}
|
|
else // Nearest-neighbor interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const int w2 = 2*width();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) {
|
|
const int mx = cimg::mod((int)cimg::round(*(ptrs0++)),w2);
|
|
*(ptrd++) = (*this)(mx<width()?mx:w2 - mx - 1,0,0,c);
|
|
}
|
|
}
|
|
} break;
|
|
case 2 : // Periodic
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = (*this)(cimg::mod((int)cimg::round(*(ptrs0++)),width()),0,0,c);
|
|
}
|
|
break;
|
|
case 1 : // Neumann
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = _atX((int)cimg::round(*(ptrs0++)),0,0,c);
|
|
}
|
|
break;
|
|
default : // Dirichlet
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = atX((int)cimg::round(*(ptrs0++)),0,0,c,(T)0);
|
|
}
|
|
}
|
|
}
|
|
|
|
} else if (p_warp._spectrum==2) { // 2D warping
|
|
if (mode>=3) { // Forward-relative warp
|
|
res.fill((T)0);
|
|
if (interpolation>=1) // Linear interpolation
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); const T *ptrs = data(0,y,z,c);
|
|
cimg_forX(res,x) res.set_linear_atXY(*(ptrs++),x + (float)*(ptrs0++),y + (float)*(ptrs1++),z,c);
|
|
}
|
|
else // Nearest-neighbor interpolation
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); const T *ptrs = data(0,y,z,c);
|
|
cimg_forX(res,x) {
|
|
const int X = x + (int)cimg::round(*(ptrs0++)), Y = y + (int)cimg::round(*(ptrs1++));
|
|
if (X>=0 && X<width() && Y>=0 && Y<height()) res(X,Y,z,c) = *(ptrs++);
|
|
}
|
|
}
|
|
} else if (mode==2) { // Forward-absolute warp
|
|
res.fill((T)0);
|
|
if (interpolation>=1) // Linear interpolation
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); const T *ptrs = data(0,y,z,c);
|
|
cimg_forX(res,x) res.set_linear_atXY(*(ptrs++),(float)*(ptrs0++),(float)*(ptrs1++),z,c);
|
|
}
|
|
else // Nearest-neighbor interpolation
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); const T *ptrs = data(0,y,z,c);
|
|
cimg_forX(res,x) {
|
|
const int X = (int)cimg::round(*(ptrs0++)), Y = (int)cimg::round(*(ptrs1++));
|
|
if (X>=0 && X<width() && Y>=0 && Y<height()) res(X,Y,z,c) = *(ptrs++);
|
|
}
|
|
}
|
|
} else if (mode==1) { // Backward-relative warp
|
|
if (interpolation==2) // Cubic interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const float w2 = 2.f*width(), h2 = 2.f*height();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) {
|
|
const float
|
|
mx = cimg::mod(x - (float)*(ptrs0++),w2),
|
|
my = cimg::mod(y - (float)*(ptrs1++),h2);
|
|
*(ptrd++) = _cubic_atXY_c(mx<width()?mx:w2 - mx - 1,my<height()?my:h2 - my - 1,z,c);
|
|
}
|
|
}
|
|
} break;
|
|
case 2 : // Periodic
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = _cubic_atXY_pc(x - (float)*(ptrs0++),y - (float)*(ptrs1++),z,c);
|
|
}
|
|
break;
|
|
case 1 : // Neumann
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = _cubic_atXY_c(x - (float)*(ptrs0++),y - (float)*(ptrs1++),z,c);
|
|
}
|
|
break;
|
|
default : // Dirichlet
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = cubic_atXY_c(x - (float)*(ptrs0++),y - (float)*(ptrs1++),z,c,(T)0);
|
|
}
|
|
}
|
|
else if (interpolation==1) // Linear interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const float w2 = 2.f*width(), h2 = 2.f*height();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) {
|
|
const float
|
|
mx = cimg::mod(x - (float)*(ptrs0++),w2),
|
|
my = cimg::mod(y - (float)*(ptrs1++),h2);
|
|
*(ptrd++) = (T)_linear_atXY(mx<width()?mx:w2 - mx - 1,my<height()?my:h2 - my - 1,z,c);
|
|
}
|
|
}
|
|
} break;
|
|
case 2 : // Periodic
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = (T)_linear_atXY_p(x - (float)*(ptrs0++),y - (float)*(ptrs1++),z,c);
|
|
}
|
|
break;
|
|
case 1 : // Neumann
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = (T)_linear_atXY(x - (float)*(ptrs0++),y - (float)*(ptrs1++),z,c);
|
|
}
|
|
break;
|
|
default : // Dirichlet
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = (T)linear_atXY(x - (float)*(ptrs0++),y - (float)*(ptrs1++),z,c,(T)0);
|
|
}
|
|
}
|
|
else // Nearest-neighbor interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const int w2 = 2*width(), h2 = 2*height();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) {
|
|
const int
|
|
mx = cimg::mod(x - (int)cimg::round(*(ptrs0++)),w2),
|
|
my = cimg::mod(y - (int)cimg::round(*(ptrs1++)),h2);
|
|
*(ptrd++) = (*this)(mx<width()?mx:w2 - mx - 1,my<height()?my:h2 - my - 1,z,c);
|
|
}
|
|
}
|
|
} break;
|
|
case 2 : // Periodic
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = (*this)(cimg::mod(x - (int)cimg::round(*(ptrs0++)),width()),
|
|
cimg::mod(y - (int)cimg::round(*(ptrs1++)),height()),z,c);
|
|
}
|
|
break;
|
|
case 1 : // Neumann
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = _atXY(x - (int)cimg::round(*(ptrs0++)),
|
|
y - (int)cimg::round(*(ptrs1++)),z,c);
|
|
}
|
|
break;
|
|
default : // Dirichlet
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = atXY(x - (int)cimg::round(*(ptrs0++)),
|
|
y - (int)cimg::round(*(ptrs1++)),z,c,(T)0);
|
|
}
|
|
}
|
|
} else { // Backward-absolute warp
|
|
if (interpolation==2) // Cubic interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const float w2 = 2.f*width(), h2 = 2.f*height();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) {
|
|
const float
|
|
mx = cimg::mod((float)*(ptrs0++),w2),
|
|
my = cimg::mod((float)*(ptrs1++),h2);
|
|
*(ptrd++) = _cubic_atXY_c(mx<width()?mx:w2 - mx - 1,my<height()?my:h2 - my - 1,0,c);
|
|
}
|
|
}
|
|
} break;
|
|
case 2 : // Periodic
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = _cubic_atXY_pc((float)*(ptrs0++),(float)*(ptrs1++),0,c);
|
|
}
|
|
break;
|
|
case 1 : // Neumann
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = _cubic_atXY_c((float)*(ptrs0++),(float)*(ptrs1++),0,c);
|
|
}
|
|
break;
|
|
default : // Dirichlet
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = cubic_atXY_c((float)*(ptrs0++),(float)*(ptrs1++),0,c,(T)0);
|
|
}
|
|
}
|
|
else if (interpolation==1) // Linear interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const float w2 = 2.f*width(), h2 = 2.f*height();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) {
|
|
const float
|
|
mx = cimg::mod((float)*(ptrs0++),w2),
|
|
my = cimg::mod((float)*(ptrs1++),h2);
|
|
*(ptrd++) = (T)_linear_atXY(mx<width()?mx:w2 - mx - 1,my<height()?my:h2 - my - 1,0,c);
|
|
}
|
|
}
|
|
} break;
|
|
case 2 : // Periodic
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = (T)_linear_atXY_p((float)*(ptrs0++),(float)*(ptrs1++),0,c);
|
|
}
|
|
break;
|
|
case 1 : // Neumann
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = (T)_linear_atXY((float)*(ptrs0++),(float)*(ptrs1++),0,c);
|
|
}
|
|
break;
|
|
default : // Dirichlet
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = (T)linear_atXY((float)*(ptrs0++),(float)*(ptrs1++),0,c,(T)0);
|
|
}
|
|
}
|
|
else // Nearest-neighbor interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const int w2 = 2*width(), h2 = 2*height();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) {
|
|
const int
|
|
mx = cimg::mod((int)cimg::round(*(ptrs0++)),w2),
|
|
my = cimg::mod((int)cimg::round(*(ptrs1++)),h2);
|
|
*(ptrd++) = (*this)(mx<width()?mx:w2 - mx - 1,my<height()?my:h2 - my - 1,0,c);
|
|
}
|
|
}
|
|
} break;
|
|
case 2 : // Periodic
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = (*this)(cimg::mod((int)cimg::round(*(ptrs0++)),width()),
|
|
cimg::mod((int)cimg::round(*(ptrs1++)),height()),0,c);
|
|
}
|
|
break;
|
|
case 1 : // Neumann
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = _atXY((int)cimg::round(*(ptrs0++)),
|
|
(int)cimg::round(*(ptrs1++)),0,c);
|
|
}
|
|
break;
|
|
default : // Dirichlet
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = atXY((int)cimg::round(*(ptrs0++)),
|
|
(int)cimg::round(*(ptrs1++)),0,c,(T)0);
|
|
}
|
|
}
|
|
}
|
|
|
|
} else { // 3D warping
|
|
if (mode>=3) { // Forward-relative warp
|
|
res.fill((T)0);
|
|
if (interpolation>=1) // Linear interpolation
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2);
|
|
const T *ptrs = data(0,y,z,c);
|
|
cimg_forX(res,x) res.set_linear_atXYZ(*(ptrs++),x + (float)*(ptrs0++),y + (float)*(ptrs1++),
|
|
z + (float)*(ptrs2++),c);
|
|
}
|
|
else // Nearest-neighbor interpolation
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2);
|
|
const T *ptrs = data(0,y,z,c);
|
|
cimg_forX(res,x) {
|
|
const int
|
|
X = x + (int)cimg::round(*(ptrs0++)),
|
|
Y = y + (int)cimg::round(*(ptrs1++)),
|
|
Z = z + (int)cimg::round(*(ptrs2++));
|
|
if (X>=0 && X<width() && Y>=0 && Y<height() && Z>=0 && Z<depth()) res(X,Y,Z,c) = *(ptrs++);
|
|
}
|
|
}
|
|
} else if (mode==2) { // Forward-absolute warp
|
|
res.fill((T)0);
|
|
if (interpolation>=1) // Linear interpolation
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2);
|
|
const T *ptrs = data(0,y,z,c);
|
|
cimg_forX(res,x) res.set_linear_atXYZ(*(ptrs++),(float)*(ptrs0++),(float)*(ptrs1++),(float)*(ptrs2++),c);
|
|
}
|
|
else // Nearest-neighbor interpolation
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2);
|
|
const T *ptrs = data(0,y,z,c);
|
|
cimg_forX(res,x) {
|
|
const int
|
|
X = (int)cimg::round(*(ptrs0++)),
|
|
Y = (int)cimg::round(*(ptrs1++)),
|
|
Z = (int)cimg::round(*(ptrs2++));
|
|
if (X>=0 && X<width() && Y>=0 && Y<height() && Z>=0 && Z<depth()) res(X,Y,Z,c) = *(ptrs++);
|
|
}
|
|
}
|
|
} else if (mode==1) { // Backward-relative warp
|
|
if (interpolation==2) // Cubic interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const float w2 = 2.f*width(), h2 = 2.f*height(), d2 = 2.f*depth();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2);
|
|
T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) {
|
|
const float
|
|
mx = cimg::mod(x - (float)*(ptrs0++),w2),
|
|
my = cimg::mod(y - (float)*(ptrs1++),h2),
|
|
mz = cimg::mod(z - (float)*(ptrs2++),d2);
|
|
*(ptrd++) = _cubic_atXYZ_c(mx<width()?mx:w2 - mx - 1,
|
|
my<height()?my:h2 - my - 1,
|
|
mz<depth()?mz:d2 - mz - 1,c);
|
|
}
|
|
}
|
|
} break;
|
|
case 2 : // Periodic
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2);
|
|
T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x)
|
|
*(ptrd++) = _cubic_atXYZ_pc(x - (float)*(ptrs0++),y - (float)*(ptrs1++),z - (float)*(ptrs2++),c);
|
|
}
|
|
break;
|
|
case 1 : // Neumann
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2);
|
|
T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x)
|
|
*(ptrd++) = _cubic_atXYZ_c(x - (float)*(ptrs0++),y - (float)*(ptrs1++),z - (float)*(ptrs2++),c);
|
|
}
|
|
break;
|
|
default : // Dirichlet
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2);
|
|
T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x)
|
|
*(ptrd++) = cubic_atXYZ_c(x - (float)*(ptrs0++),y - (float)*(ptrs1++),z - (float)*(ptrs2++),c,(T)0);
|
|
}
|
|
}
|
|
else if (interpolation==1) // Linear interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const float w2 = 2.f*width(), h2 = 2.f*height(), d2 = 2.f*depth();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2);
|
|
T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) {
|
|
const float
|
|
mx = cimg::mod(x - (float)*(ptrs0++),w2),
|
|
my = cimg::mod(y - (float)*(ptrs1++),h2),
|
|
mz = cimg::mod(z - (float)*(ptrs2++),d2);
|
|
*(ptrd++) = (T)_linear_atXYZ(mx<width()?mx:w2 - mx - 1,
|
|
my<height()?my:h2 - my - 1,
|
|
mz<depth()?mz:d2 - mz - 1,c);
|
|
}
|
|
}
|
|
} break;
|
|
case 2 : // Periodic
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2);
|
|
T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = (T)_linear_atXYZ_p(x - (float)*(ptrs0++),y - (float)*(ptrs1++),
|
|
z - (float)*(ptrs2++),c);
|
|
}
|
|
break;
|
|
case 1 : // Neumann
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2);
|
|
T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x)
|
|
*(ptrd++) = (T)_linear_atXYZ(x - (float)*(ptrs0++),y - (float)*(ptrs1++),z - (float)*(ptrs2++),c);
|
|
}
|
|
break;
|
|
default : // Dirichlet
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2);
|
|
T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x)
|
|
*(ptrd++) = (T)linear_atXYZ(x - (float)*(ptrs0++),y - (float)*(ptrs1++),z - (float)*(ptrs2++),c,(T)0);
|
|
}
|
|
}
|
|
else // Nearest neighbor interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const int w2 = 2*width(), h2 = 2*height(), d2 = 2*depth();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2);
|
|
T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) {
|
|
const int
|
|
mx = cimg::mod(x - (int)cimg::round(*(ptrs0++)),w2),
|
|
my = cimg::mod(y - (int)cimg::round(*(ptrs1++)),h2),
|
|
mz = cimg::mod(z - (int)cimg::round(*(ptrs2++)),d2);
|
|
*(ptrd++) = (*this)(mx<width()?mx:w2 - mx - 1,
|
|
my<height()?my:h2 - my - 1,
|
|
mz<depth()?mz:d2 - mz - 1,c);
|
|
}
|
|
}
|
|
} break;
|
|
case 2 : // Periodic
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2);
|
|
T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = (*this)(cimg::mod(x - (int)cimg::round(*(ptrs0++)),width()),
|
|
cimg::mod(y - (int)cimg::round(*(ptrs1++)),height()),
|
|
cimg::mod(z - (int)cimg::round(*(ptrs2++)),depth()),c);
|
|
}
|
|
break;
|
|
case 1 : // Neumann
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2);
|
|
T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = _atXYZ(x - (int)cimg::round(*(ptrs0++)),
|
|
y - (int)cimg::round(*(ptrs1++)),
|
|
z - (int)cimg::round(*(ptrs2++)),c);
|
|
}
|
|
break;
|
|
default : // Dirichlet
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2);
|
|
T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = atXYZ(x - (int)cimg::round(*(ptrs0++)),
|
|
y - (int)cimg::round(*(ptrs1++)),
|
|
z - (int)cimg::round(*(ptrs2++)),c,(T)0);
|
|
}
|
|
}
|
|
} else { // Backward-absolute warp
|
|
if (interpolation==2) // Cubic interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const float w2 = 2.f*width(), h2 = 2.f*height(), d2 = 2.f*depth();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2);
|
|
T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) {
|
|
const float
|
|
mx = cimg::mod((float)*(ptrs0++),w2),
|
|
my = cimg::mod((float)*(ptrs1++),h2),
|
|
mz = cimg::mod((float)*(ptrs2++),d2);
|
|
*(ptrd++) = _cubic_atXYZ_c(mx<width()?mx:w2 - mx - 1,
|
|
my<height()?my:h2 - my - 1,
|
|
mz<depth()?mz:d2 - mz - 1,c);
|
|
}
|
|
}
|
|
} break;
|
|
case 2 : // Periodic
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2);
|
|
T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = _cubic_atXYZ_pc((float)*(ptrs0++),(float)*(ptrs1++),(float)*(ptrs2++),c);
|
|
}
|
|
break;
|
|
case 1 : // Neumann
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2);
|
|
T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = _cubic_atXYZ_c((float)*(ptrs0++),(float)*(ptrs1++),(float)*(ptrs2++),c);
|
|
}
|
|
break;
|
|
default : // Dirichlet
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2);
|
|
T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = cubic_atXYZ_c((float)*(ptrs0++),(float)*(ptrs1++),(float)*(ptrs2++),
|
|
c,(T)0);
|
|
}
|
|
}
|
|
else if (interpolation==1) // Linear interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const float w2 = 2.f*width(), h2 = 2.f*height(), d2 = 2.f*depth();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2);
|
|
T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) {
|
|
const float
|
|
mx = cimg::mod((float)*(ptrs0++),w2),
|
|
my = cimg::mod((float)*(ptrs1++),h2),
|
|
mz = cimg::mod((float)*(ptrs2++),d2);
|
|
*(ptrd++) = (T)_linear_atXYZ(mx<width()?mx:w2 - mx - 1,
|
|
my<height()?my:h2 - my - 1,
|
|
mz<depth()?mz:d2 - mz - 1,c);
|
|
}
|
|
}
|
|
} break;
|
|
case 2 :// Periodic
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2);
|
|
T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = (T)_linear_atXYZ_p((float)*(ptrs0++),(float)*(ptrs1++),
|
|
(float)*(ptrs2++),c);
|
|
}
|
|
break;
|
|
case 1 : // Neumann
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2);
|
|
T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = (T)_linear_atXYZ((float)*(ptrs0++),(float)*(ptrs1++),(float)*(ptrs2++),c);
|
|
}
|
|
break;
|
|
default : // Dirichlet
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1048576))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2);
|
|
T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = (T)linear_atXYZ((float)*(ptrs0++),(float)*(ptrs1++),(float)*(ptrs2++),
|
|
c,(T)0);
|
|
}
|
|
}
|
|
else // Nearest-neighbor interpolation
|
|
switch (boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const int w2 = 2*width(), h2 = 2*height(), d2 = 2*depth();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096))
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2);
|
|
T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) {
|
|
const int
|
|
mx = cimg::mod((int)cimg::round(*(ptrs0++)),w2),
|
|
my = cimg::mod((int)cimg::round(*(ptrs1++)),h2),
|
|
mz = cimg::mod((int)cimg::round(*(ptrs2++)),d2);
|
|
*(ptrd++) = (*this)(mx<width()?mx:w2 - mx - 1,
|
|
my<height()?my:h2 - my - 1,
|
|
mz<depth()?mz:d2 - mz - 1,c);
|
|
}
|
|
}
|
|
} break;
|
|
case 2 : // Periodic
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2);
|
|
T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = (*this)(cimg::mod((int)cimg::round(*(ptrs0++)),width()),
|
|
cimg::mod((int)cimg::round(*(ptrs1++)),height()),
|
|
cimg::mod((int)cimg::round(*(ptrs2++)),depth()),c);
|
|
}
|
|
break;
|
|
case 1 : // Neumann
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2);
|
|
T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = _atXYZ((int)cimg::round(*(ptrs0++)),
|
|
(int)cimg::round(*(ptrs1++)),
|
|
(int)cimg::round(*(ptrs2++)),c);
|
|
}
|
|
break;
|
|
default : // Dirichlet
|
|
cimg_forYZC(res,y,z,c) {
|
|
const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2);
|
|
T *ptrd = res.data(0,y,z,c);
|
|
cimg_forX(res,x) *(ptrd++) = atXYZ((int)cimg::round(*(ptrs0++)),
|
|
(int)cimg::round(*(ptrs1++)),
|
|
(int)cimg::round(*(ptrs2++)),c,(T)0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Generate a 2D representation of a 3D image, with XY,XZ and YZ views.
|
|
/**
|
|
\param x0 X-coordinate of the projection point.
|
|
\param y0 Y-coordinate of the projection point.
|
|
\param z0 Z-coordinate of the projection point.
|
|
**/
|
|
CImg<T> get_projections2d(const unsigned int x0, const unsigned int y0, const unsigned int z0) const {
|
|
if (is_empty() || _depth<2) return +*this;
|
|
const unsigned int
|
|
_x0 = (x0>=_width)?_width - 1:x0,
|
|
_y0 = (y0>=_height)?_height - 1:y0,
|
|
_z0 = (z0>=_depth)?_depth - 1:z0;
|
|
const CImg<T>
|
|
img_xy = get_crop(0,0,_z0,0,_width - 1,_height - 1,_z0,_spectrum - 1),
|
|
img_zy = get_crop(_x0,0,0,0,_x0,_height - 1,_depth - 1,_spectrum - 1).permute_axes("xzyc").
|
|
resize(_depth,_height,1,-100,-1),
|
|
img_xz = get_crop(0,_y0,0,0,_width - 1,_y0,_depth - 1,_spectrum - 1).resize(_width,_depth,1,-100,-1);
|
|
return CImg<T>(_width + _depth,_height + _depth,1,_spectrum,cimg::min(img_xy.min(),img_zy.min(),img_xz.min())).
|
|
draw_image(0,0,img_xy).draw_image(img_xy._width,0,img_zy).
|
|
draw_image(0,img_xy._height,img_xz);
|
|
}
|
|
|
|
//! Construct a 2D representation of a 3D image, with XY,XZ and YZ views \inplace.
|
|
CImg<T>& projections2d(const unsigned int x0, const unsigned int y0, const unsigned int z0) {
|
|
if (_depth<2) return *this;
|
|
return get_projections2d(x0,y0,z0).move_to(*this);
|
|
}
|
|
|
|
//! Crop image region.
|
|
/**
|
|
\param x0 = X-coordinate of the upper-left crop rectangle corner.
|
|
\param y0 = Y-coordinate of the upper-left crop rectangle corner.
|
|
\param z0 = Z-coordinate of the upper-left crop rectangle corner.
|
|
\param c0 = C-coordinate of the upper-left crop rectangle corner.
|
|
\param x1 = X-coordinate of the lower-right crop rectangle corner.
|
|
\param y1 = Y-coordinate of the lower-right crop rectangle corner.
|
|
\param z1 = Z-coordinate of the lower-right crop rectangle corner.
|
|
\param c1 = C-coordinate of the lower-right crop rectangle corner.
|
|
\param boundary_conditions = Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }.
|
|
**/
|
|
CImg<T>& crop(const int x0, const int y0, const int z0, const int c0,
|
|
const int x1, const int y1, const int z1, const int c1,
|
|
const unsigned int boundary_conditions=0) {
|
|
return get_crop(x0,y0,z0,c0,x1,y1,z1,c1,boundary_conditions).move_to(*this);
|
|
}
|
|
|
|
//! Crop image region \newinstance.
|
|
CImg<T> get_crop(const int x0, const int y0, const int z0, const int c0,
|
|
const int x1, const int y1, const int z1, const int c1,
|
|
const unsigned int boundary_conditions=0) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"crop(): Empty instance.",
|
|
cimg_instance);
|
|
const int
|
|
nx0 = x0<x1?x0:x1, nx1 = x0^x1^nx0,
|
|
ny0 = y0<y1?y0:y1, ny1 = y0^y1^ny0,
|
|
nz0 = z0<z1?z0:z1, nz1 = z0^z1^nz0,
|
|
nc0 = c0<c1?c0:c1, nc1 = c0^c1^nc0;
|
|
const unsigned int
|
|
_boundary_conditions = nx0>=0 && nx1<width() &&
|
|
ny0>=0 && ny1<height() &&
|
|
nz0>=0 && nz1<depth() &&
|
|
nc0>=0 && nc1<spectrum()?0:boundary_conditions;
|
|
CImg<T> res(1U + nx1 - nx0,1U + ny1 - ny0,1U + nz1 - nz0,1U + nc1 - nc0);
|
|
if (nx0<0 || nx1>=width() || ny0<0 || ny1>=height() || nz0<0 || nz1>=depth() || nc0<0 || nc1>=spectrum())
|
|
switch (_boundary_conditions) {
|
|
case 3 : { // Mirror
|
|
const int w2 = 2*width(), h2 = 2*height(), d2 = 2*depth(), s2 = 2*spectrum();
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*16 &&
|
|
_height*_depth*_spectrum>=4))
|
|
cimg_forXYZC(res,x,y,z,c) {
|
|
const int
|
|
mx = cimg::mod(nx0 + x,w2),
|
|
my = cimg::mod(ny0 + y,h2),
|
|
mz = cimg::mod(nz0 + z,d2),
|
|
mc = cimg::mod(nc0 + c,s2);
|
|
res(x,y,z,c) = (*this)(mx<width()?mx:w2 - mx - 1,
|
|
my<height()?my:h2 - my - 1,
|
|
mz<depth()?mz:d2 - mz - 1,
|
|
mc<spectrum()?mc:s2 - mc - 1);
|
|
}
|
|
} break;
|
|
case 2 : { // Periodic
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*16 &&
|
|
_height*_depth*_spectrum>=4))
|
|
cimg_forXYZC(res,x,y,z,c) {
|
|
res(x,y,z,c) = (*this)(cimg::mod(nx0 + x,width()),cimg::mod(ny0 + y,height()),
|
|
cimg::mod(nz0 + z,depth()),cimg::mod(nc0 + c,spectrum()));
|
|
}
|
|
} break;
|
|
case 1 : // Neumann
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*16 &&
|
|
_height*_depth*_spectrum>=4))
|
|
cimg_forXYZC(res,x,y,z,c) res(x,y,z,c) = _atXYZC(nx0 + x,ny0 + y,nz0 + z,nc0 + c);
|
|
break;
|
|
default : // Dirichlet
|
|
res.fill((T)0).draw_image(-nx0,-ny0,-nz0,-nc0,*this);
|
|
}
|
|
else res.draw_image(-nx0,-ny0,-nz0,-nc0,*this);
|
|
return res;
|
|
}
|
|
|
|
//! Crop image region \overloading.
|
|
CImg<T>& crop(const int x0, const int y0, const int z0,
|
|
const int x1, const int y1, const int z1,
|
|
const unsigned int boundary_conditions=0) {
|
|
return crop(x0,y0,z0,0,x1,y1,z1,_spectrum - 1,boundary_conditions);
|
|
}
|
|
|
|
//! Crop image region \newinstance.
|
|
CImg<T> get_crop(const int x0, const int y0, const int z0,
|
|
const int x1, const int y1, const int z1,
|
|
const unsigned int boundary_conditions=0) const {
|
|
return get_crop(x0,y0,z0,0,x1,y1,z1,_spectrum - 1,boundary_conditions);
|
|
}
|
|
|
|
//! Crop image region \overloading.
|
|
CImg<T>& crop(const int x0, const int y0,
|
|
const int x1, const int y1,
|
|
const unsigned int boundary_conditions=0) {
|
|
return crop(x0,y0,0,0,x1,y1,_depth - 1,_spectrum - 1,boundary_conditions);
|
|
}
|
|
|
|
//! Crop image region \newinstance.
|
|
CImg<T> get_crop(const int x0, const int y0,
|
|
const int x1, const int y1,
|
|
const unsigned int boundary_conditions=0) const {
|
|
return get_crop(x0,y0,0,0,x1,y1,_depth - 1,_spectrum - 1,boundary_conditions);
|
|
}
|
|
|
|
//! Crop image region \overloading.
|
|
CImg<T>& crop(const int x0, const int x1, const unsigned int boundary_conditions=0) {
|
|
return crop(x0,0,0,0,x1,_height - 1,_depth - 1,_spectrum - 1,boundary_conditions);
|
|
}
|
|
|
|
//! Crop image region \newinstance.
|
|
CImg<T> get_crop(const int x0, const int x1, const unsigned int boundary_conditions=0) const {
|
|
return get_crop(x0,0,0,0,x1,_height - 1,_depth - 1,_spectrum - 1,boundary_conditions);
|
|
}
|
|
|
|
//! Autocrop image region, regarding the specified background value.
|
|
CImg<T>& autocrop(const T& value, const char *const axes="czyx") {
|
|
if (is_empty()) return *this;
|
|
for (const char *s = axes; *s; ++s) {
|
|
const char axis = cimg::lowercase(*s);
|
|
const CImg<intT> coords = _autocrop(value,axis);
|
|
if (coords[0]==-1 && coords[1]==-1) return assign(); // Image has only 'value' pixels
|
|
else switch (axis) {
|
|
case 'x' : {
|
|
const int x0 = coords[0], x1 = coords[1];
|
|
if (x0>=0 && x1>=0) crop(x0,x1);
|
|
} break;
|
|
case 'y' : {
|
|
const int y0 = coords[0], y1 = coords[1];
|
|
if (y0>=0 && y1>=0) crop(0,y0,_width - 1,y1);
|
|
} break;
|
|
case 'z' : {
|
|
const int z0 = coords[0], z1 = coords[1];
|
|
if (z0>=0 && z1>=0) crop(0,0,z0,_width - 1,_height - 1,z1);
|
|
} break;
|
|
default : {
|
|
const int c0 = coords[0], c1 = coords[1];
|
|
if (c0>=0 && c1>=0) crop(0,0,0,c0,_width - 1,_height - 1,_depth - 1,c1);
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Autocrop image region, regarding the specified background value \newinstance.
|
|
CImg<T> get_autocrop(const T& value, const char *const axes="czyx") const {
|
|
return (+*this).autocrop(value,axes);
|
|
}
|
|
|
|
//! Autocrop image region, regarding the specified background color.
|
|
/**
|
|
\param color Color used for the crop. If \c 0, color is guessed.
|
|
\param axes Axes used for the crop.
|
|
**/
|
|
CImg<T>& autocrop(const T *const color=0, const char *const axes="zyx") {
|
|
if (is_empty()) return *this;
|
|
if (!color) { // Guess color
|
|
const CImg<T> col1 = get_vector_at(0,0,0);
|
|
const unsigned int w = _width, h = _height, d = _depth, s = _spectrum;
|
|
autocrop(col1,axes);
|
|
if (_width==w && _height==h && _depth==d && _spectrum==s) {
|
|
const CImg<T> col2 = get_vector_at(w - 1,h - 1,d - 1);
|
|
autocrop(col2,axes);
|
|
}
|
|
return *this;
|
|
}
|
|
for (const char *s = axes; *s; ++s) {
|
|
const char axis = cimg::lowercase(*s);
|
|
switch (axis) {
|
|
case 'x' : {
|
|
int x0 = width(), x1 = -1;
|
|
cimg_forC(*this,c) {
|
|
const CImg<intT> coords = get_shared_channel(c)._autocrop(color[c],'x');
|
|
const int nx0 = coords[0], nx1 = coords[1];
|
|
if (nx0>=0 && nx1>=0) { x0 = std::min(x0,nx0); x1 = std::max(x1,nx1); }
|
|
}
|
|
if (x0==width() && x1==-1) return assign(); else crop(x0,x1);
|
|
} break;
|
|
case 'y' : {
|
|
int y0 = height(), y1 = -1;
|
|
cimg_forC(*this,c) {
|
|
const CImg<intT> coords = get_shared_channel(c)._autocrop(color[c],'y');
|
|
const int ny0 = coords[0], ny1 = coords[1];
|
|
if (ny0>=0 && ny1>=0) { y0 = std::min(y0,ny0); y1 = std::max(y1,ny1); }
|
|
}
|
|
if (y0==height() && y1==-1) return assign(); else crop(0,y0,_width - 1,y1);
|
|
} break;
|
|
default : {
|
|
int z0 = depth(), z1 = -1;
|
|
cimg_forC(*this,c) {
|
|
const CImg<intT> coords = get_shared_channel(c)._autocrop(color[c],'z');
|
|
const int nz0 = coords[0], nz1 = coords[1];
|
|
if (nz0>=0 && nz1>=0) { z0 = std::min(z0,nz0); z1 = std::max(z1,nz1); }
|
|
}
|
|
if (z0==depth() && z1==-1) return assign(); else crop(0,0,z0,_width - 1,_height - 1,z1);
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Autocrop image region, regarding the specified background color \newinstance.
|
|
CImg<T> get_autocrop(const T *const color=0, const char *const axes="zyx") const {
|
|
return (+*this).autocrop(color,axes);
|
|
}
|
|
|
|
CImg<intT> _autocrop(const T& value, const char axis) const {
|
|
CImg<intT> res;
|
|
switch (cimg::lowercase(axis)) {
|
|
case 'x' : {
|
|
int x0 = -1, x1 = -1;
|
|
cimg_forX(*this,x) cimg_forYZC(*this,y,z,c)
|
|
if ((*this)(x,y,z,c)!=value) { x0 = x; x = width(); y = height(); z = depth(); c = spectrum(); }
|
|
if (x0>=0) {
|
|
for (int x = width() - 1; x>=0; --x) cimg_forYZC(*this,y,z,c)
|
|
if ((*this)(x,y,z,c)!=value) { x1 = x; x = 0; y = height(); z = depth(); c = spectrum(); }
|
|
}
|
|
res = CImg<intT>::vector(x0,x1);
|
|
} break;
|
|
case 'y' : {
|
|
int y0 = -1, y1 = -1;
|
|
cimg_forY(*this,y) cimg_forXZC(*this,x,z,c)
|
|
if ((*this)(x,y,z,c)!=value) { y0 = y; x = width(); y = height(); z = depth(); c = spectrum(); }
|
|
if (y0>=0) {
|
|
for (int y = height() - 1; y>=0; --y) cimg_forXZC(*this,x,z,c)
|
|
if ((*this)(x,y,z,c)!=value) { y1 = y; x = width(); y = 0; z = depth(); c = spectrum(); }
|
|
}
|
|
res = CImg<intT>::vector(y0,y1);
|
|
} break;
|
|
case 'z' : {
|
|
int z0 = -1, z1 = -1;
|
|
cimg_forZ(*this,z) cimg_forXYC(*this,x,y,c)
|
|
if ((*this)(x,y,z,c)!=value) { z0 = z; x = width(); y = height(); z = depth(); c = spectrum(); }
|
|
if (z0>=0) {
|
|
for (int z = depth() - 1; z>=0; --z) cimg_forXYC(*this,x,y,c)
|
|
if ((*this)(x,y,z,c)!=value) { z1 = z; x = width(); y = height(); z = 0; c = spectrum(); }
|
|
}
|
|
res = CImg<intT>::vector(z0,z1);
|
|
} break;
|
|
default : {
|
|
int c0 = -1, c1 = -1;
|
|
cimg_forC(*this,c) cimg_forXYZ(*this,x,y,z)
|
|
if ((*this)(x,y,z,c)!=value) { c0 = c; x = width(); y = height(); z = depth(); c = spectrum(); }
|
|
if (c0>=0) {
|
|
for (int c = spectrum() - 1; c>=0; --c) cimg_forXYZ(*this,x,y,z)
|
|
if ((*this)(x,y,z,c)!=value) { c1 = c; x = width(); y = height(); z = depth(); c = 0; }
|
|
}
|
|
res = CImg<intT>::vector(c0,c1);
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Return specified image column.
|
|
/**
|
|
\param x0 Image column.
|
|
**/
|
|
CImg<T> get_column(const int x0) const {
|
|
return get_columns(x0,x0);
|
|
}
|
|
|
|
//! Return specified image column \inplace.
|
|
CImg<T>& column(const int x0) {
|
|
return columns(x0,x0);
|
|
}
|
|
|
|
//! Return specified range of image columns.
|
|
/**
|
|
\param x0 Starting image column.
|
|
\param x1 Ending image column.
|
|
**/
|
|
CImg<T>& columns(const int x0, const int x1) {
|
|
return get_columns(x0,x1).move_to(*this);
|
|
}
|
|
|
|
//! Return specified range of image columns \inplace.
|
|
CImg<T> get_columns(const int x0, const int x1) const {
|
|
return get_crop(x0,0,0,0,x1,height() - 1,depth() - 1,spectrum() - 1);
|
|
}
|
|
|
|
//! Return specified image row.
|
|
CImg<T> get_row(const int y0) const {
|
|
return get_rows(y0,y0);
|
|
}
|
|
|
|
//! Return specified image row \inplace.
|
|
/**
|
|
\param y0 Image row.
|
|
**/
|
|
CImg<T>& row(const int y0) {
|
|
return rows(y0,y0);
|
|
}
|
|
|
|
//! Return specified range of image rows.
|
|
/**
|
|
\param y0 Starting image row.
|
|
\param y1 Ending image row.
|
|
**/
|
|
CImg<T> get_rows(const int y0, const int y1) const {
|
|
return get_crop(0,y0,0,0,width() - 1,y1,depth() - 1,spectrum() - 1);
|
|
}
|
|
|
|
//! Return specified range of image rows \inplace.
|
|
CImg<T>& rows(const int y0, const int y1) {
|
|
return get_rows(y0,y1).move_to(*this);
|
|
}
|
|
|
|
//! Return specified image slice.
|
|
/**
|
|
\param z0 Image slice.
|
|
**/
|
|
CImg<T> get_slice(const int z0) const {
|
|
return get_slices(z0,z0);
|
|
}
|
|
|
|
//! Return specified image slice \inplace.
|
|
CImg<T>& slice(const int z0) {
|
|
return slices(z0,z0);
|
|
}
|
|
|
|
//! Return specified range of image slices.
|
|
/**
|
|
\param z0 Starting image slice.
|
|
\param z1 Ending image slice.
|
|
**/
|
|
CImg<T> get_slices(const int z0, const int z1) const {
|
|
return get_crop(0,0,z0,0,width() - 1,height() - 1,z1,spectrum() - 1);
|
|
}
|
|
|
|
//! Return specified range of image slices \inplace.
|
|
CImg<T>& slices(const int z0, const int z1) {
|
|
return get_slices(z0,z1).move_to(*this);
|
|
}
|
|
|
|
//! Return specified image channel.
|
|
/**
|
|
\param c0 Image channel.
|
|
**/
|
|
CImg<T> get_channel(const int c0) const {
|
|
return get_channels(c0,c0);
|
|
}
|
|
|
|
//! Return specified image channel \inplace.
|
|
CImg<T>& channel(const int c0) {
|
|
return channels(c0,c0);
|
|
}
|
|
|
|
//! Return specified range of image channels.
|
|
/**
|
|
\param c0 Starting image channel.
|
|
\param c1 Ending image channel.
|
|
**/
|
|
CImg<T> get_channels(const int c0, const int c1) const {
|
|
return get_crop(0,0,0,c0,width() - 1,height() - 1,depth() - 1,c1);
|
|
}
|
|
|
|
//! Return specified range of image channels \inplace.
|
|
CImg<T>& channels(const int c0, const int c1) {
|
|
return get_channels(c0,c1).move_to(*this);
|
|
}
|
|
|
|
//! Return stream line of a 2D or 3D vector field.
|
|
CImg<floatT> get_streamline(const float x, const float y, const float z,
|
|
const float L=256, const float dl=0.1f,
|
|
const unsigned int interpolation_type=2, const bool is_backward_tracking=false,
|
|
const bool is_oriented_only=false) const {
|
|
if (_spectrum!=2 && _spectrum!=3)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"streamline(): Instance is not a 2D or 3D vector field.",
|
|
cimg_instance);
|
|
if (_spectrum==2) {
|
|
if (is_oriented_only) {
|
|
typename CImg<T>::_functor4d_streamline2d_oriented func(*this);
|
|
return streamline(func,x,y,z,L,dl,interpolation_type,is_backward_tracking,true,
|
|
0,0,0,_width - 1.f,_height - 1.f,0.f);
|
|
} else {
|
|
typename CImg<T>::_functor4d_streamline2d_directed func(*this);
|
|
return streamline(func,x,y,z,L,dl,interpolation_type,is_backward_tracking,false,
|
|
0,0,0,_width - 1.f,_height - 1.f,0.f);
|
|
}
|
|
}
|
|
if (is_oriented_only) {
|
|
typename CImg<T>::_functor4d_streamline3d_oriented func(*this);
|
|
return streamline(func,x,y,z,L,dl,interpolation_type,is_backward_tracking,true,
|
|
0,0,0,_width - 1.f,_height - 1.f,_depth - 1.f);
|
|
}
|
|
typename CImg<T>::_functor4d_streamline3d_directed func(*this);
|
|
return streamline(func,x,y,z,L,dl,interpolation_type,is_backward_tracking,false,
|
|
0,0,0,_width - 1.f,_height - 1.f,_depth - 1.f);
|
|
}
|
|
|
|
//! Return stream line of a 3D vector field.
|
|
/**
|
|
\param func Vector field function.
|
|
\param x X-coordinate of the starting point of the streamline.
|
|
\param y Y-coordinate of the starting point of the streamline.
|
|
\param z Z-coordinate of the starting point of the streamline.
|
|
\param L Streamline length.
|
|
\param dl Streamline length increment.
|
|
\param interpolation_type Type of interpolation.
|
|
Can be <tt>{ 0=nearest int | 1=linear | 2=2nd-order RK | 3=4th-order RK. }</tt>.
|
|
\param is_backward_tracking Tells if the streamline is estimated forward or backward.
|
|
\param is_oriented_only Tells if the direction of the vectors must be ignored.
|
|
\param x0 X-coordinate of the first bounding-box vertex.
|
|
\param y0 Y-coordinate of the first bounding-box vertex.
|
|
\param z0 Z-coordinate of the first bounding-box vertex.
|
|
\param x1 X-coordinate of the second bounding-box vertex.
|
|
\param y1 Y-coordinate of the second bounding-box vertex.
|
|
\param z1 Z-coordinate of the second bounding-box vertex.
|
|
**/
|
|
template<typename tfunc>
|
|
static CImg<floatT> streamline(const tfunc& func,
|
|
const float x, const float y, const float z,
|
|
const float L=256, const float dl=0.1f,
|
|
const unsigned int interpolation_type=2, const bool is_backward_tracking=false,
|
|
const bool is_oriented_only=false,
|
|
const float x0=0, const float y0=0, const float z0=0,
|
|
const float x1=0, const float y1=0, const float z1=0) {
|
|
if (dl<=0)
|
|
throw CImgArgumentException("CImg<%s>::streamline(): Invalid specified integration length %g "
|
|
"(should be >0).",
|
|
pixel_type(),
|
|
dl);
|
|
|
|
const bool is_bounded = (x0!=x1 || y0!=y1 || z0!=z1);
|
|
if (L<=0 || (is_bounded && (x<x0 || x>x1 || y<y0 || y>y1 || z<z0 || z>z1))) return CImg<floatT>();
|
|
const unsigned int size_L = (unsigned int)cimg::round(L/dl + 1);
|
|
CImg<floatT> coordinates(size_L,3);
|
|
const float dl2 = dl/2;
|
|
float
|
|
*ptr_x = coordinates.data(0,0),
|
|
*ptr_y = coordinates.data(0,1),
|
|
*ptr_z = coordinates.data(0,2),
|
|
pu = (float)(dl*func(x,y,z,0)),
|
|
pv = (float)(dl*func(x,y,z,1)),
|
|
pw = (float)(dl*func(x,y,z,2)),
|
|
X = x, Y = y, Z = z;
|
|
|
|
switch (interpolation_type) {
|
|
case 0 : { // Nearest integer interpolation
|
|
cimg_forX(coordinates,l) {
|
|
*(ptr_x++) = X; *(ptr_y++) = Y; *(ptr_z++) = Z;
|
|
const int
|
|
xi = (int)(X>0?X + 0.5f:X - 0.5f),
|
|
yi = (int)(Y>0?Y + 0.5f:Y - 0.5f),
|
|
zi = (int)(Z>0?Z + 0.5f:Z - 0.5f);
|
|
float
|
|
u = (float)(dl*func((float)xi,(float)yi,(float)zi,0)),
|
|
v = (float)(dl*func((float)xi,(float)yi,(float)zi,1)),
|
|
w = (float)(dl*func((float)xi,(float)yi,(float)zi,2));
|
|
if (is_oriented_only && u*pu + v*pv + w*pw<0) { u = -u; v = -v; w = -w; }
|
|
if (is_backward_tracking) { X-=(pu=u); Y-=(pv=v); Z-=(pw=w); } else { X+=(pu=u); Y+=(pv=v); Z+=(pw=w); }
|
|
if (is_bounded && (X<x0 || X>x1 || Y<y0 || Y>y1 || Z<z0 || Z>z1)) break;
|
|
}
|
|
} break;
|
|
case 1 : { // First-order interpolation
|
|
cimg_forX(coordinates,l) {
|
|
*(ptr_x++) = X; *(ptr_y++) = Y; *(ptr_z++) = Z;
|
|
float
|
|
u = (float)(dl*func(X,Y,Z,0)),
|
|
v = (float)(dl*func(X,Y,Z,1)),
|
|
w = (float)(dl*func(X,Y,Z,2));
|
|
if (is_oriented_only && u*pu + v*pv + w*pw<0) { u = -u; v = -v; w = -w; }
|
|
if (is_backward_tracking) { X-=(pu=u); Y-=(pv=v); Z-=(pw=w); } else { X+=(pu=u); Y+=(pv=v); Z+=(pw=w); }
|
|
if (is_bounded && (X<x0 || X>x1 || Y<y0 || Y>y1 || Z<z0 || Z>z1)) break;
|
|
}
|
|
} break;
|
|
case 2 : { // Second order interpolation
|
|
cimg_forX(coordinates,l) {
|
|
*(ptr_x++) = X; *(ptr_y++) = Y; *(ptr_z++) = Z;
|
|
float
|
|
u0 = (float)(dl2*func(X,Y,Z,0)),
|
|
v0 = (float)(dl2*func(X,Y,Z,1)),
|
|
w0 = (float)(dl2*func(X,Y,Z,2));
|
|
if (is_oriented_only && u0*pu + v0*pv + w0*pw<0) { u0 = -u0; v0 = -v0; w0 = -w0; }
|
|
float
|
|
u = (float)(dl*func(X + u0,Y + v0,Z + w0,0)),
|
|
v = (float)(dl*func(X + u0,Y + v0,Z + w0,1)),
|
|
w = (float)(dl*func(X + u0,Y + v0,Z + w0,2));
|
|
if (is_oriented_only && u*pu + v*pv + w*pw<0) { u = -u; v = -v; w = -w; }
|
|
if (is_backward_tracking) { X-=(pu=u); Y-=(pv=v); Z-=(pw=w); } else { X+=(pu=u); Y+=(pv=v); Z+=(pw=w); }
|
|
if (is_bounded && (X<x0 || X>x1 || Y<y0 || Y>y1 || Z<z0 || Z>z1)) break;
|
|
}
|
|
} break;
|
|
default : { // Fourth order interpolation
|
|
cimg_forX(coordinates,k) {
|
|
*(ptr_x++) = X; *(ptr_y++) = Y; *(ptr_z++) = Z;
|
|
float
|
|
u0 = (float)(dl2*func(X,Y,Z,0)),
|
|
v0 = (float)(dl2*func(X,Y,Z,1)),
|
|
w0 = (float)(dl2*func(X,Y,Z,2));
|
|
if (is_oriented_only && u0*pu + v0*pv + w0*pw<0) { u0 = -u0; v0 = -v0; w0 = -w0; }
|
|
float
|
|
u1 = (float)(dl2*func(X + u0,Y + v0,Z + w0,0)),
|
|
v1 = (float)(dl2*func(X + u0,Y + v0,Z + w0,1)),
|
|
w1 = (float)(dl2*func(X + u0,Y + v0,Z + w0,2));
|
|
if (is_oriented_only && u1*pu + v1*pv + w1*pw<0) { u1 = -u1; v1 = -v1; w1 = -w1; }
|
|
float
|
|
u2 = (float)(dl2*func(X + u1,Y + v1,Z + w1,0)),
|
|
v2 = (float)(dl2*func(X + u1,Y + v1,Z + w1,1)),
|
|
w2 = (float)(dl2*func(X + u1,Y + v1,Z + w1,2));
|
|
if (is_oriented_only && u2*pu + v2*pv + w2*pw<0) { u2 = -u2; v2 = -v2; w2 = -w2; }
|
|
float
|
|
u3 = (float)(dl2*func(X + u2,Y + v2,Z + w2,0)),
|
|
v3 = (float)(dl2*func(X + u2,Y + v2,Z + w2,1)),
|
|
w3 = (float)(dl2*func(X + u2,Y + v2,Z + w2,2));
|
|
if (is_oriented_only && u2*pu + v2*pv + w2*pw<0) { u3 = -u3; v3 = -v3; w3 = -w3; }
|
|
const float
|
|
u = (u0 + u3)/3 + (u1 + u2)/1.5f,
|
|
v = (v0 + v3)/3 + (v1 + v2)/1.5f,
|
|
w = (w0 + w3)/3 + (w1 + w2)/1.5f;
|
|
if (is_backward_tracking) { X-=(pu=u); Y-=(pv=v); Z-=(pw=w); } else { X+=(pu=u); Y+=(pv=v); Z+=(pw=w); }
|
|
if (is_bounded && (X<x0 || X>x1 || Y<y0 || Y>y1 || Z<z0 || Z>z1)) break;
|
|
}
|
|
}
|
|
}
|
|
if (ptr_x!=coordinates.data(0,1)) coordinates.resize((int)(ptr_x-coordinates.data()),3,1,1,0);
|
|
return coordinates;
|
|
}
|
|
|
|
//! Return stream line of a 3D vector field \overloading.
|
|
static CImg<floatT> streamline(const char *const expression,
|
|
const float x, const float y, const float z,
|
|
const float L=256, const float dl=0.1f,
|
|
const unsigned int interpolation_type=2, const bool is_backward_tracking=true,
|
|
const bool is_oriented_only=false,
|
|
const float x0=0, const float y0=0, const float z0=0,
|
|
const float x1=0, const float y1=0, const float z1=0) {
|
|
_functor4d_streamline_expr func(expression);
|
|
return streamline(func,x,y,z,L,dl,interpolation_type,is_backward_tracking,is_oriented_only,x0,y0,z0,x1,y1,z1);
|
|
}
|
|
|
|
struct _functor4d_streamline2d_directed {
|
|
const CImg<T>& ref;
|
|
_functor4d_streamline2d_directed(const CImg<T>& pref):ref(pref) {}
|
|
float operator()(const float x, const float y, const float z, const unsigned int c) const {
|
|
return c<2?(float)ref._linear_atXY(x,y,(int)z,c):0;
|
|
}
|
|
};
|
|
|
|
struct _functor4d_streamline3d_directed {
|
|
const CImg<T>& ref;
|
|
_functor4d_streamline3d_directed(const CImg<T>& pref):ref(pref) {}
|
|
float operator()(const float x, const float y, const float z, const unsigned int c) const {
|
|
return (float)ref._linear_atXYZ(x,y,z,c);
|
|
}
|
|
};
|
|
|
|
struct _functor4d_streamline2d_oriented {
|
|
const CImg<T>& ref;
|
|
CImg<floatT> *pI;
|
|
_functor4d_streamline2d_oriented(const CImg<T>& pref):ref(pref),pI(0) { pI = new CImg<floatT>(2,2,1,2); }
|
|
~_functor4d_streamline2d_oriented() { delete pI; }
|
|
float operator()(const float x, const float y, const float z, const unsigned int c) const {
|
|
#define _cimg_vecalign2d(i,j) \
|
|
if (I(i,j,0)*I(0,0,0) + I(i,j,1)*I(0,0,1)<0) { I(i,j,0) = -I(i,j,0); I(i,j,1) = -I(i,j,1); }
|
|
int
|
|
xi = (int)x - (x>=0?0:1), nxi = xi + 1,
|
|
yi = (int)y - (y>=0?0:1), nyi = yi + 1,
|
|
zi = (int)z;
|
|
const float
|
|
dx = x - xi,
|
|
dy = y - yi;
|
|
if (c==0) {
|
|
CImg<floatT>& I = *pI;
|
|
if (xi<0) xi = 0;
|
|
if (nxi<0) nxi = 0;
|
|
if (xi>=ref.width()) xi = ref.width() - 1;
|
|
if (nxi>=ref.width()) nxi = ref.width() - 1;
|
|
if (yi<0) yi = 0;
|
|
if (nyi<0) nyi = 0;
|
|
if (yi>=ref.height()) yi = ref.height() - 1;
|
|
if (nyi>=ref.height()) nyi = ref.height() - 1;
|
|
I(0,0,0) = (float)ref(xi,yi,zi,0); I(0,0,1) = (float)ref(xi,yi,zi,1);
|
|
I(1,0,0) = (float)ref(nxi,yi,zi,0); I(1,0,1) = (float)ref(nxi,yi,zi,1);
|
|
I(1,1,0) = (float)ref(nxi,nyi,zi,0); I(1,1,1) = (float)ref(nxi,nyi,zi,1);
|
|
I(0,1,0) = (float)ref(xi,nyi,zi,0); I(0,1,1) = (float)ref(xi,nyi,zi,1);
|
|
_cimg_vecalign2d(1,0); _cimg_vecalign2d(1,1); _cimg_vecalign2d(0,1);
|
|
}
|
|
return c<2?(float)pI->_linear_atXY(dx,dy,0,c):0;
|
|
}
|
|
};
|
|
|
|
struct _functor4d_streamline3d_oriented {
|
|
const CImg<T>& ref;
|
|
CImg<floatT> *pI;
|
|
_functor4d_streamline3d_oriented(const CImg<T>& pref):ref(pref),pI(0) { pI = new CImg<floatT>(2,2,2,3); }
|
|
~_functor4d_streamline3d_oriented() { delete pI; }
|
|
float operator()(const float x, const float y, const float z, const unsigned int c) const {
|
|
#define _cimg_vecalign3d(i,j,k) if (I(i,j,k,0)*I(0,0,0,0) + I(i,j,k,1)*I(0,0,0,1) + I(i,j,k,2)*I(0,0,0,2)<0) { \
|
|
I(i,j,k,0) = -I(i,j,k,0); I(i,j,k,1) = -I(i,j,k,1); I(i,j,k,2) = -I(i,j,k,2); }
|
|
int
|
|
xi = (int)x - (x>=0?0:1), nxi = xi + 1,
|
|
yi = (int)y - (y>=0?0:1), nyi = yi + 1,
|
|
zi = (int)z - (z>=0?0:1), nzi = zi + 1;
|
|
const float
|
|
dx = x - xi,
|
|
dy = y - yi,
|
|
dz = z - zi;
|
|
if (c==0) {
|
|
CImg<floatT>& I = *pI;
|
|
if (xi<0) xi = 0;
|
|
if (nxi<0) nxi = 0;
|
|
if (xi>=ref.width()) xi = ref.width() - 1;
|
|
if (nxi>=ref.width()) nxi = ref.width() - 1;
|
|
if (yi<0) yi = 0;
|
|
if (nyi<0) nyi = 0;
|
|
if (yi>=ref.height()) yi = ref.height() - 1;
|
|
if (nyi>=ref.height()) nyi = ref.height() - 1;
|
|
if (zi<0) zi = 0;
|
|
if (nzi<0) nzi = 0;
|
|
if (zi>=ref.depth()) zi = ref.depth() - 1;
|
|
if (nzi>=ref.depth()) nzi = ref.depth() - 1;
|
|
I(0,0,0,0) = (float)ref(xi,yi,zi,0); I(0,0,0,1) = (float)ref(xi,yi,zi,1);
|
|
I(0,0,0,2) = (float)ref(xi,yi,zi,2); I(1,0,0,0) = (float)ref(nxi,yi,zi,0);
|
|
I(1,0,0,1) = (float)ref(nxi,yi,zi,1); I(1,0,0,2) = (float)ref(nxi,yi,zi,2);
|
|
I(1,1,0,0) = (float)ref(nxi,nyi,zi,0); I(1,1,0,1) = (float)ref(nxi,nyi,zi,1);
|
|
I(1,1,0,2) = (float)ref(nxi,nyi,zi,2); I(0,1,0,0) = (float)ref(xi,nyi,zi,0);
|
|
I(0,1,0,1) = (float)ref(xi,nyi,zi,1); I(0,1,0,2) = (float)ref(xi,nyi,zi,2);
|
|
I(0,0,1,0) = (float)ref(xi,yi,nzi,0); I(0,0,1,1) = (float)ref(xi,yi,nzi,1);
|
|
I(0,0,1,2) = (float)ref(xi,yi,nzi,2); I(1,0,1,0) = (float)ref(nxi,yi,nzi,0);
|
|
I(1,0,1,1) = (float)ref(nxi,yi,nzi,1); I(1,0,1,2) = (float)ref(nxi,yi,nzi,2);
|
|
I(1,1,1,0) = (float)ref(nxi,nyi,nzi,0); I(1,1,1,1) = (float)ref(nxi,nyi,nzi,1);
|
|
I(1,1,1,2) = (float)ref(nxi,nyi,nzi,2); I(0,1,1,0) = (float)ref(xi,nyi,nzi,0);
|
|
I(0,1,1,1) = (float)ref(xi,nyi,nzi,1); I(0,1,1,2) = (float)ref(xi,nyi,nzi,2);
|
|
_cimg_vecalign3d(1,0,0); _cimg_vecalign3d(1,1,0); _cimg_vecalign3d(0,1,0);
|
|
_cimg_vecalign3d(0,0,1); _cimg_vecalign3d(1,0,1); _cimg_vecalign3d(1,1,1); _cimg_vecalign3d(0,1,1);
|
|
}
|
|
return (float)pI->_linear_atXYZ(dx,dy,dz,c);
|
|
}
|
|
};
|
|
|
|
struct _functor4d_streamline_expr {
|
|
_cimg_math_parser *mp;
|
|
~_functor4d_streamline_expr() { mp->end(); delete mp; }
|
|
_functor4d_streamline_expr(const char *const expr):mp(0) {
|
|
mp = new _cimg_math_parser(expr,"streamline",CImg<T>::const_empty(),0);
|
|
}
|
|
float operator()(const float x, const float y, const float z, const unsigned int c) const {
|
|
return (float)(*mp)(x,y,z,c);
|
|
}
|
|
};
|
|
|
|
//! Return a shared-memory image referencing a range of pixels of the image instance.
|
|
/**
|
|
\param x0 X-coordinate of the starting pixel.
|
|
\param x1 X-coordinate of the ending pixel.
|
|
\param y0 Y-coordinate.
|
|
\param z0 Z-coordinate.
|
|
\param c0 C-coordinate.
|
|
**/
|
|
CImg<T> get_shared_points(const unsigned int x0, const unsigned int x1,
|
|
const unsigned int y0=0, const unsigned int z0=0, const unsigned int c0=0) {
|
|
const ulongT
|
|
beg = (ulongT)offset(x0,y0,z0,c0),
|
|
end = (ulongT)offset(x1,y0,z0,c0);
|
|
if (beg>end || beg>=size() || end>=size())
|
|
throw CImgArgumentException(_cimg_instance
|
|
"get_shared_points(): Invalid request of a shared-memory subset (%u->%u,%u,%u,%u).",
|
|
cimg_instance,
|
|
x0,x1,y0,z0,c0);
|
|
return CImg<T>(_data + beg,x1 - x0 + 1,1,1,1,true);
|
|
}
|
|
|
|
//! Return a shared-memory image referencing a range of pixels of the image instance \const.
|
|
const CImg<T> get_shared_points(const unsigned int x0, const unsigned int x1,
|
|
const unsigned int y0=0, const unsigned int z0=0, const unsigned int c0=0) const {
|
|
const ulongT
|
|
beg = (ulongT)offset(x0,y0,z0,c0),
|
|
end = (ulongT)offset(x1,y0,z0,c0);
|
|
if (beg>end || beg>=size() || end>=size())
|
|
throw CImgArgumentException(_cimg_instance
|
|
"get_shared_points(): Invalid request of a shared-memory subset (%u->%u,%u,%u,%u).",
|
|
cimg_instance,
|
|
x0,x1,y0,z0,c0);
|
|
return CImg<T>(_data + beg,x1 - x0 + 1,1,1,1,true);
|
|
}
|
|
|
|
//! Return a shared-memory image referencing a range of rows of the image instance.
|
|
/**
|
|
\param y0 Y-coordinate of the starting row.
|
|
\param y1 Y-coordinate of the ending row.
|
|
\param z0 Z-coordinate.
|
|
\param c0 C-coordinate.
|
|
**/
|
|
CImg<T> get_shared_rows(const unsigned int y0, const unsigned int y1,
|
|
const unsigned int z0=0, const unsigned int c0=0) {
|
|
const ulongT
|
|
beg = (ulongT)offset(0,y0,z0,c0),
|
|
end = (ulongT)offset(0,y1,z0,c0);
|
|
if (beg>end || beg>=size() || end>=size())
|
|
throw CImgArgumentException(_cimg_instance
|
|
"get_shared_rows(): Invalid request of a shared-memory subset "
|
|
"(0->%u,%u->%u,%u,%u).",
|
|
cimg_instance,
|
|
_width - 1,y0,y1,z0,c0);
|
|
return CImg<T>(_data + beg,_width,y1 - y0 + 1,1,1,true);
|
|
}
|
|
|
|
//! Return a shared-memory image referencing a range of rows of the image instance \const.
|
|
const CImg<T> get_shared_rows(const unsigned int y0, const unsigned int y1,
|
|
const unsigned int z0=0, const unsigned int c0=0) const {
|
|
const ulongT
|
|
beg = (ulongT)offset(0,y0,z0,c0),
|
|
end = (ulongT)offset(0,y1,z0,c0);
|
|
if (beg>end || beg>=size() || end>=size())
|
|
throw CImgArgumentException(_cimg_instance
|
|
"get_shared_rows(): Invalid request of a shared-memory subset "
|
|
"(0->%u,%u->%u,%u,%u).",
|
|
cimg_instance,
|
|
_width - 1,y0,y1,z0,c0);
|
|
return CImg<T>(_data + beg,_width,y1 - y0 + 1,1,1,true);
|
|
}
|
|
|
|
//! Return a shared-memory image referencing one row of the image instance.
|
|
/**
|
|
\param y0 Y-coordinate.
|
|
\param z0 Z-coordinate.
|
|
\param c0 C-coordinate.
|
|
**/
|
|
CImg<T> get_shared_row(const unsigned int y0, const unsigned int z0=0, const unsigned int c0=0) {
|
|
return get_shared_rows(y0,y0,z0,c0);
|
|
}
|
|
|
|
//! Return a shared-memory image referencing one row of the image instance \const.
|
|
const CImg<T> get_shared_row(const unsigned int y0, const unsigned int z0=0, const unsigned int c0=0) const {
|
|
return get_shared_rows(y0,y0,z0,c0);
|
|
}
|
|
|
|
//! Return a shared memory image referencing a range of slices of the image instance.
|
|
/**
|
|
\param z0 Z-coordinate of the starting slice.
|
|
\param z1 Z-coordinate of the ending slice.
|
|
\param c0 C-coordinate.
|
|
**/
|
|
CImg<T> get_shared_slices(const unsigned int z0, const unsigned int z1, const unsigned int c0=0) {
|
|
const ulongT
|
|
beg = (ulongT)offset(0,0,z0,c0),
|
|
end = (ulongT)offset(0,0,z1,c0);
|
|
if (beg>end || beg>=size() || end>=size())
|
|
throw CImgArgumentException(_cimg_instance
|
|
"get_shared_slices(): Invalid request of a shared-memory subset "
|
|
"(0->%u,0->%u,%u->%u,%u).",
|
|
cimg_instance,
|
|
_width - 1,_height - 1,z0,z1,c0);
|
|
return CImg<T>(_data + beg,_width,_height,z1 - z0 + 1,1,true);
|
|
}
|
|
|
|
//! Return a shared memory image referencing a range of slices of the image instance \const.
|
|
const CImg<T> get_shared_slices(const unsigned int z0, const unsigned int z1, const unsigned int c0=0) const {
|
|
const ulongT
|
|
beg = (ulongT)offset(0,0,z0,c0),
|
|
end = (ulongT)offset(0,0,z1,c0);
|
|
if (beg>end || beg>=size() || end>=size())
|
|
throw CImgArgumentException(_cimg_instance
|
|
"get_shared_slices(): Invalid request of a shared-memory subset "
|
|
"(0->%u,0->%u,%u->%u,%u).",
|
|
cimg_instance,
|
|
_width - 1,_height - 1,z0,z1,c0);
|
|
return CImg<T>(_data + beg,_width,_height,z1 - z0 + 1,1,true);
|
|
}
|
|
|
|
//! Return a shared-memory image referencing one slice of the image instance.
|
|
/**
|
|
\param z0 Z-coordinate.
|
|
\param c0 C-coordinate.
|
|
**/
|
|
CImg<T> get_shared_slice(const unsigned int z0, const unsigned int c0=0) {
|
|
return get_shared_slices(z0,z0,c0);
|
|
}
|
|
|
|
//! Return a shared-memory image referencing one slice of the image instance \const.
|
|
const CImg<T> get_shared_slice(const unsigned int z0, const unsigned int c0=0) const {
|
|
return get_shared_slices(z0,z0,c0);
|
|
}
|
|
|
|
//! Return a shared-memory image referencing a range of channels of the image instance.
|
|
/**
|
|
\param c0 C-coordinate of the starting channel.
|
|
\param c1 C-coordinate of the ending channel.
|
|
**/
|
|
CImg<T> get_shared_channels(const unsigned int c0, const unsigned int c1) {
|
|
const ulongT
|
|
beg = (ulongT)offset(0,0,0,c0),
|
|
end = (ulongT)offset(0,0,0,c1);
|
|
if (beg>end || beg>=size() || end>=size())
|
|
throw CImgArgumentException(_cimg_instance
|
|
"get_shared_channels(): Invalid request of a shared-memory subset "
|
|
"(0->%u,0->%u,0->%u,%u->%u).",
|
|
cimg_instance,
|
|
_width - 1,_height - 1,_depth - 1,c0,c1);
|
|
return CImg<T>(_data + beg,_width,_height,_depth,c1 - c0 + 1,true);
|
|
}
|
|
|
|
//! Return a shared-memory image referencing a range of channels of the image instance \const.
|
|
const CImg<T> get_shared_channels(const unsigned int c0, const unsigned int c1) const {
|
|
const ulongT
|
|
beg = (ulongT)offset(0,0,0,c0),
|
|
end = (ulongT)offset(0,0,0,c1);
|
|
if (beg>end || beg>=size() || end>=size())
|
|
throw CImgArgumentException(_cimg_instance
|
|
"get_shared_channels(): Invalid request of a shared-memory subset "
|
|
"(0->%u,0->%u,0->%u,%u->%u).",
|
|
cimg_instance,
|
|
_width - 1,_height - 1,_depth - 1,c0,c1);
|
|
return CImg<T>(_data + beg,_width,_height,_depth,c1 - c0 + 1,true);
|
|
}
|
|
|
|
//! Return a shared-memory image referencing one channel of the image instance.
|
|
/**
|
|
\param c0 C-coordinate.
|
|
**/
|
|
CImg<T> get_shared_channel(const unsigned int c0) {
|
|
return get_shared_channels(c0,c0);
|
|
}
|
|
|
|
//! Return a shared-memory image referencing one channel of the image instance \const.
|
|
const CImg<T> get_shared_channel(const unsigned int c0) const {
|
|
return get_shared_channels(c0,c0);
|
|
}
|
|
|
|
//! Return a shared-memory version of the image instance.
|
|
CImg<T> get_shared() {
|
|
return CImg<T>(_data,_width,_height,_depth,_spectrum,true);
|
|
}
|
|
|
|
//! Return a shared-memory version of the image instance \const.
|
|
const CImg<T> get_shared() const {
|
|
return CImg<T>(_data,_width,_height,_depth,_spectrum,true);
|
|
}
|
|
|
|
//! Split image into a list along specified axis.
|
|
/**
|
|
\param axis Splitting axis. Can be <tt>{ 'x' | 'y' | 'z' | 'c' }</tt>.
|
|
\param nb Number of split parts.
|
|
\note
|
|
- If \c nb==0, instance image is split into blocs of equal values along the specified axis.
|
|
- If \c nb<=0, instance image is split into blocs of -\c nb pixel wide.
|
|
- If \c nb>0, instance image is split into \c nb blocs.
|
|
**/
|
|
CImgList<T> get_split(const char axis, const int nb=-1) const {
|
|
CImgList<T> res;
|
|
if (is_empty()) return res;
|
|
const char _axis = cimg::lowercase(axis);
|
|
|
|
if (nb<0) { // Split by block size
|
|
const unsigned int dp = (unsigned int)(nb?-nb:1);
|
|
switch (_axis) {
|
|
case 'x': {
|
|
if (_width>dp) {
|
|
res.assign(_width/dp + (_width%dp?1:0),1,1);
|
|
const unsigned int pe = _width - dp;
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*128 &&
|
|
_height*_depth*_spectrum>=128))
|
|
for (int p = 0; p<(int)pe; p+=dp)
|
|
get_crop(p,0,0,0,p + dp - 1,_height - 1,_depth - 1,_spectrum - 1).move_to(res[p/dp]);
|
|
get_crop((res._width - 1)*dp,0,0,0,_width - 1,_height - 1,_depth - 1,_spectrum - 1).move_to(res.back());
|
|
} else res.assign(*this);
|
|
} break;
|
|
case 'y': {
|
|
if (_height>dp) {
|
|
res.assign(_height/dp + (_height%dp?1:0),1,1);
|
|
const unsigned int pe = _height - dp;
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*128 &&
|
|
_width*_depth*_spectrum>=128))
|
|
for (int p = 0; p<(int)pe; p+=dp)
|
|
get_crop(0,p,0,0,_width - 1,p + dp - 1,_depth - 1,_spectrum - 1).move_to(res[p/dp]);
|
|
get_crop(0,(res._width - 1)*dp,0,0,_width - 1,_height - 1,_depth - 1,_spectrum - 1).move_to(res.back());
|
|
} else res.assign(*this);
|
|
} break;
|
|
case 'z': {
|
|
if (_depth>dp) {
|
|
res.assign(_depth/dp + (_depth%dp?1:0),1,1);
|
|
const unsigned int pe = _depth - dp;
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*128 &&
|
|
_width*_height*_spectrum>=128))
|
|
for (int p = 0; p<(int)pe; p+=dp)
|
|
get_crop(0,0,p,0,_width - 1,_height - 1,p + dp - 1,_spectrum - 1).move_to(res[p/dp]);
|
|
get_crop(0,0,(res._width - 1)*dp,0,_width - 1,_height - 1,_depth - 1,_spectrum - 1).move_to(res.back());
|
|
} else res.assign(*this);
|
|
} break;
|
|
case 'c' : {
|
|
if (_spectrum>dp) {
|
|
res.assign(_spectrum/dp + (_spectrum%dp?1:0),1,1);
|
|
const unsigned int pe = _spectrum - dp;
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*128 &&
|
|
_width*_height*_depth>=128))
|
|
for (int p = 0; p<(int)pe; p+=dp)
|
|
get_crop(0,0,0,p,_width - 1,_height - 1,_depth - 1,p + dp - 1).move_to(res[p/dp]);
|
|
get_crop(0,0,0,(res._width - 1)*dp,_width - 1,_height - 1,_depth - 1,_spectrum - 1).move_to(res.back());
|
|
} else res.assign(*this);
|
|
}
|
|
}
|
|
} else if (nb>0) { // Split by number of (non-homogeneous) blocs
|
|
const unsigned int siz = _axis=='x'?_width:_axis=='y'?_height:_axis=='z'?_depth:_axis=='c'?_spectrum:0;
|
|
if ((unsigned int)nb>siz)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"get_split(): Instance cannot be split along %c-axis into %u blocs.",
|
|
cimg_instance,
|
|
axis,nb);
|
|
if (nb==1) res.assign(*this);
|
|
else {
|
|
int err = (int)siz;
|
|
unsigned int _p = 0;
|
|
switch (_axis) {
|
|
case 'x' : {
|
|
cimg_forX(*this,p) if ((err-=nb)<=0) {
|
|
get_crop(_p,0,0,0,p,_height - 1,_depth - 1,_spectrum - 1).move_to(res);
|
|
err+=(int)siz;
|
|
_p = p + 1U;
|
|
}
|
|
} break;
|
|
case 'y' : {
|
|
cimg_forY(*this,p) if ((err-=nb)<=0) {
|
|
get_crop(0,_p,0,0,_width - 1,p,_depth - 1,_spectrum - 1).move_to(res);
|
|
err+=(int)siz;
|
|
_p = p + 1U;
|
|
}
|
|
} break;
|
|
case 'z' : {
|
|
cimg_forZ(*this,p) if ((err-=nb)<=0) {
|
|
get_crop(0,0,_p,0,_width - 1,_height - 1,p,_spectrum - 1).move_to(res);
|
|
err+=(int)siz;
|
|
_p = p + 1U;
|
|
}
|
|
} break;
|
|
case 'c' : {
|
|
cimg_forC(*this,p) if ((err-=nb)<=0) {
|
|
get_crop(0,0,0,_p,_width - 1,_height - 1,_depth - 1,p).move_to(res);
|
|
err+=(int)siz;
|
|
_p = p + 1U;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else { // Split by equal values according to specified axis
|
|
T current = *_data;
|
|
switch (_axis) {
|
|
case 'x' : {
|
|
int i0 = 0;
|
|
cimg_forX(*this,i)
|
|
if ((*this)(i)!=current) { get_columns(i0,i - 1).move_to(res); i0 = i; current = (*this)(i); }
|
|
get_columns(i0,width() - 1).move_to(res);
|
|
} break;
|
|
case 'y' : {
|
|
int i0 = 0;
|
|
cimg_forY(*this,i)
|
|
if ((*this)(0,i)!=current) { get_rows(i0,i - 1).move_to(res); i0 = i; current = (*this)(0,i); }
|
|
get_rows(i0,height() - 1).move_to(res);
|
|
} break;
|
|
case 'z' : {
|
|
int i0 = 0;
|
|
cimg_forZ(*this,i)
|
|
if ((*this)(0,0,i)!=current) { get_slices(i0,i - 1).move_to(res); i0 = i; current = (*this)(0,0,i); }
|
|
get_slices(i0,depth() - 1).move_to(res);
|
|
} break;
|
|
case 'c' : {
|
|
int i0 = 0;
|
|
cimg_forC(*this,i)
|
|
if ((*this)(0,0,0,i)!=current) { get_channels(i0,i - 1).move_to(res); i0 = i; current = (*this)(0,0,0,i); }
|
|
get_channels(i0,spectrum() - 1).move_to(res);
|
|
} break;
|
|
default : {
|
|
longT i0 = 0;
|
|
cimg_foroff(*this,i)
|
|
if ((*this)[i]!=current) {
|
|
CImg<T>(_data + i0,1,(unsigned int)(i - i0)).move_to(res);
|
|
i0 = (longT)i; current = (*this)[i];
|
|
}
|
|
CImg<T>(_data + i0,1,(unsigned int)(size() - i0)).move_to(res);
|
|
}
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Split image into a list of sub-images, according to a specified splitting value sequence and optionally axis.
|
|
/**
|
|
\param values Splitting value sequence.
|
|
\param axis Axis along which the splitting is performed. Can be '0' to ignore axis.
|
|
\param keep_values Tells if the splitting sequence must be kept in the split blocs.
|
|
**/
|
|
template<typename t>
|
|
CImgList<T> get_split(const CImg<t>& values, const char axis=0, const bool keep_values=true) const {
|
|
typedef _cimg_Tt Tt;
|
|
|
|
CImgList<T> res;
|
|
if (is_empty()) return res;
|
|
const ulongT vsiz = values.size();
|
|
const char _axis = cimg::lowercase(axis);
|
|
if (!vsiz) return CImgList<T>(*this);
|
|
if (vsiz==1) { // Split according to a single value
|
|
const T value = (T)*values;
|
|
switch (_axis) {
|
|
case 'x' : {
|
|
unsigned int i0 = 0, i = 0;
|
|
do {
|
|
while (i<_width && (*this)(i)==value) ++i;
|
|
if (i>i0) { if (keep_values) get_columns(i0,i - 1).move_to(res); i0 = i; }
|
|
while (i<_width && (*this)(i)!=value) ++i;
|
|
if (i>i0) { get_columns(i0,i - 1).move_to(res); i0 = i; }
|
|
} while (i<_width);
|
|
} break;
|
|
case 'y' : {
|
|
unsigned int i0 = 0, i = 0;
|
|
do {
|
|
while (i<_height && (*this)(0,i)==value) ++i;
|
|
if (i>i0) { if (keep_values) get_rows(i0,i - 1).move_to(res); i0 = i; }
|
|
while (i<_height && (*this)(0,i)!=value) ++i;
|
|
if (i>i0) { get_rows(i0,i - 1).move_to(res); i0 = i; }
|
|
} while (i<_height);
|
|
} break;
|
|
case 'z' : {
|
|
unsigned int i0 = 0, i = 0;
|
|
do {
|
|
while (i<_depth && (*this)(0,0,i)==value) ++i;
|
|
if (i>i0) { if (keep_values) get_slices(i0,i - 1).move_to(res); i0 = i; }
|
|
while (i<_depth && (*this)(0,0,i)!=value) ++i;
|
|
if (i>i0) { get_slices(i0,i - 1).move_to(res); i0 = i; }
|
|
} while (i<_depth);
|
|
} break;
|
|
case 'c' : {
|
|
unsigned int i0 = 0, i = 0;
|
|
do {
|
|
while (i<_spectrum && (*this)(0,0,0,i)==value) ++i;
|
|
if (i>i0) { if (keep_values) get_channels(i0,i - 1).move_to(res); i0 = i; }
|
|
while (i<_spectrum && (*this)(0,0,0,i)!=value) ++i;
|
|
if (i>i0) { get_channels(i0,i - 1).move_to(res); i0 = i; }
|
|
} while (i<_spectrum);
|
|
} break;
|
|
default : {
|
|
const ulongT siz = size();
|
|
ulongT i0 = 0, i = 0;
|
|
do {
|
|
while (i<siz && (*this)[i]==value) ++i;
|
|
if (i>i0) {
|
|
if (keep_values) CImg<T>(_data + i0,1,(unsigned int)(i - i0)).move_to(res);
|
|
i0 = i;
|
|
}
|
|
while (i<siz && (*this)[i]!=value) ++i;
|
|
if (i>i0) { CImg<T>(_data + i0,1,(unsigned int)(i - i0)).move_to(res); i0 = i; }
|
|
} while (i<siz);
|
|
}
|
|
}
|
|
} else { // Split according to multiple values
|
|
ulongT j = 0;
|
|
switch (_axis) {
|
|
case 'x' : {
|
|
unsigned int i0 = 0, i1 = 0, i = 0;
|
|
do {
|
|
if ((Tt)(*this)(i)==(Tt)*values) {
|
|
i1 = i; j = 0;
|
|
while (i<_width && (Tt)(*this)(i)==(Tt)values[j]) { ++i; if (++j>=vsiz) j = 0; }
|
|
i-=(unsigned int)j;
|
|
if (i>i1) {
|
|
if (i1>i0) get_columns(i0,i1 - 1).move_to(res);
|
|
if (keep_values) get_columns(i1,i - 1).move_to(res);
|
|
i0 = i;
|
|
} else ++i;
|
|
} else ++i;
|
|
} while (i<_width);
|
|
if (i0<_width) get_columns(i0,width() - 1).move_to(res);
|
|
} break;
|
|
case 'y' : {
|
|
unsigned int i0 = 0, i1 = 0, i = 0;
|
|
do {
|
|
if ((Tt)(*this)(0,i)==(Tt)*values) {
|
|
i1 = i; j = 0;
|
|
while (i<_height && (Tt)(*this)(0,i)==(Tt)values[j]) { ++i; if (++j>=vsiz) j = 0; }
|
|
i-=(unsigned int)j;
|
|
if (i>i1) {
|
|
if (i1>i0) get_rows(i0,i1 - 1).move_to(res);
|
|
if (keep_values) get_rows(i1,i - 1).move_to(res);
|
|
i0 = i;
|
|
} else ++i;
|
|
} else ++i;
|
|
} while (i<_height);
|
|
if (i0<_height) get_rows(i0,height() - 1).move_to(res);
|
|
} break;
|
|
case 'z' : {
|
|
unsigned int i0 = 0, i1 = 0, i = 0;
|
|
do {
|
|
if ((Tt)(*this)(0,0,i)==(Tt)*values) {
|
|
i1 = i; j = 0;
|
|
while (i<_depth && (Tt)(*this)(0,0,i)==(Tt)values[j]) { ++i; if (++j>=vsiz) j = 0; }
|
|
i-=(unsigned int)j;
|
|
if (i>i1) {
|
|
if (i1>i0) get_slices(i0,i1 - 1).move_to(res);
|
|
if (keep_values) get_slices(i1,i - 1).move_to(res);
|
|
i0 = i;
|
|
} else ++i;
|
|
} else ++i;
|
|
} while (i<_depth);
|
|
if (i0<_depth) get_slices(i0,depth() - 1).move_to(res);
|
|
} break;
|
|
case 'c' : {
|
|
unsigned int i0 = 0, i1 = 0, i = 0;
|
|
do {
|
|
if ((Tt)(*this)(0,0,0,i)==(Tt)*values) {
|
|
i1 = i; j = 0;
|
|
while (i<_spectrum && (Tt)(*this)(0,0,0,i)==(Tt)values[j]) { ++i; if (++j>=vsiz) j = 0; }
|
|
i-=(unsigned int)j;
|
|
if (i>i1) {
|
|
if (i1>i0) get_channels(i0,i1 - 1).move_to(res);
|
|
if (keep_values) get_channels(i1,i - 1).move_to(res);
|
|
i0 = i;
|
|
} else ++i;
|
|
} else ++i;
|
|
} while (i<_spectrum);
|
|
if (i0<_spectrum) get_channels(i0,spectrum() - 1).move_to(res);
|
|
} break;
|
|
default : {
|
|
const ulongT siz = size();
|
|
ulongT i0 = 0, i1 = 0, i = 0;
|
|
do {
|
|
if ((Tt)(*this)[i]==(Tt)*values) {
|
|
i1 = i; j = 0;
|
|
while (i<siz && (Tt)(*this)[i]==(Tt)values[j]) { ++i; if (++j>=vsiz) j = 0; }
|
|
i-=(unsigned int)j;
|
|
if (i>i1) {
|
|
if (i1>i0) CImg<T>(_data + i0,1,(unsigned int)(i1 - i0)).move_to(res);
|
|
if (keep_values) CImg<T>(_data + i1,1,(unsigned int)(i - i1)).move_to(res);
|
|
i0 = i;
|
|
} else ++i;
|
|
} else ++i;
|
|
} while (i<siz);
|
|
if (i0<siz) CImg<T>(_data + i0,1,(unsigned int)(siz - i0)).move_to(res);
|
|
} break;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Append two images along specified axis.
|
|
/**
|
|
\param img Image to append with instance image.
|
|
\param axis Appending axis. Can be <tt>{ 'x' | 'y' | 'z' | 'c' }</tt>.
|
|
\param align Append alignment in \c [0,1].
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& append(const CImg<t>& img, const char axis='x', const float align=0) {
|
|
if (is_empty()) return assign(img,false);
|
|
if (!img) return *this;
|
|
return CImgList<T>(*this,true).insert(img).get_append(axis,align).move_to(*this);
|
|
}
|
|
|
|
//! Append two images along specified axis \specialization.
|
|
CImg<T>& append(const CImg<T>& img, const char axis='x', const float align=0) {
|
|
if (is_empty()) return assign(img,false);
|
|
if (!img) return *this;
|
|
return CImgList<T>(*this,img,true).get_append(axis,align).move_to(*this);
|
|
}
|
|
|
|
//! Append two images along specified axis \const.
|
|
template<typename t>
|
|
CImg<_cimg_Tt> get_append(const CImg<T>& img, const char axis='x', const float align=0) const {
|
|
if (is_empty()) return +img;
|
|
if (!img) return +*this;
|
|
return CImgList<_cimg_Tt>(*this,true).insert(img).get_append(axis,align);
|
|
}
|
|
|
|
//! Append two images along specified axis \specialization.
|
|
CImg<T> get_append(const CImg<T>& img, const char axis='x', const float align=0) const {
|
|
if (is_empty()) return +img;
|
|
if (!img) return +*this;
|
|
return CImgList<T>(*this,img,true).get_append(axis,align);
|
|
}
|
|
|
|
//@}
|
|
//---------------------------------------
|
|
//
|
|
//! \name Filtering / Transforms
|
|
//@{
|
|
//---------------------------------------
|
|
|
|
//! Correlate image by a kernel.
|
|
/**
|
|
\param kernel = the correlation kernel.
|
|
\param boundary_conditions Boundary condition. Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }.
|
|
\param is_normalized = enable local normalization.
|
|
\param channel_mode Channel processing mode.
|
|
Can be { 0=all | 1=one for one (default) | 2=partial sum | 3=full sum }.
|
|
\param xcenter X-coordinate of the kernel center (~0U>>1 means 'centered').
|
|
\param ycenter Y-coordinate of the kernel center (~0U>>1 means 'centered').
|
|
\param zcenter Z-coordinate of the kernel center (~0U>>1 means 'centered').
|
|
\param xstart Starting X-coordinate of the instance image.
|
|
\param ystart Starting Y-coordinate of the instance image.
|
|
\param zstart Starting Z-coordinate of the instance image.
|
|
\param xend Ending X-coordinate of the instance image.
|
|
\param yend Ending Y-coordinate of the instance image.
|
|
\param zend Ending Z-coordinate of the instance image.
|
|
\param xstride Stride along the X-axis.
|
|
\param ystride Stride along the Y-axis.
|
|
\param zstride Stride along the Z-axis.
|
|
\param xdilation Dilation along the X-axis.
|
|
\param ydilation Dilation along the Y-axis.
|
|
\param zdilation Dilation along the Z-axis.
|
|
\param interpolation_type Can be { false=nearest | true=linear }.
|
|
\note
|
|
- The correlation of the image instance \p *this by the kernel \p kernel is defined to be:
|
|
res(x,y,z) = sum_{i,j,k} (*this)(\alpha_x\;x + \beta_x\;(i - c_x),\alpha_y\;y + \beta_y\;(j -
|
|
c_y),\alpha_z\;z + \beta_z\;(k - c_z))*kernel(i,j,k).
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& correlate(const CImg<t>& kernel, const unsigned int boundary_conditions=1,
|
|
const bool is_normalized=false, const unsigned int channel_mode=1,
|
|
const int xcenter=(int)(~0U>>1),
|
|
const int ycenter=(int)(~0U>>1),
|
|
const int zcenter=(int)(~0U>>1),
|
|
const int xstart=0,
|
|
const int ystart=0,
|
|
const int zstart=0,
|
|
const int xend=(int)(~0U>>1),
|
|
const int yend=(int)(~0U>>1),
|
|
const int zend=(int)(~0U>>1),
|
|
const float xstride=1, const float ystride=1, const float zstride=1,
|
|
const float xdilation=1, const float ydilation=1, const float zdilation=1,
|
|
const bool interpolation_type=false) {
|
|
if (is_empty() || !kernel) return *this;
|
|
return get_correlate(kernel,boundary_conditions,is_normalized,channel_mode,
|
|
xcenter,ycenter,zcenter,xstart,ystart,zstart,xend,yend,zend,
|
|
xstride,ystride,zstride,xdilation,ydilation,zdilation,
|
|
interpolation_type).move_to(*this);
|
|
}
|
|
|
|
template<typename t>
|
|
CImg<_cimg_Ttfloat> get_correlate(const CImg<t>& kernel, const unsigned int boundary_conditions=1,
|
|
const bool is_normalized=false, const unsigned int channel_mode=1,
|
|
const int xcenter=(int)(~0U>>1),
|
|
const int ycenter=(int)(~0U>>1),
|
|
const int zcenter=(int)(~0U>>1),
|
|
const int xstart=0,
|
|
const int ystart=0,
|
|
const int zstart=0,
|
|
const int xend=(int)(~0U>>1),
|
|
const int yend=(int)(~0U>>1),
|
|
const int zend=(int)(~0U>>1),
|
|
const float xstride=1, const float ystride=1, const float zstride=1,
|
|
const float xdilation=1, const float ydilation=1, const float zdilation=1,
|
|
const bool interpolation_type=false) const {
|
|
return _correlate(kernel,boundary_conditions,is_normalized,channel_mode,
|
|
xcenter,ycenter,zcenter,xstart,ystart,zstart,xend,yend,zend,
|
|
xstride,ystride,zstride,xdilation,ydilation,zdilation,
|
|
interpolation_type,false);
|
|
}
|
|
|
|
//! Correlate image by a kernel \newinstance.
|
|
template<typename t>
|
|
CImg<_cimg_Ttfloat> _correlate(const CImg<t>& kernel, const unsigned int boundary_conditions,
|
|
const bool is_normalized, const unsigned int channel_mode,
|
|
const int xcenter, const int ycenter, const int zcenter,
|
|
const int xstart, const int ystart, const int zstart,
|
|
const int xend, const int yend, const int zend,
|
|
const float xstride, const float ystride, const float zstride,
|
|
const float xdilation, const float ydilation, const float zdilation,
|
|
const bool interpolation_type, const bool is_convolve) const {
|
|
typedef _cimg_Ttfloat Ttfloat;
|
|
CImg<Ttfloat> res;
|
|
_cimg_abort_init_openmp;
|
|
cimg_abort_init;
|
|
|
|
if (xstart>xend || ystart>yend || zstart>zend)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"%s(): Invalid xyz-start/end arguments (start = (%d,%d,%d), end = (%d,%d,%d)).",
|
|
cimg_instance,
|
|
is_convolve?"convolve":"correlate",
|
|
xstart,ystart,zstart,xend,yend,zend);
|
|
if (xstride<=0 || ystride<=0 || zstride<=0)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"%s(): Invalid stride arguments (%g,%g,%g).",
|
|
cimg_instance,
|
|
is_convolve?"convolve":"correlate",
|
|
xstride,ystride,zstride);
|
|
|
|
if (is_empty() || !kernel) return *this;
|
|
int
|
|
_xcenter = xcenter==(int)(~0U>>1)?kernel.width()/2 - 1 + (kernel.width()%2):xcenter,
|
|
_ycenter = ycenter==(int)(~0U>>1)?kernel.height()/2 - 1 + (kernel.height()%2):ycenter,
|
|
_zcenter = zcenter==(int)(~0U>>1)?kernel.depth()/2 - 1 + (kernel.depth()%2):zcenter;
|
|
float _xdilation = xdilation, _ydilation = ydilation, _zdilation = zdilation;
|
|
|
|
CImg<t> _kernel;
|
|
if (is_convolve) { // If convolution, go back to correlation
|
|
if (kernel.size()/kernel.spectrum()<=27) {
|
|
_kernel = CImg<t>(kernel._data,kernel.size()/kernel._spectrum,1,1,kernel._spectrum,true).
|
|
get_mirror('x').resize(kernel,-1);
|
|
_xcenter = kernel.width() - 1 - _xcenter;
|
|
_ycenter = kernel.height() - 1 - _ycenter;
|
|
_zcenter = kernel.depth() - _zcenter - 1;
|
|
} else { _kernel = kernel.get_shared(); _xdilation*=-1; _ydilation*=-1; _zdilation*=-1; }
|
|
} else _kernel = kernel.get_shared();
|
|
|
|
const int
|
|
_xend = xend==(int)(~0U>>1)?width() - 1:xend,
|
|
_yend = yend==(int)(~0U>>1)?height() - 1:yend,
|
|
_zend = zend==(int)(~0U>>1)?depth() - 1:zend,
|
|
i_xstride = (int)cimg::round(xstride),
|
|
i_ystride = (int)cimg::round(ystride),
|
|
i_zstride = (int)cimg::round(zstride),
|
|
i_xdilation = (int)cimg::round(_xdilation),
|
|
i_ydilation = (int)cimg::round(_ydilation),
|
|
i_zdilation = (int)cimg::round(_zdilation),
|
|
res_width = _xend - xstart + 1,
|
|
res_height = _yend - ystart + 1,
|
|
res_depth = _zend - zstart + 1,
|
|
smin = std::min(spectrum(),_kernel.spectrum()),
|
|
smax = std::max(spectrum(),_kernel.spectrum()),
|
|
cend = !channel_mode?spectrum()*_kernel.spectrum():smax;
|
|
const ulongT
|
|
res_wh = (ulongT)res_width*res_height,
|
|
res_whd = res_wh*res_depth;
|
|
|
|
if (!res_whd) return CImg<Ttfloat>();
|
|
res.assign(res_width,res_height,res_depth,
|
|
!channel_mode?_spectrum*_kernel._spectrum:
|
|
channel_mode==1?smax:
|
|
channel_mode==2?(int)std::ceil((float)smax/smin):1);
|
|
if (channel_mode>=2) res.fill(0);
|
|
|
|
const ulongT res_siz = res_whd*res._spectrum;
|
|
const bool
|
|
#if cimg_use_openmp==1
|
|
is_master_thread = !omp_get_thread_num(),
|
|
#else
|
|
is_master_thread = true,
|
|
#endif
|
|
is_outer_parallel = is_master_thread &&
|
|
(res._spectrum>=cimg::nb_cpus() || (res_siz<=(cimg_openmp_sizefactor)*32768 && res._spectrum>1)),
|
|
is_inner_parallel = is_master_thread &&
|
|
(!is_outer_parallel && res_whd>=(cimg_openmp_sizefactor)*32768),
|
|
is_int_stride_dilation = xstride==i_xstride && ystride==i_ystride && zstride==i_zstride &&
|
|
_xdilation==i_xdilation && _ydilation==i_ydilation && _zdilation==i_zdilation;
|
|
cimg::unused(is_inner_parallel,is_outer_parallel);
|
|
const int
|
|
w = width(), h = height(), d = depth(),
|
|
w1 = w - 1, h1 = h - 1, d1 = d - 1,
|
|
w2 = 2*w, h2 = 2*h, d2 = 2*d;
|
|
const ulongT wh = (ulongT)w*h, whd = wh*d;
|
|
|
|
// Reshape kernel to enable optimizations for a few cases.
|
|
if (boundary_conditions==1 &&
|
|
_kernel._width>1 && _kernel._height>1 &&
|
|
((_kernel._depth==1 && _kernel._width<=5 && _kernel._height<=5) ||
|
|
(_kernel._depth<=3 && _kernel._width<=3 && _kernel._height<=3)) &&
|
|
xstart>=0 && ystart>=0 && zstart>=0 &&
|
|
_xend<width() && _yend<height() && _zend<depth() &&
|
|
is_int_stride_dilation &&
|
|
xstride==1 && ystride==1 && zstride==1 &&
|
|
i_xdilation>=0 && i_ydilation>=0 && i_zdilation>=0) {
|
|
const unsigned int M = cimg::max(_kernel._width,_kernel._height,_kernel._depth);
|
|
_kernel.assign(_kernel.get_resize(M + 1 - (M%2),M + 1 - (M%2),_kernel._depth>1?M + 1 - (M%2):1,-100,
|
|
0,0,
|
|
1,1,1),false);
|
|
_xcenter = _ycenter = (int)M/2;
|
|
if (_kernel._depth>1) _ycenter = (int)M/2;
|
|
}
|
|
|
|
// Optimized version for a few particular cases (3x3, 5x5 and 3x3x3 kernels, with a few other conditions).
|
|
if (boundary_conditions==1 &&
|
|
_kernel._width==_kernel._height &&
|
|
((_kernel._depth==1 && (_kernel._width==3 || _kernel._width==5)) ||
|
|
(_kernel._depth==_kernel._width && _kernel._width==3)) &&
|
|
_xcenter==_kernel.width()/2 && _ycenter==_kernel.height()/2 && _zcenter==_kernel.depth()/2 &&
|
|
xstart>=0 && ystart>=0 && zstart>=0 &&
|
|
_xend<width() && _yend<height() && _zend<depth() &&
|
|
is_int_stride_dilation &&
|
|
xstride==1 && ystride==1 && zstride==1 &&
|
|
i_xdilation>=0 && i_ydilation>=0 && i_zdilation>=0) {
|
|
|
|
switch (_kernel._depth) {
|
|
case 3 : { // 3x3x3 centered kernel
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(is_outer_parallel))
|
|
for (int c = 0; c<cend; ++c) _cimg_abort_try_openmp2 {
|
|
cimg_abort_test2;
|
|
const CImg<T> I = get_shared_channel(c%_spectrum);
|
|
const CImg<t> K = _kernel.get_shared_channel(!channel_mode?c/_spectrum:c%_kernel._spectrum);
|
|
CImg<Ttfloat> _resu = channel_mode<=1?res.get_shared_channel(c):
|
|
CImg<Ttfloat>(res.width(),res.height(),res.depth(),1);
|
|
if (is_normalized) {
|
|
const Ttfloat M = (Ttfloat)K.magnitude(2), M2 = M*M;
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(is_inner_parallel))
|
|
cimg_forXYZ(res,X,Y,Z) {
|
|
const int
|
|
x = xstart + X, y = ystart + Y, z = zstart + Z,
|
|
px = x - i_xdilation>0?x - i_xdilation:0, nx = x + i_xdilation<w1?x + i_xdilation:w1,
|
|
py = y - i_ydilation>0?y - i_ydilation:0, ny = y + i_ydilation<h1?y + i_ydilation:h1,
|
|
pz = z - i_zdilation>0?z - i_zdilation:0, nz = z + i_zdilation<d1?z + i_zdilation:d1;
|
|
const Ttfloat N = M2*(cimg::sqr(I(px,py,pz)) + cimg::sqr(I(x,py,pz)) + cimg::sqr(I(nx,py,pz)) +
|
|
cimg::sqr(I(px,y,pz)) + cimg::sqr(I(x,y,pz)) + cimg::sqr(I(nx,y,pz)) +
|
|
cimg::sqr(I(px,ny,pz)) + cimg::sqr(I(x,ny,pz)) + cimg::sqr(I(nx,ny,pz)) +
|
|
cimg::sqr(I(px,py,z)) + cimg::sqr(I(x,py,z)) + cimg::sqr(I(nx,py,z)) +
|
|
cimg::sqr(I(px,y,z)) + cimg::sqr(I(x,y,z)) + cimg::sqr(I(nx,y,z)) +
|
|
cimg::sqr(I(px,ny,z)) + cimg::sqr(I(x,ny,z)) + cimg::sqr(I(nx,ny,z)) +
|
|
cimg::sqr(I(px,py,nz)) + cimg::sqr(I(x,py,nz)) + cimg::sqr(I(nx,py,nz)) +
|
|
cimg::sqr(I(px,y,nz)) + cimg::sqr(I(x,y,nz)) + cimg::sqr(I(nx,y,nz)) +
|
|
cimg::sqr(I(px,ny,nz)) + cimg::sqr(I(x,ny,nz)) + cimg::sqr(I(nx,ny,nz)));
|
|
_resu(X,Y,Z) = (Ttfloat)(N?(K[0]*I(px,py,pz) + K[1]*I(x,py,pz) + K[2]*I(nx,py,pz) +
|
|
K[3]*I(px,y,pz) + K[4]*I(x,y,pz) + K[5]*I(nx,y,pz) +
|
|
K[6]*I(px,ny,pz) + K[7]*I(x,ny,pz) + K[8]*I(nx,ny,pz) +
|
|
K[9]*I(px,py,z) + K[10]*I(x,py,z) + K[11]*I(nx,py,z) +
|
|
K[12]*I(px,y,z) + K[13]*I(x,y,z) + K[14]*I(nx,y,z) +
|
|
K[15]*I(px,ny,z) + K[16]*I(x,ny,z) + K[17]*I(nx,ny,z) +
|
|
K[18]*I(px,py,nz) + K[19]*I(x,py,nz) + K[20]*I(nx,py,nz) +
|
|
K[21]*I(px,y,nz) + K[22]*I(x,y,nz) + K[23]*I(nx,y,nz) +
|
|
K[24]*I(px,ny,nz) + K[25]*I(x,ny,nz) + K[26]*I(nx,ny,nz))/std::sqrt(N):0);
|
|
}
|
|
} else {
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(is_inner_parallel))
|
|
cimg_forXYZ(res,X,Y,Z) {
|
|
const int
|
|
x = xstart + X, y = ystart + Y, z = zstart + Z,
|
|
px = x - i_xdilation>0?x - i_xdilation:0, nx = x + i_xdilation<w1?x + i_xdilation:w1,
|
|
py = y - i_ydilation>0?y - i_ydilation:0, ny = y + i_ydilation<h1?y + i_ydilation:h1,
|
|
pz = z - i_zdilation>0?z - i_zdilation:0, nz = z + i_zdilation<d1?z + i_zdilation:d1;
|
|
_resu(X,Y,Z) = (Ttfloat)(K[0]*I(px,py,pz) + K[1]*I(x,py,pz) + K[2]*I(nx,py,pz) +
|
|
K[3]*I(px,y,pz) + K[4]*I(x,y,pz) + K[5]*I(nx,y,pz) +
|
|
K[6]*I(px,ny,pz) + K[7]*I(x,ny,pz) + K[8]*I(nx,ny,pz) +
|
|
K[9]*I(px,py,z) + K[10]*I(x,py,z) + K[11]*I(nx,py,z) +
|
|
K[12]*I(px,y,z) + K[13]*I(x,y,z) + K[14]*I(nx,y,z) +
|
|
K[15]*I(px,ny,z) + K[16]*I(x,ny,z) + K[17]*I(nx,ny,z) +
|
|
K[18]*I(px,py,nz) + K[19]*I(x,py,nz) + K[20]*I(nx,py,nz) +
|
|
K[21]*I(px,y,nz) + K[22]*I(x,y,nz) + K[23]*I(nx,y,nz) +
|
|
K[24]*I(px,ny,nz) + K[25]*I(x,ny,nz) + K[26]*I(nx,ny,nz));
|
|
}
|
|
}
|
|
if (channel_mode==2)
|
|
cimg_pragma_openmp(critical(_correlate)) res.get_shared_channel(c/smin)+=_resu;
|
|
else if (channel_mode==3)
|
|
cimg_pragma_openmp(critical(_correlate)) res.get_shared_channel(0)+=_resu;
|
|
} _cimg_abort_catch_openmp2
|
|
} break;
|
|
|
|
default :
|
|
case 1 :
|
|
switch (_kernel._width) {
|
|
case 5 : { // 5x5 centered kernel
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(is_outer_parallel))
|
|
for (int c = 0; c<cend; ++c) _cimg_abort_try_openmp2 {
|
|
cimg_abort_test2;
|
|
const CImg<T> I = get_shared_channel(c%_spectrum);
|
|
const CImg<t> K = _kernel.get_shared_channel(!channel_mode?c/_spectrum:c%_kernel._spectrum);
|
|
CImg<Ttfloat> _resu = channel_mode<=1?res.get_shared_channel(c):
|
|
CImg<Ttfloat>(res.width(),res.height(),res.depth(),1);
|
|
if (is_normalized) {
|
|
const Ttfloat M = (Ttfloat)K.magnitude(2), M2 = M*M;
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(is_inner_parallel))
|
|
cimg_forXYZ(res,X,Y,z) {
|
|
const int
|
|
x = xstart + X, y = ystart + Y,
|
|
px = x - i_xdilation>0?x - i_xdilation:0, bx = px - i_xdilation>0?px - i_xdilation:0,
|
|
nx = x + i_xdilation<w1?x + i_xdilation:w1, ax = nx + i_xdilation<w1?nx + i_xdilation:w1,
|
|
py = y - i_ydilation>0?y - i_ydilation:0, by = py - i_ydilation>0?py - i_ydilation:0,
|
|
ny = y + i_ydilation<h1?y + i_ydilation:h1, ay = ny + i_ydilation<h1?ny + i_ydilation:h1;
|
|
const Ttfloat N = M2*(cimg::sqr(I(bx,by,z)) + cimg::sqr(I(px,by,z)) + cimg::sqr(I(x,by,z)) +
|
|
cimg::sqr(I(nx,by,z)) + cimg::sqr(I(ax,by,z)) +
|
|
cimg::sqr(I(bx,py,z)) + cimg::sqr(I(px,py,z)) + cimg::sqr(I(x,py,z)) +
|
|
cimg::sqr(I(nx,py,z)) + cimg::sqr(I(ax,py,z)) +
|
|
cimg::sqr(I(bx,y,z)) + cimg::sqr(I(px,y,z)) + cimg::sqr(I(x,y,z)) +
|
|
cimg::sqr(I(nx,y,z)) + cimg::sqr(I(ax,y,z)) +
|
|
cimg::sqr(I(bx,ny,z)) + cimg::sqr(I(px,ny,z)) + cimg::sqr(I(x,ny,z)) +
|
|
cimg::sqr(I(nx,ny,z)) + cimg::sqr(I(ax,ny,z)) +
|
|
cimg::sqr(I(bx,ay,z)) + cimg::sqr(I(px,ay,z)) + cimg::sqr(I(x,ay,z)) +
|
|
cimg::sqr(I(nx,ay,z)) + cimg::sqr(I(ax,ay,z)));
|
|
_resu(X,Y,z) = (Ttfloat)(N?(K[0]*I(bx,by,z) + K[1]*I(px,by,z) + K[2]*I(x,by,z) +
|
|
K[3]*I(nx,by,z) + K[4]*I(ax,by,z) +
|
|
K[5]*I(bx,py,z) + K[6]*I(px,py,z) + K[7]*I(x,py,z) +
|
|
K[8]*I(nx,py,z) + K[9]*I(ax,py,z) +
|
|
K[10]*I(bx,y,z) + K[11]*I(px,y,z) + K[12]*I(x,y,z) +
|
|
K[13]*I(nx,y,z) + K[14]*I(ax,y,z) +
|
|
K[15]*I(bx,ny,z) + K[16]*I(px,ny,z) + K[17]*I(x,ny,z) +
|
|
K[18]*I(nx,ny,z) + K[19]*I(ax,ny,z) +
|
|
K[20]*I(bx,ay,z) + K[21]*I(px,ay,z) + K[22]*I(x,ay,z) +
|
|
K[23]*I(nx,ay,z) + K[24]*I(ax,ay,z))/std::sqrt(N):0);
|
|
}
|
|
} else {
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(is_inner_parallel))
|
|
cimg_forXYZ(res,X,Y,z) {
|
|
const int
|
|
x = xstart + X, y = ystart + Y,
|
|
px = x - i_xdilation>0?x - i_xdilation:0, bx = px - i_xdilation>0?px - i_xdilation:0,
|
|
nx = x + i_xdilation<w1?x + i_xdilation:w1, ax = nx + i_xdilation<w1?nx + i_xdilation:w1,
|
|
py = y - i_ydilation>0?y - i_ydilation:0, by = py - i_ydilation>0?py - i_ydilation:0,
|
|
ny = y + i_ydilation<h1?y + i_ydilation:h1, ay = ny + i_ydilation<h1?ny + i_ydilation:h1;
|
|
_resu(X,Y,z) = (Ttfloat)(K[0]*I(bx,by,z) + K[1]*I(px,by,z) + K[2]*I(x,by,z) +
|
|
K[3]*I(nx,by,z) + K[4]*I(ax,by,z) +
|
|
K[5]*I(bx,py,z) + K[6]*I(px,py,z) + K[7]*I(x,py,z) +
|
|
K[8]*I(nx,py,z) + K[9]*I(ax,py,z) +
|
|
K[10]*I(bx,y,z) + K[11]*I(px,y,z) + K[12]*I(x,y,z) +
|
|
K[13]*I(nx,y,z) + K[14]*I(ax,y,z) +
|
|
K[15]*I(bx,ny,z) + K[16]*I(px,ny,z) + K[17]*I(x,ny,z) +
|
|
K[18]*I(nx,ny,z) + K[19]*I(ax,ny,z) +
|
|
K[20]*I(bx,ay,z) + K[21]*I(px,ay,z) + K[22]*I(x,ay,z) +
|
|
K[23]*I(nx,ay,z) + K[24]*I(ax,ay,z));
|
|
}
|
|
}
|
|
if (channel_mode==2)
|
|
cimg_pragma_openmp(critical(_correlate)) res.get_shared_channel(c/smin)+=_resu;
|
|
else if (channel_mode==3)
|
|
cimg_pragma_openmp(critical(_correlate)) res.get_shared_channel(0)+=_resu;
|
|
} _cimg_abort_catch_openmp2
|
|
} break;
|
|
|
|
case 3 : { // 3x3 centered kernel
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(is_outer_parallel))
|
|
for (int c = 0; c<cend; ++c) _cimg_abort_try_openmp2 {
|
|
cimg_abort_test2;
|
|
const CImg<T> I = get_shared_channel(c%_spectrum);
|
|
const CImg<t> K = _kernel.get_shared_channel(!channel_mode?c/_spectrum:c%_kernel._spectrum);
|
|
CImg<Ttfloat> _resu = channel_mode<=1?res.get_shared_channel(c):
|
|
CImg<Ttfloat>(res.width(),res.height(),res.depth(),1);
|
|
if (is_normalized) {
|
|
const Ttfloat M = (Ttfloat)K.magnitude(2), M2 = M*M;
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(is_inner_parallel))
|
|
cimg_forXYZ(res,X,Y,z) {
|
|
const int
|
|
x = xstart + X, y = ystart + Y,
|
|
px = x - i_xdilation>0?x - i_xdilation:0, nx = x + i_xdilation<w1?x + i_xdilation:w1,
|
|
py = y - i_ydilation>0?y - i_ydilation:0, ny = y + i_ydilation<h1?y + i_ydilation:h1;
|
|
const Ttfloat N = M2*(cimg::sqr(I(px,py,z)) + cimg::sqr(I(x,py,z)) + cimg::sqr(I(nx,py,z)) +
|
|
cimg::sqr(I(px,y,z)) + cimg::sqr(I(x,y,z)) + cimg::sqr(I(nx,y,z)) +
|
|
cimg::sqr(I(px,ny,z)) + cimg::sqr(I(x,ny,z)) + cimg::sqr(I(nx,ny,z)));
|
|
_resu(X,Y,z) = (Ttfloat)(N?(K[0]*I(px,py,z) + K[1]*I(x,py,z) + K[2]*I(nx,py,z) +
|
|
K[3]*I(px,y,z) + K[4]*I(x,y,z) + K[5]*I(nx,y,z) +
|
|
K[6]*I(px,ny,z) + K[7]*I(x,ny,z) + K[8]*I(nx,ny,z))/std::sqrt(N):0);
|
|
}
|
|
} else {
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(is_inner_parallel))
|
|
cimg_forXYZ(res,X,Y,z) {
|
|
const int
|
|
x = xstart + X, y = ystart + Y,
|
|
px = x - i_xdilation>0?x - i_xdilation:0, nx = x + i_xdilation<w1?x + i_xdilation:w1,
|
|
py = y - i_ydilation>0?y - i_ydilation:0, ny = y + i_ydilation<h1?y + i_ydilation:h1;
|
|
_resu(X,Y,z) = (Ttfloat)(K[0]*I(px,py,z) + K[1]*I(x,py,z) + K[2]*I(nx,py,z) +
|
|
K[3]*I(px,y,z) + K[4]*I(x,y,z) + K[5]*I(nx,y,z) +
|
|
K[6]*I(px,ny,z) + K[7]*I(x,ny,z) + K[8]*I(nx,ny,z));
|
|
}
|
|
}
|
|
if (channel_mode==2)
|
|
cimg_pragma_openmp(critical(_correlate)) res.get_shared_channel(c/smin)+=_resu;
|
|
else if (channel_mode==3)
|
|
cimg_pragma_openmp(critical(_correlate)) res.get_shared_channel(0)+=_resu;
|
|
} _cimg_abort_catch_openmp2
|
|
} break;
|
|
}
|
|
}
|
|
} else if (_kernel._width==1 && _kernel._height==1 && _kernel._depth==1 &&
|
|
!_xcenter && !_ycenter && !_zcenter &&
|
|
xstart>=0 && ystart>=0 && zstart>=0 &&
|
|
_xend<width() && _yend<height() && _zend<depth() &&
|
|
xstride==1 && ystride==1 && zstride==1) {
|
|
|
|
// Special optimization for 1x1 kernel.
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(is_outer_parallel))
|
|
for (int c = 0; c<cend; ++c) {
|
|
const t valK = _kernel[!channel_mode?c/_spectrum:c%_kernel._spectrum];
|
|
CImg<T> I = get_crop(xstart,ystart,zstart,c%_spectrum,_xend,_yend,_zend,c%_spectrum);
|
|
if (valK!=1) I*=valK;
|
|
if (is_normalized) I.sign();
|
|
switch (channel_mode) {
|
|
case 0 : // All
|
|
case 1 : // One for one
|
|
res.get_shared_channel(c) = I;
|
|
break;
|
|
case 2 : // Partial sum
|
|
cimg_pragma_openmp(critical(_correlate)) res.get_shared_channel(c/smin)+=I;
|
|
break;
|
|
case 3 : // Full sum
|
|
cimg_pragma_openmp(critical(_correlate)) res.get_shared_channel(0)+=I;
|
|
break;
|
|
}
|
|
}
|
|
} else { // Generic version
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(is_outer_parallel))
|
|
for (int c = 0; c<cend; ++c) _cimg_abort_try_openmp2 {
|
|
cimg_abort_test2;
|
|
const CImg<T> I = get_shared_channel(c%_spectrum);
|
|
const CImg<t> K = _kernel.get_shared_channel(!channel_mode?c/_spectrum:c%_kernel._spectrum);
|
|
CImg<Ttfloat> _resu = channel_mode<=1?res.get_shared_channel(c):
|
|
CImg<Ttfloat>(res.width(),res.height(),res.depth(),1);
|
|
Ttfloat M = 0, M2 = 0;
|
|
if (is_normalized) { M = (Ttfloat)K.magnitude(2); M2 = cimg::sqr(M); }
|
|
|
|
#define _cimg_correlate_x_int const int ix = xstart + i_xstride*x + i_xdilation*(p - _xcenter)
|
|
#define _cimg_correlate_y_int const int iy = ystart + i_ystride*y + i_ydilation*(q - _ycenter)
|
|
#define _cimg_correlate_z_int const int iz = zstart + i_zstride*z + i_zdilation*(r - _zcenter)
|
|
#define _cimg_correlate_x_float const float ix = xstart + xstride*x + _xdilation*(p - _xcenter)
|
|
#define _cimg_correlate_y_float const float iy = ystart + ystride*y + _ydilation*(q - _ycenter)
|
|
#define _cimg_correlate_z_float const float iz = zstart + zstride*z + _zdilation*(r - _zcenter)
|
|
|
|
#define _cimg_correlate_x_int_dirichlet const bool is_in_x = ix>=0 && ix<w
|
|
#define _cimg_correlate_y_int_dirichlet const bool is_in_y = iy>=0 && iy<h
|
|
#define _cimg_correlate_z_int_dirichlet const bool is_in_z = iz>=0 && iz<d
|
|
#define _cimg_correlate_x_float_dirichlet _cimg_correlate_x_int_dirichlet
|
|
#define _cimg_correlate_y_float_dirichlet _cimg_correlate_y_int_dirichlet
|
|
#define _cimg_correlate_z_float_dirichlet _cimg_correlate_z_int_dirichlet
|
|
|
|
#define _cimg_correlate_x_int_neumann const int nix = cimg::cut(ix,0,w1)
|
|
#define _cimg_correlate_y_int_neumann const int niy = cimg::cut(iy,0,h1)
|
|
#define _cimg_correlate_z_int_neumann const int niz = cimg::cut(iz,0,d1)
|
|
#define _cimg_correlate_x_float_neumann const float nix = cimg::cut(ix,0,w1)
|
|
#define _cimg_correlate_y_float_neumann const float niy = cimg::cut(iy,0,h1)
|
|
#define _cimg_correlate_z_float_neumann const float niz = cimg::cut(iz,0,d1)
|
|
|
|
#define _cimg_correlate_x_int_periodic const int nix = cimg::mod(ix,w)
|
|
#define _cimg_correlate_y_int_periodic const int niy = cimg::mod(iy,h)
|
|
#define _cimg_correlate_z_int_periodic const int niz = cimg::mod(iz,d)
|
|
#define _cimg_correlate_x_float_periodic const float nix = cimg::mod(ix,w)
|
|
#define _cimg_correlate_y_float_periodic const float niy = cimg::mod(iy,h)
|
|
#define _cimg_correlate_z_float_periodic const float niz = cimg::mod(iz,d)
|
|
|
|
#define _cimg_correlate_x_int_mirror const int mx = cimg::mod(ix,w2), nix = mx<w?mx:w2 - mx - 1
|
|
#define _cimg_correlate_y_int_mirror const int my = cimg::mod(iy,h2), niy = my<h?my:h2 - my - 1
|
|
#define _cimg_correlate_z_int_mirror const int mz = cimg::mod(iz,d2), niz = mz<d?mz:d2 - mz - 1
|
|
#define _cimg_correlate_x_float_mirror const float mx = cimg::mod(ix,w2), nix = mx<w?mx:w2 - mx - 1
|
|
#define _cimg_correlate_y_float_mirror const float my = cimg::mod(iy,h2), niy = my<h?my:h2 - my - 1
|
|
#define _cimg_correlate_z_float_mirror const float mz = cimg::mod(iz,d2), niz = mz<d?mz:d2 - mz - 1
|
|
|
|
#define _cimg_correlate(type,boundary,access) \
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(is_inner_parallel)) \
|
|
cimg_forXYZ(res,x,y,z) { \
|
|
Ttfloat val = 0; \
|
|
const t *pK = K._data; \
|
|
cimg_forZ(_kernel,r) { _cimg_correlate_z_##type; _cimg_correlate_z_##type##_##boundary; \
|
|
cimg_forY(_kernel,q) { _cimg_correlate_y_##type; _cimg_correlate_y_##type##_##boundary; \
|
|
cimg_forX(_kernel,p) { _cimg_correlate_x_##type; _cimg_correlate_x_##type##_##boundary; \
|
|
val+=*(pK++)*(access); \
|
|
} \
|
|
} \
|
|
} \
|
|
_resu(x,y,z,0,res_wh,res_whd) = val; \
|
|
}
|
|
|
|
#define _cimg_correlate_n(type,boundary,access) \
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(is_inner_parallel)) \
|
|
cimg_forXYZ(res,x,y,z) { \
|
|
Ttfloat val = 0, N = 0; \
|
|
const t *pK = K._data; \
|
|
cimg_forZ(_kernel,r) { _cimg_correlate_z_##type; _cimg_correlate_z_##type##_##boundary; \
|
|
cimg_forY(_kernel,q) { _cimg_correlate_y_##type; _cimg_correlate_y_##type##_##boundary; \
|
|
cimg_forX(_kernel,p) { _cimg_correlate_x_##type; _cimg_correlate_x_##type##_##boundary; \
|
|
Ttfloat _val = access; \
|
|
val+=*(pK++)*_val; \
|
|
_val*=_val; N+=_val; \
|
|
} \
|
|
} \
|
|
} \
|
|
N*=M2; _resu(x,y,z,0,res_wh,res_whd) = N?val/std::sqrt(N):0; \
|
|
}
|
|
|
|
if (is_normalized) { // Normalized convolution/correlation
|
|
if (is_int_stride_dilation) // Integer stride and dilation
|
|
switch (boundary_conditions) {
|
|
case 0 : // Dirichlet
|
|
_cimg_correlate_n(int,dirichlet,is_in_x && is_in_y && is_in_z?I(ix,iy,iz,0,wh,whd):(T)0);
|
|
break;
|
|
case 1 : // Neumann
|
|
_cimg_correlate_n(int,neumann,I(nix,niy,niz,0,wh,whd));
|
|
break;
|
|
case 2 : // Periodic
|
|
_cimg_correlate_n(int,periodic,I(nix,niy,niz,0,wh,whd));
|
|
break;
|
|
case 3 : // Mirror
|
|
_cimg_correlate_n(int,mirror,I(nix,niy,niz,0,wh,whd));
|
|
break;
|
|
}
|
|
else if (interpolation_type) // Non-integer stride or dilation, linear interpolation
|
|
switch (boundary_conditions) {
|
|
case 0 : // Dirichlet
|
|
_cimg_correlate_n(float,dirichlet,is_in_x && is_in_y && is_in_z?I.linear_atXYZ(ix,iy,iz,0,0):0);
|
|
break;
|
|
case 1 : // Neumann
|
|
_cimg_correlate_n(float,neumann,I._linear_atXYZ(nix,niy,niz,0));
|
|
break;
|
|
case 2 : // Periodic
|
|
_cimg_correlate_n(float,periodic,I._linear_atXYZ(nix,niy,niz,0));
|
|
break;
|
|
case 3 : // Mirror
|
|
_cimg_correlate_n(float,mirror,I._linear_atXYZ(nix,niy,niz,0));
|
|
break;
|
|
}
|
|
else // Non-integer stride or dilation, nearest-neighbor interpolation
|
|
switch (boundary_conditions) {
|
|
case 0 : // Dirichlet
|
|
_cimg_correlate_n(float,dirichlet,is_in_x && is_in_y && is_in_z?I((int)ix,(int)iy,(int)iz,0,0):(T)0);
|
|
break;
|
|
case 1 : // Neumann
|
|
_cimg_correlate_n(float,neumann,I((int)nix,(int)niy,(int)niz,0));
|
|
break;
|
|
case 2 : // Periodic
|
|
_cimg_correlate_n(float,periodic,I((int)nix,(int)niy,(int)niz,0));
|
|
break;
|
|
case 3 : // Mirror
|
|
_cimg_correlate_n(float,mirror,I((int)nix,(int)niy,(int)niz,0));
|
|
break;
|
|
}
|
|
} else { // Standard convolution/correlation
|
|
if (is_int_stride_dilation) // Integer stride and dilation
|
|
switch (boundary_conditions) {
|
|
case 0 : // Dirichlet
|
|
_cimg_correlate(int,dirichlet,is_in_x && is_in_y && is_in_z?I(ix,iy,iz,0,wh,whd):(T)0);
|
|
break;
|
|
case 1 : // Neumann
|
|
_cimg_correlate(int,neumann,I(nix,niy,niz,0,wh,whd));
|
|
break;
|
|
case 2 : // Periodic
|
|
_cimg_correlate(int,periodic,I(nix,niy,niz,0,wh,whd));
|
|
break;
|
|
case 3 : // Mirror
|
|
_cimg_correlate(int,mirror,I(nix,niy,niz,0,wh,whd));
|
|
break;
|
|
}
|
|
else if (interpolation_type) // Non-integer stride or dilation, linear interpolation
|
|
switch (boundary_conditions) {
|
|
case 0 : // Dirichlet
|
|
_cimg_correlate(float,dirichlet,is_in_x && is_in_y && is_in_z?I.linear_atXYZ(ix,iy,iz,0,0):0);
|
|
break;
|
|
case 1 : // Neumann
|
|
_cimg_correlate(float,neumann,I._linear_atXYZ(nix,niy,niz,0));
|
|
break;
|
|
case 2 : // Periodic
|
|
_cimg_correlate(float,periodic,I._linear_atXYZ(nix,niy,niz,0));
|
|
break;
|
|
case 3 : // Mirror
|
|
_cimg_correlate(float,mirror,I._linear_atXYZ(nix,niy,niz,0));
|
|
break;
|
|
}
|
|
else // Non-integer stride or dilation, nearest-neighbor interpolation
|
|
switch (boundary_conditions) {
|
|
case 0 : // Dirichlet
|
|
_cimg_correlate(float,dirichlet,is_in_x && is_in_y && is_in_z?I((int)ix,(int)iy,(int)iz,0,0):(T)0);
|
|
break;
|
|
case 1 : // Neumann
|
|
_cimg_correlate(float,neumann,I((int)nix,(int)niy,(int)niz,0));
|
|
break;
|
|
case 2 : // Periodic
|
|
_cimg_correlate(float,periodic,I((int)nix,(int)niy,(int)niz,0));
|
|
break;
|
|
case 3 : // Mirror
|
|
_cimg_correlate(float,mirror,I((int)nix,(int)niy,(int)niz,0));
|
|
break;
|
|
}
|
|
}
|
|
if (channel_mode==2)
|
|
cimg_pragma_openmp(critical(_correlate)) res.get_shared_channel(c/smin)+=_resu;
|
|
else if (channel_mode==3)
|
|
cimg_pragma_openmp(critical(_correlate)) res.get_shared_channel(0)+=_resu;
|
|
|
|
} _cimg_abort_catch_openmp2
|
|
}
|
|
cimg_abort_test;
|
|
return res;
|
|
}
|
|
|
|
//! Convolve image by a kernel.
|
|
/**
|
|
\param kernel = the correlation kernel.
|
|
\param boundary_conditions Boundary condition. Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }.
|
|
\param is_normalized = enable local normalization.
|
|
\param channel_mode Channel processing mode.
|
|
Can be { 0=all | 1=one for one (default) | 2=partial sum | 3=full sum }.
|
|
\param xcenter X-coordinate of the kernel center (~0U means 'centered').
|
|
\param ycenter Y-coordinate of the kernel center (~0U means 'centered').
|
|
\param zcenter Z-coordinate of the kernel center (~0U means 'centered').
|
|
\param xstart Starting X-coordinate of the instance image.
|
|
\param ystart Starting Y-coordinate of the instance image.
|
|
\param zstart Starting Z-coordinate of the instance image.
|
|
\param xend Ending X-coordinate of the instance image.
|
|
\param yend Ending Y-coordinate of the instance image.
|
|
\param zend Ending Z-coordinate of the instance image.
|
|
\param xstride Stride along the X-axis.
|
|
\param ystride Stride along the Y-axis.
|
|
\param zstride Stride along the Z-axis.
|
|
\param xdilation Dilation along the X-axis.
|
|
\param ydilation Dilation along the Y-axis.
|
|
\param zdilation Dilation along the Z-axis.
|
|
\param interpolation_type Can be { false=nearest | true=linear }.
|
|
\note
|
|
- The convolution of the image instance \p *this by the kernel \p kernel is defined to be:
|
|
res(x,y,z) = sum_{i,j,k} (*this)(\alpha_x\;x - \beta_x\;(i - c_x),\alpha_y\;y
|
|
- \beta_y\;(j - c_y),\alpha_z\;z - \beta_z\;(k - c_z))*kernel(i,j,k).
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& convolve(const CImg<t>& kernel, const unsigned int boundary_conditions=1,
|
|
const bool is_normalized=false, const unsigned int channel_mode=1,
|
|
const int xcenter=(int)(~0U>>1),
|
|
const int ycenter=(int)(~0U>>1),
|
|
const int zcenter=(int)(~0U>>1),
|
|
const int xstart=0,
|
|
const int ystart=0,
|
|
const int zstart=0,
|
|
const int xend=(int)(~0U>>1),
|
|
const int yend=(int)(~0U>>1),
|
|
const int zend=(int)(~0U>>1),
|
|
const float xstride=1, const float ystride=1, const float zstride=1,
|
|
const float xdilation=1, const float ydilation=1, const float zdilation=1,
|
|
const bool interpolation_type=false) {
|
|
if (is_empty() || !kernel) return *this;
|
|
return get_convolve(kernel,boundary_conditions,is_normalized,channel_mode,
|
|
xcenter,ycenter,zcenter,xstart,ystart,zstart,xend,yend,zend,
|
|
xstride,ystride,zstride,xdilation,ydilation,zdilation,
|
|
interpolation_type).move_to(*this);
|
|
}
|
|
|
|
//! Convolve image by a kernel \newinstance.
|
|
template<typename t>
|
|
CImg<_cimg_Ttfloat> get_convolve(const CImg<t>& kernel, const unsigned int boundary_conditions=1,
|
|
const bool is_normalized=false, const unsigned int channel_mode=1,
|
|
const int xcenter=(int)(~0U>>1),
|
|
const int ycenter=(int)(~0U>>1),
|
|
const int zcenter=(int)(~0U>>1),
|
|
const int xstart=0,
|
|
const int ystart=0,
|
|
const int zstart=0,
|
|
const int xend=(int)(~0U>>1),
|
|
const int yend=(int)(~0U>>1),
|
|
const int zend=(int)(~0U>>1),
|
|
const float xstride=1, const float ystride=1, const float zstride=1,
|
|
const float xdilation=1, const float ydilation=1, const float zdilation=1,
|
|
const bool interpolation_type=false) const {
|
|
return _correlate(kernel,boundary_conditions,is_normalized,channel_mode,
|
|
xcenter,ycenter,zcenter,xstart,ystart,zstart,xend,yend,zend,
|
|
xstride,ystride,zstride,xdilation,ydilation,zdilation,
|
|
interpolation_type,true);
|
|
}
|
|
|
|
//! Cumulate image values, optionally along specified axis.
|
|
/**
|
|
\param axis Cumulation axis. Set it to 0 to cumulate all values globally without taking axes into account.
|
|
**/
|
|
CImg<T>& cumulate(const char axis=0) {
|
|
switch (cimg::lowercase(axis)) {
|
|
case 'x' :
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*512 &&
|
|
_height*_depth*_spectrum>=16))
|
|
cimg_forYZC(*this,y,z,c) {
|
|
T *ptrd = data(0,y,z,c);
|
|
Tlong cumul = (Tlong)0;
|
|
cimg_forX(*this,x) { cumul+=(Tlong)*ptrd; *(ptrd++) = (T)cumul; }
|
|
}
|
|
break;
|
|
case 'y' : {
|
|
const ulongT w = (ulongT)_width;
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_height>=(cimg_openmp_sizefactor)*512 &&
|
|
_width*_depth*_spectrum>=16))
|
|
cimg_forXZC(*this,x,z,c) {
|
|
T *ptrd = data(x,0,z,c);
|
|
Tlong cumul = (Tlong)0;
|
|
cimg_forY(*this,y) { cumul+=(Tlong)*ptrd; *ptrd = (T)cumul; ptrd+=w; }
|
|
}
|
|
} break;
|
|
case 'z' : {
|
|
const ulongT wh = (ulongT)_width*_height;
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_depth>=(cimg_openmp_sizefactor)*512 &&
|
|
_width*_depth*_spectrum>=16))
|
|
cimg_forXYC(*this,x,y,c) {
|
|
T *ptrd = data(x,y,0,c);
|
|
Tlong cumul = (Tlong)0;
|
|
cimg_forZ(*this,z) { cumul+=(Tlong)*ptrd; *ptrd = (T)cumul; ptrd+=wh; }
|
|
}
|
|
} break;
|
|
case 'c' : {
|
|
const ulongT whd = (ulongT)_width*_height*_depth;
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3)
|
|
cimg_openmp_if(_spectrum>=(cimg_openmp_sizefactor)*512 && _width*_height*_depth>=16))
|
|
cimg_forXYZ(*this,x,y,z) {
|
|
T *ptrd = data(x,y,z,0);
|
|
Tlong cumul = (Tlong)0;
|
|
cimg_forC(*this,c) { cumul+=(Tlong)*ptrd; *ptrd = (T)cumul; ptrd+=whd; }
|
|
}
|
|
} break;
|
|
default : { // Global cumulation
|
|
Tlong cumul = (Tlong)0;
|
|
cimg_for(*this,ptrd,T) { cumul+=(Tlong)*ptrd; *ptrd = (T)cumul; }
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Cumulate image values, optionally along specified axis \newinstance.
|
|
CImg<Tlong> get_cumulate(const char axis=0) const {
|
|
return CImg<Tlong>(*this,false).cumulate(axis);
|
|
}
|
|
|
|
//! Cumulate image values, along specified axes.
|
|
/**
|
|
\param axes Cumulation axes, as a C-string.
|
|
\note \c axes may contains multiple characters, e.g. \c "xyz"
|
|
**/
|
|
CImg<T>& cumulate(const char *const axes) {
|
|
for (const char *s = axes; *s; ++s) cumulate(*s);
|
|
return *this;
|
|
}
|
|
|
|
//! Cumulate image values, along specified axes \newinstance.
|
|
CImg<Tlong> get_cumulate(const char *const axes) const {
|
|
return CImg<Tlong>(*this,false).cumulate(axes);
|
|
}
|
|
|
|
//! Erode image by a structuring element.
|
|
/**
|
|
\param kernel Structuring element.
|
|
\param boundary_conditions Boundary conditions.
|
|
Can be <tt>{ 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }</tt>.
|
|
\param is_real Do the erosion in real (a.k.a 'non-flat') mode (\c true) rather than binary mode (\c false).
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& erode(const CImg<t>& kernel, const unsigned int boundary_conditions=1,
|
|
const bool is_real=false) {
|
|
if (is_empty() || !kernel) return *this;
|
|
return get_erode(kernel,boundary_conditions,is_real).move_to(*this);
|
|
}
|
|
|
|
//! Erode image by a structuring element \newinstance.
|
|
template<typename t>
|
|
CImg<_cimg_Tt> get_erode(const CImg<t>& kernel, const unsigned int boundary_conditions=1,
|
|
const bool is_real=false) const {
|
|
if (is_empty() || !kernel) return *this;
|
|
if (!is_real && kernel==0) return CImg<T>(width(),height(),depth(),spectrum(),0);
|
|
typedef _cimg_Tt Tt;
|
|
CImg<Tt> res(_width,_height,_depth,std::max(_spectrum,kernel._spectrum));
|
|
const int
|
|
mx2 = kernel.width()/2, my2 = kernel.height()/2, mz2 = kernel.depth()/2,
|
|
mx1 = kernel.width() - mx2 - 1, my1 = kernel.height() - my2 - 1, mz1 = kernel.depth() - mz2 - 1,
|
|
mxe = width() - mx2, mye = height() - my2, mze = depth() - mz2,
|
|
w2 = 2*width(), h2 = 2*height(), d2 = 2*depth();
|
|
const bool
|
|
is_inner_parallel = _width*_height*_depth>=(cimg_openmp_sizefactor)*32768,
|
|
is_outer_parallel = res.size()>=(cimg_openmp_sizefactor)*32768;
|
|
cimg::unused(is_inner_parallel,is_outer_parallel);
|
|
_cimg_abort_init_openmp;
|
|
cimg_abort_init;
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(!is_inner_parallel && is_outer_parallel))
|
|
cimg_forC(res,c) _cimg_abort_try_openmp {
|
|
cimg_abort_test;
|
|
const CImg<T> img = get_shared_channel(c%_spectrum);
|
|
const CImg<t> K = kernel.get_shared_channel(c%kernel._spectrum);
|
|
if (is_real) { // Real erosion
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(is_inner_parallel))
|
|
for (int z = mz1; z<mze; ++z)
|
|
for (int y = my1; y<mye; ++y)
|
|
for (int x = mx1; x<mxe; ++x) _cimg_abort_try_openmp2 {
|
|
cimg_abort_test2;
|
|
Tt min_val = cimg::type<Tt>::max();
|
|
for (int zm = -mz1; zm<=mz2; ++zm)
|
|
for (int ym = -my1; ym<=my2; ++ym)
|
|
for (int xm = -mx1; xm<=mx2; ++xm) {
|
|
const t mval = K(mx1 + xm,my1 + ym,mz1 + zm);
|
|
const Tt cval = (Tt)(img(x + xm,y + ym,z + zm) - mval);
|
|
if (cval<min_val) min_val = cval;
|
|
}
|
|
res(x,y,z,c) = min_val;
|
|
} _cimg_abort_catch_openmp2
|
|
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(is_inner_parallel))
|
|
cimg_forYZ(res,y,z) _cimg_abort_try_openmp2 {
|
|
cimg_abort_test2;
|
|
for (int x = 0; x<width(); (y<my1 || y>=mye || z<mz1 || z>=mze)?++x:((x<mx1 - 1 || x>=mxe)?++x:(x=mxe))) {
|
|
Tt min_val = cimg::type<Tt>::max();
|
|
for (int zm = -mz1; zm<=mz2; ++zm)
|
|
for (int ym = -my1; ym<=my2; ++ym)
|
|
for (int xm = -mx1; xm<=mx2; ++xm) {
|
|
const t mval = K(mx1 + xm,my1 + ym,mz1 + zm);
|
|
Tt cval;
|
|
switch (boundary_conditions) {
|
|
case 0 : cval = (Tt)(img.atXYZ(x + xm,y + ym,z + zm,0,(T)0) - mval); break;
|
|
case 1 : cval = (Tt)(img._atXYZ(x + xm,y + ym,z + zm) - mval); break;
|
|
case 2 : {
|
|
const int
|
|
nx = cimg::mod(x + xm,width()),
|
|
ny = cimg::mod(y + ym,height()),
|
|
nz = cimg::mod(z + zm,depth());
|
|
cval = img(nx,ny,nz) - mval;
|
|
} break;
|
|
default : {
|
|
const int
|
|
tx = cimg::mod(x + xm,w2),
|
|
ty = cimg::mod(y + ym,h2),
|
|
tz = cimg::mod(z + zm,d2),
|
|
nx = tx<width()?tx:w2 - tx - 1,
|
|
ny = ty<height()?ty:h2 - ty - 1,
|
|
nz = tz<depth()?tz:d2 - tz - 1;
|
|
cval = img(nx,ny,nz) - mval;
|
|
}
|
|
}
|
|
if (cval<min_val) min_val = cval;
|
|
}
|
|
res(x,y,z,c) = min_val;
|
|
}
|
|
} _cimg_abort_catch_openmp2
|
|
|
|
} else { // Binary erosion
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(is_inner_parallel))
|
|
for (int z = mz1; z<mze; ++z)
|
|
for (int y = my1; y<mye; ++y)
|
|
for (int x = mx1; x<mxe; ++x) _cimg_abort_try_openmp2 {
|
|
cimg_abort_test2;
|
|
Tt min_val = cimg::type<Tt>::max();
|
|
for (int zm = -mz1; zm<=mz2; ++zm)
|
|
for (int ym = -my1; ym<=my2; ++ym)
|
|
for (int xm = -mx1; xm<=mx2; ++xm)
|
|
if (K(mx1 + xm,my1 + ym,mz1 + zm)) {
|
|
const Tt cval = (Tt)img(x + xm,y + ym,z + zm);
|
|
if (cval<min_val) min_val = cval;
|
|
}
|
|
res(x,y,z,c) = min_val;
|
|
} _cimg_abort_catch_openmp2
|
|
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(is_inner_parallel))
|
|
cimg_forYZ(res,y,z) _cimg_abort_try_openmp2 {
|
|
cimg_abort_test2;
|
|
for (int x = 0; x<width(); (y<my1 || y>=mye || z<mz1 || z>=mze)?++x:((x<mx1 - 1 || x>=mxe)?++x:(x=mxe))) {
|
|
Tt min_val = cimg::type<Tt>::max();
|
|
for (int zm = -mz1; zm<=mz2; ++zm)
|
|
for (int ym = -my1; ym<=my2; ++ym)
|
|
for (int xm = -mx1; xm<=mx2; ++xm) {
|
|
if (K(mx1 + xm,my1 + ym,mz1 + zm)) {
|
|
Tt cval;
|
|
switch (boundary_conditions) {
|
|
case 0 : cval = (Tt)img.atXYZ(x + xm,y + ym,z + zm,0,(T)0); break;
|
|
case 1 : cval = (Tt)img._atXYZ(x + xm,y + ym,z + zm); break;
|
|
case 2 : {
|
|
const int
|
|
nx = cimg::mod(x + xm,width()),
|
|
ny = cimg::mod(y + ym,height()),
|
|
nz = cimg::mod(z + zm,depth());
|
|
cval = img(nx,ny,nz);
|
|
} break;
|
|
default : {
|
|
const int
|
|
tx = cimg::mod(x + xm,w2),
|
|
ty = cimg::mod(y + ym,h2),
|
|
tz = cimg::mod(z + zm,d2),
|
|
nx = tx<width()?tx:w2 - tx - 1,
|
|
ny = ty<height()?ty:h2 - ty - 1,
|
|
nz = tz<depth()?tz:d2 - tz - 1;
|
|
cval = img(nx,ny,nz);
|
|
}
|
|
}
|
|
if (cval<min_val) min_val = cval;
|
|
}
|
|
}
|
|
res(x,y,z,c) = min_val;
|
|
}
|
|
} _cimg_abort_catch_openmp2
|
|
|
|
}
|
|
} _cimg_abort_catch_openmp
|
|
cimg_abort_test;
|
|
return res;
|
|
}
|
|
|
|
//! Erode image by a rectangular structuring element of specified size.
|
|
/**
|
|
\param sx Width of the structuring element.
|
|
\param sy Height of the structuring element.
|
|
\param sz Depth of the structuring element.
|
|
**/
|
|
CImg<T>& erode(const unsigned int sx, const unsigned int sy, const unsigned int sz=1) {
|
|
if (is_empty() || (sx<=1 && sy<=1 && sz<=1)) return *this;
|
|
if (sx>1 && _width>1) { // Along X-axis
|
|
const int L = width(), off = 1, s = (int)sx, _s2 = s/2 + 1, _s1 = s - _s2, s1 = _s1>L?L:_s1, s2 = _s2>L?L:_s2;
|
|
CImg<T> buf(L);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) firstprivate(buf) if (size()>524288))
|
|
cimg_forYZC(*this,y,z,c) {
|
|
T *const ptrdb = buf._data, *ptrd = buf._data, *const ptrde = buf._data + L - 1;
|
|
const T *const ptrsb = data(0,y,z,c), *ptrs = ptrsb, *const ptrse = ptrs + (ulongT)L*off - off;
|
|
T cur = *ptrs; ptrs+=off; bool is_first = true;
|
|
for (int p = s2 - 1; p>0 && ptrs<=ptrse; --p) {
|
|
const T val = *ptrs; ptrs+=off; if (val<=cur) { cur = val; is_first = false; }}
|
|
*(ptrd++) = cur;
|
|
if (ptrs>=ptrse) {
|
|
T *pd = data(0,y,z,c); cur = std::min(cur,*ptrse); cimg_forX(buf,k) { *pd = cur; pd+=off; }
|
|
} else {
|
|
for (int p = s1; p>0 && ptrd<=ptrde; --p) {
|
|
const T val = *ptrs; if (ptrs<ptrse) ptrs+=off; if (val<=cur) { cur = val; is_first = false; }
|
|
*(ptrd++) = cur;
|
|
}
|
|
for (int p = L - s - 1; p>0; --p) {
|
|
const T val = *ptrs; ptrs+=off;
|
|
if (is_first) {
|
|
const T *nptrs = ptrs - off; cur = val;
|
|
for (int q = s - 2; q>0; --q) { nptrs-=off; const T nval = *nptrs; if (nval<cur) cur = nval; }
|
|
nptrs-=off; const T nval = *nptrs; if (nval<cur) { cur = nval; is_first = true; } else is_first = false;
|
|
} else { if (val<=cur) cur = val; else if (cur==*(ptrs-s*off)) is_first = true; }
|
|
*(ptrd++) = cur;
|
|
}
|
|
ptrd = ptrde; ptrs = ptrse; cur = *ptrs; ptrs-=off;
|
|
for (int p = s1; p>0 && ptrs>=ptrsb; --p) {
|
|
const T val = *ptrs; ptrs-=off; if (val<cur) cur = val;
|
|
}
|
|
*(ptrd--) = cur;
|
|
for (int p = s2 - 1; p>0 && ptrd>=ptrdb; --p) {
|
|
const T val = *ptrs; if (ptrs>ptrsb) ptrs-=off; if (val<cur) cur = val; *(ptrd--) = cur;
|
|
}
|
|
T *pd = data(0,y,z,c); cimg_for(buf,ps,T) { *pd = *ps; pd+=off; }
|
|
}
|
|
}
|
|
}
|
|
|
|
if (sy>1 && _height>1) { // Along Y-axis
|
|
const int L = height(), off = width(), s = (int)sy, _s2 = s/2 + 1, _s1 = s - _s2, s1 = _s1>L?L:_s1,
|
|
s2 = _s2>L?L:_s2;
|
|
CImg<T> buf(L);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) firstprivate(buf) if (size()>524288))
|
|
cimg_forXZC(*this,x,z,c) {
|
|
T *const ptrdb = buf._data, *ptrd = ptrdb, *const ptrde = buf._data + L - 1;
|
|
const T *const ptrsb = data(x,0,z,c), *ptrs = ptrsb, *const ptrse = ptrs + (ulongT)L*off - off;
|
|
T cur = *ptrs; ptrs+=off; bool is_first = true;
|
|
for (int p = s2 - 1; p>0 && ptrs<=ptrse; --p) {
|
|
const T val = *ptrs; ptrs+=off; if (val<=cur) { cur = val; is_first = false; }
|
|
}
|
|
*(ptrd++) = cur;
|
|
if (ptrs>=ptrse) {
|
|
T *pd = data(x,0,z,c); cur = std::min(cur,*ptrse); cimg_forX(buf,k) { *pd = cur; pd+=off; }
|
|
} else {
|
|
for (int p = s1; p>0 && ptrd<=ptrde; --p) {
|
|
const T val = *ptrs; if (ptrs<ptrse) ptrs+=off; if (val<=cur) { cur = val; is_first = false; }
|
|
*(ptrd++) = cur;
|
|
}
|
|
for (int p = L - s - 1; p>0; --p) {
|
|
const T val = *ptrs; ptrs+=off;
|
|
if (is_first) {
|
|
const T *nptrs = ptrs - off; cur = val;
|
|
for (int q = s - 2; q>0; --q) { nptrs-=off; const T nval = *nptrs; if (nval<cur) cur = nval; }
|
|
nptrs-=off; const T nval = *nptrs; if (nval<cur) { cur = nval; is_first = true; } else is_first = false;
|
|
} else { if (val<=cur) cur = val; else if (cur==*(ptrs-s*off)) is_first = true; }
|
|
*(ptrd++) = cur;
|
|
}
|
|
ptrd = ptrde; ptrs = ptrse; cur = *ptrs; ptrs-=off;
|
|
for (int p = s1; p>0 && ptrs>=ptrsb; --p) {
|
|
const T val = *ptrs; ptrs-=off; if (val<cur) cur = val;
|
|
}
|
|
*(ptrd--) = cur;
|
|
for (int p = s2 - 1; p>0 && ptrd>=ptrdb; --p) {
|
|
const T val = *ptrs; if (ptrs>ptrsb) ptrs-=off; if (val<cur) cur = val; *(ptrd--) = cur;
|
|
}
|
|
T *pd = data(x,0,z,c); cimg_for(buf,ps,T) { *pd = *ps; pd+=off; }
|
|
}
|
|
}
|
|
}
|
|
|
|
if (sz>1 && _depth>1) { // Along Z-axis
|
|
const int L = depth(), off = width()*height(), s = (int)sz, _s2 = s/2 + 1, _s1 = s - _s2, s1 = _s1>L?L:_s1,
|
|
s2 = _s2>L?L:_s2;
|
|
CImg<T> buf(L);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) firstprivate(buf) if (size()>524288))
|
|
cimg_forXYC(*this,x,y,c) {
|
|
T *const ptrdb = buf._data, *ptrd = ptrdb, *const ptrde = buf._data + L - 1;
|
|
const T *const ptrsb = data(x,y,0,c), *ptrs = ptrsb, *const ptrse = ptrs + (ulongT)L*off - off;
|
|
T cur = *ptrs; ptrs+=off; bool is_first = true;
|
|
for (int p = s2 - 1; p>0 && ptrs<=ptrse; --p) {
|
|
const T val = *ptrs; ptrs+=off; if (val<=cur) { cur = val; is_first = false; }
|
|
}
|
|
*(ptrd++) = cur;
|
|
if (ptrs>=ptrse) {
|
|
T *pd = data(x,y,0,c); cur = std::min(cur,*ptrse); cimg_forX(buf,k) { *pd = cur; pd+=off; }
|
|
} else {
|
|
for (int p = s1; p>0 && ptrd<=ptrde; --p) {
|
|
const T val = *ptrs; if (ptrs<ptrse) ptrs+=off; if (val<=cur) { cur = val; is_first = false; }
|
|
*(ptrd++) = cur;
|
|
}
|
|
for (int p = L - s - 1; p>0; --p) {
|
|
const T val = *ptrs; ptrs+=off;
|
|
if (is_first) {
|
|
const T *nptrs = ptrs - off; cur = val;
|
|
for (int q = s - 2; q>0; --q) { nptrs-=off; const T nval = *nptrs; if (nval<cur) cur = nval; }
|
|
nptrs-=off; const T nval = *nptrs; if (nval<cur) { cur = nval; is_first = true; } else is_first = false;
|
|
} else { if (val<=cur) cur = val; else if (cur==*(ptrs-s*off)) is_first = true; }
|
|
*(ptrd++) = cur;
|
|
}
|
|
ptrd = ptrde; ptrs = ptrse; cur = *ptrs; ptrs-=off;
|
|
for (int p = s1; p>0 && ptrs>=ptrsb; --p) {
|
|
const T val = *ptrs; ptrs-=off; if (val<cur) cur = val;
|
|
}
|
|
*(ptrd--) = cur;
|
|
for (int p = s2 - 1; p>0 && ptrd>=ptrdb; --p) {
|
|
const T val = *ptrs; if (ptrs>ptrsb) ptrs-=off; if (val<cur) cur = val; *(ptrd--) = cur;
|
|
}
|
|
T *pd = data(x,y,0,c); cimg_for(buf,ps,T) { *pd = *ps; pd+=off; }
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Erode image by a rectangular structuring element of specified size \newinstance.
|
|
CImg<T> get_erode(const unsigned int sx, const unsigned int sy, const unsigned int sz=1) const {
|
|
return (+*this).erode(sx,sy,sz);
|
|
}
|
|
|
|
//! Erode the image by a square structuring element of specified size.
|
|
/**
|
|
\param s Size of the structuring element.
|
|
**/
|
|
CImg<T>& erode(const unsigned int s) {
|
|
return erode(s,s,s);
|
|
}
|
|
|
|
//! Erode the image by a square structuring element of specified size \newinstance.
|
|
CImg<T> get_erode(const unsigned int s) const {
|
|
return (+*this).erode(s);
|
|
}
|
|
|
|
//! Dilate image by a structuring element.
|
|
/**
|
|
\param kernel Structuring element.
|
|
\param boundary_conditions Boundary conditions.
|
|
Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }.
|
|
\param is_real Do the dilation in real (a.k.a 'non-flat') mode (\c true) rather than binary mode (\c false).
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& dilate(const CImg<t>& kernel, const unsigned int boundary_conditions=1,
|
|
const bool is_real=false) {
|
|
if (is_empty() || !kernel) return *this;
|
|
return get_dilate(kernel,boundary_conditions,is_real).move_to(*this);
|
|
}
|
|
|
|
//! Dilate image by a structuring element \newinstance.
|
|
template<typename t>
|
|
CImg<_cimg_Tt> get_dilate(const CImg<t>& kernel, const unsigned int boundary_conditions=1,
|
|
const bool is_real=false) const {
|
|
if (is_empty() || !kernel || (!is_real && kernel==0)) return *this;
|
|
typedef _cimg_Tt Tt;
|
|
CImg<Tt> res(_width,_height,_depth,std::max(_spectrum,kernel._spectrum));
|
|
const int
|
|
mx1 = kernel.width()/2, my1 = kernel.height()/2, mz1 = kernel.depth()/2,
|
|
mx2 = kernel.width() - mx1 - 1, my2 = kernel.height() - my1 - 1, mz2 = kernel.depth() - mz1 - 1,
|
|
mxe = width() - mx2, mye = height() - my2, mze = depth() - mz2,
|
|
w2 = 2*width(), h2 = 2*height(), d2 = 2*depth();
|
|
const bool
|
|
is_inner_parallel = _width*_height*_depth>=(cimg_openmp_sizefactor)*32768,
|
|
is_outer_parallel = res.size()>=(cimg_openmp_sizefactor)*32768;
|
|
cimg::unused(is_inner_parallel,is_outer_parallel);
|
|
_cimg_abort_init_openmp;
|
|
cimg_abort_init;
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(!is_inner_parallel && is_outer_parallel))
|
|
cimg_forC(res,c) _cimg_abort_try_openmp {
|
|
cimg_abort_test;
|
|
const CImg<T> img = get_shared_channel(c%_spectrum);
|
|
const CImg<t> K = kernel.get_shared_channel(c%kernel._spectrum);
|
|
if (is_real) { // Real dilation
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(is_inner_parallel))
|
|
for (int z = mz1; z<mze; ++z)
|
|
for (int y = my1; y<mye; ++y)
|
|
for (int x = mx1; x<mxe; ++x) _cimg_abort_try_openmp2 {
|
|
cimg_abort_test2;
|
|
Tt max_val = cimg::type<Tt>::min();
|
|
for (int zm = -mz1; zm<=mz2; ++zm)
|
|
for (int ym = -my1; ym<=my2; ++ym)
|
|
for (int xm = -mx1; xm<=mx2; ++xm) {
|
|
const t mval = K(mx2 - xm,my2 - ym,mz2 - zm);
|
|
const Tt cval = (Tt)(img(x + xm,y + ym,z + zm) + mval);
|
|
if (cval>max_val) max_val = cval;
|
|
}
|
|
res(x,y,z,c) = max_val;
|
|
} _cimg_abort_catch_openmp2
|
|
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(is_inner_parallel))
|
|
cimg_forYZ(res,y,z) _cimg_abort_try_openmp2 {
|
|
cimg_abort_test2;
|
|
for (int x = 0; x<width(); (y<my1 || y>=mye || z<mz1 || z>=mze)?++x:((x<mx1 - 1 || x>=mxe)?++x:(x=mxe))) {
|
|
Tt max_val = cimg::type<Tt>::min();
|
|
for (int zm = -mz1; zm<=mz2; ++zm)
|
|
for (int ym = -my1; ym<=my2; ++ym)
|
|
for (int xm = -mx1; xm<=mx2; ++xm) {
|
|
const t mval = K(mx2 - xm,my2 - ym,mz2 - zm);
|
|
Tt cval;
|
|
switch (boundary_conditions) {
|
|
case 0 : cval = (Tt)(img.atXYZ(x + xm,y + ym,z + zm,0,(T)0) + mval); break;
|
|
case 1 : cval = (Tt)(img._atXYZ(x + xm,y + ym,z + zm) + mval); break;
|
|
case 2 : {
|
|
const int
|
|
nx = cimg::mod(x + xm,width()),
|
|
ny = cimg::mod(y + ym,height()),
|
|
nz = cimg::mod(z + zm,depth());
|
|
cval = img(nx,ny,nz) + mval;
|
|
} break;
|
|
default : {
|
|
const int
|
|
tx = cimg::mod(x + xm,w2),
|
|
ty = cimg::mod(y + ym,h2),
|
|
tz = cimg::mod(z + zm,d2),
|
|
nx = tx<width()?tx:w2 - tx - 1,
|
|
ny = ty<height()?ty:h2 - ty - 1,
|
|
nz = tz<depth()?tz:d2 - tz - 1;
|
|
cval = img(nx,ny,nz) + mval;
|
|
}
|
|
}
|
|
if (cval>max_val) max_val = cval;
|
|
}
|
|
res(x,y,z,c) = max_val;
|
|
}
|
|
} _cimg_abort_catch_openmp2
|
|
|
|
} else { // Binary dilation
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(is_inner_parallel))
|
|
for (int z = mz1; z<mze; ++z)
|
|
for (int y = my1; y<mye; ++y)
|
|
for (int x = mx1; x<mxe; ++x) _cimg_abort_try_openmp2 {
|
|
cimg_abort_test2;
|
|
Tt max_val = cimg::type<Tt>::min();
|
|
for (int zm = -mz1; zm<=mz2; ++zm)
|
|
for (int ym = -my1; ym<=my2; ++ym)
|
|
for (int xm = -mx1; xm<=mx2; ++xm)
|
|
if (K(mx2 - xm,my2 - ym,mz2 - zm)) {
|
|
const Tt cval = (Tt)img(x + xm,y + ym,z + zm);
|
|
if (cval>max_val) max_val = cval;
|
|
}
|
|
res(x,y,z,c) = max_val;
|
|
} _cimg_abort_catch_openmp2
|
|
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(is_inner_parallel))
|
|
cimg_forYZ(res,y,z) _cimg_abort_try_openmp2 {
|
|
cimg_abort_test2;
|
|
for (int x = 0; x<width(); (y<my1 || y>=mye || z<mz1 || z>=mze)?++x:((x<mx1 - 1 || x>=mxe)?++x:(x=mxe))) {
|
|
Tt max_val = cimg::type<Tt>::min();
|
|
for (int zm = -mz1; zm<=mz2; ++zm)
|
|
for (int ym = -my1; ym<=my2; ++ym)
|
|
for (int xm = -mx1; xm<=mx2; ++xm) {
|
|
if (K(mx2 - xm,my2 - ym,mz2 - zm)) {
|
|
Tt cval;
|
|
switch (boundary_conditions) {
|
|
case 0 : cval = (Tt)img.atXYZ(x + xm,y + ym,z + zm,0,(T)0); break;
|
|
case 1 : cval = (Tt)img._atXYZ(x + xm,y + ym,z + zm); break;
|
|
case 2 : {
|
|
const int
|
|
nx = cimg::mod(x + xm,width()),
|
|
ny = cimg::mod(y + ym,height()),
|
|
nz = cimg::mod(z + zm,depth());
|
|
cval = img(nx,ny,nz);
|
|
} break;
|
|
default : {
|
|
const int
|
|
tx = cimg::mod(x + xm,w2),
|
|
ty = cimg::mod(y + ym,h2),
|
|
tz = cimg::mod(z + zm,d2),
|
|
nx = tx<width()?tx:w2 - tx - 1,
|
|
ny = ty<height()?ty:h2 - ty - 1,
|
|
nz = tz<depth()?tz:d2 - tz - 1;
|
|
cval = img(nx,ny,nz);
|
|
}
|
|
}
|
|
if (cval>max_val) max_val = cval;
|
|
}
|
|
}
|
|
res(x,y,z,c) = max_val;
|
|
}
|
|
} _cimg_abort_catch_openmp2
|
|
|
|
}
|
|
} _cimg_abort_catch_openmp
|
|
cimg_abort_test;
|
|
return res;
|
|
}
|
|
|
|
//! Dilate image by a rectangular structuring element of specified size.
|
|
/**
|
|
\param sx Width of the structuring element.
|
|
\param sy Height of the structuring element.
|
|
\param sz Depth of the structuring element.
|
|
**/
|
|
CImg<T>& dilate(const unsigned int sx, const unsigned int sy, const unsigned int sz=1) {
|
|
if (is_empty() || (sx<=1 && sy<=1 && sz<=1)) return *this;
|
|
if (sx>1 && _width>1) { // Along X-axis
|
|
const int L = width(), off = 1, s = (int)sx, _s1 = s/2, _s2 = s - _s1, s1 = _s1>L?L:_s1, s2 = _s2>L?L:_s2;
|
|
CImg<T> buf(L);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) firstprivate(buf) if (size()>524288))
|
|
cimg_forYZC(*this,y,z,c) {
|
|
T *const ptrdb = buf._data, *ptrd = ptrdb, *const ptrde = buf._data + L - 1;
|
|
const T *const ptrsb = data(0,y,z,c), *ptrs = ptrsb, *const ptrse = ptrs + (ulongT)L*off - off;
|
|
T cur = *ptrs; ptrs+=off; bool is_first = true;
|
|
for (int p = s2 - 1; p>0 && ptrs<=ptrse; --p) {
|
|
const T val = *ptrs; ptrs+=off; if (val>=cur) { cur = val; is_first = false; }
|
|
}
|
|
*(ptrd++) = cur;
|
|
if (ptrs>=ptrse) {
|
|
T *pd = data(0,y,z,c); cur = std::max(cur,*ptrse); cimg_forX(buf,k) { *pd = cur; pd+=off; }
|
|
} else {
|
|
for (int p = s1; p>0 && ptrd<=ptrde; --p) {
|
|
const T val = *ptrs; if (ptrs<ptrse) ptrs+=off; if (val>=cur) { cur = val; is_first = false; }
|
|
*(ptrd++) = cur;
|
|
}
|
|
for (int p = L - s - 1; p>0; --p) {
|
|
const T val = *ptrs; ptrs+=off;
|
|
if (is_first) {
|
|
const T *nptrs = ptrs - off; cur = val;
|
|
for (int q = s - 2; q>0; --q) { nptrs-=off; const T nval = *nptrs; if (nval>cur) cur = nval; }
|
|
nptrs-=off; const T nval = *nptrs; if (nval>cur) { cur = nval; is_first = true; } else is_first = false;
|
|
} else { if (val>=cur) cur = val; else if (cur==*(ptrs-s*off)) is_first = true; }
|
|
*(ptrd++) = cur;
|
|
}
|
|
ptrd = ptrde; ptrs = ptrse; cur = *ptrs; ptrs-=off;
|
|
for (int p = s1; p>0 && ptrs>=ptrsb; --p) {
|
|
const T val = *ptrs; ptrs-=off; if (val>cur) cur = val;
|
|
}
|
|
*(ptrd--) = cur;
|
|
for (int p = s2 - 1; p>0 && ptrd>=ptrdb; --p) {
|
|
const T val = *ptrs; if (ptrs>ptrsb) ptrs-=off; if (val>cur) cur = val; *(ptrd--) = cur;
|
|
}
|
|
T *pd = data(0,y,z,c); cimg_for(buf,ps,T) { *pd = *ps; pd+=off; }
|
|
}
|
|
}
|
|
}
|
|
|
|
if (sy>1 && _height>1) { // Along Y-axis
|
|
const int L = height(), off = width(), s = (int)sy, _s1 = s/2, _s2 = s - _s1, s1 = _s1>L?L:_s1,
|
|
s2 = _s2>L?L:_s2;
|
|
CImg<T> buf(L);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) firstprivate(buf) if (size()>524288))
|
|
cimg_forXZC(*this,x,z,c) {
|
|
T *const ptrdb = buf._data, *ptrd = ptrdb, *const ptrde = buf._data + L - 1;
|
|
const T *const ptrsb = data(x,0,z,c), *ptrs = ptrsb, *const ptrse = ptrs + (ulongT)L*off - off;
|
|
T cur = *ptrs; ptrs+=off; bool is_first = true;
|
|
for (int p = s2 - 1; p>0 && ptrs<=ptrse; --p) {
|
|
const T val = *ptrs; ptrs+=off; if (val>=cur) { cur = val; is_first = false; }
|
|
}
|
|
*(ptrd++) = cur;
|
|
if (ptrs>=ptrse) {
|
|
T *pd = data(x,0,z,c); cur = std::max(cur,*ptrse); cimg_forX(buf,k) { *pd = cur; pd+=off; }
|
|
} else {
|
|
for (int p = s1; p>0 && ptrd<=ptrde; --p) {
|
|
const T val = *ptrs; if (ptrs<ptrse) ptrs+=off; if (val>=cur) { cur = val; is_first = false; }
|
|
*(ptrd++) = cur;
|
|
}
|
|
for (int p = L - s - 1; p>0; --p) {
|
|
const T val = *ptrs; ptrs+=off;
|
|
if (is_first) {
|
|
const T *nptrs = ptrs - off; cur = val;
|
|
for (int q = s - 2; q>0; --q) { nptrs-=off; const T nval = *nptrs; if (nval>cur) cur = nval; }
|
|
nptrs-=off; const T nval = *nptrs; if (nval>cur) { cur = nval; is_first = true; } else is_first = false;
|
|
} else { if (val>=cur) cur = val; else if (cur==*(ptrs-s*off)) is_first = true; }
|
|
*(ptrd++) = cur;
|
|
}
|
|
ptrd = ptrde; ptrs = ptrse; cur = *ptrs; ptrs-=off;
|
|
for (int p = s1; p>0 && ptrs>=ptrsb; --p) {
|
|
const T val = *ptrs; ptrs-=off; if (val>cur) cur = val;
|
|
}
|
|
*(ptrd--) = cur;
|
|
for (int p = s2 - 1; p>0 && ptrd>=ptrdb; --p) {
|
|
const T val = *ptrs; if (ptrs>ptrsb) ptrs-=off; if (val>cur) cur = val; *(ptrd--) = cur;
|
|
}
|
|
T *pd = data(x,0,z,c); cimg_for(buf,ps,T) { *pd = *ps; pd+=off; }
|
|
}
|
|
}
|
|
}
|
|
|
|
if (sz>1 && _depth>1) { // Along Z-axis
|
|
const int L = depth(), off = width()*height(), s = (int)sz, _s1 = s/2, _s2 = s - _s1, s1 = _s1>L?L:_s1,
|
|
s2 = _s2>L?L:_s2;
|
|
CImg<T> buf(L);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) firstprivate(buf) if (size()>524288))
|
|
cimg_forXYC(*this,x,y,c) {
|
|
T *const ptrdb = buf._data, *ptrd = ptrdb, *const ptrde = buf._data + L - 1;
|
|
const T *const ptrsb = data(x,y,0,c), *ptrs = ptrsb, *const ptrse = ptrs + (ulongT)L*off - off;
|
|
T cur = *ptrs; ptrs+=off; bool is_first = true;
|
|
for (int p = s2 - 1; p>0 && ptrs<=ptrse; --p) {
|
|
const T val = *ptrs; ptrs+=off; if (val>=cur) { cur = val; is_first = false; }
|
|
}
|
|
*(ptrd++) = cur;
|
|
if (ptrs>=ptrse) {
|
|
T *pd = data(x,y,0,c); cur = std::max(cur,*ptrse); cimg_forX(buf,k) { *pd = cur; pd+=off; }
|
|
} else {
|
|
for (int p = s1; p>0 && ptrd<=ptrde; --p) {
|
|
const T val = *ptrs; if (ptrs<ptrse) ptrs+=off; if (val>=cur) { cur = val; is_first = false; }
|
|
*(ptrd++) = cur;
|
|
}
|
|
for (int p = L - s - 1; p>0; --p) {
|
|
const T val = *ptrs; ptrs+=off;
|
|
if (is_first) {
|
|
const T *nptrs = ptrs - off; cur = val;
|
|
for (int q = s - 2; q>0; --q) { nptrs-=off; const T nval = *nptrs; if (nval>cur) cur = nval; }
|
|
nptrs-=off; const T nval = *nptrs; if (nval>cur) { cur = nval; is_first = true; } else is_first = false;
|
|
} else { if (val>=cur) cur = val; else if (cur==*(ptrs-s*off)) is_first = true; }
|
|
*(ptrd++) = cur;
|
|
}
|
|
ptrd = ptrde; ptrs = ptrse; cur = *ptrs; ptrs-=off;
|
|
for (int p = s1; p>0 && ptrs>=ptrsb; --p) {
|
|
const T val = *ptrs; ptrs-=off; if (val>cur) cur = val;
|
|
}
|
|
*(ptrd--) = cur;
|
|
for (int p = s2 - 1; p>0 && ptrd>=ptrdb; --p) {
|
|
const T val = *ptrs; if (ptrs>ptrsb) ptrs-=off; if (val>cur) cur = val; *(ptrd--) = cur;
|
|
}
|
|
T *pd = data(x,y,0,c); cimg_for(buf,ps,T) { *pd = *ps; pd+=off; }
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Dilate image by a rectangular structuring element of specified size \newinstance.
|
|
CImg<T> get_dilate(const unsigned int sx, const unsigned int sy, const unsigned int sz=1) const {
|
|
return (+*this).dilate(sx,sy,sz);
|
|
}
|
|
|
|
//! Dilate image by a square structuring element of specified size.
|
|
/**
|
|
\param s Size of the structuring element.
|
|
**/
|
|
CImg<T>& dilate(const unsigned int s) {
|
|
return dilate(s,s,s);
|
|
}
|
|
|
|
//! Dilate image by a square structuring element of specified size \newinstance.
|
|
CImg<T> get_dilate(const unsigned int s) const {
|
|
return (+*this).dilate(s);
|
|
}
|
|
|
|
//! Apply morphological closing by a structuring element.
|
|
/**
|
|
\param kernel Structuring element.
|
|
\param boundary_conditions Boundary conditions.
|
|
Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }.
|
|
\param is_real Do the closing in real (a.k.a 'non-flat') mode (\c true) rather than binary mode (\c false).
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& closing(const CImg<t>& kernel, const unsigned int boundary_conditions=1,
|
|
const bool is_real=false) {
|
|
const int sx = kernel.width(), sy = kernel.height(), sz = kernel.depth();
|
|
if (is_empty() || (sx<=1 && sy<=1 && sz<=1)) return *this;
|
|
return get_closing(kernel,boundary_conditions,is_real).move_to(*this);
|
|
}
|
|
|
|
//! Apply morphological closing by a structuring element \newinstance.
|
|
template<typename t>
|
|
CImg<T> get_closing(const CImg<t>& kernel, const unsigned int boundary_conditions=1,
|
|
const bool is_real=false) const {
|
|
const int sx = kernel.width(), sy = kernel.height(), sz = kernel.depth();
|
|
if (is_empty() || (sx<=1 && sy<=1 && sz<=1)) return *this;
|
|
const int sx1 = (int)(sx - 1)/2, sy1 = (int)(sy - 1)/2, sz1 = (int)(sz - 1)/2;
|
|
CImg<T> res;
|
|
if (_depth>1) { // 3D
|
|
get_resize(width() + sx + 1,height() + sy + 1,depth() + sz + 1,spectrum(),0,boundary_conditions,0.5,0.5,0.5).
|
|
dilate(kernel,1,is_real).erode(kernel,1,is_real).
|
|
crop(sx1 + 1,sy1 + 1,sz1 + 1,sx1 + width(),sy1 + height(),sz1 + depth()).move_to(res);
|
|
} else if (_height>1) { // 2D
|
|
get_resize(width() + sx + 1,height() + sy + 1,1,spectrum(),0,boundary_conditions,0.5,0.5).
|
|
dilate(kernel,1,is_real).erode(kernel,1,is_real).
|
|
crop(sx1 + 1,sy1 + 1,sx1 + width(),sy1 + height()).move_to(res);
|
|
} else if (_width>1) { // 1D
|
|
get_resize(width() + sx + 1,1,1,spectrum(),0,boundary_conditions,0.5).
|
|
dilate(kernel,1,is_real).erode(kernel,1,is_real).
|
|
crop(sx1 + 1,sx1 + width()).move_to(res);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Apply morphological closing by a rectangular structuring element of specified size.
|
|
CImg<T>& closing(const unsigned int sx, const unsigned int sy, const unsigned int sz=1) {
|
|
if (is_empty() || (sx<=1 && sy<=1 && sz<=1)) return *this;
|
|
return get_closing(sx,sy,sz).move_to(*this);
|
|
}
|
|
|
|
//! Apply morphological closing by a rectangular structuring element of specified size \newinstance.
|
|
CImg<T> get_closing(const unsigned int sx, const unsigned int sy, const unsigned int sz=1) const {
|
|
if (is_empty() || (sx<=1 && sy<=1 && sz<=1)) return *this;
|
|
const int sx1 = (int)(sx - 1)/2, sy1 = (int)(sy - 1)/2, sz1 = (int)(sz - 1)/2;
|
|
CImg<T> res;
|
|
if (_depth>1) { // 3D
|
|
get_resize(width() + sx + 1,height() + sy + 1,depth() + sz + 1,spectrum(),0,1,0.5,0.5,0.5).
|
|
dilate(sx,sy,sz).erode(sx,sy,sz).
|
|
crop(sx1 + 1,sy1 + 1,sz1 + 1,sx1 + width(),sy1 + height(),sz1 + depth()).move_to(res);
|
|
} else if (_height>1) { // 2D
|
|
get_resize(width() + sx + 1,height() + sy + 1,1,spectrum(),0,1,0.5,0.5).
|
|
dilate(sx,sy).erode(sx,sy).
|
|
crop(sx1 + 1,sy1 + 1,sx1 + width(),sy1 + height()).move_to(res);
|
|
} else if (_width>1) { // 1D
|
|
get_resize(width() + sx + 1,1,1,spectrum(),0,1,0.5).
|
|
dilate(sx,1).erode(sx,1).
|
|
crop(sx1 + 1,sx1 + width()).move_to(res);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Apply morphological closing by a square structuring element of specified size.
|
|
/**
|
|
\param s Size of the structuring element.
|
|
**/
|
|
CImg<T>& closing(const unsigned int s) {
|
|
return closing(s,s,s);
|
|
}
|
|
|
|
//! Apply morphological closing by a square structuring element of specified size \newinstance.
|
|
CImg<T> get_closing(const unsigned int s) const {
|
|
return (+*this).closing(s);
|
|
}
|
|
|
|
//! Apply morphological opening by a structuring element.
|
|
/**
|
|
\param kernel Structuring element.
|
|
\param boundary_conditions Boundary conditions.
|
|
Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }.
|
|
\param is_real Do the opening in real (a.k.a 'non-flat') mode (\c true) rather than binary mode (\c false).
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& opening(const CImg<t>& kernel, const unsigned int boundary_conditions=1,
|
|
const bool is_real=false) {
|
|
const int sx = kernel.width(), sy = kernel.height(), sz = kernel.depth();
|
|
if (is_empty() || (sx<=1 && sy<=1 && sz<=1)) return *this;
|
|
return get_opening(kernel,boundary_conditions,is_real).move_to(*this);
|
|
}
|
|
|
|
//! Apply morphological opening by a structuring element \newinstance.
|
|
template<typename t>
|
|
CImg<T> get_opening(const CImg<t>& kernel, const unsigned int boundary_conditions=1,
|
|
const bool is_real=false) const {
|
|
const int sx = kernel.width(), sy = kernel.height(), sz = kernel.depth();
|
|
if (is_empty() || (sx<=1 && sy<=1 && sz<=1)) return *this;
|
|
const int sx1 = (int)(sx - 1)/2, sy1 = (int)(sy - 1)/2, sz1 = (int)(sz - 1)/2;
|
|
CImg<T> res;
|
|
if (_depth>1) { // 3D
|
|
get_resize(width() + sx + 1,height() + sy + 1,depth() + sz + 1,spectrum(),0,boundary_conditions,0.5,0.5,0.5).
|
|
erode(kernel,1,is_real).dilate(kernel,1,is_real).
|
|
crop(sx1 + 1,sy1 + 1,sz1 + 1,sx1 + width(),sy1 + height(),sz1 + depth()).move_to(res);
|
|
} else if (_height>1) { // 2D
|
|
get_resize(width() + sx + 1,height() + sy + 1,1,spectrum(),0,boundary_conditions,0.5,0.5).
|
|
erode(kernel,1,is_real).dilate(kernel,1,is_real).
|
|
crop(sx1 + 1,sy1 + 1,sx1 + width(),sy1 + height()).move_to(res);
|
|
} else if (_width>1) { // 1D
|
|
get_resize(width() + sx + 1,1,1,spectrum(),0,boundary_conditions,0.5).
|
|
erode(kernel,1,is_real).dilate(kernel,1,is_real).
|
|
crop(sx1 + 1,sx1 + width()).move_to(res);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Apply morphological opening by a rectangular structuring element of specified size.
|
|
CImg<T>& opening(const unsigned int sx, const unsigned int sy, const unsigned int sz=1) {
|
|
if (is_empty() || (sx<=1 && sy<=1 && sz<=1)) return *this;
|
|
return get_opening(sx,sy,sz).move_to(*this);
|
|
}
|
|
|
|
//! Apply morphological opening by a rectangular structuring element of specified size \newinstance.
|
|
CImg<T> get_opening(const unsigned int sx, const unsigned int sy, const unsigned int sz=1) const {
|
|
if (is_empty() || (sx<=1 && sy<=1 && sz<=1)) return *this;
|
|
const int sx1 = (int)(sx - 1)/2, sy1 = (int)(sy - 1)/2, sz1 = (int)(sz - 1)/2;
|
|
CImg<T> res;
|
|
if (_depth>1) { // 3D
|
|
get_resize(width() + sx + 1,height() + sy + 1,depth() + sz + 1,spectrum(),0,1,0.5,0.5,0.5).
|
|
erode(sx,sy,sz).dilate(sx,sy,sz).
|
|
crop(sx1 + 1,sy1 + 1,sz1 + 1,sx1 + width(),sy1 + height(),sz1 + depth()).move_to(res);
|
|
} else if (_height>1) { // 2D
|
|
get_resize(width() + sx + 1,height() + sy + 1,1,spectrum(),0,1,0.5,0.5).
|
|
erode(sx,sy).dilate(sx,sy).
|
|
crop(sx1 + 1,sy1 + 1,sx1 + width(),sy1 + height()).move_to(res);
|
|
} else if (_width>1) { // 1D
|
|
get_resize(width() + sx + 1,1,1,spectrum(),0,1,0.5).
|
|
erode(sx,1).dilate(sx,1).
|
|
crop(sx1 + 1,sx1 + width()).move_to(res);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Apply morphological opening by a square structuring element of specified size.
|
|
/**
|
|
\param s Size of the structuring element.
|
|
**/
|
|
CImg<T>& opening(const unsigned int s) {
|
|
return opening(s,s,s);
|
|
}
|
|
|
|
//! Apply morphological opening by a square structuring element of specified size \newinstance.
|
|
CImg<T> get_opening(const unsigned int s) const {
|
|
return (+*this).opening(s);
|
|
}
|
|
|
|
//! Compute watershed transform.
|
|
/**
|
|
\param priority Priority map.
|
|
\param is_high_connectivity Boolean that choose between 4(false)- or 8(true)-connectivity
|
|
in 2D case, and between 6(false)- or 26(true)-connectivity in 3D case.
|
|
\note Non-zero values of the instance instance are propagated to zero-valued ones according to
|
|
specified the priority map.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& watershed(const CImg<t>& priority, const bool is_high_connectivity=false) {
|
|
#define _cimg_watershed_init(cond,X,Y,Z) \
|
|
if (cond && !(*this)(X,Y,Z)) Q._priority_queue_insert(labels,sizeQ,priority(X,Y,Z),X,Y,Z,nb_seeds)
|
|
|
|
#define _cimg_watershed_propagate(cond,X,Y,Z) \
|
|
if (cond) { \
|
|
if ((*this)(X,Y,Z)) { \
|
|
ns = labels(X,Y,Z) - 1; xs = seeds(ns,0); ys = seeds(ns,1); zs = seeds(ns,2); \
|
|
d = cimg::sqr((float)x - xs) + cimg::sqr((float)y - ys) + cimg::sqr((float)z - zs); \
|
|
if (d<dmin) { dmin = d; nmin = ns; nlabel = (*this)(xs,ys,zs); } \
|
|
} else Q._priority_queue_insert(labels,sizeQ,priority(X,Y,Z),X,Y,Z,n); \
|
|
}
|
|
|
|
if (is_empty()) return *this;
|
|
if (!is_sameXYZ(priority))
|
|
throw CImgArgumentException(_cimg_instance
|
|
"watershed(): image instance and specified priority (%u,%u,%u,%u,%p) "
|
|
"have different dimensions.",
|
|
cimg_instance,
|
|
priority._width,priority._height,priority._depth,priority._spectrum,priority._data);
|
|
if (_spectrum!=1) {
|
|
cimg_forC(*this,c)
|
|
get_shared_channel(c).watershed(priority.get_shared_channel(c%priority._spectrum));
|
|
return *this;
|
|
}
|
|
|
|
CImg<uintT> labels(_width,_height,_depth,1,0), seeds(64,3);
|
|
CImg<typename cimg::superset2<T,t,int>::type> Q;
|
|
unsigned int sizeQ = 0;
|
|
int px, nx, py, ny, pz, nz;
|
|
bool is_px, is_nx, is_py, is_ny, is_pz, is_nz;
|
|
const bool is_3d = _depth>1;
|
|
|
|
// Find seed points and insert them in priority queue.
|
|
unsigned int nb_seeds = 0;
|
|
const T *ptrs = _data;
|
|
cimg_forXYZ(*this,x,y,z) if (*(ptrs++)) { // 3D version
|
|
if (nb_seeds>=seeds._width) seeds.resize(2*seeds._width,3,1,1,0);
|
|
seeds(nb_seeds,0) = x; seeds(nb_seeds,1) = y; seeds(nb_seeds++,2) = z;
|
|
px = x - 1; nx = x + 1;
|
|
py = y - 1; ny = y + 1;
|
|
pz = z - 1; nz = z + 1;
|
|
is_px = px>=0; is_nx = nx<width();
|
|
is_py = py>=0; is_ny = ny<height();
|
|
is_pz = pz>=0; is_nz = nz<depth();
|
|
_cimg_watershed_init(is_px,px,y,z);
|
|
_cimg_watershed_init(is_nx,nx,y,z);
|
|
_cimg_watershed_init(is_py,x,py,z);
|
|
_cimg_watershed_init(is_ny,x,ny,z);
|
|
if (is_3d) {
|
|
_cimg_watershed_init(is_pz,x,y,pz);
|
|
_cimg_watershed_init(is_nz,x,y,nz);
|
|
}
|
|
if (is_high_connectivity) {
|
|
_cimg_watershed_init(is_px && is_py,px,py,z);
|
|
_cimg_watershed_init(is_nx && is_py,nx,py,z);
|
|
_cimg_watershed_init(is_px && is_ny,px,ny,z);
|
|
_cimg_watershed_init(is_nx && is_ny,nx,ny,z);
|
|
if (is_3d) {
|
|
_cimg_watershed_init(is_px && is_pz,px,y,pz);
|
|
_cimg_watershed_init(is_nx && is_pz,nx,y,pz);
|
|
_cimg_watershed_init(is_px && is_nz,px,y,nz);
|
|
_cimg_watershed_init(is_nx && is_nz,nx,y,nz);
|
|
_cimg_watershed_init(is_py && is_pz,x,py,pz);
|
|
_cimg_watershed_init(is_ny && is_pz,x,ny,pz);
|
|
_cimg_watershed_init(is_py && is_nz,x,py,nz);
|
|
_cimg_watershed_init(is_ny && is_nz,x,ny,nz);
|
|
_cimg_watershed_init(is_px && is_py && is_pz,px,py,pz);
|
|
_cimg_watershed_init(is_nx && is_py && is_pz,nx,py,pz);
|
|
_cimg_watershed_init(is_px && is_ny && is_pz,px,ny,pz);
|
|
_cimg_watershed_init(is_nx && is_ny && is_pz,nx,ny,pz);
|
|
_cimg_watershed_init(is_px && is_py && is_nz,px,py,nz);
|
|
_cimg_watershed_init(is_nx && is_py && is_nz,nx,py,nz);
|
|
_cimg_watershed_init(is_px && is_ny && is_nz,px,ny,nz);
|
|
_cimg_watershed_init(is_nx && is_ny && is_nz,nx,ny,nz);
|
|
}
|
|
}
|
|
labels(x,y,z) = nb_seeds;
|
|
}
|
|
|
|
// Start watershed computation.
|
|
while (sizeQ) {
|
|
|
|
// Get and remove point with maximal priority from the queue.
|
|
const int x = (int)Q(0,1), y = (int)Q(0,2), z = (int)Q(0,3);
|
|
const unsigned int n = labels(x,y,z);
|
|
px = x - 1; nx = x + 1;
|
|
py = y - 1; ny = y + 1;
|
|
pz = z - 1; nz = z + 1;
|
|
is_px = px>=0; is_nx = nx<width();
|
|
is_py = py>=0; is_ny = ny<height();
|
|
is_pz = pz>=0; is_nz = nz<depth();
|
|
|
|
// Check labels of the neighbors.
|
|
Q._priority_queue_remove(sizeQ);
|
|
|
|
unsigned int xs, ys, zs, ns, nmin = 0;
|
|
float d, dmin = cimg::type<float>::inf();
|
|
T nlabel = (T)0;
|
|
_cimg_watershed_propagate(is_px,px,y,z);
|
|
_cimg_watershed_propagate(is_nx,nx,y,z);
|
|
_cimg_watershed_propagate(is_py,x,py,z);
|
|
_cimg_watershed_propagate(is_ny,x,ny,z);
|
|
if (is_3d) {
|
|
_cimg_watershed_propagate(is_pz,x,y,pz);
|
|
_cimg_watershed_propagate(is_nz,x,y,nz);
|
|
}
|
|
if (is_high_connectivity) {
|
|
_cimg_watershed_propagate(is_px && is_py,px,py,z);
|
|
_cimg_watershed_propagate(is_nx && is_py,nx,py,z);
|
|
_cimg_watershed_propagate(is_px && is_ny,px,ny,z);
|
|
_cimg_watershed_propagate(is_nx && is_ny,nx,ny,z);
|
|
if (is_3d) {
|
|
_cimg_watershed_propagate(is_px && is_pz,px,y,pz);
|
|
_cimg_watershed_propagate(is_nx && is_pz,nx,y,pz);
|
|
_cimg_watershed_propagate(is_px && is_nz,px,y,nz);
|
|
_cimg_watershed_propagate(is_nx && is_nz,nx,y,nz);
|
|
_cimg_watershed_propagate(is_py && is_pz,x,py,pz);
|
|
_cimg_watershed_propagate(is_ny && is_pz,x,ny,pz);
|
|
_cimg_watershed_propagate(is_py && is_nz,x,py,nz);
|
|
_cimg_watershed_propagate(is_ny && is_nz,x,ny,nz);
|
|
_cimg_watershed_propagate(is_px && is_py && is_pz,px,py,pz);
|
|
_cimg_watershed_propagate(is_nx && is_py && is_pz,nx,py,pz);
|
|
_cimg_watershed_propagate(is_px && is_ny && is_pz,px,ny,pz);
|
|
_cimg_watershed_propagate(is_nx && is_ny && is_pz,nx,ny,pz);
|
|
_cimg_watershed_propagate(is_px && is_py && is_nz,px,py,nz);
|
|
_cimg_watershed_propagate(is_nx && is_py && is_nz,nx,py,nz);
|
|
_cimg_watershed_propagate(is_px && is_ny && is_nz,px,ny,nz);
|
|
_cimg_watershed_propagate(is_nx && is_ny && is_nz,nx,ny,nz);
|
|
}
|
|
}
|
|
(*this)(x,y,z) = nlabel;
|
|
labels(x,y,z) = ++nmin;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Compute watershed transform \newinstance.
|
|
template<typename t>
|
|
CImg<T> get_watershed(const CImg<t>& priority, const bool is_high_connectivity=false) const {
|
|
return (+*this).watershed(priority,is_high_connectivity);
|
|
}
|
|
|
|
// [internal] Insert/Remove items in priority queue, for watershed/distance transforms.
|
|
template<typename tq, typename tv>
|
|
bool _priority_queue_insert(CImg<tq>& is_queued, unsigned int& siz, const tv value,
|
|
const unsigned int x, const unsigned int y, const unsigned int z,
|
|
const unsigned int n=1) {
|
|
if (is_queued(x,y,z)) return false;
|
|
is_queued(x,y,z) = (tq)n;
|
|
if (++siz>=_width) { if (!is_empty()) resize(_width*2,4,1,1,0); else assign(64,4); }
|
|
(*this)(siz - 1,0) = (T)value;
|
|
(*this)(siz - 1,1) = (T)x;
|
|
(*this)(siz - 1,2) = (T)y;
|
|
(*this)(siz - 1,3) = (T)z;
|
|
for (unsigned int pos = siz - 1, par = 0; pos && value>(tv)(*this)(par=(pos + 1)/2 - 1,0); pos = par) {
|
|
cimg::swap((*this)(pos,0),(*this)(par,0));
|
|
cimg::swap((*this)(pos,1),(*this)(par,1));
|
|
cimg::swap((*this)(pos,2),(*this)(par,2));
|
|
cimg::swap((*this)(pos,3),(*this)(par,3));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
CImg<T>& _priority_queue_remove(unsigned int& siz) {
|
|
(*this)(0,0) = (*this)(--siz,0);
|
|
(*this)(0,1) = (*this)(siz,1);
|
|
(*this)(0,2) = (*this)(siz,2);
|
|
(*this)(0,3) = (*this)(siz,3);
|
|
const float value = (*this)(0,0);
|
|
unsigned int pos = 0, swap = 0;
|
|
do {
|
|
const unsigned int left = 2*pos + 1, right = left + 1;
|
|
if (right<siz && value<(*this)(right,0)) swap = (*this)(left,0)>(*this)(right,0)?left:right;
|
|
else if (left<siz && value<(*this)(left,0)) swap = left;
|
|
else break;
|
|
cimg::swap((*this)(pos,0),(*this)(swap,0));
|
|
cimg::swap((*this)(pos,1),(*this)(swap,1));
|
|
cimg::swap((*this)(pos,2),(*this)(swap,2));
|
|
cimg::swap((*this)(pos,3),(*this)(swap,3));
|
|
pos = swap;
|
|
} while (true);
|
|
return *this;
|
|
}
|
|
|
|
//! Apply recursive Deriche filter.
|
|
/**
|
|
\param sigma Standard deviation of the filter.
|
|
\param order Order of the filter. Can be <tt>{ 0=smooth-filter | 1=1st-derivative | 2=2nd-derivative }</tt>.
|
|
\param axis Axis along which the filter is computed. Can be <tt>{ 'x' | 'y' | 'z' | 'c' }</tt>.
|
|
\param boundary_conditions Boundary conditions.
|
|
Can be <tt>{ 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }</tt>.
|
|
**/
|
|
CImg<T>& deriche(const float sigma, const unsigned int order=0, const char axis='x',
|
|
const unsigned int boundary_conditions=1) {
|
|
#define _cimg_deriche_apply \
|
|
CImg<doubleT> Y(N); \
|
|
double *ptrY = Y._data, yb = 0, yp = 0; \
|
|
T xp = (T)0; \
|
|
if (boundary_conditions) { xp = *ptrX; yb = yp = (double)(coefp*xp); } \
|
|
for (int m = 0; m<N; ++m) { \
|
|
const T xc = *ptrX; ptrX+=off; \
|
|
const double yc = *(ptrY++) = (double)(a0*xc + a1*xp - b1*yp - b2*yb); \
|
|
xp = xc; yb = yp; yp = yc; \
|
|
} \
|
|
T xn = (T)0, xa = (T)0; \
|
|
double yn = 0, ya = 0; \
|
|
if (boundary_conditions) { xn = xa = *(ptrX - off); yn = ya = (double)coefn*xn; } \
|
|
for (int n = N - 1; n>=0; --n) { \
|
|
const T xc = *(ptrX-=off); \
|
|
const double yc = (double)(a2*xn + a3*xa - b1*yn - b2*ya); \
|
|
xa = xn; xn = xc; ya = yn; yn = yc; \
|
|
*ptrX = (T)(*(--ptrY)+yc); \
|
|
}
|
|
|
|
if (order>2)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"deriche(): Invalid specified order '%d' "
|
|
"('order' can be { 0=smoothing | 1=1st-derivative | 2=2nd-derivative }).",
|
|
cimg_instance,
|
|
order);
|
|
|
|
const char naxis = cimg::lowercase(axis);
|
|
if (naxis!='x' && naxis!='y' && naxis!='z' && naxis!='c')
|
|
throw CImgArgumentException(_cimg_instance
|
|
"deriche(): Invalid specified axis '%c'.",
|
|
cimg_instance,
|
|
axis);
|
|
const double
|
|
nsigma = sigma>=0?sigma:-sigma*(naxis=='x'?_width:
|
|
naxis=='y'?_height:
|
|
naxis=='z'?_depth:_spectrum)/100,
|
|
nnsigma = nsigma<0.1f?0.1f:nsigma;
|
|
|
|
if (is_empty() || (nsigma<0.1f && !order)) return *this;
|
|
if (boundary_conditions>1) {
|
|
const int w = width(), h = height(), d = depth(), s = spectrum(), border = (int)cimg::round(1 + 3*nnsigma);
|
|
switch (naxis) {
|
|
case 'x' :
|
|
return draw_image(get_resize(w + 2*border,h,d,s,0,boundary_conditions,0.5).
|
|
deriche(nnsigma,order,naxis,1).columns(border,w - 1 + border));
|
|
case 'y' :
|
|
return draw_image(get_resize(w,h + 2*border,d,s,0,boundary_conditions,0,0.5).
|
|
deriche(nnsigma,order,naxis,1).rows(border,h - 1 + border));
|
|
case 'z' :
|
|
return draw_image(get_resize(w,h,d + 2*border,s,0,boundary_conditions,0,0,0.5).
|
|
deriche(nnsigma,order,naxis,1).slices(border,d - 1 + border));
|
|
default :
|
|
return draw_image(get_resize(w,h,d,s + 2*border,0,boundary_conditions,0,0,0,0.5).
|
|
deriche(nnsigma,order,naxis,1).channels(border,d - 1 + border));
|
|
}
|
|
}
|
|
|
|
const double
|
|
alpha = 1.695f/nnsigma,
|
|
ema = std::exp(-alpha),
|
|
ema2 = std::exp(-2*alpha),
|
|
b1 = -2*ema,
|
|
b2 = ema2;
|
|
double a0 = 0, a1 = 0, a2 = 0, a3 = 0, coefp = 0, coefn = 0;
|
|
switch (order) {
|
|
case 0 : {
|
|
const double k = (1-ema)*(1-ema)/(1 + 2*alpha*ema-ema2);
|
|
a0 = k;
|
|
a1 = k*(alpha - 1)*ema;
|
|
a2 = k*(alpha + 1)*ema;
|
|
a3 = -k*ema2;
|
|
} break;
|
|
case 1 : {
|
|
const double k = -(1-ema)*(1-ema)*(1-ema)/(2*(ema + 1)*ema);
|
|
a0 = a3 = 0;
|
|
a1 = k*ema;
|
|
a2 = -a1;
|
|
} break;
|
|
default : {
|
|
const double
|
|
ea = std::exp(-alpha),
|
|
k = -(ema2 - 1)/(2*alpha*ema),
|
|
kn = (-2*(-1 + 3*ea - 3*ea*ea + ea*ea*ea)/(3*ea + 1 + 3*ea*ea + ea*ea*ea));
|
|
a0 = kn;
|
|
a1 = -kn*(1 + k*alpha)*ema;
|
|
a2 = kn*(1 - k*alpha)*ema;
|
|
a3 = -kn*ema2;
|
|
} break;
|
|
}
|
|
|
|
coefp = (a0 + a1)/(1 + b1 + b2);
|
|
coefn = (a2 + a3)/(1 + b1 + b2);
|
|
switch (naxis) {
|
|
case 'x' : {
|
|
const int N = width();
|
|
const ulongT off = 1U;
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 &&
|
|
_height*_depth*_spectrum>=16))
|
|
cimg_forYZC(*this,y,z,c) { T *ptrX = data(0,y,z,c); _cimg_deriche_apply; }
|
|
} break;
|
|
case 'y' : {
|
|
const int N = height();
|
|
const ulongT off = (ulongT)_width;
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 &&
|
|
_height*_depth*_spectrum>=16))
|
|
cimg_forXZC(*this,x,z,c) { T *ptrX = data(x,0,z,c); _cimg_deriche_apply; }
|
|
} break;
|
|
case 'z' : {
|
|
const int N = depth();
|
|
const ulongT off = (ulongT)_width*_height;
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 &&
|
|
_height*_depth*_spectrum>=16))
|
|
cimg_forXYC(*this,x,y,c) { T *ptrX = data(x,y,0,c); _cimg_deriche_apply; }
|
|
} break;
|
|
default : {
|
|
const int N = spectrum();
|
|
const ulongT off = (ulongT)_width*_height*_depth;
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 &&
|
|
_height*_depth*_spectrum>=16))
|
|
cimg_forXYZ(*this,x,y,z) { T *ptrX = data(x,y,z,0); _cimg_deriche_apply; }
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Apply recursive Deriche filter \newinstance.
|
|
CImg<Tfloat> get_deriche(const float sigma, const unsigned int order=0, const char axis='x',
|
|
const unsigned int boundary_conditions=1) const {
|
|
return CImg<Tfloat>(*this,false).deriche(sigma,order,axis,boundary_conditions);
|
|
}
|
|
|
|
// [internal] Apply a recursive filter (used by CImg<T>::vanvliet()).
|
|
/*
|
|
\param ptr the pointer of the data
|
|
\param filter the coefficient of the filter in the following order [n,n - 1,n - 2,n - 3].
|
|
\param N size of the data
|
|
\param off the offset between two data point
|
|
\param order the order of the filter 0 (smoothing), 1st derivative, 2nd derivative, 3rd derivative
|
|
\param boundary_conditions Boundary conditions.
|
|
Can be <tt>{ 0=dirichlet | 1=neumann }</tt>.
|
|
\note Boundary condition using B. Triggs method (IEEE trans on Sig Proc 2005).
|
|
*/
|
|
static void _cimg_recursive_apply(T *data, const double filter[], const int N, const ulongT off,
|
|
const unsigned int order, const bool boundary_conditions) {
|
|
double val[4] = {}; // res[n,n - 1,n - 2,n - 3,..] or res[n,n + 1,n + 2,n + 3,..]
|
|
const double
|
|
sumsq = filter[0], sum = sumsq * sumsq,
|
|
a1 = filter[1], a2 = filter[2], a3 = filter[3],
|
|
scaleM = 1. / ( (1. + a1 - a2 + a3) * (1. - a1 - a2 - a3) * (1. + a2 + (a1 - a3) * a3) );
|
|
double M[9]; // Triggs matrix
|
|
M[0] = scaleM * (-a3 * a1 + 1. - a3 * a3 - a2);
|
|
M[1] = scaleM * (a3 + a1) * (a2 + a3 * a1);
|
|
M[2] = scaleM * a3 * (a1 + a3 * a2);
|
|
M[3] = scaleM * (a1 + a3 * a2);
|
|
M[4] = -scaleM * (a2 - 1.) * (a2 + a3 * a1);
|
|
M[5] = -scaleM * a3 * (a3 * a1 + a3 * a3 + a2 - 1.);
|
|
M[6] = scaleM * (a3 * a1 + a2 + a1 * a1 - a2 * a2);
|
|
M[7] = scaleM * (a1 * a2 + a3 * a2 * a2 - a1 * a3 * a3 - a3 * a3 * a3 - a3 * a2 + a3);
|
|
M[8] = scaleM * a3 * (a1 + a3 * a2);
|
|
switch (order) {
|
|
case 0 : {
|
|
const double iplus = (boundary_conditions?data[(N - 1)*off]:(T)0);
|
|
for (int pass = 0; pass<2; ++pass) {
|
|
if (!pass) {
|
|
for (int k = 1; k<4; ++k) val[k] = (boundary_conditions?*data/sumsq:0);
|
|
} else {
|
|
// Apply Triggs boundary conditions
|
|
const double
|
|
uplus = iplus/(1. - a1 - a2 - a3), vplus = uplus/(1. - a1 - a2 - a3),
|
|
unp = val[1] - uplus, unp1 = val[2] - uplus, unp2 = val[3] - uplus;
|
|
val[0] = (M[0] * unp + M[1] * unp1 + M[2] * unp2 + vplus) * sum;
|
|
val[1] = (M[3] * unp + M[4] * unp1 + M[5] * unp2 + vplus) * sum;
|
|
val[2] = (M[6] * unp + M[7] * unp1 + M[8] * unp2 + vplus) * sum;
|
|
*data = (T)val[0];
|
|
data -= off;
|
|
for (int k = 3; k>0; --k) val[k] = val[k - 1];
|
|
}
|
|
for (int n = pass; n<N; ++n) {
|
|
val[0] = (*data);
|
|
if (pass) val[0] *= sum;
|
|
for (int k = 1; k<4; ++k) val[0] += val[k] * filter[k];
|
|
*data = (T)val[0];
|
|
if (!pass) data += off; else data -= off;
|
|
for (int k = 3; k>0; --k) val[k] = val[k - 1];
|
|
}
|
|
if (!pass) data -= off;
|
|
}
|
|
} break;
|
|
case 1 : {
|
|
double x[3]; // [front,center,back]
|
|
for (int pass = 0; pass<2; ++pass) {
|
|
if (!pass) {
|
|
for (int k = 0; k<3; ++k) x[k] = (boundary_conditions?*data:(T)0);
|
|
for (int k = 0; k<4; ++k) val[k] = 0;
|
|
} else {
|
|
// Apply Triggs boundary conditions
|
|
const double
|
|
unp = val[1], unp1 = val[2], unp2 = val[3];
|
|
val[0] = (M[0] * unp + M[1] * unp1 + M[2] * unp2) * sum;
|
|
val[1] = (M[3] * unp + M[4] * unp1 + M[5] * unp2) * sum;
|
|
val[2] = (M[6] * unp + M[7] * unp1 + M[8] * unp2) * sum;
|
|
*data = (T)val[0];
|
|
data -= off;
|
|
for (int k = 3; k>0; --k) val[k] = val[k - 1];
|
|
}
|
|
for (int n = pass; n<N - 1; ++n) {
|
|
if (!pass) {
|
|
x[0] = *(data + off);
|
|
val[0] = 0.5f * (x[0] - x[2]);
|
|
} else val[0] = (*data) * sum;
|
|
for (int k = 1; k<4; ++k) val[0] += val[k] * filter[k];
|
|
*data = (T)val[0];
|
|
if (!pass) {
|
|
data += off;
|
|
for (int k = 2; k>0; --k) x[k] = x[k - 1];
|
|
} else { data-=off;}
|
|
for (int k = 3; k>0; --k) val[k] = val[k - 1];
|
|
}
|
|
*data = (T)0;
|
|
}
|
|
} break;
|
|
case 2: {
|
|
double x[3]; // [front,center,back]
|
|
for (int pass = 0; pass<2; ++pass) {
|
|
if (!pass) {
|
|
for (int k = 0; k<3; ++k) x[k] = (boundary_conditions?*data:(T)0);
|
|
for (int k = 0; k<4; ++k) val[k] = 0;
|
|
} else {
|
|
// Apply Triggs boundary conditions
|
|
const double
|
|
unp = val[1], unp1 = val[2], unp2 = val[3];
|
|
val[0] = (M[0] * unp + M[1] * unp1 + M[2] * unp2) * sum;
|
|
val[1] = (M[3] * unp + M[4] * unp1 + M[5] * unp2) * sum;
|
|
val[2] = (M[6] * unp + M[7] * unp1 + M[8] * unp2) * sum;
|
|
*data = (T)val[0];
|
|
data -= off;
|
|
for (int k = 3; k>0; --k) val[k] = val[k - 1];
|
|
}
|
|
for (int n = pass; n<N - 1; ++n) {
|
|
if (!pass) { x[0] = *(data + off); val[0] = (x[1] - x[2]); }
|
|
else { x[0] = *(data - off); val[0] = (x[2] - x[1]) * sum; }
|
|
for (int k = 1; k<4; ++k) val[0] += val[k]*filter[k];
|
|
*data = (T)val[0];
|
|
if (!pass) data += off; else data -= off;
|
|
for (int k = 2; k>0; --k) x[k] = x[k - 1];
|
|
for (int k = 3; k>0; --k) val[k] = val[k - 1];
|
|
}
|
|
*data = (T)0;
|
|
}
|
|
} break;
|
|
case 3: {
|
|
double x[3]; // [front,center,back]
|
|
for (int pass = 0; pass<2; ++pass) {
|
|
if (!pass) {
|
|
for (int k = 0; k<3; ++k) x[k] = (boundary_conditions?*data:(T)0);
|
|
for (int k = 0; k<4; ++k) val[k] = 0;
|
|
} else {
|
|
// Apply Triggs boundary conditions
|
|
const double
|
|
unp = val[1], unp1 = val[2], unp2 = val[3];
|
|
val[0] = (M[0] * unp + M[1] * unp1 + M[2] * unp2) * sum;
|
|
val[1] = (M[3] * unp + M[4] * unp1 + M[5] * unp2) * sum;
|
|
val[2] = (M[6] * unp + M[7] * unp1 + M[8] * unp2) * sum;
|
|
*data = (T)val[0];
|
|
data -= off;
|
|
for (int k = 3; k>0; --k) val[k] = val[k - 1];
|
|
}
|
|
for (int n = pass; n<N - 1; ++n) {
|
|
if (!pass) { x[0] = *(data + off); val[0] = (x[0] - 2*x[1] + x[2]); }
|
|
else { x[0] = *(data - off); val[0] = 0.5f * (x[2] - x[0]) * sum; }
|
|
for (int k = 1; k<4; ++k) val[0] += val[k] * filter[k];
|
|
*data = (T)val[0];
|
|
if (!pass) data += off; else data -= off;
|
|
for (int k = 2; k>0; --k) x[k] = x[k - 1];
|
|
for (int k = 3; k>0; --k) val[k] = val[k - 1];
|
|
}
|
|
*data = (T)0;
|
|
}
|
|
} break;
|
|
}
|
|
}
|
|
|
|
//! Van Vliet recursive Gaussian filter.
|
|
/**
|
|
\param sigma standard deviation of the Gaussian filter
|
|
\param order the order of the filter 0,1,2,3
|
|
\param axis Axis along which the filter is computed. Can be <tt>{ 'x' | 'y' | 'z' | 'c' }</tt>.
|
|
\param boundary_conditions Boundary conditions.
|
|
Can be <tt>{ 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }</tt>.
|
|
\note dirichlet boundary condition has a strange behavior
|
|
|
|
I.T. Young, L.J. van Vliet, M. van Ginkel, Recursive Gabor filtering.
|
|
IEEE Trans. Sig. Proc., vol. 50, pp. 2799-2805, 2002.
|
|
|
|
(this is an improvement over Young-Van Vliet, Sig. Proc. 44, 1995)
|
|
|
|
Boundary conditions (only for order 0) using Triggs matrix, from
|
|
B. Triggs and M. Sdika. Boundary conditions for Young-van Vliet
|
|
recursive filtering. IEEE Trans. Signal Processing,
|
|
vol. 54, pp. 2365-2367, 2006.
|
|
**/
|
|
CImg<T>& vanvliet(const float sigma, const unsigned int order, const char axis='x',
|
|
const unsigned int boundary_conditions=1) {
|
|
|
|
if (order>2)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"deriche(): Invalid specified order '%d' "
|
|
"('order' can be { 0=smoothing | 1=1st-derivative | 2=2nd-derivative }).",
|
|
cimg_instance,
|
|
order);
|
|
|
|
const char naxis = cimg::lowercase(axis);
|
|
if (naxis!='x' && naxis!='y' && naxis!='z' && naxis!='c')
|
|
throw CImgArgumentException(_cimg_instance
|
|
"deriche(): Invalid specified axis '%c'.",
|
|
cimg_instance,
|
|
axis);
|
|
const double
|
|
nsigma = sigma>=0?sigma:-sigma*(naxis=='x'?_width:
|
|
naxis=='y'?_height:
|
|
naxis=='z'?_depth:_spectrum)/100,
|
|
nnsigma = nsigma<0.5f?0.5f:nsigma;
|
|
|
|
if (is_empty() || (nsigma<0.1f && !order)) return *this;
|
|
if (nsigma<0.5f) return deriche(nsigma,order,axis,boundary_conditions);
|
|
if (!cimg::type<T>::is_float())
|
|
return CImg<Tfloat>(*this,false).vanvliet(sigma,order,axis,boundary_conditions).move_to(*this);
|
|
|
|
if (boundary_conditions>1) {
|
|
const int w = width(), h = height(), d = depth(), s = spectrum(), border = (int)cimg::round(1 + 3*nnsigma);
|
|
switch (naxis) {
|
|
case 'x' :
|
|
return draw_image(get_resize(w + 2*border,h,d,s,0,boundary_conditions,0.5).
|
|
vanvliet(nnsigma,order,naxis,1).columns(border,w - 1 + border));
|
|
case 'y' :
|
|
return draw_image(get_resize(w,h + 2*border,d,s,0,boundary_conditions,0,0.5).
|
|
vanvliet(nnsigma,order,naxis,1).rows(border,h - 1 + border));
|
|
case 'z' :
|
|
return draw_image(get_resize(w,h,d + 2*border,s,0,boundary_conditions,0,0,0.5).
|
|
vanvliet(nnsigma,order,naxis,1).slices(border,d - 1 + border));
|
|
default :
|
|
return draw_image(get_resize(w,h,d,s + 2*border,0,boundary_conditions,0,0,0,0.5).
|
|
vanvliet(nnsigma,order,naxis,1).channels(border,d - 1 + border));
|
|
}
|
|
}
|
|
|
|
const double
|
|
m0 = 1.16680, m1 = 1.10783, m2 = 1.40586,
|
|
m1sq = m1 * m1, m2sq = m2 * m2,
|
|
q = (nnsigma<3.556?-0.2568 + 0.5784*nnsigma + 0.0561*nnsigma*nnsigma:2.5091 + 0.9804*(nnsigma - 3.556)),
|
|
qsq = q * q,
|
|
scale = (m0 + q) * (m1sq + m2sq + 2 * m1 * q + qsq),
|
|
b1 = -q * (2 * m0 * m1 + m1sq + m2sq + (2 * m0 + 4 * m1) * q + 3 * qsq) / scale,
|
|
b2 = qsq * (m0 + 2 * m1 + 3 * q) / scale,
|
|
b3 = -qsq * q / scale,
|
|
B = ( m0 * (m1sq + m2sq) ) / scale;
|
|
double filter[4];
|
|
filter[0] = B; filter[1] = -b1; filter[2] = -b2; filter[3] = -b3;
|
|
switch (naxis) {
|
|
case 'x' : {
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 &&
|
|
_height*_depth*_spectrum>=16))
|
|
cimg_forYZC(*this,y,z,c)
|
|
_cimg_recursive_apply(data(0,y,z,c),filter,_width,1U,order,boundary_conditions);
|
|
} break;
|
|
case 'y' : {
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 &&
|
|
_height*_depth*_spectrum>=16))
|
|
cimg_forXZC(*this,x,z,c)
|
|
_cimg_recursive_apply(data(x,0,z,c),filter,_height,(ulongT)_width,order,boundary_conditions);
|
|
} break;
|
|
case 'z' : {
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 &&
|
|
_height*_depth*_spectrum>=16))
|
|
cimg_forXYC(*this,x,y,c)
|
|
_cimg_recursive_apply(data(x,y,0,c),filter,_depth,(ulongT)_width*_height,
|
|
order,boundary_conditions);
|
|
} break;
|
|
default : {
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 &&
|
|
_height*_depth*_spectrum>=16))
|
|
cimg_forXYZ(*this,x,y,z)
|
|
_cimg_recursive_apply(data(x,y,z,0),filter,_spectrum,(ulongT)_width*_height*_depth,
|
|
order,boundary_conditions);
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Blur image using Van Vliet recursive Gaussian filter. \newinstance.
|
|
CImg<Tfloat> get_vanvliet(const float sigma, const unsigned int order, const char axis='x',
|
|
const unsigned int boundary_conditions=1) const {
|
|
return CImg<Tfloat>(*this,false).vanvliet(sigma,order,axis,boundary_conditions);
|
|
}
|
|
|
|
//! Blur image.
|
|
/**
|
|
\param sigma_x Standard deviation of the blur, along the X-axis.
|
|
\param sigma_y Standard deviation of the blur, along the Y-axis.
|
|
\param sigma_z Standard deviation of the blur, along the Z-axis.
|
|
\param boundary_conditions Boundary conditions.
|
|
Can be <tt>{ 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }</tt>.
|
|
\param is_gaussian Tells if the blur uses a gaussian (\c true) or quasi-gaussian (\c false) kernel.
|
|
\note
|
|
- The blur is computed as a 0-order Vanvliet (gaussian) or Deriche filter (quasi-gaussian).
|
|
- This is a recursive algorithm, not depending on the values of the standard deviations.
|
|
\see deriche(), vanvliet().
|
|
**/
|
|
CImg<T>& blur(const float sigma_x, const float sigma_y, const float sigma_z,
|
|
const unsigned int boundary_conditions=1, const bool is_gaussian=true) {
|
|
if (is_empty()) return *this;
|
|
if (is_gaussian) {
|
|
if (_width>1) vanvliet(sigma_x,0,'x',boundary_conditions);
|
|
if (_height>1) vanvliet(sigma_y,0,'y',boundary_conditions);
|
|
if (_depth>1) vanvliet(sigma_z,0,'z',boundary_conditions);
|
|
} else {
|
|
if (_width>1) deriche(sigma_x,0,'x',boundary_conditions);
|
|
if (_height>1) deriche(sigma_y,0,'y',boundary_conditions);
|
|
if (_depth>1) deriche(sigma_z,0,'z',boundary_conditions);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Blur image \newinstance.
|
|
CImg<Tfloat> get_blur(const float sigma_x, const float sigma_y, const float sigma_z,
|
|
const unsigned int boundary_conditions=1, const bool is_gaussian=true) const {
|
|
return CImg<Tfloat>(*this,false).blur(sigma_x,sigma_y,sigma_z,boundary_conditions,is_gaussian);
|
|
}
|
|
|
|
//! Blur image isotropically.
|
|
/**
|
|
\param sigma Standard deviation of the blur.
|
|
\param boundary_conditions Boundary conditions.
|
|
Can be <tt>{ 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }</tt>.a
|
|
\param is_gaussian Use a gaussian kernel (VanVliet) is set, a quasi-gaussian (Deriche) otherwise.
|
|
\see deriche(), vanvliet().
|
|
**/
|
|
CImg<T>& blur(const float sigma, const unsigned int boundary_conditions=1, const bool is_gaussian=true) {
|
|
const float nsigma = sigma>=0?sigma:-sigma*cimg::max(_width,_height,_depth)/100;
|
|
return blur(nsigma,nsigma,nsigma,boundary_conditions,is_gaussian);
|
|
}
|
|
|
|
//! Blur image isotropically \newinstance.
|
|
CImg<Tfloat> get_blur(const float sigma, const unsigned int boundary_conditions=1,
|
|
const bool is_gaussian=true) const {
|
|
return CImg<Tfloat>(*this,false).blur(sigma,boundary_conditions,is_gaussian);
|
|
}
|
|
|
|
//! Blur image anisotropically, directed by a field of diffusion tensors.
|
|
/**
|
|
\param G Field of square roots of diffusion tensors/vectors used to drive the smoothing.
|
|
\param amplitude Amplitude of the smoothing.
|
|
\param dl Spatial discretization.
|
|
\param da Angular discretization.
|
|
\param gauss_prec Precision of the diffusion process.
|
|
\param interpolation_type Interpolation scheme.
|
|
Can be <tt>{ 0=nearest-neighbor | 1=linear | 2=Runge-Kutta }</tt>.
|
|
\param is_fast_approx Tells if a fast approximation of the gaussian function is used or not.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& blur_anisotropic(const CImg<t>& G,
|
|
const float amplitude=60, const float dl=0.8f, const float da=30,
|
|
const float gauss_prec=2, const unsigned int interpolation_type=0,
|
|
const bool is_fast_approx=1) {
|
|
|
|
// Check arguments and init variables
|
|
if (!is_sameXYZ(G) || (G._spectrum!=3 && G._spectrum!=6))
|
|
throw CImgArgumentException(_cimg_instance
|
|
"blur_anisotropic(): Invalid specified diffusion tensor field (%u,%u,%u,%u,%p).",
|
|
cimg_instance,
|
|
G._width,G._height,G._depth,G._spectrum,G._data);
|
|
if (is_empty() || dl<0) return *this;
|
|
const float namplitude = amplitude>=0?amplitude:-amplitude*cimg::max(_width,_height,_depth)/100;
|
|
unsigned int iamplitude = cimg::round(namplitude);
|
|
const bool is_3d = (G._spectrum==6);
|
|
T val_min, val_max = max_min(val_min);
|
|
_cimg_abort_init_openmp;
|
|
cimg_abort_init;
|
|
|
|
if (da<=0) { // Iterated oriented Laplacians
|
|
CImg<Tfloat> velocity(_width,_height,_depth,_spectrum);
|
|
for (unsigned int iteration = 0; iteration<iamplitude; ++iteration) {
|
|
Tfloat *ptrd = velocity._data, veloc_max = 0;
|
|
if (is_3d) // 3D version
|
|
cimg_forC(*this,c) {
|
|
cimg_abort_test;
|
|
CImg_3x3x3(I,Tfloat);
|
|
cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) {
|
|
const Tfloat
|
|
ixx = Incc + Ipcc - 2*Iccc,
|
|
ixy = (Innc + Ippc - Inpc - Ipnc)/4,
|
|
ixz = (Incn + Ipcp - Incp - Ipcn)/4,
|
|
iyy = Icnc + Icpc - 2*Iccc,
|
|
iyz = (Icnn + Icpp - Icnp - Icpn)/4,
|
|
izz = Iccn + Iccp - 2*Iccc,
|
|
veloc = (Tfloat)(G(x,y,z,0)*ixx + 2*G(x,y,z,1)*ixy + 2*G(x,y,z,2)*ixz +
|
|
G(x,y,z,3)*iyy + 2*G(x,y,z,4)*iyz + G(x,y,z,5)*izz);
|
|
*(ptrd++) = veloc;
|
|
if (veloc>veloc_max) veloc_max = veloc; else if (-veloc>veloc_max) veloc_max = -veloc;
|
|
}
|
|
}
|
|
else // 2D version
|
|
cimg_forZC(*this,z,c) {
|
|
cimg_abort_test;
|
|
CImg_3x3(I,Tfloat);
|
|
cimg_for3x3(*this,x,y,z,c,I,Tfloat) {
|
|
const Tfloat
|
|
ixx = Inc + Ipc - 2*Icc,
|
|
ixy = (Inn + Ipp - Inp - Ipn)/4,
|
|
iyy = Icn + Icp - 2*Icc,
|
|
veloc = (Tfloat)(G(x,y,0,0)*ixx + 2*G(x,y,0,1)*ixy + G(x,y,0,2)*iyy);
|
|
*(ptrd++) = veloc;
|
|
if (veloc>veloc_max) veloc_max = veloc; else if (-veloc>veloc_max) veloc_max = -veloc;
|
|
}
|
|
}
|
|
if (veloc_max>0) *this+=(velocity*=dl/veloc_max);
|
|
}
|
|
} else { // LIC-based smoothing
|
|
const ulongT whd = (ulongT)_width*_height*_depth;
|
|
const float sqrt2amplitude = (float)std::sqrt(2*namplitude);
|
|
const int dx1 = width() - 1, dy1 = height() - 1, dz1 = depth() - 1;
|
|
CImg<Tfloat> res(_width,_height,_depth,_spectrum,0), W(_width,_height,_depth,is_3d?4:3), val(_spectrum,1,1,1,0);
|
|
int N = 0;
|
|
if (is_3d) { // 3D version
|
|
for (float phi = cimg::mod(180.f,da)/2.f; phi<=180; phi+=da) {
|
|
const float phir = (float)(phi*cimg::PI/180), datmp = (float)(da/std::cos(phir)),
|
|
da2 = datmp<1?360.f:datmp;
|
|
for (float theta = 0; theta<360; (theta+=da2),++N) {
|
|
const float
|
|
thetar = (float)(theta*cimg::PI/180),
|
|
vx = (float)(std::cos(thetar)*std::cos(phir)),
|
|
vy = (float)(std::sin(thetar)*std::cos(phir)),
|
|
vz = (float)std::sin(phir);
|
|
const t
|
|
*pa = G.data(0,0,0,0), *pb = G.data(0,0,0,1), *pc = G.data(0,0,0,2),
|
|
*pd = G.data(0,0,0,3), *pe = G.data(0,0,0,4), *pf = G.data(0,0,0,5);
|
|
Tfloat *pd0 = W.data(0,0,0,0), *pd1 = W.data(0,0,0,1), *pd2 = W.data(0,0,0,2), *pd3 = W.data(0,0,0,3);
|
|
cimg_forXYZ(G,xg,yg,zg) {
|
|
const t a = *(pa++), b = *(pb++), c = *(pc++), d = *(pd++), e = *(pe++), f = *(pf++);
|
|
const float
|
|
u = (float)(a*vx + b*vy + c*vz),
|
|
v = (float)(b*vx + d*vy + e*vz),
|
|
w = (float)(c*vx + e*vy + f*vz),
|
|
n = 1e-5f + cimg::hypot(u,v,w),
|
|
dln = dl/n;
|
|
*(pd0++) = (Tfloat)(u*dln);
|
|
*(pd1++) = (Tfloat)(v*dln);
|
|
*(pd2++) = (Tfloat)(w*dln);
|
|
*(pd3++) = (Tfloat)n;
|
|
}
|
|
|
|
cimg_abort_test;
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2)
|
|
cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && _height*_depth>=2)
|
|
firstprivate(val))
|
|
cimg_forYZ(*this,y,z) _cimg_abort_try_openmp2 {
|
|
cimg_abort_test2;
|
|
cimg_forX(*this,x) {
|
|
val.fill(0);
|
|
const float
|
|
n = (float)W(x,y,z,3),
|
|
fsigma = (float)(n*sqrt2amplitude),
|
|
fsigma2 = 2*fsigma*fsigma,
|
|
length = gauss_prec*fsigma;
|
|
float
|
|
S = 0,
|
|
X = (float)x,
|
|
Y = (float)y,
|
|
Z = (float)z;
|
|
switch (interpolation_type) {
|
|
case 0 : { // Nearest neighbor
|
|
for (float l = 0; l<length && X>=0 && X<=dx1 && Y>=0 && Y<=dy1 && Z>=0 && Z<=dz1; l+=dl) {
|
|
const int
|
|
cx = (int)(X + 0.5f),
|
|
cy = (int)(Y + 0.5f),
|
|
cz = (int)(Z + 0.5f);
|
|
const float
|
|
u = (float)W(cx,cy,cz,0),
|
|
v = (float)W(cx,cy,cz,1),
|
|
w = (float)W(cx,cy,cz,2);
|
|
if (is_fast_approx) { cimg_forC(*this,c) val[c]+=(Tfloat)(*this)(cx,cy,cz,c); ++S; }
|
|
else {
|
|
const float coef = (float)std::exp(-l*l/fsigma2);
|
|
cimg_forC(*this,c) val[c]+=(Tfloat)(coef*(*this)(cx,cy,cz,c));
|
|
S+=coef;
|
|
}
|
|
X+=u; Y+=v; Z+=w;
|
|
}
|
|
} break;
|
|
case 1 : { // Linear interpolation
|
|
for (float l = 0; l<length && X>=0 && X<=dx1 && Y>=0 && Y<=dy1 && Z>=0 && Z<=dz1; l+=dl) {
|
|
const float
|
|
u = (float)(W._linear_atXYZ(X,Y,Z,0)),
|
|
v = (float)(W._linear_atXYZ(X,Y,Z,1)),
|
|
w = (float)(W._linear_atXYZ(X,Y,Z,2));
|
|
if (is_fast_approx) { cimg_forC(*this,c) val[c]+=(Tfloat)_linear_atXYZ(X,Y,Z,c); ++S; }
|
|
else {
|
|
const float coef = (float)std::exp(-l*l/fsigma2);
|
|
cimg_forC(*this,c) val[c]+=(Tfloat)(coef*_linear_atXYZ(X,Y,Z,c));
|
|
S+=coef;
|
|
}
|
|
X+=u; Y+=v; Z+=w;
|
|
}
|
|
} break;
|
|
default : { // 2nd order Runge Kutta
|
|
for (float l = 0; l<length && X>=0 && X<=dx1 && Y>=0 && Y<=dy1 && Z>=0 && Z<=dz1; l+=dl) {
|
|
const float
|
|
u0 = (float)(0.5f*W._linear_atXYZ(X,Y,Z,0)),
|
|
v0 = (float)(0.5f*W._linear_atXYZ(X,Y,Z,1)),
|
|
w0 = (float)(0.5f*W._linear_atXYZ(X,Y,Z,2)),
|
|
u = (float)(W._linear_atXYZ(X + u0,Y + v0,Z + w0,0)),
|
|
v = (float)(W._linear_atXYZ(X + u0,Y + v0,Z + w0,1)),
|
|
w = (float)(W._linear_atXYZ(X + u0,Y + v0,Z + w0,2));
|
|
if (is_fast_approx) { cimg_forC(*this,c) val[c]+=(Tfloat)_linear_atXYZ(X,Y,Z,c); ++S; }
|
|
else {
|
|
const float coef = (float)std::exp(-l*l/fsigma2);
|
|
cimg_forC(*this,c) val[c]+=(Tfloat)(coef*_linear_atXYZ(X,Y,Z,c));
|
|
S+=coef;
|
|
}
|
|
X+=u; Y+=v; Z+=w;
|
|
}
|
|
} break;
|
|
}
|
|
Tfloat *ptrd = res.data(x,y,z);
|
|
if (S>0) cimg_forC(res,c) { *ptrd+=val[c]/S; ptrd+=whd; }
|
|
else cimg_forC(res,c) { *ptrd+=(Tfloat)((*this)(x,y,z,c)); ptrd+=whd; }
|
|
}
|
|
} _cimg_abort_catch_openmp2
|
|
}
|
|
}
|
|
} else { // 2D LIC algorithm
|
|
for (float theta = cimg::mod(360.f,da)/2.f; theta<360; (theta+=da),++N) {
|
|
const float thetar = (float)(theta*cimg::PI/180),
|
|
vx = (float)(std::cos(thetar)), vy = (float)(std::sin(thetar));
|
|
const t *pa = G.data(0,0,0,0), *pb = G.data(0,0,0,1), *pc = G.data(0,0,0,2);
|
|
Tfloat *pd0 = W.data(0,0,0,0), *pd1 = W.data(0,0,0,1), *pd2 = W.data(0,0,0,2);
|
|
cimg_forXY(G,xg,yg) {
|
|
const t a = *(pa++), b = *(pb++), c = *(pc++);
|
|
const float
|
|
u = (float)(a*vx + b*vy),
|
|
v = (float)(b*vx + c*vy),
|
|
n = std::max(1e-5f,cimg::hypot(u,v)),
|
|
dln = dl/n;
|
|
*(pd0++) = (Tfloat)(u*dln);
|
|
*(pd1++) = (Tfloat)(v*dln);
|
|
*(pd2++) = (Tfloat)n;
|
|
}
|
|
|
|
cimg_abort_test;
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && _height>=2)
|
|
firstprivate(val))
|
|
cimg_forY(*this,y) _cimg_abort_try_openmp2 {
|
|
cimg_abort_test2;
|
|
cimg_forX(*this,x) {
|
|
val.fill(0);
|
|
const float
|
|
n = (float)W(x,y,0,2),
|
|
fsigma = (float)(n*sqrt2amplitude),
|
|
fsigma2 = 2*fsigma*fsigma,
|
|
length = gauss_prec*fsigma;
|
|
float
|
|
S = 0,
|
|
X = (float)x,
|
|
Y = (float)y;
|
|
switch (interpolation_type) {
|
|
case 0 : { // Nearest-neighbor
|
|
for (float l = 0; l<length && X>=0 && X<=dx1 && Y>=0 && Y<=dy1; l+=dl) {
|
|
const int
|
|
cx = (int)(X + 0.5f),
|
|
cy = (int)(Y + 0.5f);
|
|
const float
|
|
u = (float)W(cx,cy,0,0),
|
|
v = (float)W(cx,cy,0,1);
|
|
if (is_fast_approx) { cimg_forC(*this,c) val[c]+=(Tfloat)(*this)(cx,cy,0,c); ++S; }
|
|
else {
|
|
const float coef = (float)std::exp(-l*l/fsigma2);
|
|
cimg_forC(*this,c) val[c]+=(Tfloat)(coef*(*this)(cx,cy,0,c));
|
|
S+=coef;
|
|
}
|
|
X+=u; Y+=v;
|
|
}
|
|
} break;
|
|
case 1 : { // Linear interpolation
|
|
for (float l = 0; l<length && X>=0 && X<=dx1 && Y>=0 && Y<=dy1; l+=dl) {
|
|
const float
|
|
u = (float)(W._linear_atXY(X,Y,0,0)),
|
|
v = (float)(W._linear_atXY(X,Y,0,1));
|
|
if (is_fast_approx) { cimg_forC(*this,c) val[c]+=(Tfloat)_linear_atXY(X,Y,0,c); ++S; }
|
|
else {
|
|
const float coef = (float)std::exp(-l*l/fsigma2);
|
|
cimg_forC(*this,c) val[c]+=(Tfloat)(coef*_linear_atXY(X,Y,0,c));
|
|
S+=coef;
|
|
}
|
|
X+=u; Y+=v;
|
|
}
|
|
} break;
|
|
default : { // 2nd-order Runge-kutta interpolation
|
|
for (float l = 0; l<length && X>=0 && X<=dx1 && Y>=0 && Y<=dy1; l+=dl) {
|
|
const float
|
|
u0 = (float)(0.5f*W._linear_atXY(X,Y,0,0)),
|
|
v0 = (float)(0.5f*W._linear_atXY(X,Y,0,1)),
|
|
u = (float)(W._linear_atXY(X + u0,Y + v0,0,0)),
|
|
v = (float)(W._linear_atXY(X + u0,Y + v0,0,1));
|
|
if (is_fast_approx) { cimg_forC(*this,c) val[c]+=(Tfloat)_linear_atXY(X,Y,0,c); ++S; }
|
|
else {
|
|
const float coef = (float)std::exp(-l*l/fsigma2);
|
|
cimg_forC(*this,c) val[c]+=(Tfloat)(coef*_linear_atXY(X,Y,0,c));
|
|
S+=coef;
|
|
}
|
|
X+=u; Y+=v;
|
|
}
|
|
}
|
|
}
|
|
Tfloat *ptrd = res.data(x,y);
|
|
if (S>0) cimg_forC(res,c) { *ptrd+=val[c]/S; ptrd+=whd; }
|
|
else cimg_forC(res,c) { *ptrd+=(Tfloat)((*this)(x,y,0,c)); ptrd+=whd; }
|
|
}
|
|
} _cimg_abort_catch_openmp2
|
|
}
|
|
}
|
|
const Tfloat *ptrs = res._data;
|
|
cimg_for(*this,ptrd,T) {
|
|
const Tfloat _val = *(ptrs++)/N;
|
|
*ptrd = _val<val_min?val_min:(_val>val_max?val_max:(T)_val);
|
|
}
|
|
}
|
|
cimg_abort_test;
|
|
return *this;
|
|
}
|
|
|
|
//! Blur image anisotropically, directed by a field of diffusion tensors \newinstance.
|
|
template<typename t>
|
|
CImg<Tfloat> get_blur_anisotropic(const CImg<t>& G,
|
|
const float amplitude=60, const float dl=0.8f, const float da=30,
|
|
const float gauss_prec=2, const unsigned int interpolation_type=0,
|
|
const bool is_fast_approx=true) const {
|
|
return CImg<Tfloat>(*this,false).blur_anisotropic(G,amplitude,dl,da,gauss_prec,interpolation_type,is_fast_approx);
|
|
}
|
|
|
|
//! Blur image anisotropically, in an edge-preserving way.
|
|
/**
|
|
\param amplitude Amplitude of the smoothing.
|
|
\param sharpness Sharpness.
|
|
\param anisotropy Anisotropy.
|
|
\param alpha Standard deviation of the gradient blur.
|
|
\param sigma Standard deviation of the structure tensor blur.
|
|
\param dl Spatial discretization.
|
|
\param da Angular discretization.
|
|
\param gauss_prec Precision of the diffusion process.
|
|
\param interpolation_type Interpolation scheme.
|
|
Can be <tt>{ 0=nearest-neighbor | 1=linear | 2=Runge-Kutta }</tt>.
|
|
\param is_fast_approx Tells if a fast approximation of the gaussian function is used or not.
|
|
**/
|
|
CImg<T>& blur_anisotropic(const float amplitude, const float sharpness=0.7f, const float anisotropy=0.6f,
|
|
const float alpha=0.6f, const float sigma=1.1f, const float dl=0.8f, const float da=30,
|
|
const float gauss_prec=2, const unsigned int interpolation_type=0,
|
|
const bool is_fast_approx=true) {
|
|
const float nalpha = alpha>=0?alpha:-alpha*cimg::max(_width,_height,_depth)/100;
|
|
const float nsigma = sigma>=0?sigma:-sigma*cimg::max(_width,_height,_depth)/100;
|
|
return blur_anisotropic(get_diffusion_tensors(sharpness,anisotropy,nalpha,nsigma,interpolation_type!=3),
|
|
amplitude,dl,da,gauss_prec,interpolation_type,is_fast_approx);
|
|
}
|
|
|
|
//! Blur image anisotropically, in an edge-preserving way \newinstance.
|
|
CImg<Tfloat> get_blur_anisotropic(const float amplitude, const float sharpness=0.7f, const float anisotropy=0.6f,
|
|
const float alpha=0.6f, const float sigma=1.1f, const float dl=0.8f,
|
|
const float da=30, const float gauss_prec=2,
|
|
const unsigned int interpolation_type=0,
|
|
const bool is_fast_approx=true) const {
|
|
return CImg<Tfloat>(*this,false).blur_anisotropic(amplitude,sharpness,anisotropy,alpha,sigma,dl,da,gauss_prec,
|
|
interpolation_type,is_fast_approx);
|
|
}
|
|
|
|
//! Blur image, with the joint bilateral filter.
|
|
/**
|
|
\param guide Image used to model the smoothing weights.
|
|
\param sigma_x Amount of blur along the X-axis.
|
|
\param sigma_y Amount of blur along the Y-axis.
|
|
\param sigma_z Amount of blur along the Z-axis.
|
|
\param sigma_r Amount of blur along the value axis.
|
|
\param sampling_x Amount of downsampling along the X-axis used for the approximation.
|
|
Defaults (0) to sigma_x.
|
|
\param sampling_y Amount of downsampling along the Y-axis used for the approximation.
|
|
Defaults (0) to sigma_y.
|
|
\param sampling_z Amount of downsampling along the Z-axis used for the approximation.
|
|
Defaults (0) to sigma_z.
|
|
\param sampling_r Amount of downsampling along the value axis used for the approximation.
|
|
Defaults (0) to sigma_r.
|
|
\note This algorithm uses the optimisation technique proposed by S. Paris and F. Durand, in ECCV'2006
|
|
(extended for 3D volumetric images).
|
|
It is based on the reference implementation http://people.csail.mit.edu/jiawen/software/bilateralFilter.m
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& blur_bilateral(const CImg<t>& guide,
|
|
const float sigma_x, const float sigma_y,
|
|
const float sigma_z, const float sigma_r,
|
|
const float sampling_x, const float sampling_y,
|
|
const float sampling_z, const float sampling_r) {
|
|
if (!is_sameXYZ(guide))
|
|
throw CImgArgumentException(_cimg_instance
|
|
"blur_bilateral(): Invalid size for specified guide image (%u,%u,%u,%u,%p).",
|
|
cimg_instance,
|
|
guide._width,guide._height,guide._depth,guide._spectrum,guide._data);
|
|
if (is_empty() || (!sigma_x && !sigma_y && !sigma_z)) return *this;
|
|
T edge_min, edge_max = guide.max_min(edge_min);
|
|
if (edge_min==edge_max) return blur(sigma_x,sigma_y,sigma_z);
|
|
const float
|
|
edge_delta = (float)(edge_max - edge_min),
|
|
_sigma_x = sigma_x>=0?sigma_x:-sigma_x*_width/100,
|
|
_sigma_y = sigma_y>=0?sigma_y:-sigma_y*_height/100,
|
|
_sigma_z = sigma_z>=0?sigma_z:-sigma_z*_depth/100,
|
|
_sigma_r = sigma_r>=0?sigma_r:-sigma_r*edge_delta/100,
|
|
_sampling_x = sampling_x?sampling_x:std::max(_sigma_x,1.f),
|
|
_sampling_y = sampling_y?sampling_y:std::max(_sigma_y,1.f),
|
|
_sampling_z = sampling_z?sampling_z:std::max(_sigma_z,1.f),
|
|
_sampling_r = sampling_r?sampling_r:std::max(_sigma_r,edge_delta/256),
|
|
derived_sigma_x = _sigma_x / _sampling_x,
|
|
derived_sigma_y = _sigma_y / _sampling_y,
|
|
derived_sigma_z = _sigma_z / _sampling_z,
|
|
derived_sigma_r = _sigma_r / _sampling_r;
|
|
const int
|
|
padding_x = (int)(2*derived_sigma_x) + 1,
|
|
padding_y = (int)(2*derived_sigma_y) + 1,
|
|
padding_z = (int)(2*derived_sigma_z) + 1,
|
|
padding_r = (int)(2*derived_sigma_r) + 1;
|
|
const unsigned int
|
|
bx = (unsigned int)((_width - 1)/_sampling_x + 1 + 2*padding_x),
|
|
by = (unsigned int)((_height - 1)/_sampling_y + 1 + 2*padding_y),
|
|
bz = (unsigned int)((_depth - 1)/_sampling_z + 1 + 2*padding_z),
|
|
br = (unsigned int)(edge_delta/_sampling_r + 1 + 2*padding_r);
|
|
if (bx>0 || by>0 || bz>0 || br>0) {
|
|
const bool is_3d = (_depth>1);
|
|
if (is_3d) { // 3D version of the algorithm
|
|
CImg<floatT> bgrid(bx,by,bz,br), bgridw(bx,by,bz,br);
|
|
cimg_forC(*this,c) {
|
|
const CImg<t> _guide = guide.get_shared_channel(c%guide._spectrum);
|
|
bgrid.fill(0); bgridw.fill(0);
|
|
cimg_forXYZ(*this,x,y,z) {
|
|
const T val = (*this)(x,y,z,c);
|
|
const float edge = (float)_guide(x,y,z);
|
|
const int
|
|
X = (int)cimg::round(x/_sampling_x) + padding_x,
|
|
Y = (int)cimg::round(y/_sampling_y) + padding_y,
|
|
Z = (int)cimg::round(z/_sampling_z) + padding_z,
|
|
R = (int)cimg::round((edge - edge_min)/_sampling_r) + padding_r;
|
|
bgrid(X,Y,Z,R)+=(float)val;
|
|
bgridw(X,Y,Z,R)+=1;
|
|
}
|
|
bgrid.blur(derived_sigma_x,derived_sigma_y,derived_sigma_z,true).deriche(derived_sigma_r,0,'c',false);
|
|
bgridw.blur(derived_sigma_x,derived_sigma_y,derived_sigma_z,true).deriche(derived_sigma_r,0,'c',false);
|
|
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(size(),4096))
|
|
cimg_forXYZ(*this,x,y,z) {
|
|
const float edge = (float)_guide(x,y,z);
|
|
const float
|
|
X = x/_sampling_x + padding_x,
|
|
Y = y/_sampling_y + padding_y,
|
|
Z = z/_sampling_z + padding_z,
|
|
R = (edge - edge_min)/_sampling_r + padding_r;
|
|
const float bval0 = bgrid._linear_atXYZC(X,Y,Z,R), bval1 = bgridw._linear_atXYZC(X,Y,Z,R);
|
|
(*this)(x,y,z,c) = (T)(bval0/bval1);
|
|
}
|
|
}
|
|
} else { // 2D version of the algorithm
|
|
CImg<floatT> bgrid(bx,by,br,2);
|
|
cimg_forC(*this,c) {
|
|
const CImg<t> _guide = guide.get_shared_channel(c%guide._spectrum);
|
|
bgrid.fill(0);
|
|
cimg_forXY(*this,x,y) {
|
|
const T val = (*this)(x,y,c);
|
|
const float edge = (float)_guide(x,y);
|
|
const int
|
|
X = (int)cimg::round(x/_sampling_x) + padding_x,
|
|
Y = (int)cimg::round(y/_sampling_y) + padding_y,
|
|
R = (int)cimg::round((edge - edge_min)/_sampling_r) + padding_r;
|
|
bgrid(X,Y,R,0)+=(float)val;
|
|
bgrid(X,Y,R,1)+=1;
|
|
}
|
|
bgrid.blur(derived_sigma_x,derived_sigma_y,0,true).blur(0,0,derived_sigma_r,false);
|
|
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(size(),4096))
|
|
cimg_forXY(*this,x,y) {
|
|
const float edge = (float)_guide(x,y);
|
|
const float
|
|
X = x/_sampling_x + padding_x,
|
|
Y = y/_sampling_y + padding_y,
|
|
R = (edge - edge_min)/_sampling_r + padding_r;
|
|
const float bval0 = bgrid._linear_atXYZ(X,Y,R,0), bval1 = bgrid._linear_atXYZ(X,Y,R,1);
|
|
(*this)(x,y,c) = (T)(bval0/bval1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Blur image, with the joint bilateral filter \newinstance.
|
|
template<typename t>
|
|
CImg<Tfloat> get_blur_bilateral(const CImg<t>& guide,
|
|
const float sigma_x, const float sigma_y,
|
|
const float sigma_z, const float sigma_r,
|
|
const float sampling_x, const float sampling_y,
|
|
const float sampling_z, const float sampling_r) const {
|
|
return CImg<Tfloat>(*this,false).blur_bilateral(guide,sigma_x,sigma_y,sigma_z,sigma_r,
|
|
sampling_x,sampling_y,sampling_z,sampling_r);
|
|
}
|
|
|
|
//! Blur image using the joint bilateral filter.
|
|
/**
|
|
\param guide Image used to model the smoothing weights.
|
|
\param sigma_s Amount of blur along the XYZ-axes.
|
|
\param sigma_r Amount of blur along the value axis.
|
|
\param sampling_s Amount of downsampling along the XYZ-axes used for the approximation. Defaults to sigma_s.
|
|
\param sampling_r Amount of downsampling along the value axis used for the approximation. Defaults to sigma_r.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& blur_bilateral(const CImg<t>& guide,
|
|
const float sigma_s, const float sigma_r,
|
|
const float sampling_s=0, const float sampling_r=0) {
|
|
const float _sigma_s = sigma_s>=0?sigma_s:-sigma_s*cimg::max(_width,_height,_depth)/100;
|
|
return blur_bilateral(guide,_sigma_s,_sigma_s,_sigma_s,sigma_r,sampling_s,sampling_s,sampling_s,sampling_r);
|
|
}
|
|
|
|
//! Blur image using the bilateral filter \newinstance.
|
|
template<typename t>
|
|
CImg<Tfloat> get_blur_bilateral(const CImg<t>& guide,
|
|
const float sigma_s, const float sigma_r,
|
|
const float sampling_s=0, const float sampling_r=0) const {
|
|
return CImg<Tfloat>(*this,false).blur_bilateral(guide,sigma_s,sigma_r,sampling_s,sampling_r);
|
|
}
|
|
|
|
// [internal] Apply a box filter (used by CImg<T>::boxfilter() and CImg<T>::blur_box()).
|
|
/*
|
|
\param ptr the pointer of the data
|
|
\param N size of the data
|
|
\param boxsize Size of the box filter (can be subpixel).
|
|
\param off the offset between two data point
|
|
\param order the order of the filter 0 (smoothing), 1st derivative and 2nd derivative.
|
|
\param boundary_conditions Boundary conditions.
|
|
Can be <tt>{ 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }</tt>.
|
|
*/
|
|
static void _cimg_blur_box_apply(T *ptr, const float boxsize, const int N, const ulongT off,
|
|
const int order, const unsigned int boundary_conditions,
|
|
const unsigned int nb_iter) {
|
|
const int nboundary_conditions = boundary_conditions>1 && boxsize<=3?1:boundary_conditions;
|
|
|
|
// Smooth.
|
|
if (boxsize>1 && nb_iter) {
|
|
const int w2 = (int)(boxsize - 1)/2;
|
|
const unsigned int winsize = 2*w2 + 1U;
|
|
const double frac = (boxsize - winsize)/2.;
|
|
CImg<T> win(winsize);
|
|
for (unsigned int iter = 0; iter<nb_iter; ++iter) {
|
|
Tdouble sum = 0; // window sum
|
|
for (int x = -w2; x<=w2; ++x) {
|
|
win[x + w2] = __cimg_blur_box_apply(ptr,N,off,nboundary_conditions,x);
|
|
sum+=win[x + w2];
|
|
}
|
|
int ifirst = 0, ilast = 2*w2;
|
|
T
|
|
prev = __cimg_blur_box_apply(ptr,N,off,nboundary_conditions,-w2 - 1),
|
|
next = __cimg_blur_box_apply(ptr,N,off,nboundary_conditions,w2 + 1);
|
|
for (int x = 0; x < N - 1; ++x) {
|
|
const double sum2 = sum + frac * (prev + next);
|
|
ptr[x*off] = (T)(sum2/boxsize);
|
|
prev = win[ifirst];
|
|
sum-=prev;
|
|
ifirst = (int)((ifirst + 1)%winsize);
|
|
ilast = (int)((ilast + 1)%winsize);
|
|
win[ilast] = next;
|
|
sum+=next;
|
|
next = __cimg_blur_box_apply(ptr,N,off,nboundary_conditions,x + w2 + 2);
|
|
}
|
|
const double sum2 = sum + frac * (prev + next);
|
|
ptr[(N - 1)*off] = (T)(sum2/boxsize);
|
|
}
|
|
}
|
|
|
|
// Derive.
|
|
switch (order) {
|
|
case 0 :
|
|
break;
|
|
case 1 : {
|
|
Tfloat
|
|
p = __cimg_blur_box_apply(ptr,N,off,nboundary_conditions,-1),
|
|
c = __cimg_blur_box_apply(ptr,N,off,nboundary_conditions,0),
|
|
n = __cimg_blur_box_apply(ptr,N,off,nboundary_conditions,1);
|
|
for (int x = 0; x<N - 1; ++x) {
|
|
ptr[x*off] = (T)((n-p)/2.);
|
|
p = c;
|
|
c = n;
|
|
n = __cimg_blur_box_apply(ptr,N,off,nboundary_conditions,x + 2);
|
|
}
|
|
ptr[(N - 1)*off] = (T)((n-p)/2.);
|
|
} break;
|
|
case 2: {
|
|
Tfloat
|
|
p = __cimg_blur_box_apply(ptr,N,off,nboundary_conditions,-1),
|
|
c = __cimg_blur_box_apply(ptr,N,off,nboundary_conditions,0),
|
|
n = __cimg_blur_box_apply(ptr,N,off,nboundary_conditions,1);
|
|
for (int x = 0; x<N - 1; ++x) {
|
|
ptr[x*off] = (T)(n - 2*c + p);
|
|
p = c;
|
|
c = n;
|
|
n = __cimg_blur_box_apply(ptr,N,off,nboundary_conditions,x + 2);
|
|
}
|
|
ptr[(N - 1)*off] = (T)(n - 2*c + p);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
static T __cimg_blur_box_apply(T *ptr, const int N, const ulongT off,
|
|
const unsigned int boundary_conditions, const int x) {
|
|
switch (boundary_conditions) {
|
|
case 0 : // Dirichlet
|
|
return x<0 || x>=N?(T)0:ptr[x*off];
|
|
case 1 : { // Neumann
|
|
const int nx = x<0?0:x>=N?N - 1:x;
|
|
return ptr[nx*off];
|
|
}
|
|
case 2 : { // Periodic
|
|
const int nx = cimg::mod(x,N);
|
|
return ptr[nx*off];
|
|
}
|
|
default : { // Mirror
|
|
const int
|
|
N2 = 2*N,
|
|
tx = cimg::mod(x,N2),
|
|
nx = tx<N?tx:N2 - tx - 1;
|
|
return ptr[nx*off];
|
|
}
|
|
}
|
|
return (T)0;
|
|
}
|
|
|
|
// Apply box filter of order 0,1,2.
|
|
/**
|
|
\param boxsize Size of the box window (can be subpixel)
|
|
\param order the order of the filter 0,1 or 2.
|
|
\param axis Axis along which the filter is computed. Can be <tt>{ 'x' | 'y' | 'z' | 'c' }</tt>.
|
|
\param boundary_conditions Boundary conditions.
|
|
Can be <tt>{ 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }</tt>.
|
|
\param nb_iter Number of filter iterations.
|
|
**/
|
|
CImg<T>& boxfilter(const float boxsize, const int order, const char axis='x',
|
|
const unsigned int boundary_conditions=1,
|
|
const unsigned int nb_iter=1) {
|
|
const char naxis = cimg::lowercase(axis);
|
|
const float nboxsize = boxsize>=0?boxsize:-boxsize*
|
|
(naxis=='x'?_width:naxis=='y'?_height:naxis=='z'?_depth:_spectrum)/100;
|
|
if (is_empty() || !nboxsize || (nboxsize<=1 && !order)) return *this;
|
|
switch (naxis) {
|
|
case 'x' : {
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 &&
|
|
_height*_depth*_spectrum>=16))
|
|
cimg_forYZC(*this,y,z,c)
|
|
_cimg_blur_box_apply(data(0,y,z,c),nboxsize,_width,1U,order,boundary_conditions,nb_iter);
|
|
} break;
|
|
case 'y' : {
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 &&
|
|
_height*_depth*_spectrum>=16))
|
|
cimg_forXZC(*this,x,z,c)
|
|
_cimg_blur_box_apply(data(x,0,z,c),nboxsize,_height,(ulongT)_width,order,boundary_conditions,nb_iter);
|
|
} break;
|
|
case 'z' : {
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 &&
|
|
_height*_depth*_spectrum>=16))
|
|
cimg_forXYC(*this,x,y,c)
|
|
_cimg_blur_box_apply(data(x,y,0,c),nboxsize,_depth,(ulongT)_width*_height,order,boundary_conditions,nb_iter);
|
|
} break;
|
|
default : {
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 &&
|
|
_height*_depth*_spectrum>=16))
|
|
cimg_forXYZ(*this,x,y,z)
|
|
_cimg_blur_box_apply(data(x,y,z,0),nboxsize,_spectrum,(ulongT)_width*_height*_depth,
|
|
order,boundary_conditions,nb_iter);
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
// Apply box filter of order 0,1 or 2 \newinstance.
|
|
CImg<Tfloat> get_boxfilter(const float boxsize, const int order, const char axis='x',
|
|
const unsigned int boundary_conditions=1,
|
|
const unsigned int nb_iter=1) const {
|
|
return CImg<Tfloat>(*this,false).boxfilter(boxsize,order,axis,boundary_conditions,nb_iter);
|
|
}
|
|
|
|
//! Blur image with a box filter.
|
|
/**
|
|
\param boxsize_x Size of the box window, along the X-axis (can be subpixel).
|
|
\param boxsize_y Size of the box window, along the Y-axis (can be subpixel).
|
|
\param boxsize_z Size of the box window, along the Z-axis (can be subpixel).
|
|
\param boundary_conditions Boundary conditions.
|
|
Can be <tt>{ false=dirichlet | true=neumann | 2=periodic | 3=mirror }</tt>.
|
|
\param nb_iter Number of filter iterations.
|
|
\note
|
|
- This is a recursive algorithm, not depending on the values of the box kernel size.
|
|
\see blur().
|
|
**/
|
|
CImg<T>& blur_box(const float boxsize_x, const float boxsize_y, const float boxsize_z,
|
|
const unsigned int boundary_conditions=1,
|
|
const unsigned int nb_iter=1) {
|
|
if (is_empty()) return *this;
|
|
if (_width>1) boxfilter(boxsize_x,0,'x',boundary_conditions,nb_iter);
|
|
if (_height>1) boxfilter(boxsize_y,0,'y',boundary_conditions,nb_iter);
|
|
if (_depth>1) boxfilter(boxsize_z,0,'z',boundary_conditions,nb_iter);
|
|
return *this;
|
|
}
|
|
|
|
//! Blur image with a box filter \newinstance.
|
|
CImg<Tfloat> get_blur_box(const float boxsize_x, const float boxsize_y, const float boxsize_z,
|
|
const unsigned int boundary_conditions=1) const {
|
|
return CImg<Tfloat>(*this,false).blur_box(boxsize_x,boxsize_y,boxsize_z,boundary_conditions);
|
|
}
|
|
|
|
//! Blur image with a box filter.
|
|
/**
|
|
\param boxsize Size of the box window (can be subpixel).
|
|
\param boundary_conditions Boundary conditions.
|
|
Can be <tt>{ 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }</tt>.a
|
|
\see deriche(), vanvliet().
|
|
**/
|
|
CImg<T>& blur_box(const float boxsize, const unsigned int boundary_conditions=1) {
|
|
const float nboxsize = boxsize>=0?boxsize:-boxsize*cimg::max(_width,_height,_depth)/100;
|
|
return blur_box(nboxsize,nboxsize,nboxsize,boundary_conditions);
|
|
}
|
|
|
|
//! Blur image with a box filter \newinstance.
|
|
CImg<Tfloat> get_blur_box(const float boxsize, const unsigned int boundary_conditions=1) const {
|
|
return CImg<Tfloat>(*this,false).blur_box(boxsize,boundary_conditions);
|
|
}
|
|
|
|
//! Blur image, with the image guided filter.
|
|
/**
|
|
\param guide Image used to guide the smoothing process.
|
|
\param radius Spatial radius. If negative, it is expressed as a percentage of the largest image size.
|
|
\param regularization Regularization parameter.
|
|
If negative, it is expressed as a percentage of the guide value range.
|
|
\note This method implements the filtering algorithm described in:
|
|
He, Kaiming; Sun, Jian; Tang, Xiaoou, "Guided Image Filtering," Pattern Analysis and Machine Intelligence,
|
|
IEEE Transactions on , vol.35, no.6, pp.1397,1409, June 2013
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& blur_guided(const CImg<t>& guide, const float radius, const float regularization) {
|
|
return get_blur_guided(guide,radius,regularization).move_to(*this);
|
|
}
|
|
|
|
//! Blur image, with the image guided filter \newinstance.
|
|
template<typename t>
|
|
CImg<Tfloat> get_blur_guided(const CImg<t>& guide, const float radius, const float regularization) const {
|
|
if (!is_sameXYZ(guide))
|
|
throw CImgArgumentException(_cimg_instance
|
|
"blur_guided(): Invalid size for specified guide image (%u,%u,%u,%u,%p).",
|
|
cimg_instance,
|
|
guide._width,guide._height,guide._depth,guide._spectrum,guide._data);
|
|
if (is_empty() || !radius) return *this;
|
|
const int _radius = radius>=0?(int)radius:(int)(-radius*cimg::max(_width,_height,_depth)/100);
|
|
float _regularization = regularization;
|
|
if (regularization<0) {
|
|
T edge_min, edge_max = guide.max_min(edge_min);
|
|
if (edge_min==edge_max) return *this;
|
|
_regularization = -regularization*(edge_max - edge_min)/100;
|
|
}
|
|
_regularization = std::max(_regularization,0.01f);
|
|
const unsigned int psize = (unsigned int)(1 + 2*_radius);
|
|
CImg<Tfloat>
|
|
mean_p = get_blur_box(psize,true),
|
|
mean_I = guide.get_blur_box(psize,true).resize(mean_p),
|
|
cov_Ip = get_mul(guide).blur_box(psize,true)-=mean_p.get_mul(mean_I),
|
|
var_I = guide.get_sqr().blur_box(psize,true)-=mean_I.get_sqr(),
|
|
&a = cov_Ip.div(var_I+=_regularization),
|
|
&b = mean_p-=a.get_mul(mean_I);
|
|
a.blur_box(psize,true);
|
|
b.blur_box(psize,true);
|
|
return a.mul(guide)+=b;
|
|
}
|
|
|
|
//! Blur image using patch-based space.
|
|
/**
|
|
\param guide Image used to model the smoothing weights.
|
|
\param sigma_s Amount of blur along the XYZ-axes.
|
|
\param sigma_r Amount of blur along the value axis.
|
|
\param patch_size Size of the patches.
|
|
\param lookup_size Size of the window to search similar patches.
|
|
\param smoothness Smoothness for the patch comparison.
|
|
\param is_fast_approx Tells if a fast approximation of the gaussian function is used or not.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& blur_patch(const CImg<t>& guide,
|
|
const float sigma_s, const float sigma_r, const unsigned int patch_size=3,
|
|
const unsigned int lookup_size=4, const float smoothness=0, const bool is_fast_approx=true) {
|
|
if (is_empty() || !patch_size || !lookup_size) return *this;
|
|
return get_blur_patch(guide,sigma_s,sigma_r,patch_size,lookup_size,smoothness,is_fast_approx).move_to(*this);
|
|
}
|
|
|
|
//! Blur image using patch-based space \newinstance.
|
|
template<typename t>
|
|
CImg<Tfloat> get_blur_patch(const CImg<t>& guide,
|
|
const float sigma_s, const float sigma_r, const unsigned int patch_size=3,
|
|
const unsigned int lookup_size=4, const float smoothness=0,
|
|
const bool is_fast_approx=true) const {
|
|
|
|
#define _cimg_blur_patch3d_fast(N) { \
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) \
|
|
cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*32 && res._height*res._depth>=4) \
|
|
firstprivate(P,Q)) \
|
|
cimg_forXYZ(res,x,y,z) _cimg_abort_try_openmp2 { \
|
|
cimg_abort_test2; \
|
|
cimg_def##N##x##N##x##N(res,x,y,z); \
|
|
tfloat *pP = P._data; cimg_forC(_guide,c) { cimg_get##N##x##N##x##N(_guide,x,y,z,c,pP,tfloat); pP+=N3; } \
|
|
const int x0 = x - rsize1, y0 = y - rsize1, z0 = z - rsize1, \
|
|
x1 = x + rsize2, y1 = y + rsize2, z1 = z + rsize2; \
|
|
tfloat sum_weights = 0; \
|
|
cimg_for_in##N##XYZ(res,x0,y0,z0,x1,y1,z1,p,q,r) \
|
|
if (cimg::abs(_guide(x,y,z,0) - _guide(p,q,r,0))<sigma_r3) { \
|
|
tfloat *pQ = Q._data; cimg_forC(_guide,c) { cimg_get##N##x##N##x##N(_guide,p,q,r,c,pQ,tfloat); pQ+=N3; } \
|
|
tfloat distance2 = 0; \
|
|
pQ = Q._data; cimg_for(P,_pP,tfloat) { const tfloat dI = *_pP - *(pQ++); distance2+=dI*dI; } \
|
|
distance2/=Pnorm; \
|
|
const tfloat dx = (tfloat)p - x, dy = (tfloat)q - y, dz = (tfloat)r - z, \
|
|
alldist = distance2 + (dx*dx + dy*dy + dz*dz)/sigma_s2, weight = alldist>3?0:1; \
|
|
sum_weights+=weight; \
|
|
cimg_forC(res,c) res(x,y,z,c)+=(Tfloat)weight*(*this)(p,q,r,c); \
|
|
} \
|
|
if (sum_weights>1e-10) cimg_forC(res,c) res(x,y,z,c)/=(Tfloat)sum_weights; \
|
|
else cimg_forC(res,c) res(x,y,z,c) = (Tfloat)((*this)(x,y,z,c)); \
|
|
} _cimg_abort_catch_openmp2 }
|
|
|
|
#define _cimg_blur_patch3d(N) { \
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) \
|
|
cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*32 && res._height*res._depth>=4) \
|
|
firstprivate(P,Q)) \
|
|
cimg_forXYZ(res,x,y,z) _cimg_abort_try_openmp2 { \
|
|
cimg_abort_test2; \
|
|
cimg_def##N##x##N##x##N(res,x,y,z); \
|
|
tfloat *pP = P._data; cimg_forC(_guide,c) { cimg_get##N##x##N##x##N(_guide,x,y,z,c,pP,tfloat); pP+=N3; } \
|
|
const int x0 = x - rsize1, y0 = y - rsize1, z0 = z - rsize1, \
|
|
x1 = x + rsize2, y1 = y + rsize2, z1 = z + rsize2; \
|
|
tfloat sum_weights = 0, weight_max = 0; \
|
|
cimg_for_in##N##XYZ(res,x0,y0,z0,x1,y1,z1,p,q,r) if (p!=x || q!=y || r!=z) { \
|
|
tfloat *pQ = Q._data; cimg_forC(_guide,c) { cimg_get##N##x##N##x##N(_guide,p,q,r,c,pQ,tfloat); pQ+=N3; } \
|
|
tfloat distance2 = 0; \
|
|
pQ = Q._data; cimg_for(P,_pP,tfloat) { const tfloat dI = *_pP - *(pQ++); distance2+=dI*dI; } \
|
|
distance2/=Pnorm; \
|
|
const tfloat dx = (tfloat)p - x, dy = (tfloat)q - y, dz = (tfloat)r - z, \
|
|
alldist = distance2 + (dx*dx + dy*dy + dz*dz)/sigma_s2, weight = std::exp(-alldist); \
|
|
if (weight>weight_max) weight_max = weight; \
|
|
sum_weights+=weight; \
|
|
cimg_forC(res,c) res(x,y,z,c)+=(Tfloat)weight*(*this)(p,q,r,c); \
|
|
} \
|
|
sum_weights+=weight_max; cimg_forC(res,c) res(x,y,z,c)+=(Tfloat)weight_max*(*this)(x,y,z,c); \
|
|
if (sum_weights>1e-10) cimg_forC(res,c) res(x,y,z,c)/=(Tfloat)sum_weights; \
|
|
else cimg_forC(res,c) res(x,y,z,c) = (Tfloat)((*this)(x,y,z,c)); \
|
|
} _cimg_abort_catch_openmp2 }
|
|
|
|
#define _cimg_blur_patch2d_fast(N) { \
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*32 && res._height>=4) \
|
|
firstprivate(P,Q)) \
|
|
cimg_forXY(res,x,y) _cimg_abort_try_openmp2 { \
|
|
cimg_abort_test2; \
|
|
cimg_def##N##x##N(res,x,y); \
|
|
tfloat *pP = P._data; cimg_forC(_guide,c) { cimg_get##N##x##N(_guide,x,y,0,c,pP,tfloat); pP+=N2; } \
|
|
const int x0 = x - rsize1, y0 = y - rsize1, x1 = x + rsize2, y1 = y + rsize2; \
|
|
tfloat sum_weights = 0; \
|
|
cimg_for_in##N##XY(res,x0,y0,x1,y1,p,q) \
|
|
if (cimg::abs(_guide(x,y,0,0) - _guide(p,q,0,0))<sigma_r3) { \
|
|
tfloat *pQ = Q._data; cimg_forC(_guide,c) { cimg_get##N##x##N(_guide,p,q,0,c,pQ,tfloat); pQ+=N2; } \
|
|
tfloat distance2 = 0; \
|
|
pQ = Q._data; cimg_for(P,_pP,tfloat) { const tfloat dI = *_pP - *(pQ++); distance2+=dI*dI; } \
|
|
distance2/=Pnorm; \
|
|
const tfloat dx = (tfloat)p - x, dy = (tfloat)q - y, \
|
|
alldist = distance2 + (dx*dx+dy*dy)/sigma_s2, weight = alldist>3?0:1; \
|
|
sum_weights+=weight; \
|
|
cimg_forC(res,c) res(x,y,c)+=(Tfloat)weight*(*this)(p,q,c); \
|
|
} \
|
|
if (sum_weights>1e-10) cimg_forC(res,c) res(x,y,c)/=(Tfloat)sum_weights; \
|
|
else cimg_forC(res,c) res(x,y,c) = (Tfloat)((*this)(x,y,c)); \
|
|
} _cimg_abort_catch_openmp2 }
|
|
|
|
#define _cimg_blur_patch2d(N) { \
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*32 && res._height>=4) \
|
|
firstprivate(P,Q)) \
|
|
cimg_forXY(res,x,y) _cimg_abort_try_openmp2 { \
|
|
cimg_abort_test2; \
|
|
cimg_def##N##x##N(res,x,y); \
|
|
tfloat *pP = P._data; cimg_forC(_guide,c) { cimg_get##N##x##N(_guide,x,y,0,c,pP,tfloat); pP+=N2; } \
|
|
const int x0 = x - rsize1, y0 = y - rsize1, x1 = x + rsize2, y1 = y + rsize2; \
|
|
tfloat sum_weights = 0, weight_max = 0; \
|
|
cimg_for_in##N##XY(res,x0,y0,x1,y1,p,q) if (p!=x || q!=y) { \
|
|
tfloat *pQ = Q._data; cimg_forC(_guide,c) { cimg_get##N##x##N(_guide,p,q,0,c,pQ,tfloat); pQ+=N2; } \
|
|
tfloat distance2 = 0; \
|
|
pQ = Q._data; cimg_for(P,_pP,tfloat) { const tfloat dI = *_pP - *(pQ++); distance2+=dI*dI; } \
|
|
distance2/=Pnorm; \
|
|
const tfloat dx = (tfloat)p - x, dy = (tfloat)q - y, \
|
|
alldist = distance2 + (dx*dx+dy*dy)/sigma_s2, weight = std::exp(-alldist); \
|
|
if (weight>weight_max) weight_max = weight; \
|
|
sum_weights+=weight; \
|
|
cimg_forC(res,c) res(x,y,c)+=(Tfloat)weight*(*this)(p,q,c); \
|
|
} \
|
|
sum_weights+=weight_max; cimg_forC(res,c) res(x,y,c)+=(Tfloat)weight_max*(*this)(x,y,c); \
|
|
if (sum_weights>1e-10) cimg_forC(res,c) res(x,y,c)/=(Tfloat)sum_weights; \
|
|
else cimg_forC(res,c) res(x,y,c) = (Tfloat)((*this)(x,y,c)); \
|
|
} _cimg_abort_catch_openmp2 }
|
|
|
|
typedef _cimg_tfloat tfloat;
|
|
if (!is_sameXYZ(guide))
|
|
throw CImgArgumentException(_cimg_instance
|
|
"blur_patch(): Invalid size for specified guide image (%u,%u,%u,%u,%p).",
|
|
cimg_instance,
|
|
guide._width,guide._height,guide._depth,guide._spectrum,guide._data);
|
|
if (is_empty() || !patch_size || !lookup_size) return +*this;
|
|
Tfloat val_min, val_max = (Tfloat)max_min(val_min);
|
|
_cimg_abort_init_openmp;
|
|
cimg_abort_init;
|
|
|
|
CImg<Tfloat> res(_width,_height,_depth,_spectrum,0);
|
|
const CImg<tfloat>
|
|
__guide = guide?CImg<tfloat>(guide,guide.pixel_type()==cimg::type<tfloat>::string()):
|
|
CImg<tfloat>(*this,pixel_type()==cimg::type<tfloat>::string()),
|
|
_guide = smoothness>0?__guide.get_blur(smoothness):__guide.get_shared();
|
|
CImg<tfloat> P(_guide._spectrum*patch_size*patch_size*(_depth>1?patch_size:1)), Q(P);
|
|
|
|
t guide_min = (t)0, guide_max = (t)0;
|
|
if (sigma_r<0) guide_max = guide.max_min(guide_min);
|
|
const float
|
|
guide_delta = (float)(guide_max - guide_min),
|
|
_sigma_s = sigma_s>=0?sigma_s:-sigma_s*cimg::max(_width,_height,_depth)/100,
|
|
_sigma_r = sigma_r>=0?sigma_r:-sigma_r*guide_delta/100,
|
|
sigma_s2 = _sigma_s*_sigma_s,
|
|
sigma_r2 = _sigma_r*_sigma_r,
|
|
sigma_r3 = 3*_sigma_r,
|
|
Pnorm = P.size()*sigma_r2;
|
|
const int rsize2 = (int)lookup_size/2, rsize1 = (int)lookup_size - rsize2 - 1;
|
|
const unsigned int N2 = patch_size*patch_size, N3 = N2*patch_size;
|
|
cimg::unused(N2,N3);
|
|
if (_depth>1) switch (patch_size) { // 3D
|
|
case 2 : if (is_fast_approx) _cimg_blur_patch3d_fast(2) else _cimg_blur_patch3d(2) break;
|
|
case 3 : if (is_fast_approx) _cimg_blur_patch3d_fast(3) else _cimg_blur_patch3d(3) break;
|
|
default : {
|
|
const int psize2 = (int)patch_size/2, psize1 = (int)patch_size - psize2 - 1;
|
|
if (is_fast_approx) {
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2)
|
|
cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*32 && res._height*res._depth>=4)
|
|
firstprivate(P,Q))
|
|
cimg_forXYZ(res,x,y,z) _cimg_abort_try_openmp2 { // Fast
|
|
cimg_abort_test2;
|
|
P = _guide.get_crop(x - psize1,y - psize1,z - psize1,x + psize2,y + psize2,z + psize2,true);
|
|
const int x0 = x - rsize1, y0 = y - rsize1, z0 = z - rsize1,
|
|
x1 = x + rsize2, y1 = y + rsize2, z1 = z + rsize2;
|
|
tfloat sum_weights = 0;
|
|
cimg_for_inXYZ(res,x0,y0,z0,x1,y1,z1,p,q,r)
|
|
if (cimg::abs(_guide(x,y,z,0) - _guide(p,q,r,0))<sigma_r3) {
|
|
(Q = _guide.get_crop(p - psize1,q - psize1,r - psize1,p + psize2,q + psize2,r + psize2,true))-=P;
|
|
const tfloat
|
|
dx = (tfloat)x - p, dy = (tfloat)y - q, dz = (tfloat)z - r,
|
|
distance2 = (tfloat)(Q.pow(2).sum()/Pnorm + (dx*dx + dy*dy + dz*dz)/sigma_s2),
|
|
weight = distance2>3?0:1;
|
|
sum_weights+=weight;
|
|
cimg_forC(res,c) res(x,y,z,c)+=(Tfloat)weight*(*this)(p,q,r,c);
|
|
}
|
|
if (sum_weights>1e-10) cimg_forC(res,c) res(x,y,z,c)/=(Tfloat)sum_weights;
|
|
else cimg_forC(res,c) res(x,y,z,c) = (Tfloat)((*this)(x,y,z,c));
|
|
} _cimg_abort_catch_openmp2
|
|
} else {
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2)
|
|
cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*32 && res._height*res._depth>=4)
|
|
firstprivate(P,Q))
|
|
cimg_forXYZ(res,x,y,z) _cimg_abort_try_openmp2 { // Exact
|
|
cimg_abort_test2;
|
|
P = _guide.get_crop(x - psize1,y - psize1,z - psize1,x + psize2,y + psize2,z + psize2,true);
|
|
const int x0 = x - rsize1, y0 = y - rsize1, z0 = z - rsize1,
|
|
x1 = x + rsize2, y1 = y + rsize2, z1 = z + rsize2;
|
|
tfloat sum_weights = 0, weight_max = 0;
|
|
cimg_for_inXYZ(res,x0,y0,z0,x1,y1,z1,p,q,r) if (p!=x || q!=y || r!=z) {
|
|
(Q = _guide.get_crop(p - psize1,q - psize1,r - psize1,p + psize2,q + psize2,r + psize2,true))-=P;
|
|
const tfloat
|
|
dx = (tfloat)x - p, dy = (tfloat)y - q, dz = (tfloat)z - r,
|
|
distance2 = (tfloat)(Q.pow(2).sum()/Pnorm + (dx*dx + dy*dy + dz*dz)/sigma_s2),
|
|
weight = std::exp(-distance2);
|
|
if (weight>weight_max) weight_max = weight;
|
|
sum_weights+=weight;
|
|
cimg_forC(res,c) res(x,y,z,c)+=(Tfloat)weight*(*this)(p,q,r,c);
|
|
}
|
|
sum_weights+=weight_max; cimg_forC(res,c) res(x,y,z,c)+=(Tfloat)weight_max*(*this)(x,y,z,c);
|
|
if (sum_weights>1e-10) cimg_forC(res,c) res(x,y,z,c)/=(Tfloat)sum_weights;
|
|
else cimg_forC(res,c) res(x,y,z,c) = (Tfloat)((*this)(x,y,z,c));
|
|
} _cimg_abort_catch_openmp2
|
|
}
|
|
}
|
|
} else switch (patch_size) { // 2D
|
|
case 2 : if (is_fast_approx) _cimg_blur_patch2d_fast(2) else _cimg_blur_patch2d(2) break;
|
|
case 3 : if (is_fast_approx) _cimg_blur_patch2d_fast(3) else _cimg_blur_patch2d(3) break;
|
|
case 4 : if (is_fast_approx) _cimg_blur_patch2d_fast(4) else _cimg_blur_patch2d(4) break;
|
|
case 5 : if (is_fast_approx) _cimg_blur_patch2d_fast(5) else _cimg_blur_patch2d(5) break;
|
|
case 6 : if (is_fast_approx) _cimg_blur_patch2d_fast(6) else _cimg_blur_patch2d(6) break;
|
|
case 7 : if (is_fast_approx) _cimg_blur_patch2d_fast(7) else _cimg_blur_patch2d(7) break;
|
|
case 8 : if (is_fast_approx) _cimg_blur_patch2d_fast(8) else _cimg_blur_patch2d(8) break;
|
|
case 9 : if (is_fast_approx) _cimg_blur_patch2d_fast(9) else _cimg_blur_patch2d(9) break;
|
|
default : { // Fast
|
|
const int psize2 = (int)patch_size/2, psize1 = (int)patch_size - psize2 - 1;
|
|
if (is_fast_approx) {
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*32 && res._height>=4)
|
|
firstprivate(P,Q))
|
|
cimg_forXY(res,x,y) _cimg_abort_try_openmp2 { // Fast
|
|
cimg_abort_test2;
|
|
P = _guide.get_crop(x - psize1,y - psize1,x + psize2,y + psize2,true);
|
|
const int x0 = x - rsize1, y0 = y - rsize1, x1 = x + rsize2, y1 = y + rsize2;
|
|
tfloat sum_weights = 0;
|
|
cimg_for_inXY(res,x0,y0,x1,y1,p,q)
|
|
if (cimg::abs(_guide(x,y,0) - _guide(p,q,0))<sigma_r3) {
|
|
(Q = _guide.get_crop(p - psize1,q - psize1,p + psize2,q + psize2,true))-=P;
|
|
const tfloat
|
|
dx = (tfloat)x - p, dy = (tfloat)y - q,
|
|
distance2 = (tfloat)(Q.pow(2).sum()/Pnorm + (dx*dx + dy*dy)/sigma_s2),
|
|
weight = distance2>3?0:1;
|
|
sum_weights+=weight;
|
|
cimg_forC(res,c) res(x,y,c)+=(Tfloat)weight*(*this)(p,q,c);
|
|
}
|
|
if (sum_weights>1e-10) cimg_forC(res,c) res(x,y,c)/=(Tfloat)sum_weights;
|
|
else cimg_forC(res,c) res(x,y,c) = (Tfloat)((*this)(x,y,c));
|
|
} _cimg_abort_catch_openmp2
|
|
} else {
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*32 && res._height>=4)
|
|
firstprivate(P,Q))
|
|
cimg_forXY(res,x,y) _cimg_abort_try_openmp2 { // Exact
|
|
cimg_abort_test2;
|
|
P = _guide.get_crop(x - psize1,y - psize1,x + psize2,y + psize2,true);
|
|
const int x0 = x - rsize1, y0 = y - rsize1, x1 = x + rsize2, y1 = y + rsize2;
|
|
tfloat sum_weights = 0, weight_max = 0;
|
|
cimg_for_inXY(res,x0,y0,x1,y1,p,q) if (p!=x || q!=y) {
|
|
(Q = _guide.get_crop(p - psize1,q - psize1,p + psize2,q + psize2,true))-=P;
|
|
const tfloat
|
|
dx = (tfloat)x - p, dy = (tfloat)y - q,
|
|
distance2 = (tfloat)(Q.pow(2).sum()/Pnorm + (dx*dx + dy*dy)/sigma_s2),
|
|
weight = std::exp(-distance2);
|
|
if (weight>weight_max) weight_max = weight;
|
|
sum_weights+=weight;
|
|
cimg_forC(res,c) res(x,y,c)+=(Tfloat)weight*(*this)(p,q,c);
|
|
}
|
|
sum_weights+=weight_max; cimg_forC(res,c) res(x,y,c)+=(Tfloat)weight_max*(*this)(x,y,c);
|
|
if (sum_weights>1e-10) cimg_forC(res,c) res(x,y,c)/=(Tfloat)sum_weights;
|
|
else cimg_forC(res,c) res(x,y,c) = (Tfloat)((*this)(x,y,c));
|
|
} _cimg_abort_catch_openmp2
|
|
}
|
|
}
|
|
}
|
|
cimg_abort_test;
|
|
return res.cut(val_min,val_max);
|
|
}
|
|
|
|
//! Blur image using patch-based space \simplification.
|
|
CImg<T>& blur_patch(const float sigma_s, const float sigma_r, const unsigned int patch_size=3,
|
|
const unsigned int lookup_size=4, const float smoothness=0, const bool is_fast_approx=true) {
|
|
return blur_patch(*this,sigma_s,sigma_r,patch_size,lookup_size,smoothness,is_fast_approx);
|
|
}
|
|
|
|
//! Blur image using patch-based space \simplification \newinstance.
|
|
CImg<Tfloat> get_blur_patch(const float sigma_s, const float sigma_r, const unsigned int patch_size=3,
|
|
const unsigned int lookup_size=4, const float smoothness=0,
|
|
const bool is_fast_approx=true) const {
|
|
return get_blur_patch(*this,sigma_s,sigma_r,patch_size,lookup_size,smoothness,is_fast_approx);
|
|
}
|
|
|
|
//! Blur image with the median filter.
|
|
/**
|
|
\param n Size of the median filter.
|
|
\param threshold Threshold used to discard pixels too far from the current pixel value in the median computation.
|
|
**/
|
|
CImg<T>& blur_median(const unsigned int n, const float threshold=0) {
|
|
if (!n) return *this;
|
|
return get_blur_median(n,threshold).move_to(*this);
|
|
}
|
|
|
|
//! Blur image with the median filter \newinstance.
|
|
CImg<T> get_blur_median(const unsigned int n, const float threshold=0) const {
|
|
if (is_empty() || n<=1) return +*this;
|
|
CImg<T> res(_width,_height,_depth,_spectrum);
|
|
T *ptrd = res._data;
|
|
cimg::unused(ptrd);
|
|
const int hr = (int)n/2, hl = n - hr - 1;
|
|
if (res._depth!=1) { // 3D
|
|
if (threshold>0)
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*16 &&
|
|
_height*_depth*_spectrum>=4))
|
|
cimg_forXYZC(*this,x,y,z,c) { // With threshold
|
|
const int
|
|
x0 = x - hl, y0 = y - hl, z0 = z - hl, x1 = x + hr, y1 = y + hr, z1 = z + hr,
|
|
nx0 = x0<0?0:x0, ny0 = y0<0?0:y0, nz0 = z0<0?0:z0,
|
|
nx1 = x1>=width()?width() - 1:x1, ny1 = y1>=height()?height() - 1:y1, nz1 = z1>=depth()?depth() - 1:z1;
|
|
const Tfloat val0 = (Tfloat)(*this)(x,y,z,c);
|
|
CImg<T> values(n*n*n);
|
|
unsigned int nb_values = 0;
|
|
T *_ptrd = values.data();
|
|
cimg_for_inXYZ(*this,nx0,ny0,nz0,nx1,ny1,nz1,p,q,r)
|
|
if (cimg::abs((*this)(p,q,r,c) - val0)<=threshold) { *(_ptrd++) = (*this)(p,q,r,c); ++nb_values; }
|
|
res(x,y,z,c) = nb_values?values.get_shared_points(0,nb_values - 1).median():(*this)(x,y,z,c);
|
|
}
|
|
else
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*16 &&
|
|
_height*_depth*_spectrum>=4))
|
|
cimg_forXYZC(*this,x,y,z,c) { // Without threshold
|
|
const int
|
|
x0 = x - hl, y0 = y - hl, z0 = z - hl, x1 = x + hr, y1 = y + hr, z1 = z + hr,
|
|
nx0 = x0<0?0:x0, ny0 = y0<0?0:y0, nz0 = z0<0?0:z0,
|
|
nx1 = x1>=width()?width() - 1:x1, ny1 = y1>=height()?height() - 1:y1, nz1 = z1>=depth()?depth() - 1:z1;
|
|
res(x,y,z,c) = get_crop(nx0,ny0,nz0,c,nx1,ny1,nz1,c).median();
|
|
}
|
|
} else {
|
|
if (threshold>0)
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*16 &&
|
|
_height*_spectrum>=4))
|
|
cimg_forXYC(*this,x,y,c) { // With threshold
|
|
const int
|
|
x0 = x - hl, y0 = y - hl, x1 = x + hr, y1 = y + hr,
|
|
nx0 = x0<0?0:x0, ny0 = y0<0?0:y0,
|
|
nx1 = x1>=width()?width() - 1:x1, ny1 = y1>=height()?height() - 1:y1;
|
|
const Tfloat val0 = (Tfloat)(*this)(x,y,c);
|
|
CImg<T> values(n*n);
|
|
unsigned int nb_values = 0;
|
|
T *_ptrd = values.data();
|
|
cimg_for_inXY(*this,nx0,ny0,nx1,ny1,p,q)
|
|
if (cimg::abs((*this)(p,q,c) - val0)<=threshold) { *(_ptrd++) = (*this)(p,q,c); ++nb_values; }
|
|
res(x,y,c) = nb_values?values.get_shared_points(0,nb_values - 1).median():(*this)(x,y,c);
|
|
}
|
|
else {
|
|
const int
|
|
w1 = width() - 1, h1 = height() - 1,
|
|
w2 = width() - 2, h2 = height() - 2,
|
|
w3 = width() - 3, h3 = height() - 3,
|
|
w4 = width() - 4, h4 = height() - 4;
|
|
switch (n) { // Without threshold
|
|
case 3 : {
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_spectrum>=2))
|
|
cimg_forC(*this,c) {
|
|
CImg<T> I(9);
|
|
cimg_for_in3x3(*this,1,1,w2,h2,x,y,0,c,I,T)
|
|
res(x,y,c) = cimg::median(I[0],I[1],I[2],I[3],I[4],I[5],I[6],I[7],I[8]);
|
|
cimg_for_borderXY(*this,x,y,1)
|
|
res(x,y,c) = get_crop(std::max(0,x - 1),std::max(0,y - 1),0,c,
|
|
std::min(w1,x + 1),std::min(h1,y + 1),0,c).median();
|
|
}
|
|
} break;
|
|
case 5 : {
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_spectrum>=2))
|
|
cimg_forC(*this,c) {
|
|
CImg<T> I(25);
|
|
cimg_for_in5x5(*this,2,2,w3,h3,x,y,0,c,I,T)
|
|
res(x,y,c) = cimg::median(I[0],I[1],I[2],I[3],I[4],
|
|
I[5],I[6],I[7],I[8],I[9],
|
|
I[10],I[11],I[12],I[13],I[14],
|
|
I[15],I[16],I[17],I[18],I[19],
|
|
I[20],I[21],I[22],I[23],I[24]);
|
|
cimg_for_borderXY(*this,x,y,2)
|
|
res(x,y,c) = get_crop(std::max(0,x - 2),std::max(0,y - 2),0,c,
|
|
std::min(w1,x + 2),std::min(h1,y + 2),0,c).median();
|
|
}
|
|
} break;
|
|
case 7 : {
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_spectrum>=2))
|
|
cimg_forC(*this,c) {
|
|
CImg<T> I(49);
|
|
cimg_for_in7x7(*this,3,3,w4,h4,x,y,0,c,I,T)
|
|
res(x,y,c) = cimg::median(I[0],I[1],I[2],I[3],I[4],I[5],I[6],
|
|
I[7],I[8],I[9],I[10],I[11],I[12],I[13],
|
|
I[14],I[15],I[16],I[17],I[18],I[19],I[20],
|
|
I[21],I[22],I[23],I[24],I[25],I[26],I[27],
|
|
I[28],I[29],I[30],I[31],I[32],I[33],I[34],
|
|
I[35],I[36],I[37],I[38],I[39],I[40],I[41],
|
|
I[42],I[43],I[44],I[45],I[46],I[47],I[48]);
|
|
cimg_for_borderXY(*this,x,y,3)
|
|
res(x,y,c) = get_crop(std::max(0,x - 3),std::max(0,y - 3),0,c,
|
|
std::min(w1,x + 3),std::min(h1,y + 3),0,c).median();
|
|
}
|
|
} break;
|
|
default : {
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2)
|
|
cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*16 && _height*_spectrum>=4))
|
|
cimg_forXYC(*this,x,y,c) {
|
|
const int
|
|
x0 = x - hl, y0 = y - hl, x1 = x + hr, y1 = y + hr,
|
|
nx0 = x0<0?0:x0, ny0 = y0<0?0:y0,
|
|
nx1 = x1>=width()?width() - 1:x1, ny1 = y1>=height()?height() - 1:y1;
|
|
res(x,y,c) = get_crop(nx0,ny0,0,c,nx1,ny1,0,c).median();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Sharpen image.
|
|
/**
|
|
\param amplitude Sharpening amplitude
|
|
\param sharpen_type Select sharpening method. Can be <tt>{ false=inverse diffusion | true=shock filters }</tt>.
|
|
\param edge Edge threshold (shock filters only).
|
|
\param alpha Gradient smoothness (shock filters only).
|
|
\param sigma Tensor smoothness (shock filters only).
|
|
**/
|
|
CImg<T>& sharpen(const float amplitude, const bool sharpen_type=false, const float edge=1,
|
|
const float alpha=0, const float sigma=0) {
|
|
if (is_empty()) return *this;
|
|
T val_min, val_max = max_min(val_min);
|
|
const float nedge = edge/2;
|
|
CImg<Tfloat> velocity(_width,_height,_depth,_spectrum), _veloc_max(_spectrum);
|
|
|
|
if (_depth>1) { // 3D
|
|
if (sharpen_type) { // Shock filters
|
|
CImg<Tfloat> G = (alpha>0?get_blur(alpha).get_structure_tensors():get_structure_tensors());
|
|
if (sigma>0) G.blur(sigma);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*32 &&
|
|
_height*_depth>=16))
|
|
cimg_forYZ(G,y,z) {
|
|
Tfloat *ptrG0 = G.data(0,y,z,0), *ptrG1 = G.data(0,y,z,1),
|
|
*ptrG2 = G.data(0,y,z,2), *ptrG3 = G.data(0,y,z,3);
|
|
CImg<Tfloat> val, vec;
|
|
cimg_forX(G,x) {
|
|
G.get_tensor_at(x,y,z).symmetric_eigen(val,vec);
|
|
if (val[0]<0) val[0] = 0;
|
|
if (val[1]<0) val[1] = 0;
|
|
if (val[2]<0) val[2] = 0;
|
|
*(ptrG0++) = vec(0,0);
|
|
*(ptrG1++) = vec(0,1);
|
|
*(ptrG2++) = vec(0,2);
|
|
*(ptrG3++) = 1 - (Tfloat)std::pow(1 + val[0] + val[1] + val[2],-(Tfloat)nedge);
|
|
}
|
|
}
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*512 &&
|
|
_spectrum>=2))
|
|
cimg_forC(*this,c) {
|
|
Tfloat *ptrd = velocity.data(0,0,0,c), veloc_max = 0;
|
|
CImg_3x3x3(I,Tfloat);
|
|
cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) {
|
|
const Tfloat
|
|
u = G(x,y,z,0),
|
|
v = G(x,y,z,1),
|
|
w = G(x,y,z,2),
|
|
amp = G(x,y,z,3),
|
|
ixx = Incc + Ipcc - 2*Iccc,
|
|
ixy = (Innc + Ippc - Inpc - Ipnc)/4,
|
|
ixz = (Incn + Ipcp - Incp - Ipcn)/4,
|
|
iyy = Icnc + Icpc - 2*Iccc,
|
|
iyz = (Icnn + Icpp - Icnp - Icpn)/4,
|
|
izz = Iccn + Iccp - 2*Iccc,
|
|
ixf = Incc - Iccc,
|
|
ixb = Iccc - Ipcc,
|
|
iyf = Icnc - Iccc,
|
|
iyb = Iccc - Icpc,
|
|
izf = Iccn - Iccc,
|
|
izb = Iccc - Iccp,
|
|
itt = u*u*ixx + v*v*iyy + w*w*izz + 2*u*v*ixy + 2*u*w*ixz + 2*v*w*iyz,
|
|
it = u*cimg::minmod(ixf,ixb) + v*cimg::minmod(iyf,iyb) + w*cimg::minmod(izf,izb),
|
|
veloc = -amp*cimg::sign(itt)*cimg::abs(it);
|
|
*(ptrd++) = veloc;
|
|
if (veloc>veloc_max) veloc_max = veloc; else if (-veloc>veloc_max) veloc_max = -veloc;
|
|
}
|
|
_veloc_max[c] = veloc_max;
|
|
}
|
|
} else // Inverse diffusion
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*512 &&
|
|
_spectrum>=2))
|
|
cimg_forC(*this,c) {
|
|
Tfloat *ptrd = velocity.data(0,0,0,c), veloc_max = 0;
|
|
CImg_3x3x3(I,Tfloat);
|
|
cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) {
|
|
const Tfloat veloc = -Ipcc - Incc - Icpc - Icnc - Iccp - Iccn + 6*Iccc;
|
|
*(ptrd++) = veloc;
|
|
if (veloc>veloc_max) veloc_max = veloc; else if (-veloc>veloc_max) veloc_max = -veloc;
|
|
}
|
|
_veloc_max[c] = veloc_max;
|
|
}
|
|
} else { // 2D
|
|
if (sharpen_type) { // Shock filters
|
|
CImg<Tfloat> G = (alpha>0?get_blur(alpha).get_structure_tensors():get_structure_tensors());
|
|
if (sigma>0) G.blur(sigma);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*32 &&
|
|
_height>=(cimg_openmp_sizefactor)*16))
|
|
cimg_forY(G,y) {
|
|
CImg<Tfloat> val, vec;
|
|
Tfloat *ptrG0 = G.data(0,y,0,0), *ptrG1 = G.data(0,y,0,1), *ptrG2 = G.data(0,y,0,2);
|
|
cimg_forX(G,x) {
|
|
G.get_tensor_at(x,y).symmetric_eigen(val,vec);
|
|
if (val[0]<0) val[0] = 0;
|
|
if (val[1]<0) val[1] = 0;
|
|
*(ptrG0++) = vec(0,0);
|
|
*(ptrG1++) = vec(0,1);
|
|
*(ptrG2++) = 1 - (Tfloat)std::pow(1 + val[0] + val[1],-(Tfloat)nedge);
|
|
}
|
|
}
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*512 &&
|
|
_spectrum>=2))
|
|
cimg_forC(*this,c) {
|
|
Tfloat *ptrd = velocity.data(0,0,0,c), veloc_max = 0;
|
|
CImg_3x3(I,Tfloat);
|
|
cimg_for3x3(*this,x,y,0,c,I,Tfloat) {
|
|
const Tfloat
|
|
u = G(x,y,0),
|
|
v = G(x,y,1),
|
|
amp = G(x,y,2),
|
|
ixx = Inc + Ipc - 2*Icc,
|
|
ixy = (Inn + Ipp - Inp - Ipn)/4,
|
|
iyy = Icn + Icp - 2*Icc,
|
|
ixf = Inc - Icc,
|
|
ixb = Icc - Ipc,
|
|
iyf = Icn - Icc,
|
|
iyb = Icc - Icp,
|
|
itt = u*u*ixx + v*v*iyy + 2*u*v*ixy,
|
|
it = u*cimg::minmod(ixf,ixb) + v*cimg::minmod(iyf,iyb),
|
|
veloc = -amp*cimg::sign(itt)*cimg::abs(it);
|
|
*(ptrd++) = veloc;
|
|
if (veloc>veloc_max) veloc_max = veloc; else if (-veloc>veloc_max) veloc_max = -veloc;
|
|
}
|
|
_veloc_max[c] = veloc_max;
|
|
}
|
|
} else // Inverse diffusion
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*512 &&
|
|
_spectrum>=2))
|
|
cimg_forC(*this,c) {
|
|
Tfloat *ptrd = velocity.data(0,0,0,c), veloc_max = 0;
|
|
CImg_3x3(I,Tfloat);
|
|
cimg_for3x3(*this,x,y,0,c,I,Tfloat) {
|
|
const Tfloat veloc = -Ipc - Inc - Icp - Icn + 4*Icc;
|
|
*(ptrd++) = veloc;
|
|
if (veloc>veloc_max) veloc_max = veloc; else if (-veloc>veloc_max) veloc_max = -veloc;
|
|
}
|
|
_veloc_max[c] = veloc_max;
|
|
}
|
|
}
|
|
const Tfloat veloc_max = _veloc_max.max();
|
|
if (veloc_max<=0) return *this;
|
|
return ((velocity*=amplitude/veloc_max)+=*this).cut(val_min,val_max).move_to(*this);
|
|
}
|
|
|
|
//! Sharpen image \newinstance.
|
|
CImg<T> get_sharpen(const float amplitude, const bool sharpen_type=false, const float edge=1,
|
|
const float alpha=0, const float sigma=0) const {
|
|
return (+*this).sharpen(amplitude,sharpen_type,edge,alpha,sigma);
|
|
}
|
|
|
|
//! Return image gradient.
|
|
/**
|
|
\param axes Axes considered for the gradient computation, as a C-string (e.g "xy").
|
|
\param scheme = Numerical scheme used for the gradient computation:
|
|
- -1 = Backward finite differences
|
|
- 0 = Centered finite differences (default)
|
|
- 1 = Forward finite differences
|
|
- 2 = Using Sobel kernels
|
|
- 3 = Using rotation invariant kernels
|
|
- 4 = Using Deriche recursive filter.
|
|
- 5 = Using Van Vliet recursive filter.
|
|
**/
|
|
CImgList<Tfloat> get_gradient(const char *const axes=0, const int scheme=0) const {
|
|
CImgList<Tfloat> res;
|
|
char __axes[4] = {};
|
|
const char *_axes = axes?axes:__axes;
|
|
if (!axes) {
|
|
unsigned int k = 0;
|
|
if (_width>1) __axes[k++] = 'x';
|
|
if (_height>1) __axes[k++] = 'y';
|
|
if (_depth>1) __axes[k++] = 'z';
|
|
}
|
|
|
|
CImg<Tfloat> grad;
|
|
while (*_axes) {
|
|
const char axis = cimg::lowercase(*(_axes++));
|
|
if (axis!='x' && axis!='y' && axis!='z')
|
|
throw CImgArgumentException(_cimg_instance
|
|
"get_gradient(): Invalid specified axes '%s'.",
|
|
cimg_instance,
|
|
axes);
|
|
const longT off = axis=='x'?1:axis=='y'?_width:_width*_height;
|
|
if ((axis=='x' && _width==1) || (axis=='y' && _height==1) || (axis=='z' && _depth==1)) {
|
|
grad.assign(_width,_height,_depth,_spectrum,0).move_to(res);
|
|
continue;
|
|
}
|
|
|
|
const int _scheme = axis=='z' && (scheme==2 || scheme==3)?0:scheme;
|
|
switch (_scheme) {
|
|
case -1 : { // Backward finite differences
|
|
grad.assign(_width,_height,_depth,_spectrum);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(size(),16384))
|
|
cimg_forXYZC(*this,x,y,z,c) {
|
|
const ulongT pos = offset(x,y,z,c);
|
|
if ((axis=='x' && !x) || (axis=='y' && !y) || (axis=='z' && !z))
|
|
grad[pos] = 0;
|
|
else
|
|
grad[pos] = (Tfloat)_data[pos] - _data[pos - off];
|
|
}
|
|
grad.move_to(res);
|
|
} break;
|
|
case 1 : { // Forward finite differences
|
|
grad.assign(_width,_height,_depth,_spectrum);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(size(),16384))
|
|
cimg_forXYZC(*this,x,y,z,c) {
|
|
const ulongT pos = offset(x,y,z,c);
|
|
if ((axis=='x' && x==width() - 1) || (axis=='y' && y==height() - 1) || (axis=='z' && z==depth() - 1))
|
|
grad[pos] = 0;
|
|
else
|
|
grad[pos] = (Tfloat)_data[pos + off] - _data[pos];
|
|
}
|
|
grad.move_to(res);
|
|
} break;
|
|
case 2 : { // Sobel scheme
|
|
grad.assign(_width,_height,_depth,_spectrum);
|
|
if (axis=='x') // X-axis
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2)
|
|
cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*16384 &&
|
|
_depth*_spectrum>=2))
|
|
cimg_forZC(*this,z,c) {
|
|
CImg_3x3(I,Tfloat);
|
|
cimg_for3x3(*this,x,y,z,c,I,Tfloat) grad(x,y,z,c) = - Ipp + Inp - 2*Ipc + 2*Inc - Ipn + Inn;
|
|
}
|
|
else // Y-axis
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2)
|
|
cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*16384 &&
|
|
_depth*_spectrum>=2))
|
|
cimg_forZC(*this,z,c) {
|
|
CImg_3x3(I,Tfloat);
|
|
cimg_for3x3(*this,x,y,z,c,I,Tfloat) grad(x,y,z,c) = - Ipp - 2*Icp - Inp + Ipn + 2*Icn + Inn;
|
|
}
|
|
grad.move_to(res);
|
|
} break;
|
|
case 3 : { // Rotation invariant scheme
|
|
const Tfloat a = (Tfloat)(0.25f*(2 - std::sqrt(2.f))), b = (Tfloat)(0.5f*(std::sqrt(2.f) - 1));
|
|
grad.assign(_width,_height,_depth,_spectrum);
|
|
if (axis=='x') // X-axis
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2)
|
|
cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*16384 &&
|
|
_depth*_spectrum>=2))
|
|
cimg_forZC(*this,z,c) {
|
|
CImg_3x3(I,Tfloat);
|
|
cimg_for3x3(*this,x,y,z,c,I,Tfloat) grad(x,y,z,c) = -a*Ipp - b*Ipc - a*Ipn + a*Inp + b*Inc + a*Inn;
|
|
}
|
|
else // Y-axis
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2)
|
|
cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*16384 &&
|
|
_depth*_spectrum>=2))
|
|
cimg_forZC(*this,z,c) {
|
|
CImg_3x3(I,Tfloat);
|
|
cimg_for3x3(*this,x,y,z,c,I,Tfloat) grad(x,y,z,c) = -a*Ipp - b*Icp - a*Inp + a*Ipn + b*Icn + a*Inn;
|
|
}
|
|
grad.move_to(res);
|
|
} break;
|
|
case 4 : // Deriche filter
|
|
get_deriche(0,1,axis).move_to(res);
|
|
break;
|
|
case 5 : // Van Vliet filter
|
|
get_vanvliet(0,1,axis).move_to(res);
|
|
break;
|
|
default : { // Central finite differences
|
|
grad.assign(_width,_height,_depth,_spectrum);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(size(),16384))
|
|
cimg_forXYZC(*this,x,y,z,c) {
|
|
const ulongT pos = offset(x,y,z,c);
|
|
if ((axis=='x' && !x) || (axis=='y' && !y) || (axis=='z' && !z))
|
|
grad[pos] = ((Tfloat)_data[pos + off] - _data[pos])/2;
|
|
else if ((axis=='x' && x==width() - 1) || (axis=='y' && y==height() - 1) || (axis=='z' && z==depth() - 1))
|
|
grad[pos] = ((Tfloat)_data[pos] - _data[pos - off])/2;
|
|
else
|
|
grad[pos] = ((Tfloat)_data[pos + off] - _data[pos - off])/2;
|
|
}
|
|
grad.move_to(res);
|
|
} break;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Return image hessian.
|
|
/**
|
|
\param axes Axes considered for the hessian computation, as a C-string (e.g "xy").
|
|
**/
|
|
CImgList<Tfloat> get_hessian(const char *const axes=0) const {
|
|
CImgList<Tfloat> res;
|
|
char __axes[12] = {};
|
|
const char *_axes = axes?axes:__axes;
|
|
if (!axes) {
|
|
unsigned int k = 0;
|
|
if (_width>1) { __axes[k++] = 'x'; __axes[k++] = 'x'; }
|
|
if (_width>1 && _height>1) { __axes[k++] = 'x'; __axes[k++] = 'y'; }
|
|
if (_width>1 && _depth>1) { __axes[k++] = 'x'; __axes[k++] = 'z'; }
|
|
if (_height>1) { __axes[k++] = 'y'; __axes[k++] = 'y'; }
|
|
if (_height>1 && _depth>1) { __axes[k++] = 'y'; __axes[k++] = 'z'; }
|
|
if (_depth>1) { __axes[k++] = 'z'; __axes[k++] = 'z'; }
|
|
}
|
|
const unsigned int len = (unsigned int)std::strlen(_axes);
|
|
if (len%2)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"get_hessian(): Invalid specified axes '%s'.",
|
|
cimg_instance,
|
|
axes);
|
|
CImg<Tfloat> hess;
|
|
for (unsigned int k = 0; k<len; k+=2) {
|
|
const char
|
|
_axis1 = cimg::lowercase(_axes[k]),
|
|
_axis2 = cimg::lowercase(_axes[k + 1]),
|
|
axis1 = std::min(_axis1,_axis2),
|
|
axis2 = std::max(_axis2,_axis2);
|
|
if (axis1!='x' && axis1!='y' && axis1!='z' &&
|
|
axis2!='x' && axis2!='y' && axis2!='z')
|
|
throw CImgArgumentException(_cimg_instance
|
|
"get_hessian(): Invalid specified axes '%s'.",
|
|
cimg_instance,
|
|
axes);
|
|
const longT off = axis1=='x'?1:axis1=='y'?_width:_width*_height;
|
|
|
|
hess.assign(_width,_height,_depth,_spectrum);
|
|
|
|
if (((axis1=='x' || axis2=='x') && _width==1) ||
|
|
((axis1=='y' || axis2=='y') && _height==1) ||
|
|
((axis1=='z' || axis2=='z') && _depth==1)) {
|
|
hess.fill(0).move_to(res);
|
|
continue;
|
|
}
|
|
|
|
if (axis1==axis2) // Ixx, Iyy, Izz
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(size(),16384))
|
|
cimg_forXYZC(*this,x,y,z,c) {
|
|
const ulongT pos = offset(x,y,z,c);
|
|
if ((axis1=='x' && !x) || (axis1=='y' && !y) || (axis1=='z' && !z))
|
|
hess[pos] = (Tfloat)_data[pos + off] - _data[pos];
|
|
else if ((axis1=='x' && x==width() - 1) ||
|
|
(axis1=='y' && y==height() - 1) ||
|
|
(axis1=='z' && z==depth() - 1))
|
|
hess[pos] = (Tfloat)_data[pos - off] - _data[pos];
|
|
else
|
|
hess[pos] = (Tfloat)_data[pos + off] + _data[pos - off] - 2*_data[pos];
|
|
}
|
|
else if (axis1=='x' && axis2=='y') // Ixy
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2)
|
|
cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*16384 &&
|
|
_depth*_spectrum>=2))
|
|
cimg_forZC(*this,z,c) {
|
|
CImg_3x3(I,Tfloat);
|
|
cimg_for3x3(*this,x,y,z,c,I,Tfloat) hess(x,y,z,c) = (Inn + Ipp - Inp - Ipn)/4;
|
|
}
|
|
else if (axis1=='x' && axis2=='z') // Ixz
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*16384 &&
|
|
_spectrum>=2))
|
|
cimg_forC(*this,c) {
|
|
CImg_3x3x3(I,Tfloat);
|
|
cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) hess(x,y,z,c) = (Incn + Ipcp - Incp - Ipcn)/4;
|
|
}
|
|
else // Iyz
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*16384 &&
|
|
_spectrum>=2))
|
|
cimg_forC(*this,c) {
|
|
CImg_3x3x3(I,Tfloat);
|
|
cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) hess(x,y,z,c) = (Icnn + Icpp - Icnp - Icpn)/4;
|
|
}
|
|
hess.move_to(res);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Compute image Laplacian.
|
|
CImg<T>& laplacian() {
|
|
return get_laplacian().move_to(*this);
|
|
}
|
|
|
|
//! Compute image Laplacian \newinstance.
|
|
CImg<Tfloat> get_laplacian() const {
|
|
if (is_empty()) return CImg<Tfloat>();
|
|
CImg<Tfloat> res(_width,_height,_depth,_spectrum);
|
|
if (_depth>1) { // 3D
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*1048576 &&
|
|
_spectrum>=2))
|
|
cimg_forC(*this,c) {
|
|
Tfloat *ptrd = res.data(0,0,0,c);
|
|
CImg_3x3x3(I,Tfloat);
|
|
cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) *(ptrd++) = Incc + Ipcc + Icnc + Icpc + Iccn + Iccp - 6*Iccc;
|
|
}
|
|
} else if (_height>1) { // 2D
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*1048576 &&
|
|
_depth*_spectrum>=2))
|
|
cimg_forC(*this,c) {
|
|
Tfloat *ptrd = res.data(0,0,0,c);
|
|
CImg_3x3(I,Tfloat);
|
|
cimg_for3x3(*this,x,y,0,c,I,Tfloat) *(ptrd++) = Inc + Ipc + Icn + Icp - 4*Icc;
|
|
}
|
|
} else { // 1D
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*1048576 &&
|
|
_height*_depth*_spectrum>=2))
|
|
cimg_forC(*this,c) {
|
|
Tfloat *ptrd = res.data(0,0,0,c);
|
|
CImg_3x3(I,Tfloat);
|
|
cimg_for3x3(*this,x,y,0,c,I,Tfloat) *(ptrd++) = Inc + Ipc - 2*Icc;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Compute the structure tensor field of an image.
|
|
/**
|
|
\param is_fwbw_scheme scheme. Can be <tt>{ false=centered | true=forward-backward }</tt>
|
|
**/
|
|
CImg<T>& structure_tensors(const bool is_fwbw_scheme=false) {
|
|
return get_structure_tensors(is_fwbw_scheme).move_to(*this);
|
|
}
|
|
|
|
//! Compute the structure tensor field of an image \newinstance.
|
|
CImg<Tfloat> get_structure_tensors(const bool is_fwbw_scheme=false) const {
|
|
if (is_empty()) return *this;
|
|
CImg<Tfloat> res;
|
|
if (_depth>1) { // 3D
|
|
res.assign(_width,_height,_depth,6,0);
|
|
if (!is_fwbw_scheme) { // Classical central finite differences
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*1048576 &&
|
|
_spectrum>=2))
|
|
cimg_forC(*this,c) {
|
|
Tfloat
|
|
*ptrd0 = res.data(0,0,0,0), *ptrd1 = res.data(0,0,0,1), *ptrd2 = res.data(0,0,0,2),
|
|
*ptrd3 = res.data(0,0,0,3), *ptrd4 = res.data(0,0,0,4), *ptrd5 = res.data(0,0,0,5);
|
|
CImg_3x3x3(I,Tfloat);
|
|
cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) {
|
|
const Tfloat
|
|
ix = (Incc - Ipcc)/2,
|
|
iy = (Icnc - Icpc)/2,
|
|
iz = (Iccn - Iccp)/2;
|
|
cimg_pragma_openmp(atomic) *(ptrd0++)+=ix*ix;
|
|
cimg_pragma_openmp(atomic) *(ptrd1++)+=ix*iy;
|
|
cimg_pragma_openmp(atomic) *(ptrd2++)+=ix*iz;
|
|
cimg_pragma_openmp(atomic) *(ptrd3++)+=iy*iy;
|
|
cimg_pragma_openmp(atomic) *(ptrd4++)+=iy*iz;
|
|
cimg_pragma_openmp(atomic) *(ptrd5++)+=iz*iz;
|
|
}
|
|
}
|
|
} else { // Forward/backward finite differences
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*1048576 &&
|
|
_spectrum>=2))
|
|
cimg_forC(*this,c) {
|
|
Tfloat
|
|
*ptrd0 = res.data(0,0,0,0), *ptrd1 = res.data(0,0,0,1), *ptrd2 = res.data(0,0,0,2),
|
|
*ptrd3 = res.data(0,0,0,3), *ptrd4 = res.data(0,0,0,4), *ptrd5 = res.data(0,0,0,5);
|
|
CImg_3x3x3(I,Tfloat);
|
|
cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) {
|
|
const Tfloat
|
|
ixf = Incc - Iccc, ixb = Iccc - Ipcc, ixc = (Incc - Ipcc)/2,
|
|
iyf = Icnc - Iccc, iyb = Iccc - Icpc, iyc = (Icnc - Icpc)/2,
|
|
izf = Iccn - Iccc, izb = Iccc - Iccp, izc = (Iccn - Iccp)/2;
|
|
cimg_pragma_openmp(atomic) *(ptrd0++)+=(ixf*ixf + ixb*ixb)/2;
|
|
cimg_pragma_openmp(atomic) *(ptrd1++)+=ixc*iyc;
|
|
cimg_pragma_openmp(atomic) *(ptrd2++)+=ixc*izc;
|
|
cimg_pragma_openmp(atomic) *(ptrd3++)+=(iyf*iyf + iyb*iyb)/2;
|
|
cimg_pragma_openmp(atomic) *(ptrd4++)+=iyc*izc;
|
|
cimg_pragma_openmp(atomic) *(ptrd5++)+=(izf*izf + izb*izb)/2;
|
|
}
|
|
}
|
|
}
|
|
} else { // 2D
|
|
res.assign(_width,_height,_depth,3,0);
|
|
if (!is_fwbw_scheme) { // Classical central finite differences
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*1048576 &&
|
|
_depth*_spectrum>=2))
|
|
cimg_forC(*this,c) {
|
|
Tfloat *ptrd0 = res.data(0,0,0,0), *ptrd1 = res.data(0,0,0,1), *ptrd2 = res.data(0,0,0,2);
|
|
CImg_3x3(I,Tfloat);
|
|
cimg_for3x3(*this,x,y,0,c,I,Tfloat) {
|
|
const Tfloat
|
|
ix = (Inc - Ipc)/2,
|
|
iy = (Icn - Icp)/2;
|
|
cimg_pragma_openmp(atomic) *(ptrd0++)+=ix*ix;
|
|
cimg_pragma_openmp(atomic) *(ptrd1++)+=ix*iy;
|
|
cimg_pragma_openmp(atomic) *(ptrd2++)+=iy*iy;
|
|
}
|
|
}
|
|
} else { // Forward/backward finite differences (version 2)
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*1048576 &&
|
|
_depth*_spectrum>=2))
|
|
cimg_forC(*this,c) {
|
|
Tfloat *ptrd0 = res.data(0,0,0,0), *ptrd1 = res.data(0,0,0,1), *ptrd2 = res.data(0,0,0,2);
|
|
CImg_3x3(I,Tfloat);
|
|
cimg_for3x3(*this,x,y,0,c,I,Tfloat) {
|
|
const Tfloat
|
|
ixf = Inc - Icc, ixb = Icc - Ipc, ixc = (Inc - Ipc)/2,
|
|
iyf = Icn - Icc, iyb = Icc - Icp, iyc = (Icn - Icp)/2;
|
|
cimg_pragma_openmp(atomic) *(ptrd0++)+=(ixf*ixf + ixb*ixb)/2;
|
|
cimg_pragma_openmp(atomic) *(ptrd1++)+=ixc*iyc;
|
|
cimg_pragma_openmp(atomic) *(ptrd2++)+=(iyf*iyf + iyb*iyb)/2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Compute field of diffusion tensors for edge-preserving smoothing.
|
|
/**
|
|
\param sharpness Sharpness
|
|
\param anisotropy Anisotropy
|
|
\param alpha Standard deviation of the gradient blur.
|
|
\param sigma Standard deviation of the structure tensor blur.
|
|
\param is_sqrt Tells if the square root of the tensor field is computed instead.
|
|
**/
|
|
CImg<T>& diffusion_tensors(const float sharpness=0.7f, const float anisotropy=0.6f,
|
|
const float alpha=0.6f, const float sigma=1.1f, const bool is_sqrt=false) {
|
|
CImg<Tfloat> res;
|
|
const float
|
|
nsharpness = std::max(sharpness,1e-5f),
|
|
power1 = (is_sqrt?0.5f:1)*nsharpness,
|
|
power2 = power1/(1e-7f + 1 - anisotropy);
|
|
blur(alpha).normalize(0,(T)255);
|
|
|
|
if (_depth>1) { // 3D
|
|
get_structure_tensors().move_to(res).blur(sigma);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 &&
|
|
_height*_depth>=(cimg_openmp_sizefactor)*256))
|
|
cimg_forYZ(*this,y,z) {
|
|
Tfloat
|
|
*ptrd0 = res.data(0,y,z,0), *ptrd1 = res.data(0,y,z,1), *ptrd2 = res.data(0,y,z,2),
|
|
*ptrd3 = res.data(0,y,z,3), *ptrd4 = res.data(0,y,z,4), *ptrd5 = res.data(0,y,z,5);
|
|
CImg<floatT> val(3), vec(3,3);
|
|
cimg_forX(*this,x) {
|
|
res.get_tensor_at(x,y,z).symmetric_eigen(val,vec);
|
|
const float
|
|
_l1 = val[2], _l2 = val[1], _l3 = val[0],
|
|
l1 = _l1>0?_l1:0, l2 = _l2>0?_l2:0, l3 = _l3>0?_l3:0,
|
|
ux = vec(0,0), uy = vec(0,1), uz = vec(0,2),
|
|
vx = vec(1,0), vy = vec(1,1), vz = vec(1,2),
|
|
wx = vec(2,0), wy = vec(2,1), wz = vec(2,2),
|
|
n1 = (float)std::pow(1 + l1 + l2 + l3,-power1),
|
|
n2 = (float)std::pow(1 + l1 + l2 + l3,-power2);
|
|
*(ptrd0++) = n1*(ux*ux + vx*vx) + n2*wx*wx;
|
|
*(ptrd1++) = n1*(ux*uy + vx*vy) + n2*wx*wy;
|
|
*(ptrd2++) = n1*(ux*uz + vx*vz) + n2*wx*wz;
|
|
*(ptrd3++) = n1*(uy*uy + vy*vy) + n2*wy*wy;
|
|
*(ptrd4++) = n1*(uy*uz + vy*vz) + n2*wy*wz;
|
|
*(ptrd5++) = n1*(uz*uz + vz*vz) + n2*wz*wz;
|
|
}
|
|
}
|
|
} else { // for 2D images
|
|
get_structure_tensors().move_to(res).blur(sigma);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 &&
|
|
_height>=(cimg_openmp_sizefactor)*256))
|
|
cimg_forY(*this,y) {
|
|
Tfloat *ptrd0 = res.data(0,y,0,0), *ptrd1 = res.data(0,y,0,1), *ptrd2 = res.data(0,y,0,2);
|
|
CImg<floatT> val(2), vec(2,2);
|
|
cimg_forX(*this,x) {
|
|
res.get_tensor_at(x,y).symmetric_eigen(val,vec);
|
|
const float
|
|
_l1 = val[1], _l2 = val[0],
|
|
l1 = _l1>0?_l1:0, l2 = _l2>0?_l2:0,
|
|
ux = vec(1,0), uy = vec(1,1),
|
|
vx = vec(0,0), vy = vec(0,1),
|
|
n1 = (float)std::pow(1 + l1 + l2,-power1),
|
|
n2 = (float)std::pow(1 + l1 + l2,-power2);
|
|
*(ptrd0++) = n1*ux*ux + n2*vx*vx;
|
|
*(ptrd1++) = n1*ux*uy + n2*vx*vy;
|
|
*(ptrd2++) = n1*uy*uy + n2*vy*vy;
|
|
}
|
|
}
|
|
}
|
|
return res.move_to(*this);
|
|
}
|
|
|
|
//! Compute field of diffusion tensors for edge-preserving smoothing \newinstance.
|
|
CImg<Tfloat> get_diffusion_tensors(const float sharpness=0.7f, const float anisotropy=0.6f,
|
|
const float alpha=0.6f, const float sigma=1.1f, const bool is_sqrt=false) const {
|
|
return CImg<Tfloat>(*this,false).diffusion_tensors(sharpness,anisotropy,alpha,sigma,is_sqrt);
|
|
}
|
|
|
|
//! Estimate displacement field between two images.
|
|
/**
|
|
\param source Reference image.
|
|
\param smoothness Smoothness of estimated displacement field.
|
|
\param precision Precision required for algorithm convergence.
|
|
\param nb_scales Number of scales used to estimate the displacement field.
|
|
\param iteration_max Maximum number of iterations allowed for one scale.
|
|
\param is_backward If false, match I2(X + U(X)) = I1(X), else match I2(X) = I1(X - U(X)).
|
|
\param guide Image used as the initial correspondence estimate for the algorithm.
|
|
'guide' may have a last channel with boolean values (0=false | other=true) that
|
|
tells for each pixel if its correspondence vector is constrained to its initial value (constraint mask).
|
|
**/
|
|
CImg<T>& displacement(const CImg<T>& source, const float smoothness=0.1f, const float precision=5.f,
|
|
const unsigned int nb_scales=0, const unsigned int iteration_max=10000,
|
|
const bool is_backward=false,
|
|
const CImg<floatT>& guide=CImg<floatT>::const_empty()) {
|
|
return get_displacement(source,smoothness,precision,nb_scales,iteration_max,is_backward,guide).
|
|
move_to(*this);
|
|
}
|
|
|
|
//! Estimate displacement field between two images \newinstance.
|
|
CImg<floatT> get_displacement(const CImg<T>& source,
|
|
const float smoothness=0.1f, const float precision=5.f,
|
|
const unsigned int nb_scales=0, const unsigned int iteration_max=10000,
|
|
const bool is_backward=false,
|
|
const CImg<floatT>& guide=CImg<floatT>::const_empty()) const {
|
|
if (is_empty() || !source) return +*this;
|
|
if (!is_sameXYZC(source))
|
|
throw CImgArgumentException(_cimg_instance
|
|
"displacement(): Instance and source image (%u,%u,%u,%u,%p) have "
|
|
"different dimensions.",
|
|
cimg_instance,
|
|
source._width,source._height,source._depth,source._spectrum,source._data);
|
|
if (precision<0)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"displacement(): Invalid specified precision %g "
|
|
"(should be >=0)",
|
|
cimg_instance,
|
|
precision);
|
|
|
|
const bool is_3d = source._depth>1;
|
|
const unsigned int constraint = is_3d?3:2;
|
|
|
|
if (guide &&
|
|
(guide._width!=_width || guide._height!=_height || guide._depth!=_depth || guide._spectrum<constraint))
|
|
throw CImgArgumentException(_cimg_instance
|
|
"displacement(): Specified guide (%u,%u,%u,%u,%p) "
|
|
"has invalid dimensions.",
|
|
cimg_instance,
|
|
guide._width,guide._height,guide._depth,guide._spectrum,guide._data);
|
|
|
|
const unsigned int
|
|
mins = is_3d?cimg::min(_width,_height,_depth):std::min(_width,_height),
|
|
_nb_scales = nb_scales>0?nb_scales:
|
|
(unsigned int)cimg::round(std::log(mins/8.)/std::log(1.5),1,1);
|
|
|
|
const float _precision = (float)std::pow(10.,-(double)precision);
|
|
float sm, sM = source.max_min(sm), tm, tM = max_min(tm);
|
|
const float sdelta = sm==sM?1:(sM - sm), tdelta = tm==tM?1:(tM - tm);
|
|
|
|
CImg<floatT> U, V;
|
|
floatT bound = 0;
|
|
for (int scale = (int)_nb_scales - 1; scale>=0; --scale) {
|
|
const float factor = (float)std::pow(1.5,(double)scale);
|
|
const unsigned int
|
|
_sw = (unsigned int)(_width/factor), sw = _sw?_sw:1,
|
|
_sh = (unsigned int)(_height/factor), sh = _sh?_sh:1,
|
|
_sd = (unsigned int)(_depth/factor), sd = _sd?_sd:1;
|
|
if (sw<5 && sh<5 && (!is_3d || sd<5)) continue; // Skip too small scales
|
|
const CImg<Tfloat>
|
|
I1 = (source.get_resize(sw,sh,sd,-100,2)-=sm)/=sdelta,
|
|
I2 = (get_resize(I1,2)-=tm)/=tdelta;
|
|
if (guide._spectrum>constraint) guide.get_resize(I2._width,I2._height,I2._depth,-100,1).move_to(V);
|
|
if (U) (U*=1.5f).resize(I2._width,I2._height,I2._depth,-100,3);
|
|
else {
|
|
if (guide)
|
|
guide.get_shared_channels(0,is_3d?2:1).get_resize(I2._width,I2._height,I2._depth,-100,2).move_to(U);
|
|
else U.assign(I2._width,I2._height,I2._depth,is_3d?3:2,0);
|
|
}
|
|
|
|
float dt = 2, energy = cimg::type<float>::max();
|
|
const CImgList<Tfloat> dI = is_backward?I1.get_gradient():I2.get_gradient();
|
|
cimg_abort_init;
|
|
|
|
for (unsigned int iteration = 0; iteration<iteration_max; ++iteration) {
|
|
cimg_abort_test;
|
|
float _energy = 0;
|
|
|
|
if (is_3d) { // 3D version
|
|
if (smoothness>=0) // Isotropic regularization
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2)
|
|
cimg_openmp_if(_height*_depth>=(cimg_openmp_sizefactor)*8 &&
|
|
_width>=(cimg_openmp_sizefactor)*16)
|
|
reduction(+:_energy))
|
|
cimg_forYZ(U,y,z) {
|
|
const int
|
|
_p1y = y?y - 1:0, _n1y = y<U.height() - 1?y + 1:y,
|
|
_p1z = z?z - 1:0, _n1z = z<U.depth() - 1?z + 1:z;
|
|
cimg_for3X(U,x) {
|
|
const float
|
|
X = is_backward?x - U(x,y,z,0):x + U(x,y,z,0),
|
|
Y = is_backward?y - U(x,y,z,1):y + U(x,y,z,1),
|
|
Z = is_backward?z - U(x,y,z,2):z + U(x,y,z,2);
|
|
float delta_I = 0, _energy_regul = 0;
|
|
if (is_backward) cimg_forC(I2,c) delta_I+=(float)(I1._linear_atXYZ(X,Y,Z,c) - I2(x,y,z,c));
|
|
else cimg_forC(I2,c) delta_I+=(float)(I1(x,y,z,c) - I2._linear_atXYZ(X,Y,Z,c));
|
|
cimg_forC(U,c) {
|
|
const float
|
|
Ux = 0.5f*(U(_n1x,y,z,c) - U(_p1x,y,z,c)),
|
|
Uy = 0.5f*(U(x,_n1y,z,c) - U(x,_p1y,z,c)),
|
|
Uz = 0.5f*(U(x,y,_n1z,c) - U(x,y,_p1z,c)),
|
|
Uxx = U(_n1x,y,z,c) + U(_p1x,y,z,c),
|
|
Uyy = U(x,_n1y,z,c) + U(x,_p1y,z,c),
|
|
Uzz = U(x,y,_n1z,c) + U(x,y,_p1z,c);
|
|
U(x,y,z,c) = (float)(U(x,y,z,c) + dt*(delta_I*dI[c]._linear_atXYZ(X,Y,Z) +
|
|
smoothness* ( Uxx + Uyy + Uzz)))/(1 + 6*smoothness*dt);
|
|
_energy_regul+=Ux*Ux + Uy*Uy + Uz*Uz;
|
|
}
|
|
if (is_backward) { // Constraint displacement vectors to stay in image
|
|
if (U(x,y,z,0)>x) U(x,y,z,0) = (float)x;
|
|
if (U(x,y,z,1)>y) U(x,y,z,1) = (float)y;
|
|
if (U(x,y,z,2)>z) U(x,y,z,2) = (float)z;
|
|
bound = (float)x - _width; if (U(x,y,z,0)<=bound) U(x,y,z,0) = bound;
|
|
bound = (float)y - _height; if (U(x,y,z,1)<=bound) U(x,y,z,1) = bound;
|
|
bound = (float)z - _depth; if (U(x,y,z,2)<=bound) U(x,y,z,2) = bound;
|
|
} else {
|
|
if (U(x,y,z,0)<-x) U(x,y,z,0) = -(float)x;
|
|
if (U(x,y,z,1)<-y) U(x,y,z,1) = -(float)y;
|
|
if (U(x,y,z,2)<-z) U(x,y,z,2) = -(float)z;
|
|
bound = (float)_width - x; if (U(x,y,z,0)>=bound) U(x,y,z,0) = bound;
|
|
bound = (float)_height - y; if (U(x,y,z,1)>=bound) U(x,y,z,1) = bound;
|
|
bound = (float)_depth - z; if (U(x,y,z,2)>=bound) U(x,y,z,2) = bound;
|
|
}
|
|
_energy+=delta_I*delta_I + smoothness*_energy_regul;
|
|
}
|
|
if (V) cimg_forXYZ(V,_x,_y,_z) if (V(_x,_y,_z,3)) { // Apply constraints
|
|
U(_x,_y,_z,0) = V(_x,_y,_z,0)/factor;
|
|
U(_x,_y,_z,1) = V(_x,_y,_z,1)/factor;
|
|
U(_x,_y,_z,2) = V(_x,_y,_z,2)/factor;
|
|
}
|
|
} else { // Anisotropic regularization
|
|
const float nsmoothness = -smoothness;
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2)
|
|
cimg_openmp_if(_height*_depth>=(cimg_openmp_sizefactor)*8 &&
|
|
_width>=(cimg_openmp_sizefactor)*16)
|
|
reduction(+:_energy))
|
|
cimg_forYZ(U,y,z) {
|
|
const int
|
|
_p1y = y?y - 1:0, _n1y = y<U.height() - 1?y + 1:y,
|
|
_p1z = z?z - 1:0, _n1z = z<U.depth() - 1?z + 1:z;
|
|
cimg_for3X(U,x) {
|
|
const float
|
|
X = is_backward?x - U(x,y,z,0):x + U(x,y,z,0),
|
|
Y = is_backward?y - U(x,y,z,1):y + U(x,y,z,1),
|
|
Z = is_backward?z - U(x,y,z,2):z + U(x,y,z,2);
|
|
float delta_I = 0, _energy_regul = 0;
|
|
if (is_backward) cimg_forC(I2,c) delta_I+=(float)(I1._linear_atXYZ(X,Y,Z,c) - I2(x,y,z,c));
|
|
else cimg_forC(I2,c) delta_I+=(float)(I1(x,y,z,c) - I2._linear_atXYZ(X,Y,Z,c));
|
|
cimg_forC(U,c) {
|
|
const float
|
|
Ux = 0.5f*(U(_n1x,y,z,c) - U(_p1x,y,z,c)),
|
|
Uy = 0.5f*(U(x,_n1y,z,c) - U(x,_p1y,z,c)),
|
|
Uz = 0.5f*(U(x,y,_n1z,c) - U(x,y,_p1z,c)),
|
|
N2 = Ux*Ux + Uy*Uy + Uz*Uz,
|
|
N = std::sqrt(N2),
|
|
N3 = 1e-5f + N2*N,
|
|
coef_a = (1 - Ux*Ux/N2)/N,
|
|
coef_b = -2*Ux*Uy/N3,
|
|
coef_c = -2*Ux*Uz/N3,
|
|
coef_d = (1 - Uy*Uy/N2)/N,
|
|
coef_e = -2*Uy*Uz/N3,
|
|
coef_f = (1 - Uz*Uz/N2)/N,
|
|
Uxx = U(_n1x,y,z,c) + U(_p1x,y,z,c),
|
|
Uyy = U(x,_n1y,z,c) + U(x,_p1y,z,c),
|
|
Uzz = U(x,y,_n1z,c) + U(x,y,_p1z,c),
|
|
Uxy = 0.25f*(U(_n1x,_n1y,z,c) + U(_p1x,_p1y,z,c) - U(_n1x,_p1y,z,c) - U(_n1x,_p1y,z,c)),
|
|
Uxz = 0.25f*(U(_n1x,y,_n1z,c) + U(_p1x,y,_p1z,c) - U(_n1x,y,_p1z,c) - U(_n1x,y,_p1z,c)),
|
|
Uyz = 0.25f*(U(x,_n1y,_n1z,c) + U(x,_p1y,_p1z,c) - U(x,_n1y,_p1z,c) - U(x,_n1y,_p1z,c));
|
|
U(x,y,z,c) = (float)(U(x,y,z,c) + dt*(delta_I*dI[c]._linear_atXYZ(X,Y,Z) +
|
|
nsmoothness* ( coef_a*Uxx + coef_b*Uxy +
|
|
coef_c*Uxz + coef_d*Uyy +
|
|
coef_e*Uyz + coef_f*Uzz ))
|
|
)/(1 + 2*(coef_a + coef_d + coef_f)*nsmoothness*dt);
|
|
_energy_regul+=N;
|
|
}
|
|
if (is_backward) { // Constraint displacement vectors to stay in image
|
|
if (U(x,y,z,0)>x) U(x,y,z,0) = (float)x;
|
|
if (U(x,y,z,1)>y) U(x,y,z,1) = (float)y;
|
|
if (U(x,y,z,2)>z) U(x,y,z,2) = (float)z;
|
|
bound = (float)x - _width; if (U(x,y,z,0)<=bound) U(x,y,z,0) = bound;
|
|
bound = (float)y - _height; if (U(x,y,z,1)<=bound) U(x,y,z,1) = bound;
|
|
bound = (float)z - _depth; if (U(x,y,z,2)<=bound) U(x,y,z,2) = bound;
|
|
} else {
|
|
if (U(x,y,z,0)<-x) U(x,y,z,0) = -(float)x;
|
|
if (U(x,y,z,1)<-y) U(x,y,z,1) = -(float)y;
|
|
if (U(x,y,z,2)<-z) U(x,y,z,2) = -(float)z;
|
|
bound = (float)_width - x; if (U(x,y,z,0)>=bound) U(x,y,z,0) = bound;
|
|
bound = (float)_height - y; if (U(x,y,z,1)>=bound) U(x,y,z,1) = bound;
|
|
bound = (float)_depth - z; if (U(x,y,z,2)>=bound) U(x,y,z,2) = bound;
|
|
}
|
|
_energy+=delta_I*delta_I + nsmoothness*_energy_regul;
|
|
}
|
|
if (V) cimg_forXYZ(V,_x,_y,_z) if (V(_x,_y,_z,3)) { // Apply constraints
|
|
U(_x,_y,_z,0) = V(_x,_y,_z,0)/factor;
|
|
U(_x,_y,_z,1) = V(_x,_y,_z,1)/factor;
|
|
U(_x,_y,_z,2) = V(_x,_y,_z,2)/factor;
|
|
}
|
|
}
|
|
}
|
|
} else { // 2D version
|
|
if (smoothness>=0) // Isotropic regularization
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_height>=(cimg_openmp_sizefactor)*8 &&
|
|
_width>=(cimg_openmp_sizefactor)*16) reduction(+:_energy))
|
|
cimg_forY(U,y) {
|
|
const int _p1y = y?y - 1:0, _n1y = y<U.height() - 1?y + 1:y;
|
|
cimg_for3X(U,x) {
|
|
const float
|
|
X = is_backward?x - U(x,y,0):x + U(x,y,0),
|
|
Y = is_backward?y - U(x,y,1):y + U(x,y,1);
|
|
float delta_I = 0, _energy_regul = 0;
|
|
if (is_backward) cimg_forC(I2,c) delta_I+=(float)(I1._linear_atXY(X,Y,c) - I2(x,y,c));
|
|
else cimg_forC(I2,c) delta_I+=(float)(I1(x,y,c) - I2._linear_atXY(X,Y,c));
|
|
cimg_forC(U,c) {
|
|
const float
|
|
Ux = 0.5f*(U(_n1x,y,c) - U(_p1x,y,c)),
|
|
Uy = 0.5f*(U(x,_n1y,c) - U(x,_p1y,c)),
|
|
Uxx = U(_n1x,y,c) + U(_p1x,y,c),
|
|
Uyy = U(x,_n1y,c) + U(x,_p1y,c);
|
|
U(x,y,c) = (float)(U(x,y,c) + dt*(delta_I*dI[c]._linear_atXY(X,Y) +
|
|
smoothness*( Uxx + Uyy )))/(1 + 4*smoothness*dt);
|
|
_energy_regul+=Ux*Ux + Uy*Uy;
|
|
}
|
|
if (is_backward) { // Constraint displacement vectors to stay in image
|
|
if (U(x,y,0)>x) U(x,y,0) = (float)x;
|
|
if (U(x,y,1)>y) U(x,y,1) = (float)y;
|
|
bound = (float)x - _width; if (U(x,y,0)<=bound) U(x,y,0) = bound;
|
|
bound = (float)y - _height; if (U(x,y,1)<=bound) U(x,y,1) = bound;
|
|
} else {
|
|
if (U(x,y,0)<-x) U(x,y,0) = -(float)x;
|
|
if (U(x,y,1)<-y) U(x,y,1) = -(float)y;
|
|
bound = (float)_width - x; if (U(x,y,0)>=bound) U(x,y,0) = bound;
|
|
bound = (float)_height - y; if (U(x,y,1)>=bound) U(x,y,1) = bound;
|
|
}
|
|
_energy+=delta_I*delta_I + smoothness*_energy_regul;
|
|
}
|
|
if (V) cimg_forXY(V,_x,_y) if (V(_x,_y,2)) { // Apply constraints
|
|
U(_x,_y,0) = V(_x,_y,0)/factor;
|
|
U(_x,_y,1) = V(_x,_y,1)/factor;
|
|
}
|
|
} else { // Anisotropic regularization
|
|
const float nsmoothness = -smoothness;
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_height>=(cimg_openmp_sizefactor)*8 &&
|
|
_width>=(cimg_openmp_sizefactor)*16) reduction(+:_energy))
|
|
cimg_forY(U,y) {
|
|
const int _p1y = y?y - 1:0, _n1y = y<U.height() - 1?y + 1:y;
|
|
cimg_for3X(U,x) {
|
|
const float
|
|
X = is_backward?x - U(x,y,0):x + U(x,y,0),
|
|
Y = is_backward?y - U(x,y,1):y + U(x,y,1);
|
|
float delta_I = 0, _energy_regul = 0;
|
|
if (is_backward) cimg_forC(I2,c) delta_I+=(float)(I1._linear_atXY(X,Y,c) - I2(x,y,c));
|
|
else cimg_forC(I2,c) delta_I+=(float)(I1(x,y,c) - I2._linear_atXY(X,Y,c));
|
|
cimg_forC(U,c) {
|
|
const float
|
|
Ux = 0.5f*(U(_n1x,y,c) - U(_p1x,y,c)),
|
|
Uy = 0.5f*(U(x,_n1y,c) - U(x,_p1y,c)),
|
|
N2 = Ux*Ux + Uy*Uy,
|
|
N = std::sqrt(N2),
|
|
N3 = 1e-5f + N2*N,
|
|
coef_a = Uy*Uy/N3,
|
|
coef_b = -2*Ux*Uy/N3,
|
|
coef_c = Ux*Ux/N3,
|
|
Uxx = U(_n1x,y,c) + U(_p1x,y,c),
|
|
Uyy = U(x,_n1y,c) + U(x,_p1y,c),
|
|
Uxy = 0.25f*(U(_n1x,_n1y,c) + U(_p1x,_p1y,c) - U(_n1x,_p1y,c) - U(_n1x,_p1y,c));
|
|
U(x,y,c) = (float)(U(x,y,c) + dt*(delta_I*dI[c]._linear_atXY(X,Y) +
|
|
nsmoothness*( coef_a*Uxx + coef_b*Uxy + coef_c*Uyy )))/
|
|
(1 + 2*(coef_a + coef_c)*nsmoothness*dt);
|
|
_energy_regul+=N;
|
|
}
|
|
if (is_backward) { // Constraint displacement vectors to stay in image
|
|
if (U(x,y,0)>x) U(x,y,0) = (float)x;
|
|
if (U(x,y,1)>y) U(x,y,1) = (float)y;
|
|
bound = (float)x - _width; if (U(x,y,0)<=bound) U(x,y,0) = bound;
|
|
bound = (float)y - _height; if (U(x,y,1)<=bound) U(x,y,1) = bound;
|
|
} else {
|
|
if (U(x,y,0)<-x) U(x,y,0) = -(float)x;
|
|
if (U(x,y,1)<-y) U(x,y,1) = -(float)y;
|
|
bound = (float)_width - x; if (U(x,y,0)>=bound) U(x,y,0) = bound;
|
|
bound = (float)_height - y; if (U(x,y,1)>=bound) U(x,y,1) = bound;
|
|
}
|
|
_energy+=delta_I*delta_I + nsmoothness*_energy_regul;
|
|
}
|
|
if (V) cimg_forXY(V,_x,_y) if (V(_x,_y,2)) { // Apply constraints
|
|
U(_x,_y,0) = V(_x,_y,0)/factor;
|
|
U(_x,_y,1) = V(_x,_y,1)/factor;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
const float d_energy = (_energy - energy)/(sw*sh*sd);
|
|
if (d_energy<=0 && -d_energy<_precision) break;
|
|
if (d_energy>0) dt*=0.5f;
|
|
energy = _energy;
|
|
}
|
|
}
|
|
return U;
|
|
}
|
|
|
|
//! Compute correspondence map between two images, using a patch-matching algorithm.
|
|
/**
|
|
\param patch_image The image containing the reference patches to match with the instance image.
|
|
\param patch_width Width of the patch used for matching.
|
|
\param patch_height Height of the patch used for matching.
|
|
\param patch_depth Depth of the patch used for matching.
|
|
\param nb_iterations Number of patch-match iterations.
|
|
\param nb_randoms Number of randomization attempts (per pixel).
|
|
\param patch_penalization Penalization factor in score related patch occurrences.
|
|
if negative, also tells that identity result is not avoided.
|
|
\param guide Image used as the initial correspondence estimate for the algorithm.
|
|
'guide' may have a last channel with boolean values (0=false | other=true) that
|
|
tells for each pixel if its correspondence vector is constrained to its initial value (constraint mask).
|
|
\param[out] matching_score Returned as the image of matching scores.
|
|
**/
|
|
template<typename t1, typename t2>
|
|
CImg<T>& matchpatch(const CImg<T>& patch_image,
|
|
const unsigned int patch_width,
|
|
const unsigned int patch_height,
|
|
const unsigned int patch_depth,
|
|
const unsigned int nb_iterations,
|
|
const unsigned int nb_randoms,
|
|
const float patch_penalization,
|
|
const CImg<t1> &guide,
|
|
CImg<t2> &matching_score) {
|
|
return get_matchpatch(patch_image,patch_width,patch_height,patch_depth,
|
|
nb_iterations,nb_randoms,patch_penalization,guide,matching_score).move_to(*this);
|
|
}
|
|
|
|
//! Compute correspondence map between two images, using the patch-match algorithm \newinstance.
|
|
template<typename t1, typename t2>
|
|
CImg<intT> get_matchpatch(const CImg<T>& patch_image,
|
|
const unsigned int patch_width,
|
|
const unsigned int patch_height,
|
|
const unsigned int patch_depth,
|
|
const unsigned int nb_iterations,
|
|
const unsigned int nb_randoms,
|
|
const float patch_penalization,
|
|
const CImg<t1> &guide,
|
|
CImg<t2> &matching_score) const {
|
|
return _matchpatch(patch_image,patch_width,patch_height,patch_depth,
|
|
nb_iterations,nb_randoms,patch_penalization,
|
|
guide,true,matching_score);
|
|
}
|
|
|
|
//! Compute correspondence map between two images, using the patch-match algorithm \overloading.
|
|
template<typename t>
|
|
CImg<T>& matchpatch(const CImg<T>& patch_image,
|
|
const unsigned int patch_width,
|
|
const unsigned int patch_height,
|
|
const unsigned int patch_depth,
|
|
const unsigned int nb_iterations=5,
|
|
const unsigned int nb_randoms=5,
|
|
const float patch_penalization=0,
|
|
const CImg<t> &guide=CImg<t>::const_empty()) {
|
|
return get_matchpatch(patch_image,patch_width,patch_height,patch_depth,
|
|
nb_iterations,nb_randoms,patch_penalization,guide).move_to(*this);
|
|
}
|
|
|
|
//! Compute correspondence map between two images, using the patch-match algorithm \overloading.
|
|
template<typename t>
|
|
CImg<intT> get_matchpatch(const CImg<T>& patch_image,
|
|
const unsigned int patch_width,
|
|
const unsigned int patch_height,
|
|
const unsigned int patch_depth,
|
|
const unsigned int nb_iterations=5,
|
|
const unsigned int nb_randoms=5,
|
|
const float patch_penalization=0,
|
|
const CImg<t> &guide=CImg<t>::const_empty()) const {
|
|
CImg<T> matching_score;
|
|
return _matchpatch(patch_image,patch_width,patch_height,patch_depth,
|
|
nb_iterations,nb_randoms,patch_penalization,guide,false,matching_score);
|
|
}
|
|
|
|
template<typename t1, typename t2>
|
|
CImg<intT> _matchpatch(const CImg<T>& patch_image,
|
|
const unsigned int patch_width,
|
|
const unsigned int patch_height,
|
|
const unsigned int patch_depth,
|
|
const unsigned int nb_iterations,
|
|
const unsigned int nb_randoms,
|
|
const float patch_penalization,
|
|
const CImg<t1> &guide,
|
|
const bool is_matching_score,
|
|
CImg<t2> &matching_score) const {
|
|
if (is_empty()) return CImg<intT>::const_empty();
|
|
if (patch_image._spectrum!=_spectrum)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"matchpatch(): Instance image and specified patch image (%u,%u,%u,%u,%p) "
|
|
"have different spectrums.",
|
|
cimg_instance,
|
|
patch_image._width,patch_image._height,patch_image._depth,patch_image._spectrum,
|
|
patch_image._data);
|
|
if (patch_width>_width || patch_height>_height || patch_depth>_depth)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"matchpatch(): Specified patch size %ux%ux%u is bigger than the dimensions "
|
|
"of the instance image.",
|
|
cimg_instance,patch_width,patch_height,patch_depth);
|
|
if (patch_width>patch_image._width || patch_height>patch_image._height || patch_depth>patch_image._depth)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"matchpatch(): Specified patch size %ux%ux%u is bigger than the dimensions "
|
|
"of the patch image image (%u,%u,%u,%u,%p).",
|
|
cimg_instance,patch_width,patch_height,patch_depth,
|
|
patch_image._width,patch_image._height,patch_image._depth,patch_image._spectrum,
|
|
patch_image._data);
|
|
const unsigned int
|
|
_constraint = patch_image._depth>1?3:2,
|
|
constraint = guide._spectrum>_constraint?_constraint:0;
|
|
|
|
if (guide &&
|
|
(guide._width!=_width || guide._height!=_height || guide._depth!=_depth || guide._spectrum<_constraint))
|
|
throw CImgArgumentException(_cimg_instance
|
|
"matchpatch(): Specified guide (%u,%u,%u,%u,%p) has invalid dimensions "
|
|
"considering instance and patch image (%u,%u,%u,%u,%p).",
|
|
cimg_instance,
|
|
guide._width,guide._height,guide._depth,guide._spectrum,guide._data,
|
|
patch_image._width,patch_image._height,patch_image._depth,patch_image._spectrum,
|
|
patch_image._data);
|
|
|
|
CImg<intT> a_map(_width,_height,_depth,patch_image._depth>1?3:2);
|
|
CImg<ucharT> is_updated(_width,_height,_depth,1,3);
|
|
CImg<floatT> score(_width,_height,_depth), penalty;
|
|
const float _patch_penalization = cimg::abs(patch_penalization);
|
|
const bool allow_identity = patch_penalization>=0;
|
|
if (_patch_penalization!=0)
|
|
penalty.assign(patch_image._width,patch_image._height,patch_image._depth,1,0);
|
|
|
|
const int
|
|
psizew = (int)patch_width, psizew1 = psizew/2, psizew2 = psizew - psizew1 - 1,
|
|
psizeh = (int)patch_height, psizeh1 = psizeh/2, psizeh2 = psizeh - psizeh1 - 1,
|
|
psized = (int)patch_depth, psized1 = psized/2, psized2 = psized - psized1 - 1;
|
|
|
|
// Interleave image buffers to speed up patch comparison (more cache-friendly).
|
|
CImg<T> in_this = get_permute_axes("cxyz");
|
|
in_this._width = _width*_spectrum;
|
|
in_this._height = _height;
|
|
in_this._depth = _depth;
|
|
in_this._spectrum = 1;
|
|
CImg<T> in_patch = patch_image.get_permute_axes("cxyz");
|
|
in_patch._width = patch_image._width*patch_image._spectrum;
|
|
in_patch._height = patch_image._height;
|
|
in_patch._depth = patch_image._depth;
|
|
in_patch._spectrum = 1;
|
|
|
|
if (_depth>1 || patch_image._depth>1) { // 3D version
|
|
|
|
// Initialize correspondence map.
|
|
if (guide)
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(_width,64))
|
|
cimg_forXYZ(*this,x,y,z) { // User-defined initialization
|
|
const int
|
|
cx1 = x<=psizew1?x:(x<width() - psizew2?psizew1:psizew + x - width()), cx2 = psizew - cx1 - 1,
|
|
cy1 = y<=psizeh1?y:(y<height() - psizeh2?psizeh1:psizeh + y - height()), cy2 = psizeh - cy1 - 1,
|
|
cz1 = z<=psized1?z:(z<depth() - psized2?psized1:psized + z - depth()), cz2 = psized - cz1 - 1,
|
|
u = cimg::cut((int)guide(x,y,z,0),cx1,patch_image.width() - 1 - cx2),
|
|
v = cimg::cut((int)guide(x,y,z,1),cy1,patch_image.height() - 1 - cy2),
|
|
w = cimg::cut((int)guide(x,y,z,2),cz1,patch_image.depth() - 1 - cz2);
|
|
a_map(x,y,z,0) = u;
|
|
a_map(x,y,z,1) = v;
|
|
a_map(x,y,z,2) = w;
|
|
score(x,y,z) = _matchpatch(in_this,in_patch,penalty,patch_width,patch_height,patch_depth,_spectrum,
|
|
x - cx1,y - cy1,z - cz1,
|
|
u - cx1,v - cy1,w - cz1,
|
|
u,v,w,0,allow_identity,cimg::type<float>::inf());
|
|
} else cimg_pragma_openmp(parallel cimg_openmp_if_size(_width,64)) {
|
|
cimg_uint64 rng = (cimg::_rand(),cimg::rng());
|
|
#if cimg_use_openmp!=0
|
|
rng+=omp_get_thread_num();
|
|
#endif
|
|
cimg_pragma_openmp(for cimg_openmp_collapse(2))
|
|
cimg_forXYZ(*this,x,y,z) { // Random initialization
|
|
const int
|
|
cx1 = x<=psizew1?x:(x<width() - psizew2?psizew1:psizew + x - width()), cx2 = psizew - cx1 - 1,
|
|
cy1 = y<=psizeh1?y:(y<height() - psizeh2?psizeh1:psizeh + y - height()), cy2 = psizeh - cy1 - 1,
|
|
cz1 = z<=psized1?z:(z<depth() - psized2?psized1:psized + z - depth()), cz2 = psized - cz1 - 1,
|
|
u = (int)cimg::round(cimg::rand(cx1,patch_image.width() - 1 - cx2,&rng)),
|
|
v = (int)cimg::round(cimg::rand(cy1,patch_image.height() - 1 - cy2,&rng)),
|
|
w = (int)cimg::round(cimg::rand(cz1,patch_image.depth() - 1 - cz2,&rng));
|
|
a_map(x,y,z,0) = u;
|
|
a_map(x,y,z,1) = v;
|
|
a_map(x,y,z,2) = w;
|
|
score(x,y,z) = _matchpatch(in_this,in_patch,penalty,patch_width,patch_height,patch_depth,_spectrum,
|
|
x - cx1,y - cy1,z - cz1,
|
|
u - cx1,v - cy1,w - cz1,
|
|
u,v,w,0,allow_identity,cimg::type<float>::inf());
|
|
}
|
|
cimg::srand(rng);
|
|
}
|
|
|
|
// Start iteration loop.
|
|
cimg_abort_init;
|
|
for (unsigned int iter = 0; iter<nb_iterations; ++iter) {
|
|
cimg_abort_test;
|
|
const bool is_backward = iter&1, is_forward = !is_backward;
|
|
const unsigned int cmask = is_backward?1:2, nmask = 3 - cmask;
|
|
|
|
cimg_pragma_openmp(parallel cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*64)) {
|
|
cimg_uint64 rng = (cimg::_rand(),cimg::rng());
|
|
|
|
#if cimg_use_openmp!=0
|
|
rng+=omp_get_thread_num();
|
|
#endif
|
|
cimg_pragma_openmp(for cimg_openmp_collapse(2))
|
|
cimg_forXYZ(*this,X,Y,Z) {
|
|
const int
|
|
x = is_backward?width() - 1 - X:X,
|
|
y = is_backward?height() - 1 - Y:Y,
|
|
z = is_backward?depth() - 1 - Z:Z;
|
|
if (score(x,y,z)<=1e-5 || (constraint && guide(x,y,z,constraint)!=0)) continue;
|
|
const int
|
|
cx1 = x<=psizew1?x:(x<width() - psizew2?psizew1:psizew + x - width()), cx2 = psizew - cx1 - 1,
|
|
cy1 = y<=psizeh1?y:(y<height() - psizeh2?psizeh1:psizeh + y - height()), cy2 = psizeh - cy1 - 1,
|
|
cz1 = z<=psized1?z:(z<depth() - psized2?psized1:psized + z - depth()), cz2 = psized - cz1 - 1,
|
|
xp = x - cx1,
|
|
yp = y - cy1,
|
|
zp = z - cz1;
|
|
|
|
int best_u = a_map(x,y,z,0), best_v = a_map(x,y,z,1), best_w = a_map(x,y,z,2), u, v, w;
|
|
const float best_score0 = score(x,y,z);
|
|
float best_score = best_score0, s;
|
|
|
|
if (is_forward && x>0 && (is_updated(x - 1,y,z)&cmask)) { // Compare with left neighbor
|
|
u = a_map(x - 1,y,z,0);
|
|
v = a_map(x - 1,y,z,1);
|
|
w = a_map(x - 1,y,z,2);
|
|
if (u>=cx1 - 1 && u<patch_image.width() - 1 - cx2 &&
|
|
v>=cy1 && v<patch_image.height() - cy2 &&
|
|
w>=cz1 && w<patch_image.depth() - cz2) {
|
|
s = _matchpatch(in_this,in_patch,penalty,patch_width,patch_height,patch_depth,_spectrum,
|
|
xp,yp,zp,u + 1 - cx1,v - cy1,w - cz1,
|
|
u,v,w,_patch_penalization,allow_identity,best_score);
|
|
if (s<best_score) { best_u = u + 1; best_v = v; best_w = w; best_score = s; }
|
|
}
|
|
}
|
|
if (is_forward && y>0 && (is_updated(x,y - 1,z)&cmask)) { // Compare with up neighbor
|
|
u = a_map(x,y - 1,z,0);
|
|
v = a_map(x,y - 1,z,1);
|
|
w = a_map(x,y - 1,z,2);
|
|
if (u>=cx1 && u<patch_image.width() - cx2 &&
|
|
v>=cy1 - 1 && v<patch_image.height() - 1 - cy2 &&
|
|
w>=cz1 && w<patch_image.depth() - cz2) {
|
|
s = _matchpatch(in_this,in_patch,penalty,patch_width,patch_height,patch_depth,_spectrum,
|
|
xp,yp,zp,u - cx1,v + 1 - cy1,w - cz1,
|
|
u,v,w,_patch_penalization,allow_identity,best_score);
|
|
if (s<best_score) { best_u = u; best_v = v + 1; best_w = w; best_score = s; }
|
|
}
|
|
}
|
|
if (is_forward && z>0 && (is_updated(x,y,z - 1)&cmask)) { // Compare with backward neighbor
|
|
u = a_map(x,y,z - 1,0);
|
|
v = a_map(x,y,z - 1,1);
|
|
w = a_map(x,y,z - 1,2);
|
|
if (u>=cx1 && u<patch_image.width() - cx2 &&
|
|
v>=cy1 && v<patch_image.height() - cy2 &&
|
|
w>=cz1 - 1 && w<patch_image.depth() - 1 - cz2) {
|
|
s = _matchpatch(in_this,in_patch,penalty,patch_width,patch_height,patch_depth,_spectrum,
|
|
xp,yp,zp,u - cx1,v - cy1,w + 1 - cz1,
|
|
u,v,w,_patch_penalization,allow_identity,best_score);
|
|
if (s<best_score) { best_u = u; best_v = v; best_w = w + 1; best_score = s; }
|
|
}
|
|
}
|
|
if (is_backward && x<width() - 1 && (is_updated(x + 1,y,z)&cmask)) { // Compare with right neighbor
|
|
u = a_map(x + 1,y,z,0);
|
|
v = a_map(x + 1,y,z,1);
|
|
w = a_map(x + 1,y,z,2);
|
|
if (u>=cx1 + 1 && u<patch_image.width() + 1 - cx2 &&
|
|
v>=cy1 && v<patch_image.height() - cy2 &&
|
|
w>=cz1 && w<patch_image.depth() - cz2) {
|
|
s = _matchpatch(in_this,in_patch,penalty,patch_width,patch_height,patch_depth,_spectrum,
|
|
xp,yp,zp,u - 1 - cx1,v - cy1,w - cz1,
|
|
u,v,w,_patch_penalization,allow_identity,best_score);
|
|
if (s<best_score) { best_u = u - 1; best_v = v; best_w = w; best_score = s; }
|
|
}
|
|
}
|
|
if (is_backward && y<height() - 1 && (is_updated(x,y + 1,z)&cmask)) { // Compare with bottom neighbor
|
|
u = a_map(x,y + 1,z,0);
|
|
v = a_map(x,y + 1,z,1);
|
|
w = a_map(x,y + 1,z,2);
|
|
if (u>=cx1 && u<patch_image.width() - cx2 &&
|
|
v>=cy1 + 1 && v<patch_image.height() + 1 - cy2 &&
|
|
w>=cz1 && w<patch_image.depth() - cz2) {
|
|
s = _matchpatch(in_this,in_patch,penalty,patch_width,patch_height,patch_depth,_spectrum,
|
|
xp,yp,zp,u - cx1,v - 1 - cy1,w - cz1,
|
|
u,v,w,_patch_penalization,allow_identity,best_score);
|
|
if (s<best_score) { best_u = u; best_v = v - 1; best_w = w; best_score = s; }
|
|
}
|
|
}
|
|
if (is_backward && z<depth() - 1 && (is_updated(x,y,z + 1)&cmask)) { // Compare with forward neighbor
|
|
u = a_map(x,y,z + 1,0);
|
|
v = a_map(x,y,z + 1,1);
|
|
w = a_map(x,y,z + 1,2);
|
|
if (u>=cx1 && u<patch_image.width() - cx2 &&
|
|
v>=cy1 && v<patch_image.height() - cy2 &&
|
|
w>=cz1 + 1 && w<patch_image.depth() + 1 - cz2) {
|
|
s = _matchpatch(in_this,in_patch,penalty,patch_width,patch_height,patch_depth,_spectrum,
|
|
xp,yp,zp,u - cx1,v - cy1,w - 1 - cz1,
|
|
u,v,w,_patch_penalization,allow_identity,best_score);
|
|
if (s<best_score) { best_u = u; best_v = v; best_w = w - 1; best_score = s; }
|
|
}
|
|
}
|
|
|
|
float
|
|
dw = (float)patch_image.width(),
|
|
dh = (float)patch_image.height(),
|
|
dd = (float)patch_image.depth();
|
|
for (unsigned int i = 0; i<nb_randoms; ++i) {
|
|
u = (int)cimg::round(cimg::rand(std::max((float)cx1,best_u - dw),
|
|
std::min(patch_image.width() - 1.f - cx2,best_u + dw),&rng));
|
|
v = (int)cimg::round(cimg::rand(std::max((float)cy1,best_v - dh),
|
|
std::min(patch_image.height() - 1.f - cy2,best_v + dh),&rng));
|
|
w = (int)cimg::round(cimg::rand(std::max((float)cz1,best_w - dd),
|
|
std::min(patch_image.depth() - 1.f - cz2,best_w + dd),&rng));
|
|
if (u!=best_u || v!=best_v || w!=best_w) {
|
|
s = _matchpatch(in_this,in_patch,penalty,patch_width,patch_height,patch_depth,_spectrum,
|
|
xp,yp,zp,u - cx1,v - cy1,w - cz1,
|
|
u,v,w,_patch_penalization,allow_identity,best_score);
|
|
if (s<best_score) { best_u = u; best_v = v; best_w = w; best_score = s; }
|
|
dw = std::max(5.f,dw*0.5f); dh = std::max(5.f,dh*0.5f); dd = std::max(5.f,dd*0.5f);
|
|
}
|
|
}
|
|
|
|
if (best_score<best_score0) {
|
|
if (_patch_penalization!=0) {
|
|
float &p_penalty = penalty(a_map(x,y,z,0),a_map(x,y,z,1),a_map(x,y,z,2));
|
|
if (p_penalty) cimg_pragma_openmp(atomic) --p_penalty;
|
|
}
|
|
a_map(x,y,z,0) = best_u;
|
|
a_map(x,y,z,1) = best_v;
|
|
a_map(x,y,z,2) = best_w;
|
|
score(x,y,z) = best_score;
|
|
is_updated(x,y,z) = 3;
|
|
} else is_updated(x,y,z)&=~nmask;
|
|
if (_patch_penalization!=0) cimg_pragma_openmp(atomic) ++penalty(best_u,best_v,best_w);
|
|
}
|
|
cimg::srand(rng);
|
|
}
|
|
|
|
// Update score according to new penalties.
|
|
if (penalty)
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*64))
|
|
cimg_forXYZ(score,x,y,z) {
|
|
const float p_score = score(x,y,z);
|
|
const int
|
|
cx1 = x<=psizew1?x:(x<width() - psizew2?psizew1:psizew + x - width()),
|
|
cy1 = y<=psizeh1?y:(y<height() - psizeh2?psizeh1:psizeh + y - height()),
|
|
cz1 = z<=psized1?z:(z<depth() - psized2?psized1:psized + z - depth()),
|
|
xp = x - cx1,
|
|
yp = y - cy1,
|
|
zp = z - cz1,
|
|
u = a_map(x,y,z,0),
|
|
v = a_map(x,y,z,1),
|
|
w = a_map(x,y,z,2);
|
|
const float n_score = _matchpatch(in_this,in_patch,penalty,patch_width,patch_height,patch_depth,_spectrum,
|
|
xp,yp,zp,u - cx1,v - cy1,w - cz1,
|
|
u,v,w,_patch_penalization,allow_identity,cimg::type<float>::inf());
|
|
if (n_score!=p_score) { score(x,y,z) = n_score; is_updated(x,y) = 3; }
|
|
}
|
|
}
|
|
|
|
} else { // 2D version
|
|
|
|
// Initialize correspondence map.
|
|
if (guide)
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(_width,64))
|
|
cimg_forXY(*this,x,y) { // User-defined initialization
|
|
const int
|
|
cx1 = x<=psizew1?x:(x<width() - psizew2?psizew1:psizew + x - width()), cx2 = psizew - cx1 - 1,
|
|
cy1 = y<=psizeh1?y:(y<height() - psizeh2?psizeh1:psizeh + y - height()), cy2 = psizeh - cy1 - 1,
|
|
u = cimg::cut((int)guide(x,y,0),cx1,patch_image.width() - 1 - cx2),
|
|
v = cimg::cut((int)guide(x,y,1),cy1,patch_image.height() - 1 - cy2);
|
|
a_map(x,y,0) = u;
|
|
a_map(x,y,1) = v;
|
|
score(x,y) = _matchpatch(in_this,in_patch,penalty,patch_width,patch_height,_spectrum,
|
|
x - cx1,y - cy1,u - cx1,v - cy1,
|
|
u,v,0,allow_identity,cimg::type<float>::inf());
|
|
} else cimg_pragma_openmp(parallel cimg_openmp_if_size(_width,64)) {
|
|
cimg_uint64 rng = (cimg::_rand(),cimg::rng());
|
|
|
|
#if cimg_use_openmp!=0
|
|
rng+=omp_get_thread_num();
|
|
#endif
|
|
cimg_pragma_openmp(for)
|
|
cimg_forXY(*this,x,y) { // Random initialization
|
|
const int
|
|
cx1 = x<=psizew1?x:(x<width() - psizew2?psizew1:psizew + x - width()), cx2 = psizew - cx1 - 1,
|
|
cy1 = y<=psizeh1?y:(y<height() - psizeh2?psizeh1:psizeh + y - height()), cy2 = psizeh - cy1 - 1,
|
|
u = (int)cimg::round(cimg::rand(cx1,patch_image.width() - 1 - cx2,&rng)),
|
|
v = (int)cimg::round(cimg::rand(cy1,patch_image.height() - 1 - cy2,&rng));
|
|
a_map(x,y,0) = u;
|
|
a_map(x,y,1) = v;
|
|
score(x,y) = _matchpatch(in_this,in_patch,penalty,patch_width,patch_height,_spectrum,
|
|
x - cx1,y - cy1,u - cx1,v - cy1,
|
|
u,v,0,allow_identity,cimg::type<float>::inf());
|
|
}
|
|
cimg::srand(rng);
|
|
}
|
|
|
|
// Start iteration loop.
|
|
cimg_abort_init;
|
|
for (unsigned int iter = 0; iter<nb_iterations; ++iter) {
|
|
cimg_abort_test;
|
|
const bool is_backward = iter&1, is_forward = !is_backward;
|
|
const unsigned int cmask = is_backward?1:2, nmask = 3 - cmask;
|
|
|
|
cimg_pragma_openmp(parallel cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*64)) {
|
|
cimg_uint64 rng = (cimg::_rand(),cimg::rng());
|
|
|
|
#if cimg_use_openmp!=0
|
|
rng+=omp_get_thread_num();
|
|
#endif
|
|
cimg_pragma_openmp(for)
|
|
cimg_forXY(*this,X,Y) {
|
|
const int
|
|
x = is_backward?width() - 1 - X:X,
|
|
y = is_backward?height() - 1 - Y:Y;
|
|
if (score(x,y)<=1e-5 || (constraint && guide(x,y,constraint)!=0)) continue;
|
|
const int
|
|
cx1 = x<=psizew1?x:(x<width() - psizew2?psizew1:psizew + x - width()), cx2 = psizew - cx1 - 1,
|
|
cy1 = y<=psizeh1?y:(y<height() - psizeh2?psizeh1:psizeh + y - height()), cy2 = psizeh - cy1 - 1,
|
|
xp = x - cx1,
|
|
yp = y - cy1;
|
|
|
|
int best_u = a_map(x,y,0), best_v = a_map(x,y,1), u, v;
|
|
const float best_score0 = score(x,y);
|
|
float best_score = best_score0, s;
|
|
|
|
if (is_forward && x>0 && (is_updated(x - 1,y)&cmask)) { // Compare with left neighbor
|
|
u = a_map(x - 1,y,0);
|
|
v = a_map(x - 1,y,1);
|
|
if (u>=cx1 - 1 && u<patch_image.width() - 1 - cx2 &&
|
|
v>=cy1 && v<patch_image.height() - cy2) {
|
|
s = _matchpatch(in_this,in_patch,penalty,patch_width,patch_height,_spectrum,
|
|
xp,yp,u + 1 - cx1,v - cy1,
|
|
u,v,_patch_penalization,allow_identity,best_score);
|
|
if (s<best_score) { best_u = u + 1; best_v = v; best_score = s; }
|
|
}
|
|
}
|
|
if (is_forward && y>0 && (is_updated(x,y - 1)&cmask)) { // Compare with up neighbor
|
|
u = a_map(x,y - 1,0);
|
|
v = a_map(x,y - 1,1);
|
|
if (u>=cx1 && u<patch_image.width() - cx2 &&
|
|
v>=cy1 - 1 && v<patch_image.height() - 1 - cy2) {
|
|
s = _matchpatch(in_this,in_patch,penalty,patch_width,patch_height,_spectrum,
|
|
xp,yp,u - cx1,v + 1 - cy1,
|
|
u,v,_patch_penalization,allow_identity,best_score);
|
|
if (s<best_score) { best_u = u; best_v = v + 1; best_score = s; }
|
|
}
|
|
}
|
|
if (is_backward && x<width() - 1 && (is_updated(x + 1,y)&cmask)) { // Compare with right neighbor
|
|
u = a_map(x + 1,y,0);
|
|
v = a_map(x + 1,y,1);
|
|
if (u>=cx1 + 1 && u<patch_image.width() + 1 - cx2 &&
|
|
v>=cy1 && v<patch_image.height() - cy2) {
|
|
s = _matchpatch(in_this,in_patch,penalty,patch_width,patch_height,_spectrum,
|
|
xp,yp,u - 1 - cx1,v - cy1,
|
|
u,v,_patch_penalization,allow_identity,best_score);
|
|
if (s<best_score) { best_u = u - 1; best_v = v; best_score = s; }
|
|
}
|
|
}
|
|
if (is_backward && y<height() - 1 && (is_updated(x,y + 1)&cmask)) { // Compare with bottom neighbor
|
|
u = a_map(x,y + 1,0);
|
|
v = a_map(x,y + 1,1);
|
|
if (u>=cx1 && u<patch_image.width() - cx2 &&
|
|
v>=cy1 + 1 && v<patch_image.height() + 1 - cy2) {
|
|
s = _matchpatch(in_this,in_patch,penalty,patch_width,patch_height,_spectrum,
|
|
xp,yp,u - cx1,v - 1 - cy1,
|
|
u,v,_patch_penalization,allow_identity,best_score);
|
|
if (s<best_score) { best_u = u; best_v = v - 1; best_score = s; }
|
|
}
|
|
}
|
|
|
|
float
|
|
dw = (float)patch_image.width(),
|
|
dh = (float)patch_image.height();
|
|
for (unsigned int i = 0; i<nb_randoms; ++i) {
|
|
u = (int)cimg::round(cimg::rand(std::max((float)cx1,best_u - dw),
|
|
std::min(patch_image.width() - 1.f - cx2,best_u + dw),&rng));
|
|
v = (int)cimg::round(cimg::rand(std::max((float)cy1,best_v - dh),
|
|
std::min(patch_image.height() - 1.f - cy2,best_v + dh),&rng));
|
|
if (u!=best_u || v!=best_v) {
|
|
s = _matchpatch(in_this,in_patch,penalty,patch_width,patch_height,_spectrum,
|
|
xp,yp,u - cx1,v - cy1,
|
|
u,v,_patch_penalization,allow_identity,best_score);
|
|
if (s<best_score) { best_u = u; best_v = v; best_score = s; }
|
|
dw = std::max(5.f,dw*0.5f); dh = std::max(5.f,dh*0.5f);
|
|
}
|
|
}
|
|
|
|
if (best_score<best_score0) {
|
|
if (_patch_penalization!=0) {
|
|
float &p_penalty = penalty(a_map(x,y,0),a_map(x,y,1));
|
|
if (p_penalty) cimg_pragma_openmp(atomic) --p_penalty;
|
|
}
|
|
a_map(x,y,0) = best_u;
|
|
a_map(x,y,1) = best_v;
|
|
score(x,y) = best_score;
|
|
is_updated(x,y) = 3;
|
|
} else is_updated(x,y)&=~nmask;
|
|
if (_patch_penalization!=0) cimg_pragma_openmp(atomic) ++penalty(best_u,best_v);
|
|
}
|
|
cimg::srand(rng);
|
|
}
|
|
|
|
// Update score according to new penalties.
|
|
if (penalty)
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*64))
|
|
cimg_forXY(score,x,y) {
|
|
const float p_score = score(x,y);
|
|
const int
|
|
cx1 = x<=psizew1?x:(x<width() - psizew2?psizew1:psizew + x - width()),
|
|
cy1 = y<=psizeh1?y:(y<height() - psizeh2?psizeh1:psizeh + y - height()),
|
|
xp = x - cx1,
|
|
yp = y - cy1,
|
|
u = a_map(x,y,0),
|
|
v = a_map(x,y,1);
|
|
const float n_score = _matchpatch(in_this,in_patch,penalty,patch_width,patch_height,_spectrum,
|
|
xp,yp,u - cx1,v - cy1,
|
|
u,v,_patch_penalization,allow_identity,cimg::type<float>::inf());
|
|
if (n_score!=p_score) { score(x,y) = n_score; is_updated(x,y) = 3; }
|
|
}
|
|
}
|
|
}
|
|
|
|
if (is_matching_score) score.move_to(matching_score);
|
|
return a_map;
|
|
}
|
|
|
|
// Compute SSD between two patches in different images.
|
|
static float _matchpatch(const CImg<T>& img1, const CImg<T>& img2, const CImg<floatT>& penalty,
|
|
const unsigned int psizew, const unsigned int psizeh,
|
|
const unsigned int psized, const unsigned int psizec,
|
|
const int x1, const int y1, const int z1,
|
|
const int x2, const int y2, const int z2,
|
|
const int xc, const int yc, const int zc,
|
|
const float patch_penalization,
|
|
const bool allow_identity,
|
|
const float max_score) { // 3D version
|
|
if (!allow_identity && cimg::hypot((float)x1 - x2,(float)y1 - y2,(float)z1 - z2)<patch_penalization)
|
|
return cimg::type<float>::inf();
|
|
const T *p1 = img1.data(x1*psizec,y1,z1), *p2 = img2.data(x2*psizec,y2,z2);
|
|
const unsigned int psizewc = psizew*psizec;
|
|
const ulongT
|
|
offx1 = (ulongT)img1._width - psizewc,
|
|
offx2 = (ulongT)img2._width - psizewc,
|
|
offy1 = (ulongT)img1._width*img1._height - (ulongT)psizeh*img1._width,
|
|
offy2 = (ulongT)img2._width*img2._height - (ulongT)psizeh*img2._width;
|
|
float ssd = 0;
|
|
for (unsigned int k = 0; k<psized; ++k) {
|
|
for (unsigned int j = 0; j<psizeh; ++j) {
|
|
for (unsigned int i = 0; i<psizewc; ++i)
|
|
ssd += cimg::sqr((Tfloat)*(p1++) - *(p2++));
|
|
if (ssd>max_score) return max_score;
|
|
p1+=offx1; p2+=offx2;
|
|
}
|
|
p1+=offy1; p2+=offy2;
|
|
}
|
|
return patch_penalization==0?ssd:cimg::sqr(std::sqrt(ssd) +
|
|
patch_penalization*psizewc*psizeh*psized*penalty(xc,yc,zc)/100);
|
|
}
|
|
|
|
static float _matchpatch(const CImg<T>& img1, const CImg<T>& img2, const CImg<floatT>& penalty,
|
|
const unsigned int psizew, const unsigned int psizeh, const unsigned int psizec,
|
|
const int x1, const int y1,
|
|
const int x2, const int y2,
|
|
const int xc, const int yc,
|
|
const float patch_penalization,
|
|
const bool allow_identity,
|
|
const float max_score) { // 2D version
|
|
if (!allow_identity && cimg::hypot((float)x1-x2,(float)y1-y2)<patch_penalization)
|
|
return cimg::type<float>::inf();
|
|
const T *p1 = img1.data(x1*psizec,y1), *p2 = img2.data(x2*psizec,y2);
|
|
const unsigned int psizewc = psizew*psizec;
|
|
const ulongT
|
|
offx1 = (ulongT)img1._width - psizewc,
|
|
offx2 = (ulongT)img2._width - psizewc;
|
|
float ssd = 0;
|
|
for (unsigned int j = 0; j<psizeh; ++j) {
|
|
for (unsigned int i = 0; i<psizewc; ++i)
|
|
ssd += cimg::sqr((Tfloat)*(p1++) - *(p2++));
|
|
if (ssd>max_score) return max_score;
|
|
p1+=offx1; p2+=offx2;
|
|
}
|
|
return patch_penalization==0?ssd:cimg::sqr(std::sqrt(ssd) +
|
|
patch_penalization*psizewc*psizeh*penalty(xc,yc)/100);
|
|
}
|
|
|
|
//! Compute Euclidean distance function to a specified value.
|
|
/**
|
|
\param value Reference value.
|
|
\param metric Type of metric. Can be <tt>{ 0=Chebyshev | 1=Manhattan | 2=Euclidean | 3=Squared-euclidean }</tt>.
|
|
\note
|
|
The distance transform implementation has been submitted by A. Meijster, and implements
|
|
the article 'W.H. Hesselink, A. Meijster, J.B.T.M. Roerdink,
|
|
"A general algorithm for computing distance transforms in linear time.",
|
|
In: Mathematical Morphology and its Applications to Image and Signal Processing,
|
|
J. Goutsias, L. Vincent, and D.S. Bloomberg (eds.), Kluwer, 2000, pp. 331-340.'
|
|
The submitted code has then been modified to fit CImg coding style and constraints.
|
|
**/
|
|
CImg<T>& distance(const T& value, const unsigned int metric=2) {
|
|
if (is_empty()) return *this;
|
|
if (cimg::type<Tint>::string()!=pixel_type()) // For datatype < int
|
|
return CImg<Tint>(*this,false).distance((Tint)value,metric).
|
|
cut((Tint)cimg::type<T>::min(),(Tint)cimg::type<T>::max()).move_to(*this);
|
|
bool is_value = false;
|
|
cimg_for(*this,ptr,T) *ptr = *ptr==value?is_value=true,(T)0:(T)std::max(0,99999999); // (avoid VC++ warning)
|
|
if (!is_value) return fill(cimg::type<T>::max());
|
|
switch (metric) {
|
|
case 0 : return _distance_core(_distance_sep_cdt,_distance_dist_cdt); // Chebyshev
|
|
case 1 : return _distance_core(_distance_sep_mdt,_distance_dist_mdt); // Manhattan
|
|
case 3 : return _distance_core(_distance_sep_edt,_distance_dist_edt); // Squared Euclidean
|
|
default : return _distance_core(_distance_sep_edt,_distance_dist_edt).sqrt(); // Euclidean
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Compute distance to a specified value \newinstance.
|
|
CImg<Tfloat> get_distance(const T& value, const unsigned int metric=2) const {
|
|
return CImg<Tfloat>(*this,false).distance((Tfloat)value,metric);
|
|
}
|
|
|
|
static longT _distance_sep_edt(const longT i, const longT u, const longT *const g) {
|
|
return (u*u - i*i + g[u] - g[i])/(2*(u - i));
|
|
}
|
|
|
|
static longT _distance_dist_edt(const longT x, const longT i, const longT *const g) {
|
|
return (x - i)*(x - i) + g[i];
|
|
}
|
|
|
|
static longT _distance_sep_mdt(const longT i, const longT u, const longT *const g) {
|
|
return (u - i<=g[u] - g[i]?999999999:(g[u] - g[i] + u + i)/2);
|
|
}
|
|
|
|
static longT _distance_dist_mdt(const longT x, const longT i, const longT *const g) {
|
|
return (x<i?i - x:x - i) + g[i];
|
|
}
|
|
|
|
static longT _distance_sep_cdt(const longT i, const longT u, const longT *const g) {
|
|
const longT h = (i + u)/2;
|
|
if (g[i]<=g[u]) { return h<i + g[u]?i + g[u]:h; }
|
|
return h<u - g[i]?h:u - g[i];
|
|
}
|
|
|
|
static longT _distance_dist_cdt(const longT x, const longT i, const longT *const g) {
|
|
const longT d = x<i?i - x:x - i;
|
|
return d<g[i]?g[i]:d;
|
|
}
|
|
|
|
static void _distance_scan(const unsigned int len,
|
|
const longT *const g,
|
|
longT (*const sep)(const longT, const longT, const longT *const),
|
|
longT (*const f)(const longT, const longT, const longT *const),
|
|
longT *const s,
|
|
longT *const t,
|
|
longT *const dt) {
|
|
longT q = s[0] = t[0] = 0;
|
|
for (int u = 1; u<(int)len; ++u) { // Forward scan
|
|
while ((q>=0) && f(t[q],s[q],g)>f(t[q],u,g)) { --q; }
|
|
if (q<0) { q = 0; s[0] = u; }
|
|
else { const longT w = 1 + sep(s[q], u, g); if (w<(longT)len) { ++q; s[q] = u; t[q] = w; }}
|
|
}
|
|
for (int u = (int)len - 1; u>=0; --u) { dt[u] = f(u,s[q],g); if (u==t[q]) --q; } // Backward scan
|
|
}
|
|
|
|
CImg<T>& _distance_core(longT (*const sep)(const longT, const longT, const longT *const),
|
|
longT (*const f)(const longT, const longT, const longT *const)) {
|
|
// Check for g++ 4.9.X, as OpenMP seems to crash for this particular function. I have no clues why.
|
|
#define cimg_is_gcc49x (__GNUC__==4 && __GNUC_MINOR__==9)
|
|
|
|
const ulongT wh = (ulongT)_width*_height;
|
|
#if cimg_use_openmp!=0 && !cimg_is_gcc49x
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_spectrum>=2))
|
|
#endif
|
|
cimg_forC(*this,c) {
|
|
CImg<longT> g(_width), dt(_width), s(_width), t(_width);
|
|
CImg<T> img = get_shared_channel(c);
|
|
#if cimg_use_openmp!=0 && !cimg_is_gcc49x
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*512 &&
|
|
_height*_depth>=16)
|
|
firstprivate(g,dt,s,t))
|
|
#endif
|
|
cimg_forYZ(*this,y,z) { // Over X-direction
|
|
cimg_forX(*this,x) g[x] = (longT)img(x,y,z,0,wh);
|
|
_distance_scan(_width,g,sep,f,s,t,dt);
|
|
cimg_forX(*this,x) img(x,y,z,0,wh) = (T)dt[x];
|
|
}
|
|
if (_height>1) {
|
|
g.assign(_height); dt.assign(_height); s.assign(_height); t.assign(_height);
|
|
#if cimg_use_openmp!=0 && !cimg_is_gcc49x
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2)
|
|
cimg_openmp_if(_height>=(cimg_openmp_sizefactor)*512 && _width*_depth>=16)
|
|
firstprivate(g,dt,s,t))
|
|
#endif
|
|
cimg_forXZ(*this,x,z) { // Over Y-direction
|
|
cimg_forY(*this,y) g[y] = (longT)img(x,y,z,0,wh);
|
|
_distance_scan(_height,g,sep,f,s,t,dt);
|
|
cimg_forY(*this,y) img(x,y,z,0,wh) = (T)dt[y];
|
|
}
|
|
}
|
|
if (_depth>1) {
|
|
g.assign(_depth); dt.assign(_depth); s.assign(_depth); t.assign(_depth);
|
|
#if cimg_use_openmp!=0 && !cimg_is_gcc49x
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2)
|
|
cimg_openmp_if(_depth>=(cimg_openmp_sizefactor)*512 && _width*_height>=16)
|
|
firstprivate(g,dt,s,t))
|
|
#endif
|
|
cimg_forXY(*this,x,y) { // Over Z-direction
|
|
cimg_forZ(*this,z) g[z] = (longT)img(x,y,z,0,wh);
|
|
_distance_scan(_depth,g,sep,f,s,t,dt);
|
|
cimg_forZ(*this,z) img(x,y,z,0,wh) = (T)dt[z];
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Compute chamfer distance to a specified value, with a custom metric.
|
|
/**
|
|
\param value Reference value.
|
|
\param metric_mask Metric mask.
|
|
\note The algorithm code has been initially proposed by A. Meijster, and modified by D. Tschumperlé.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& distance(const T& value, const CImg<t>& metric_mask) {
|
|
if (is_empty()) return *this;
|
|
bool is_value = false;
|
|
cimg_for(*this,ptr,T) *ptr = *ptr==value?is_value=true,0:(T)999999999;
|
|
if (!is_value) return fill(cimg::type<T>::max());
|
|
const ulongT wh = (ulongT)_width*_height;
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_spectrum>=2))
|
|
cimg_forC(*this,c) {
|
|
CImg<T> img = get_shared_channel(c);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(3)
|
|
cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*1024))
|
|
cimg_forXYZ(metric_mask,dx,dy,dz) {
|
|
const t weight = metric_mask(dx,dy,dz);
|
|
if (weight) {
|
|
for (int z = dz, nz = 0; z<depth(); ++z,++nz) { // Forward scan
|
|
for (int y = dy , ny = 0; y<height(); ++y,++ny) {
|
|
for (int x = dx, nx = 0; x<width(); ++x,++nx) {
|
|
const T dd = img(nx,ny,nz,0,wh) + weight;
|
|
if (dd<img(x,y,z,0,wh)) img(x,y,z,0,wh) = dd;
|
|
}
|
|
}
|
|
}
|
|
for (int z = depth() - 1 - dz, nz = depth() - 1; z>=0; --z,--nz) { // Backward scan
|
|
for (int y = height() - 1 - dy, ny = height() - 1; y>=0; --y,--ny) {
|
|
for (int x = width() - 1 - dx, nx = width() - 1; x>=0; --x,--nx) {
|
|
const T dd = img(nx,ny,nz,0,wh) + weight;
|
|
if (dd<img(x,y,z,0,wh)) img(x,y,z,0,wh) = dd;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Compute chamfer distance to a specified value, with a custom metric \newinstance.
|
|
template<typename t>
|
|
CImg<Tfloat> get_distance(const T& value, const CImg<t>& metric_mask) const {
|
|
return CImg<Tfloat>(*this,false).distance(value,metric_mask);
|
|
}
|
|
|
|
//! Compute distance to a specified value, according to a custom metric (use dijkstra algorithm).
|
|
/**
|
|
\param value Reference value.
|
|
\param metric Field of distance potentials.
|
|
\param is_high_connectivity Tells if the algorithm uses low or high connectivity.
|
|
\param[out] return_path An image containing the nodes of the minimal path.
|
|
**/
|
|
template<typename t, typename to>
|
|
CImg<T>& distance_dijkstra(const T& value, const CImg<t>& metric, const bool is_high_connectivity,
|
|
CImg<to>& return_path) {
|
|
return get_distance_dijkstra(value,metric,is_high_connectivity,return_path).move_to(*this);
|
|
}
|
|
|
|
//! Compute distance map to a specified value, according to a custom metric (use dijkstra algorithm) \newinstance.
|
|
template<typename t, typename to>
|
|
CImg<typename cimg::superset<t,long>::type>
|
|
get_distance_dijkstra(const T& value, const CImg<t>& metric, const bool is_high_connectivity,
|
|
CImg<to>& return_path) const {
|
|
if (is_empty()) return return_path.assign();
|
|
if (!is_sameXYZ(metric))
|
|
throw CImgArgumentException(_cimg_instance
|
|
"distance_dijkstra(): image instance and metric map (%u,%u,%u,%u) "
|
|
"have incompatible dimensions.",
|
|
cimg_instance,
|
|
metric._width,metric._height,metric._depth,metric._spectrum);
|
|
typedef typename cimg::superset<t,long>::type td; // Type used for computing cumulative distances
|
|
CImg<td> result(_width,_height,_depth,_spectrum), Q;
|
|
CImg<boolT> is_queued(_width,_height,_depth,1);
|
|
if (return_path) return_path.assign(_width,_height,_depth,_spectrum);
|
|
|
|
cimg_forC(*this,c) {
|
|
const CImg<T> img = get_shared_channel(c);
|
|
const CImg<t> met = metric.get_shared_channel(c%metric._spectrum);
|
|
CImg<td> res = result.get_shared_channel(c);
|
|
CImg<to> path = return_path?return_path.get_shared_channel(c):CImg<to>();
|
|
unsigned int sizeQ = 0;
|
|
|
|
// Detect initial seeds.
|
|
is_queued.fill(0);
|
|
cimg_forXYZ(img,x,y,z) if (img(x,y,z)==value) {
|
|
Q._priority_queue_insert(is_queued,sizeQ,0,x,y,z);
|
|
res(x,y,z) = 0;
|
|
if (path) path(x,y,z) = (to)0;
|
|
}
|
|
|
|
// Start distance propagation.
|
|
while (sizeQ) {
|
|
|
|
// Get and remove point with minimal potential from the queue.
|
|
const int x = (int)Q(0,1), y = (int)Q(0,2), z = (int)Q(0,3);
|
|
const td P = (td)-Q(0,0);
|
|
Q._priority_queue_remove(sizeQ);
|
|
|
|
// Update neighbors.
|
|
td npot = 0;
|
|
if (x - 1>=0 && Q._priority_queue_insert(is_queued,sizeQ,-(npot=met(x - 1,y,z) + P),x - 1,y,z)) {
|
|
res(x - 1,y,z) = npot; if (path) path(x - 1,y,z) = (to)2;
|
|
}
|
|
if (x + 1<width() && Q._priority_queue_insert(is_queued,sizeQ,-(npot=met(x + 1,y,z) + P),x + 1,y,z)) {
|
|
res(x + 1,y,z) = npot; if (path) path(x + 1,y,z) = (to)1;
|
|
}
|
|
if (y - 1>=0 && Q._priority_queue_insert(is_queued,sizeQ,-(npot=met(x,y - 1,z) + P),x,y - 1,z)) {
|
|
res(x,y - 1,z) = npot; if (path) path(x,y - 1,z) = (to)8;
|
|
}
|
|
if (y + 1<height() && Q._priority_queue_insert(is_queued,sizeQ,-(npot=met(x,y + 1,z) + P),x,y + 1,z)) {
|
|
res(x,y + 1,z) = npot; if (path) path(x,y + 1,z) = (to)4;
|
|
}
|
|
if (z - 1>=0 && Q._priority_queue_insert(is_queued,sizeQ,-(npot=met(x,y,z - 1) + P),x,y,z - 1)) {
|
|
res(x,y,z - 1) = npot; if (path) path(x,y,z - 1) = (to)32;
|
|
}
|
|
if (z + 1<depth() && Q._priority_queue_insert(is_queued,sizeQ,-(npot=met(x,y,z + 1) + P),x,y,z + 1)) {
|
|
res(x,y,z + 1) = npot; if (path) path(x,y,z + 1) = (to)16;
|
|
}
|
|
|
|
if (is_high_connectivity) {
|
|
const float sqrt2 = std::sqrt(2.f), sqrt3 = std::sqrt(3.f);
|
|
|
|
// Diagonal neighbors on slice z.
|
|
if (x - 1>=0 && y - 1>=0 &&
|
|
Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt2*met(x - 1,y - 1,z) + P)),x - 1,y - 1,z)) {
|
|
res(x - 1,y - 1,z) = npot; if (path) path(x - 1,y - 1,z) = (to)10;
|
|
}
|
|
if (x + 1<width() && y - 1>=0 &&
|
|
Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt2*met(x + 1,y - 1,z) + P)),x + 1,y - 1,z)) {
|
|
res(x + 1,y - 1,z) = npot; if (path) path(x + 1,y - 1,z) = (to)9;
|
|
}
|
|
if (x - 1>=0 && y + 1<height() &&
|
|
Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt2*met(x - 1,y + 1,z) + P)),x - 1,y + 1,z)) {
|
|
res(x - 1,y + 1,z) = npot; if (path) path(x - 1,y + 1,z) = (to)6;
|
|
}
|
|
if (x + 1<width() && y + 1<height() &&
|
|
Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt2*met(x + 1,y + 1,z) + P)),x + 1,y + 1,z)) {
|
|
res(x + 1,y + 1,z) = npot; if (path) path(x + 1,y + 1,z) = (to)5;
|
|
}
|
|
|
|
if (z - 1>=0) { // Diagonal neighbors on slice z - 1
|
|
if (x - 1>=0 &&
|
|
Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt2*met(x - 1,y,z - 1) + P)),x - 1,y,z - 1)) {
|
|
res(x - 1,y,z - 1) = npot; if (path) path(x - 1,y,z - 1) = (to)34;
|
|
}
|
|
if (x + 1<width() &&
|
|
Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt2*met(x + 1,y,z - 1) + P)),x + 1,y,z - 1)) {
|
|
res(x + 1,y,z - 1) = npot; if (path) path(x + 1,y,z - 1) = (to)33;
|
|
}
|
|
if (y - 1>=0 &&
|
|
Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt2*met(x,y - 1,z - 1) + P)),x,y - 1,z - 1)) {
|
|
res(x,y - 1,z - 1) = npot; if (path) path(x,y - 1,z - 1) = (to)40;
|
|
}
|
|
if (y + 1<height() &&
|
|
Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt2*met(x,y + 1,z - 1) + P)),x,y + 1,z - 1)) {
|
|
res(x,y + 1,z - 1) = npot; if (path) path(x,y + 1,z - 1) = (to)36;
|
|
}
|
|
if (x - 1>=0 && y - 1>=0 &&
|
|
Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt3*met(x - 1,y - 1,z - 1) + P)),
|
|
x - 1,y - 1,z - 1)) {
|
|
res(x - 1,y - 1,z - 1) = npot; if (path) path(x - 1,y - 1,z - 1) = (to)42;
|
|
}
|
|
if (x + 1<width() && y - 1>=0 &&
|
|
Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt3*met(x + 1,y - 1,z - 1) + P)),
|
|
x + 1,y - 1,z - 1)) {
|
|
res(x + 1,y - 1,z - 1) = npot; if (path) path(x + 1,y - 1,z - 1) = (to)41;
|
|
}
|
|
if (x - 1>=0 && y + 1<height() &&
|
|
Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt3*met(x - 1,y + 1,z - 1) + P)),
|
|
x - 1,y + 1,z - 1)) {
|
|
res(x - 1,y + 1,z - 1) = npot; if (path) path(x - 1,y + 1,z - 1) = (to)38;
|
|
}
|
|
if (x + 1<width() && y + 1<height() &&
|
|
Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt3*met(x + 1,y + 1,z - 1) + P)),
|
|
x + 1,y + 1,z - 1)) {
|
|
res(x + 1,y + 1,z - 1) = npot; if (path) path(x + 1,y + 1,z - 1) = (to)37;
|
|
}
|
|
}
|
|
|
|
if (z + 1<depth()) { // Diagonal neighbors on slice z + 1
|
|
if (x - 1>=0 &&
|
|
Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt2*met(x - 1,y,z + 1) + P)),x - 1,y,z + 1)) {
|
|
res(x - 1,y,z + 1) = npot; if (path) path(x - 1,y,z + 1) = (to)18;
|
|
}
|
|
if (x + 1<width() &&
|
|
Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt2*met(x + 1,y,z + 1) + P)),x + 1,y,z + 1)) {
|
|
res(x + 1,y,z + 1) = npot; if (path) path(x + 1,y,z + 1) = (to)17;
|
|
}
|
|
if (y - 1>=0 &&
|
|
Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt2*met(x,y - 1,z + 1) + P)),x,y - 1,z + 1)) {
|
|
res(x,y - 1,z + 1) = npot; if (path) path(x,y - 1,z + 1) = (to)24;
|
|
}
|
|
if (y + 1<height() &&
|
|
Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt2*met(x,y + 1,z + 1) + P)),x,y + 1,z + 1)) {
|
|
res(x,y + 1,z + 1) = npot; if (path) path(x,y + 1,z + 1) = (to)20;
|
|
}
|
|
if (x - 1>=0 && y - 1>=0 &&
|
|
Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt3*met(x - 1,y - 1,z + 1) + P)),
|
|
x - 1,y - 1,z + 1)) {
|
|
res(x - 1,y - 1,z + 1) = npot; if (path) path(x - 1,y - 1,z + 1) = (to)26;
|
|
}
|
|
if (x + 1<width() && y - 1>=0 &&
|
|
Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt3*met(x + 1,y - 1,z + 1) + P)),
|
|
x + 1,y - 1,z + 1)) {
|
|
res(x + 1,y - 1,z + 1) = npot; if (path) path(x + 1,y - 1,z + 1) = (to)25;
|
|
}
|
|
if (x - 1>=0 && y + 1<height() &&
|
|
Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt3*met(x - 1,y + 1,z + 1) + P)),
|
|
x - 1,y + 1,z + 1)) {
|
|
res(x - 1,y + 1,z + 1) = npot; if (path) path(x - 1,y + 1,z + 1) = (to)22;
|
|
}
|
|
if (x + 1<width() && y + 1<height() &&
|
|
Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt3*met(x + 1,y + 1,z + 1) + P)),
|
|
x + 1,y + 1,z + 1)) {
|
|
res(x + 1,y + 1,z + 1) = npot; if (path) path(x + 1,y + 1,z + 1) = (to)21;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
//! Compute distance map to a specified value, according to a custom metric (use dijkstra algorithm). \overloading.
|
|
template<typename t>
|
|
CImg<T>& distance_dijkstra(const T& value, const CImg<t>& metric,
|
|
const bool is_high_connectivity=false) {
|
|
return get_distance_dijkstra(value,metric,is_high_connectivity).move_to(*this);
|
|
}
|
|
|
|
//! Compute distance map to a specified value, according to a custom metric (use dijkstra algorithm). \newinstance.
|
|
template<typename t>
|
|
CImg<Tfloat> get_distance_dijkstra(const T& value, const CImg<t>& metric,
|
|
const bool is_high_connectivity=false) const {
|
|
CImg<T> return_path;
|
|
return get_distance_dijkstra(value,metric,is_high_connectivity,return_path);
|
|
}
|
|
|
|
//! Compute distance map to one source point, according to a custom metric (use fast marching algorithm).
|
|
/**
|
|
\param value Reference value.
|
|
\param metric Field of distance potentials.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& distance_eikonal(const T& value, const CImg<t>& metric) {
|
|
return get_distance_eikonal(value,metric).move_to(*this);
|
|
}
|
|
|
|
//! Compute distance map to one source point, according to a custom metric (use fast marching algorithm).
|
|
template<typename t>
|
|
CImg<Tfloat> get_distance_eikonal(const T& value, const CImg<t>& metric) const {
|
|
if (is_empty()) return *this;
|
|
if (!is_sameXYZ(metric))
|
|
throw CImgArgumentException(_cimg_instance
|
|
"distance_eikonal(): image instance and metric map (%u,%u,%u,%u) have "
|
|
"incompatible dimensions.",
|
|
cimg_instance,
|
|
metric._width,metric._height,metric._depth,metric._spectrum);
|
|
CImg<Tfloat> result(_width,_height,_depth,_spectrum,cimg::type<Tfloat>::max()), Q;
|
|
CImg<charT> state(_width,_height,_depth); // -1=far away, 0=narrow, 1=frozen
|
|
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(_spectrum>=2) firstprivate(Q,state))
|
|
cimg_forC(*this,c) {
|
|
const CImg<T> img = get_shared_channel(c);
|
|
const CImg<t> met = metric.get_shared_channel(c%metric._spectrum);
|
|
CImg<Tfloat> res = result.get_shared_channel(c);
|
|
unsigned int sizeQ = 0;
|
|
state.fill(-1);
|
|
|
|
// Detect initial seeds.
|
|
Tfloat *ptr1 = res._data; char *ptr2 = state._data;
|
|
cimg_for(img,ptr0,T) { if (*ptr0==value) { *ptr1 = 0; *ptr2 = 1; } ++ptr1; ++ptr2; }
|
|
|
|
// Initialize seeds neighbors.
|
|
ptr2 = state._data;
|
|
cimg_forXYZ(img,x,y,z) if (*(ptr2++)==1) {
|
|
if (x - 1>=0 && state(x - 1,y,z)==-1) {
|
|
const Tfloat dist = res(x - 1,y,z) = __distance_eikonal(res,met(x - 1,y,z),x - 1,y,z);
|
|
Q._eik_priority_queue_insert(state,sizeQ,-dist,x - 1,y,z);
|
|
}
|
|
if (x + 1<width() && state(x + 1,y,z)==-1) {
|
|
const Tfloat dist = res(x + 1,y,z) = __distance_eikonal(res,met(x + 1,y,z),x + 1,y,z);
|
|
Q._eik_priority_queue_insert(state,sizeQ,-dist,x + 1,y,z);
|
|
}
|
|
if (y - 1>=0 && state(x,y - 1,z)==-1) {
|
|
const Tfloat dist = res(x,y - 1,z) = __distance_eikonal(res,met(x,y - 1,z),x,y - 1,z);
|
|
Q._eik_priority_queue_insert(state,sizeQ,-dist,x,y - 1,z);
|
|
}
|
|
if (y + 1<height() && state(x,y + 1,z)==-1) {
|
|
const Tfloat dist = res(x,y + 1,z) = __distance_eikonal(res,met(x,y + 1,z),x,y + 1,z);
|
|
Q._eik_priority_queue_insert(state,sizeQ,-dist,x,y + 1,z);
|
|
}
|
|
if (z - 1>=0 && state(x,y,z - 1)==-1) {
|
|
const Tfloat dist = res(x,y,z - 1) = __distance_eikonal(res,met(x,y,z - 1),x,y,z - 1);
|
|
Q._eik_priority_queue_insert(state,sizeQ,-dist,x,y,z - 1);
|
|
}
|
|
if (z + 1<depth() && state(x,y,z + 1)==-1) {
|
|
const Tfloat dist = res(x,y,z + 1) = __distance_eikonal(res,met(x,y,z + 1),x,y,z + 1);
|
|
Q._eik_priority_queue_insert(state,sizeQ,-dist,x,y,z + 1);
|
|
}
|
|
}
|
|
|
|
// Propagate front.
|
|
while (sizeQ) {
|
|
int x = -1, y = -1, z = -1;
|
|
while (sizeQ && x<0) {
|
|
x = (int)Q(0,1); y = (int)Q(0,2); z = (int)Q(0,3);
|
|
Q._priority_queue_remove(sizeQ);
|
|
if (state(x,y,z)==1) x = -1; else state(x,y,z) = 1;
|
|
}
|
|
if (x>=0) {
|
|
if (x - 1>=0 && state(x - 1,y,z)!=1) {
|
|
const Tfloat dist = __distance_eikonal(res,met(x - 1,y,z),x - 1,y,z);
|
|
if (dist<res(x - 1,y,z)) {
|
|
res(x - 1,y,z) = dist; Q._eik_priority_queue_insert(state,sizeQ,-dist,x - 1,y,z);
|
|
}
|
|
}
|
|
if (x + 1<width() && state(x + 1,y,z)!=1) {
|
|
const Tfloat dist = __distance_eikonal(res,met(x + 1,y,z),x + 1,y,z);
|
|
if (dist<res(x + 1,y,z)) {
|
|
res(x + 1,y,z) = dist; Q._eik_priority_queue_insert(state,sizeQ,-dist,x + 1,y,z);
|
|
}
|
|
}
|
|
if (y - 1>=0 && state(x,y - 1,z)!=1) {
|
|
const Tfloat dist = __distance_eikonal(res,met(x,y - 1,z),x,y - 1,z);
|
|
if (dist<res(x,y - 1,z)) {
|
|
res(x,y - 1,z) = dist; Q._eik_priority_queue_insert(state,sizeQ,-dist,x,y - 1,z);
|
|
}
|
|
}
|
|
if (y + 1<height() && state(x,y + 1,z)!=1) {
|
|
const Tfloat dist = __distance_eikonal(res,met(x,y + 1,z),x,y + 1,z);
|
|
if (dist<res(x,y + 1,z)) {
|
|
res(x,y + 1,z) = dist; Q._eik_priority_queue_insert(state,sizeQ,-dist,x,y + 1,z);
|
|
}
|
|
}
|
|
if (z - 1>=0 && state(x,y,z - 1)!=1) {
|
|
const Tfloat dist = __distance_eikonal(res,met(x,y,z - 1),x,y,z - 1);
|
|
if (dist<res(x,y,z - 1)) {
|
|
res(x,y,z - 1) = dist; Q._eik_priority_queue_insert(state,sizeQ,-dist,x,y,z - 1);
|
|
}
|
|
}
|
|
if (z + 1<depth() && state(x,y,z + 1)!=1) {
|
|
const Tfloat dist = __distance_eikonal(res,met(x,y,z + 1),x,y,z + 1);
|
|
if (dist<res(x,y,z + 1)) {
|
|
res(x,y,z + 1) = dist; Q._eik_priority_queue_insert(state,sizeQ,-dist,x,y,z + 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Locally solve eikonal equation.
|
|
Tfloat __distance_eikonal(const CImg<Tfloat>& res, const Tfloat P,
|
|
const int x=0, const int y=0, const int z=0) const {
|
|
const Tfloat M = (Tfloat)cimg::type<T>::max();
|
|
T T1 = (T)std::min(x - 1>=0?res(x - 1,y,z):M,x + 1<width()?res(x + 1,y,z):M);
|
|
Tfloat root = 0;
|
|
if (_depth>1) { // 3D
|
|
T
|
|
T2 = (T)std::min(y - 1>=0?res(x,y - 1,z):M,y + 1<height()?res(x,y + 1,z):M),
|
|
T3 = (T)std::min(z - 1>=0?res(x,y,z - 1):M,z + 1<depth()?res(x,y,z + 1):M);
|
|
if (T1>T2) cimg::swap(T1,T2);
|
|
if (T2>T3) cimg::swap(T2,T3);
|
|
if (T1>T2) cimg::swap(T1,T2);
|
|
if (P<=0) return (Tfloat)T1;
|
|
if (T3<M && ___distance_eikonal(3,-2*(T1 + T2 + T3),T1*T1 + T2*T2 + T3*T3 - P*P,root))
|
|
return std::max((Tfloat)T3,root);
|
|
if (T2<M && ___distance_eikonal(2,-2*(T1 + T2),T1*T1 + T2*T2 - P*P,root))
|
|
return std::max((Tfloat)T2,root);
|
|
return P + T1;
|
|
} else if (_height>1) { // 2D
|
|
T T2 = (T)std::min(y - 1>=0?res(x,y - 1,z):M,y + 1<height()?res(x,y + 1,z):M);
|
|
if (T1>T2) cimg::swap(T1,T2);
|
|
if (P<=0) return (Tfloat)T1;
|
|
if (T2<M && ___distance_eikonal(2,-2*(T1 + T2),T1*T1 + T2*T2 - P*P,root))
|
|
return std::max((Tfloat)T2,root);
|
|
return P + T1;
|
|
} else { // 1D
|
|
if (P<=0) return (Tfloat)T1;
|
|
return P + T1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Find max root of a 2nd-order polynomial.
|
|
static bool ___distance_eikonal(const Tfloat a, const Tfloat b, const Tfloat c, Tfloat &root) {
|
|
const Tfloat delta = b*b - 4*a*c;
|
|
if (delta<0) return false;
|
|
root = 0.5f*(-b + std::sqrt(delta))/a;
|
|
return true;
|
|
}
|
|
|
|
// Insert new point in heap.
|
|
template<typename t>
|
|
void _eik_priority_queue_insert(CImg<charT>& state, unsigned int& siz, const t value,
|
|
const unsigned int x, const unsigned int y, const unsigned int z) {
|
|
if (state(x,y,z)>0) return;
|
|
state(x,y,z) = 0;
|
|
if (++siz>=_width) { if (!is_empty()) resize(_width*2,4,1,1,0); else assign(64,4); }
|
|
(*this)(siz - 1,0) = (T)value; (*this)(siz - 1,1) = (T)x; (*this)(siz - 1,2) = (T)y; (*this)(siz - 1,3) = (T)z;
|
|
for (unsigned int pos = siz - 1, par = 0; pos && value>(t)(*this)(par=(pos + 1)/2 - 1,0); pos = par) {
|
|
cimg::swap((*this)(pos,0),(*this)(par,0)); cimg::swap((*this)(pos,1),(*this)(par,1));
|
|
cimg::swap((*this)(pos,2),(*this)(par,2)); cimg::swap((*this)(pos,3),(*this)(par,3));
|
|
}
|
|
}
|
|
|
|
//! Compute distance function to 0-valued isophotes, using the Eikonal PDE.
|
|
/**
|
|
\param nb_iterations Number of PDE iterations.
|
|
\param band_size Size of the narrow band.
|
|
\param time_step Time step of the PDE iterations.
|
|
**/
|
|
CImg<T>& distance_eikonal(const unsigned int nb_iterations, const float band_size=0, const float time_step=0.5f) {
|
|
if (is_empty()) return *this;
|
|
CImg<Tfloat> velocity(*this,false);
|
|
for (unsigned int iteration = 0; iteration<nb_iterations; ++iteration) {
|
|
Tfloat *ptrd = velocity._data, veloc_max = 0;
|
|
if (_depth>1) { // 3D
|
|
CImg_3x3x3(I,Tfloat);
|
|
cimg_forC(*this,c) cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) if (band_size<=0 || cimg::abs(Iccc)<band_size) {
|
|
const Tfloat
|
|
gx = (Incc - Ipcc)/2,
|
|
gy = (Icnc - Icpc)/2,
|
|
gz = (Iccn - Iccp)/2,
|
|
sgn = -cimg::sign(Iccc),
|
|
ix = gx*sgn>0?(Incc - Iccc):(Iccc - Ipcc),
|
|
iy = gy*sgn>0?(Icnc - Iccc):(Iccc - Icpc),
|
|
iz = gz*sgn>0?(Iccn - Iccc):(Iccc - Iccp),
|
|
ng = 1e-5f + cimg::hypot(gx,gy,gz),
|
|
ngx = gx/ng,
|
|
ngy = gy/ng,
|
|
ngz = gz/ng,
|
|
veloc = sgn*(ngx*ix + ngy*iy + ngz*iz - 1);
|
|
*(ptrd++) = veloc;
|
|
if (veloc>veloc_max) veloc_max = veloc; else if (-veloc>veloc_max) veloc_max = -veloc;
|
|
} else *(ptrd++) = 0;
|
|
} else { // 2D version
|
|
CImg_3x3(I,Tfloat);
|
|
cimg_forC(*this,c) cimg_for3x3(*this,x,y,0,c,I,Tfloat) if (band_size<=0 || cimg::abs(Icc)<band_size) {
|
|
const Tfloat
|
|
gx = (Inc - Ipc)/2,
|
|
gy = (Icn - Icp)/2,
|
|
sgn = -cimg::sign(Icc),
|
|
ix = gx*sgn>0?(Inc - Icc):(Icc - Ipc),
|
|
iy = gy*sgn>0?(Icn - Icc):(Icc - Icp),
|
|
ng = std::max((Tfloat)1e-5,cimg::hypot(gx,gy)),
|
|
ngx = gx/ng,
|
|
ngy = gy/ng,
|
|
veloc = sgn*(ngx*ix + ngy*iy - 1);
|
|
*(ptrd++) = veloc;
|
|
if (veloc>veloc_max) veloc_max = veloc; else if (-veloc>veloc_max) veloc_max = -veloc;
|
|
} else *(ptrd++) = 0;
|
|
}
|
|
if (veloc_max>0) *this+=(velocity*=time_step/veloc_max);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Compute distance function to 0-valued isophotes, using the Eikonal PDE \newinstance.
|
|
CImg<Tfloat> get_distance_eikonal(const unsigned int nb_iterations, const float band_size=0,
|
|
const float time_step=0.5f) const {
|
|
return CImg<Tfloat>(*this,false).distance_eikonal(nb_iterations,band_size,time_step);
|
|
}
|
|
|
|
//! Compute Haar multiscale wavelet transform.
|
|
/**
|
|
\param axis Axis considered for the transform.
|
|
\param invert Set inverse of direct transform.
|
|
\param nb_scales Number of scales used for the transform.
|
|
**/
|
|
CImg<T>& haar(const char axis, const bool invert=false, const unsigned int nb_scales=1) {
|
|
return get_haar(axis,invert,nb_scales).move_to(*this);
|
|
}
|
|
|
|
//! Compute Haar multiscale wavelet transform \newinstance.
|
|
CImg<Tfloat> get_haar(const char axis, const bool invert=false, const unsigned int nb_scales=1) const {
|
|
if (is_empty() || !nb_scales) return +*this;
|
|
CImg<Tfloat> res;
|
|
const Tfloat sqrt2 = std::sqrt(2.f);
|
|
if (nb_scales==1) {
|
|
switch (cimg::lowercase(axis)) { // Single scale transform
|
|
case 'x' : {
|
|
const unsigned int w = _width/2;
|
|
if (w) {
|
|
if ((w%2) && w!=1)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"haar(): Sub-image width %u is not even.",
|
|
cimg_instance,
|
|
w);
|
|
|
|
res.assign(_width,_height,_depth,_spectrum);
|
|
if (invert) cimg_forYZC(*this,y,z,c) { // Inverse transform along X
|
|
for (unsigned int x = 0, xw = w, x2 = 0; x<w; ++x, ++xw) {
|
|
const Tfloat val0 = (Tfloat)(*this)(x,y,z,c), val1 = (Tfloat)(*this)(xw,y,z,c);
|
|
res(x2++,y,z,c) = (val0 - val1)/sqrt2;
|
|
res(x2++,y,z,c) = (val0 + val1)/sqrt2;
|
|
}
|
|
} else cimg_forYZC(*this,y,z,c) { // Direct transform along X
|
|
for (unsigned int x = 0, xw = w, x2 = 0; x<w; ++x, ++xw) {
|
|
const Tfloat val0 = (Tfloat)(*this)(x2++,y,z,c), val1 = (Tfloat)(*this)(x2++,y,z,c);
|
|
res(x,y,z,c) = (val0 + val1)/sqrt2;
|
|
res(xw,y,z,c) = (val1 - val0)/sqrt2;
|
|
}
|
|
}
|
|
} else return *this;
|
|
} break;
|
|
case 'y' : {
|
|
const unsigned int h = _height/2;
|
|
if (h) {
|
|
if ((h%2) && h!=1)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"haar(): Sub-image height %u is not even.",
|
|
cimg_instance,
|
|
h);
|
|
|
|
res.assign(_width,_height,_depth,_spectrum);
|
|
if (invert) cimg_forXZC(*this,x,z,c) { // Inverse transform along Y
|
|
for (unsigned int y = 0, yh = h, y2 = 0; y<h; ++y, ++yh) {
|
|
const Tfloat val0 = (Tfloat)(*this)(x,y,z,c), val1 = (Tfloat)(*this)(x,yh,z,c);
|
|
res(x,y2++,z,c) = (val0 - val1)/sqrt2;
|
|
res(x,y2++,z,c) = (val0 + val1)/sqrt2;
|
|
}
|
|
} else cimg_forXZC(*this,x,z,c) {
|
|
for (unsigned int y = 0, yh = h, y2 = 0; y<h; ++y, ++yh) { // Direct transform along Y
|
|
const Tfloat val0 = (Tfloat)(*this)(x,y2++,z,c), val1 = (Tfloat)(*this)(x,y2++,z,c);
|
|
res(x,y,z,c) = (val0 + val1)/sqrt2;
|
|
res(x,yh,z,c) = (val1 - val0)/sqrt2;
|
|
}
|
|
}
|
|
} else return *this;
|
|
} break;
|
|
case 'z' : {
|
|
const unsigned int d = _depth/2;
|
|
if (d) {
|
|
if ((d%2) && d!=1)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"haar(): Sub-image depth %u is not even.",
|
|
cimg_instance,
|
|
d);
|
|
|
|
res.assign(_width,_height,_depth,_spectrum);
|
|
if (invert) cimg_forXYC(*this,x,y,c) { // Inverse transform along Z
|
|
for (unsigned int z = 0, zd = d, z2 = 0; z<d; ++z, ++zd) {
|
|
const Tfloat val0 = (Tfloat)(*this)(x,y,z,c), val1 = (Tfloat)(*this)(x,y,zd,c);
|
|
res(x,y,z2++,c) = (val0 - val1)/sqrt2;
|
|
res(x,y,z2++,c) = (val0 + val1)/sqrt2;
|
|
}
|
|
} else cimg_forXYC(*this,x,y,c) {
|
|
for (unsigned int z = 0, zd = d, z2 = 0; z<d; ++z, ++zd) { // Direct transform along Z
|
|
const Tfloat val0 = (Tfloat)(*this)(x,y,z2++,c), val1 = (Tfloat)(*this)(x,y,z2++,c);
|
|
res(x,y,z,c) = (val0 + val1)/sqrt2;
|
|
res(x,y,zd,c) = (val1 - val0)/sqrt2;
|
|
}
|
|
}
|
|
} else return *this;
|
|
} break;
|
|
default :
|
|
throw CImgArgumentException(_cimg_instance
|
|
"haar(): Invalid specified axis '%c' "
|
|
"(should be { x | y | z }).",
|
|
cimg_instance,
|
|
axis);
|
|
}
|
|
} else { // Multi-scale version
|
|
if (invert) {
|
|
res.assign(*this,false);
|
|
switch (cimg::lowercase(axis)) {
|
|
case 'x' : {
|
|
unsigned int w = _width;
|
|
for (unsigned int s = 1; w && s<nb_scales; ++s) w/=2;
|
|
for (w = w?w:1; w<=_width; w*=2) res.draw_image(res.get_crop(0,w - 1).get_haar('x',true,1));
|
|
} break;
|
|
case 'y' : {
|
|
unsigned int h = _width;
|
|
for (unsigned int s = 1; h && s<nb_scales; ++s) h/=2;
|
|
for (h = h?h:1; h<=_height; h*=2) res.draw_image(res.get_crop(0,0,_width - 1,h - 1).get_haar('y',true,1));
|
|
} break;
|
|
case 'z' : {
|
|
unsigned int d = _depth;
|
|
for (unsigned int s = 1; d && s<nb_scales; ++s) d/=2;
|
|
for (d = d?d:1; d<=_depth; d*=2)
|
|
res.draw_image(res.get_crop(0,0,0,_width - 1,_height - 1,d - 1).get_haar('z',true,1));
|
|
} break;
|
|
default :
|
|
throw CImgArgumentException(_cimg_instance
|
|
"haar(): Invalid specified axis '%c' "
|
|
"(should be { x | y | z }).",
|
|
cimg_instance,
|
|
axis);
|
|
}
|
|
} else { // Direct transform
|
|
res = get_haar(axis,false,1);
|
|
switch (cimg::lowercase(axis)) {
|
|
case 'x' : {
|
|
for (unsigned int s = 1, w = _width/2; w && s<nb_scales; ++s, w/=2)
|
|
res.draw_image(res.get_crop(0,w - 1).get_haar('x',false,1));
|
|
} break;
|
|
case 'y' : {
|
|
for (unsigned int s = 1, h = _height/2; h && s<nb_scales; ++s, h/=2)
|
|
res.draw_image(res.get_crop(0,0,_width - 1,h - 1).get_haar('y',false,1));
|
|
} break;
|
|
case 'z' : {
|
|
for (unsigned int s = 1, d = _depth/2; d && s<nb_scales; ++s, d/=2)
|
|
res.draw_image(res.get_crop(0,0,0,_width - 1,_height - 1,d - 1).get_haar('z',false,1));
|
|
} break;
|
|
default :
|
|
throw CImgArgumentException(_cimg_instance
|
|
"haar(): Invalid specified axis '%c' "
|
|
"(should be { x | y | z }).",
|
|
cimg_instance,
|
|
axis);
|
|
}
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Compute Haar multiscale wavelet transform \overloading.
|
|
/**
|
|
\param invert Set inverse of direct transform.
|
|
\param nb_scales Number of scales used for the transform.
|
|
**/
|
|
CImg<T>& haar(const bool invert=false, const unsigned int nb_scales=1) {
|
|
return get_haar(invert,nb_scales).move_to(*this);
|
|
}
|
|
|
|
//! Compute Haar multiscale wavelet transform \newinstance.
|
|
CImg<Tfloat> get_haar(const bool invert=false, const unsigned int nb_scales=1) const {
|
|
CImg<Tfloat> res;
|
|
if (nb_scales==1) { // Single scale transform
|
|
if (_width>1) get_haar('x',invert,1).move_to(res);
|
|
if (_height>1) { if (res) res.haar('y',invert,1); else get_haar('y',invert,1).move_to(res); }
|
|
if (_depth>1) { if (res) res.haar('z',invert,1); else get_haar('z',invert,1).move_to(res); }
|
|
if (res) return res;
|
|
} else { // Multi-scale transform
|
|
if (invert) { // Inverse transform
|
|
res.assign(*this,false);
|
|
if (_width>1) {
|
|
if (_height>1) {
|
|
if (_depth>1) {
|
|
unsigned int w = _width, h = _height, d = _depth;
|
|
for (unsigned int s = 1; w && h && d && s<nb_scales; ++s) { w/=2; h/=2; d/=2; }
|
|
for (w = w?w:1, h = h?h:1, d = d?d:1; w<=_width && h<=_height && d<=_depth; w*=2, h*=2, d*=2)
|
|
res.draw_image(res.get_crop(0,0,0,w - 1,h - 1,d - 1).get_haar(true,1));
|
|
} else {
|
|
unsigned int w = _width, h = _height;
|
|
for (unsigned int s = 1; w && h && s<nb_scales; ++s) { w/=2; h/=2; }
|
|
for (w = w?w:1, h = h?h:1; w<=_width && h<=_height; w*=2, h*=2)
|
|
res.draw_image(res.get_crop(0,0,0,w - 1,h - 1,0).get_haar(true,1));
|
|
}
|
|
} else {
|
|
if (_depth>1) {
|
|
unsigned int w = _width, d = _depth;
|
|
for (unsigned int s = 1; w && d && s<nb_scales; ++s) { w/=2; d/=2; }
|
|
for (w = w?w:1, d = d?d:1; w<=_width && d<=_depth; w*=2, d*=2)
|
|
res.draw_image(res.get_crop(0,0,0,w - 1,0,d - 1).get_haar(true,1));
|
|
} else {
|
|
unsigned int w = _width;
|
|
for (unsigned int s = 1; w && s<nb_scales; ++s) w/=2;
|
|
for (w = w?w:1; w<=_width; w*=2)
|
|
res.draw_image(res.get_crop(0,0,0,w - 1,0,0).get_haar(true,1));
|
|
}
|
|
}
|
|
} else {
|
|
if (_height>1) {
|
|
if (_depth>1) {
|
|
unsigned int h = _height, d = _depth;
|
|
for (unsigned int s = 1; h && d && s<nb_scales; ++s) { h/=2; d/=2; }
|
|
for (h = h?h:1, d = d?d:1; h<=_height && d<=_depth; h*=2, d*=2)
|
|
res.draw_image(res.get_crop(0,0,0,0,h - 1,d - 1).get_haar(true,1));
|
|
} else {
|
|
unsigned int h = _height;
|
|
for (unsigned int s = 1; h && s<nb_scales; ++s) h/=2;
|
|
for (h = h?h:1; h<=_height; h*=2)
|
|
res.draw_image(res.get_crop(0,0,0,0,h - 1,0).get_haar(true,1));
|
|
}
|
|
} else {
|
|
if (_depth>1) {
|
|
unsigned int d = _depth;
|
|
for (unsigned int s = 1; d && s<nb_scales; ++s) d/=2;
|
|
for (d = d?d:1; d<=_depth; d*=2)
|
|
res.draw_image(res.get_crop(0,0,0,0,0,d - 1).get_haar(true,1));
|
|
} else return *this;
|
|
}
|
|
}
|
|
} else { // Direct transform
|
|
res = get_haar(false,1);
|
|
if (_width>1) {
|
|
if (_height>1) {
|
|
if (_depth>1)
|
|
for (unsigned int s = 1, w = _width/2, h = _height/2, d = _depth/2; w && h && d && s<nb_scales;
|
|
++s, w/=2, h/=2, d/=2)
|
|
res.draw_image(res.get_crop(0,0,0,w - 1,h - 1,d - 1).haar(false,1));
|
|
else for (unsigned int s = 1, w = _width/2, h = _height/2; w && h && s<nb_scales; ++s, w/=2, h/=2)
|
|
res.draw_image(res.get_crop(0,0,0,w - 1,h - 1,0).haar(false,1));
|
|
} else {
|
|
if (_depth>1) for (unsigned int s = 1, w = _width/2, d = _depth/2; w && d && s<nb_scales; ++s, w/=2, d/=2)
|
|
res.draw_image(res.get_crop(0,0,0,w - 1,0,d - 1).haar(false,1));
|
|
else for (unsigned int s = 1, w = _width/2; w && s<nb_scales; ++s, w/=2)
|
|
res.draw_image(res.get_crop(0,0,0,w - 1,0,0).haar(false,1));
|
|
}
|
|
} else {
|
|
if (_height>1) {
|
|
if (_depth>1)
|
|
for (unsigned int s = 1, h = _height/2, d = _depth/2; h && d && s<nb_scales; ++s, h/=2, d/=2)
|
|
res.draw_image(res.get_crop(0,0,0,0,h - 1,d - 1).haar(false,1));
|
|
else for (unsigned int s = 1, h = _height/2; h && s<nb_scales; ++s, h/=2)
|
|
res.draw_image(res.get_crop(0,0,0,0,h - 1,0).haar(false,1));
|
|
} else {
|
|
if (_depth>1) for (unsigned int s = 1, d = _depth/2; d && s<nb_scales; ++s, d/=2)
|
|
res.draw_image(res.get_crop(0,0,0,0,0,d - 1).haar(false,1));
|
|
else return *this;
|
|
}
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Compute 1D Fast Fourier Transform, along a specified axis.
|
|
/**
|
|
\param axis Axis along which the FFT is computed.
|
|
\param is_inverse Tells if the forward (\c false) or inverse (\c true) FFT is computed.
|
|
**/
|
|
CImgList<Tfloat> get_FFT(const char axis, const bool is_inverse=false) const {
|
|
CImgList<Tfloat> res(*this,CImg<Tfloat>());
|
|
CImg<Tfloat>::FFT(res[0],res[1],axis,is_inverse);
|
|
return res;
|
|
}
|
|
|
|
//! Compute n-D Fast Fourier Transform.
|
|
/*
|
|
\param is_inverse Tells if the forward (\c false) or inverse (\c true) FFT is computed.
|
|
**/
|
|
CImgList<Tfloat> get_FFT(const bool is_inverse=false) const {
|
|
CImgList<Tfloat> res(*this,CImg<Tfloat>());
|
|
CImg<Tfloat>::FFT(res[0],res[1],is_inverse);
|
|
return res;
|
|
}
|
|
|
|
//! Compute 1D Fast Fourier Transform, along a specified axis.
|
|
/**
|
|
\param[in,out] real Real part of the pixel values.
|
|
\param[in,out] imag Imaginary part of the pixel values.
|
|
\param axis Axis along which the FFT is computed.
|
|
\param is_inverse Tells if the forward (\c false) or inverse (\c true) FFT is computed.
|
|
**/
|
|
static void FFT(CImg<T>& real, CImg<T>& imag, const char axis, const bool is_inverse=false,
|
|
const unsigned int nb_threads=0) {
|
|
if (!real)
|
|
throw CImgInstanceException("CImg<%s>::FFT(): Specified real part is empty.",
|
|
pixel_type());
|
|
if (!imag) imag.assign(real._width,real._height,real._depth,real._spectrum,(T)0);
|
|
if (!real.is_sameXYZC(imag))
|
|
throw CImgInstanceException("CImg<%s>::FFT(): Specified real part (%u,%u,%u,%u,%p) and "
|
|
"imaginary part (%u,%u,%u,%u,%p) have different dimensions.",
|
|
pixel_type(),
|
|
real._width,real._height,real._depth,real._spectrum,real._data,
|
|
imag._width,imag._height,imag._depth,imag._spectrum,imag._data);
|
|
const char _axis = cimg::lowercase(axis);
|
|
if (_axis!='x' && _axis!='y' && _axis!='z')
|
|
throw CImgArgumentException("CImgList<%s>::FFT(): Invalid specified axis '%c' for real and imaginary parts "
|
|
"(%u,%u,%u,%u) "
|
|
"(should be { x | y | z }).",
|
|
pixel_type(),axis,
|
|
real._width,real._height,real._depth,real._spectrum);
|
|
cimg::unused(nb_threads);
|
|
#ifdef cimg_use_fftw3
|
|
cimg::mutex(12);
|
|
#ifndef cimg_use_fftw3_singlethread
|
|
fftw_plan_with_nthreads(nb_threads?nb_threads:cimg::nb_cpus());
|
|
#endif
|
|
fftw_complex *data_in = (fftw_complex*)fftw_malloc(sizeof(fftw_complex)*real._width*real._height*real._depth);
|
|
if (!data_in)
|
|
throw CImgInstanceException("CImgList<%s>::FFT(): Failed to allocate memory (%s) "
|
|
"for computing FFT of image (%u,%u,%u,%u) along the X-axis.",
|
|
pixel_type(),
|
|
cimg::strbuffersize(sizeof(fftw_complex)*real._width*real._height*real._depth),
|
|
real._width,real._height,real._depth,real._spectrum);
|
|
double *const ptrf = (double*)data_in;
|
|
fftw_plan data_plan =
|
|
_axis=='x'?fftw_plan_many_dft(1,(int*)&real._width,real.height()*real.depth(),
|
|
data_in,0,1,real.width(),
|
|
data_in,0,1,real.width(),
|
|
is_inverse?FFTW_BACKWARD:FFTW_FORWARD,FFTW_ESTIMATE):
|
|
_axis=='y'?fftw_plan_many_dft(1,(int*)&real._height,real.width()*real.depth(),
|
|
data_in,0,1,real.height(),
|
|
data_in,0,1,real.height(),
|
|
is_inverse?FFTW_BACKWARD:FFTW_FORWARD,FFTW_ESTIMATE):
|
|
fftw_plan_many_dft(1,(int*)&real._depth,real.width()*real.height(),
|
|
data_in,0,1,real.depth(),
|
|
data_in,0,1,real.depth(),
|
|
is_inverse?FFTW_BACKWARD:FFTW_FORWARD,FFTW_ESTIMATE);
|
|
cimg_forC(real,c) {
|
|
CImg<T> realc = real.get_shared_channel(c), imagc = imag.get_shared_channel(c);
|
|
switch (_axis) {
|
|
case 'x' :
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(real.width()*real.height()*real.depth(),125000))
|
|
cimg_forXYZ(realc,x,y,z) {
|
|
const ulongT
|
|
i = realc.offset(x,y,z),
|
|
j = 2*(x + (ulongT)y*realc._width + (ulongT)z*realc._width*realc._height);
|
|
ptrf[j] = (double)realc[i];
|
|
ptrf[j + 1] = (double)imagc[i];
|
|
}
|
|
break;
|
|
case 'y' :
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(real.width()*real.height()*real.depth(),125000))
|
|
cimg_forXYZ(realc,x,y,z) {
|
|
const ulongT
|
|
i = realc.offset(x,y,z),
|
|
j = 2*(y + (ulongT)x*realc._height + (ulongT)z*realc._width*realc._height);
|
|
ptrf[j] = (double)realc[i];
|
|
ptrf[j + 1] = (double)imagc[i];
|
|
}
|
|
break;
|
|
default :
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(real.width()*real.height()*real.depth(),125000))
|
|
cimg_forXYZ(realc,x,y,z) {
|
|
const ulongT
|
|
i = realc.offset(x,y,z),
|
|
j = 2*(z + (ulongT)x*realc._depth + (ulongT)y*realc._width*realc._depth);
|
|
ptrf[j] = (double)realc[i];
|
|
ptrf[j + 1] = (double)imagc[i];
|
|
}
|
|
}
|
|
|
|
fftw_execute(data_plan);
|
|
|
|
const double a = is_inverse?1.0/(_axis=='x'?real.width():_axis=='y'?real.height():real.depth()):1.0;
|
|
switch (_axis) {
|
|
case 'x' :
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(real.width()*real.height()*real.depth(),125000))
|
|
cimg_forXYZ(realc,x,y,z) {
|
|
const ulongT
|
|
i = 2*(x + (ulongT)y*realc._width + (ulongT)z*realc._width*realc._height),
|
|
j = realc.offset(x,y,z);
|
|
realc[j] = (T)(a*ptrf[i]);
|
|
imagc[j] = (T)(a*ptrf[i + 1]);
|
|
}
|
|
break;
|
|
case 'y' :
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(real.width()*real.height()*real.depth(),125000))
|
|
cimg_forXYZ(realc,x,y,z) {
|
|
const ulongT
|
|
i = 2*(y + (ulongT)x*realc._height + (ulongT)z*realc._width*realc._height),
|
|
j = realc.offset(x,y,z);
|
|
realc[j] = (T)(a*ptrf[i]);
|
|
imagc[j] = (T)(a*ptrf[i + 1]);
|
|
}
|
|
break;
|
|
default :
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(real.width()*real.height()*real.depth(),125000))
|
|
cimg_forXYZ(realc,x,y,z) {
|
|
const ulongT
|
|
i = 2*(z + (ulongT)x*realc._depth + (ulongT)y*realc._width*realc._depth),
|
|
j = realc.offset(x,y,z);
|
|
realc[j] = (T)(a*ptrf[i]);
|
|
imagc[j] = (T)(a*ptrf[i + 1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
fftw_destroy_plan(data_plan);
|
|
fftw_free(data_in);
|
|
#ifndef cimg_use_fftw3_singlethread
|
|
fftw_cleanup_threads();
|
|
#endif
|
|
cimg::mutex(12,0);
|
|
#else
|
|
switch (_axis) {
|
|
case 'x' : { // Fourier along X, using built-in functions
|
|
const unsigned int N = real._width, N2 = N>>1;
|
|
if (((N - 1)&N) && N!=1)
|
|
throw CImgInstanceException("CImgList<%s>::FFT(): Specified real and imaginary parts (%u,%u,%u,%u) "
|
|
"have non 2^N dimension along the X-axis.",
|
|
pixel_type(),
|
|
real._width,real._height,real._depth,real._spectrum);
|
|
|
|
for (unsigned int i = 0, j = 0; i<N2; ++i) {
|
|
if (j>i) cimg_forYZC(real,y,z,c) {
|
|
cimg::swap(real(i,y,z,c),real(j,y,z,c));
|
|
cimg::swap(imag(i,y,z,c),imag(j,y,z,c));
|
|
if (j<N2) {
|
|
const unsigned int ri = N - 1 - i, rj = N - 1 - j;
|
|
cimg::swap(real(ri,y,z,c),real(rj,y,z,c));
|
|
cimg::swap(imag(ri,y,z,c),imag(rj,y,z,c));
|
|
}
|
|
}
|
|
for (unsigned int m = N, n = N2; (j+=n)>=m; j-=m, m = n, n>>=1) {}
|
|
}
|
|
for (unsigned int delta = 2; delta<=N; delta<<=1) {
|
|
const unsigned int delta2 = delta>>1;
|
|
for (unsigned int i = 0; i<N; i+=delta) {
|
|
float wr = 1, wi = 0;
|
|
const float
|
|
angle = (float)((is_inverse?+1:-1)*2*cimg::PI/delta),
|
|
ca = (float)std::cos(angle),
|
|
sa = (float)std::sin(angle);
|
|
for (unsigned int k = 0; k<delta2; ++k) {
|
|
const unsigned int j = i + k, nj = j + delta2;
|
|
cimg_forYZC(real,y,z,c) {
|
|
T &ir = real(j,y,z,c), &ii = imag(j,y,z,c), &nir = real(nj,y,z,c), &nii = imag(nj,y,z,c);
|
|
const float tmpr = (float)(wr*nir - wi*nii), tmpi = (float)(wr*nii + wi*nir);
|
|
nir = (T)(ir - tmpr);
|
|
nii = (T)(ii - tmpi);
|
|
ir+=(T)tmpr;
|
|
ii+=(T)tmpi;
|
|
}
|
|
const float nwr = wr*ca-wi*sa;
|
|
wi = wi*ca + wr*sa;
|
|
wr = nwr;
|
|
}
|
|
}
|
|
}
|
|
if (is_inverse) { real/=N; imag/=N; }
|
|
} break;
|
|
case 'y' : { // Fourier along Y, using built-in functions
|
|
const unsigned int N = real._height, N2 = N>>1;
|
|
if (((N - 1)&N) && N!=1)
|
|
throw CImgInstanceException("CImgList<%s>::FFT(): Specified real and imaginary parts (%u,%u,%u,%u) "
|
|
"have non 2^N dimension along the Y-axis.",
|
|
pixel_type(),
|
|
real._width,real._height,real._depth,real._spectrum);
|
|
|
|
for (unsigned int i = 0, j = 0; i<N2; ++i) {
|
|
if (j>i) cimg_forXZC(real,x,z,c) {
|
|
cimg::swap(real(x,i,z,c),real(x,j,z,c));
|
|
cimg::swap(imag(x,i,z,c),imag(x,j,z,c));
|
|
if (j<N2) {
|
|
const unsigned int ri = N - 1 - i, rj = N - 1 - j;
|
|
cimg::swap(real(x,ri,z,c),real(x,rj,z,c));
|
|
cimg::swap(imag(x,ri,z,c),imag(x,rj,z,c));
|
|
}
|
|
}
|
|
for (unsigned int m = N, n = N2; (j+=n)>=m; j-=m, m = n, n>>=1) {}
|
|
}
|
|
for (unsigned int delta = 2; delta<=N; delta<<=1) {
|
|
const unsigned int delta2 = (delta>>1);
|
|
for (unsigned int i = 0; i<N; i+=delta) {
|
|
float wr = 1, wi = 0;
|
|
const float
|
|
angle = (float)((is_inverse?+1:-1)*2*cimg::PI/delta),
|
|
ca = (float)std::cos(angle),
|
|
sa = (float)std::sin(angle);
|
|
for (unsigned int k = 0; k<delta2; ++k) {
|
|
const unsigned int j = i + k, nj = j + delta2;
|
|
cimg_forXZC(real,x,z,c) {
|
|
T &ir = real(x,j,z,c), &ii = imag(x,j,z,c), &nir = real(x,nj,z,c), &nii = imag(x,nj,z,c);
|
|
const float tmpr = (float)(wr*nir - wi*nii), tmpi = (float)(wr*nii + wi*nir);
|
|
nir = (T)(ir - tmpr);
|
|
nii = (T)(ii - tmpi);
|
|
ir+=(T)tmpr;
|
|
ii+=(T)tmpi;
|
|
}
|
|
const float nwr = wr*ca-wi*sa;
|
|
wi = wi*ca + wr*sa;
|
|
wr = nwr;
|
|
}
|
|
}
|
|
}
|
|
if (is_inverse) { real/=N; imag/=N; }
|
|
} break;
|
|
default : { // Fourier along Z, using built-in functions
|
|
const unsigned int N = real._depth, N2 = N>>1;
|
|
if (((N - 1)&N) && N!=1)
|
|
throw CImgInstanceException("CImgList<%s>::FFT(): Specified real and imaginary parts (%u,%u,%u,%u) "
|
|
"have non 2^N dimension along the Z-axis.",
|
|
pixel_type(),
|
|
real._width,real._height,real._depth,real._spectrum);
|
|
|
|
for (unsigned int i = 0, j = 0; i<N2; ++i) {
|
|
if (j>i) cimg_forXYC(real,x,y,c) {
|
|
cimg::swap(real(x,y,i,c),real(x,y,j,c));
|
|
cimg::swap(imag(x,y,i,c),imag(x,y,j,c));
|
|
if (j<N2) {
|
|
const unsigned int ri = N - 1 - i, rj = N - 1 - j;
|
|
cimg::swap(real(x,y,ri,c),real(x,y,rj,c));
|
|
cimg::swap(imag(x,y,ri,c),imag(x,y,rj,c));
|
|
}
|
|
}
|
|
for (unsigned int m = N, n = N2; (j+=n)>=m; j-=m, m = n, n>>=1) {}
|
|
}
|
|
for (unsigned int delta = 2; delta<=N; delta<<=1) {
|
|
const unsigned int delta2 = (delta>>1);
|
|
for (unsigned int i = 0; i<N; i+=delta) {
|
|
float wr = 1, wi = 0;
|
|
const float
|
|
angle = (float)((is_inverse?+1:-1)*2*cimg::PI/delta),
|
|
ca = (float)std::cos(angle),
|
|
sa = (float)std::sin(angle);
|
|
for (unsigned int k = 0; k<delta2; ++k) {
|
|
const unsigned int j = i + k, nj = j + delta2;
|
|
cimg_forXYC(real,x,y,c) {
|
|
T &ir = real(x,y,j,c), &ii = imag(x,y,j,c), &nir = real(x,y,nj,c), &nii = imag(x,y,nj,c);
|
|
const float tmpr = (float)(wr*nir - wi*nii), tmpi = (float)(wr*nii + wi*nir);
|
|
nir = (T)(ir - tmpr);
|
|
nii = (T)(ii - tmpi);
|
|
ir+=(T)tmpr;
|
|
ii+=(T)tmpi;
|
|
}
|
|
const float nwr = wr*ca-wi*sa;
|
|
wi = wi*ca + wr*sa;
|
|
wr = nwr;
|
|
}
|
|
}
|
|
}
|
|
if (is_inverse) { real/=N; imag/=N; }
|
|
} break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
//! Compute n-D Fast Fourier Transform.
|
|
/**
|
|
\param[in,out] real Real part of the pixel values.
|
|
\param[in,out] imag Imaginary part of the pixel values.
|
|
\param is_inverse Tells if the forward (\c false) or inverse (\c true) FFT is computed.
|
|
\param nb_threads Number of parallel threads used for the computation.
|
|
Use \c 0 to set this to the number of available cpus.
|
|
**/
|
|
static void FFT(CImg<T>& real, CImg<T>& imag, const bool is_inverse=false,
|
|
const unsigned int nb_threads=0) {
|
|
if (!real)
|
|
throw CImgInstanceException("CImgList<%s>::FFT(): Empty specified real part.",
|
|
pixel_type());
|
|
if (!imag) imag.assign(real._width,real._height,real._depth,real._spectrum,(T)0);
|
|
if (!real.is_sameXYZC(imag))
|
|
throw CImgInstanceException("CImgList<%s>::FFT(): Specified real part (%u,%u,%u,%u,%p) and "
|
|
"imaginary part (%u,%u,%u,%u,%p) have different dimensions.",
|
|
pixel_type(),
|
|
real._width,real._height,real._depth,real._spectrum,real._data,
|
|
imag._width,imag._height,imag._depth,imag._spectrum,imag._data);
|
|
cimg::unused(nb_threads);
|
|
#ifdef cimg_use_fftw3
|
|
cimg::mutex(12);
|
|
#ifndef cimg_use_fftw3_singlethread
|
|
fftw_plan_with_nthreads(nb_threads?nb_threads:cimg::nb_cpus());
|
|
#endif
|
|
fftw_complex *data_in = (fftw_complex*)fftw_malloc(sizeof(fftw_complex)*real._width*real._height*real._depth);
|
|
if (!data_in)
|
|
throw CImgInstanceException("CImgList<%s>::FFT(): Failed to allocate memory (%s) "
|
|
"for computing FFT of image (%u,%u,%u,%u).",
|
|
pixel_type(),
|
|
cimg::strbuffersize(sizeof(fftw_complex)*real._width*
|
|
real._height*real._depth*real._spectrum),
|
|
real._width,real._height,real._depth,real._spectrum);
|
|
double *const ptrf = (double*)data_in;
|
|
fftw_plan data_plan =
|
|
real._depth>1?fftw_plan_dft_3d(real._depth,real._height,real._width,data_in,data_in,
|
|
is_inverse?FFTW_BACKWARD:FFTW_FORWARD,FFTW_ESTIMATE):
|
|
real._height>1?fftw_plan_dft_2d(real._height,real._width,data_in,data_in,
|
|
is_inverse?FFTW_BACKWARD:FFTW_FORWARD,FFTW_ESTIMATE):
|
|
fftw_plan_dft_1d(real._width,data_in,data_in,
|
|
is_inverse?FFTW_BACKWARD:FFTW_FORWARD,FFTW_ESTIMATE);
|
|
cimg_forC(real,c) {
|
|
CImg<T> realc = real.get_shared_channel(c), imagc = imag.get_shared_channel(c);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(real.width()*real.height()*real.depth(),125000))
|
|
cimg_rofoff(realc,i) { const ulongT i2 = 2*i; ptrf[i2] = (double)realc[i]; ptrf[i2 + 1] = (double)imagc[i]; }
|
|
fftw_execute(data_plan);
|
|
if (is_inverse) {
|
|
const double a = 1.0/(real.width()*real.height()*real.depth());
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(real.width()*real.height()*real.depth(),125000))
|
|
cimg_rofoff(realc,i) { const ulongT i2 = 2*i; realc[i] = (T)(a*ptrf[i2]); imagc[i] = (T)(a*ptrf[i2 + 1]); }
|
|
} else
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(real.width()*real.height()*real.depth(),125000))
|
|
cimg_rofoff(realc,i) { const ulongT i2 = 2*i; realc[i] = (T)ptrf[i2]; imagc[i] = (T)ptrf[i2 + 1]; }
|
|
}
|
|
fftw_destroy_plan(data_plan);
|
|
fftw_free(data_in);
|
|
#ifndef cimg_use_fftw3_singlethread
|
|
fftw_cleanup_threads();
|
|
#endif
|
|
cimg::mutex(12,0);
|
|
#else
|
|
if (real._depth>1) FFT(real,imag,'z',is_inverse);
|
|
if (real._height>1) FFT(real,imag,'y',is_inverse);
|
|
if (real._width>1) FFT(real,imag,'x',is_inverse);
|
|
#endif
|
|
}
|
|
|
|
//@}
|
|
//-------------------------------------
|
|
//
|
|
//! \name 3D Objects Management
|
|
//@{
|
|
//-------------------------------------
|
|
|
|
//! Rotate 3D object's vertices.
|
|
/**
|
|
\param x X-coordinate of the rotation axis, or first quaternion coordinate.
|
|
\param y Y-coordinate of the rotation axis, or second quaternion coordinate.
|
|
\param z Z-coordinate of the rotation axis, or second quaternion coordinate.
|
|
\param w Angle of the rotation axis (in degree), or fourth quaternion coordinate.
|
|
\param is_quaternion Tell is the four arguments denotes a set { axis + angle } or a quaternion (x,y,z,w).
|
|
**/
|
|
CImg<T>& rotate_object3d(const float x, const float y, const float z, const float w,
|
|
const bool is_quaternion=false) {
|
|
return get_rotate_object3d(x,y,z,w,is_quaternion).move_to(*this);
|
|
}
|
|
|
|
CImg<Tfloat> get_rotate_object3d(const float x, const float y, const float z, const float w,
|
|
const bool is_quaternion=false) const {
|
|
if (_height!=3 || _depth>1 || _spectrum>1)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"rotate_object3d(): Instance is not a set of 3D vertices.",
|
|
cimg_instance);
|
|
return CImg<Tfloat>::rotation_matrix(x,y,z,w,is_quaternion)**this;
|
|
}
|
|
|
|
//! Shift 3D object's vertices.
|
|
/**
|
|
\param tx X-coordinate of the 3D displacement vector.
|
|
\param ty Y-coordinate of the 3D displacement vector.
|
|
\param tz Z-coordinate of the 3D displacement vector.
|
|
**/
|
|
CImg<T>& shift_object3d(const float tx, const float ty=0, const float tz=0) {
|
|
if (_height!=3 || _depth>1 || _spectrum>1)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"shift_object3d(): Instance is not a set of 3D vertices.",
|
|
cimg_instance);
|
|
|
|
get_shared_row(0)+=tx; get_shared_row(1)+=ty; get_shared_row(2)+=tz;
|
|
return *this;
|
|
}
|
|
|
|
//! Shift 3D object's vertices \newinstance.
|
|
CImg<Tfloat> get_shift_object3d(const float tx, const float ty=0, const float tz=0) const {
|
|
return CImg<Tfloat>(*this,false).shift_object3d(tx,ty,tz);
|
|
}
|
|
|
|
//! Shift 3D object's vertices, so that it becomes centered.
|
|
/**
|
|
\note The object center is computed as its barycenter.
|
|
**/
|
|
CImg<T>& shift_object3d() {
|
|
if (_height!=3 || _depth>1 || _spectrum>1)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"shift_object3d(): Instance is not a set of 3D vertices.",
|
|
cimg_instance);
|
|
|
|
CImg<T> xcoords = get_shared_row(0), ycoords = get_shared_row(1), zcoords = get_shared_row(2);
|
|
float
|
|
xm, xM = (float)xcoords.max_min(xm),
|
|
ym, yM = (float)ycoords.max_min(ym),
|
|
zm, zM = (float)zcoords.max_min(zm);
|
|
xcoords-=(xm + xM)/2; ycoords-=(ym + yM)/2; zcoords-=(zm + zM)/2;
|
|
return *this;
|
|
}
|
|
|
|
//! Shift 3D object's vertices, so that it becomes centered \newinstance.
|
|
CImg<Tfloat> get_shift_object3d() const {
|
|
return CImg<Tfloat>(*this,false).shift_object3d();
|
|
}
|
|
|
|
//! Resize 3D object.
|
|
/**
|
|
\param sx Width of the 3D object's bounding box.
|
|
\param sy Height of the 3D object's bounding box.
|
|
\param sz Depth of the 3D object's bounding box.
|
|
**/
|
|
CImg<T>& resize_object3d(const float sx, const float sy=-100, const float sz=-100) {
|
|
if (_height!=3 || _depth>1 || _spectrum>1)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"resize_object3d(): Instance is not a set of 3D vertices.",
|
|
cimg_instance);
|
|
|
|
CImg<T> xcoords = get_shared_row(0), ycoords = get_shared_row(1), zcoords = get_shared_row(2);
|
|
float
|
|
xm, xM = (float)xcoords.max_min(xm),
|
|
ym, yM = (float)ycoords.max_min(ym),
|
|
zm, zM = (float)zcoords.max_min(zm);
|
|
if (xm<xM) { if (sx>0) xcoords*=sx/(xM-xm); else xcoords*=-sx/100; }
|
|
if (ym<yM) { if (sy>0) ycoords*=sy/(yM-ym); else ycoords*=-sy/100; }
|
|
if (zm<zM) { if (sz>0) zcoords*=sz/(zM-zm); else zcoords*=-sz/100; }
|
|
return *this;
|
|
}
|
|
|
|
//! Resize 3D object \newinstance.
|
|
CImg<Tfloat> get_resize_object3d(const float sx, const float sy=-100, const float sz=-100) const {
|
|
return CImg<Tfloat>(*this,false).resize_object3d(sx,sy,sz);
|
|
}
|
|
|
|
//! Resize 3D object to unit size.
|
|
CImg<T> resize_object3d() {
|
|
if (_height!=3 || _depth>1 || _spectrum>1)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"resize_object3d(): Instance is not a set of 3D vertices.",
|
|
cimg_instance);
|
|
|
|
CImg<T> xcoords = get_shared_row(0), ycoords = get_shared_row(1), zcoords = get_shared_row(2);
|
|
float
|
|
xm, xM = (float)xcoords.max_min(xm),
|
|
ym, yM = (float)ycoords.max_min(ym),
|
|
zm, zM = (float)zcoords.max_min(zm);
|
|
const float dx = xM - xm, dy = yM - ym, dz = zM - zm, dmax = cimg::max(dx,dy,dz);
|
|
if (dmax>0) { xcoords/=dmax; ycoords/=dmax; zcoords/=dmax; }
|
|
return *this;
|
|
}
|
|
|
|
//! Resize 3D object to unit size \newinstance.
|
|
CImg<Tfloat> get_resize_object3d() const {
|
|
return CImg<Tfloat>(*this,false).resize_object3d();
|
|
}
|
|
|
|
//! Merge two 3D objects together.
|
|
/**
|
|
\param[in,out] primitives Primitives data of the current 3D object.
|
|
\param obj_vertices Vertices data of the additional 3D object.
|
|
\param obj_primitives Primitives data of the additional 3D object.
|
|
**/
|
|
template<typename tf, typename tp, typename tff>
|
|
CImg<T>& append_object3d(CImgList<tf>& primitives, const CImg<tp>& obj_vertices,
|
|
const CImgList<tff>& obj_primitives) {
|
|
if (!obj_vertices || !obj_primitives) return *this;
|
|
if (obj_vertices._height!=3 || obj_vertices._depth>1 || obj_vertices._spectrum>1)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"append_object3d(): Specified vertice image (%u,%u,%u,%u,%p) is not a "
|
|
"set of 3D vertices.",
|
|
cimg_instance,
|
|
obj_vertices._width,obj_vertices._height,
|
|
obj_vertices._depth,obj_vertices._spectrum,obj_vertices._data);
|
|
|
|
if (is_empty()) { primitives.assign(obj_primitives); return assign(obj_vertices); }
|
|
if (_height!=3 || _depth>1 || _spectrum>1)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"append_object3d(): Instance is not a set of 3D vertices.",
|
|
cimg_instance);
|
|
|
|
const unsigned int P = _width;
|
|
append(obj_vertices,'x');
|
|
const unsigned int N = primitives._width;
|
|
primitives.insert(obj_primitives);
|
|
for (unsigned int i = N; i<primitives._width; ++i) {
|
|
CImg<tf> &p = primitives[i];
|
|
switch (p.size()) {
|
|
case 1 : p[0]+=P; break; // Point
|
|
case 5 : p[0]+=P; p[1]+=P; break; // Sphere
|
|
case 2 : case 6 : p[0]+=P; p[1]+=P; break; // Segment
|
|
case 3 : case 9 : p[0]+=P; p[1]+=P; p[2]+=P; break; // Triangle
|
|
case 4 : case 12 : p[0]+=P; p[1]+=P; p[2]+=P; p[3]+=P; break; // Rectangle
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Texturize primitives of a 3D object.
|
|
/**
|
|
\param[in,out] primitives Primitives data of the 3D object.
|
|
\param[in,out] colors Colors data of the 3D object.
|
|
\param texture Texture image to map to 3D object.
|
|
\param coords Texture-mapping coordinates.
|
|
**/
|
|
template<typename tp, typename tc, typename tt, typename tx>
|
|
const CImg<T>& texturize_object3d(CImgList<tp>& primitives, CImgList<tc>& colors,
|
|
const CImg<tt>& texture, const CImg<tx>& coords=CImg<tx>::const_empty()) const {
|
|
if (is_empty()) return *this;
|
|
if (_height!=3)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"texturize_object3d(): image instance is not a set of 3D points.",
|
|
cimg_instance);
|
|
if (coords && (coords._width!=_width || coords._height!=2))
|
|
throw CImgArgumentException(_cimg_instance
|
|
"texturize_object3d(): Invalid specified texture coordinates (%u,%u,%u,%u,%p).",
|
|
cimg_instance,
|
|
coords._width,coords._height,coords._depth,coords._spectrum,coords._data);
|
|
CImg<intT> _coords;
|
|
if (!coords) { // If no texture coordinates specified, do a default XY-projection
|
|
_coords.assign(_width,2);
|
|
float
|
|
xmin, xmax = (float)get_shared_row(0).max_min(xmin),
|
|
ymin, ymax = (float)get_shared_row(1).max_min(ymin),
|
|
dx = xmax>xmin?xmax-xmin:1,
|
|
dy = ymax>ymin?ymax-ymin:1;
|
|
cimg_forX(*this,p) {
|
|
_coords(p,0) = (int)(((*this)(p,0) - xmin)*texture._width/dx);
|
|
_coords(p,1) = (int)(((*this)(p,1) - ymin)*texture._height/dy);
|
|
}
|
|
} else _coords = coords;
|
|
|
|
int texture_ind = -1;
|
|
cimglist_for(primitives,l) {
|
|
CImg<tp> &p = primitives[l];
|
|
const unsigned int siz = p.size();
|
|
switch (siz) {
|
|
case 1 : { // Point
|
|
const unsigned int i0 = (unsigned int)p[0];
|
|
const int x0 = _coords(i0,0), y0 = _coords(i0,1);
|
|
texture.get_vector_at(x0<=0?0:x0>=texture.width()?texture.width() - 1:x0,
|
|
y0<=0?0:y0>=texture.height()?texture.height() - 1:y0).move_to(colors[l]);
|
|
} break;
|
|
case 2 : case 6 : { // Line
|
|
const unsigned int i0 = (unsigned int)p[0], i1 = (unsigned int)p[1];
|
|
const int
|
|
x0 = _coords(i0,0), y0 = _coords(i0,1),
|
|
x1 = _coords(i1,0), y1 = _coords(i1,1);
|
|
if (texture_ind<0) colors[texture_ind=l].assign(texture,false);
|
|
else colors[l].assign(colors[texture_ind],true);
|
|
CImg<tp>::vector(i0,i1,x0,y0,x1,y1).move_to(p);
|
|
} break;
|
|
case 3 : case 9 : { // Triangle
|
|
const unsigned int i0 = (unsigned int)p[0], i1 = (unsigned int)p[1], i2 = (unsigned int)p[2];
|
|
const int
|
|
x0 = _coords(i0,0), y0 = _coords(i0,1),
|
|
x1 = _coords(i1,0), y1 = _coords(i1,1),
|
|
x2 = _coords(i2,0), y2 = _coords(i2,1);
|
|
if (texture_ind<0) colors[texture_ind=l].assign(texture,false);
|
|
else colors[l].assign(colors[texture_ind],true);
|
|
CImg<tp>::vector(i0,i1,i2,x0,y0,x1,y1,x2,y2).move_to(p);
|
|
} break;
|
|
case 4 : case 12 : { // Quadrangle
|
|
const unsigned int
|
|
i0 = (unsigned int)p[0], i1 = (unsigned int)p[1], i2 = (unsigned int)p[2], i3 = (unsigned int)p[3];
|
|
const int
|
|
x0 = _coords(i0,0), y0 = _coords(i0,1),
|
|
x1 = _coords(i1,0), y1 = _coords(i1,1),
|
|
x2 = _coords(i2,0), y2 = _coords(i2,1),
|
|
x3 = _coords(i3,0), y3 = _coords(i3,1);
|
|
if (texture_ind<0) colors[texture_ind=l].assign(texture,false);
|
|
else colors[l].assign(colors[texture_ind],true);
|
|
CImg<tp>::vector(i0,i1,i2,i3,x0,y0,x1,y1,x2,y2,x3,y3).move_to(p);
|
|
} break;
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Generate a 3D elevation of the image instance.
|
|
/**
|
|
\param[out] primitives The returned list of the 3D object primitives
|
|
(template type \e tf should be at least \e unsigned \e int).
|
|
\param[out] colors The returned list of the 3D object colors.
|
|
\param elevation The input elevation map.
|
|
\return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg<float> image (0<=i<=N - 1).
|
|
\par Example
|
|
\code
|
|
const CImg<float> img("reference.jpg");
|
|
CImgList<unsigned int> faces3d;
|
|
CImgList<unsigned char> colors3d;
|
|
const CImg<float> points3d = img.get_elevation3d(faces3d,colors3d,img.get_norm()*0.2);
|
|
CImg<unsigned char>().display_object3d("Elevation3d",points3d,faces3d,colors3d);
|
|
\endcode
|
|
\image html ref_elevation3d.jpg
|
|
**/
|
|
template<typename tf, typename tc, typename te>
|
|
CImg<floatT> get_elevation3d(CImgList<tf>& primitives, CImgList<tc>& colors, const CImg<te>& elevation) const {
|
|
if (!is_sameXY(elevation) || elevation._depth>1 || elevation._spectrum>1)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"get_elevation3d(): Instance and specified elevation (%u,%u,%u,%u,%p) "
|
|
"have incompatible dimensions.",
|
|
cimg_instance,
|
|
elevation._width,elevation._height,elevation._depth,
|
|
elevation._spectrum,elevation._data);
|
|
if (is_empty()) return *this;
|
|
float m, M = (float)max_min(m);
|
|
if (M==m) ++M;
|
|
colors.assign();
|
|
const unsigned int size_x1 = _width - 1, size_y1 = _height - 1;
|
|
for (unsigned int y = 0; y<size_y1; ++y)
|
|
for (unsigned int x = 0; x<size_x1; ++x) {
|
|
const unsigned char
|
|
r = (unsigned char)(((*this)(x,y,0) - m)*255/(M-m)),
|
|
g = (unsigned char)(_spectrum>1?((*this)(x,y,1) - m)*255/(M-m):r),
|
|
b = (unsigned char)(_spectrum>2?((*this)(x,y,2) - m)*255/(M-m):_spectrum>1?0:r);
|
|
CImg<tc>::vector((tc)r,(tc)g,(tc)b).move_to(colors);
|
|
}
|
|
const typename CImg<te>::_functor2d_int func(elevation);
|
|
return elevation3d(primitives,func,0,0,_width - 1.f,_height - 1.f,_width,_height);
|
|
}
|
|
|
|
//! Generate the 3D projection planes of the image instance.
|
|
/**
|
|
\param[out] primitives Primitives data of the returned 3D object.
|
|
\param[out] colors Colors data of the returned 3D object.
|
|
\param x0 X-coordinate of the projection point.
|
|
\param y0 Y-coordinate of the projection point.
|
|
\param z0 Z-coordinate of the projection point.
|
|
\param normalize_colors Tells if the created textures have normalized colors.
|
|
**/
|
|
template<typename tf, typename tc>
|
|
CImg<floatT> get_projections3d(CImgList<tf>& primitives, CImgList<tc>& colors,
|
|
const unsigned int x0, const unsigned int y0, const unsigned int z0,
|
|
const bool normalize_colors=false) const {
|
|
float m = 0, M = 0, delta = 1;
|
|
if (normalize_colors) { m = (float)min_max(M); delta = 255/(m==M?1:M-m); }
|
|
const unsigned int
|
|
_x0 = (x0>=_width)?_width - 1:x0,
|
|
_y0 = (y0>=_height)?_height - 1:y0,
|
|
_z0 = (z0>=_depth)?_depth - 1:z0;
|
|
CImg<tc> img_xy, img_xz, img_yz;
|
|
if (normalize_colors) {
|
|
((get_crop(0,0,_z0,0,_width - 1,_height - 1,_z0,_spectrum - 1)-=m)*=delta).move_to(img_xy);
|
|
((get_crop(0,_y0,0,0,_width - 1,_y0,_depth - 1,_spectrum - 1)-=m)*=delta).resize(_width,_depth,1,-100,-1).
|
|
move_to(img_xz);
|
|
((get_crop(_x0,0,0,0,_x0,_height - 1,_depth - 1,_spectrum - 1)-=m)*=delta).resize(_height,_depth,1,-100,-1).
|
|
move_to(img_yz);
|
|
} else {
|
|
get_crop(0,0,_z0,0,_width - 1,_height - 1,_z0,_spectrum - 1).move_to(img_xy);
|
|
get_crop(0,_y0,0,0,_width - 1,_y0,_depth - 1,_spectrum - 1).resize(_width,_depth,1,-100,-1).move_to(img_xz);
|
|
get_crop(_x0,0,0,0,_x0,_height - 1,_depth - 1,_spectrum - 1).resize(_height,_depth,1,-100,-1).move_to(img_yz);
|
|
}
|
|
CImg<floatT> points(12,3,1,1,
|
|
0,_width - 1,_width - 1,0, 0,_width - 1,_width - 1,0, _x0,_x0,_x0,_x0,
|
|
0,0,_height - 1,_height - 1, _y0,_y0,_y0,_y0, 0,_height - 1,_height - 1,0,
|
|
_z0,_z0,_z0,_z0, 0,0,_depth - 1,_depth - 1, 0,0,_depth - 1,_depth - 1);
|
|
primitives.assign();
|
|
CImg<tf>::vector(0,1,2,3,0,0,img_xy._width - 1,0,img_xy._width - 1,img_xy._height - 1,0,img_xy._height - 1).
|
|
move_to(primitives);
|
|
CImg<tf>::vector(4,5,6,7,0,0,img_xz._width - 1,0,img_xz._width - 1,img_xz._height - 1,0,img_xz._height - 1).
|
|
move_to(primitives);
|
|
CImg<tf>::vector(8,9,10,11,0,0,img_yz._width - 1,0,img_yz._width - 1,img_yz._height - 1,0,img_yz._height - 1).
|
|
move_to(primitives);
|
|
colors.assign();
|
|
img_xy.move_to(colors);
|
|
img_xz.move_to(colors);
|
|
img_yz.move_to(colors);
|
|
return points;
|
|
}
|
|
|
|
//! Generate a isoline of the image instance as a 3D object.
|
|
/**
|
|
\param[out] primitives The returned list of the 3D object primitives
|
|
(template type \e tf should be at least \e unsigned \e int).
|
|
\param isovalue The returned list of the 3D object colors.
|
|
\param size_x The number of subdivisions along the X-axis.
|
|
\param size_y The number of subdisivions along the Y-axis.
|
|
\return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg<float> image (0<=i<=N - 1).
|
|
\par Example
|
|
\code
|
|
const CImg<float> img("reference.jpg");
|
|
CImgList<unsigned int> faces3d;
|
|
const CImg<float> points3d = img.get_isoline3d(faces3d,100);
|
|
CImg<unsigned char>().display_object3d("Isoline3d",points3d,faces3d,colors3d);
|
|
\endcode
|
|
\image html ref_isoline3d.jpg
|
|
**/
|
|
template<typename tf>
|
|
CImg<floatT> get_isoline3d(CImgList<tf>& primitives, const float isovalue,
|
|
const int size_x=-100, const int size_y=-100) const {
|
|
if (_spectrum>1)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"get_isoline3d(): Instance is not a scalar image.",
|
|
cimg_instance);
|
|
if (_depth>1)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"get_isoline3d(): Instance is not a 2D image.",
|
|
cimg_instance);
|
|
primitives.assign();
|
|
if (is_empty()) return *this;
|
|
CImg<floatT> vertices;
|
|
if ((size_x==-100 && size_y==-100) || (size_x==width() && size_y==height())) {
|
|
const _functor2d_int func(*this);
|
|
vertices = isoline3d(primitives,func,isovalue,0,0,width() - 1.f,height() - 1.f,width(),height());
|
|
} else {
|
|
const _functor2d_float func(*this);
|
|
vertices = isoline3d(primitives,func,isovalue,0,0,width() - 1.f,height() - 1.f,size_x,size_y);
|
|
}
|
|
return vertices;
|
|
}
|
|
|
|
//! Compute isolines of a function, as a 3D object.
|
|
/**
|
|
\param[out] primitives Primitives data of the resulting 3D object.
|
|
\param func Elevation functor. Must have <tt>operator()(x,y)</tt> defined.
|
|
\param isovalue Isovalue to extract from function.
|
|
\param x0 X-coordinate of the starting point.
|
|
\param y0 Y-coordinate of the starting point.
|
|
\param x1 X-coordinate of the ending point.
|
|
\param y1 Y-coordinate of the ending point.
|
|
\param size_x Resolution of the function along the X-axis.
|
|
\param size_y Resolution of the function along the Y-axis.
|
|
\note Use the marching squares algorithm for extracting the isolines.
|
|
**/
|
|
template<typename tf, typename tfunc>
|
|
static CImg<floatT> isoline3d(CImgList<tf>& primitives, const tfunc& func, const float isovalue,
|
|
const float x0, const float y0, const float x1, const float y1,
|
|
const int size_x=256, const int size_y=256) {
|
|
CImgList<floatT> vertices;
|
|
primitives.assign();
|
|
typename CImg<floatT>::_functor_isoline3d add_vertex(vertices);
|
|
typename CImg<tf>::_functor_isoline3d add_segment(primitives);
|
|
isoline3d(add_vertex,add_segment,func,isovalue,x0,y0,x1,y1,size_x,size_y);
|
|
return vertices>'x';
|
|
}
|
|
|
|
//! Compute isolines of a function, as a 3D object.
|
|
/**
|
|
\param[out] add_vertex : Functor with operator()(x,y,z) defined for adding new vertex.
|
|
\param[out] add_segment : Functor with operator()(i,j) defined for adding new segment.
|
|
\param func Elevation function. Is of type <tt>float (*func)(const float x,const float y)</tt>.
|
|
\param isovalue Isovalue to extract from function.
|
|
\param x0 X-coordinate of the starting point.
|
|
\param y0 Y-coordinate of the starting point.
|
|
\param x1 X-coordinate of the ending point.
|
|
\param y1 Y-coordinate of the ending point.
|
|
\param size_x Resolution of the function along the X-axis.
|
|
\param size_y Resolution of the function along the Y-axis.
|
|
\note Use the marching squares algorithm for extracting the isolines.
|
|
**/
|
|
template<typename tv, typename tf, typename tfunc>
|
|
static void isoline3d(tv& add_vertex, tf& add_segment, const tfunc& func, const float isovalue,
|
|
const float x0, const float y0, const float x1, const float y1,
|
|
const int size_x, const int size_y) {
|
|
static const unsigned int edges[16] = { 0x0, 0x9, 0x3, 0xa, 0x6, 0xf, 0x5, 0xc, 0xc,
|
|
0x5, 0xf, 0x6, 0xa, 0x3, 0x9, 0x0 };
|
|
static const int segments[16][4] = { { -1,-1,-1,-1 }, { 0,3,-1,-1 }, { 0,1,-1,-1 }, { 1,3,-1,-1 },
|
|
{ 1,2,-1,-1 }, { 0,1,2,3 }, { 0,2,-1,-1 }, { 2,3,-1,-1 },
|
|
{ 2,3,-1,-1 }, { 0,2,-1,-1}, { 0,3,1,2 }, { 1,2,-1,-1 },
|
|
{ 1,3,-1,-1 }, { 0,1,-1,-1}, { 0,3,-1,-1}, { -1,-1,-1,-1 } };
|
|
const unsigned int
|
|
_nx = (unsigned int)(size_x>=0?size_x:cimg::round((x1-x0)*-size_x/100 + 1)),
|
|
_ny = (unsigned int)(size_y>=0?size_y:cimg::round((y1-y0)*-size_y/100 + 1)),
|
|
nx = _nx?_nx:1,
|
|
ny = _ny?_ny:1,
|
|
nxm1 = nx - 1,
|
|
nym1 = ny - 1;
|
|
|
|
if (!nxm1 || !nym1) return;
|
|
const float dx = (x1 - x0)/nxm1, dy = (y1 - y0)/nym1;
|
|
CImg<intT> indices1(nx,1,1,2,-1), indices2(nx,1,1,2);
|
|
CImg<floatT> values1(nx), values2(nx);
|
|
float X = x0, Y = y0, nX = X + dx, nY = Y + dy;
|
|
int nb_vertices = 0;
|
|
|
|
// Fill first line with values
|
|
cimg_forX(values1,x) { values1(x) = (float)func(X,Y); X+=dx; }
|
|
|
|
// Run the marching squares algorithm
|
|
for (unsigned int yi = 0, nyi = 1; yi<nym1; ++yi, ++nyi, Y=nY, nY+=dy) {
|
|
X = x0; nX = X + dx;
|
|
indices2.fill(-1);
|
|
values2(0) = (float)func(X,nY);
|
|
for (unsigned int xi = 0, nxi = 1; xi<nxm1; ++xi, ++nxi, X=nX, nX+=dx) {
|
|
|
|
// Determine square configuration
|
|
const float
|
|
val0 = values1(xi),
|
|
val1 = values1(nxi),
|
|
val2 = values2(nxi) = (float)func(nX,nY),
|
|
val3 = values2(xi);
|
|
const unsigned int
|
|
configuration = (val0<isovalue?1U:0U) | (val1<isovalue?2U:0U) |
|
|
(val2<isovalue?4U:0U) | (val3<isovalue?8U:0U),
|
|
edge = edges[configuration];
|
|
|
|
// Compute intersection vertices
|
|
if (edge) {
|
|
if ((edge&1) && indices1(xi,0)<0) {
|
|
const float Xi = X + (isovalue-val0)*dx/(val1-val0);
|
|
indices1(xi,0) = nb_vertices++;
|
|
add_vertex(Xi,Y,0.0f);
|
|
}
|
|
if ((edge&2) && indices1(nxi,1)<0) {
|
|
const float Yi = Y + (isovalue-val1)*dy/(val2-val1);
|
|
indices1(nxi,1) = nb_vertices++;
|
|
add_vertex(nX,Yi,0.0f);
|
|
}
|
|
if ((edge&4) && indices2(xi,0)<0) {
|
|
const float Xi = X + (isovalue-val3)*dx/(val2-val3);
|
|
indices2(xi,0) = nb_vertices++;
|
|
add_vertex(Xi,nY,0.0f);
|
|
}
|
|
if ((edge&8) && indices1(xi,1)<0) {
|
|
const float Yi = Y + (isovalue-val0)*dy/(val3-val0);
|
|
indices1(xi,1) = nb_vertices++;
|
|
add_vertex(X,Yi,0.0f);
|
|
}
|
|
|
|
// Create segments
|
|
for (const int *segment = segments[configuration]; *segment!=-1; ) {
|
|
const unsigned int p0 = (unsigned int)*(segment++), p1 = (unsigned int)*(segment++);
|
|
const int
|
|
i0 = _isoline3d_index(p0,indices1,indices2,xi,nxi),
|
|
i1 = _isoline3d_index(p1,indices1,indices2,xi,nxi);
|
|
add_segment(i0,i1);
|
|
}
|
|
}
|
|
}
|
|
values1.swap(values2);
|
|
indices1.swap(indices2);
|
|
}
|
|
}
|
|
|
|
//! Compute isolines of a function, as a 3D object \overloading.
|
|
template<typename tf>
|
|
static CImg<floatT> isoline3d(CImgList<tf>& primitives, const char *const expression, const float isovalue,
|
|
const float x0, const float y0, const float x1, const float y1,
|
|
const int size_x=256, const int size_y=256) {
|
|
const _functor2d_expr func(expression);
|
|
return isoline3d(primitives,func,isovalue,x0,y0,x1,y1,size_x,size_y);
|
|
}
|
|
|
|
template<typename t>
|
|
static int _isoline3d_index(const unsigned int edge, const CImg<t>& indices1, const CImg<t>& indices2,
|
|
const unsigned int x, const unsigned int nx) {
|
|
switch (edge) {
|
|
case 0 : return (int)indices1(x,0);
|
|
case 1 : return (int)indices1(nx,1);
|
|
case 2 : return (int)indices2(x,0);
|
|
case 3 : return (int)indices1(x,1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
//! Generate an isosurface of the image instance as a 3D object.
|
|
/**
|
|
\param[out] primitives The returned list of the 3D object primitives
|
|
(template type \e tf should be at least \e unsigned \e int).
|
|
\param isovalue The returned list of the 3D object colors.
|
|
\param size_x Number of subdivisions along the X-axis.
|
|
\param size_y Number of subdisivions along the Y-axis.
|
|
\param size_z Number of subdisivions along the Z-axis.
|
|
\return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg<float> image (0<=i<=N - 1).
|
|
\par Example
|
|
\code
|
|
const CImg<float> img = CImg<unsigned char>("reference.jpg").resize(-100,-100,20);
|
|
CImgList<unsigned int> faces3d;
|
|
const CImg<float> points3d = img.get_isosurface3d(faces3d,100);
|
|
CImg<unsigned char>().display_object3d("Isosurface3d",points3d,faces3d,colors3d);
|
|
\endcode
|
|
\image html ref_isosurface3d.jpg
|
|
**/
|
|
template<typename tf>
|
|
CImg<floatT> get_isosurface3d(CImgList<tf>& primitives, const float isovalue,
|
|
const int size_x=-100, const int size_y=-100, const int size_z=-100) const {
|
|
if (_spectrum>1)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"get_isosurface3d(): Instance is not a scalar image.",
|
|
cimg_instance);
|
|
primitives.assign();
|
|
if (is_empty()) return *this;
|
|
CImg<floatT> vertices;
|
|
if ((size_x==-100 && size_y==-100 && size_z==-100) || (size_x==width() && size_y==height() && size_z==depth())) {
|
|
const _functor3d_int func(*this);
|
|
vertices = isosurface3d(primitives,func,isovalue,0,0,0,width() - 1.f,height() - 1.f,depth() - 1.f,
|
|
width(),height(),depth());
|
|
} else {
|
|
const _functor3d_float func(*this);
|
|
vertices = isosurface3d(primitives,func,isovalue,0,0,0,width() - 1.f,height() - 1.f,depth() - 1.f,
|
|
size_x,size_y,size_z);
|
|
}
|
|
return vertices;
|
|
}
|
|
|
|
//! Compute isosurface of a function, as a 3D object.
|
|
/**
|
|
\param[out] primitives Primitives data of the resulting 3D object.
|
|
\param func Implicit function. Is of type <tt>float (*func)(const float x, const float y, const float z)</tt>.
|
|
\param isovalue Isovalue to extract.
|
|
\param x0 X-coordinate of the starting point.
|
|
\param y0 Y-coordinate of the starting point.
|
|
\param z0 Z-coordinate of the starting point.
|
|
\param x1 X-coordinate of the ending point.
|
|
\param y1 Y-coordinate of the ending point.
|
|
\param z1 Z-coordinate of the ending point.
|
|
\param size_x Resolution of the elevation function along the X-axis.
|
|
\param size_y Resolution of the elevation function along the Y-axis.
|
|
\param size_z Resolution of the elevation function along the Z-axis.
|
|
\note Use the marching cubes algorithm for extracting the isosurface.
|
|
**/
|
|
template<typename tf, typename tfunc>
|
|
static CImg<floatT> isosurface3d(CImgList<tf>& primitives, const tfunc& func, const float isovalue,
|
|
const float x0, const float y0, const float z0,
|
|
const float x1, const float y1, const float z1,
|
|
const int size_x=32, const int size_y=32, const int size_z=32) {
|
|
CImgList<floatT> vertices;
|
|
primitives.assign();
|
|
typename CImg<floatT>::_functor_isosurface3d add_vertex(vertices);
|
|
typename CImg<tf>::_functor_isosurface3d add_triangle(primitives);
|
|
isosurface3d(add_vertex,add_triangle,func,isovalue,x0,y0,z0,x1,y1,z1,size_x,size_y,size_z);
|
|
return vertices>'x';
|
|
}
|
|
|
|
//! Compute isosurface of a function, as a 3D object.
|
|
/**
|
|
\param[out] add_vertex : Functor with operator()(x,y,z) defined for adding new vertex.
|
|
\param[out] add_triangle : Functor with operator()(i,j) defined for adding new segment.
|
|
\param func Implicit function. Is of type <tt>float (*func)(const float x, const float y, const float z)</tt>.
|
|
\param isovalue Isovalue to extract.
|
|
\param x0 X-coordinate of the starting point.
|
|
\param y0 Y-coordinate of the starting point.
|
|
\param z0 Z-coordinate of the starting point.
|
|
\param x1 X-coordinate of the ending point.
|
|
\param y1 Y-coordinate of the ending point.
|
|
\param z1 Z-coordinate of the ending point.
|
|
\param size_x Resolution of the elevation function along the X-axis.
|
|
\param size_y Resolution of the elevation function along the Y-axis.
|
|
\param size_z Resolution of the elevation function along the Z-axis.
|
|
\note Use the marching cubes algorithm for extracting the isosurface.
|
|
**/
|
|
template<typename tv, typename tf, typename tfunc>
|
|
static void isosurface3d(tv& add_vertex, tf& add_triangle, const tfunc& func, const float isovalue,
|
|
const float x0, const float y0, const float z0,
|
|
const float x1, const float y1, const float z1,
|
|
const int size_x, const int size_y, const int size_z) {
|
|
static const unsigned int edges[256] = {
|
|
0x000, 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c, 0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00,
|
|
0x190, 0x99 , 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c, 0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90,
|
|
0x230, 0x339, 0x33 , 0x13a, 0x636, 0x73f, 0x435, 0x53c, 0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30,
|
|
0x3a0, 0x2a9, 0x1a3, 0xaa , 0x7a6, 0x6af, 0x5a5, 0x4ac, 0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0,
|
|
0x460, 0x569, 0x663, 0x76a, 0x66 , 0x16f, 0x265, 0x36c, 0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60,
|
|
0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0xff , 0x3f5, 0x2fc, 0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0,
|
|
0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x55 , 0x15c, 0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950,
|
|
0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0xcc , 0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0,
|
|
0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc, 0xcc , 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0,
|
|
0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c, 0x15c, 0x55 , 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650,
|
|
0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc, 0x2fc, 0x3f5, 0xff , 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0,
|
|
0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c, 0x36c, 0x265, 0x16f, 0x66 , 0x76a, 0x663, 0x569, 0x460,
|
|
0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac, 0x4ac, 0x5a5, 0x6af, 0x7a6, 0xaa , 0x1a3, 0x2a9, 0x3a0,
|
|
0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c, 0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x33 , 0x339, 0x230,
|
|
0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c, 0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x99 , 0x190,
|
|
0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c, 0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x000
|
|
};
|
|
|
|
static const int triangles[256][16] = {
|
|
{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 0, 11, 2, 8, 11, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 4, 3, 0, 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1 },
|
|
{ 8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1 },
|
|
{ 3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1 },
|
|
{ 4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1 },
|
|
{ 4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 9, 5, 4, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 0, 5, 4, 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 8, 5, 4, 8, 3, 5, 3, 1, 5, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 1, 2, 10, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 3, 0, 8, 1, 2, 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, -1, -1, -1, -1 },
|
|
{ 9, 5, 4, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 0, 11, 2, 0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 0, 5, 4, 0, 1, 5, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5, -1, -1, -1, -1 },
|
|
{ 10, 3, 11, 10, 1, 3, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10, -1, -1, -1, -1 },
|
|
{ 5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3, -1, -1, -1, -1 },
|
|
{ 5, 4, 8, 5, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 9, 7, 8, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 9, 3, 0, 9, 5, 3, 5, 7, 3, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 0, 7, 8, 0, 1, 7, 1, 5, 7, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 1, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 9, 7, 8, 9, 5, 7, 10, 1, 2, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3, -1, -1, -1, -1 },
|
|
{ 8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2, -1, -1, -1, -1 },
|
|
{ 2, 10, 5, 2, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 7, 9, 5, 7, 8, 9, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11, -1, -1, -1, -1 },
|
|
{ 2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7, -1, -1, -1, -1 },
|
|
{ 11, 2, 1, 11, 1, 7, 7, 1, 5, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11, -1, -1, -1, -1 },
|
|
{ 5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0, -1 },
|
|
{ 11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, -1 },
|
|
{ 11, 10, 5, 7, 11, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 9, 0, 1, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 1, 8, 3, 1, 9, 8, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 1, 6, 5, 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 1, 6, 5, 1, 2, 6, 3, 0, 8, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 9, 6, 5, 9, 0, 6, 0, 2, 6, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8, -1, -1, -1, -1 },
|
|
{ 2, 3, 11, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 11, 0, 8, 11, 2, 0, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 0, 1, 9, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, -1, -1, -1, -1 },
|
|
{ 6, 3, 11, 6, 5, 3, 5, 1, 3, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, -1, -1, -1, -1 },
|
|
{ 3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, -1, -1, -1, -1 },
|
|
{ 6, 5, 9, 6, 9, 11, 11, 9, 8, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 5, 10, 6, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 4, 3, 0, 4, 7, 3, 6, 5, 10, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 1, 9, 0, 5, 10, 6, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4, -1, -1, -1, -1 },
|
|
{ 6, 1, 2, 6, 5, 1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7, -1, -1, -1, -1 },
|
|
{ 8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6, -1, -1, -1, -1 },
|
|
{ 7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9, -1 },
|
|
{ 3, 11, 2, 7, 8, 4, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, -1, -1, -1, -1 },
|
|
{ 0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1 },
|
|
{ 9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6, -1 },
|
|
{ 8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6, -1, -1, -1, -1 },
|
|
{ 5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11, -1 },
|
|
{ 0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7, -1 },
|
|
{ 6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9, -1, -1, -1, -1 },
|
|
{ 10, 4, 9, 6, 4, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 4, 10, 6, 4, 9, 10, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 10, 0, 1, 10, 6, 0, 6, 4, 0, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10, -1, -1, -1, -1 },
|
|
{ 1, 4, 9, 1, 2, 4, 2, 6, 4, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4, -1, -1, -1, -1 },
|
|
{ 0, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 8, 3, 2, 8, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 10, 4, 9, 10, 6, 4, 11, 2, 3, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6, -1, -1, -1, -1 },
|
|
{ 3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10, -1, -1, -1, -1 },
|
|
{ 6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1, -1 },
|
|
{ 9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3, -1, -1, -1, -1 },
|
|
{ 8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1, -1 },
|
|
{ 3, 11, 6, 3, 6, 0, 0, 6, 4, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 6, 4, 8, 11, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 7, 10, 6, 7, 8, 10, 8, 9, 10, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10, -1, -1, -1, -1 },
|
|
{ 10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0, -1, -1, -1, -1 },
|
|
{ 10, 6, 7, 10, 7, 1, 1, 7, 3, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7, -1, -1, -1, -1 },
|
|
{ 2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9, -1 },
|
|
{ 7, 8, 0, 7, 0, 6, 6, 0, 2, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 7, 3, 2, 6, 7, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7, -1, -1, -1, -1 },
|
|
{ 2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7, -1 },
|
|
{ 1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11, -1 },
|
|
{ 11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1, -1, -1, -1, -1 },
|
|
{ 8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6, -1 },
|
|
{ 0, 9, 1, 11, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0, -1, -1, -1, -1 },
|
|
{ 7, 11, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 3, 0, 8, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 0, 1, 9, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 8, 1, 9, 8, 3, 1, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 10, 1, 2, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 1, 2, 10, 3, 0, 8, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 2, 9, 0, 2, 10, 9, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8, -1, -1, -1, -1 },
|
|
{ 7, 2, 3, 6, 2, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 7, 0, 8, 7, 6, 0, 6, 2, 0, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 2, 7, 6, 2, 3, 7, 0, 1, 9, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6, -1, -1, -1, -1 },
|
|
{ 10, 7, 6, 10, 1, 7, 1, 3, 7, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8, -1, -1, -1, -1 },
|
|
{ 0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7, -1, -1, -1, -1 },
|
|
{ 7, 6, 10, 7, 10, 8, 8, 10, 9, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 6, 8, 4, 11, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 3, 6, 11, 3, 0, 6, 0, 4, 6, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 8, 6, 11, 8, 4, 6, 9, 0, 1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6, -1, -1, -1, -1 },
|
|
{ 6, 8, 4, 6, 11, 8, 2, 10, 1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6, -1, -1, -1, -1 },
|
|
{ 4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9, -1, -1, -1, -1 },
|
|
{ 10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3, -1 },
|
|
{ 8, 2, 3, 8, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 0, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8, -1, -1, -1, -1 },
|
|
{ 1, 9, 4, 1, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1, -1, -1, -1, -1 },
|
|
{ 10, 1, 0, 10, 0, 6, 6, 0, 4, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3, -1 },
|
|
{ 10, 9, 4, 6, 10, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 4, 9, 5, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 0, 8, 3, 4, 9, 5, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 5, 0, 1, 5, 4, 0, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5, -1, -1, -1, -1 },
|
|
{ 9, 5, 4, 10, 1, 2, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5, -1, -1, -1, -1 },
|
|
{ 7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2, -1, -1, -1, -1 },
|
|
{ 3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6, -1 },
|
|
{ 7, 2, 3, 7, 6, 2, 5, 4, 9, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7, -1, -1, -1, -1 },
|
|
{ 3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0, -1, -1, -1, -1 },
|
|
{ 6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8, -1 },
|
|
{ 9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7, -1, -1, -1, -1 },
|
|
{ 1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4, -1 },
|
|
{ 4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10, -1 },
|
|
{ 7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10, -1, -1, -1, -1 },
|
|
{ 6, 9, 5, 6, 11, 9, 11, 8, 9, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5, -1, -1, -1, -1 },
|
|
{ 0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11, -1, -1, -1, -1 },
|
|
{ 6, 11, 3, 6, 3, 5, 5, 3, 1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6, -1, -1, -1, -1 },
|
|
{ 0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10, -1 },
|
|
{ 11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5, -1 },
|
|
{ 6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3, -1, -1, -1, -1 },
|
|
{ 5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2, -1, -1, -1, -1 },
|
|
{ 9, 5, 6, 9, 6, 0, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8, -1 },
|
|
{ 1, 5, 6, 2, 1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6, -1 },
|
|
{ 10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0, -1, -1, -1, -1 },
|
|
{ 0, 3, 8, 5, 6, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 10, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 11, 5, 10, 7, 5, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 11, 5, 10, 11, 7, 5, 8, 3, 0, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 5, 11, 7, 5, 10, 11, 1, 9, 0, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1, -1, -1, -1, -1 },
|
|
{ 11, 1, 2, 11, 7, 1, 7, 5, 1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11, -1, -1, -1, -1 },
|
|
{ 9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7, -1, -1, -1, -1 },
|
|
{ 7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2, -1 },
|
|
{ 2, 5, 10, 2, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5, -1, -1, -1, -1 },
|
|
{ 9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2, -1, -1, -1, -1 },
|
|
{ 9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2, -1 },
|
|
{ 1, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 0, 8, 7, 0, 7, 1, 1, 7, 5, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 9, 0, 3, 9, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 9, 8, 7, 5, 9, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 5, 8, 4, 5, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0, -1, -1, -1, -1 },
|
|
{ 0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, -1, -1, -1, -1 },
|
|
{ 10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, -1 },
|
|
{ 2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8, -1, -1, -1, -1 },
|
|
{ 0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, -1 },
|
|
{ 0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5, -1 },
|
|
{ 9, 4, 5, 2, 11, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, -1, -1, -1, -1 },
|
|
{ 5, 10, 2, 5, 2, 4, 4, 2, 0, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, -1 },
|
|
{ 5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2, -1, -1, -1, -1 },
|
|
{ 8, 4, 5, 8, 5, 3, 3, 5, 1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 0, 4, 5, 1, 0, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5, -1, -1, -1, -1 },
|
|
{ 9, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 4, 11, 7, 4, 9, 11, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11, -1, -1, -1, -1 },
|
|
{ 1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11, -1, -1, -1, -1 },
|
|
{ 3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, -1 },
|
|
{ 4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, -1, -1, -1, -1 },
|
|
{ 9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3, -1 },
|
|
{ 11, 7, 4, 11, 4, 2, 2, 4, 0, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, -1, -1, -1, -1 },
|
|
{ 2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9, -1, -1, -1, -1 },
|
|
{ 9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, -1 },
|
|
{ 3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10, -1 },
|
|
{ 1, 10, 2, 8, 7, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 4, 9, 1, 4, 1, 7, 7, 1, 3, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1, -1, -1, -1, -1 },
|
|
{ 4, 0, 3, 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 4, 8, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 9, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 3, 0, 9, 3, 9, 11, 11, 9, 10, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 0, 1, 10, 0, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 3, 1, 10, 11, 3, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 1, 2, 11, 1, 11, 9, 9, 11, 8, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9, -1, -1, -1, -1 },
|
|
{ 0, 2, 11, 8, 0, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 3, 2, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 2, 3, 8, 2, 8, 10, 10, 8, 9, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 9, 10, 2, 0, 9, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8, -1, -1, -1, -1 },
|
|
{ 1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 1, 3, 8, 9, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 0, 9, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ 0, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
|
|
{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }
|
|
};
|
|
|
|
const unsigned int
|
|
_nx = (unsigned int)(size_x>=0?size_x:cimg::round((x1-x0)*-size_x/100 + 1)),
|
|
_ny = (unsigned int)(size_y>=0?size_y:cimg::round((y1-y0)*-size_y/100 + 1)),
|
|
_nz = (unsigned int)(size_z>=0?size_z:cimg::round((z1-z0)*-size_z/100 + 1)),
|
|
nx = _nx?_nx:1,
|
|
ny = _ny?_ny:1,
|
|
nz = _nz?_nz:1,
|
|
nxm1 = nx - 1,
|
|
nym1 = ny - 1,
|
|
nzm1 = nz - 1;
|
|
if (!nxm1 || !nym1 || !nzm1) return;
|
|
const float dx = (x1 - x0)/nxm1, dy = (y1 - y0)/nym1, dz = (z1 - z0)/nzm1;
|
|
CImg<intT> indices1(nx,ny,1,3,-1), indices2(indices1);
|
|
CImg<floatT> values1(nx,ny), values2(nx,ny);
|
|
float X = 0, Y = 0, Z = 0, nX = 0, nY = 0, nZ = 0;
|
|
int nb_vertices = 0;
|
|
|
|
// Fill the first plane with function values
|
|
Y = y0;
|
|
cimg_forY(values1,y) {
|
|
X = x0;
|
|
cimg_forX(values1,x) { values1(x,y) = (float)func(X,Y,z0); X+=dx; }
|
|
Y+=dy;
|
|
}
|
|
|
|
// Run Marching Cubes algorithm
|
|
Z = z0; nZ = Z + dz;
|
|
for (unsigned int zi = 0; zi<nzm1; ++zi, Z = nZ, nZ+=dz) {
|
|
Y = y0; nY = Y + dy;
|
|
indices2.fill(-1);
|
|
X = x0; for (unsigned int xi = 0; xi<nx; ++xi) { values2(xi,0) = (float)func(X,Y,nZ); X += dx; }
|
|
|
|
for (unsigned int yi = 0, nyi = 1; yi<nym1; ++yi, ++nyi, Y = nY, nY+=dy) {
|
|
X = x0; nX = X + dx;
|
|
values2(0,nyi) = (float)func(X,nY,nZ);
|
|
|
|
for (unsigned int xi = 0, nxi = 1; xi<nxm1; ++xi, ++nxi, X = nX, nX+=dx) {
|
|
|
|
// Determine cube configuration
|
|
const float
|
|
val0 = values1(xi,yi),
|
|
val1 = values1(nxi,yi),
|
|
val2 = values1(nxi,nyi),
|
|
val3 = values1(xi,nyi),
|
|
val4 = values2(xi,yi),
|
|
val5 = values2(nxi,yi),
|
|
val6 = values2(nxi,nyi) = (float)func(nX,nY,nZ),
|
|
val7 = values2(xi,nyi);
|
|
|
|
const unsigned int configuration =
|
|
(val0<isovalue?1U:0U) | (val1<isovalue?2U:0U) | (val2<isovalue?4U:0U) | (val3<isovalue?8U:0U) |
|
|
(val4<isovalue?16U:0U) | (val5<isovalue?32U:0U) | (val6<isovalue?64U:0U) | (val7<isovalue?128U:0U),
|
|
edge = edges[configuration];
|
|
|
|
// Compute intersection vertices
|
|
if (edge) {
|
|
if ((edge&1) && indices1(xi,yi,0)<0) {
|
|
const float Xi = X + (isovalue-val0)*dx/(val1-val0);
|
|
indices1(xi,yi,0) = nb_vertices++;
|
|
add_vertex(Xi,Y,Z);
|
|
}
|
|
if ((edge&2) && indices1(nxi,yi,1)<0) {
|
|
const float Yi = Y + (isovalue-val1)*dy/(val2-val1);
|
|
indices1(nxi,yi,1) = nb_vertices++;
|
|
add_vertex(nX,Yi,Z);
|
|
}
|
|
if ((edge&4) && indices1(xi,nyi,0)<0) {
|
|
const float Xi = X + (isovalue-val3)*dx/(val2-val3);
|
|
indices1(xi,nyi,0) = nb_vertices++;
|
|
add_vertex(Xi,nY,Z);
|
|
}
|
|
if ((edge&8) && indices1(xi,yi,1)<0) {
|
|
const float Yi = Y + (isovalue-val0)*dy/(val3-val0);
|
|
indices1(xi,yi,1) = nb_vertices++;
|
|
add_vertex(X,Yi,Z);
|
|
}
|
|
if ((edge&16) && indices2(xi,yi,0)<0) {
|
|
const float Xi = X + (isovalue-val4)*dx/(val5-val4);
|
|
indices2(xi,yi,0) = nb_vertices++;
|
|
add_vertex(Xi,Y,nZ);
|
|
}
|
|
if ((edge&32) && indices2(nxi,yi,1)<0) {
|
|
const float Yi = Y + (isovalue-val5)*dy/(val6-val5);
|
|
indices2(nxi,yi,1) = nb_vertices++;
|
|
add_vertex(nX,Yi,nZ);
|
|
}
|
|
if ((edge&64) && indices2(xi,nyi,0)<0) {
|
|
const float Xi = X + (isovalue-val7)*dx/(val6-val7);
|
|
indices2(xi,nyi,0) = nb_vertices++;
|
|
add_vertex(Xi,nY,nZ);
|
|
}
|
|
if ((edge&128) && indices2(xi,yi,1)<0) {
|
|
const float Yi = Y + (isovalue-val4)*dy/(val7-val4);
|
|
indices2(xi,yi,1) = nb_vertices++;
|
|
add_vertex(X,Yi,nZ);
|
|
}
|
|
if ((edge&256) && indices1(xi,yi,2)<0) {
|
|
const float Zi = Z+ (isovalue-val0)*dz/(val4-val0);
|
|
indices1(xi,yi,2) = nb_vertices++;
|
|
add_vertex(X,Y,Zi);
|
|
}
|
|
if ((edge&512) && indices1(nxi,yi,2)<0) {
|
|
const float Zi = Z + (isovalue-val1)*dz/(val5-val1);
|
|
indices1(nxi,yi,2) = nb_vertices++;
|
|
add_vertex(nX,Y,Zi);
|
|
}
|
|
if ((edge&1024) && indices1(nxi,nyi,2)<0) {
|
|
const float Zi = Z + (isovalue-val2)*dz/(val6-val2);
|
|
indices1(nxi,nyi,2) = nb_vertices++;
|
|
add_vertex(nX,nY,Zi);
|
|
}
|
|
if ((edge&2048) && indices1(xi,nyi,2)<0) {
|
|
const float Zi = Z + (isovalue-val3)*dz/(val7-val3);
|
|
indices1(xi,nyi,2) = nb_vertices++;
|
|
add_vertex(X,nY,Zi);
|
|
}
|
|
|
|
// Create triangles
|
|
for (const int *triangle = triangles[configuration]; *triangle!=-1; ) {
|
|
const unsigned int
|
|
p0 = (unsigned int)*(triangle++),
|
|
p1 = (unsigned int)*(triangle++),
|
|
p2 = (unsigned int)*(triangle++);
|
|
const int
|
|
i0 = _isosurface3d_index(p0,indices1,indices2,xi,yi,nxi,nyi),
|
|
i1 = _isosurface3d_index(p1,indices1,indices2,xi,yi,nxi,nyi),
|
|
i2 = _isosurface3d_index(p2,indices1,indices2,xi,yi,nxi,nyi);
|
|
add_triangle(i0,i2,i1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
cimg::swap(values1,values2);
|
|
cimg::swap(indices1,indices2);
|
|
}
|
|
}
|
|
|
|
//! Compute isosurface of a function, as a 3D object \overloading.
|
|
template<typename tf>
|
|
static CImg<floatT> isosurface3d(CImgList<tf>& primitives, const char *const expression, const float isovalue,
|
|
const float x0, const float y0, const float z0,
|
|
const float x1, const float y1, const float z1,
|
|
const int dx=32, const int dy=32, const int dz=32) {
|
|
const _functor3d_expr func(expression);
|
|
return isosurface3d(primitives,func,isovalue,x0,y0,z0,x1,y1,z1,dx,dy,dz);
|
|
}
|
|
|
|
template<typename t>
|
|
static int _isosurface3d_index(const unsigned int edge, const CImg<t>& indices1, const CImg<t>& indices2,
|
|
const unsigned int x, const unsigned int y,
|
|
const unsigned int nx, const unsigned int ny) {
|
|
switch (edge) {
|
|
case 0 : return indices1(x,y,0);
|
|
case 1 : return indices1(nx,y,1);
|
|
case 2 : return indices1(x,ny,0);
|
|
case 3 : return indices1(x,y,1);
|
|
case 4 : return indices2(x,y,0);
|
|
case 5 : return indices2(nx,y,1);
|
|
case 6 : return indices2(x,ny,0);
|
|
case 7 : return indices2(x,y,1);
|
|
case 8 : return indices1(x,y,2);
|
|
case 9 : return indices1(nx,y,2);
|
|
case 10 : return indices1(nx,ny,2);
|
|
case 11 : return indices1(x,ny,2);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Define functors for accessing image values (used in previous functions).
|
|
struct _functor2d_int {
|
|
const CImg<T>& ref;
|
|
_functor2d_int(const CImg<T>& pref):ref(pref) {}
|
|
float operator()(const float x, const float y) const {
|
|
return (float)ref((int)x,(int)y);
|
|
}
|
|
};
|
|
|
|
struct _functor2d_float {
|
|
const CImg<T>& ref;
|
|
_functor2d_float(const CImg<T>& pref):ref(pref) {}
|
|
float operator()(const float x, const float y) const {
|
|
return (float)ref._linear_atXY(x,y);
|
|
}
|
|
};
|
|
|
|
struct _functor2d_expr {
|
|
_cimg_math_parser *mp;
|
|
~_functor2d_expr() { mp->end(); delete mp; }
|
|
_functor2d_expr(const char *const expr):mp(0) {
|
|
mp = new _cimg_math_parser(expr,0,CImg<T>::const_empty(),0);
|
|
}
|
|
float operator()(const float x, const float y) const {
|
|
return (float)(*mp)(x,y,0,0);
|
|
}
|
|
};
|
|
|
|
struct _functor3d_int {
|
|
const CImg<T>& ref;
|
|
_functor3d_int(const CImg<T>& pref):ref(pref) {}
|
|
float operator()(const float x, const float y, const float z) const {
|
|
return (float)ref((int)x,(int)y,(int)z);
|
|
}
|
|
};
|
|
|
|
struct _functor3d_float {
|
|
const CImg<T>& ref;
|
|
_functor3d_float(const CImg<T>& pref):ref(pref) {}
|
|
float operator()(const float x, const float y, const float z) const {
|
|
return (float)ref._linear_atXYZ(x,y,z);
|
|
}
|
|
};
|
|
|
|
struct _functor3d_expr {
|
|
_cimg_math_parser *mp;
|
|
~_functor3d_expr() { mp->end(); delete mp; }
|
|
_functor3d_expr(const char *const expr):mp(0) {
|
|
mp = new _cimg_math_parser(expr,0,CImg<T>::const_empty(),0);
|
|
}
|
|
float operator()(const float x, const float y, const float z) const {
|
|
return (float)(*mp)(x,y,z,0);
|
|
}
|
|
};
|
|
|
|
struct _functor4d_int {
|
|
const CImg<T>& ref;
|
|
_functor4d_int(const CImg<T>& pref):ref(pref) {}
|
|
float operator()(const float x, const float y, const float z, const unsigned int c) const {
|
|
return (float)ref((int)x,(int)y,(int)z,c);
|
|
}
|
|
};
|
|
|
|
struct _functor_isoline3d {
|
|
CImgList<T>& list;
|
|
_functor_isoline3d(CImgList<T>& _list):list(_list) {}
|
|
template<typename t>
|
|
void operator()(const t x, const t y, const t z) { CImg<T>::vector((T)x,(T)y,(T)z).move_to(list); }
|
|
template<typename t>
|
|
void operator()(const t i, const t j) { CImg<T>::vector((T)i,(T)j).move_to(list); }
|
|
};
|
|
|
|
struct _functor_isosurface3d {
|
|
CImgList<T>& list;
|
|
_functor_isosurface3d(CImgList<T>& _list):list(_list) {}
|
|
template<typename t>
|
|
void operator()(const t x, const t y, const t z) { CImg<T>::vector((T)x,(T)y,(T)z).move_to(list); }
|
|
};
|
|
|
|
//! Compute 3D elevation of a function as a 3D object.
|
|
/**
|
|
\param[out] primitives Primitives data of the resulting 3D object.
|
|
\param func Elevation function. Is of type <tt>float (*func)(const float x,const float y)</tt>.
|
|
\param x0 X-coordinate of the starting point.
|
|
\param y0 Y-coordinate of the starting point.
|
|
\param x1 X-coordinate of the ending point.
|
|
\param y1 Y-coordinate of the ending point.
|
|
\param size_x Resolution of the function along the X-axis.
|
|
\param size_y Resolution of the function along the Y-axis.
|
|
**/
|
|
template<typename tf, typename tfunc>
|
|
static CImg<floatT> elevation3d(CImgList<tf>& primitives, const tfunc& func,
|
|
const float x0, const float y0, const float x1, const float y1,
|
|
const int size_x=256, const int size_y=256) {
|
|
const float
|
|
nx0 = x0<x1?x0:x1, ny0 = y0<y1?y0:y1,
|
|
nx1 = x0<x1?x1:x0, ny1 = y0<y1?y1:y0;
|
|
const unsigned int
|
|
_nsize_x = (unsigned int)(size_x>=0?size_x:(nx1-nx0)*-size_x/100),
|
|
nsize_x = _nsize_x?_nsize_x:1, nsize_x1 = nsize_x - 1,
|
|
_nsize_y = (unsigned int)(size_y>=0?size_y:(ny1-ny0)*-size_y/100),
|
|
nsize_y = _nsize_y?_nsize_y:1, nsize_y1 = nsize_y - 1;
|
|
if (nsize_x<2 || nsize_y<2)
|
|
throw CImgArgumentException("CImg<%s>::elevation3d(): Invalid specified size (%d,%d).",
|
|
pixel_type(),
|
|
nsize_x,nsize_y);
|
|
|
|
CImg<floatT> vertices(nsize_x*nsize_y,3);
|
|
floatT *ptr_x = vertices.data(0,0), *ptr_y = vertices.data(0,1), *ptr_z = vertices.data(0,2);
|
|
for (unsigned int y = 0; y<nsize_y; ++y) {
|
|
const float Y = ny0 + y*(ny1-ny0)/nsize_y1;
|
|
for (unsigned int x = 0; x<nsize_x; ++x) {
|
|
const float X = nx0 + x*(nx1-nx0)/nsize_x1;
|
|
*(ptr_x++) = (float)x;
|
|
*(ptr_y++) = (float)y;
|
|
*(ptr_z++) = (float)func(X,Y);
|
|
}
|
|
}
|
|
primitives.assign(nsize_x1*nsize_y1,1,4);
|
|
for (unsigned int p = 0, y = 0; y<nsize_y1; ++y) {
|
|
const unsigned int yw = y*nsize_x;
|
|
for (unsigned int x = 0; x<nsize_x1; ++x) {
|
|
const unsigned int xpyw = x + yw, xpyww = xpyw + nsize_x;
|
|
primitives[p++].fill(xpyw,xpyww,xpyww + 1,xpyw + 1);
|
|
}
|
|
}
|
|
return vertices;
|
|
}
|
|
|
|
//! Compute 3D elevation of a function, as a 3D object \overloading.
|
|
template<typename tf>
|
|
static CImg<floatT> elevation3d(CImgList<tf>& primitives, const char *const expression,
|
|
const float x0, const float y0, const float x1, const float y1,
|
|
const int size_x=256, const int size_y=256) {
|
|
const _functor2d_expr func(expression);
|
|
return elevation3d(primitives,func,x0,y0,x1,y1,size_x,size_y);
|
|
}
|
|
|
|
//! Generate a 3D box object.
|
|
/**
|
|
\param[out] primitives The returned list of the 3D object primitives
|
|
(template type \e tf should be at least \e unsigned \e int).
|
|
\param size_x The width of the box (dimension along the X-axis).
|
|
\param size_y The height of the box (dimension along the Y-axis).
|
|
\param size_z The depth of the box (dimension along the Z-axis).
|
|
\return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg<float> image (0<=i<=N - 1).
|
|
\par Example
|
|
\code
|
|
CImgList<unsigned int> faces3d;
|
|
const CImg<float> points3d = CImg<float>::box3d(faces3d,10,20,30);
|
|
CImg<unsigned char>().display_object3d("Box3d",points3d,faces3d);
|
|
\endcode
|
|
\image html ref_box3d.jpg
|
|
**/
|
|
template<typename tf>
|
|
static CImg<floatT> box3d(CImgList<tf>& primitives,
|
|
const float size_x=200, const float size_y=100, const float size_z=100) {
|
|
primitives.assign(6,1,4,1,1, 0,3,2,1, 4,5,6,7, 0,1,5,4, 3,7,6,2, 0,4,7,3, 1,2,6,5);
|
|
return CImg<floatT>(8,3,1,1,
|
|
0.,size_x,size_x, 0., 0.,size_x,size_x, 0.,
|
|
0., 0.,size_y,size_y, 0., 0.,size_y,size_y,
|
|
0., 0., 0., 0.,size_z,size_z,size_z,size_z);
|
|
}
|
|
|
|
//! Generate a 3D cone.
|
|
/**
|
|
\param[out] primitives The returned list of the 3D object primitives
|
|
(template type \e tf should be at least \e unsigned \e int).
|
|
\param radius The radius of the cone basis.
|
|
\param size_z The cone's height.
|
|
\param subdivisions The number of basis angular subdivisions.
|
|
\return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg<float> image (0<=i<=N - 1).
|
|
\par Example
|
|
\code
|
|
CImgList<unsigned int> faces3d;
|
|
const CImg<float> points3d = CImg<float>::cone3d(faces3d,50);
|
|
CImg<unsigned char>().display_object3d("Cone3d",points3d,faces3d);
|
|
\endcode
|
|
\image html ref_cone3d.jpg
|
|
**/
|
|
template<typename tf>
|
|
static CImg<floatT> cone3d(CImgList<tf>& primitives,
|
|
const float radius=50, const float size_z=100, const unsigned int subdivisions=24) {
|
|
primitives.assign();
|
|
if (!subdivisions) return CImg<floatT>();
|
|
CImgList<floatT> vertices(2,1,3,1,1,
|
|
0.,0.,size_z,
|
|
0.,0.,0.);
|
|
for (float delta = 360.f/subdivisions, angle = 0; angle<360; angle+=delta) {
|
|
const float a = (float)(angle*cimg::PI/180);
|
|
CImg<floatT>::vector((float)(radius*std::cos(a)),(float)(radius*std::sin(a)),0).move_to(vertices);
|
|
}
|
|
const unsigned int nbr = vertices._width - 2;
|
|
for (unsigned int p = 0; p<nbr; ++p) {
|
|
const unsigned int curr = 2 + p, next = 2 + ((p + 1)%nbr);
|
|
CImg<tf>::vector(1,next,curr).move_to(primitives);
|
|
CImg<tf>::vector(0,curr,next).move_to(primitives);
|
|
}
|
|
return vertices>'x';
|
|
}
|
|
|
|
//! Generate a 3D cylinder.
|
|
/**
|
|
\param[out] primitives The returned list of the 3D object primitives
|
|
(template type \e tf should be at least \e unsigned \e int).
|
|
\param radius The radius of the cylinder basis.
|
|
\param size_z The cylinder's height.
|
|
\param subdivisions The number of basis angular subdivisions.
|
|
\return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg<float> image (0<=i<=N - 1).
|
|
\par Example
|
|
\code
|
|
CImgList<unsigned int> faces3d;
|
|
const CImg<float> points3d = CImg<float>::cylinder3d(faces3d,50);
|
|
CImg<unsigned char>().display_object3d("Cylinder3d",points3d,faces3d);
|
|
\endcode
|
|
\image html ref_cylinder3d.jpg
|
|
**/
|
|
template<typename tf>
|
|
static CImg<floatT> cylinder3d(CImgList<tf>& primitives,
|
|
const float radius=50, const float size_z=100, const unsigned int subdivisions=24) {
|
|
primitives.assign();
|
|
if (!subdivisions) return CImg<floatT>();
|
|
CImgList<floatT> vertices(2,1,3,1,1,
|
|
0.,0.,0.,
|
|
0.,0.,size_z);
|
|
for (float delta = 360.f/subdivisions, angle = 0; angle<360; angle+=delta) {
|
|
const float a = (float)(angle*cimg::PI/180);
|
|
CImg<floatT>::vector((float)(radius*std::cos(a)),(float)(radius*std::sin(a)),0.f).move_to(vertices);
|
|
CImg<floatT>::vector((float)(radius*std::cos(a)),(float)(radius*std::sin(a)),size_z).move_to(vertices);
|
|
}
|
|
const unsigned int nbr = (vertices._width - 2)/2;
|
|
for (unsigned int p = 0; p<nbr; ++p) {
|
|
const unsigned int curr = 2 + 2*p, next = 2 + (2*((p + 1)%nbr));
|
|
CImg<tf>::vector(0,next,curr).move_to(primitives);
|
|
CImg<tf>::vector(1,curr + 1,next + 1).move_to(primitives);
|
|
CImg<tf>::vector(curr,next,next + 1,curr + 1).move_to(primitives);
|
|
}
|
|
return vertices>'x';
|
|
}
|
|
|
|
//! Generate a 3D torus.
|
|
/**
|
|
\param[out] primitives The returned list of the 3D object primitives
|
|
(template type \e tf should be at least \e unsigned \e int).
|
|
\param radius1 The large radius.
|
|
\param radius2 The small radius.
|
|
\param subdivisions1 The number of angular subdivisions for the large radius.
|
|
\param subdivisions2 The number of angular subdivisions for the small radius.
|
|
\return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg<float> image (0<=i<=N - 1).
|
|
\par Example
|
|
\code
|
|
CImgList<unsigned int> faces3d;
|
|
const CImg<float> points3d = CImg<float>::torus3d(faces3d,20,4);
|
|
CImg<unsigned char>().display_object3d("Torus3d",points3d,faces3d);
|
|
\endcode
|
|
\image html ref_torus3d.jpg
|
|
**/
|
|
template<typename tf>
|
|
static CImg<floatT> torus3d(CImgList<tf>& primitives,
|
|
const float radius1=100, const float radius2=30,
|
|
const unsigned int subdivisions1=24, const unsigned int subdivisions2=12) {
|
|
primitives.assign();
|
|
if (!subdivisions1 || !subdivisions2) return CImg<floatT>();
|
|
CImgList<floatT> vertices;
|
|
for (unsigned int v = 0; v<subdivisions1; ++v) {
|
|
const float
|
|
beta = (float)(v*2*cimg::PI/subdivisions1),
|
|
xc = radius1*(float)std::cos(beta),
|
|
yc = radius1*(float)std::sin(beta);
|
|
for (unsigned int u = 0; u<subdivisions2; ++u) {
|
|
const float
|
|
alpha = (float)(u*2*cimg::PI/subdivisions2),
|
|
x = xc + radius2*(float)(std::cos(alpha)*std::cos(beta)),
|
|
y = yc + radius2*(float)(std::cos(alpha)*std::sin(beta)),
|
|
z = radius2*(float)std::sin(alpha);
|
|
CImg<floatT>::vector(x,y,z).move_to(vertices);
|
|
}
|
|
}
|
|
for (unsigned int vv = 0; vv<subdivisions1; ++vv) {
|
|
const unsigned int nv = (vv + 1)%subdivisions1;
|
|
for (unsigned int uu = 0; uu<subdivisions2; ++uu) {
|
|
const unsigned int nu = (uu + 1)%subdivisions2, svv = subdivisions2*vv, snv = subdivisions2*nv;
|
|
CImg<tf>::vector(svv + nu,svv + uu,snv + uu,snv + nu).move_to(primitives);
|
|
}
|
|
}
|
|
return vertices>'x';
|
|
}
|
|
|
|
//! Generate a 3D XY-plane.
|
|
/**
|
|
\param[out] primitives The returned list of the 3D object primitives
|
|
(template type \e tf should be at least \e unsigned \e int).
|
|
\param size_x The width of the plane (dimension along the X-axis).
|
|
\param size_y The height of the plane (dimensions along the Y-axis).
|
|
\param subdivisions_x The number of planar subdivisions along the X-axis.
|
|
\param subdivisions_y The number of planar subdivisions along the Y-axis.
|
|
\return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg<float> image (0<=i<=N - 1).
|
|
\par Example
|
|
\code
|
|
CImgList<unsigned int> faces3d;
|
|
const CImg<float> points3d = CImg<float>::plane3d(faces3d,100,50);
|
|
CImg<unsigned char>().display_object3d("Plane3d",points3d,faces3d);
|
|
\endcode
|
|
\image html ref_plane3d.jpg
|
|
**/
|
|
template<typename tf>
|
|
static CImg<floatT> plane3d(CImgList<tf>& primitives,
|
|
const float size_x=100, const float size_y=100,
|
|
const unsigned int subdivisions_x=10, const unsigned int subdivisions_y=10) {
|
|
primitives.assign();
|
|
if (!subdivisions_x || !subdivisions_y) return CImg<floatT>();
|
|
CImgList<floatT> vertices;
|
|
const unsigned int w = subdivisions_x + 1, h = subdivisions_y + 1;
|
|
const float fx = (float)size_x/w, fy = (float)size_y/h;
|
|
for (unsigned int y = 0; y<h; ++y) for (unsigned int x = 0; x<w; ++x)
|
|
CImg<floatT>::vector(fx*x,fy*y,0).move_to(vertices);
|
|
for (unsigned int y = 0; y<subdivisions_y; ++y) for (unsigned int x = 0; x<subdivisions_x; ++x) {
|
|
const int off1 = x + y*w, off2 = x + 1 + y*w, off3 = x + 1 + (y + 1)*w, off4 = x + (y + 1)*w;
|
|
CImg<tf>::vector(off1,off4,off3,off2).move_to(primitives);
|
|
}
|
|
return vertices>'x';
|
|
}
|
|
|
|
//! Generate a 3D sphere.
|
|
/**
|
|
\param[out] primitives The returned list of the 3D object primitives
|
|
(template type \e tf should be at least \e unsigned \e int).
|
|
\param radius The radius of the sphere (dimension along the X-axis).
|
|
\param subdivisions The number of recursive subdivisions from an initial icosahedron.
|
|
\return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg<float> image (0<=i<=N - 1).
|
|
\par Example
|
|
\code
|
|
CImgList<unsigned int> faces3d;
|
|
const CImg<float> points3d = CImg<float>::sphere3d(faces3d,100,4);
|
|
CImg<unsigned char>().display_object3d("Sphere3d",points3d,faces3d);
|
|
\endcode
|
|
\image html ref_sphere3d.jpg
|
|
**/
|
|
template<typename tf>
|
|
static CImg<floatT> sphere3d(CImgList<tf>& primitives,
|
|
const float radius=50, const unsigned int subdivisions=3) {
|
|
|
|
// Create initial icosahedron
|
|
primitives.assign();
|
|
const double tmp = (1 + std::sqrt(5.f))/2, a = 1./std::sqrt(1 + tmp*tmp), b = tmp*a;
|
|
CImgList<floatT> vertices(12,1,3,1,1, b,a,0., -b,a,0., -b,-a,0., b,-a,0., a,0.,b, a,0.,-b,
|
|
-a,0.,-b, -a,0.,b, 0.,b,a, 0.,-b,a, 0.,-b,-a, 0.,b,-a);
|
|
primitives.assign(20,1,3,1,1, 4,8,7, 4,7,9, 5,6,11, 5,10,6, 0,4,3, 0,3,5, 2,7,1, 2,1,6,
|
|
8,0,11, 8,11,1, 9,10,3, 9,2,10, 8,4,0, 11,0,5, 4,9,3,
|
|
5,3,10, 7,8,1, 6,1,11, 7,2,9, 6,10,2);
|
|
// edge - length/2
|
|
float he = (float)a;
|
|
|
|
// Recurse subdivisions
|
|
for (unsigned int i = 0; i<subdivisions; ++i) {
|
|
const unsigned int L = primitives._width;
|
|
he/=2;
|
|
const float he2 = he*he;
|
|
for (unsigned int l = 0; l<L; ++l) {
|
|
const unsigned int
|
|
p0 = (unsigned int)primitives(0,0), p1 = (unsigned int)primitives(0,1), p2 = (unsigned int)primitives(0,2);
|
|
const float
|
|
x0 = vertices(p0,0), y0 = vertices(p0,1), z0 = vertices(p0,2),
|
|
x1 = vertices(p1,0), y1 = vertices(p1,1), z1 = vertices(p1,2),
|
|
x2 = vertices(p2,0), y2 = vertices(p2,1), z2 = vertices(p2,2),
|
|
tnx0 = (x0 + x1)/2, tny0 = (y0 + y1)/2, tnz0 = (z0 + z1)/2,
|
|
nn0 = cimg::hypot(tnx0,tny0,tnz0),
|
|
tnx1 = (x0 + x2)/2, tny1 = (y0 + y2)/2, tnz1 = (z0 + z2)/2,
|
|
nn1 = cimg::hypot(tnx1,tny1,tnz1),
|
|
tnx2 = (x1 + x2)/2, tny2 = (y1 + y2)/2, tnz2 = (z1 + z2)/2,
|
|
nn2 = cimg::hypot(tnx2,tny2,tnz2),
|
|
nx0 = tnx0/nn0, ny0 = tny0/nn0, nz0 = tnz0/nn0,
|
|
nx1 = tnx1/nn1, ny1 = tny1/nn1, nz1 = tnz1/nn1,
|
|
nx2 = tnx2/nn2, ny2 = tny2/nn2, nz2 = tnz2/nn2;
|
|
int i0 = -1, i1 = -1, i2 = -1;
|
|
cimglist_for(vertices,p) {
|
|
const float x = (float)vertices(p,0), y = (float)vertices(p,1), z = (float)vertices(p,2);
|
|
if (cimg::sqr(x-nx0) + cimg::sqr(y-ny0) + cimg::sqr(z-nz0)<he2) i0 = p;
|
|
if (cimg::sqr(x-nx1) + cimg::sqr(y-ny1) + cimg::sqr(z-nz1)<he2) i1 = p;
|
|
if (cimg::sqr(x-nx2) + cimg::sqr(y-ny2) + cimg::sqr(z-nz2)<he2) i2 = p;
|
|
}
|
|
if (i0<0) { CImg<floatT>::vector(nx0,ny0,nz0).move_to(vertices); i0 = vertices.width() - 1; }
|
|
if (i1<0) { CImg<floatT>::vector(nx1,ny1,nz1).move_to(vertices); i1 = vertices.width() - 1; }
|
|
if (i2<0) { CImg<floatT>::vector(nx2,ny2,nz2).move_to(vertices); i2 = vertices.width() - 1; }
|
|
primitives.remove(0);
|
|
CImg<tf>::vector(p0,i0,i1).move_to(primitives);
|
|
CImg<tf>::vector((tf)i0,(tf)p1,(tf)i2).move_to(primitives);
|
|
CImg<tf>::vector((tf)i1,(tf)i2,(tf)p2).move_to(primitives);
|
|
CImg<tf>::vector((tf)i1,(tf)i0,(tf)i2).move_to(primitives);
|
|
}
|
|
}
|
|
return (vertices>'x')*=radius;
|
|
}
|
|
|
|
//! Generate a 3D ellipsoid.
|
|
/**
|
|
\param[out] primitives The returned list of the 3D object primitives
|
|
(template type \e tf should be at least \e unsigned \e int).
|
|
\param tensor The tensor which gives the shape and size of the ellipsoid.
|
|
\param subdivisions The number of recursive subdivisions from an initial stretched icosahedron.
|
|
\return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg<float> image (0<=i<=N - 1).
|
|
\par Example
|
|
\code
|
|
CImgList<unsigned int> faces3d;
|
|
const CImg<float> tensor = CImg<float>::diagonal(10,7,3),
|
|
points3d = CImg<float>::ellipsoid3d(faces3d,tensor,4);
|
|
CImg<unsigned char>().display_object3d("Ellipsoid3d",points3d,faces3d);
|
|
\endcode
|
|
\image html ref_ellipsoid3d.jpg
|
|
**/
|
|
template<typename tf, typename t>
|
|
static CImg<floatT> ellipsoid3d(CImgList<tf>& primitives,
|
|
const CImg<t>& tensor, const unsigned int subdivisions=3) {
|
|
primitives.assign();
|
|
if (!subdivisions) return CImg<floatT>();
|
|
CImg<floatT> S, V;
|
|
tensor.symmetric_eigen(S,V);
|
|
const float orient =
|
|
(V(0,1)*V(1,2) - V(0,2)*V(1,1))*V(2,0) +
|
|
(V(0,2)*V(1,0) - V(0,0)*V(1,2))*V(2,1) +
|
|
(V(0,0)*V(1,1) - V(0,1)*V(1,0))*V(2,2);
|
|
if (orient<0) { V(2,0) = -V(2,0); V(2,1) = -V(2,1); V(2,2) = -V(2,2); }
|
|
const float l0 = S[0], l1 = S[1], l2 = S[2];
|
|
CImg<floatT> vertices = sphere3d(primitives,1.,subdivisions);
|
|
vertices.get_shared_row(0)*=l0;
|
|
vertices.get_shared_row(1)*=l1;
|
|
vertices.get_shared_row(2)*=l2;
|
|
return V*vertices;
|
|
}
|
|
|
|
//! Convert 3D object into a CImg3d representation.
|
|
/**
|
|
\param primitives Primitives data of the 3D object.
|
|
\param colors Colors data of the 3D object.
|
|
\param opacities Opacities data of the 3D object.
|
|
\param full_check Tells if full checking of the 3D object must be performed.
|
|
**/
|
|
template<typename tp, typename tc, typename to>
|
|
CImg<T>& object3dtoCImg3d(const CImgList<tp>& primitives,
|
|
const CImgList<tc>& colors,
|
|
const to& opacities,
|
|
const bool full_check=true) {
|
|
return get_object3dtoCImg3d(primitives,colors,opacities,full_check).move_to(*this);
|
|
}
|
|
|
|
//! Convert 3D object into a CImg3d representation \overloading.
|
|
template<typename tp, typename tc>
|
|
CImg<T>& object3dtoCImg3d(const CImgList<tp>& primitives,
|
|
const CImgList<tc>& colors,
|
|
const bool full_check=true) {
|
|
return get_object3dtoCImg3d(primitives,colors,full_check).move_to(*this);
|
|
}
|
|
|
|
//! Convert 3D object into a CImg3d representation \overloading.
|
|
template<typename tp>
|
|
CImg<T>& object3dtoCImg3d(const CImgList<tp>& primitives,
|
|
const bool full_check=true) {
|
|
return get_object3dtoCImg3d(primitives,full_check).move_to(*this);
|
|
}
|
|
|
|
//! Convert 3D object into a CImg3d representation \overloading.
|
|
CImg<T>& object3dtoCImg3d(const bool full_check=true) {
|
|
return get_object3dtoCImg3d(full_check).move_to(*this);
|
|
}
|
|
|
|
//! Convert 3D object into a CImg3d representation \newinstance.
|
|
template<typename tp, typename tc, typename to>
|
|
CImg<floatT> get_object3dtoCImg3d(const CImgList<tp>& primitives,
|
|
const CImgList<tc>& colors,
|
|
const to& opacities,
|
|
const bool full_check=true) const {
|
|
CImg<charT> error_message(1024);
|
|
if (!is_object3d(primitives,colors,opacities,full_check,error_message))
|
|
throw CImgInstanceException(_cimg_instance
|
|
"object3dtoCImg3d(): Invalid specified 3D object (%u,%u) (%s).",
|
|
cimg_instance,_width,primitives._width,error_message.data());
|
|
CImg<floatT> res(1,_size_object3dtoCImg3d(primitives,colors,opacities));
|
|
float *ptrd = res._data;
|
|
|
|
// Put magick number.
|
|
*(ptrd++) = 'C' + 0.5f; *(ptrd++) = 'I' + 0.5f; *(ptrd++) = 'm' + 0.5f;
|
|
*(ptrd++) = 'g' + 0.5f; *(ptrd++) = '3' + 0.5f; *(ptrd++) = 'd' + 0.5f;
|
|
|
|
// Put number of vertices and primitives.
|
|
*(ptrd++) = cimg::uint2float(_width);
|
|
*(ptrd++) = cimg::uint2float(primitives._width);
|
|
|
|
// Put vertex data.
|
|
if (is_empty() || !primitives) return res;
|
|
const T *ptrx = data(0,0), *ptry = data(0,1), *ptrz = data(0,2);
|
|
cimg_forX(*this,p) {
|
|
*(ptrd++) = (float)*(ptrx++);
|
|
*(ptrd++) = (float)*(ptry++);
|
|
*(ptrd++) = (float)*(ptrz++);
|
|
}
|
|
|
|
// Put primitive data.
|
|
cimglist_for(primitives,p) {
|
|
*(ptrd++) = (float)primitives[p].size();
|
|
const tp *ptrp = primitives[p]._data;
|
|
cimg_foroff(primitives[p],i) *(ptrd++) = cimg::uint2float((unsigned int)*(ptrp++));
|
|
}
|
|
|
|
// Put color/texture data.
|
|
const unsigned int csiz = std::min(colors._width,primitives._width);
|
|
for (int c = 0; c<(int)csiz; ++c) {
|
|
const CImg<tc>& color = colors[c];
|
|
const tc *ptrc = color._data;
|
|
if (color.size()==3) { *(ptrd++) = (float)*(ptrc++); *(ptrd++) = (float)*(ptrc++); *(ptrd++) = (float)*ptrc; }
|
|
else {
|
|
*(ptrd++) = -128.f;
|
|
int shared_ind = -1;
|
|
if (color.is_shared()) for (int i = 0; i<c; ++i) if (ptrc==colors[i]._data) { shared_ind = i; break; }
|
|
if (shared_ind<0) {
|
|
*(ptrd++) = (float)color._width;
|
|
*(ptrd++) = (float)color._height;
|
|
*(ptrd++) = (float)color._spectrum;
|
|
cimg_foroff(color,l) *(ptrd++) = (float)*(ptrc++);
|
|
} else {
|
|
*(ptrd++) = (float)shared_ind;
|
|
*(ptrd++) = 0;
|
|
*(ptrd++) = 0;
|
|
}
|
|
}
|
|
}
|
|
const int csiz2 = primitives.width() - colors.width();
|
|
for (int c = 0; c<csiz2; ++c) { *(ptrd++) = 200.f; *(ptrd++) = 200.f; *(ptrd++) = 200.f; }
|
|
|
|
// Put opacity data.
|
|
ptrd = _object3dtoCImg3d(opacities,ptrd);
|
|
const float *ptre = res.end();
|
|
while (ptrd<ptre) *(ptrd++) = 1.f;
|
|
return res;
|
|
}
|
|
|
|
template<typename to>
|
|
float* _object3dtoCImg3d(const CImgList<to>& opacities, float *ptrd) const {
|
|
cimglist_for(opacities,o) {
|
|
const CImg<to>& opacity = opacities[o];
|
|
const to *ptro = opacity._data;
|
|
if (opacity.size()==1) *(ptrd++) = (float)*ptro;
|
|
else {
|
|
*(ptrd++) = -128.f;
|
|
int shared_ind = -1;
|
|
if (opacity.is_shared()) for (int i = 0; i<o; ++i) if (ptro==opacities[i]._data) { shared_ind = i; break; }
|
|
if (shared_ind<0) {
|
|
*(ptrd++) = (float)opacity._width;
|
|
*(ptrd++) = (float)opacity._height;
|
|
*(ptrd++) = (float)opacity._spectrum;
|
|
cimg_foroff(opacity,l) *(ptrd++) = (float)*(ptro++);
|
|
} else {
|
|
*(ptrd++) = (float)shared_ind;
|
|
*(ptrd++) = 0;
|
|
*(ptrd++) = 0;
|
|
}
|
|
}
|
|
}
|
|
return ptrd;
|
|
}
|
|
|
|
template<typename to>
|
|
float* _object3dtoCImg3d(const CImg<to>& opacities, float *ptrd) const {
|
|
const to *ptro = opacities._data;
|
|
cimg_foroff(opacities,o) *(ptrd++) = (float)*(ptro++);
|
|
return ptrd;
|
|
}
|
|
|
|
template<typename tp, typename tc, typename to>
|
|
unsigned int _size_object3dtoCImg3d(const CImgList<tp>& primitives,
|
|
const CImgList<tc>& colors,
|
|
const CImgList<to>& opacities) const {
|
|
unsigned int siz = 8U + 3*_width;
|
|
cimglist_for(primitives,p) siz+=primitives[p].size() + 1;
|
|
for (int c = std::min(primitives.width(),colors.width()) - 1; c>=0; --c) {
|
|
if (colors[c].is_shared()) siz+=4;
|
|
else { const unsigned int csiz = colors[c].size(); siz+=(csiz!=3)?4 + csiz:3; }
|
|
}
|
|
if (colors._width<primitives._width) siz+=3*(primitives._width - colors._width);
|
|
cimglist_for(opacities,o) {
|
|
if (opacities[o].is_shared()) siz+=4;
|
|
else { const unsigned int osiz = opacities[o].size(); siz+=(osiz!=1)?4 + osiz:1; }
|
|
}
|
|
siz+=primitives._width - opacities._width;
|
|
return siz;
|
|
}
|
|
|
|
template<typename tp, typename tc, typename to>
|
|
unsigned int _size_object3dtoCImg3d(const CImgList<tp>& primitives,
|
|
const CImgList<tc>& colors,
|
|
const CImg<to>& opacities) const {
|
|
unsigned int siz = 8U + 3*_width;
|
|
cimglist_for(primitives,p) siz+=primitives[p].size() + 1;
|
|
for (int c = std::min(primitives.width(),colors.width()) - 1; c>=0; --c) {
|
|
const unsigned int csiz = colors[c].size(); siz+=(csiz!=3)?4 + csiz:3;
|
|
}
|
|
if (colors._width<primitives._width) siz+=3*(primitives._width - colors._width);
|
|
siz+=primitives.size();
|
|
cimg::unused(opacities);
|
|
return siz;
|
|
}
|
|
|
|
//! Convert 3D object into a CImg3d representation \overloading.
|
|
template<typename tp, typename tc>
|
|
CImg<floatT> get_object3dtoCImg3d(const CImgList<tp>& primitives,
|
|
const CImgList<tc>& colors,
|
|
const bool full_check=true) const {
|
|
CImgList<T> opacities;
|
|
return get_object3dtoCImg3d(primitives,colors,opacities,full_check);
|
|
}
|
|
|
|
//! Convert 3D object into a CImg3d representation \overloading.
|
|
template<typename tp>
|
|
CImg<floatT> get_object3dtoCImg3d(const CImgList<tp>& primitives,
|
|
const bool full_check=true) const {
|
|
CImgList<T> colors, opacities;
|
|
return get_object3dtoCImg3d(primitives,colors,opacities,full_check);
|
|
}
|
|
|
|
//! Convert 3D object into a CImg3d representation \overloading.
|
|
CImg<floatT> get_object3dtoCImg3d(const bool full_check=true) const {
|
|
CImgList<T> opacities, colors;
|
|
CImgList<uintT> primitives(width(),1,1,1,1);
|
|
cimglist_for(primitives,p) primitives(p,0) = p;
|
|
return get_object3dtoCImg3d(primitives,colors,opacities,full_check);
|
|
}
|
|
|
|
//! Convert CImg3d representation into a 3D object.
|
|
/**
|
|
\param[out] primitives Primitives data of the 3D object.
|
|
\param[out] colors Colors data of the 3D object.
|
|
\param[out] opacities Opacities data of the 3D object.
|
|
\param full_check Tells if full checking of the 3D object must be performed.
|
|
**/
|
|
template<typename tp, typename tc, typename to>
|
|
CImg<T>& CImg3dtoobject3d(CImgList<tp>& primitives,
|
|
CImgList<tc>& colors,
|
|
CImgList<to>& opacities,
|
|
const bool full_check=true) {
|
|
return get_CImg3dtoobject3d(primitives,colors,opacities,full_check).move_to(*this);
|
|
}
|
|
|
|
//! Convert CImg3d representation into a 3D object \newinstance.
|
|
template<typename tp, typename tc, typename to>
|
|
CImg<T> get_CImg3dtoobject3d(CImgList<tp>& primitives,
|
|
CImgList<tc>& colors,
|
|
CImgList<to>& opacities,
|
|
const bool full_check=true) const {
|
|
CImg<charT> error_message(1024);
|
|
if (!is_CImg3d(full_check,error_message))
|
|
throw CImgInstanceException(_cimg_instance
|
|
"CImg3dtoobject3d(): image instance is not a CImg3d (%s).",
|
|
cimg_instance,error_message.data());
|
|
const T *ptrs = _data + 6;
|
|
const unsigned int
|
|
nb_points = cimg::float2uint((float)*(ptrs++)),
|
|
nb_primitives = cimg::float2uint((float)*(ptrs++));
|
|
const CImg<T> points = CImg<T>(ptrs,3,nb_points,1,1,true).get_transpose();
|
|
ptrs+=3*nb_points;
|
|
primitives.assign(nb_primitives);
|
|
cimglist_for(primitives,p) {
|
|
const unsigned int nb_inds = (unsigned int)*(ptrs++);
|
|
primitives[p].assign(1,nb_inds);
|
|
tp *ptrp = primitives[p]._data;
|
|
for (unsigned int i = 0; i<nb_inds; ++i) *(ptrp++) = (tp)cimg::float2uint((float)*(ptrs++));
|
|
}
|
|
colors.assign(nb_primitives);
|
|
cimglist_for(colors,c) {
|
|
if (*ptrs==(T)-128) {
|
|
++ptrs;
|
|
const unsigned int w = (unsigned int)*(ptrs++), h = (unsigned int)*(ptrs++), s = (unsigned int)*(ptrs++);
|
|
if (!h && !s) colors[c].assign(colors[w],true);
|
|
else { colors[c].assign(ptrs,w,h,1,s,false); ptrs+=w*h*s; }
|
|
} else { colors[c].assign(ptrs,1,1,1,3,false); ptrs+=3; }
|
|
}
|
|
opacities.assign(nb_primitives);
|
|
cimglist_for(opacities,o) {
|
|
if (*ptrs==(T)-128) {
|
|
++ptrs;
|
|
const unsigned int w = (unsigned int)*(ptrs++), h = (unsigned int)*(ptrs++), s = (unsigned int)*(ptrs++);
|
|
if (!h && !s) opacities[o].assign(opacities[w],true);
|
|
else { opacities[o].assign(ptrs,w,h,1,s,false); ptrs+=w*h*s; }
|
|
} else opacities[o].assign(1,1,1,1,*(ptrs++));
|
|
}
|
|
return points;
|
|
}
|
|
|
|
//@}
|
|
//---------------------------
|
|
//
|
|
//! \name Drawing Functions
|
|
//@{
|
|
//---------------------------
|
|
|
|
#define cimg_init_scanline(opacity) \
|
|
static const T _sc_maxval = (T)std::min(cimg::type<T>::max(),(T)cimg::type<tc>::max()); \
|
|
const float _sc_nopacity = cimg::abs((float)opacity), _sc_copacity = 1 - std::max((float)opacity,0.f); \
|
|
const ulongT _sc_whd = (ulongT)_width*_height*_depth; \
|
|
cimg::unused(_sc_maxval);
|
|
|
|
#define cimg_draw_scanline(x0,x1,y,color,opacity,brightness) \
|
|
_draw_scanline(x0,x1,y,color,opacity,brightness,_sc_nopacity,_sc_copacity,_sc_whd,_sc_maxval)
|
|
|
|
// [internal] The following _draw_scanline() routines are *non user-friendly functions*,
|
|
// used only for internal purpose.
|
|
// Pre-requisites: x0<=x1, y-coordinate is valid, col is valid.
|
|
template<typename tc>
|
|
CImg<T>& _draw_scanline(const int x0, const int x1, const int y,
|
|
const tc *const color, const float opacity,
|
|
const float brightness,
|
|
const float nopacity, const float copacity, const ulongT whd, const T _sc_maxval) {
|
|
const int nx0 = x0>0?x0:0, nx1 = x1<width()?x1:width() - 1, dx = nx1 - nx0;
|
|
if (dx>=0) {
|
|
const tc *col = color;
|
|
const ulongT off = whd - dx - 1;
|
|
T *ptrd = data(nx0,y);
|
|
if (opacity>=1) { // ** Opaque drawing **
|
|
if (brightness==1) { // Brightness==1
|
|
if (sizeof(T)!=1) cimg_forC(*this,c) {
|
|
const T val = (T)*(col++);
|
|
for (int x = dx; x>=0; --x) *(ptrd++) = val;
|
|
ptrd+=off;
|
|
} else cimg_forC(*this,c) {
|
|
const T val = (T)*(col++);
|
|
std::memset(ptrd,(int)val,dx + 1);
|
|
ptrd+=whd;
|
|
}
|
|
} else if (brightness<1) { // Brightness<1
|
|
if (sizeof(T)!=1) cimg_forC(*this,c) {
|
|
const T val = (T)(*(col++)*brightness);
|
|
for (int x = dx; x>=0; --x) *(ptrd++) = val;
|
|
ptrd+=off;
|
|
} else cimg_forC(*this,c) {
|
|
const T val = (T)(*(col++)*brightness);
|
|
std::memset(ptrd,(int)val,dx + 1);
|
|
ptrd+=whd;
|
|
}
|
|
} else { // Brightness>1
|
|
if (sizeof(T)!=1) cimg_forC(*this,c) {
|
|
const T val = (T)((2-brightness)**(col++) + (brightness - 1)*_sc_maxval);
|
|
for (int x = dx; x>=0; --x) *(ptrd++) = val;
|
|
ptrd+=off;
|
|
} else cimg_forC(*this,c) {
|
|
const T val = (T)((2-brightness)**(col++) + (brightness - 1)*_sc_maxval);
|
|
std::memset(ptrd,(int)val,dx + 1);
|
|
ptrd+=whd;
|
|
}
|
|
}
|
|
} else { // ** Transparent drawing **
|
|
if (brightness==1) { // Brightness==1
|
|
cimg_forC(*this,c) {
|
|
const Tfloat val = *(col++)*nopacity;
|
|
for (int x = dx; x>=0; --x) { *ptrd = (T)(val + *ptrd*copacity); ++ptrd; }
|
|
ptrd+=off;
|
|
}
|
|
} else if (brightness<=1) { // Brightness<1
|
|
cimg_forC(*this,c) {
|
|
const Tfloat val = *(col++)*brightness*nopacity;
|
|
for (int x = dx; x>=0; --x) { *ptrd = (T)(val + *ptrd*copacity); ++ptrd; }
|
|
ptrd+=off;
|
|
}
|
|
} else { // Brightness>1
|
|
cimg_forC(*this,c) {
|
|
const Tfloat val = ((2-brightness)**(col++) + (brightness - 1)*_sc_maxval)*nopacity;
|
|
for (int x = dx; x>=0; --x) { *ptrd = (T)(val + *ptrd*copacity); ++ptrd; }
|
|
ptrd+=off;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a 3D point.
|
|
/**
|
|
\param x0 X-coordinate of the point.
|
|
\param y0 Y-coordinate of the point.
|
|
\param z0 Z-coordinate of the point.
|
|
\param color Pointer to \c spectrum() consecutive values, defining the drawing color.
|
|
\param opacity Drawing opacity.
|
|
\note
|
|
- To set pixel values without clipping needs, you should use the faster CImg::operator()() function.
|
|
\par Example:
|
|
\code
|
|
CImg<unsigned char> img(100,100,1,3,0);
|
|
const unsigned char color[] = { 255,128,64 };
|
|
img.draw_point(50,50,color);
|
|
\endcode
|
|
**/
|
|
template<typename tc>
|
|
CImg<T>& draw_point(const int x0, const int y0, const int z0,
|
|
const tc *const color, const float opacity=1) {
|
|
if (is_empty()) return *this;
|
|
if (!color)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_point(): Specified color is (null).",
|
|
cimg_instance);
|
|
if (x0>=0 && y0>=0 && z0>=0 && x0<width() && y0<height() && z0<depth()) {
|
|
const ulongT whd = (ulongT)_width*_height*_depth;
|
|
const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.f);
|
|
T *ptrd = data(x0,y0,z0,0);
|
|
const tc *col = color;
|
|
if (opacity>=1) cimg_forC(*this,c) { *ptrd = (T)*(col++); ptrd+=whd; }
|
|
else cimg_forC(*this,c) { *ptrd = (T)(*(col++)*nopacity + *ptrd*copacity); ptrd+=whd; }
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a 2D point \simplification.
|
|
template<typename tc>
|
|
CImg<T>& draw_point(const int x0, const int y0,
|
|
const tc *const color, const float opacity=1) {
|
|
return draw_point(x0,y0,0,color,opacity);
|
|
}
|
|
|
|
// Draw a points cloud.
|
|
/**
|
|
\param points Image of vertices coordinates.
|
|
\param color Pointer to \c spectrum() consecutive values, defining the drawing color.
|
|
\param opacity Drawing opacity.
|
|
**/
|
|
template<typename t, typename tc>
|
|
CImg<T>& draw_point(const CImg<t>& points,
|
|
const tc *const color, const float opacity=1) {
|
|
if (is_empty() || !points) return *this;
|
|
switch (points._height) {
|
|
case 0 : case 1 :
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_point(): Invalid specified point set (%u,%u,%u,%u,%p).",
|
|
cimg_instance,
|
|
points._width,points._height,points._depth,points._spectrum,points._data);
|
|
case 2 : {
|
|
cimg_forX(points,i) draw_point((int)points(i,0),(int)points(i,1),color,opacity);
|
|
} break;
|
|
default : {
|
|
cimg_forX(points,i) draw_point((int)points(i,0),(int)points(i,1),(int)points(i,2),color,opacity);
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a 2D line.
|
|
/**
|
|
\param x0 X-coordinate of the starting line point.
|
|
\param y0 Y-coordinate of the starting line point.
|
|
\param x1 X-coordinate of the ending line point.
|
|
\param y1 Y-coordinate of the ending line point.
|
|
\param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color.
|
|
\param opacity Drawing opacity.
|
|
\param pattern An integer whose bits describe the line pattern.
|
|
\param init_hatch Tells if a reinitialization of the hash state must be done.
|
|
\note
|
|
- Line routine uses Bresenham's algorithm.
|
|
- Set \p init_hatch = false to draw consecutive hatched segments without breaking the line pattern.
|
|
\par Example:
|
|
\code
|
|
CImg<unsigned char> img(100,100,1,3,0);
|
|
const unsigned char color[] = { 255,128,64 };
|
|
img.draw_line(40,40,80,70,color);
|
|
\endcode
|
|
**/
|
|
template<typename tc>
|
|
CImg<T>& draw_line(int x0, int y0,
|
|
int x1, int y1,
|
|
const tc *const color, const float opacity=1,
|
|
const unsigned int pattern=~0U, const bool init_hatch=true) {
|
|
if (is_empty() || !opacity || !pattern ||
|
|
std::min(y0,y1)>=height() || std::max(y0,y1)<0 ||
|
|
std::min(x0,x1)>=width() || std::max(x0,x1)<0) return *this;
|
|
|
|
int
|
|
w1 = width() - 1, h1 = height() - 1,
|
|
dx01 = x1 - x0, dy01 = y1 - y0;
|
|
|
|
const bool is_horizontal = cimg::abs(dx01)>cimg::abs(dy01);
|
|
if (is_horizontal) cimg::swap(x0,y0,x1,y1,w1,h1,dx01,dy01);
|
|
if (pattern==~0U && y0>y1) {
|
|
cimg::swap(x0,x1,y0,y1);
|
|
dx01*=-1; dy01*=-1;
|
|
}
|
|
|
|
static unsigned int hatch = ~0U - (~0U>>1);
|
|
if (init_hatch) hatch = ~0U - (~0U>>1);
|
|
cimg_init_scanline(opacity);
|
|
const int
|
|
step = y0<=y1?1:-1,hdy01 = dy01*cimg::sign(dx01)/2,
|
|
cy0 = cimg::cut(y0,0,h1), cy1 = cimg::cut(y1,0,h1) + step;
|
|
dy01+=dy01?0:1;
|
|
|
|
for (int y = cy0; y!=cy1; y+=step) {
|
|
const int
|
|
yy0 = y - y0,
|
|
x = x0 + (dx01*yy0 + hdy01)/dy01;
|
|
if (x>=0 && x<=w1 && pattern&hatch) {
|
|
T *const ptrd = is_horizontal?data(y,x):data(x,y);
|
|
cimg_forC(*this,c) {
|
|
const T val = color[c];
|
|
ptrd[c*_sc_whd] = opacity>=1?val:(T)(val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity);
|
|
}
|
|
}
|
|
if (!(hatch>>=1)) hatch = ~0U - (~0U>>1);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a 2D line, with z-buffering.
|
|
/**
|
|
\param zbuffer Zbuffer image.
|
|
\param x0 X-coordinate of the starting point.
|
|
\param y0 Y-coordinate of the starting point.
|
|
\param z0 Z-coordinate of the starting point
|
|
\param x1 X-coordinate of the ending point.
|
|
\param y1 Y-coordinate of the ending point.
|
|
\param z1 Z-coordinate of the ending point.
|
|
\param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color.
|
|
\param opacity Drawing opacity.
|
|
\param pattern An integer whose bits describe the line pattern.
|
|
\param init_hatch Tells if a reinitialization of the hash state must be done.
|
|
**/
|
|
template<typename tz, typename tc>
|
|
CImg<T>& draw_line(CImg<tz>& zbuffer,
|
|
int x0, int y0, const float z0,
|
|
int x1, int y1, const float z1,
|
|
const tc *const color, const float opacity=1,
|
|
const unsigned int pattern=~0U, const bool init_hatch=true) {
|
|
if (is_empty() || z0<=0 || z1<=0 || !opacity || !pattern) return *this;
|
|
if (!color)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_line(): Specified color is (null).",
|
|
cimg_instance);
|
|
if (!is_sameXY(zbuffer))
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_line(): Instance and specified Z-buffer (%u,%u,%u,%u,%p) have "
|
|
"different dimensions.",
|
|
cimg_instance,
|
|
zbuffer._width,zbuffer._height,zbuffer._depth,zbuffer._spectrum,zbuffer._data);
|
|
|
|
if (std::min(y0,y1)>=height() || std::max(y0,y1)<0 || std::min(x0,x1)>=width() || std::max(x0,x1)<0) return *this;
|
|
|
|
float iz0 = 1/z0, iz1 = 1/z1;
|
|
int
|
|
w1 = width() - 1, h1 = height() - 1,
|
|
dx01 = x1 - x0, dy01 = y1 - y0;
|
|
float diz01 = iz1 - iz0;
|
|
|
|
const bool is_horizontal = cimg::abs(dx01)>cimg::abs(dy01);
|
|
if (is_horizontal) cimg::swap(x0,y0,x1,y1,w1,h1,dx01,dy01);
|
|
if (pattern==~0U && y0>y1) {
|
|
cimg::swap(x0,x1,y0,y1,iz0,iz1);
|
|
dx01*=-1; dy01*=-1; diz01*=-1;
|
|
}
|
|
|
|
static unsigned int hatch = ~0U - (~0U>>1);
|
|
if (init_hatch) hatch = ~0U - (~0U>>1);
|
|
cimg_init_scanline(opacity);
|
|
|
|
const int
|
|
step = y0<=y1?1:-1, hdy01 = dy01*cimg::sign(dx01)/2,
|
|
cy0 = cimg::cut(y0,0,h1), cy1 = cimg::cut(y1,0,h1) + step;
|
|
dy01+=dy01?0:1;
|
|
|
|
for (int y = cy0; y!=cy1; y+=step) {
|
|
const int
|
|
yy0 = y - y0,
|
|
x = x0 + (dx01*yy0 + hdy01)/dy01;
|
|
const float iz = iz0 + diz01*yy0/dy01;
|
|
tz *const ptrz = is_horizontal?zbuffer.data(y,x):zbuffer.data(x,y);
|
|
|
|
if (x>=0 && x<=w1 && pattern&hatch && iz>=*ptrz) {
|
|
*ptrz = (tz)iz;
|
|
T *const ptrd = is_horizontal?data(y,x):data(x,y);
|
|
cimg_forC(*this,c) {
|
|
const T val = color[c];
|
|
ptrd[c*_sc_whd] = opacity>=1?val:(T)(val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity);
|
|
}
|
|
}
|
|
if (!(hatch>>=1)) hatch = ~0U - (~0U>>1);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a textured 2D line.
|
|
/**
|
|
\param x0 X-coordinate of the starting line point.
|
|
\param y0 Y-coordinate of the starting line point.
|
|
\param x1 X-coordinate of the ending line point.
|
|
\param y1 Y-coordinate of the ending line point.
|
|
\param texture Texture image defining the pixel colors.
|
|
\param tx0 X-coordinate of the starting texture point.
|
|
\param ty0 Y-coordinate of the starting texture point.
|
|
\param tx1 X-coordinate of the ending texture point.
|
|
\param ty1 Y-coordinate of the ending texture point.
|
|
\param opacity Drawing opacity.
|
|
\param pattern An integer whose bits describe the line pattern.
|
|
\param init_hatch Tells if the hash variable must be reinitialized.
|
|
\note
|
|
- Line routine uses the well known Bresenham's algorithm.
|
|
\par Example:
|
|
\code
|
|
CImg<unsigned char> img(100,100,1,3,0), texture("texture256x256.ppm");
|
|
const unsigned char color[] = { 255,128,64 };
|
|
img.draw_line(40,40,80,70,texture,0,0,255,255);
|
|
\endcode
|
|
**/
|
|
template<typename tc>
|
|
CImg<T>& draw_line(int x0, int y0,
|
|
int x1, int y1,
|
|
const CImg<tc>& texture,
|
|
int tx0, int ty0,
|
|
int tx1, int ty1,
|
|
const float opacity=1,
|
|
const unsigned int pattern=~0U, const bool init_hatch=true) {
|
|
|
|
if (is_empty() || !opacity || !pattern) return *this;
|
|
if (texture._depth>1 || texture._spectrum<_spectrum)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_line(): Invalid specified texture (%u,%u,%u,%u,%p).",
|
|
cimg_instance,
|
|
texture._width,texture._height,texture._depth,texture._spectrum,texture._data);
|
|
if (is_overlapped(texture)) return draw_line(x0,y0,x1,y1,+texture,tx0,ty0,tx1,ty1,opacity,pattern,init_hatch);
|
|
|
|
if (std::min(y0,y1)>=height() || std::max(y0,y1)<0 || std::min(x0,x1)>=width() || std::max(x0,x1)<0) return *this;
|
|
|
|
int w1 = width() - 1, h1 = height() - 1;
|
|
longT
|
|
dx01 = (longT)x1 - x0, dy01 = (longT)y1 - y0,
|
|
dtx01 = (longT)tx1 - tx0, dty01 = (longT)ty1 - ty0;
|
|
|
|
const bool is_horizontal = cimg::abs(dx01)>cimg::abs(dy01);
|
|
if (is_horizontal) cimg::swap(x0,y0,x1,y1,w1,h1,dx01,dy01);
|
|
if (pattern==~0U && y0>y1) {
|
|
cimg::swap(x0,x1,y0,y1,tx0,tx1,ty0,ty1);
|
|
dx01*=-1; dy01*=-1; dtx01*=-1; dty01*=-1;
|
|
}
|
|
|
|
const ulongT twhd = (ulongT)texture._width*texture._height*texture._depth;
|
|
static unsigned int hatch = ~0U - (~0U>>1);
|
|
if (init_hatch) hatch = ~0U - (~0U>>1);
|
|
cimg_init_scanline(opacity);
|
|
|
|
const int step = y0<=y1?1:-1, cy0 = cimg::cut(y0,0,h1), cy1 = cimg::cut(y1,0,h1) + step;
|
|
const longT
|
|
hdy01 = dy01*cimg::sign(dx01)/2,
|
|
hdy01tx = dy01*cimg::sign(dtx01)/2,
|
|
hdy01ty = dy01*cimg::sign(dty01)/2;
|
|
|
|
dy01+=dy01?0:1;
|
|
|
|
for (int y = cy0; y!=cy1; y+=step) {
|
|
const longT
|
|
yy0 = (longT)y - y0,
|
|
x = x0 + (dx01*yy0 + hdy01)/dy01,
|
|
tx = tx0 + (dtx01*yy0 + hdy01tx)/dy01,
|
|
ty = ty0 + (dty01*yy0 + hdy01ty)/dy01;
|
|
if (x>=0 && x<=w1 && pattern&hatch) {
|
|
T *const ptrd = is_horizontal?data(y,x):data(x,y);
|
|
const tc *const color = &texture._atXY(tx,ty);
|
|
cimg_forC(*this,c) {
|
|
const T val = color[c*twhd];
|
|
ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity);
|
|
}
|
|
}
|
|
if (!(hatch>>=1)) hatch = ~0U - (~0U>>1);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a textured 2D line, with perspective correction.
|
|
/**
|
|
\param x0 X-coordinate of the starting point.
|
|
\param y0 Y-coordinate of the starting point.
|
|
\param z0 Z-coordinate of the starting point
|
|
\param x1 X-coordinate of the ending point.
|
|
\param y1 Y-coordinate of the ending point.
|
|
\param z1 Z-coordinate of the ending point.
|
|
\param texture Texture image defining the pixel colors.
|
|
\param tx0 X-coordinate of the starting texture point.
|
|
\param ty0 Y-coordinate of the starting texture point.
|
|
\param tx1 X-coordinate of the ending texture point.
|
|
\param ty1 Y-coordinate of the ending texture point.
|
|
\param opacity Drawing opacity.
|
|
\param pattern An integer whose bits describe the line pattern.
|
|
\param init_hatch Tells if the hash variable must be reinitialized.
|
|
**/
|
|
template<typename tc>
|
|
CImg<T>& draw_line(int x0, int y0, const float z0,
|
|
int x1, int y1, const float z1,
|
|
const CImg<tc>& texture,
|
|
const int tx0, const int ty0,
|
|
const int tx1, const int ty1,
|
|
const float opacity=1,
|
|
const unsigned int pattern=~0U, const bool init_hatch=true) {
|
|
if (is_empty() || z0<=0 || z1<=0 || !opacity || !pattern) return *this;
|
|
if (texture._depth>1 || texture._spectrum<_spectrum)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_line(): Invalid specified texture (%u,%u,%u,%u,%p).",
|
|
cimg_instance,
|
|
texture._width,texture._height,texture._depth,texture._spectrum,texture._data);
|
|
if (is_overlapped(texture))
|
|
return draw_line(x0,y0,z0,x1,y1,z1,+texture,tx0,ty0,tx1,ty1,opacity,pattern,init_hatch);
|
|
|
|
if (std::min(y0,y1)>=height() || std::max(y0,y1)<0 || std::min(x0,x1)>=width() || std::max(x0,x1)<0) return *this;
|
|
|
|
float iz0 = 1/z0, iz1 = 1/z1;
|
|
int w1 = width() - 1, h1 = height() - 1;
|
|
longT dx01 = (longT)x1 - x0, dy01 = (longT)y1 - y0;
|
|
float
|
|
diz01 = iz1 - iz0,
|
|
txz0 = tx0*iz0, txz1 = tx1*iz1,
|
|
tyz0 = ty0*iz0, tyz1 = ty1*iz1,
|
|
dtxz01 = txz1 - txz0, dtyz01 = tyz1 - tyz0;
|
|
|
|
const bool is_horizontal = cimg::abs(dx01)>cimg::abs(dy01);
|
|
if (is_horizontal) cimg::swap(x0,y0,x1,y1,w1,h1,dx01,dy01);
|
|
if (pattern==~0U && y0>y1) {
|
|
cimg::swap(x0,x1,y0,y1,iz0,iz1,txz0,txz1,tyz0,tyz1);
|
|
dx01*=-1; dy01*=-1; diz01*=-1; dtxz01*=-1; dtyz01*=-1;
|
|
}
|
|
|
|
const ulongT twhd = (ulongT)texture._width*texture._height*texture._depth;
|
|
static unsigned int hatch = ~0U - (~0U>>1);
|
|
if (init_hatch) hatch = ~0U - (~0U>>1);
|
|
cimg_init_scanline(opacity);
|
|
|
|
const int step = y0<=y1?1:-1, cy0 = cimg::cut(y0,0,h1), cy1 = cimg::cut(y1,0,h1) + step;
|
|
const longT hdy01 = dy01*cimg::sign(dx01)/2;
|
|
|
|
dy01+=dy01?0:1;
|
|
|
|
for (int y = cy0; y!=cy1; y+=step) {
|
|
const longT
|
|
yy0 = (longT)y - y0,
|
|
x = x0 + (dx01*yy0 + hdy01)/dy01;
|
|
const float
|
|
iz = iz0 + diz01*yy0/dy01,
|
|
txz = txz0 + dtxz01*yy0/dy01,
|
|
tyz = tyz0 + dtyz01*yy0/dy01;
|
|
if (x>=0 && x<=w1 && pattern&hatch) {
|
|
const int
|
|
tx = (int)cimg::round(txz/iz),
|
|
ty = (int)cimg::round(tyz/iz);
|
|
T *const ptrd = is_horizontal?data(y,x):data(x,y);
|
|
const tc *const color = &texture._atXY(tx,ty);
|
|
cimg_forC(*this,c) {
|
|
const T val = color[c*twhd];
|
|
ptrd[c*_sc_whd] = opacity>=1?val:(T)(val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity);
|
|
}
|
|
}
|
|
if (!(hatch>>=1)) hatch = ~0U - (~0U>>1);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a textured 2D line, with perspective correction and z-buffering.
|
|
/**
|
|
\param zbuffer Z-buffer image.
|
|
\param x0 X-coordinate of the starting point.
|
|
\param y0 Y-coordinate of the starting point.
|
|
\param z0 Z-coordinate of the starting point
|
|
\param x1 X-coordinate of the ending point.
|
|
\param y1 Y-coordinate of the ending point.
|
|
\param z1 Z-coordinate of the ending point.
|
|
\param texture Texture image defining the pixel colors.
|
|
\param tx0 X-coordinate of the starting texture point.
|
|
\param ty0 Y-coordinate of the starting texture point.
|
|
\param tx1 X-coordinate of the ending texture point.
|
|
\param ty1 Y-coordinate of the ending texture point.
|
|
\param opacity Drawing opacity.
|
|
\param pattern An integer whose bits describe the line pattern.
|
|
\param init_hatch Tells if the hash variable must be reinitialized.
|
|
**/
|
|
template<typename tz, typename tc>
|
|
CImg<T>& draw_line(CImg<tz>& zbuffer,
|
|
int x0, int y0, const float z0,
|
|
int x1, int y1, const float z1,
|
|
const CImg<tc>& texture,
|
|
const int tx0, const int ty0,
|
|
const int tx1, const int ty1,
|
|
const float opacity=1,
|
|
const unsigned int pattern=~0U, const bool init_hatch=true) {
|
|
if (is_empty() || z0<=0 || z1<=0 || !opacity || !pattern) return *this;
|
|
if (!is_sameXY(zbuffer))
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_line(): Instance and specified Z-buffer (%u,%u,%u,%u,%p) have "
|
|
"different dimensions.",
|
|
cimg_instance,
|
|
zbuffer._width,zbuffer._height,zbuffer._depth,zbuffer._spectrum,zbuffer._data);
|
|
if (texture._depth>1 || texture._spectrum<_spectrum)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_line(): Invalid specified texture (%u,%u,%u,%u,%p).",
|
|
cimg_instance,
|
|
texture._width,texture._height,texture._depth,texture._spectrum,texture._data);
|
|
if (is_overlapped(texture))
|
|
return draw_line(zbuffer,x0,y0,z0,x1,y1,z1,+texture,tx0,ty0,tx1,ty1,opacity,pattern,init_hatch);
|
|
|
|
if (std::min(y0,y1)>=height() || std::max(y0,y1)<0 || std::min(x0,x1)>=width() || std::max(x0,x1)<0) return *this;
|
|
|
|
float iz0 = 1/z0, iz1 = 1/z1;
|
|
int w1 = width() - 1, h1 = height() - 1;
|
|
longT dx01 = (longT)x1 - x0, dy01 = (longT)y1 - y0;
|
|
float
|
|
diz01 = iz1 - iz0,
|
|
txz0 = tx0*iz0, txz1 = tx1*iz1,
|
|
tyz0 = ty0*iz0, tyz1 = ty1*iz1,
|
|
dtxz01 = txz1 - txz0, dtyz01 = tyz1 - tyz0;
|
|
|
|
const bool is_horizontal = cimg::abs(dx01)>cimg::abs(dy01);
|
|
if (is_horizontal) cimg::swap(x0,y0,x1,y1,w1,h1,dx01,dy01);
|
|
if (pattern==~0U && y0>y1) {
|
|
cimg::swap(x0,x1,y0,y1,iz0,iz1,txz0,txz1,tyz0,tyz1);
|
|
dx01*=-1; dy01*=-1; diz01*=-1; dtxz01*=-1; dtyz01*=-1;
|
|
}
|
|
|
|
const ulongT twhd = (ulongT)texture._width*texture._height*texture._depth;
|
|
static unsigned int hatch = ~0U - (~0U>>1);
|
|
if (init_hatch) hatch = ~0U - (~0U>>1);
|
|
cimg_init_scanline(opacity);
|
|
|
|
const int step = y0<=y1?1:-1, cy0 = cimg::cut(y0,0,h1), cy1 = cimg::cut(y1,0,h1) + step;
|
|
const longT hdy01 = dy01*cimg::sign(dx01)/2;
|
|
|
|
dy01+=dy01?0:1;
|
|
|
|
for (int y = cy0; y!=cy1; y+=step) {
|
|
const longT
|
|
yy0 = (longT)y - y0,
|
|
x = x0 + (dx01*yy0 + hdy01)/dy01;
|
|
const float
|
|
iz = iz0 + diz01*yy0/dy01,
|
|
txz = txz0 + dtxz01*yy0/dy01,
|
|
tyz = tyz0 + dtyz01*yy0/dy01;
|
|
tz *const ptrz = is_horizontal?zbuffer.data(y,x):zbuffer.data(x,y);
|
|
|
|
if (x>=0 && x<=w1 && pattern&hatch && iz>=*ptrz) {
|
|
*ptrz = (tz)iz;
|
|
const int
|
|
tx = (int)cimg::round(txz/iz),
|
|
ty = (int)cimg::round(tyz/iz);
|
|
T *const ptrd = is_horizontal?data(y,x):data(x,y);
|
|
const tc *const color = &texture._atXY(tx,ty);
|
|
cimg_forC(*this,c) {
|
|
const T val = color[c*twhd];
|
|
ptrd[c*_sc_whd] = opacity>=1?val:(T)(val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity);
|
|
}
|
|
}
|
|
if (!(hatch>>=1)) hatch = ~0U - (~0U>>1);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a set of consecutive lines.
|
|
/**
|
|
\param points Coordinates of vertices, stored as a list of vectors.
|
|
\param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color.
|
|
\param opacity Drawing opacity.
|
|
\param pattern An integer whose bits describe the line pattern.
|
|
\param init_hatch If set to true, init hatch motif.
|
|
\note
|
|
- This function uses several call to the single CImg::draw_line() procedure,
|
|
depending on the vectors size in \p points.
|
|
**/
|
|
template<typename t, typename tc>
|
|
CImg<T>& draw_line(const CImg<t>& points,
|
|
const tc *const color, const float opacity=1,
|
|
const unsigned int pattern=~0U, const bool init_hatch=true) {
|
|
if (is_empty() || !points || points._width<2) return *this;
|
|
bool ninit_hatch = init_hatch;
|
|
switch (points._height) {
|
|
case 0 : case 1 :
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_line(): Invalid specified point set (%u,%u,%u,%u,%p).",
|
|
cimg_instance,
|
|
points._width,points._height,points._depth,points._spectrum,points._data);
|
|
|
|
default : {
|
|
const int x0 = (int)points(0,0), y0 = (int)points(0,1);
|
|
int ox = x0, oy = y0;
|
|
for (unsigned int i = 1; i<points._width; ++i) {
|
|
const int x = (int)points(i,0), y = (int)points(i,1);
|
|
draw_line(ox,oy,x,y,color,opacity,pattern,ninit_hatch);
|
|
ninit_hatch = false;
|
|
ox = x; oy = y;
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a 2D arrow.
|
|
/**
|
|
\param x0 X-coordinate of the starting arrow point (tail).
|
|
\param y0 Y-coordinate of the starting arrow point (tail).
|
|
\param x1 X-coordinate of the ending arrow point (head).
|
|
\param y1 Y-coordinate of the ending arrow point (head).
|
|
\param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color.
|
|
\param angle Aperture angle of the arrow head.
|
|
\param length Length of the arrow head. If negative, describes a percentage of the arrow length.
|
|
\param opacity Drawing opacity.
|
|
\param pattern An integer whose bits describe the line pattern.
|
|
**/
|
|
template<typename tc>
|
|
CImg<T>& draw_arrow(const int x0, const int y0,
|
|
const int x1, const int y1,
|
|
const tc *const color, const float opacity=1,
|
|
const float angle=30, const float length=-10,
|
|
const unsigned int pattern=~0U) {
|
|
if (is_empty()) return *this;
|
|
const float u = (float)(x0 - x1), v = (float)(y0 - y1), sq = u*u + v*v,
|
|
deg = (float)(angle*cimg::PI/180), ang = (sq>0)?(float)std::atan2(v,u):0.f,
|
|
l = (length>=0)?length:-length*(float)std::sqrt(sq)/100;
|
|
if (sq>0) {
|
|
const float
|
|
cl = (float)std::cos(ang - deg), sl = (float)std::sin(ang - deg),
|
|
cr = (float)std::cos(ang + deg), sr = (float)std::sin(ang + deg);
|
|
const int
|
|
xl = x1 + (int)(l*cl), yl = y1 + (int)(l*sl),
|
|
xr = x1 + (int)(l*cr), yr = y1 + (int)(l*sr),
|
|
xc = x1 + (int)((l + 1)*(cl + cr))/2, yc = y1 + (int)((l + 1)*(sl + sr))/2;
|
|
draw_line(x0,y0,xc,yc,color,opacity,pattern).draw_triangle(x1,y1,xl,yl,xr,yr,color,opacity);
|
|
} else draw_point(x0,y0,color,opacity);
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a 2D spline.
|
|
/**
|
|
\param x0 X-coordinate of the starting curve point
|
|
\param y0 Y-coordinate of the starting curve point
|
|
\param u0 X-coordinate of the starting velocity
|
|
\param v0 Y-coordinate of the starting velocity
|
|
\param x1 X-coordinate of the ending curve point
|
|
\param y1 Y-coordinate of the ending curve point
|
|
\param u1 X-coordinate of the ending velocity
|
|
\param v1 Y-coordinate of the ending velocity
|
|
\param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color.
|
|
\param precision Curve drawing precision.
|
|
\param opacity Drawing opacity.
|
|
\param pattern An integer whose bits describe the line pattern.
|
|
\param init_hatch If \c true, init hatch motif.
|
|
\note
|
|
- The curve is a 2D cubic Bezier spline, from the set of specified starting/ending points
|
|
and corresponding velocity vectors.
|
|
- The spline is drawn as a sequence of connected segments. The \p precision parameter sets the
|
|
average number of pixels in each drawn segment.
|
|
- A cubic Bezier curve is sometimes defined by a set of 4 points { (\p x0,\p y0), (\p xa,\p ya),
|
|
(\p xb,\p yb), (\p x1,\p y1) } where (\p x0,\p y0) is the starting point, (\p x1,\p y1) is the ending point
|
|
and (\p xa,\p ya), (\p xb,\p yb) are two
|
|
\e control points.
|
|
The starting and ending velocities (\p u0,\p v0) and (\p u1,\p v1) can be deduced easily from
|
|
the control points as
|
|
\p u0 = (\p xa - \p x0), \p v0 = (\p ya - \p y0), \p u1 = (\p x1 - \p xb) and \p v1 = (\p y1 - \p yb).
|
|
\par Example:
|
|
\code
|
|
CImg<unsigned char> img(100,100,1,3,0);
|
|
const unsigned char color[] = { 255,255,255 };
|
|
img.draw_spline(30,30,0,100,90,40,0,-100,color);
|
|
\endcode
|
|
**/
|
|
template<typename tc>
|
|
CImg<T>& draw_spline(const int x0, const int y0, const float u0, const float v0,
|
|
const int x1, const int y1, const float u1, const float v1,
|
|
const tc *const color, const float opacity=1,
|
|
const float precision=0.25, const unsigned int pattern=~0U,
|
|
const bool init_hatch=true) {
|
|
if (is_empty()) return *this;
|
|
if (!color)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_spline(): Specified color is (null).",
|
|
cimg_instance);
|
|
if (x0==x1 && y0==y1) return draw_point(x0,y0,color,opacity);
|
|
bool ninit_hatch = init_hatch;
|
|
const float
|
|
ax = u0 + u1 + 2*(x0 - x1),
|
|
bx = 3*(x1 - x0) - 2*u0 - u1,
|
|
ay = v0 + v1 + 2*(y0 - y1),
|
|
by = 3*(y1 - y0) - 2*v0 - v1,
|
|
_precision = 1/(cimg::hypot((float)x0 - x1,(float)y0 - y1)*(precision>0?precision:1));
|
|
int ox = x0, oy = y0;
|
|
for (float t = 0; t<1; t+=_precision) {
|
|
const float t2 = t*t, t3 = t2*t;
|
|
const int
|
|
nx = (int)(ax*t3 + bx*t2 + u0*t + x0),
|
|
ny = (int)(ay*t3 + by*t2 + v0*t + y0);
|
|
draw_line(ox,oy,nx,ny,color,opacity,pattern,ninit_hatch);
|
|
ninit_hatch = false;
|
|
ox = nx; oy = ny;
|
|
}
|
|
return draw_line(ox,oy,x1,y1,color,opacity,pattern,false);
|
|
}
|
|
|
|
//! Draw a textured 2D spline.
|
|
/**
|
|
\param x0 X-coordinate of the starting curve point
|
|
\param y0 Y-coordinate of the starting curve point
|
|
\param u0 X-coordinate of the starting velocity
|
|
\param v0 Y-coordinate of the starting velocity
|
|
\param x1 X-coordinate of the ending curve point
|
|
\param y1 Y-coordinate of the ending curve point
|
|
\param u1 X-coordinate of the ending velocity
|
|
\param v1 Y-coordinate of the ending velocity
|
|
\param texture Texture image defining line pixel colors.
|
|
\param tx0 X-coordinate of the starting texture point.
|
|
\param ty0 Y-coordinate of the starting texture point.
|
|
\param tx1 X-coordinate of the ending texture point.
|
|
\param ty1 Y-coordinate of the ending texture point.
|
|
\param precision Curve drawing precision.
|
|
\param opacity Drawing opacity.
|
|
\param pattern An integer whose bits describe the line pattern.
|
|
\param init_hatch if \c true, reinit hatch motif.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& draw_spline(const int x0, const int y0, const float u0, const float v0,
|
|
const int x1, const int y1, const float u1, const float v1,
|
|
const CImg<t>& texture,
|
|
const int tx0, const int ty0, const int tx1, const int ty1,
|
|
const float opacity=1,
|
|
const float precision=4, const unsigned int pattern=~0U,
|
|
const bool init_hatch=true) {
|
|
if (texture._depth>1 || texture._spectrum<_spectrum)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_spline(): Invalid specified texture (%u,%u,%u,%u,%p).",
|
|
cimg_instance,
|
|
texture._width,texture._height,texture._depth,texture._spectrum,texture._data);
|
|
if (is_empty()) return *this;
|
|
if (is_overlapped(texture))
|
|
return draw_spline(x0,y0,u0,v0,x1,y1,u1,v1,+texture,tx0,ty0,tx1,ty1,precision,opacity,pattern,init_hatch);
|
|
if (x0==x1 && y0==y1)
|
|
return draw_point(x0,y0,texture.get_vector_at(x0<=0?0:x0>=texture.width()?texture.width() - 1:x0,
|
|
y0<=0?0:y0>=texture.height()?texture.height() - 1:y0).data(),
|
|
opacity);
|
|
bool ninit_hatch = init_hatch;
|
|
const float
|
|
ax = u0 + u1 + 2*(x0 - x1),
|
|
bx = 3*(x1 - x0) - 2*u0 - u1,
|
|
ay = v0 + v1 + 2*(y0 - y1),
|
|
by = 3*(y1 - y0) - 2*v0 - v1,
|
|
_precision = 1/(cimg::hypot((float)x0 - x1,(float)y0 - y1)*(precision>0?precision:1));
|
|
int ox = x0, oy = y0, otx = tx0, oty = ty0;
|
|
for (float t1 = 0; t1<1; t1+=_precision) {
|
|
const float t2 = t1*t1, t3 = t2*t1;
|
|
const int
|
|
nx = (int)(ax*t3 + bx*t2 + u0*t1 + x0),
|
|
ny = (int)(ay*t3 + by*t2 + v0*t1 + y0),
|
|
ntx = tx0 + (int)((tx1 - tx0)*t1),
|
|
nty = ty0 + (int)((ty1 - ty0)*t1);
|
|
draw_line(ox,oy,nx,ny,texture,otx,oty,ntx,nty,opacity,pattern,ninit_hatch);
|
|
ninit_hatch = false;
|
|
ox = nx; oy = ny; otx = ntx; oty = nty;
|
|
}
|
|
return draw_line(ox,oy,x1,y1,texture,otx,oty,tx1,ty1,opacity,pattern,false);
|
|
}
|
|
|
|
//! Draw a set of consecutive splines.
|
|
/**
|
|
\param points Vertices data.
|
|
\param tangents Tangents data.
|
|
\param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color.
|
|
\param opacity Drawing opacity.
|
|
\param is_closed_set Tells if the drawn spline set is closed.
|
|
\param precision Precision of the drawing.
|
|
\param pattern An integer whose bits describe the line pattern.
|
|
\param init_hatch If \c true, init hatch motif.
|
|
**/
|
|
template<typename tp, typename tt, typename tc>
|
|
CImg<T>& draw_spline(const CImg<tp>& points, const CImg<tt>& tangents,
|
|
const tc *const color, const float opacity=1,
|
|
const bool is_closed_set=false, const float precision=4,
|
|
const unsigned int pattern=~0U, const bool init_hatch=true) {
|
|
if (is_empty() || !points || !tangents || points._width<2 || tangents._width<2) return *this;
|
|
bool ninit_hatch = init_hatch;
|
|
switch (points._height) {
|
|
case 0 : case 1 :
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_spline(): Invalid specified point set (%u,%u,%u,%u,%p).",
|
|
cimg_instance,
|
|
points._width,points._height,points._depth,points._spectrum,points._data);
|
|
|
|
default : {
|
|
const int x0 = (int)points(0,0), y0 = (int)points(0,1);
|
|
const float u0 = (float)tangents(0,0), v0 = (float)tangents(0,1);
|
|
int ox = x0, oy = y0;
|
|
float ou = u0, ov = v0;
|
|
for (unsigned int i = 1; i<points._width; ++i) {
|
|
const int x = (int)points(i,0), y = (int)points(i,1);
|
|
const float u = (float)tangents(i,0), v = (float)tangents(i,1);
|
|
draw_spline(ox,oy,ou,ov,x,y,u,v,color,precision,opacity,pattern,ninit_hatch);
|
|
ninit_hatch = false;
|
|
ox = x; oy = y; ou = u; ov = v;
|
|
}
|
|
if (is_closed_set) draw_spline(ox,oy,ou,ov,x0,y0,u0,v0,color,precision,opacity,pattern,false);
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a set of consecutive splines \overloading.
|
|
/**
|
|
Similar to previous function, with the point tangents automatically estimated from the given points set.
|
|
**/
|
|
template<typename tp, typename tc>
|
|
CImg<T>& draw_spline(const CImg<tp>& points,
|
|
const tc *const color, const float opacity=1,
|
|
const bool is_closed_set=false, const float precision=4,
|
|
const unsigned int pattern=~0U, const bool init_hatch=true) {
|
|
if (is_empty() || !points || points._width<2) return *this;
|
|
CImg<Tfloat> tangents;
|
|
switch (points._height) {
|
|
case 0 : case 1 :
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_spline(): Invalid specified point set (%u,%u,%u,%u,%p).",
|
|
cimg_instance,
|
|
points._width,points._height,points._depth,points._spectrum,points._data);
|
|
case 2 : {
|
|
tangents.assign(points._width,points._height);
|
|
cimg_forX(points,p) {
|
|
const unsigned int
|
|
p0 = is_closed_set?(p + points.width() - 1)%points.width():(p?p - 1:0),
|
|
p1 = is_closed_set?(p + 1)%points.width():(p + 1<points.width()?p + 1:p);
|
|
const float
|
|
x = (float)points(p,0),
|
|
y = (float)points(p,1),
|
|
x0 = (float)points(p0,0),
|
|
y0 = (float)points(p0,1),
|
|
x1 = (float)points(p1,0),
|
|
y1 = (float)points(p1,1),
|
|
u0 = x - x0,
|
|
v0 = y - y0,
|
|
n0 = 1e-8f + cimg::hypot(u0,v0),
|
|
u1 = x1 - x,
|
|
v1 = y1 - y,
|
|
n1 = 1e-8f + cimg::hypot(u1,v1),
|
|
u = u0/n0 + u1/n1,
|
|
v = v0/n0 + v1/n1,
|
|
n = 1e-8f + cimg::hypot(u,v),
|
|
fact = 0.5f*(n0 + n1);
|
|
tangents(p,0) = (Tfloat)(fact*u/n);
|
|
tangents(p,1) = (Tfloat)(fact*v/n);
|
|
}
|
|
} break;
|
|
default : {
|
|
tangents.assign(points._width,points._height);
|
|
cimg_forX(points,p) {
|
|
const unsigned int
|
|
p0 = is_closed_set?(p + points.width() - 1)%points.width():(p?p - 1:0),
|
|
p1 = is_closed_set?(p + 1)%points.width():(p + 1<points.width()?p + 1:p);
|
|
const float
|
|
x = (float)points(p,0),
|
|
y = (float)points(p,1),
|
|
z = (float)points(p,2),
|
|
x0 = (float)points(p0,0),
|
|
y0 = (float)points(p0,1),
|
|
z0 = (float)points(p0,2),
|
|
x1 = (float)points(p1,0),
|
|
y1 = (float)points(p1,1),
|
|
z1 = (float)points(p1,2),
|
|
u0 = x - x0,
|
|
v0 = y - y0,
|
|
w0 = z - z0,
|
|
n0 = 1e-8f + cimg::hypot(u0,v0,w0),
|
|
u1 = x1 - x,
|
|
v1 = y1 - y,
|
|
w1 = z1 - z,
|
|
n1 = 1e-8f + cimg::hypot(u1,v1,w1),
|
|
u = u0/n0 + u1/n1,
|
|
v = v0/n0 + v1/n1,
|
|
w = w0/n0 + w1/n1,
|
|
n = 1e-8f + cimg::hypot(u,v,w),
|
|
fact = 0.5f*(n0 + n1);
|
|
tangents(p,0) = (Tfloat)(fact*u/n);
|
|
tangents(p,1) = (Tfloat)(fact*v/n);
|
|
tangents(p,2) = (Tfloat)(fact*w/n);
|
|
}
|
|
}
|
|
}
|
|
return draw_spline(points,tangents,color,opacity,is_closed_set,precision,pattern,init_hatch);
|
|
}
|
|
|
|
// [internal] Draw a filled triangle.
|
|
template<typename tc>
|
|
CImg<T>& _draw_triangle(int x0, int y0,
|
|
int x1, int y1,
|
|
int x2, int y2,
|
|
const tc *const color, const float opacity,
|
|
const float brightness) {
|
|
if (y0>y1) cimg::swap(x0,x1,y0,y1);
|
|
if (y0>y2) cimg::swap(x0,x2,y0,y2);
|
|
if (y1>y2) cimg::swap(x1,x2,y1,y2);
|
|
if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this;
|
|
|
|
const int
|
|
h1 = height() - 1,
|
|
cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1);
|
|
const longT
|
|
dx01 = (longT)x1 - x0, dx02 = (longT)x2 - x0, dx12 = (longT)x2 - x1,
|
|
dy01 = std::max((longT)1,(longT)y1 - y0),
|
|
dy02 = std::max((longT)1,(longT)y2 - y0),
|
|
dy12 = std::max((longT)1,(longT)y2 - y1),
|
|
hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2;
|
|
const float cbs = cimg::cut(brightness,0,2);
|
|
cimg_init_scanline(opacity);
|
|
|
|
for (int y = cy0; y<=cy2; ++y) {
|
|
const longT yy0 = (longT)y - y0, yy1 = (longT)y - y1;
|
|
longT
|
|
xm = y<y1?x0 + (dx01*yy0 + hdy01)/dy01:x1 + (dx12*yy1 + hdy12)/dy12,
|
|
xM = x0 + (dx02*yy0 + hdy02)/dy02;
|
|
if (xm>xM) cimg::swap(xm,xM);
|
|
cimg_draw_scanline(xm,xM,y,color,opacity,cbs);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a filled 2D triangle.
|
|
/**
|
|
\param x0 X-coordinate of the first vertex.
|
|
\param y0 Y-coordinate of the first vertex.
|
|
\param x1 X-coordinate of the second vertex.
|
|
\param y1 Y-coordinate of the second vertex.
|
|
\param x2 X-coordinate of the third vertex.
|
|
\param y2 Y-coordinate of the third vertex.
|
|
\param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color.
|
|
\param opacity Drawing opacity.
|
|
**/
|
|
template<typename tc>
|
|
CImg<T>& draw_triangle(const int x0, const int y0,
|
|
const int x1, const int y1,
|
|
const int x2, const int y2,
|
|
const tc *const color, const float opacity=1) {
|
|
if (is_empty()) return *this;
|
|
if (!color)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_triangle(): Specified color is (null).",
|
|
cimg_instance);
|
|
_draw_triangle(x0,y0,x1,y1,x2,y2,color,opacity,1);
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a outlined 2D triangle.
|
|
/**
|
|
\param x0 X-coordinate of the first vertex.
|
|
\param y0 Y-coordinate of the first vertex.
|
|
\param x1 X-coordinate of the second vertex.
|
|
\param y1 Y-coordinate of the second vertex.
|
|
\param x2 X-coordinate of the third vertex.
|
|
\param y2 Y-coordinate of the third vertex.
|
|
\param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color.
|
|
\param opacity Drawing opacity.
|
|
\param pattern An integer whose bits describe the outline pattern.
|
|
**/
|
|
template<typename tc>
|
|
CImg<T>& draw_triangle(const int x0, const int y0,
|
|
const int x1, const int y1,
|
|
const int x2, const int y2,
|
|
const tc *const color, const float opacity,
|
|
const unsigned int pattern) {
|
|
if (is_empty()) return *this;
|
|
if (!color)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_triangle(): Specified color is (null).",
|
|
cimg_instance);
|
|
draw_line(x0,y0,x1,y1,color,opacity,pattern,true).
|
|
draw_line(x1,y1,x2,y2,color,opacity,pattern,false).
|
|
draw_line(x2,y2,x0,y0,color,opacity,pattern,false);
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a filled 2D triangle, with z-buffering.
|
|
/**
|
|
\param zbuffer Z-buffer image.
|
|
\param x0 X-coordinate of the first vertex.
|
|
\param y0 Y-coordinate of the first vertex.
|
|
\param z0 Z-coordinate of the first vertex.
|
|
\param x1 X-coordinate of the second vertex.
|
|
\param y1 Y-coordinate of the second vertex.
|
|
\param z1 Z-coordinate of the second vertex.
|
|
\param x2 X-coordinate of the third vertex.
|
|
\param y2 Y-coordinate of the third vertex.
|
|
\param z2 Z-coordinate of the third vertex.
|
|
\param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color.
|
|
\param opacity Drawing opacity.
|
|
\param brightness Brightness factor.
|
|
**/
|
|
template<typename tz, typename tc>
|
|
CImg<T>& draw_triangle(CImg<tz>& zbuffer,
|
|
int x0, int y0, const float z0,
|
|
int x1, int y1, const float z1,
|
|
int x2, int y2, const float z2,
|
|
const tc *const color, const float opacity=1,
|
|
const float brightness=1) {
|
|
if (is_empty() || z0<=0 || z1<=0 || z2<=0) return *this;
|
|
if (!color)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_triangle(): Specified color is (null).",
|
|
cimg_instance);
|
|
if (!is_sameXY(zbuffer))
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_triangle(): Instance and specified Z-buffer (%u,%u,%u,%u,%p) have "
|
|
"different dimensions.",
|
|
cimg_instance,
|
|
zbuffer._width,zbuffer._height,zbuffer._depth,zbuffer._spectrum,zbuffer._data);
|
|
|
|
float iz0 = 1/z0, iz1 = 1/z1, iz2 = 1/z2;
|
|
if (y0>y1) cimg::swap(x0,x1,y0,y1,iz0,iz1);
|
|
if (y0>y2) cimg::swap(x0,x2,y0,y2,iz0,iz2);
|
|
if (y1>y2) cimg::swap(x1,x2,y1,y2,iz1,iz2);
|
|
if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this;
|
|
|
|
const int w1 = width() - 1, h1 = height() - 1, cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1);
|
|
const longT
|
|
dx01 = (longT)x1 - x0, dx02 = (longT)x2 - x0, dx12 = (longT)x2 - x1,
|
|
dy01 = std::max((longT)1,(longT)y1 - y0),
|
|
dy02 = std::max((longT)1,(longT)y2 - y0),
|
|
dy12 = std::max((longT)1,(longT)y2 - y1),
|
|
hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2;
|
|
const float diz01 = iz1 - iz0, diz02 = iz2 - iz0, diz12 = iz2 - iz1;
|
|
|
|
const float cbs = cimg::cut(brightness,0,2);
|
|
cimg_init_scanline(opacity);
|
|
|
|
for (int y = cy0; y<=cy2; ++y) {
|
|
const longT yy0 = (longT)y - y0, yy1 = (longT)y - y1;
|
|
longT
|
|
xm = y<y1?x0 + (dx01*yy0 + hdy01)/dy01:x1 + (dx12*yy1 + hdy12)/dy12,
|
|
xM = x0 + (dx02*yy0 + hdy02)/dy02;
|
|
float
|
|
izm = y<y1?(iz0 + diz01*yy0/dy01):(iz1 + diz12*yy1/dy12),
|
|
izM = iz0 + diz02*yy0/dy02;
|
|
if (xm>xM) cimg::swap(xm,xM,izm,izM);
|
|
if (xM>=0 && xm<=w1) {
|
|
const int
|
|
cxm = (int)cimg::cut(xm,(longT)0,(longT)w1),
|
|
cxM = (int)cimg::cut(xM,(longT)0,(longT)w1);
|
|
T *ptrd = data(cxm,y);
|
|
tz *ptrz = zbuffer.data(cxm,y);
|
|
const longT dxmM = std::max((longT)1,xM - xm);
|
|
const float dizmM = izM - izm;
|
|
|
|
for (int x = cxm; x<=cxM; ++x) {
|
|
const longT xxm = x - xm;
|
|
const float iz = izm + dizmM*xxm/dxmM;
|
|
if (iz>=*ptrz) {
|
|
*ptrz = (tz)iz;
|
|
cimg_forC(*this,c) {
|
|
const Tfloat val = cbs<=1?color[c]*cbs:(2 - cbs)*color[c] + (cbs - 1)*_sc_maxval;
|
|
ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity);
|
|
}
|
|
}
|
|
++ptrd; ++ptrz;
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a Gouraud-shaded 2D triangle.
|
|
/**
|
|
\param x0 X-coordinate of the first vertex in the image instance.
|
|
\param y0 Y-coordinate of the first vertex in the image instance.
|
|
\param x1 X-coordinate of the second vertex in the image instance.
|
|
\param y1 Y-coordinate of the second vertex in the image instance.
|
|
\param x2 X-coordinate of the third vertex in the image instance.
|
|
\param y2 Y-coordinate of the third vertex in the image instance.
|
|
\param color Pointer to \c spectrum() consecutive values, defining the drawing color.
|
|
\param bs0 Brightness factor of the first vertex (in [0,2]).
|
|
\param bs1 brightness factor of the second vertex (in [0,2]).
|
|
\param bs2 brightness factor of the third vertex (in [0,2]).
|
|
\param opacity Drawing opacity.
|
|
**/
|
|
template<typename tc>
|
|
CImg<T>& draw_triangle(int x0, int y0,
|
|
int x1, int y1,
|
|
int x2, int y2,
|
|
const tc *const color,
|
|
float bs0,
|
|
float bs1,
|
|
float bs2,
|
|
const float opacity=1) {
|
|
if (is_empty()) return *this;
|
|
if (!color)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_triangle(): Specified color is (null).",
|
|
cimg_instance);
|
|
|
|
if (y0>y1) cimg::swap(x0,x1,y0,y1,bs0,bs1);
|
|
if (y0>y2) cimg::swap(x0,x2,y0,y2,bs0,bs2);
|
|
if (y1>y2) cimg::swap(x1,x2,y1,y2,bs1,bs2);
|
|
if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this;
|
|
|
|
const int w1 = width() - 1, h1 = height() - 1, cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1);
|
|
const longT
|
|
dx01 = (longT)x1 - x0, dx02 = (longT)x2 - x0, dx12 = (longT)x2 - x1,
|
|
dy01 = std::max((longT)1,(longT)y1 - y0),
|
|
dy02 = std::max((longT)1,(longT)y2 - y0),
|
|
dy12 = std::max((longT)1,(longT)y2 - y1),
|
|
hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2;
|
|
const float dbs01 = bs1 - bs0, dbs02 = bs2 - bs0, dbs12 = bs2 - bs1;
|
|
|
|
cimg_init_scanline(opacity);
|
|
|
|
for (int y = cy0; y<=cy2; ++y) {
|
|
const longT yy0 = (longT)y - y0, yy1 = (longT)y - y1;
|
|
longT
|
|
xm = y<y1?x0 + (dx01*yy0 + hdy01)/dy01:x1 + (dx12*yy1 + hdy12)/dy12,
|
|
xM = x0 + (dx02*yy0 + hdy02)/dy02;
|
|
float
|
|
bsm = y<y1?(bs0 + dbs01*yy0/dy01):(bs1 + dbs12*yy1/dy12),
|
|
bsM = bs0 + dbs02*yy0/dy02;
|
|
if (xm>xM) cimg::swap(xm,xM,bsm,bsM);
|
|
if (xM>=0 && xm<=w1) {
|
|
const int
|
|
cxm = (int)cimg::cut(xm,(longT)0,(longT)w1),
|
|
cxM = (int)cimg::cut(xM,(longT)0,(longT)w1);
|
|
T *ptrd = data(cxm,y);
|
|
const longT dxmM = std::max((longT)1,xM - xm);
|
|
const float dbsmM = bsM - bsm;
|
|
|
|
for (int x = cxm; x<=cxM; ++x) {
|
|
const longT xxm = (longT)x - xm;
|
|
const float cbs = cimg::cut(bsm + dbsmM*xxm/dxmM,0,2);
|
|
cimg_forC(*this,c) {
|
|
const Tfloat val = cbs<=1?color[c]*cbs:(2 - cbs)*color[c] + (cbs - 1)*_sc_maxval;
|
|
ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity);
|
|
}
|
|
++ptrd;
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a Gouraud-shaded 2D triangle, with z-buffering \overloading.
|
|
template<typename tz, typename tc>
|
|
CImg<T>& draw_triangle(CImg<tz>& zbuffer,
|
|
int x0, int y0, const float z0,
|
|
int x1, int y1, const float z1,
|
|
int x2, int y2, const float z2,
|
|
const tc *const color,
|
|
float bs0,
|
|
float bs1,
|
|
float bs2,
|
|
float opacity=1) {
|
|
if (is_empty() || z0<=0 || z1<=0 || z2<=0) return *this;
|
|
if (!color)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_triangle(): Specified color is (null).",
|
|
cimg_instance);
|
|
if (!is_sameXY(zbuffer))
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_triangle(): Instance and specified Z-buffer (%u,%u,%u,%u,%p) have "
|
|
"different dimensions.",
|
|
cimg_instance,
|
|
zbuffer._width,zbuffer._height,zbuffer._depth,zbuffer._spectrum,zbuffer._data);
|
|
|
|
float iz0 = 1/z0, iz1 = 1/z1, iz2 = 1/z2;
|
|
if (y0>y1) cimg::swap(x0,x1,y0,y1,iz0,iz1,bs0,bs1);
|
|
if (y0>y2) cimg::swap(x0,x2,y0,y2,iz0,iz2,bs0,bs2);
|
|
if (y1>y2) cimg::swap(x1,x2,y1,y2,iz1,iz2,bs1,bs2);
|
|
if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this;
|
|
|
|
const int
|
|
w1 = width() - 1, h1 = height() - 1,
|
|
dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1,
|
|
dy01 = std::max(1,y1 - y0), dy02 = std::max(1,y2 - y0), dy12 = std::max(1,y2 - y1),
|
|
cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1),
|
|
hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2;
|
|
const float
|
|
diz01 = iz1 - iz0, diz02 = iz2 - iz0, diz12 = iz2 - iz1,
|
|
dbs01 = bs1 - bs0, dbs02 = bs2 - bs0, dbs12 = bs2 - bs1;
|
|
|
|
cimg_init_scanline(opacity);
|
|
|
|
for (int y = cy0; y<=cy2; ++y) {
|
|
const int yy0 = y - y0, yy1 = y - y1;
|
|
int
|
|
xm = y<y1?x0 + (dx01*yy0 + hdy01)/dy01:x1 + (dx12*yy1 + hdy12)/dy12,
|
|
xM = x0 + (dx02*yy0 + hdy02)/dy02;
|
|
float
|
|
izm = y<y1?(iz0 + diz01*yy0/dy01):(iz1 + diz12*yy1/dy12),
|
|
izM = iz0 + diz02*yy0/dy02,
|
|
bsm = y<y1?(bs0 + dbs01*yy0/dy01):(bs1 + dbs12*yy1/dy12),
|
|
bsM = bs0 + dbs02*yy0/dy02;
|
|
if (xm>xM) cimg::swap(xm,xM,izm,izM,bsm,bsM);
|
|
if (xM>=0 && xm<=w1) {
|
|
const int
|
|
cxm = cimg::cut(xm,0,w1),
|
|
cxM = cimg::cut(xM,0,w1);
|
|
T *ptrd = data(cxm,y);
|
|
tz *ptrz = zbuffer.data(cxm,y);
|
|
const int dxmM = std::max(1,xM - xm);
|
|
const float dizmM = izM - izm, dbsmM = bsM - bsm;
|
|
|
|
for (int x = cxm; x<=cxM; ++x) {
|
|
const int xxm = x - xm;
|
|
const float iz = izm + dizmM*xxm/dxmM;
|
|
if (iz>=*ptrz) {
|
|
*ptrz = (tz)iz;
|
|
const float cbs = cimg::cut(bsm + dbsmM*xxm/dxmM,0,2);
|
|
cimg_forC(*this,c) {
|
|
const Tfloat val = cbs<=1?color[c]*cbs:(2 - cbs)*color[c] + (cbs - 1)*_sc_maxval;
|
|
ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity);
|
|
}
|
|
}
|
|
++ptrd; ++ptrz;
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a color-interpolated 2D triangle.
|
|
/**
|
|
\param x0 X-coordinate of the first vertex in the image instance.
|
|
\param y0 Y-coordinate of the first vertex in the image instance.
|
|
\param x1 X-coordinate of the second vertex in the image instance.
|
|
\param y1 Y-coordinate of the second vertex in the image instance.
|
|
\param x2 X-coordinate of the third vertex in the image instance.
|
|
\param y2 Y-coordinate of the third vertex in the image instance.
|
|
\param color1 Pointer to \c spectrum() consecutive values of type \c T, defining the color of the first vertex.
|
|
\param color2 Pointer to \c spectrum() consecutive values of type \c T, defining the color of the second vertex.
|
|
\param color3 Pointer to \c spectrum() consecutive values of type \c T, defining the color of the third vertex.
|
|
\param opacity Drawing opacity.
|
|
**/
|
|
template<typename tc>
|
|
CImg<T>& draw_triangle(int x0, int y0,
|
|
int x1, int y1,
|
|
int x2, int y2,
|
|
const tc *color0,
|
|
const tc *color1,
|
|
const tc *color2,
|
|
const float opacity=1) {
|
|
typedef typename cimg::superset<tc,int>::type stc;
|
|
if (is_empty()) return *this;
|
|
if (!color0 || !color1 || !color2)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_triangle(): One of the specified color is (null).",
|
|
cimg_instance);
|
|
|
|
if (y0>y1) cimg::swap(x0,x1,y0,y1,color0,color1);
|
|
if (y0>y2) cimg::swap(x0,x2,y0,y2,color0,color2);
|
|
if (y1>y2) cimg::swap(x1,x2,y1,y2,color1,color2);
|
|
if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this;
|
|
|
|
const int w1 = width() - 1, h1 = height() - 1, cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1);
|
|
const longT
|
|
dx01 = (longT)x1 - x0, dx02 = (longT)x2 - x0, dx12 = (longT)x2 - x1,
|
|
dy01 = std::max((longT)1,(longT)y1 - y0),
|
|
dy02 = std::max((longT)1,(longT)y2 - y0),
|
|
dy12 = std::max((longT)1,(longT)y2 - y1),
|
|
hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2;
|
|
cimg_init_scanline(opacity);
|
|
|
|
cimg_forC(*this,c) {
|
|
const stc dcolor01 = color1[c] - color0[c], dcolor02 = color2[c] - color0[c], dcolor12 = color2[c] - color1[c];
|
|
|
|
for (int y = cy0; y<=cy2; ++y) {
|
|
const longT yy0 = (longT)y - y0, yy1 = (longT)y - y1;
|
|
longT
|
|
xm = y<y1?x0 + (dx01*yy0 + hdy01)/dy01:x1 + (dx12*yy1 + hdy12)/dy12,
|
|
xM = x0 + (dx02*yy0 + hdy02)/dy02;
|
|
stc
|
|
colorm = y<y1?(color0[c] + dcolor01*yy0/dy01):(color1[c] + dcolor12*yy1/dy12),
|
|
colorM = color0[c] + dcolor02*yy0/dy02;
|
|
if (xm>xM) cimg::swap(xm,xM,colorm,colorM);
|
|
if (xM>=0 && xm<=w1) {
|
|
const int
|
|
cxm = (int)cimg::cut(xm,(longT)0,(longT)w1),
|
|
cxM = (int)cimg::cut(xM,(longT)0,(longT)w1);
|
|
T *ptrd = data(cxm,y);
|
|
const longT dxmM = std::max((longT)1,xM - xm);
|
|
const stc dcolormM = colorM - colorm;
|
|
|
|
for (int x = cxm; x<=cxM; ++x) {
|
|
const longT xxm = (longT)x - xm;
|
|
const stc col = colorm + dcolormM*xxm/dxmM;
|
|
ptrd[c*_sc_whd] = (T)(opacity>=1?col:col*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity);
|
|
++ptrd;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a textured 2D triangle.
|
|
/**
|
|
\param x0 X-coordinate of the first vertex in the image instance.
|
|
\param y0 Y-coordinate of the first vertex in the image instance.
|
|
\param x1 X-coordinate of the second vertex in the image instance.
|
|
\param y1 Y-coordinate of the second vertex in the image instance.
|
|
\param x2 X-coordinate of the third vertex in the image instance.
|
|
\param y2 Y-coordinate of the third vertex in the image instance.
|
|
\param texture Texture image used to fill the triangle.
|
|
\param tx0 X-coordinate of the first vertex in the texture image.
|
|
\param ty0 Y-coordinate of the first vertex in the texture image.
|
|
\param tx1 X-coordinate of the second vertex in the texture image.
|
|
\param ty1 Y-coordinate of the second vertex in the texture image.
|
|
\param tx2 X-coordinate of the third vertex in the texture image.
|
|
\param ty2 Y-coordinate of the third vertex in the texture image.
|
|
\param opacity Drawing opacity.
|
|
\param brightness Brightness factor of the drawing (in [0,2]).
|
|
**/
|
|
template<typename tc>
|
|
CImg<T>& draw_triangle(int x0, int y0,
|
|
int x1, int y1,
|
|
int x2, int y2,
|
|
const CImg<tc>& texture,
|
|
int tx0, int ty0,
|
|
int tx1, int ty1,
|
|
int tx2, int ty2,
|
|
const float opacity=1,
|
|
const float brightness=1) {
|
|
if (is_empty()) return *this;
|
|
if (texture._depth>1 || texture._spectrum<_spectrum)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).",
|
|
cimg_instance,
|
|
texture._width,texture._height,texture._depth,texture._spectrum,texture._data);
|
|
if (is_overlapped(texture))
|
|
return draw_triangle(x0,y0,x1,y1,x2,y2,+texture,tx0,ty0,tx1,ty1,tx2,ty2,opacity,brightness);
|
|
|
|
if (y0>y1) cimg::swap(x0,x1,y0,y1,tx0,tx1,ty0,ty1);
|
|
if (y0>y2) cimg::swap(x0,x2,y0,y2,tx0,tx2,ty0,ty2);
|
|
if (y1>y2) cimg::swap(x1,x2,y1,y2,tx1,ty1,tx2,ty2);
|
|
if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this;
|
|
|
|
const int
|
|
w1 = width() - 1, h1 = height() - 1,
|
|
dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1,
|
|
dy01 = std::max(1,y1 - y0), dy02 = std::max(1,y2 - y0), dy12 = std::max(1,y2 - y1),
|
|
cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1),
|
|
hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2,
|
|
dtx01 = tx1 - tx0, dtx02 = tx2 - tx0, dtx12 = tx2 - tx1,
|
|
dty01 = ty1 - ty0, dty02 = ty2 - ty0, dty12 = ty2 - ty1,
|
|
hdy01tx = dy01*cimg::sign(dtx01)/2, hdy02tx = dy02*cimg::sign(dtx02)/2, hdy12tx = dy12*cimg::sign(dtx12)/2,
|
|
hdy01ty = dy01*cimg::sign(dty01)/2, hdy02ty = dy02*cimg::sign(dty02)/2, hdy12ty = dy12*cimg::sign(dty12)/2;
|
|
const ulongT twhd = (ulongT)texture._width*texture._height*texture._depth;
|
|
const float cbs = cimg::cut(brightness,0,2);
|
|
cimg_init_scanline(opacity);
|
|
|
|
for (int y = cy0; y<=cy2; ++y) {
|
|
const int yy0 = y - y0, yy1 = y - y1;
|
|
int
|
|
xm = y<y1?x0 + (dx01*yy0 + hdy01)/dy01:x1 + (dx12*yy1 + hdy12)/dy12,
|
|
xM = x0 + (dx02*yy0 + hdy02)/dy02,
|
|
txm = y<y1?tx0 + (dtx01*yy0 + hdy01tx)/dy01:tx1 + (dtx12*yy1 + hdy12tx)/dy12,
|
|
txM = tx0 + (dtx02*yy0 + hdy02tx)/dy02,
|
|
tym = y<y1?ty0 + (dty01*yy0 + hdy01ty)/dy01:ty1 + (dty12*yy1 + hdy12ty)/dy12,
|
|
tyM = ty0 + (dty02*yy0 + hdy02ty)/dy02;
|
|
if (xm>xM) cimg::swap(xm,xM,txm,txM,tym,tyM);
|
|
if (xM>=0 && xm<=w1) {
|
|
const int
|
|
cxm = cimg::cut(xm,0,w1),
|
|
cxM = cimg::cut(xM,0,w1);
|
|
T *ptrd = data(cxm,y);
|
|
const int
|
|
dxmM = std::max(1,xM - xm), hdxmM = dxmM/2,
|
|
dtxmM = txM - txm, dtymM = tyM - tym;
|
|
|
|
for (int x = cxm; x<=cxM; ++x) {
|
|
const int
|
|
xxm = x - xm,
|
|
tx = (txm*dxmM + dtxmM*xxm + hdxmM)/dxmM,
|
|
ty = (tym*dxmM + dtymM*xxm + hdxmM)/dxmM;
|
|
const tc *const color = &texture._atXY(tx,ty);
|
|
cimg_forC(*this,c) {
|
|
const Tfloat val = cbs<=1?color[c*twhd]*cbs:(2 - cbs)*color[c*twhd] + (cbs - 1)*_sc_maxval;
|
|
ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity);
|
|
}
|
|
++ptrd;
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a 2D textured triangle, with perspective correction.
|
|
template<typename tc>
|
|
CImg<T>& draw_triangle(int x0, int y0, const float z0,
|
|
int x1, int y1, const float z1,
|
|
int x2, int y2, const float z2,
|
|
const CImg<tc>& texture,
|
|
int tx0, int ty0,
|
|
int tx1, int ty1,
|
|
int tx2, int ty2,
|
|
const float opacity=1,
|
|
const float brightness=1) {
|
|
if (is_empty() || z0<=0 || z1<=0 || z2<=0) return *this;
|
|
if (texture._depth>1 || texture._spectrum<_spectrum)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).",
|
|
cimg_instance,
|
|
texture._width,texture._height,texture._depth,texture._spectrum,texture._data);
|
|
if (is_overlapped(texture))
|
|
return draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,+texture,tx0,ty0,tx1,ty1,tx2,ty2,opacity,brightness);
|
|
|
|
float iz0 = 1/z0, iz1 = 1/z1, iz2 = 1/z2;
|
|
if (y0>y1) cimg::swap(x0,x1,y0,y1,iz0,iz1,tx0,tx1,ty0,ty1);
|
|
if (y0>y2) cimg::swap(x0,x2,y0,y2,iz0,iz2,tx0,tx2,ty0,ty2);
|
|
if (y1>y2) cimg::swap(x1,x2,y1,y2,iz1,iz2,tx1,tx2,ty1,ty2);
|
|
if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this;
|
|
|
|
const int
|
|
w1 = width() - 1, h1 = height() - 1,
|
|
dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1,
|
|
dy01 = std::max(1,y1 - y0), dy02 = std::max(1,y2 - y0), dy12 = std::max(1,y2 - y1),
|
|
cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1),
|
|
hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2;
|
|
const float
|
|
diz01 = iz1 - iz0, diz02 = iz2 - iz0, diz12 = iz2 - iz1,
|
|
txz0 = tx0*iz0, txz1 = tx1*iz1, txz2 = tx2*iz2,
|
|
tyz0 = ty0*iz0, tyz1 = ty1*iz1, tyz2 = ty2*iz2,
|
|
dtxz01 = txz1 - txz0, dtxz02 = txz2 - txz0, dtxz12 = txz2 - txz1,
|
|
dtyz01 = tyz1 - tyz0, dtyz02 = tyz2 - tyz0, dtyz12 = tyz2 - tyz1;
|
|
|
|
const ulongT twhd = (ulongT)texture._width*texture._height*texture._depth;
|
|
const float cbs = cimg::cut(brightness,0,2);
|
|
cimg_init_scanline(opacity);
|
|
|
|
for (int y = cy0; y<=cy2; ++y) {
|
|
const int yy0 = y - y0, yy1 = y - y1;
|
|
int
|
|
xm = y<y1?x0 + (dx01*yy0 + hdy01)/dy01:x1 + (dx12*yy1 + hdy12)/dy12,
|
|
xM = x0 + (dx02*yy0 + hdy02)/dy02;
|
|
float
|
|
izm = y<y1?(iz0 + diz01*yy0/dy01):(iz1 + diz12*yy1/dy12),
|
|
izM = iz0 + diz02*yy0/dy02,
|
|
txzm = y<y1?(txz0 + dtxz01*yy0/dy01):(txz1 + dtxz12*yy1/dy12),
|
|
txzM = txz0 + dtxz02*yy0/dy02,
|
|
tyzm = y<y1?(tyz0 + dtyz01*yy0/dy01):(tyz1 + dtyz12*yy1/dy12),
|
|
tyzM = tyz0 + dtyz02*yy0/dy02;
|
|
if (xm>xM) cimg::swap(xm,xM,txzm,txzM,tyzm,tyzM,izm,izM);
|
|
if (xM>=0 && xm<=w1) {
|
|
const int
|
|
cxm = cimg::cut(xm,0,w1),
|
|
cxM = cimg::cut(xM,0,w1);
|
|
T *ptrd = data(cxm,y);
|
|
const int dxmM = std::max(1,xM - xm);
|
|
const float dizmM = izM - izm, dtxzmM = txzM - txzm, dtyzmM = tyzM - tyzm;
|
|
|
|
for (int x = cxm; x<=cxM; ++x) {
|
|
const int xxm = x - xm;
|
|
const float
|
|
iz = izm + dizmM*xxm/dxmM,
|
|
txz = txzm + dtxzmM*xxm/dxmM,
|
|
tyz = tyzm + dtyzmM*xxm/dxmM;
|
|
const int
|
|
tx = (int)cimg::round(txz/iz),
|
|
ty = (int)cimg::round(tyz/iz);
|
|
const tc *const color = &texture._atXY(tx,ty);
|
|
cimg_forC(*this,c) {
|
|
const Tfloat val = cbs<=1?color[c*twhd]*cbs:(2 - cbs)*color[c*twhd] + (cbs - 1)*_sc_maxval;
|
|
ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity);
|
|
}
|
|
++ptrd;
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a textured 2D triangle, with perspective correction and z-buffering.
|
|
template<typename tz, typename tc>
|
|
CImg<T>& draw_triangle(CImg<tz>& zbuffer,
|
|
int x0, int y0, const float z0,
|
|
int x1, int y1, const float z1,
|
|
int x2, int y2, const float z2,
|
|
const CImg<tc>& texture,
|
|
int tx0, int ty0,
|
|
int tx1, int ty1,
|
|
int tx2, int ty2,
|
|
const float opacity=1,
|
|
const float brightness=1) {
|
|
if (is_empty() || z0<=0 || z1<=0 || z2<=0) return *this;
|
|
if (!is_sameXY(zbuffer))
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_triangle(): Instance and specified Z-buffer (%u,%u,%u,%u,%p) have "
|
|
"different dimensions.",
|
|
cimg_instance,
|
|
zbuffer._width,zbuffer._height,zbuffer._depth,zbuffer._spectrum,zbuffer._data);
|
|
|
|
if (texture._depth>1 || texture._spectrum<_spectrum)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).",
|
|
cimg_instance,
|
|
texture._width,texture._height,texture._depth,texture._spectrum,texture._data);
|
|
if (is_overlapped(texture))
|
|
return draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,+texture,tx0,ty0,tx1,ty1,tx2,ty2,opacity,brightness);
|
|
|
|
float iz0 = 1/z0, iz1 = 1/z1, iz2 = 1/z2;
|
|
if (y0>y1) cimg::swap(x0,x1,y0,y1,iz0,iz1,tx0,tx1,ty0,ty1);
|
|
if (y0>y2) cimg::swap(x0,x2,y0,y2,iz0,iz2,tx0,tx2,ty0,ty2);
|
|
if (y1>y2) cimg::swap(x1,x2,y1,y2,iz1,iz2,tx1,tx2,ty1,ty2);
|
|
if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this;
|
|
|
|
const int
|
|
w1 = width() - 1, h1 = height() - 1,
|
|
dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1,
|
|
dy01 = std::max(1,y1 - y0), dy02 = std::max(1,y2 - y0), dy12 = std::max(1,y2 - y1),
|
|
cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1),
|
|
hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2;
|
|
const float
|
|
diz01 = iz1 - iz0, diz02 = iz2 - iz0, diz12 = iz2 - iz1,
|
|
txz0 = tx0*iz0, txz1 = tx1*iz1, txz2 = tx2*iz2,
|
|
tyz0 = ty0*iz0, tyz1 = ty1*iz1, tyz2 = ty2*iz2,
|
|
dtxz01 = txz1 - txz0, dtxz02 = txz2 - txz0, dtxz12 = txz2 - txz1,
|
|
dtyz01 = tyz1 - tyz0, dtyz02 = tyz2 - tyz0, dtyz12 = tyz2 - tyz1;
|
|
|
|
const ulongT twhd = (ulongT)texture._width*texture._height*texture._depth;
|
|
const float cbs = cimg::cut(brightness,0,2);
|
|
cimg_init_scanline(opacity);
|
|
|
|
for (int y = cy0; y<=cy2; ++y) {
|
|
const int yy0 = y - y0, yy1 = y - y1;
|
|
int
|
|
xm = y<y1?x0 + (dx01*yy0 + hdy01)/dy01:x1 + (dx12*yy1 + hdy12)/dy12,
|
|
xM = x0 + (dx02*yy0 + hdy02)/dy02;
|
|
float
|
|
izm = y<y1?(iz0 + diz01*yy0/dy01):(iz1 + diz12*yy1/dy12),
|
|
izM = iz0 + diz02*yy0/dy02,
|
|
txzm = y<y1?(txz0 + dtxz01*yy0/dy01):(txz1 + dtxz12*yy1/dy12),
|
|
txzM = txz0 + dtxz02*yy0/dy02,
|
|
tyzm = y<y1?(tyz0 + dtyz01*yy0/dy01):(tyz1 + dtyz12*yy1/dy12),
|
|
tyzM = tyz0 + dtyz02*yy0/dy02;
|
|
if (xm>xM) cimg::swap(xm,xM,txzm,txzM,tyzm,tyzM,izm,izM);
|
|
if (xM>=0 && xm<=w1) {
|
|
const int
|
|
cxm = cimg::cut(xm,0,w1),
|
|
cxM = cimg::cut(xM,0,w1);
|
|
T *ptrd = data(cxm,y);
|
|
tz *ptrz = zbuffer.data(cxm,y);
|
|
const int dxmM = std::max(1,xM - xm);
|
|
const float dizmM = izM - izm, dtxzmM = txzM - txzm, dtyzmM = tyzM - tyzm;
|
|
|
|
for (int x = cxm; x<=cxM; ++x) {
|
|
const int xxm = x - xm;
|
|
const float iz = izm + dizmM*xxm/dxmM;
|
|
if (iz>=*ptrz) {
|
|
*ptrz = (tz)iz;
|
|
const float
|
|
txz = txzm + dtxzmM*xxm/dxmM,
|
|
tyz = tyzm + dtyzmM*xxm/dxmM;
|
|
const int
|
|
tx = (int)cimg::round(txz/iz),
|
|
ty = (int)cimg::round(tyz/iz);
|
|
const tc *const color = &texture._atXY(tx,ty);
|
|
cimg_forC(*this,c) {
|
|
const Tfloat val = cbs<=1?color[c*twhd]*cbs:(2 - cbs)*color[c*twhd] + (cbs - 1)*_sc_maxval;
|
|
ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity);
|
|
}
|
|
}
|
|
++ptrd; ++ptrz;
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a Phong-shaded 2D triangle.
|
|
/**
|
|
\param x0 X-coordinate of the first vertex in the image instance.
|
|
\param y0 Y-coordinate of the first vertex in the image instance.
|
|
\param x1 X-coordinate of the second vertex in the image instance.
|
|
\param y1 Y-coordinate of the second vertex in the image instance.
|
|
\param x2 X-coordinate of the third vertex in the image instance.
|
|
\param y2 Y-coordinate of the third vertex in the image instance.
|
|
\param color Pointer to \c spectrum() consecutive values, defining the drawing color.
|
|
\param light Light image.
|
|
\param lx0 X-coordinate of the first vertex in the light image.
|
|
\param ly0 Y-coordinate of the first vertex in the light image.
|
|
\param lx1 X-coordinate of the second vertex in the light image.
|
|
\param ly1 Y-coordinate of the second vertex in the light image.
|
|
\param lx2 X-coordinate of the third vertex in the light image.
|
|
\param ly2 Y-coordinate of the third vertex in the light image.
|
|
\param opacity Drawing opacity.
|
|
**/
|
|
template<typename tc, typename tl>
|
|
CImg<T>& draw_triangle(int x0, int y0,
|
|
int x1, int y1,
|
|
int x2, int y2,
|
|
const tc *const color,
|
|
const CImg<tl>& light,
|
|
int lx0, int ly0,
|
|
int lx1, int ly1,
|
|
int lx2, int ly2,
|
|
const float opacity=1) {
|
|
if (is_empty()) return *this;
|
|
if (!color)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_triangle(): Specified color is (null).",
|
|
cimg_instance);
|
|
if (light._depth>1 || light._spectrum<_spectrum)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_triangle(): Invalid specified light texture (%u,%u,%u,%u,%p).",
|
|
cimg_instance,light._width,light._height,light._depth,light._spectrum,light._data);
|
|
|
|
if (y0>y1) cimg::swap(x0,x1,y0,y1,lx0,lx1,ly0,ly1);
|
|
if (y0>y2) cimg::swap(x0,x2,y0,y2,lx0,lx2,ly0,ly2);
|
|
if (y1>y2) cimg::swap(x1,x2,y1,y2,lx1,lx2,ly1,ly2);
|
|
if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this;
|
|
|
|
const int
|
|
w1 = width() - 1, h1 = height() - 1,
|
|
dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1,
|
|
dy01 = std::max(1,y1 - y0), dy02 = std::max(1,y2 - y0), dy12 = std::max(1,y2 - y1),
|
|
cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1),
|
|
hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2,
|
|
dlx01 = lx1 - lx0, dlx02 = lx2 - lx0, dlx12 = lx2 - lx1,
|
|
dly01 = ly1 - ly0, dly02 = ly2 - ly0, dly12 = ly2 - ly1,
|
|
hdy01lx = dy01*cimg::sign(dlx01)/2, hdy02lx = dy02*cimg::sign(dlx02)/2, hdy12lx = dy12*cimg::sign(dlx12)/2,
|
|
hdy01ly = dy01*cimg::sign(dly01)/2, hdy02ly = dy02*cimg::sign(dly02)/2, hdy12ly = dy12*cimg::sign(dly12)/2;
|
|
|
|
const ulongT lwhd = (ulongT)light._width*light._height*light._depth;
|
|
cimg_init_scanline(opacity);
|
|
|
|
for (int y = cy0; y<=cy2; ++y) {
|
|
const int yy0 = y - y0, yy1 = y - y1;
|
|
int
|
|
xm = y<y1?x0 + (dx01*yy0 + hdy01)/dy01:x1 + (dx12*yy1 + hdy12)/dy12,
|
|
xM = x0 + (dx02*yy0 + hdy02)/dy02,
|
|
lxm = y<y1?lx0 + (dlx01*yy0 + hdy01lx)/dy01:lx1 + (dlx12*yy1 + hdy12lx)/dy12,
|
|
lxM = lx0 + (dlx02*yy0 + hdy02lx)/dy02,
|
|
lym = y<y1?ly0 + (dly01*yy0 + hdy01ly)/dy01:ly1 + (dly12*yy1 + hdy12ly)/dy12,
|
|
lyM = ly0 + (dly02*yy0 + hdy02ly)/dy02;
|
|
if (xm>xM) cimg::swap(xm,xM,lxm,lxM,lym,lyM);
|
|
if (xM>=0 && xm<=w1) {
|
|
const int
|
|
cxm = cimg::cut(xm,0,w1),
|
|
cxM = cimg::cut(xM,0,w1);
|
|
T *ptrd = data(cxm,y);
|
|
const int
|
|
dxmM = std::max(1,xM - xm), hdxmM = dxmM/2,
|
|
dlxmM = lxM - lxm, dlymM = lyM - lym;
|
|
|
|
for (int x = cxm; x<=cxM; ++x) {
|
|
const int
|
|
xxm = x - xm,
|
|
lx = (lxm*dxmM + dlxmM*xxm + hdxmM)/dxmM,
|
|
ly = (lym*dxmM + dlymM*xxm + hdxmM)/dxmM;
|
|
const tl *const lig = &light._atXY(lx,ly);
|
|
cimg_forC(*this,c) {
|
|
const tc col = color[c];
|
|
const float cbs = cimg::cut((float)lig[c*lwhd],0,2);
|
|
const Tfloat val = cbs<=1?cbs*col:(2 - cbs)*col + (cbs - 1)*_sc_maxval;
|
|
ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity);
|
|
}
|
|
++ptrd;
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a Phong-shaded 2D triangle, with z-buffering.
|
|
template<typename tz, typename tc, typename tl>
|
|
CImg<T>& draw_triangle(CImg<tz>& zbuffer,
|
|
int x0, int y0, const float z0,
|
|
int x1, int y1, const float z1,
|
|
int x2, int y2, const float z2,
|
|
const tc *const color,
|
|
const CImg<tl>& light,
|
|
int lx0, int ly0,
|
|
int lx1, int ly1,
|
|
int lx2, int ly2,
|
|
const float opacity=1) {
|
|
if (is_empty() || z0<=0 || z1<=0 || z2<=0) return *this;
|
|
if (!color)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_triangle(): Specified color is (null).",
|
|
cimg_instance);
|
|
if (light._depth>1 || light._spectrum<_spectrum)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_triangle(): Invalid specified light texture (%u,%u,%u,%u,%p).",
|
|
cimg_instance,light._width,light._height,light._depth,light._spectrum,light._data);
|
|
if (!is_sameXY(zbuffer))
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_triangle(): Instance and specified Z-buffer (%u,%u,%u,%u,%p) have "
|
|
"different dimensions.",
|
|
cimg_instance,
|
|
zbuffer._width,zbuffer._height,zbuffer._depth,zbuffer._spectrum,zbuffer._data);
|
|
if (is_overlapped(light)) return draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,color,
|
|
+light,lx0,ly0,lx1,ly1,lx2,ly2,opacity);
|
|
|
|
float iz0 = 1/z0, iz1 = 1/z1, iz2 = 1/z2;
|
|
if (y0>y1) cimg::swap(x0,x1,y0,y1,iz0,iz1,lx0,lx1,ly0,ly1);
|
|
if (y0>y2) cimg::swap(x0,x2,y0,y2,iz0,iz2,lx0,lx2,ly0,ly2);
|
|
if (y1>y2) cimg::swap(x1,x2,y1,y2,iz1,iz2,lx1,lx2,ly1,ly2);
|
|
if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this;
|
|
|
|
const int
|
|
w1 = width() - 1, h1 = height() - 1,
|
|
dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1,
|
|
dy01 = std::max(1,y1 - y0), dy02 = std::max(1,y2 - y0), dy12 = std::max(1,y2 - y1),
|
|
cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1),
|
|
hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2,
|
|
dlx01 = lx1 - lx0, dlx02 = lx2 - lx0, dlx12 = lx2 - lx1,
|
|
dly01 = ly1 - ly0, dly02 = ly2 - ly0, dly12 = ly2 - ly1,
|
|
hdy01lx = dy01*cimg::sign(dlx01)/2, hdy02lx = dy02*cimg::sign(dlx02)/2, hdy12lx = dy12*cimg::sign(dlx12)/2,
|
|
hdy01ly = dy01*cimg::sign(dly01)/2, hdy02ly = dy02*cimg::sign(dly02)/2, hdy12ly = dy12*cimg::sign(dly12)/2;
|
|
const float diz01 = iz1 - iz0, diz02 = iz2 - iz0, diz12 = iz2 - iz1;
|
|
|
|
const ulongT lwhd = (ulongT)light._width*light._height*light._depth;
|
|
cimg_init_scanline(opacity);
|
|
|
|
for (int y = cy0; y<=cy2; ++y) {
|
|
const int yy0 = y - y0, yy1 = y - y1;
|
|
int
|
|
xm = y<y1?x0 + (dx01*yy0 + hdy01)/dy01:x1 + (dx12*yy1 + hdy12)/dy12,
|
|
xM = x0 + (dx02*yy0 + hdy02)/dy02,
|
|
lxm = y<y1?lx0 + (dlx01*yy0 + hdy01lx)/dy01:lx1 + (dlx12*yy1 + hdy12lx)/dy12,
|
|
lxM = lx0 + (dlx02*yy0 + hdy02lx)/dy02,
|
|
lym = y<y1?ly0 + (dly01*yy0 + hdy01ly)/dy01:ly1 + (dly12*yy1 + hdy12ly)/dy12,
|
|
lyM = ly0 + (dly02*yy0 + hdy02ly)/dy02;
|
|
float
|
|
izm = y<y1?(iz0 + diz01*yy0/dy01):(iz1 + diz12*yy1/dy12),
|
|
izM = iz0 + diz02*yy0/dy02;
|
|
|
|
if (xm>xM) cimg::swap(xm,xM,lxm,lxM,lym,lyM,izm,izM);
|
|
if (xM>=0 && xm<=w1) {
|
|
const int
|
|
cxm = cimg::cut(xm,0,w1),
|
|
cxM = cimg::cut(xM,0,w1);
|
|
T *ptrd = data(cxm,y);
|
|
tz *ptrz = zbuffer.data(cxm,y);
|
|
const int
|
|
dxmM = std::max(1,xM - xm), hdxmM = dxmM/2,
|
|
dlxmM = lxM - lxm, dlymM = lyM - lym;
|
|
const float dizmM = izM - izm;
|
|
|
|
for (int x = cxm; x<=cxM; ++x) {
|
|
const int xxm = x - xm;
|
|
const float iz = izm + dizmM*xxm/dxmM;
|
|
if (iz>=*ptrz) {
|
|
*ptrz = (tz)iz;
|
|
const int
|
|
lx = (lxm*dxmM + dlxmM*xxm + hdxmM)/dxmM,
|
|
ly = (lym*dxmM + dlymM*xxm + hdxmM)/dxmM;
|
|
const tl *const lig = &light._atXY(lx,ly);
|
|
cimg_forC(*this,c) {
|
|
const float cbs = cimg::cut((float)lig[c*lwhd],0,2);
|
|
const tc col = color[c];
|
|
const Tfloat val = cbs<=1?cbs*col:(2 - cbs)*col + (cbs - 1)*_sc_maxval;
|
|
ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity);
|
|
}
|
|
}
|
|
++ptrd; ++ptrz;
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a textured Gouraud-shaded 2D triangle.
|
|
/**
|
|
\param x0 X-coordinate of the first vertex in the image instance.
|
|
\param y0 Y-coordinate of the first vertex in the image instance.
|
|
\param x1 X-coordinate of the second vertex in the image instance.
|
|
\param y1 Y-coordinate of the second vertex in the image instance.
|
|
\param x2 X-coordinate of the third vertex in the image instance.
|
|
\param y2 Y-coordinate of the third vertex in the image instance.
|
|
\param texture Texture image used to fill the triangle.
|
|
\param tx0 X-coordinate of the first vertex in the texture image.
|
|
\param ty0 Y-coordinate of the first vertex in the texture image.
|
|
\param tx1 X-coordinate of the second vertex in the texture image.
|
|
\param ty1 Y-coordinate of the second vertex in the texture image.
|
|
\param tx2 X-coordinate of the third vertex in the texture image.
|
|
\param ty2 Y-coordinate of the third vertex in the texture image.
|
|
\param bs0 Brightness factor of the first vertex.
|
|
\param bs1 Brightness factor of the second vertex.
|
|
\param bs2 Brightness factor of the third vertex.
|
|
\param opacity Drawing opacity.
|
|
**/
|
|
template<typename tc>
|
|
CImg<T>& draw_triangle(int x0, int y0,
|
|
int x1, int y1,
|
|
int x2, int y2,
|
|
const CImg<tc>& texture,
|
|
int tx0, int ty0,
|
|
int tx1, int ty1,
|
|
int tx2, int ty2,
|
|
float bs0,
|
|
float bs1,
|
|
float bs2,
|
|
const float opacity=1) {
|
|
if (is_empty()) return *this;
|
|
if (texture._depth>1 || texture._spectrum<_spectrum)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).",
|
|
cimg_instance,
|
|
texture._width,texture._height,texture._depth,texture._spectrum,texture._data);
|
|
if (is_overlapped(texture))
|
|
return draw_triangle(x0,y0,x1,y1,x2,y2,+texture,tx0,ty0,tx1,ty1,tx2,ty2,
|
|
bs0,bs1,bs2,opacity);
|
|
|
|
if (y0>y1) cimg::swap(x0,x1,y0,y1,tx0,tx1,ty0,ty1,bs0,bs1);
|
|
if (y0>y2) cimg::swap(x0,x2,y0,y2,tx0,tx2,ty0,ty2,bs0,bs2);
|
|
if (y1>y2) cimg::swap(x1,x2,y1,y2,tx1,tx2,ty1,ty2,bs1,bs2);
|
|
if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this;
|
|
|
|
const int
|
|
w1 = width() - 1, h1 = height() - 1,
|
|
dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1,
|
|
dy01 = std::max(1,y1 - y0), dy02 = std::max(1,y2 - y0), dy12 = std::max(1,y2 - y1),
|
|
cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1),
|
|
hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2,
|
|
dtx01 = tx1 - tx0, dtx02 = tx2 - tx0, dtx12 = tx2 - tx1,
|
|
dty01 = ty1 - ty0, dty02 = ty2 - ty0, dty12 = ty2 - ty1,
|
|
hdy01tx = dy01*cimg::sign(dtx01)/2, hdy02tx = dy02*cimg::sign(dtx02)/2, hdy12tx = dy12*cimg::sign(dtx12)/2,
|
|
hdy01ty = dy01*cimg::sign(dty01)/2, hdy02ty = dy02*cimg::sign(dty02)/2, hdy12ty = dy12*cimg::sign(dty12)/2;
|
|
const float dbs01 = bs1 - bs0, dbs02 = bs2 - bs0, dbs12 = bs2 - bs1;
|
|
|
|
const ulongT twhd = (ulongT)texture._width*texture._height*texture._depth;
|
|
cimg_init_scanline(opacity);
|
|
|
|
for (int y = cy0; y<=cy2; ++y) {
|
|
const int yy0 = y - y0, yy1 = y - y1;
|
|
int
|
|
xm = y<y1?x0 + (dx01*yy0 + hdy01)/dy01:x1 + (dx12*yy1 + hdy12)/dy12,
|
|
xM = x0 + (dx02*yy0 + hdy02)/dy02,
|
|
txm = y<y1?tx0 + (dtx01*yy0 + hdy01tx)/dy01:tx1 + (dtx12*yy1 + hdy12tx)/dy12,
|
|
txM = tx0 + (dtx02*yy0 + hdy02tx)/dy02,
|
|
tym = y<y1?ty0 + (dty01*yy0 + hdy01ty)/dy01:ty1 + (dty12*yy1 + hdy12ty)/dy12,
|
|
tyM = ty0 + (dty02*yy0 + hdy02ty)/dy02;
|
|
float
|
|
bsm = y<y1?(bs0 + dbs01*yy0/dy01):(bs1 + dbs12*yy1/dy12),
|
|
bsM = bs0 + dbs02*yy0/dy02;
|
|
if (xm>xM) cimg::swap(xm,xM,txm,txM,tym,tyM,bsm,bsM);
|
|
if (xM>=0 && xm<=w1) {
|
|
const int
|
|
cxm = cimg::cut(xm,0,w1),
|
|
cxM = cimg::cut(xM,0,w1);
|
|
T *ptrd = data(cxm,y);
|
|
const int
|
|
dxmM = std::max(1,xM - xm), hdxmM = dxmM/2,
|
|
dtxmM = txM - txm, dtymM = tyM - tym;
|
|
const float dbsmM = bsM - bsm;
|
|
|
|
for (int x = cxm; x<=cxM; ++x) {
|
|
const int
|
|
xxm = x - xm,
|
|
tx = (txm*dxmM + dtxmM*xxm + hdxmM)/dxmM,
|
|
ty = (tym*dxmM + dtymM*xxm + hdxmM)/dxmM;
|
|
const float cbs = cimg::cut(bsm + dbsmM*xxm/dxmM,0,2);
|
|
const tc *const color = &texture._atXY(tx,ty);
|
|
cimg_forC(*this,c) {
|
|
const tc col = color[c*twhd];
|
|
const Tfloat val = cbs<=1?cbs*col:(2 - cbs)*col + (cbs - 1)*_sc_maxval;
|
|
ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity);
|
|
}
|
|
++ptrd;
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a textured Gouraud-shaded 2D triangle, with perspective correction \overloading.
|
|
template<typename tc>
|
|
CImg<T>& draw_triangle(int x0, int y0, const float z0,
|
|
int x1, int y1, const float z1,
|
|
int x2, int y2, const float z2,
|
|
const CImg<tc>& texture,
|
|
int tx0, int ty0,
|
|
int tx1, int ty1,
|
|
int tx2, int ty2,
|
|
float bs0,
|
|
float bs1,
|
|
float bs2,
|
|
const float opacity=1) {
|
|
if (is_empty() || z0<=0 || z1<=0 || z2<=0) return *this;
|
|
if (texture._depth>1 || texture._spectrum<_spectrum)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).",
|
|
cimg_instance,
|
|
texture._width,texture._height,texture._depth,texture._spectrum,texture._data);
|
|
if (is_overlapped(texture)) return draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,+texture,tx0,ty0,tx1,ty1,tx2,ty2,
|
|
bs0,bs1,bs2,opacity);
|
|
|
|
float iz0 = 1/z0, iz1 = 1/z1, iz2 = 1/z2;
|
|
if (y0>y1) cimg::swap(x0,x1,y0,y1,iz0,iz1,tx0,tx1,ty0,ty1,bs0,bs1);
|
|
if (y0>y2) cimg::swap(x0,x2,y0,y2,iz0,iz2,tx0,tx2,ty0,ty2,bs0,bs2);
|
|
if (y1>y2) cimg::swap(x1,x2,y1,y2,iz1,iz2,tx1,tx2,ty1,ty2,bs1,bs2);
|
|
if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this;
|
|
|
|
const int
|
|
w1 = width() - 1, h1 = height() - 1,
|
|
dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1,
|
|
dy01 = std::max(1,y1 - y0), dy02 = std::max(1,y2 - y0), dy12 = std::max(1,y2 - y1),
|
|
cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1),
|
|
hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2;
|
|
const float
|
|
diz01 = iz1 - iz0, diz02 = iz2 - iz0, diz12 = iz2 - iz1,
|
|
txz0 = tx0*iz0, txz1 = tx1*iz1, txz2 = tx2*iz2,
|
|
tyz0 = ty0*iz0, tyz1 = ty1*iz1, tyz2 = ty2*iz2,
|
|
dtxz01 = txz1 - txz0, dtxz02 = txz2 - txz0, dtxz12 = txz2 - txz1,
|
|
dtyz01 = tyz1 - tyz0, dtyz02 = tyz2 - tyz0, dtyz12 = tyz2 - tyz1,
|
|
dbs01 = bs1 - bs0, dbs02 = bs2 - bs0, dbs12 = bs2 - bs1;
|
|
|
|
const ulongT twhd = (ulongT)texture._width*texture._height*texture._depth;
|
|
cimg_init_scanline(opacity);
|
|
|
|
for (int y = cy0; y<=cy2; ++y) {
|
|
const int yy0 = y - y0, yy1 = y - y1;
|
|
int
|
|
xm = y<y1?x0 + (dx01*yy0 + hdy01)/dy01:x1 + (dx12*yy1 + hdy12)/dy12,
|
|
xM = x0 + (dx02*yy0 + hdy02)/dy02;
|
|
float
|
|
izm = y<y1?(iz0 + diz01*yy0/dy01):(iz1 + diz12*yy1/dy12),
|
|
izM = iz0 + diz02*yy0/dy02,
|
|
txzm = y<y1?(txz0 + dtxz01*yy0/dy01):(txz1 + dtxz12*yy1/dy12),
|
|
txzM = txz0 + dtxz02*yy0/dy02,
|
|
tyzm = y<y1?(tyz0 + dtyz01*yy0/dy01):(tyz1 + dtyz12*yy1/dy12),
|
|
tyzM = tyz0 + dtyz02*yy0/dy02,
|
|
bsm = y<y1?(bs0 + dbs01*yy0/dy01):(bs1 + dbs12*yy1/dy12),
|
|
bsM = bs0 + dbs02*yy0/dy02;
|
|
if (xm>xM) cimg::swap(xm,xM,txzm,txzM,tyzm,tyzM,izm,izM,bsm,bsM);
|
|
if (xM>=0 && xm<=w1) {
|
|
const int
|
|
cxm = cimg::cut(xm,0,w1),
|
|
cxM = cimg::cut(xM,0,w1);
|
|
T *ptrd = data(cxm,y);
|
|
const int dxmM = std::max(1,xM - xm);
|
|
const float dizmM = izM - izm, dtxzmM = txzM - txzm, dtyzmM = tyzM - tyzm, dbsmM = bsM - bsm;
|
|
|
|
for (int x = cxm; x<=cxM; ++x) {
|
|
const int xxm = x - xm;
|
|
const float
|
|
iz = izm + dizmM*xxm/dxmM,
|
|
txz = txzm + dtxzmM*xxm/dxmM,
|
|
tyz = tyzm + dtyzmM*xxm/dxmM,
|
|
cbs = cimg::cut(bsm + dbsmM*xxm/dxmM,0,2);
|
|
const int
|
|
tx = (int)cimg::round(txz/iz),
|
|
ty = (int)cimg::round(tyz/iz);
|
|
const tc *const color = &texture._atXY(tx,ty);
|
|
cimg_forC(*this,c) {
|
|
const tc col = color[c*twhd];
|
|
const Tfloat val = cbs<=1?cbs*col:(2 - cbs)*col + (cbs - 1)*_sc_maxval;
|
|
ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity);
|
|
}
|
|
++ptrd;
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a textured Gouraud-shaded 2D triangle, with perspective correction and z-buffering \overloading.
|
|
template<typename tz, typename tc>
|
|
CImg<T>& draw_triangle(CImg<tz>& zbuffer,
|
|
int x0, int y0, const float z0,
|
|
int x1, int y1, const float z1,
|
|
int x2, int y2, const float z2,
|
|
const CImg<tc>& texture,
|
|
int tx0, int ty0,
|
|
int tx1, int ty1,
|
|
int tx2, int ty2,
|
|
float bs0,
|
|
float bs1,
|
|
float bs2,
|
|
const float opacity=1) {
|
|
if (is_empty() || z0<=0 || z1<=0 || z2<=0) return *this;
|
|
if (!is_sameXY(zbuffer))
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_triangle(): Instance and specified Z-buffer (%u,%u,%u,%u,%p) have "
|
|
"different dimensions.",
|
|
cimg_instance,
|
|
zbuffer._width,zbuffer._height,zbuffer._depth,zbuffer._spectrum,zbuffer._data);
|
|
if (texture._depth>1 || texture._spectrum<_spectrum)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).",
|
|
cimg_instance,
|
|
texture._width,texture._height,texture._depth,texture._spectrum,texture._data);
|
|
if (is_overlapped(texture))
|
|
return draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,+texture,tx0,ty0,tx1,ty1,tx2,ty2,bs0,bs1,bs2,opacity);
|
|
|
|
float iz0 = 1/z0, iz1 = 1/z1, iz2 = 1/z2;
|
|
if (y0>y1) cimg::swap(x0,x1,y0,y1,iz0,iz1,tx0,tx1,ty0,ty1,bs0,bs1);
|
|
if (y0>y2) cimg::swap(x0,x2,y0,y2,iz0,iz2,tx0,tx2,ty0,ty2,bs0,bs2);
|
|
if (y1>y2) cimg::swap(x1,x2,y1,y2,iz1,iz2,tx1,tx2,ty1,ty2,bs1,bs2);
|
|
if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this;
|
|
|
|
const int
|
|
w1 = width() - 1, h1 = height() - 1,
|
|
dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1,
|
|
dy01 = std::max(1,y1 - y0), dy02 = std::max(1,y2 - y0), dy12 = std::max(1,y2 - y1),
|
|
cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1),
|
|
hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2;
|
|
const float
|
|
diz01 = iz1 - iz0, diz02 = iz2 - iz0, diz12 = iz2 - iz1,
|
|
txz0 = tx0*iz0, txz1 = tx1*iz1, txz2 = tx2*iz2,
|
|
tyz0 = ty0*iz0, tyz1 = ty1*iz1, tyz2 = ty2*iz2,
|
|
dtxz01 = txz1 - txz0, dtxz02 = txz2 - txz0, dtxz12 = txz2 - txz1,
|
|
dtyz01 = tyz1 - tyz0, dtyz02 = tyz2 - tyz0, dtyz12 = tyz2 - tyz1,
|
|
dbs01 = bs1 - bs0, dbs02 = bs2 - bs0, dbs12 = bs2 - bs1;
|
|
|
|
const ulongT twhd = (ulongT)texture._width*texture._height*texture._depth;
|
|
cimg_init_scanline(opacity);
|
|
|
|
for (int y = cy0; y<=cy2; ++y) {
|
|
const int yy0 = y - y0, yy1 = y - y1;
|
|
int
|
|
xm = y<y1?x0 + (dx01*yy0 + hdy01)/dy01:x1 + (dx12*yy1 + hdy12)/dy12,
|
|
xM = x0 + (dx02*yy0 + hdy02)/dy02;
|
|
float
|
|
izm = y<y1?(iz0 + diz01*yy0/dy01):(iz1 + diz12*yy1/dy12),
|
|
izM = iz0 + diz02*yy0/dy02,
|
|
txzm = y<y1?(txz0 + dtxz01*yy0/dy01):(txz1 + dtxz12*yy1/dy12),
|
|
txzM = txz0 + dtxz02*yy0/dy02,
|
|
tyzm = y<y1?(tyz0 + dtyz01*yy0/dy01):(tyz1 + dtyz12*yy1/dy12),
|
|
tyzM = tyz0 + dtyz02*yy0/dy02,
|
|
bsm = y<y1?(bs0 + dbs01*yy0/dy01):(bs1 + dbs12*yy1/dy12),
|
|
bsM = bs0 + dbs02*yy0/dy02;
|
|
if (xm>xM) cimg::swap(xm,xM,txzm,txzM,tyzm,tyzM,izm,izM,bsm,bsM);
|
|
if (xM>=0 && xm<=w1) {
|
|
const int
|
|
cxm = cimg::cut(xm,0,w1),
|
|
cxM = cimg::cut(xM,0,w1);
|
|
T *ptrd = data(cxm,y);
|
|
tz *ptrz = zbuffer.data(cxm,y);
|
|
const int dxmM = std::max(1,xM - xm);
|
|
const float dizmM = izM - izm, dtxzmM = txzM - txzm, dtyzmM = tyzM - tyzm, dbsmM = bsM - bsm;
|
|
|
|
for (int x = cxm; x<=cxM; ++x) {
|
|
const int xxm = x - xm;
|
|
const float iz = izm + dizmM*xxm/dxmM;
|
|
if (iz>=*ptrz) {
|
|
*ptrz = (tz)iz;
|
|
const float
|
|
txz = txzm + dtxzmM*xxm/dxmM,
|
|
tyz = tyzm + dtyzmM*xxm/dxmM,
|
|
cbs = cimg::cut(bsm + dbsmM*xxm/dxmM,0,2);
|
|
const int
|
|
tx = (int)cimg::round(txz/iz),
|
|
ty = (int)cimg::round(tyz/iz);
|
|
const tc *const color = &texture._atXY(tx,ty);
|
|
cimg_forC(*this,c) {
|
|
const tc col = color[c*twhd];
|
|
const Tfloat val = cbs<=1?cbs*col:(2 - cbs)*col + (cbs - 1)*_sc_maxval;
|
|
ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity);
|
|
}
|
|
}
|
|
++ptrd; ++ptrz;
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a textured Phong-shaded 2D triangle.
|
|
/**
|
|
\param x0 X-coordinate of the first vertex in the image instance.
|
|
\param y0 Y-coordinate of the first vertex in the image instance.
|
|
\param x1 X-coordinate of the second vertex in the image instance.
|
|
\param y1 Y-coordinate of the second vertex in the image instance.
|
|
\param x2 X-coordinate of the third vertex in the image instance.
|
|
\param y2 Y-coordinate of the third vertex in the image instance.
|
|
\param texture Texture image used to fill the triangle.
|
|
\param tx0 X-coordinate of the first vertex in the texture image.
|
|
\param ty0 Y-coordinate of the first vertex in the texture image.
|
|
\param tx1 X-coordinate of the second vertex in the texture image.
|
|
\param ty1 Y-coordinate of the second vertex in the texture image.
|
|
\param tx2 X-coordinate of the third vertex in the texture image.
|
|
\param ty2 Y-coordinate of the third vertex in the texture image.
|
|
\param light Light image.
|
|
\param lx0 X-coordinate of the first vertex in the light image.
|
|
\param ly0 Y-coordinate of the first vertex in the light image.
|
|
\param lx1 X-coordinate of the second vertex in the light image.
|
|
\param ly1 Y-coordinate of the second vertex in the light image.
|
|
\param lx2 X-coordinate of the third vertex in the light image.
|
|
\param ly2 Y-coordinate of the third vertex in the light image.
|
|
\param opacity Drawing opacity.
|
|
**/
|
|
template<typename tc, typename tl>
|
|
CImg<T>& draw_triangle(int x0, int y0,
|
|
int x1, int y1,
|
|
int x2, int y2,
|
|
const CImg<tc>& texture,
|
|
int tx0, int ty0,
|
|
int tx1, int ty1,
|
|
int tx2, int ty2,
|
|
const CImg<tl>& light,
|
|
int lx0, int ly0,
|
|
int lx1, int ly1,
|
|
int lx2, int ly2,
|
|
const float opacity=1) {
|
|
if (is_empty()) return *this;
|
|
if (texture._depth>1 || texture._spectrum<_spectrum)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).",
|
|
cimg_instance,
|
|
texture._width,texture._height,texture._depth,texture._spectrum,texture._data);
|
|
if (light._depth>1 || light._spectrum<_spectrum)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_triangle(): Invalid specified light texture (%u,%u,%u,%u,%p).",
|
|
cimg_instance,light._width,light._height,light._depth,light._spectrum,light._data);
|
|
if (is_overlapped(texture))
|
|
return draw_triangle(x0,y0,x1,y1,x2,y2,+texture,tx0,ty0,tx1,ty1,tx2,ty2,light,lx0,ly0,lx1,ly1,lx2,ly2,opacity);
|
|
if (is_overlapped(light))
|
|
return draw_triangle(x0,y0,x1,y1,x2,y2,texture,tx0,ty0,tx1,ty1,tx2,ty2,+light,lx0,ly0,lx1,ly1,lx2,ly2,opacity);
|
|
|
|
if (y0>y1) cimg::swap(x0,x1,y0,y1,tx0,tx1,ty0,ty1,lx0,lx1,ly0,ly1);
|
|
if (y0>y2) cimg::swap(x0,x2,y0,y2,tx0,tx2,ty0,ty2,lx0,lx2,ly0,ly2);
|
|
if (y1>y2) cimg::swap(x1,x2,y1,y2,tx1,tx2,ty1,ty2,lx1,lx2,ly1,ly2);
|
|
if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this;
|
|
|
|
const int
|
|
w1 = width() - 1, h1 = height() - 1,
|
|
dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1,
|
|
dy01 = std::max(1,y1 - y0), dy02 = std::max(1,y2 - y0), dy12 = std::max(1,y2 - y1),
|
|
cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1),
|
|
hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2,
|
|
dtx01 = tx1 - tx0, dtx02 = tx2 - tx0, dtx12 = tx2 - tx1,
|
|
dty01 = ty1 - ty0, dty02 = ty2 - ty0, dty12 = ty2 - ty1,
|
|
hdy01tx = dy01*cimg::sign(dtx01)/2, hdy02tx = dy02*cimg::sign(dtx02)/2, hdy12tx = dy12*cimg::sign(dtx12)/2,
|
|
hdy01ty = dy01*cimg::sign(dty01)/2, hdy02ty = dy02*cimg::sign(dty02)/2, hdy12ty = dy12*cimg::sign(dty12)/2,
|
|
dlx01 = lx1 - lx0, dlx02 = lx2 - lx0, dlx12 = lx2 - lx1,
|
|
dly01 = ly1 - ly0, dly02 = ly2 - ly0, dly12 = ly2 - ly1,
|
|
hdy01lx = dy01*cimg::sign(dlx01)/2, hdy02lx = dy02*cimg::sign(dlx02)/2, hdy12lx = dy12*cimg::sign(dlx12)/2,
|
|
hdy01ly = dy01*cimg::sign(dly01)/2, hdy02ly = dy02*cimg::sign(dly02)/2, hdy12ly = dy12*cimg::sign(dly12)/2;
|
|
|
|
const ulongT
|
|
twhd = (ulongT)texture._width*texture._height*texture._depth,
|
|
lwhd = (ulongT)light._width*light._height*light._depth;
|
|
cimg_init_scanline(opacity);
|
|
|
|
for (int y = cy0; y<=cy2; ++y) {
|
|
const int yy0 = y - y0, yy1 = y - y1;
|
|
int
|
|
xm = y<y1?x0 + (dx01*yy0 + hdy01)/dy01:x1 + (dx12*yy1 + hdy12)/dy12,
|
|
xM = x0 + (dx02*yy0 + hdy02)/dy02,
|
|
txm = y<y1?tx0 + (dtx01*yy0 + hdy01tx)/dy01:tx1 + (dtx12*yy1 + hdy12tx)/dy12,
|
|
txM = tx0 + (dtx02*yy0 + hdy02tx)/dy02,
|
|
tym = y<y1?ty0 + (dty01*yy0 + hdy01ty)/dy01:ty1 + (dty12*yy1 + hdy12ty)/dy12,
|
|
tyM = ty0 + (dty02*yy0 + hdy02ty)/dy02,
|
|
lxm = y<y1?lx0 + (dlx01*yy0 + hdy01lx)/dy01:lx1 + (dlx12*yy1 + hdy12lx)/dy12,
|
|
lxM = lx0 + (dlx02*yy0 + hdy02lx)/dy02,
|
|
lym = y<y1?ly0 + (dly01*yy0 + hdy01ly)/dy01:ly1 + (dly12*yy1 + hdy12ly)/dy12,
|
|
lyM = ly0 + (dly02*yy0 + hdy02ly)/dy02;
|
|
if (xm>xM) cimg::swap(xm,xM,txm,txM,tym,tyM,lxm,lxM,lym,lyM);
|
|
if (xM>=0 && xm<=w1) {
|
|
const int
|
|
cxm = cimg::cut(xm,0,w1),
|
|
cxM = cimg::cut(xM,0,w1);
|
|
T *ptrd = data(cxm,y);
|
|
const int
|
|
dxmM = std::max(1,xM - xm), hdxmM = dxmM/2,
|
|
dtxmM = txM - txm, dtymM = tyM - tym,
|
|
dlxmM = lxM - lxm, dlymM = lyM - lym;
|
|
|
|
for (int x = cxm; x<=cxM; ++x) {
|
|
const int
|
|
xxm = x - xm,
|
|
tx = (txm*dxmM + dtxmM*xxm + hdxmM)/dxmM,
|
|
ty = (tym*dxmM + dtymM*xxm + hdxmM)/dxmM,
|
|
lx = (lxm*dxmM + dlxmM*xxm + hdxmM)/dxmM,
|
|
ly = (lym*dxmM + dlymM*xxm + hdxmM)/dxmM;
|
|
const tc *const color = &texture._atXY(tx,ty);
|
|
const tl *const lig = &light._atXY(lx,ly);
|
|
cimg_forC(*this,c) {
|
|
const tc col = color[c*twhd];
|
|
const float cbs = cimg::cut((float)lig[c*lwhd],0,2);
|
|
const Tfloat val = cbs<=1?cbs*col:(2 - cbs)*col + (cbs - 1)*_sc_maxval;
|
|
ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity);
|
|
}
|
|
++ptrd;
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a textured Phong-shaded 2D triangle, with perspective correction.
|
|
template<typename tc, typename tl>
|
|
CImg<T>& draw_triangle(int x0, int y0, const float z0,
|
|
int x1, int y1, const float z1,
|
|
int x2, int y2, const float z2,
|
|
const CImg<tc>& texture,
|
|
int tx0, int ty0,
|
|
int tx1, int ty1,
|
|
int tx2, int ty2,
|
|
const CImg<tl>& light,
|
|
int lx0, int ly0,
|
|
int lx1, int ly1,
|
|
int lx2, int ly2,
|
|
const float opacity=1) {
|
|
if (is_empty() || z0<=0 || z1<=0 || z2<=0) return *this;
|
|
if (texture._depth>1 || texture._spectrum<_spectrum)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).",
|
|
cimg_instance,
|
|
texture._width,texture._height,texture._depth,texture._spectrum,texture._data);
|
|
if (light._depth>1 || light._spectrum<_spectrum)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_triangle(): Invalid specified light texture (%u,%u,%u,%u,%p).",
|
|
cimg_instance,light._width,light._height,light._depth,light._spectrum,light._data);
|
|
if (is_overlapped(texture))
|
|
return draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,+texture,tx0,ty0,tx1,ty1,tx2,ty2,
|
|
light,lx0,ly0,lx1,ly1,lx2,ly2,opacity);
|
|
if (is_overlapped(light))
|
|
return draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,texture,tx0,ty0,tx1,ty1,tx2,ty2,
|
|
+light,lx0,ly0,lx1,ly1,lx2,ly2,opacity);
|
|
|
|
float iz0 = 1/z0, iz1 = 1/z1, iz2 = 1/z2;
|
|
if (y0>y1) cimg::swap(x0,x1,y0,y1,iz0,iz1,tx0,tx1,ty0,ty1,lx0,lx1,ly0,ly1);
|
|
if (y0>y2) cimg::swap(x0,x2,y0,y2,iz0,iz2,tx0,tx2,ty0,ty2,lx0,lx2,ly0,ly2);
|
|
if (y1>y2) cimg::swap(x1,x2,y1,y2,iz1,iz2,tx1,tx2,ty1,ty2,lx1,lx2,ly1,ly2);
|
|
if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this;
|
|
|
|
const int
|
|
w1 = width() - 1, h1 = height() - 1,
|
|
dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1,
|
|
dy01 = std::max(1,y1 - y0), dy02 = std::max(1,y2 - y0), dy12 = std::max(1,y2 - y1),
|
|
cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1),
|
|
hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2;
|
|
const float
|
|
diz01 = iz1 - iz0, diz02 = iz2 - iz0, diz12 = iz2 - iz1,
|
|
txz0 = tx0*iz0, txz1 = tx1*iz1, txz2 = tx2*iz2,
|
|
tyz0 = ty0*iz0, tyz1 = ty1*iz1, tyz2 = ty2*iz2,
|
|
dtxz01 = txz1 - txz0, dtxz02 = txz2 - txz0, dtxz12 = txz2 - txz1,
|
|
dtyz01 = tyz1 - tyz0, dtyz02 = tyz2 - tyz0, dtyz12 = tyz2 - tyz1,
|
|
lxz0 = lx0*iz0, lxz1 = lx1*iz1, lxz2 = lx2*iz2,
|
|
lyz0 = ly0*iz0, lyz1 = ly1*iz1, lyz2 = ly2*iz2,
|
|
dlxz01 = lxz1 - lxz0, dlxz02 = lxz2 - lxz0, dlxz12 = lxz2 - lxz1,
|
|
dlyz01 = lyz1 - lyz0, dlyz02 = lyz2 - lyz0, dlyz12 = lyz2 - lyz1;
|
|
|
|
const ulongT
|
|
twhd = (ulongT)texture._width*texture._height*texture._depth,
|
|
lwhd = (ulongT)light._width*light._height*light._depth;
|
|
cimg_init_scanline(opacity);
|
|
|
|
for (int y = cy0; y<=cy2; ++y) {
|
|
const int yy0 = y - y0, yy1 = y - y1;
|
|
int
|
|
xm = y<y1?x0 + (dx01*yy0 + hdy01)/dy01:x1 + (dx12*yy1 + hdy12)/dy12,
|
|
xM = x0 + (dx02*yy0 + hdy02)/dy02;
|
|
float
|
|
izm = y<y1?(iz0 + diz01*yy0/dy01):(iz1 + diz12*yy1/dy12),
|
|
izM = iz0 + diz02*yy0/dy02,
|
|
txzm = y<y1?(txz0 + dtxz01*yy0/dy01):(txz1 + dtxz12*yy1/dy12),
|
|
txzM = txz0 + dtxz02*yy0/dy02,
|
|
tyzm = y<y1?(tyz0 + dtyz01*yy0/dy01):(tyz1 + dtyz12*yy1/dy12),
|
|
tyzM = tyz0 + dtyz02*yy0/dy02,
|
|
lxzm = y<y1?(lxz0 + dlxz01*yy0/dy01):(lxz1 + dlxz12*yy1/dy12),
|
|
lxzM = lxz0 + dlxz02*yy0/dy02,
|
|
lyzm = y<y1?(lyz0 + dlyz01*yy0/dy01):(lyz1 + dlyz12*yy1/dy12),
|
|
lyzM = lyz0 + dlyz02*yy0/dy02;
|
|
if (xm>xM) cimg::swap(xm,xM,izm,izM,txzm,txzM,tyzm,tyzM,lxzm,lxzM,lyzm,lyzM);
|
|
if (xM>=0 && xm<=w1) {
|
|
const int
|
|
cxm = cimg::cut(xm,0,w1),
|
|
cxM = cimg::cut(xM,0,w1);
|
|
T *ptrd = data(cxm,y);
|
|
const int dxmM = std::max(1,xM - xm);
|
|
const float
|
|
dizmM = izM - izm,
|
|
dtxzmM = txzM - txzm, dtyzmM = tyzM - tyzm,
|
|
dlxzmM = lxzM - lxzm, dlyzmM = lyzM - lyzm;
|
|
|
|
for (int x = cxm; x<=cxM; ++x) {
|
|
const int xxm = x - xm;
|
|
const float
|
|
iz = izm + dizmM*xxm/dxmM,
|
|
txz = txzm + dtxzmM*xxm/dxmM,
|
|
tyz = tyzm + dtyzmM*xxm/dxmM,
|
|
lxz = lxzm + dlxzmM*xxm/dxmM,
|
|
lyz = lyzm + dlyzmM*xxm/dxmM;
|
|
const int
|
|
tx = (int)cimg::round(txz/iz),
|
|
ty = (int)cimg::round(tyz/iz),
|
|
lx = (int)cimg::round(lxz/iz),
|
|
ly = (int)cimg::round(lyz/iz);
|
|
const tc *const color = &texture._atXY(tx,ty);
|
|
const tl *const lig = &light._atXY(lx,ly);
|
|
cimg_forC(*this,c) {
|
|
const tc col = color[c*twhd];
|
|
const float cbs = cimg::cut((float)lig[c*lwhd],0,2);
|
|
const Tfloat val = cbs<=1?cbs*col:(2 - cbs)*col + (cbs - 1)*_sc_maxval;
|
|
ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity);
|
|
}
|
|
++ptrd;
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a textured Phong-shaded 2D triangle, with perspective correction and z-buffering.
|
|
template<typename tz, typename tc, typename tl>
|
|
CImg<T>& draw_triangle(CImg<tz>& zbuffer,
|
|
int x0, int y0, const float z0,
|
|
int x1, int y1, const float z1,
|
|
int x2, int y2, const float z2,
|
|
const CImg<tc>& texture,
|
|
int tx0, int ty0,
|
|
int tx1, int ty1,
|
|
int tx2, int ty2,
|
|
const CImg<tl>& light,
|
|
int lx0, int ly0,
|
|
int lx1, int ly1,
|
|
int lx2, int ly2,
|
|
const float opacity=1) {
|
|
if (is_empty() || z0<=0 || z1<=0 || z2<=0) return *this;
|
|
if (!is_sameXY(zbuffer))
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_triangle(): Instance and specified Z-buffer (%u,%u,%u,%u,%p) have "
|
|
"different dimensions.",
|
|
cimg_instance,
|
|
zbuffer._width,zbuffer._height,zbuffer._depth,zbuffer._spectrum,zbuffer._data);
|
|
if (texture._depth>1 || texture._spectrum<_spectrum)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).",
|
|
cimg_instance,
|
|
texture._width,texture._height,texture._depth,texture._spectrum,texture._data);
|
|
if (light._depth>1 || light._spectrum<_spectrum)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_triangle(): Invalid specified light texture (%u,%u,%u,%u,%p).",
|
|
cimg_instance,light._width,light._height,light._depth,light._spectrum,light._data);
|
|
if (is_overlapped(texture))
|
|
return draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,
|
|
+texture,tx0,ty0,tx1,ty1,tx2,ty2,light,lx0,ly0,lx1,ly1,lx2,ly2,opacity);
|
|
if (is_overlapped(light))
|
|
return draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,
|
|
texture,tx0,ty0,tx1,ty1,tx2,ty2,+light,lx0,ly0,lx1,ly1,lx2,ly2,opacity);
|
|
|
|
float iz0 = 1/z0, iz1 = 1/z1, iz2 = 1/z2;
|
|
if (y0>y1) cimg::swap(x0,x1,y0,y1,iz0,iz1,tx0,tx1,ty0,ty1,lx0,lx1,ly0,ly1);
|
|
if (y0>y2) cimg::swap(x0,x2,y0,y2,iz0,iz2,tx0,tx2,ty0,ty2,lx0,lx2,ly0,ly2);
|
|
if (y1>y2) cimg::swap(x1,x2,y1,y2,iz1,iz2,tx1,tx2,ty1,ty2,lx1,lx2,ly1,ly2);
|
|
if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this;
|
|
|
|
const int
|
|
w1 = width() - 1, h1 = height() - 1,
|
|
dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1,
|
|
dy01 = std::max(1,y1 - y0), dy02 = std::max(1,y2 - y0), dy12 = std::max(1,y2 - y1),
|
|
cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1),
|
|
hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2;
|
|
const float
|
|
diz01 = iz1 - iz0, diz02 = iz2 - iz0, diz12 = iz2 - iz1,
|
|
txz0 = tx0*iz0, txz1 = tx1*iz1, txz2 = tx2*iz2,
|
|
tyz0 = ty0*iz0, tyz1 = ty1*iz1, tyz2 = ty2*iz2,
|
|
dtxz01 = txz1 - txz0, dtxz02 = txz2 - txz0, dtxz12 = txz2 - txz1,
|
|
dtyz01 = tyz1 - tyz0, dtyz02 = tyz2 - tyz0, dtyz12 = tyz2 - tyz1,
|
|
lxz0 = lx0*iz0, lxz1 = lx1*iz1, lxz2 = lx2*iz2,
|
|
lyz0 = ly0*iz0, lyz1 = ly1*iz1, lyz2 = ly2*iz2,
|
|
dlxz01 = lxz1 - lxz0, dlxz02 = lxz2 - lxz0, dlxz12 = lxz2 - lxz1,
|
|
dlyz01 = lyz1 - lyz0, dlyz02 = lyz2 - lyz0, dlyz12 = lyz2 - lyz1;
|
|
|
|
const ulongT
|
|
twhd = (ulongT)texture._width*texture._height*texture._depth,
|
|
lwhd = (ulongT)light._width*light._height*light._depth;
|
|
cimg_init_scanline(opacity);
|
|
|
|
for (int y = cy0; y<=cy2; ++y) {
|
|
const int yy0 = y - y0, yy1 = y - y1;
|
|
int
|
|
xm = y<y1?x0 + (dx01*yy0 + hdy01)/dy01:x1 + (dx12*yy1 + hdy12)/dy12,
|
|
xM = x0 + (dx02*yy0 + hdy02)/dy02;
|
|
float
|
|
izm = y<y1?(iz0 + diz01*yy0/dy01):(iz1 + diz12*yy1/dy12),
|
|
izM = iz0 + diz02*yy0/dy02,
|
|
txzm = y<y1?(txz0 + dtxz01*yy0/dy01):(txz1 + dtxz12*yy1/dy12),
|
|
txzM = txz0 + dtxz02*yy0/dy02,
|
|
tyzm = y<y1?(tyz0 + dtyz01*yy0/dy01):(tyz1 + dtyz12*yy1/dy12),
|
|
tyzM = tyz0 + dtyz02*yy0/dy02,
|
|
lxzm = y<y1?(lxz0 + dlxz01*yy0/dy01):(lxz1 + dlxz12*yy1/dy12),
|
|
lxzM = lxz0 + dlxz02*yy0/dy02,
|
|
lyzm = y<y1?(lyz0 + dlyz01*yy0/dy01):(lyz1 + dlyz12*yy1/dy12),
|
|
lyzM = lyz0 + dlyz02*yy0/dy02;
|
|
if (xm>xM) cimg::swap(xm,xM,izm,izM,txzm,txzM,tyzm,tyzM,lxzm,lxzM,lyzm,lyzM);
|
|
if (xM>=0 && xm<=w1) {
|
|
const int
|
|
cxm = cimg::cut(xm,0,w1),
|
|
cxM = cimg::cut(xM,0,w1);
|
|
T *ptrd = data(cxm,y);
|
|
tz *ptrz = zbuffer.data(cxm,y);
|
|
const int dxmM = std::max(1,xM - xm);
|
|
const float
|
|
dizmM = izM - izm,
|
|
dtxzmM = txzM - txzm, dtyzmM = tyzM - tyzm,
|
|
dlxzmM = lxzM - lxzm, dlyzmM = lyzM - lyzm;
|
|
|
|
for (int x = cxm; x<=cxM; ++x) {
|
|
const int xxm = x - xm;
|
|
const float iz = izm + dizmM*xxm/dxmM;
|
|
if (iz>=*ptrz) {
|
|
*ptrz = (tz)iz;
|
|
const float
|
|
txz = txzm + dtxzmM*xxm/dxmM,
|
|
tyz = tyzm + dtyzmM*xxm/dxmM,
|
|
lxz = lxzm + dlxzmM*xxm/dxmM,
|
|
lyz = lyzm + dlyzmM*xxm/dxmM;
|
|
const int
|
|
tx = (int)cimg::round(txz/iz),
|
|
ty = (int)cimg::round(tyz/iz),
|
|
lx = (int)cimg::round(lxz/iz),
|
|
ly = (int)cimg::round(lyz/iz);
|
|
const tc *const color = &texture._atXY(tx,ty);
|
|
const tl *const lig = &light._atXY(lx,ly);
|
|
cimg_forC(*this,c) {
|
|
const tc col = color[c*twhd];
|
|
const float cbs = cimg::cut((float)lig[c*lwhd],0,2);
|
|
const Tfloat val = cbs<=1?cbs*col:(2 - cbs)*col + (cbs - 1)*_sc_maxval;
|
|
ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity);
|
|
}
|
|
}
|
|
++ptrd; ++ptrz;
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a filled 4D rectangle.
|
|
/**
|
|
\param x0 X-coordinate of the upper-left rectangle corner.
|
|
\param y0 Y-coordinate of the upper-left rectangle corner.
|
|
\param z0 Z-coordinate of the upper-left rectangle corner.
|
|
\param c0 C-coordinate of the upper-left rectangle corner.
|
|
\param x1 X-coordinate of the lower-right rectangle corner.
|
|
\param y1 Y-coordinate of the lower-right rectangle corner.
|
|
\param z1 Z-coordinate of the lower-right rectangle corner.
|
|
\param c1 C-coordinate of the lower-right rectangle corner.
|
|
\param val Scalar value used to fill the rectangle area.
|
|
\param opacity Drawing opacity.
|
|
**/
|
|
CImg<T>& draw_rectangle(const int x0, const int y0, const int z0, const int c0,
|
|
const int x1, const int y1, const int z1, const int c1,
|
|
const T val, const float opacity=1) {
|
|
if (is_empty()) return *this;
|
|
const int
|
|
nx0 = x0<x1?x0:x1, nx1 = x0^x1^nx0,
|
|
ny0 = y0<y1?y0:y1, ny1 = y0^y1^ny0,
|
|
nz0 = z0<z1?z0:z1, nz1 = z0^z1^nz0,
|
|
nc0 = c0<c1?c0:c1, nc1 = c0^c1^nc0;
|
|
const int
|
|
lx = (1 + nx1 - nx0) + (nx1>=width()?width() - 1 - nx1:0) + (nx0<0?nx0:0),
|
|
ly = (1 + ny1 - ny0) + (ny1>=height()?height() - 1 - ny1:0) + (ny0<0?ny0:0),
|
|
lz = (1 + nz1 - nz0) + (nz1>=depth()?depth() - 1 - nz1:0) + (nz0<0?nz0:0),
|
|
lc = (1 + nc1 - nc0) + (nc1>=spectrum()?spectrum() - 1 - nc1:0) + (nc0<0?nc0:0);
|
|
const ulongT
|
|
offX = (ulongT)_width - lx,
|
|
offY = (ulongT)_width*(_height - ly),
|
|
offZ = (ulongT)_width*_height*(_depth - lz);
|
|
const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.f);
|
|
T *ptrd = data(nx0<0?0:nx0,ny0<0?0:ny0,nz0<0?0:nz0,nc0<0?0:nc0);
|
|
if (lx>0 && ly>0 && lz>0 && lc>0)
|
|
for (int v = 0; v<lc; ++v) {
|
|
for (int z = 0; z<lz; ++z) {
|
|
for (int y = 0; y<ly; ++y) {
|
|
if (opacity>=1) {
|
|
if (sizeof(T)!=1) { for (int x = 0; x<lx; ++x) *(ptrd++) = val; ptrd+=offX; }
|
|
else { std::memset(ptrd,(int)val,lx); ptrd+=_width; }
|
|
} else { for (int x = 0; x<lx; ++x) { *ptrd = (T)(nopacity*val + *ptrd*copacity); ++ptrd; } ptrd+=offX; }
|
|
}
|
|
ptrd+=offY;
|
|
}
|
|
ptrd+=offZ;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a filled 3D rectangle.
|
|
/**
|
|
\param x0 X-coordinate of the upper-left rectangle corner.
|
|
\param y0 Y-coordinate of the upper-left rectangle corner.
|
|
\param z0 Z-coordinate of the upper-left rectangle corner.
|
|
\param x1 X-coordinate of the lower-right rectangle corner.
|
|
\param y1 Y-coordinate of the lower-right rectangle corner.
|
|
\param z1 Z-coordinate of the lower-right rectangle corner.
|
|
\param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color.
|
|
\param opacity Drawing opacity.
|
|
**/
|
|
template<typename tc>
|
|
CImg<T>& draw_rectangle(const int x0, const int y0, const int z0,
|
|
const int x1, const int y1, const int z1,
|
|
const tc *const color, const float opacity=1) {
|
|
if (is_empty()) return *this;
|
|
if (!color)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_rectangle(): Specified color is (null).",
|
|
cimg_instance);
|
|
cimg_forC(*this,c) draw_rectangle(x0,y0,z0,c,x1,y1,z1,c,(T)color[c],opacity);
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a filled 2D rectangle.
|
|
/**
|
|
\param x0 X-coordinate of the upper-left rectangle corner.
|
|
\param y0 Y-coordinate of the upper-left rectangle corner.
|
|
\param x1 X-coordinate of the lower-right rectangle corner.
|
|
\param y1 Y-coordinate of the lower-right rectangle corner.
|
|
\param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color.
|
|
\param opacity Drawing opacity.
|
|
**/
|
|
template<typename tc>
|
|
CImg<T>& draw_rectangle(const int x0, const int y0,
|
|
const int x1, const int y1,
|
|
const tc *const color, const float opacity=1) {
|
|
return draw_rectangle(x0,y0,0,x1,y1,_depth - 1,color,opacity);
|
|
}
|
|
|
|
//! Draw a outlined 2D rectangle \overloading.
|
|
template<typename tc>
|
|
CImg<T>& draw_rectangle(const int x0, const int y0,
|
|
const int x1, const int y1,
|
|
const tc *const color, const float opacity,
|
|
const unsigned int pattern) {
|
|
if (is_empty()) return *this;
|
|
if (y0==y1) return draw_line(x0,y0,x1,y0,color,opacity,pattern,true);
|
|
if (x0==x1) return draw_line(x0,y0,x0,y1,color,opacity,pattern,true);
|
|
const int
|
|
nx0 = x0<x1?x0:x1, nx1 = x0^x1^nx0,
|
|
ny0 = y0<y1?y0:y1, ny1 = y0^y1^ny0;
|
|
if (ny1==ny0 + 1) return draw_line(nx0,ny0,nx1,ny0,color,opacity,pattern,true).
|
|
draw_line(nx1,ny1,nx0,ny1,color,opacity,pattern,false);
|
|
return draw_line(nx0,ny0,nx1,ny0,color,opacity,pattern,true).
|
|
draw_line(nx1,ny0 + 1,nx1,ny1 - 1,color,opacity,pattern,false).
|
|
draw_line(nx1,ny1,nx0,ny1,color,opacity,pattern,false).
|
|
draw_line(nx0,ny1 - 1,nx0,ny0 + 1,color,opacity,pattern,false);
|
|
}
|
|
|
|
//! Draw a filled 2D polygon.
|
|
/**
|
|
\param points Set of polygon vertices.
|
|
\param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color.
|
|
\param opacity Drawing opacity.
|
|
**/
|
|
template<typename tp, typename tc>
|
|
CImg<T>& draw_polygon(const CImg<tp>& points,
|
|
const tc *const color, const float opacity=1) {
|
|
if (is_empty() || !points) return *this;
|
|
if (!color)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_polygon(): Specified color is (null).",
|
|
cimg_instance);
|
|
if (points.height()!=2)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_polygon(): Invalid specified point set (%u,%u,%u,%u).",
|
|
cimg_instance,
|
|
points._width,points._height,points._depth,points._spectrum);
|
|
if (points._width==1) return draw_point(cimg::uiround(points(0,0)),cimg::uiround(points(0,1)),color,opacity);
|
|
if (points._width==2) return draw_line(cimg::uiround(points(0,0)),cimg::uiround(points(0,1)),
|
|
cimg::uiround(points(1,0)),cimg::uiround(points(1,1)),color,opacity);
|
|
if (points._width==3) return draw_triangle(cimg::uiround(points(0,0)),cimg::uiround(points(0,1)),
|
|
cimg::uiround(points(1,0)),cimg::uiround(points(1,1)),
|
|
cimg::uiround(points(2,0)),cimg::uiround(points(2,1)),color,opacity);
|
|
cimg_init_scanline(opacity);
|
|
int
|
|
xmin = 0, ymin = 0,
|
|
xmax = points.get_shared_row(0).max_min(xmin),
|
|
ymax = points.get_shared_row(1).max_min(ymin);
|
|
if (xmax<0 || xmin>=width() || ymax<0 || ymin>=height()) return *this;
|
|
if (ymin==ymax) return draw_line(xmin,ymin,xmax,ymax,color,opacity);
|
|
|
|
ymin = std::max(0,ymin);
|
|
ymax = std::min(height() - 1,ymax);
|
|
CImg<intT> Xs(points._width,ymax - ymin + 1);
|
|
CImg<uintT> count(Xs._height,1,1,1,0);
|
|
unsigned int n = 0, nn = 1;
|
|
bool go_on = true;
|
|
|
|
while (go_on) {
|
|
unsigned int an = (nn + 1)%points._width;
|
|
const int
|
|
x0 = cimg::uiround(points(n,0)),
|
|
y0 = cimg::uiround(points(n,1));
|
|
if (points(nn,1)==y0) while (points(an,1)==y0) { nn = an; (an+=1)%=points._width; }
|
|
const int
|
|
x1 = cimg::uiround(points(nn,0)),
|
|
y1 = cimg::uiround(points(nn,1));
|
|
unsigned int tn = an;
|
|
while (points(tn,1)==y1) (tn+=1)%=points._width;
|
|
|
|
if (y0!=y1) {
|
|
const int
|
|
y2 = cimg::uiround(points(tn,1)),
|
|
x01 = x1 - x0, y01 = y1 - y0, y12 = y2 - y1,
|
|
step = cimg::sign(y01),
|
|
tmax = std::max(1,cimg::abs(y01)), htmax = tmax*cimg::sign(x01)/2,
|
|
tend = tmax - (step==cimg::sign(y12));
|
|
unsigned int y = (unsigned int)y0 - ymin;
|
|
for (int t = 0; t<=tend; ++t, y+=step)
|
|
if (y<Xs._height) Xs(count[y]++,y) = x0 + (t*x01 + htmax)/tmax;
|
|
}
|
|
go_on = nn>n;
|
|
n = nn;
|
|
nn = an;
|
|
}
|
|
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(Xs._height>=(cimg_openmp_sizefactor)*512))
|
|
cimg_forY(Xs,y) {
|
|
const CImg<intT> Xsy = Xs.get_shared_points(0,count[y] - 1,y).sort();
|
|
int px = width();
|
|
for (unsigned int k = 0; k<Xsy._width; k+=2) {
|
|
int x0 = Xsy[k];
|
|
const int x1 = Xsy[k + 1];
|
|
x0+=x0==px;
|
|
cimg_draw_scanline(x0,x1,y + ymin,color,opacity,1);
|
|
px = x1;
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a outlined 2D or 3D polygon \overloading.
|
|
template<typename t, typename tc>
|
|
CImg<T>& draw_polygon(const CImg<t>& points,
|
|
const tc *const color, const float opacity, const unsigned int pattern) {
|
|
if (is_empty() || !points) return *this;
|
|
if (!color)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_polygon(): Specified color is (null).",
|
|
cimg_instance);
|
|
if (points._width==1) return draw_point((int)points(0,0),(int)points(0,1),color,opacity);
|
|
if (points._width==2) return draw_line((int)points(0,0),(int)points(0,1),
|
|
(int)points(1,0),(int)points(1,1),color,opacity,pattern);
|
|
bool ninit_hatch = true;
|
|
switch (points._height) {
|
|
case 0 : case 1 :
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_polygon(): Invalid specified point set (%u,%u,%u,%u).",
|
|
cimg_instance,
|
|
points._width,points._height,points._depth,points._spectrum);
|
|
default : {
|
|
CImg<intT> npoints(points._width,2);
|
|
int x = npoints(0,0) = (int)points(0,0), y = npoints(0,1) = (int)points(0,1);
|
|
unsigned int nb_points = 1;
|
|
for (unsigned int p = 1; p<points._width; ++p) {
|
|
const int nx = (int)points(p,0), ny = (int)points(p,1);
|
|
if (nx!=x || ny!=y) { npoints(nb_points,0) = nx; npoints(nb_points++,1) = ny; x = nx; y = ny; }
|
|
}
|
|
const int x0 = (int)npoints(0,0), y0 = (int)npoints(0,1);
|
|
int ox = x0, oy = y0;
|
|
for (unsigned int i = 1; i<nb_points; ++i) {
|
|
const int _x = (int)npoints(i,0), _y = (int)npoints(i,1);
|
|
draw_line(ox,oy,_x,_y,color,opacity,pattern,ninit_hatch);
|
|
ninit_hatch = false;
|
|
ox = _x; oy = _y;
|
|
}
|
|
draw_line(ox,oy,x0,y0,color,opacity,pattern,false);
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a filled 2D ellipse.
|
|
/**
|
|
\param x0 X-coordinate of the ellipse center.
|
|
\param y0 Y-coordinate of the ellipse center.
|
|
\param r1 First radius of the ellipse.
|
|
\param r2 Second radius of the ellipse.
|
|
\param angle Angle of the first radius.
|
|
\param color Pointer to \c spectrum() consecutive values, defining the drawing color.
|
|
\param opacity Drawing opacity.
|
|
**/
|
|
template<typename tc>
|
|
CImg<T>& draw_ellipse(const int x0, const int y0, const float r1, const float r2, const float angle,
|
|
const tc *const color, const float opacity=1) {
|
|
return _draw_ellipse(x0,y0,r1,r2,angle,color,opacity,0U,true);
|
|
}
|
|
|
|
//! Draw a filled 2D ellipse \overloading.
|
|
/**
|
|
\param x0 X-coordinate of the ellipse center.
|
|
\param y0 Y-coordinate of the ellipse center.
|
|
\param tensor Diffusion tensor describing the ellipse.
|
|
\param color Pointer to \c spectrum() consecutive values, defining the drawing color.
|
|
\param opacity Drawing opacity.
|
|
**/
|
|
template<typename t, typename tc>
|
|
CImg<T>& draw_ellipse(const int x0, const int y0, const CImg<t> &tensor,
|
|
const tc *const color, const float opacity=1) {
|
|
CImgList<t> eig = tensor.get_symmetric_eigen();
|
|
const CImg<t> &val = eig[0], &vec = eig[1];
|
|
return draw_ellipse(x0,y0,std::sqrt(val(0)),std::sqrt(val(1)),
|
|
std::atan2(vec(0,1),vec(0,0))*180/cimg::PI,
|
|
color,opacity);
|
|
}
|
|
|
|
//! Draw an outlined 2D ellipse.
|
|
/**
|
|
\param x0 X-coordinate of the ellipse center.
|
|
\param y0 Y-coordinate of the ellipse center.
|
|
\param r1 First radius of the ellipse.
|
|
\param r2 Second radius of the ellipse.
|
|
\param angle Angle of the first radius.
|
|
\param color Pointer to \c spectrum() consecutive values, defining the drawing color.
|
|
\param opacity Drawing opacity.
|
|
\param pattern An integer whose bits describe the outline pattern.
|
|
**/
|
|
template<typename tc>
|
|
CImg<T>& draw_ellipse(const int x0, const int y0, const float r1, const float r2, const float angle,
|
|
const tc *const color, const float opacity, const unsigned int pattern) {
|
|
if (pattern) _draw_ellipse(x0,y0,r1,r2,angle,color,opacity,pattern,false);
|
|
return *this;
|
|
}
|
|
|
|
//! Draw an outlined 2D ellipse \overloading.
|
|
/**
|
|
\param x0 X-coordinate of the ellipse center.
|
|
\param y0 Y-coordinate of the ellipse center.
|
|
\param tensor Diffusion tensor describing the ellipse.
|
|
\param color Pointer to \c spectrum() consecutive values, defining the drawing color.
|
|
\param opacity Drawing opacity.
|
|
\param pattern An integer whose bits describe the outline pattern.
|
|
**/
|
|
template<typename t, typename tc>
|
|
CImg<T>& draw_ellipse(const int x0, const int y0, const CImg<t> &tensor,
|
|
const tc *const color, const float opacity,
|
|
const unsigned int pattern) {
|
|
CImgList<t> eig = tensor.get_symmetric_eigen();
|
|
const CImg<t> &val = eig[0], &vec = eig[1];
|
|
return draw_ellipse(x0,y0,std::sqrt(val(0)),std::sqrt(val(1)),
|
|
std::atan2(vec(0,1),vec(0,0))*180/cimg::PI,
|
|
color,opacity,pattern);
|
|
}
|
|
|
|
template<typename tc>
|
|
CImg<T>& _draw_ellipse(const int x0, const int y0, const float radius1, const float radius2, const float angle,
|
|
const tc *const color, const float opacity,
|
|
const unsigned int pattern, const bool is_filled) {
|
|
if (is_empty() || (!is_filled && !pattern)) return *this;
|
|
const float radiusM = std::max(radius1,radius2);
|
|
if (radius1<0 || radius2<0 || x0 - radiusM>=width() || y0 + radiusM<0 || y0 - radiusM>=height()) return *this;
|
|
if (!color)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_ellipse(): Specified color is (null).",
|
|
cimg_instance);
|
|
const int iradius1 = (int)cimg::round(radius1), iradius2 = (int)cimg::round(radius2);
|
|
if (!iradius1 && !iradius2) return draw_point(x0,y0,color,opacity);
|
|
if (iradius1==iradius2) {
|
|
if (is_filled) return draw_circle(x0,y0,iradius1,color,opacity);
|
|
else if (pattern==~0U) return draw_circle(x0,y0,iradius1,color,opacity,pattern);
|
|
}
|
|
const float ang = (float)(angle*cimg::PI/180);
|
|
|
|
if (!is_filled) { // Outlined
|
|
const float ca = std::cos(ang), sa = std::sin(ang);
|
|
CImg<int> points((unsigned int)cimg::round(6*radiusM),2);
|
|
cimg_forX(points,k) {
|
|
const float
|
|
_ang = (float)(2*cimg::PI*k/points._width),
|
|
X = (float)(radius1*std::cos(_ang)),
|
|
Y = (float)(radius2*std::sin(_ang));
|
|
points(k,0) = (int)cimg::round(x0 + (X*ca - Y*sa));
|
|
points(k,1) = (int)cimg::round(y0 + (X*sa + Y*ca));
|
|
}
|
|
draw_polygon(points,color,opacity,pattern);
|
|
} else { // Filled
|
|
cimg_init_scanline(opacity);
|
|
const float
|
|
ca = std::cos(ang),
|
|
sa = -std::sin(ang),
|
|
ca2 = ca*ca,
|
|
sa2 = sa*sa,
|
|
casa = ca*sa,
|
|
i1 = 1/cimg::sqr(radius1),
|
|
i2 = 1/cimg::sqr(radius2),
|
|
t1 = i1*ca2 + i2*sa2,
|
|
t2 = (i2 - i1)*casa,
|
|
t3 = i2*ca2 + i1*sa2,
|
|
t12 = t1*2;
|
|
const int
|
|
_ymin = (int)std::floor(y0 - radiusM),
|
|
_ymax = (int)std::ceil(y0 + radiusM),
|
|
ymin = _ymin<0?0:_ymin,
|
|
ymax = _ymax>=height()?height() - 1:_ymax;
|
|
for (int y = ymin; y<=ymax; ++y) {
|
|
const float
|
|
Y = y - y0 + 0.5f,
|
|
B = 2*t2*Y,
|
|
C = t3*Y*Y - 1,
|
|
D = B*B - 4*t1*C;
|
|
if (D>=0) {
|
|
const float sD = std::sqrt(D);
|
|
const int
|
|
xmin = (int)(x0 + cimg::round((-B - sD)/t12)),
|
|
xmax = (int)(x0 + cimg::round((-B + sD)/t12));
|
|
cimg_draw_scanline(xmin,xmax,y,color,opacity,1);
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a filled 2D circle.
|
|
/**
|
|
\param x0 X-coordinate of the circle center.
|
|
\param y0 Y-coordinate of the circle center.
|
|
\param radius Circle radius.
|
|
\param color Pointer to \c spectrum() consecutive values, defining the drawing color.
|
|
\param opacity Drawing opacity.
|
|
\note
|
|
- Circle version of the Bresenham's algorithm is used.
|
|
**/
|
|
template<typename tc>
|
|
CImg<T>& draw_circle(const int x0, const int y0, int radius,
|
|
const tc *const color, const float opacity=1) {
|
|
if (is_empty()) return *this;
|
|
if (radius<0 || x0 - radius>=width() || y0 + radius<0 || y0 - radius>=height()) return *this;
|
|
if (!color)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_circle(): Specified color is (null).",
|
|
cimg_instance);
|
|
if (!radius) return draw_point(x0,y0,color,opacity);
|
|
cimg_init_scanline(opacity);
|
|
if (y0>=0 && y0<height()) cimg_draw_scanline(x0 - radius,x0 + radius,y0,color,opacity,1);
|
|
for (int f = 1 - radius, ddFx = 0, ddFy = -(radius<<1), x = 0, y = radius; x<y; ) {
|
|
if (f>=0) {
|
|
const int x1 = x0 - x, x2 = x0 + x, y1 = y0 - y, y2 = y0 + y;
|
|
if (y1>=0 && y1<height()) cimg_draw_scanline(x1,x2,y1,color,opacity,1);
|
|
if (y2>=0 && y2<height()) cimg_draw_scanline(x1,x2,y2,color,opacity,1);
|
|
f+=(ddFy+=2); --y;
|
|
}
|
|
const bool no_diag = y!=(x++);
|
|
++(f+=(ddFx+=2));
|
|
const int x1 = x0 - y, x2 = x0 + y, y1 = y0 - x, y2 = y0 + x;
|
|
if (no_diag) {
|
|
if (y1>=0 && y1<height()) cimg_draw_scanline(x1,x2,y1,color,opacity,1);
|
|
if (y2>=0 && y2<height()) cimg_draw_scanline(x1,x2,y2,color,opacity,1);
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw an outlined 2D circle.
|
|
/**
|
|
\param x0 X-coordinate of the circle center.
|
|
\param y0 Y-coordinate of the circle center.
|
|
\param radius Circle radius.
|
|
\param color Pointer to \c spectrum() consecutive values, defining the drawing color.
|
|
\param opacity Drawing opacity.
|
|
\param pattern An integer whose bits describe the outline pattern.
|
|
**/
|
|
template<typename tc>
|
|
CImg<T>& draw_circle(const int x0, const int y0, int radius,
|
|
const tc *const color, const float opacity,
|
|
const unsigned int pattern) {
|
|
if (pattern!=~0U) return draw_ellipse(x0,y0,radius,radius,0,color,opacity,pattern);
|
|
if (is_empty()) return *this;
|
|
if (!color)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_circle(): Specified color is (null).",
|
|
cimg_instance);
|
|
if (radius<0 || x0 - radius>=width() || y0 + radius<0 || y0 - radius>=height()) return *this;
|
|
if (!radius) return draw_point(x0,y0,color,opacity);
|
|
|
|
draw_point(x0 - radius,y0,color,opacity).draw_point(x0 + radius,y0,color,opacity).
|
|
draw_point(x0,y0 - radius,color,opacity).draw_point(x0,y0 + radius,color,opacity);
|
|
if (radius==1) return *this;
|
|
for (int f = 1 - radius, ddFx = 0, ddFy = -(radius<<1), x = 0, y = radius; x<y; ) {
|
|
if (f>=0) { f+=(ddFy+=2); --y; }
|
|
++x; ++(f+=(ddFx+=2));
|
|
if (x!=y + 1) {
|
|
const int x1 = x0 - y, x2 = x0 + y, y1 = y0 - x, y2 = y0 + x,
|
|
x3 = x0 - x, x4 = x0 + x, y3 = y0 - y, y4 = y0 + y;
|
|
draw_point(x1,y1,color,opacity).draw_point(x1,y2,color,opacity).
|
|
draw_point(x2,y1,color,opacity).draw_point(x2,y2,color,opacity);
|
|
if (x!=y)
|
|
draw_point(x3,y3,color,opacity).draw_point(x4,y4,color,opacity).
|
|
draw_point(x4,y3,color,opacity).draw_point(x3,y4,color,opacity);
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw an image.
|
|
/**
|
|
\param sprite Sprite image.
|
|
\param x0 X-coordinate of the sprite position.
|
|
\param y0 Y-coordinate of the sprite position.
|
|
\param z0 Z-coordinate of the sprite position.
|
|
\param c0 C-coordinate of the sprite position.
|
|
\param opacity Drawing opacity.
|
|
**/
|
|
template<typename t>
|
|
CImg<T>& draw_image(const int x0, const int y0, const int z0, const int c0,
|
|
const CImg<t>& sprite, const float opacity=1) {
|
|
if (is_empty() || !sprite) return *this;
|
|
if (is_overlapped(sprite)) return draw_image(x0,y0,z0,c0,+sprite,opacity);
|
|
if (x0==0 && y0==0 && z0==0 && c0==0 && is_sameXYZC(sprite) && opacity>=1 && !is_shared())
|
|
return assign(sprite,false);
|
|
const bool bx = x0<0, by = y0<0, bz = z0<0, bc = c0<0;
|
|
const int
|
|
dx0 = bx?0:x0, dy0 = by?0:y0, dz0 = bz?0:z0, dc0 = bc?0:c0,
|
|
sx0 = dx0 - x0, sy0 = dy0 - y0, sz0 = dz0 - z0, sc0 = dc0 - c0,
|
|
lx = sprite.width() - sx0 - (x0 + sprite.width()>width()?x0 + sprite.width() - width():0),
|
|
ly = sprite.height() - sy0 - (y0 + sprite.height()>height()?y0 + sprite.height() - height():0),
|
|
lz = sprite.depth() - sz0 - (z0 + sprite.depth()>depth()?z0 + sprite.depth() - depth():0),
|
|
lc = sprite.spectrum() - sc0 - (c0 + sprite.spectrum()>spectrum()?c0 + sprite.spectrum() - spectrum():0);
|
|
|
|
const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.f);
|
|
if (lx>0 && ly>0 && lz>0 && lc>0) {
|
|
for (int c = 0; c<lc; ++c)
|
|
for (int z = 0; z<lz; ++z)
|
|
for (int y = 0; y<ly; ++y) {
|
|
T *ptrd = data(dx0,dy0 + y,dz0 + z,dc0 + c);
|
|
const t *ptrs = sprite.data(sx0,sy0 + y,sz0 + z,sc0 + c);
|
|
if (opacity>=1) for (int x = 0; x<lx; ++x) *(ptrd++) = (T)*(ptrs++);
|
|
else for (int x = 0; x<lx; ++x) { *ptrd = (T)(nopacity*(*(ptrs++)) + *ptrd*copacity); ++ptrd; }
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw an image \specialization.
|
|
CImg<T>& draw_image(const int x0, const int y0, const int z0, const int c0,
|
|
const CImg<T>& sprite, const float opacity=1) {
|
|
if (is_empty() || !sprite) return *this;
|
|
if (is_overlapped(sprite)) return draw_image(x0,y0,z0,c0,+sprite,opacity);
|
|
if (x0==0 && y0==0 && z0==0 && c0==0 && is_sameXYZC(sprite) && opacity>=1 && !is_shared())
|
|
return assign(sprite,false);
|
|
const bool bx = x0<0, by = y0<0, bz = z0<0, bc = c0<0;
|
|
const int
|
|
dx0 = bx?0:x0, dy0 = by?0:y0, dz0 = bz?0:z0, dc0 = bc?0:c0,
|
|
sx0 = dx0 - x0, sy0 = dy0 - y0, sz0 = dz0 - z0, sc0 = dc0 - c0,
|
|
lx = sprite.width() - sx0 - (x0 + sprite.width()>width()?x0 + sprite.width() - width():0),
|
|
ly = sprite.height() - sy0 - (y0 + sprite.height()>height()?y0 + sprite.height() - height():0),
|
|
lz = sprite.depth() - sz0 - (z0 + sprite.depth()>depth()?z0 + sprite.depth() - depth():0),
|
|
lc = sprite.spectrum() - sc0 - (c0 + sprite.spectrum()>spectrum()?c0 + sprite.spectrum() - spectrum():0);
|
|
const ulongT slx = lx*sizeof(T);
|
|
|
|
const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.f);
|
|
if (lx>0 && ly>0 && lz>0 && lc>0) {
|
|
for (int c = 0; c<lc; ++c)
|
|
for (int z = 0; z<lz; ++z)
|
|
for (int y = 0; y<ly; ++y) {
|
|
T *ptrd = data(dx0,dy0 + y,dz0 + z,dc0 + c);
|
|
const T *ptrs = sprite.data(sx0,sy0 + y,sz0 + z,sc0 + c);
|
|
if (opacity>=1) std::memcpy(ptrd,ptrs,slx);
|
|
else for (int x = 0; x<lx; ++x) { *ptrd = (T)(nopacity*(*(ptrs++)) + *ptrd*copacity); ++ptrd; }
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw an image \overloading.
|
|
template<typename t>
|
|
CImg<T>& draw_image(const int x0, const int y0, const int z0,
|
|
const CImg<t>& sprite, const float opacity=1) {
|
|
return draw_image(x0,y0,z0,0,sprite,opacity);
|
|
}
|
|
|
|
//! Draw an image \overloading.
|
|
template<typename t>
|
|
CImg<T>& draw_image(const int x0, const int y0,
|
|
const CImg<t>& sprite, const float opacity=1) {
|
|
return draw_image(x0,y0,0,sprite,opacity);
|
|
}
|
|
|
|
//! Draw an image \overloading.
|
|
template<typename t>
|
|
CImg<T>& draw_image(const int x0,
|
|
const CImg<t>& sprite, const float opacity=1) {
|
|
return draw_image(x0,0,sprite,opacity);
|
|
}
|
|
|
|
//! Draw an image \overloading.
|
|
template<typename t>
|
|
CImg<T>& draw_image(const CImg<t>& sprite, const float opacity=1) {
|
|
return draw_image(0,sprite,opacity);
|
|
}
|
|
|
|
//! Draw a masked image.
|
|
/**
|
|
\param sprite Sprite image.
|
|
\param mask Mask image.
|
|
\param x0 X-coordinate of the sprite position in the image instance.
|
|
\param y0 Y-coordinate of the sprite position in the image instance.
|
|
\param z0 Z-coordinate of the sprite position in the image instance.
|
|
\param c0 C-coordinate of the sprite position in the image instance.
|
|
\param mask_max_value Maximum pixel value of the mask image \c mask.
|
|
\param opacity Drawing opacity.
|
|
\note
|
|
- Pixel values of \c mask set the opacity of the corresponding pixels in \c sprite.
|
|
- Dimensions along x,y and z of \p sprite and \p mask must be the same.
|
|
**/
|
|
template<typename ti, typename tm>
|
|
CImg<T>& draw_image(const int x0, const int y0, const int z0, const int c0,
|
|
const CImg<ti>& sprite, const CImg<tm>& mask, const float opacity=1,
|
|
const float mask_max_value=1) {
|
|
if (is_empty() || !sprite || !mask) return *this;
|
|
if (is_overlapped(sprite)) return draw_image(x0,y0,z0,c0,+sprite,mask,opacity,mask_max_value);
|
|
if (is_overlapped(mask)) return draw_image(x0,y0,z0,c0,sprite,+mask,opacity,mask_max_value);
|
|
if (mask._width!=sprite._width || mask._height!=sprite._height || mask._depth!=sprite._depth)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_image(): Sprite (%u,%u,%u,%u,%p) and mask (%u,%u,%u,%u,%p) have "
|
|
"incompatible dimensions.",
|
|
cimg_instance,
|
|
sprite._width,sprite._height,sprite._depth,sprite._spectrum,sprite._data,
|
|
mask._width,mask._height,mask._depth,mask._spectrum,mask._data);
|
|
|
|
const bool bx = x0<0, by = y0<0, bz = z0<0, bc = c0<0;
|
|
const int
|
|
dx0 = bx?0:x0, dy0 = by?0:y0, dz0 = bz?0:z0, dc0 = bc?0:c0,
|
|
sx0 = dx0 - x0, sy0 = dy0 - y0, sz0 = dz0 - z0, sc0 = dc0 - c0,
|
|
lx = sprite.width() - sx0 - (x0 + sprite.width()>width()?x0 + sprite.width() - width():0),
|
|
ly = sprite.height() - sy0 - (y0 + sprite.height()>height()?y0 + sprite.height() - height():0),
|
|
lz = sprite.depth() - sz0 - (z0 + sprite.depth()>depth()?z0 + sprite.depth() - depth():0),
|
|
lc = sprite.spectrum() - sc0 - (c0 + sprite.spectrum()>spectrum()?c0 + sprite.spectrum() - spectrum():0);
|
|
const ulongT msize = mask.size();
|
|
|
|
if (lx>0 && ly>0 && lz>0 && lc>0) {
|
|
for (int c = 0; c<lc; ++c)
|
|
for (int z = 0; z<lz; ++z)
|
|
for (int y = 0; y<ly; ++y) {
|
|
T *ptrd = data(dx0,dy0 + y,dz0 + z,dc0 + c);
|
|
const ti *ptrs = sprite.data(sx0,sy0 + y,sz0 + z,sc0 + c);
|
|
const tm *ptrm = mask._data + (mask.offset(sx0,sy0 + y,sz0 + z,sc0 + c)%msize);
|
|
for (int x = 0; x<lx; ++x) {
|
|
const float mopacity = (float)(*(ptrm++)*opacity),
|
|
nopacity = cimg::abs(mopacity), copacity = mask_max_value - std::max(mopacity,0.f);
|
|
*ptrd = (T)((nopacity*(*(ptrs++)) + *ptrd*copacity)/mask_max_value);
|
|
++ptrd;
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a masked image \overloading.
|
|
template<typename ti, typename tm>
|
|
CImg<T>& draw_image(const int x0, const int y0, const int z0,
|
|
const CImg<ti>& sprite, const CImg<tm>& mask, const float opacity=1,
|
|
const float mask_max_value=1) {
|
|
return draw_image(x0,y0,z0,0,sprite,mask,opacity,mask_max_value);
|
|
}
|
|
|
|
//! Draw a image \overloading.
|
|
template<typename ti, typename tm>
|
|
CImg<T>& draw_image(const int x0, const int y0,
|
|
const CImg<ti>& sprite, const CImg<tm>& mask, const float opacity=1,
|
|
const float mask_max_value=1) {
|
|
return draw_image(x0,y0,0,sprite,mask,opacity,mask_max_value);
|
|
}
|
|
|
|
//! Draw a image \overloading.
|
|
template<typename ti, typename tm>
|
|
CImg<T>& draw_image(const int x0,
|
|
const CImg<ti>& sprite, const CImg<tm>& mask, const float opacity=1,
|
|
const float mask_max_value=1) {
|
|
return draw_image(x0,0,sprite,mask,opacity,mask_max_value);
|
|
}
|
|
|
|
//! Draw an image.
|
|
template<typename ti, typename tm>
|
|
CImg<T>& draw_image(const CImg<ti>& sprite, const CImg<tm>& mask, const float opacity=1,
|
|
const float mask_max_value=1) {
|
|
return draw_image(0,sprite,mask,opacity,mask_max_value);
|
|
}
|
|
|
|
//! Draw a text string.
|
|
/**
|
|
\param x0 X-coordinate of the text in the image instance.
|
|
\param y0 Y-coordinate of the text in the image instance.
|
|
\param text Format of the text ('printf'-style format string).
|
|
\param foreground_color Pointer to \c spectrum() consecutive values, defining the foreground drawing color.
|
|
\param background_color Pointer to \c spectrum() consecutive values, defining the background drawing color.
|
|
\param opacity Drawing opacity.
|
|
\param font Font used for drawing text.
|
|
**/
|
|
template<typename tc1, typename tc2, typename t>
|
|
CImg<T>& draw_text(const int x0, const int y0,
|
|
const char *const text,
|
|
const tc1 *const foreground_color, const tc2 *const background_color,
|
|
const float opacity, const CImgList<t>* const font, ...) {
|
|
if (!font || !*font) return *this;
|
|
CImg<charT> tmp(2048);
|
|
std::va_list ap; va_start(ap,font); cimg_vsnprintf(tmp,tmp._width,text,ap); va_end(ap);
|
|
return _draw_text(x0,y0,tmp,foreground_color,background_color,opacity,*font,false);
|
|
}
|
|
|
|
//! Draw a text string \overloading.
|
|
/**
|
|
\note A transparent background is used for the text.
|
|
**/
|
|
template<typename tc, typename t>
|
|
CImg<T>& draw_text(const int x0, const int y0,
|
|
const char *const text,
|
|
const tc *const foreground_color, const int,
|
|
const float opacity, const CImgList<t>* const font, ...) {
|
|
if (!font || !*font) return *this;
|
|
CImg<charT> tmp(2048);
|
|
std::va_list ap; va_start(ap,font); cimg_vsnprintf(tmp,tmp._width,text,ap); va_end(ap);
|
|
return _draw_text(x0,y0,tmp,foreground_color,(tc*)0,opacity,*font,false);
|
|
}
|
|
|
|
//! Draw a text string \overloading.
|
|
/**
|
|
\note A transparent foreground is used for the text.
|
|
**/
|
|
template<typename tc, typename t>
|
|
CImg<T>& draw_text(const int x0, const int y0,
|
|
const char *const text,
|
|
const int, const tc *const background_color,
|
|
const float opacity, const CImgList<t>* const font, ...) {
|
|
if (!font || !*font) return *this;
|
|
CImg<charT> tmp(2048);
|
|
std::va_list ap; va_start(ap,font); cimg_vsnprintf(tmp,tmp._width,text,ap); va_end(ap);
|
|
return _draw_text(x0,y0,tmp,(tc*)0,background_color,opacity,*font,false);
|
|
}
|
|
|
|
//! Draw a text string \overloading.
|
|
/**
|
|
\param x0 X-coordinate of the text in the image instance.
|
|
\param y0 Y-coordinate of the text in the image instance.
|
|
\param text Format of the text ('printf'-style format string).
|
|
\param foreground_color Array of spectrum() values of type \c T,
|
|
defining the foreground color (0 means 'transparent').
|
|
\param background_color Array of spectrum() values of type \c T,
|
|
defining the background color (0 means 'transparent').
|
|
\param opacity Drawing opacity.
|
|
\param font_height Height of the text font (exact match for 13,32,64,128, interpolated otherwise).
|
|
**/
|
|
template<typename tc1, typename tc2>
|
|
CImg<T>& draw_text(const int x0, const int y0,
|
|
const char *const text,
|
|
const tc1 *const foreground_color, const tc2 *const background_color,
|
|
const float opacity=1, const unsigned int font_height=13, ...) {
|
|
if (!font_height) return *this;
|
|
CImg<charT> tmp(2048);
|
|
std::va_list ap; va_start(ap,font_height); cimg_vsnprintf(tmp,tmp._width,text,ap); va_end(ap);
|
|
const CImgList<ucharT>& font = CImgList<ucharT>::font(font_height,true);
|
|
_draw_text(x0,y0,tmp,foreground_color,background_color,opacity,font,true);
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a text string \overloading.
|
|
template<typename tc>
|
|
CImg<T>& draw_text(const int x0, const int y0,
|
|
const char *const text,
|
|
const tc *const foreground_color, const int background_color=0,
|
|
const float opacity=1, const unsigned int font_height=13, ...) {
|
|
if (!font_height) return *this;
|
|
cimg::unused(background_color);
|
|
CImg<charT> tmp(2048);
|
|
std::va_list ap; va_start(ap,font_height); cimg_vsnprintf(tmp,tmp._width,text,ap); va_end(ap);
|
|
return draw_text(x0,y0,"%s",foreground_color,(const tc*)0,opacity,font_height,tmp._data);
|
|
}
|
|
|
|
//! Draw a text string \overloading.
|
|
template<typename tc>
|
|
CImg<T>& draw_text(const int x0, const int y0,
|
|
const char *const text,
|
|
const int, const tc *const background_color,
|
|
const float opacity=1, const unsigned int font_height=13, ...) {
|
|
if (!font_height) return *this;
|
|
CImg<charT> tmp(2048);
|
|
std::va_list ap; va_start(ap,font_height); cimg_vsnprintf(tmp,tmp._width,text,ap); va_end(ap);
|
|
return draw_text(x0,y0,"%s",(tc*)0,background_color,opacity,font_height,tmp._data);
|
|
}
|
|
|
|
template<typename tc1, typename tc2, typename t>
|
|
CImg<T>& _draw_text(const int x0, const int y0,
|
|
const char *const text,
|
|
const tc1 *const foreground_color, const tc2 *const background_color,
|
|
const float opacity, const CImgList<t>& font,
|
|
const bool is_native_font) {
|
|
if (!text || !font) return *this;
|
|
const unsigned int text_length = (unsigned int)std::strlen(text);
|
|
const int padding_x = font[0]._height<48?1:font[0]._height<128?(int)std::ceil(font[0]._height/51.0f + 0.745f):4;
|
|
unsigned char o_ch, ch = 0;
|
|
int x, y, w;
|
|
CImg<intT> left_paddings(text_length,1,1,1,0);
|
|
const CImg<t> empty = CImg<t>::empty();
|
|
|
|
if (is_empty() || is_native_font) {
|
|
// Pre-compute necessary size of the image as well as left paddings of each character.
|
|
x = y = w = 0;
|
|
o_ch = 0;
|
|
for (unsigned int i = 0; i<text_length; ++i) {
|
|
ch = (unsigned char)text[i];
|
|
switch (ch) {
|
|
case '\n' :
|
|
if (font._width>10) y+=font[10]._height; else y+=font[0]._height;
|
|
if (x>w) w = x;
|
|
x = 0;
|
|
break;
|
|
case '\t' :
|
|
if (font._width>32) x+=4*font[32]._width; else x+=4*font[0]._width;
|
|
break;
|
|
case ' ' :
|
|
if (font._width>32) x+=font[32]._width; else x+=font[0]._width;
|
|
break;
|
|
default : if (ch<font._width) {
|
|
int left_padding = 0;
|
|
if (is_native_font && font[0]._height<128) { /// Determine left padding for native fonts.
|
|
if (ch==':' || ch=='!' || ch=='.' || ch==';')
|
|
left_padding = 2*padding_x;
|
|
else if (o_ch==',' || (o_ch=='.' && (ch<'0' || ch>'9')) || o_ch==';' || o_ch==':' || o_ch=='!')
|
|
left_padding = 4*padding_x;
|
|
else if (((o_ch=='i' || o_ch=='l' || o_ch=='I' || o_ch=='J' || o_ch=='M' || o_ch=='N') &&
|
|
((ch>='0' && ch<='9') ||
|
|
(ch>='a' && ch<='z' && ch!='v' && ch!='x' && ch!='y') ||
|
|
(ch>='B' && ch<='Z' && ch!='J' && ch!='T' && ch!='V' && ch!='X' && ch!='Y'))) ||
|
|
o_ch=='.' || o_ch=='\'' || ch=='\'')
|
|
left_padding = padding_x;
|
|
else if ((o_ch<'0' || o_ch>'9') && ch!='-') {
|
|
const CImg<t> &mask = ch + 256U<font._width?font[ch + 256]:empty;
|
|
if (o_ch && ch>' ' && o_ch>' ' && mask._height>13) {
|
|
const CImg<t> &o_mask = o_ch + 256U<font._width?font[o_ch + 256]:empty;
|
|
if (o_mask._height>13) {
|
|
const int w1 = mask.width()>0?o_mask.width() - 1:0, w2 = w1>1?w1 - 1:0, w3 = w2>1?w2 - 1:0;
|
|
left_padding = -10;
|
|
cimg_forY(mask,k) {
|
|
const int
|
|
lpad = o_mask(w1,k)>=8?0:
|
|
o_mask._width<=2 || o_mask(w2,k)>=8?-1:
|
|
o_mask._width<=3 || o_mask(w3,k)>=8?-2:-3,
|
|
rpad = mask(0,k)>=8?0:
|
|
mask._width<=2 || mask(1,k)>=8?-1:
|
|
mask._width<=3 || mask(2,k)>=8?-2:-3;
|
|
left_padding = std::max(left_padding,lpad + rpad);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
left_paddings[i] = left_padding;
|
|
}
|
|
x+=left_padding + font[ch]._width + padding_x;
|
|
o_ch = ch;
|
|
}
|
|
}
|
|
}
|
|
if (x!=0 || ch=='\n') { if (x>w) w = x; y+=font[0]._height; }
|
|
if (is_empty()) assign(x0 + w,y0 + y,1,is_native_font?1:font[0]._spectrum,(T)0);
|
|
}
|
|
|
|
// Draw font characters on image.
|
|
x = x0; y = y0;
|
|
for (unsigned int i = 0; i<text_length; ++i) {
|
|
ch = (unsigned char)text[i];
|
|
switch (ch) {
|
|
case '\n' :
|
|
if (font._width>10) y+=font[10]._height; else y+=font[0]._height;
|
|
x = x0;
|
|
break;
|
|
case '\t' :
|
|
case ' ' : {
|
|
const unsigned int
|
|
lw = (ch=='\t'?4:1)*font[font._width>32?32:0]._width,
|
|
lh = font[font._width>32?32:0]._height;
|
|
if (background_color) draw_rectangle(x,y,x + lw - 1,y + lh - 1,background_color,opacity);
|
|
x+=lw;
|
|
} break;
|
|
default : if (ch<font._width) {
|
|
CImg<T> letter = font[ch];
|
|
if (letter) {
|
|
const CImg<t> &mask = ch + 256U<font._width?font[ch + 256]:empty;
|
|
const int posx = x + left_paddings[i] + padding_x;
|
|
if (is_native_font && _spectrum>letter._spectrum)
|
|
letter.assign(letter.get_resize(-100,-100,1,_spectrum,0,2),false);
|
|
const unsigned int cmin = std::min(_spectrum,letter._spectrum);
|
|
if (foreground_color)
|
|
for (unsigned int c = 0; c<cmin; ++c)
|
|
if (foreground_color[c]!=1) letter.get_shared_channel(c)*=foreground_color[c]/255;
|
|
if (mask) { // Letter has mask
|
|
if (background_color)
|
|
for (unsigned int c = 0; c<cmin; ++c)
|
|
draw_rectangle(x,y,0,c,posx + letter._width - 1,y + letter._height - 1,0,c,
|
|
background_color[c],opacity);
|
|
draw_image(posx,y,letter,font[ch + 256],opacity,255.f);
|
|
} else draw_image(posx,y,letter,opacity); // Letter has no mask
|
|
x = posx + letter._width;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
// [internal] Version used to display text in interactive viewers.
|
|
CImg<T>& __draw_text(const char *const text, unsigned int &font_size, const int is_down, ...) {
|
|
CImg<charT> tmp(2048);
|
|
std::va_list ap;
|
|
va_start(ap,is_down);
|
|
cimg_vsnprintf(tmp,tmp._width,text,ap); va_end(ap);
|
|
CImg<ucharT> a_label, a_labelmask;
|
|
const unsigned char a_labelcolor = 255;
|
|
unsigned int ofs = font_size, fs = ofs;
|
|
do { // Determine best font size
|
|
a_label.assign().draw_text(0,0,"%s",&a_labelcolor,0,1,fs,tmp._data);
|
|
if (a_label._width<7*_width/10 && a_label._height>_height/20 && a_label._height<_height/5) {
|
|
font_size = fs; break;
|
|
} else if ((a_label._width>7*_width/10 || a_label._height>_height/5) && fs>13 && ofs>=fs) {
|
|
ofs = fs; fs = std::max(13U,(unsigned int)cimg::round(fs/1.25f));
|
|
} else if (a_label._width<3*_width/10 && a_label._height<_height/20 && fs<64 && ofs<=fs) {
|
|
ofs = fs; fs = std::min(64U,(unsigned int)cimg::round(fs*1.25f));
|
|
} else { font_size = fs; break; }
|
|
} while (true);
|
|
a_label.normalize(0,255);
|
|
a_label+=(255 - a_label.get_dilate(3)).normalize(0,80);
|
|
a_label.resize(-100,-100,1,3,1);
|
|
return draw_image(0,is_down?height() - a_label.height():0,a_label,0.85f);
|
|
}
|
|
|
|
//! Draw a 2D vector field.
|
|
/**
|
|
\param flow Image of 2D vectors used as input data.
|
|
\param color Pointer to \c spectrum() consecutive values, defining the drawing color.
|
|
\param opacity Drawing opacity.
|
|
\param sampling Length (in pixels) between each arrow.
|
|
\param factor Length factor of each arrow (if <0, computed as a percentage of the maximum length).
|
|
\param is_arrow Tells if arrows must be drawn, instead of oriented segments.
|
|
\param pattern Used pattern to draw lines.
|
|
\note Clipping is supported.
|
|
**/
|
|
template<typename t1, typename t2>
|
|
CImg<T>& draw_quiver(const CImg<t1>& flow,
|
|
const t2 *const color, const float opacity=1,
|
|
const unsigned int sampling=25, const float factor=-20,
|
|
const bool is_arrow=true, const unsigned int pattern=~0U) {
|
|
return draw_quiver(flow,CImg<t2>(color,_spectrum,1,1,1,true),opacity,sampling,factor,is_arrow,pattern);
|
|
}
|
|
|
|
//! Draw a 2D vector field, using a field of colors.
|
|
/**
|
|
\param flow Image of 2D vectors used as input data.
|
|
\param color Image of spectrum()-D vectors corresponding to the color of each arrow.
|
|
\param opacity Opacity of the drawing.
|
|
\param sampling Length (in pixels) between each arrow.
|
|
\param factor Length factor of each arrow (if <0, computed as a percentage of the maximum length).
|
|
\param is_arrow Tells if arrows must be drawn, instead of oriented segments.
|
|
\param pattern Used pattern to draw lines.
|
|
\note Clipping is supported.
|
|
**/
|
|
template<typename t1, typename t2>
|
|
CImg<T>& draw_quiver(const CImg<t1>& flow,
|
|
const CImg<t2>& color, const float opacity=1,
|
|
const unsigned int sampling=25, const float factor=-20,
|
|
const bool is_arrow=true, const unsigned int pattern=~0U) {
|
|
if (is_empty()) return *this;
|
|
if (!flow || flow._spectrum!=2)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_quiver(): Invalid dimensions of specified flow (%u,%u,%u,%u,%p).",
|
|
cimg_instance,
|
|
flow._width,flow._height,flow._depth,flow._spectrum,flow._data);
|
|
if (sampling<=0)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_quiver(): Invalid sampling value %g "
|
|
"(should be >0)",
|
|
cimg_instance,
|
|
sampling);
|
|
const bool colorfield = (color._width==flow._width && color._height==flow._height &&
|
|
color._depth==1 && color._spectrum==_spectrum);
|
|
if (is_overlapped(flow)) return draw_quiver(+flow,color,opacity,sampling,factor,is_arrow,pattern);
|
|
float vmax,fact;
|
|
if (factor<=0) {
|
|
float m, M = (float)flow.get_norm(2).max_min(m);
|
|
vmax = (float)std::max(cimg::abs(m),cimg::abs(M));
|
|
if (!vmax) vmax = 1;
|
|
fact = -factor;
|
|
} else { fact = factor; vmax = 1; }
|
|
|
|
for (unsigned int y = sampling/2; y<_height; y+=sampling)
|
|
for (unsigned int x = sampling/2; x<_width; x+=sampling) {
|
|
const unsigned int X = x*flow._width/_width, Y = y*flow._height/_height;
|
|
float u = (float)flow(X,Y,0,0)*fact/vmax, v = (float)flow(X,Y,0,1)*fact/vmax;
|
|
if (is_arrow) {
|
|
const int xx = (int)(x + u), yy = (int)(y + v);
|
|
if (colorfield) draw_arrow(x,y,xx,yy,color.get_vector_at(X,Y)._data,opacity,45,sampling/5.f,pattern);
|
|
else draw_arrow(x,y,xx,yy,color._data,opacity,45,sampling/5.f,pattern);
|
|
} else {
|
|
if (colorfield)
|
|
draw_line((int)(x - 0.5*u),(int)(y - 0.5*v),(int)(x + 0.5*u),(int)(y + 0.5*v),
|
|
color.get_vector_at(X,Y)._data,opacity,pattern);
|
|
else draw_line((int)(x - 0.5*u),(int)(y - 0.5*v),(int)(x + 0.5*u),(int)(y + 0.5*v),
|
|
color._data,opacity,pattern);
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a labeled horizontal axis.
|
|
/**
|
|
\param values_x Values along the horizontal axis.
|
|
\param y Y-coordinate of the horizontal axis in the image instance.
|
|
\param color Pointer to \c spectrum() consecutive values, defining the drawing color.
|
|
\param opacity Drawing opacity.
|
|
\param pattern Drawing pattern.
|
|
\param font_height Height of the labels (exact match for 13,23,53,103, interpolated otherwise).
|
|
\param allow_zero Enable/disable the drawing of label '0' if found.
|
|
**/
|
|
template<typename t, typename tc>
|
|
CImg<T>& draw_axis(const CImg<t>& values_x, const int y,
|
|
const tc *const color, const float opacity=1,
|
|
const unsigned int pattern=~0U, const unsigned int font_height=13,
|
|
const bool allow_zero=true, const float round_x=0) {
|
|
if (is_empty()) return *this;
|
|
const int yt = (y + 3 + font_height)<_height?y + 3:y - 2 - (int)font_height;
|
|
const int siz = (int)values_x.size() - 1;
|
|
CImg<charT> txt(32);
|
|
CImg<T> a_label;
|
|
if (siz<=0) { // Degenerated case
|
|
draw_line(0,y,_width - 1,y,color,opacity,pattern);
|
|
if (!siz) {
|
|
cimg_snprintf(txt,txt._width,"%g",round_x?cimg::round((double)*values_x,round_x):(double)*values_x);
|
|
a_label.assign().draw_text(0,0,txt,color,(tc*)0,opacity,font_height);
|
|
const int
|
|
_xt = (width() - a_label.width())/2,
|
|
xt = _xt<3?3:_xt + a_label.width()>=width() - 2?width() - 3 - a_label.width():_xt;
|
|
draw_point(width()/2,y - 1,color,opacity).draw_point(width()/2,y + 1,color,opacity);
|
|
if (allow_zero || *txt!='0' || txt[1]!=0)
|
|
draw_text(xt,yt,txt,color,(tc*)0,opacity,font_height);
|
|
}
|
|
} else { // Regular case
|
|
if (values_x[0]<values_x[siz]) draw_arrow(0,y,_width - 1,y,color,opacity,30,5,pattern);
|
|
else draw_arrow(_width - 1,y,0,y,color,opacity,30,5,pattern);
|
|
cimg_foroff(values_x,x) {
|
|
cimg_snprintf(txt,txt._width,"%g",round_x?cimg::round((double)values_x(x),round_x):(double)values_x(x));
|
|
a_label.assign().draw_text(0,0,txt,color,(tc*)0,opacity,font_height);
|
|
const int
|
|
xi = (int)(x*(_width - 1)/siz),
|
|
_xt = xi - a_label.width()/2,
|
|
xt = _xt<3?3:_xt + a_label.width()>=width() - 2?width() - 3 - a_label.width():_xt;
|
|
draw_point(xi,y - 1,color,opacity).draw_point(xi,y + 1,color,opacity);
|
|
if (allow_zero || *txt!='0' || txt[1]!=0)
|
|
draw_text(xt,yt,txt,color,(tc*)0,opacity,font_height);
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a labeled vertical axis.
|
|
/**
|
|
\param x X-coordinate of the vertical axis in the image instance.
|
|
\param values_y Values along the Y-axis.
|
|
\param color Pointer to \c spectrum() consecutive values, defining the drawing color.
|
|
\param opacity Drawing opacity.
|
|
\param pattern Drawing pattern.
|
|
\param font_height Height of the labels (exact match for 13,23,53,103, interpolated otherwise).
|
|
\param allow_zero Enable/disable the drawing of label '0' if found.
|
|
**/
|
|
template<typename t, typename tc>
|
|
CImg<T>& draw_axis(const int x, const CImg<t>& values_y,
|
|
const tc *const color, const float opacity=1,
|
|
const unsigned int pattern=~0U, const unsigned int font_height=13,
|
|
const bool allow_zero=true, const float round_y=0) {
|
|
if (is_empty()) return *this;
|
|
int siz = (int)values_y.size() - 1;
|
|
CImg<charT> txt(32);
|
|
CImg<T> a_label;
|
|
if (siz<=0) { // Degenerated case
|
|
draw_line(x,0,x,_height - 1,color,opacity,pattern);
|
|
if (!siz) {
|
|
cimg_snprintf(txt,txt._width,"%g",round_y?cimg::round((double)*values_y,round_y):(double)*values_y);
|
|
a_label.assign().draw_text(0,0,txt,color,(tc*)0,opacity,font_height);
|
|
const int
|
|
_yt = (height() - a_label.height())/2,
|
|
yt = _yt<0?0:_yt + a_label.height()>=height()?height() - 1 - a_label.height():_yt,
|
|
_xt = x - 2 - a_label.width(),
|
|
xt = _xt>=0?_xt:x + 3;
|
|
draw_point(x - 1,height()/2,color,opacity).draw_point(x + 1,height()/2,color,opacity);
|
|
if (allow_zero || *txt!='0' || txt[1]!=0)
|
|
draw_text(xt,yt,txt,color,(tc*)0,opacity,font_height);
|
|
}
|
|
} else { // Regular case
|
|
if (values_y[0]<values_y[siz]) draw_arrow(x,0,x,_height - 1,color,opacity,30,5,pattern);
|
|
else draw_arrow(x,_height - 1,x,0,color,opacity,30,5,pattern);
|
|
cimg_foroff(values_y,y) {
|
|
cimg_snprintf(txt,txt._width,"%g",round_y?cimg::round((double)values_y(y),round_y):(double)values_y(y));
|
|
a_label.assign().draw_text(0,0,txt,color,(tc*)0,opacity,font_height);
|
|
const int
|
|
yi = (int)(y*(_height - 1)/siz),
|
|
_yt = yi - a_label.height()/2,
|
|
yt = _yt<0?0:_yt + a_label.height()>=height()?height() - 1 - a_label.height():_yt,
|
|
_xt = x - 2 - a_label.width(),
|
|
xt = _xt>=0?_xt:x + 3;
|
|
draw_point(x - 1,yi,color,opacity).draw_point(x + 1,yi,color,opacity);
|
|
if (allow_zero || *txt!='0' || txt[1]!=0)
|
|
draw_text(xt,yt,txt,color,(tc*)0,opacity,font_height);
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw labeled horizontal and vertical axes.
|
|
/**
|
|
\param values_x Values along the X-axis.
|
|
\param values_y Values along the Y-axis.
|
|
\param color Pointer to \c spectrum() consecutive values, defining the drawing color.
|
|
\param opacity Drawing opacity.
|
|
\param pattern_x Drawing pattern for the X-axis.
|
|
\param pattern_y Drawing pattern for the Y-axis.
|
|
\param font_height Height of the labels (exact match for 13,23,53,103, interpolated otherwise).
|
|
\param allow_zero Enable/disable the drawing of label '0' if found.
|
|
**/
|
|
template<typename tx, typename ty, typename tc>
|
|
CImg<T>& draw_axes(const CImg<tx>& values_x, const CImg<ty>& values_y,
|
|
const tc *const color, const float opacity=1,
|
|
const unsigned int pattern_x=~0U, const unsigned int pattern_y=~0U,
|
|
const unsigned int font_height=13, const bool allow_zero=true,
|
|
const float round_x=0, const float round_y=0) {
|
|
if (is_empty()) return *this;
|
|
const CImg<tx> nvalues_x(values_x._data,values_x.size(),1,1,1,true);
|
|
const int sizx = (int)values_x.size() - 1, wm1 = width() - 1;
|
|
if (sizx>=0) {
|
|
float ox = (float)*nvalues_x;
|
|
for (unsigned int x = sizx?1U:0U; x<_width; ++x) {
|
|
const float nx = (float)nvalues_x._linear_atX((float)x*sizx/wm1);
|
|
if (nx*ox<=0) {
|
|
draw_axis(nx==0?x:x - 1,values_y,color,opacity,pattern_y,font_height,allow_zero,round_y);
|
|
break;
|
|
}
|
|
ox = nx;
|
|
}
|
|
}
|
|
const CImg<ty> nvalues_y(values_y._data,values_y.size(),1,1,1,true);
|
|
const int sizy = (int)values_y.size() - 1, hm1 = height() - 1;
|
|
if (sizy>0) {
|
|
float oy = (float)nvalues_y[0];
|
|
for (unsigned int y = sizy?1U:0U; y<_height; ++y) {
|
|
const float ny = (float)nvalues_y._linear_atX((float)y*sizy/hm1);
|
|
if (ny*oy<=0) {
|
|
draw_axis(values_x,ny==0?y:y - 1,color,opacity,pattern_x,font_height,allow_zero,round_x);
|
|
break;
|
|
}
|
|
oy = ny;
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw labeled horizontal and vertical axes \overloading.
|
|
template<typename tc>
|
|
CImg<T>& draw_axes(const float x0, const float x1, const float y0, const float y1,
|
|
const tc *const color, const float opacity=1,
|
|
const int subdivisionx=-60, const int subdivisiony=-60,
|
|
const float precisionx=0, const float precisiony=0,
|
|
const unsigned int pattern_x=~0U, const unsigned int pattern_y=~0U,
|
|
const unsigned int font_height=13) {
|
|
if (is_empty()) return *this;
|
|
const bool allow_zero = (x0*x1>0) || (y0*y1>0);
|
|
const float
|
|
dx = cimg::abs(x1 - x0), dy = cimg::abs(y1 - y0),
|
|
px = dx<=0?1:precisionx==0?(float)std::pow(10.,(int)std::log10(dx) - 2.):precisionx,
|
|
py = dy<=0?1:precisiony==0?(float)std::pow(10.,(int)std::log10(dy) - 2.):precisiony;
|
|
if (x0!=x1 && y0!=y1)
|
|
draw_axes(CImg<floatT>::sequence(subdivisionx>0?subdivisionx:1-width()/subdivisionx,x0,x1),
|
|
CImg<floatT>::sequence(subdivisiony>0?subdivisiony:1-height()/subdivisiony,y0,y1),
|
|
color,opacity,pattern_x,pattern_y,font_height,allow_zero,px,py);
|
|
else if (x0==x1 && y0!=y1)
|
|
draw_axis((int)x0,CImg<floatT>::sequence(subdivisiony>0?subdivisiony:1-height()/subdivisiony,y0,y1),
|
|
color,opacity,pattern_y,font_height,py);
|
|
else if (x0!=x1 && y0==y1)
|
|
draw_axis(CImg<floatT>::sequence(subdivisionx>0?subdivisionx:1-width()/subdivisionx,x0,x1),(int)y0,
|
|
color,opacity,pattern_x,font_height,px);
|
|
return *this;
|
|
}
|
|
|
|
//! Draw 2D grid.
|
|
/**
|
|
\param values_x X-coordinates of the vertical lines.
|
|
\param values_y Y-coordinates of the horizontal lines.
|
|
\param color Pointer to \c spectrum() consecutive values, defining the drawing color.
|
|
\param opacity Drawing opacity.
|
|
\param pattern_x Drawing pattern for vertical lines.
|
|
\param pattern_y Drawing pattern for horizontal lines.
|
|
**/
|
|
template<typename tx, typename ty, typename tc>
|
|
CImg<T>& draw_grid(const CImg<tx>& values_x, const CImg<ty>& values_y,
|
|
const tc *const color, const float opacity=1,
|
|
const unsigned int pattern_x=~0U, const unsigned int pattern_y=~0U) {
|
|
if (is_empty()) return *this;
|
|
if (values_x) cimg_foroff(values_x,x) {
|
|
const int xi = (int)values_x[x];
|
|
if (xi>=0 && xi<width()) draw_line(xi,0,xi,_height - 1,color,opacity,pattern_x);
|
|
}
|
|
if (values_y) cimg_foroff(values_y,y) {
|
|
const int yi = (int)values_y[y];
|
|
if (yi>=0 && yi<height()) draw_line(0,yi,_width - 1,yi,color,opacity,pattern_y);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw 2D grid \simplification.
|
|
template<typename tc>
|
|
CImg<T>& draw_grid(const float delta_x, const float delta_y,
|
|
const float offsetx, const float offsety,
|
|
const bool invertx, const bool inverty,
|
|
const tc *const color, const float opacity=1,
|
|
const unsigned int pattern_x=~0U, const unsigned int pattern_y=~0U) {
|
|
if (is_empty()) return *this;
|
|
CImg<uintT> seqx, seqy;
|
|
if (delta_x!=0) {
|
|
const float dx = delta_x>0?delta_x:_width*-delta_x/100;
|
|
const unsigned int nx = (unsigned int)(_width/dx);
|
|
seqx = CImg<uintT>::sequence(1 + nx,0,(unsigned int)(dx*nx));
|
|
if (offsetx) cimg_foroff(seqx,x) seqx(x) = (unsigned int)cimg::mod(seqx(x) + offsetx,(float)_width);
|
|
if (invertx) cimg_foroff(seqx,x) seqx(x) = _width - 1 - seqx(x);
|
|
}
|
|
if (delta_y!=0) {
|
|
const float dy = delta_y>0?delta_y:_height*-delta_y/100;
|
|
const unsigned int ny = (unsigned int)(_height/dy);
|
|
seqy = CImg<uintT>::sequence(1 + ny,0,(unsigned int)(dy*ny));
|
|
if (offsety) cimg_foroff(seqy,y) seqy(y) = (unsigned int)cimg::mod(seqy(y) + offsety,(float)_height);
|
|
if (inverty) cimg_foroff(seqy,y) seqy(y) = _height - 1 - seqy(y);
|
|
}
|
|
return draw_grid(seqx,seqy,color,opacity,pattern_x,pattern_y);
|
|
}
|
|
|
|
//! Draw 1D graph.
|
|
/**
|
|
\param data Image containing the graph values I = f(x).
|
|
\param color Pointer to \c spectrum() consecutive values, defining the drawing color.
|
|
\param opacity Drawing opacity.
|
|
|
|
\param plot_type Define the type of the plot:
|
|
- 0 = No plot.
|
|
- 1 = Plot using segments.
|
|
- 2 = Plot using cubic splines.
|
|
- 3 = Plot with bars.
|
|
\param vertex_type Define the type of points:
|
|
- 0 = No points.
|
|
- 1 = Point.
|
|
- 2 = Straight cross.
|
|
- 3 = Diagonal cross.
|
|
- 4 = Filled circle.
|
|
- 5 = Outlined circle.
|
|
- 6 = Square.
|
|
- 7 = Diamond.
|
|
\param ymin Lower bound of the y-range.
|
|
\param ymax Upper bound of the y-range.
|
|
\param pattern Drawing pattern.
|
|
\note
|
|
- if \c ymin==ymax==0, the y-range is computed automatically from the input samples.
|
|
**/
|
|
template<typename t, typename tc>
|
|
CImg<T>& draw_graph(const CImg<t>& data,
|
|
const tc *const color, const float opacity=1,
|
|
const unsigned int plot_type=1, const int vertex_type=1,
|
|
const double ymin=0, const double ymax=0, const unsigned int pattern=~0U) {
|
|
if (is_empty() || _height<=1) return *this;
|
|
if (!color)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_graph(): Specified color is (null).",
|
|
cimg_instance);
|
|
|
|
// Create shaded colors for displaying bar plots.
|
|
CImg<tc> color1, color2;
|
|
if (plot_type==3) {
|
|
color1.assign(_spectrum); color2.assign(_spectrum);
|
|
cimg_forC(*this,c) {
|
|
color1[c] = (tc)std::min((float)cimg::type<tc>::max(),(float)color[c]*1.2f);
|
|
color2[c] = (tc)(color[c]*0.4f);
|
|
}
|
|
}
|
|
|
|
// Compute min/max and normalization factors.
|
|
const ulongT
|
|
siz = data.size(),
|
|
_siz1 = siz - (plot_type!=3),
|
|
siz1 = _siz1?_siz1:1;
|
|
const unsigned int
|
|
_width1 = _width - (plot_type!=3),
|
|
width1 = _width1?_width1:1;
|
|
double m = ymin, M = ymax;
|
|
if (ymin==ymax) m = (double)data.max_min(M);
|
|
if (m==M) { --m; ++M; }
|
|
const float ca = (float)(M-m)/(_height - 1);
|
|
bool init_hatch = true;
|
|
|
|
// Draw graph edges
|
|
switch (plot_type%4) {
|
|
case 1 : { // Segments
|
|
int oX = 0, oY = (int)cimg::round((data[0] - m)/ca);
|
|
if (siz==1) {
|
|
const int Y = (int)cimg::round((*data - m)/ca);
|
|
draw_line(0,Y,width() - 1,Y,color,opacity,pattern);
|
|
} else {
|
|
const float fx = (float)_width/siz1;
|
|
for (ulongT off = 1; off<siz; ++off) {
|
|
const int
|
|
X = (int)cimg::round(off*fx) - 1,
|
|
Y = (int)cimg::round((data[off]-m)/ca);
|
|
draw_line(oX,oY,X,Y,color,opacity,pattern,init_hatch);
|
|
oX = X; oY = Y;
|
|
init_hatch = false;
|
|
}
|
|
}
|
|
} break;
|
|
case 2 : { // Spline
|
|
const CImg<t> ndata(data._data,siz,1,1,1,true);
|
|
int oY = (int)cimg::round((data[0] - m)/ca);
|
|
cimg_forX(*this,x) {
|
|
const int Y = (int)cimg::round((ndata._cubic_atX((float)x*siz1/width1)-m)/ca);
|
|
if (x>0) draw_line(x,oY,x + 1,Y,color,opacity,pattern,init_hatch);
|
|
init_hatch = false;
|
|
oY = Y;
|
|
}
|
|
} break;
|
|
case 3 : { // Bars
|
|
const int Y0 = (int)cimg::round(-m/ca);
|
|
const float fx = (float)_width/siz1;
|
|
int oX = 0;
|
|
cimg_foroff(data,off) {
|
|
const int
|
|
X = (int)cimg::round((off + 1)*fx) - 1,
|
|
Y = (int)cimg::round((data[off] - m)/ca);
|
|
draw_rectangle(oX,Y0,X,Y,color,opacity).
|
|
draw_line(oX,Y,oX,Y0,color2.data(),opacity).
|
|
draw_line(oX,Y0,X,Y0,Y<=Y0?color2.data():color1.data(),opacity).
|
|
draw_line(X,Y,X,Y0,color1.data(),opacity).
|
|
draw_line(oX,Y,X,Y,Y<=Y0?color1.data():color2.data(),opacity);
|
|
oX = X + 1;
|
|
}
|
|
} break;
|
|
default : break; // No edges
|
|
}
|
|
|
|
// Draw graph points
|
|
const unsigned int wb2 = plot_type==3?_width1/(2*siz):0;
|
|
const float fx = (float)_width1/siz1;
|
|
switch (vertex_type%8) {
|
|
case 1 : { // Point
|
|
cimg_foroff(data,off) {
|
|
const int
|
|
X = (int)cimg::round(off*fx + wb2),
|
|
Y = (int)cimg::round((data[off]-m)/ca);
|
|
draw_point(X,Y,color,opacity);
|
|
}
|
|
} break;
|
|
case 2 : { // Straight Cross
|
|
cimg_foroff(data,off) {
|
|
const int
|
|
X = (int)cimg::round(off*fx + wb2),
|
|
Y = (int)cimg::round((data[off]-m)/ca);
|
|
draw_line(X - 3,Y,X + 3,Y,color,opacity).draw_line(X,Y - 3,X,Y + 3,color,opacity);
|
|
}
|
|
} break;
|
|
case 3 : { // Diagonal Cross
|
|
cimg_foroff(data,off) {
|
|
const int
|
|
X = (int)cimg::round(off*fx + wb2),
|
|
Y = (int)cimg::round((data[off]-m)/ca);
|
|
draw_line(X - 3,Y - 3,X + 3,Y + 3,color,opacity).draw_line(X - 3,Y + 3,X + 3,Y - 3,color,opacity);
|
|
}
|
|
} break;
|
|
case 4 : { // Filled Circle
|
|
cimg_foroff(data,off) {
|
|
const int
|
|
X = (int)cimg::round(off*fx + wb2),
|
|
Y = (int)cimg::round((data[off]-m)/ca);
|
|
draw_circle(X,Y,3,color,opacity);
|
|
}
|
|
} break;
|
|
case 5 : { // Outlined circle
|
|
cimg_foroff(data,off) {
|
|
const int
|
|
X = (int)cimg::round(off*fx + wb2),
|
|
Y = (int)cimg::round((data[off]-m)/ca);
|
|
draw_circle(X,Y,3,color,opacity,~0U);
|
|
}
|
|
} break;
|
|
case 6 : { // Square
|
|
cimg_foroff(data,off) {
|
|
const int
|
|
X = (int)cimg::round(off*fx + wb2),
|
|
Y = (int)cimg::round((data[off]-m)/ca);
|
|
draw_rectangle(X - 3,Y - 3,X + 3,Y + 3,color,opacity,~0U);
|
|
}
|
|
} break;
|
|
case 7 : { // Diamond
|
|
cimg_foroff(data,off) {
|
|
const int
|
|
X = (int)cimg::round(off*fx + wb2),
|
|
Y = (int)cimg::round((data[off]-m)/ca);
|
|
draw_line(X,Y - 4,X + 4,Y,color,opacity).
|
|
draw_line(X + 4,Y,X,Y + 4,color,opacity).
|
|
draw_line(X,Y + 4,X - 4,Y,color,opacity).
|
|
draw_line(X - 4,Y,X,Y - 4,color,opacity);
|
|
}
|
|
} break;
|
|
default : break; // No points
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
bool _draw_fill(const int x, const int y, const int z,
|
|
const CImg<T>& ref, const float tolerance2) const {
|
|
const T *ptr1 = data(x,y,z), *ptr2 = ref._data;
|
|
const ulongT off = _width*_height*_depth;
|
|
float diff = 0;
|
|
cimg_forC(*this,c) { diff += cimg::sqr(*ptr1 - *(ptr2++)); ptr1+=off; }
|
|
return diff<=tolerance2;
|
|
}
|
|
|
|
//! Draw filled 3D region with the flood fill algorithm.
|
|
/**
|
|
\param x0 X-coordinate of the starting point of the region to fill.
|
|
\param y0 Y-coordinate of the starting point of the region to fill.
|
|
\param z0 Z-coordinate of the starting point of the region to fill.
|
|
\param color Pointer to \c spectrum() consecutive values, defining the drawing color.
|
|
\param[out] region Image that will contain the mask of the filled region mask, as an output.
|
|
\param tolerance Tolerance concerning neighborhood values.
|
|
\param opacity Opacity of the drawing.
|
|
\param is_high_connectivity Tells if 8-connexity must be used.
|
|
\return \c region is initialized with the binary mask of the filled region.
|
|
**/
|
|
template<typename tc, typename t>
|
|
CImg<T>& draw_fill(const int x0, const int y0, const int z0,
|
|
const tc *const color, const float opacity,
|
|
CImg<t> ®ion,
|
|
const float tolerance = 0,
|
|
const bool is_high_connectivity = false) {
|
|
#define _draw_fill_push(x,y,z) if (N>=stack._width) stack.resize(2*N + 1,1,1,3,0); \
|
|
stack[N] = x; stack(N,1) = y; stack(N++,2) = z
|
|
#define _draw_fill_pop(x,y,z) x = stack[--N]; y = stack(N,1); z = stack(N,2)
|
|
#define _draw_fill_is_inside(x,y,z) !_region(x,y,z) && _draw_fill(x,y,z,ref,tolerance2)
|
|
|
|
if (!containsXYZC(x0,y0,z0,0)) return *this;
|
|
const float nopacity = cimg::abs((float)opacity), copacity = 1 - std::max((float)opacity,0.f);
|
|
const float tolerance2 = cimg::sqr(tolerance);
|
|
const CImg<T> ref = get_vector_at(x0,y0,z0);
|
|
CImg<uintT> stack(256,1,1,3);
|
|
CImg<ucharT> _region(_width,_height,_depth,1,0);
|
|
unsigned int N = 0;
|
|
int x, y, z;
|
|
|
|
_draw_fill_push(x0,y0,z0);
|
|
while (N>0) {
|
|
_draw_fill_pop(x,y,z);
|
|
if (!_region(x,y,z)) {
|
|
const int yp = y - 1, yn = y + 1, zp = z - 1, zn = z + 1;
|
|
int xl = x, xr = x;
|
|
|
|
// Using these booleans reduces the number of pushes drastically.
|
|
bool is_yp = false, is_yn = false, is_zp = false, is_zn = false;
|
|
for (int step = -1; step<2; step+=2) {
|
|
while (x>=0 && x<width() && _draw_fill_is_inside(x,y,z)) {
|
|
if (yp>=0 && _draw_fill_is_inside(x,yp,z)) {
|
|
if (!is_yp) { _draw_fill_push(x,yp,z); is_yp = true; }
|
|
} else is_yp = false;
|
|
if (yn<height() && _draw_fill_is_inside(x,yn,z)) {
|
|
if (!is_yn) { _draw_fill_push(x,yn,z); is_yn = true; }
|
|
} else is_yn = false;
|
|
if (depth()>1) {
|
|
if (zp>=0 && _draw_fill_is_inside(x,y,zp)) {
|
|
if (!is_zp) { _draw_fill_push(x,y,zp); is_zp = true; }
|
|
} else is_zp = false;
|
|
if (zn<depth() && _draw_fill_is_inside(x,y,zn)) {
|
|
if (!is_zn) { _draw_fill_push(x,y,zn); is_zn = true; }
|
|
} else is_zn = false;
|
|
}
|
|
if (is_high_connectivity) {
|
|
const int xp = x - 1, xn = x + 1;
|
|
if (yp>=0 && !is_yp) {
|
|
if (xp>=0 && _draw_fill_is_inside(xp,yp,z)) {
|
|
_draw_fill_push(xp,yp,z); if (step<0) is_yp = true;
|
|
}
|
|
if (xn<width() && _draw_fill_is_inside(xn,yp,z)) {
|
|
_draw_fill_push(xn,yp,z); if (step>0) is_yp = true;
|
|
}
|
|
}
|
|
if (yn<height() && !is_yn) {
|
|
if (xp>=0 && _draw_fill_is_inside(xp,yn,z)) {
|
|
_draw_fill_push(xp,yn,z); if (step<0) is_yn = true;
|
|
}
|
|
if (xn<width() && _draw_fill_is_inside(xn,yn,z)) {
|
|
_draw_fill_push(xn,yn,z); if (step>0) is_yn = true;
|
|
}
|
|
}
|
|
if (depth()>1) {
|
|
if (zp>=0 && !is_zp) {
|
|
if (xp>=0 && _draw_fill_is_inside(xp,y,zp)) {
|
|
_draw_fill_push(xp,y,zp); if (step<0) is_zp = true;
|
|
}
|
|
if (xn<width() && _draw_fill_is_inside(xn,y,zp)) {
|
|
_draw_fill_push(xn,y,zp); if (step>0) is_zp = true;
|
|
}
|
|
|
|
if (yp>=0 && !is_yp) {
|
|
if (_draw_fill_is_inside(x,yp,zp)) { _draw_fill_push(x,yp,zp); }
|
|
if (xp>=0 && _draw_fill_is_inside(xp,yp,zp)) { _draw_fill_push(xp,yp,zp); }
|
|
if (xn<width() && _draw_fill_is_inside(xn,yp,zp)) { _draw_fill_push(xn,yp,zp); }
|
|
}
|
|
if (yn<height() && !is_yn) {
|
|
if (_draw_fill_is_inside(x,yn,zp)) { _draw_fill_push(x,yn,zp); }
|
|
if (xp>=0 && _draw_fill_is_inside(xp,yn,zp)) { _draw_fill_push(xp,yn,zp); }
|
|
if (xn<width() && _draw_fill_is_inside(xn,yn,zp)) { _draw_fill_push(xn,yn,zp); }
|
|
}
|
|
}
|
|
|
|
if (zn<depth() && !is_zn) {
|
|
if (xp>=0 && _draw_fill_is_inside(xp,y,zn)) {
|
|
_draw_fill_push(xp,y,zn); if (step<0) is_zn = true;
|
|
}
|
|
if (xn<width() && _draw_fill_is_inside(xn,y,zn)) {
|
|
_draw_fill_push(xn,y,zn); if (step>0) is_zn = true;
|
|
}
|
|
|
|
if (yp>=0 && !is_yp) {
|
|
if (_draw_fill_is_inside(x,yp,zn)) { _draw_fill_push(x,yp,zn); }
|
|
if (xp>=0 && _draw_fill_is_inside(xp,yp,zn)) { _draw_fill_push(xp,yp,zn); }
|
|
if (xn<width() && _draw_fill_is_inside(xn,yp,zn)) { _draw_fill_push(xn,yp,zn); }
|
|
}
|
|
if (yn<height() && !is_yn) {
|
|
if (_draw_fill_is_inside(x,yn,zn)) { _draw_fill_push(x,yn,zn); }
|
|
if (xp>=0 && _draw_fill_is_inside(xp,yn,zn)) { _draw_fill_push(xp,yn,zn); }
|
|
if (xn<width() && _draw_fill_is_inside(xn,yn,zn)) { _draw_fill_push(xn,yn,zn); }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
x+=step;
|
|
}
|
|
if (step<0) { xl = ++x; x = xr + 1; is_yp = is_yn = is_zp = is_zn = false; }
|
|
else xr = --x;
|
|
}
|
|
std::memset(_region.data(xl,y,z),1,xr - xl + 1);
|
|
if (opacity==1) {
|
|
if (sizeof(T)==1) {
|
|
const int dx = xr - xl + 1;
|
|
cimg_forC(*this,c) std::memset(data(xl,y,z,c),(int)color[c],dx);
|
|
} else cimg_forC(*this,c) {
|
|
const T val = (T)color[c];
|
|
T *ptri = data(xl,y,z,c); for (int k = xl; k<=xr; ++k) *(ptri++) = val;
|
|
}
|
|
} else cimg_forC(*this,c) {
|
|
const T val = (T)(color[c]*nopacity);
|
|
T *ptri = data(xl,y,z,c); for (int k = xl; k<=xr; ++k) { *ptri = (T)(val + *ptri*copacity); ++ptri; }
|
|
}
|
|
}
|
|
}
|
|
_region.move_to(region);
|
|
return *this;
|
|
}
|
|
|
|
//! Draw filled 3D region with the flood fill algorithm \simplification.
|
|
template<typename tc>
|
|
CImg<T>& draw_fill(const int x0, const int y0, const int z0,
|
|
const tc *const color, const float opacity=1,
|
|
const float tolerance=0, const bool is_high_connexity=false) {
|
|
CImg<ucharT> tmp;
|
|
return draw_fill(x0,y0,z0,color,opacity,tmp,tolerance,is_high_connexity);
|
|
}
|
|
|
|
//! Draw filled 2D region with the flood fill algorithm \simplification.
|
|
template<typename tc>
|
|
CImg<T>& draw_fill(const int x0, const int y0,
|
|
const tc *const color, const float opacity=1,
|
|
const float tolerance=0, const bool is_high_connexity=false) {
|
|
CImg<ucharT> tmp;
|
|
return draw_fill(x0,y0,0,color,opacity,tmp,tolerance,is_high_connexity);
|
|
}
|
|
|
|
//! Draw a random plasma texture.
|
|
/**
|
|
\param alpha Alpha-parameter.
|
|
\param beta Beta-parameter.
|
|
\param scale Scale-parameter.
|
|
\note Use the mid-point algorithm to render.
|
|
**/
|
|
CImg<T>& draw_plasma(const float alpha=1, const float beta=0, const unsigned int scale=8) {
|
|
if (is_empty()) return *this;
|
|
const int w = width(), h = height();
|
|
const Tfloat m = (Tfloat)cimg::type<T>::min(), M = (Tfloat)cimg::type<T>::max();
|
|
cimg_uint64 rng = (cimg::_rand(),cimg::rng());
|
|
cimg_forZC(*this,z,c) {
|
|
CImg<T> ref = get_shared_slice(z,c);
|
|
for (int delta = 1<<std::min(scale,31U); delta>1; delta>>=1) {
|
|
const int delta2 = delta>>1;
|
|
const float r = alpha*delta + beta;
|
|
|
|
// Square step.
|
|
for (int y0 = 0; y0<h; y0+=delta)
|
|
for (int x0 = 0; x0<w; x0+=delta) {
|
|
const int x1 = (x0 + delta)%w, y1 = (y0 + delta)%h, xc = (x0 + delta2)%w, yc = (y0 + delta2)%h;
|
|
const Tfloat val = (Tfloat)(0.25f*(ref(x0,y0) + ref(x0,y1) + ref(x0,y1) + ref(x1,y1)) +
|
|
r*cimg::rand(-1,1,&rng));
|
|
ref(xc,yc) = (T)(val<m?m:val>M?M:val);
|
|
}
|
|
|
|
// Diamond steps.
|
|
for (int y = -delta2; y<h; y+=delta)
|
|
for (int x0=0; x0<w; x0+=delta) {
|
|
const int y0 = cimg::mod(y,h), x1 = (x0 + delta)%w, y1 = (y + delta)%h,
|
|
xc = (x0 + delta2)%w, yc = (y + delta2)%h;
|
|
const Tfloat val = (Tfloat)(0.25f*(ref(xc,y0) + ref(x0,yc) + ref(xc,y1) + ref(x1,yc)) +
|
|
r*cimg::rand(-1,1,&rng));
|
|
ref(xc,yc) = (T)(val<m?m:val>M?M:val);
|
|
}
|
|
for (int y0 = 0; y0<h; y0+=delta)
|
|
for (int x = -delta2; x<w; x+=delta) {
|
|
const int x0 = cimg::mod(x,w), x1 = (x + delta)%w, y1 = (y0 + delta)%h,
|
|
xc = (x + delta2)%w, yc = (y0 + delta2)%h;
|
|
const Tfloat val = (Tfloat)(0.25f*(ref(xc,y0) + ref(x0,yc) + ref(xc,y1) + ref(x1,yc)) +
|
|
r*cimg::rand(-1,1,&rng));
|
|
ref(xc,yc) = (T)(val<m?m:val>M?M:val);
|
|
}
|
|
for (int y = -delta2; y<h; y+=delta)
|
|
for (int x = -delta2; x<w; x+=delta) {
|
|
const int x0 = cimg::mod(x,w), y0 = cimg::mod(y,h), x1 = (x + delta)%w, y1 = (y + delta)%h,
|
|
xc = (x + delta2)%w, yc = (y + delta2)%h;
|
|
const Tfloat val = (Tfloat)(0.25f*(ref(xc,y0) + ref(x0,yc) + ref(xc,y1) + ref(x1,yc)) +
|
|
r*cimg::rand(-1,1,&rng));
|
|
ref(xc,yc) = (T)(val<m?m:val>M?M:val);
|
|
}
|
|
}
|
|
}
|
|
cimg::srand(rng);
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a quadratic Mandelbrot or Julia 2D fractal.
|
|
/**
|
|
\param x0 X-coordinate of the upper-left pixel.
|
|
\param y0 Y-coordinate of the upper-left pixel.
|
|
\param x1 X-coordinate of the lower-right pixel.
|
|
\param y1 Y-coordinate of the lower-right pixel.
|
|
\param palette Colormap.
|
|
\param opacity Drawing opacity.
|
|
\param z0r Real part of the upper-left fractal vertex.
|
|
\param z0i Imaginary part of the upper-left fractal vertex.
|
|
\param z1r Real part of the lower-right fractal vertex.
|
|
\param z1i Imaginary part of the lower-right fractal vertex.
|
|
\param iteration_max Maximum number of iterations for each estimated point.
|
|
\param is_normalized_iteration Tells if iterations are normalized.
|
|
\param is_julia_set Tells if the Mandelbrot or Julia set is rendered.
|
|
\param param_r Real part of the Julia set parameter.
|
|
\param param_i Imaginary part of the Julia set parameter.
|
|
\note Fractal rendering is done by the Escape Time Algorithm.
|
|
**/
|
|
template<typename tc>
|
|
CImg<T>& draw_mandelbrot(const int x0, const int y0, const int x1, const int y1,
|
|
const CImg<tc>& colormap, const float opacity=1,
|
|
const double z0r=-2, const double z0i=-2, const double z1r=2, const double z1i=2,
|
|
const unsigned int iteration_max=255,
|
|
const bool is_normalized_iteration=false,
|
|
const bool is_julia_set=false,
|
|
const double param_r=0, const double param_i=0) {
|
|
if (is_empty()) return *this;
|
|
CImg<tc> palette;
|
|
if (colormap) palette.assign(colormap._data,colormap.size()/colormap._spectrum,1,1,colormap._spectrum,true);
|
|
if (palette && palette._spectrum!=_spectrum)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_mandelbrot(): Instance and specified colormap (%u,%u,%u,%u,%p) have "
|
|
"incompatible dimensions.",
|
|
cimg_instance,
|
|
colormap._width,colormap._height,colormap._depth,colormap._spectrum,colormap._data);
|
|
|
|
const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.f), ln2 = (float)std::log(2.);
|
|
const int
|
|
_x0 = cimg::cut(x0,0,width() - 1),
|
|
_y0 = cimg::cut(y0,0,height() - 1),
|
|
_x1 = cimg::cut(x1,0,width() - 1),
|
|
_y1 = cimg::cut(y1,0,height() - 1);
|
|
|
|
cimg_pragma_openmp(parallel for cimg_openmp_collapse(2)
|
|
cimg_openmp_if((1 + _x1 - _x0)*(1 + _y1 - _y0)>=(cimg_openmp_sizefactor)*2048))
|
|
for (int q = _y0; q<=_y1; ++q)
|
|
for (int p = _x0; p<=_x1; ++p) {
|
|
unsigned int iteration = 0;
|
|
const double x = z0r + p*(z1r-z0r)/_width, y = z0i + q*(z1i-z0i)/_height;
|
|
double zr, zi, cr, ci;
|
|
if (is_julia_set) { zr = x; zi = y; cr = param_r; ci = param_i; }
|
|
else { zr = param_r; zi = param_i; cr = x; ci = y; }
|
|
for (iteration=1; zr*zr + zi*zi<=4 && iteration<=iteration_max; ++iteration) {
|
|
const double temp = zr*zr - zi*zi + cr;
|
|
zi = 2*zr*zi + ci;
|
|
zr = temp;
|
|
}
|
|
if (iteration>iteration_max) {
|
|
if (palette) {
|
|
if (opacity>=1) cimg_forC(*this,c) (*this)(p,q,0,c) = (T)palette(0,c);
|
|
else cimg_forC(*this,c) (*this)(p,q,0,c) = (T)(palette(0,c)*nopacity + (*this)(p,q,0,c)*copacity);
|
|
} else {
|
|
if (opacity>=1) cimg_forC(*this,c) (*this)(p,q,0,c) = (T)0;
|
|
else cimg_forC(*this,c) (*this)(p,q,0,c) = (T)((*this)(p,q,0,c)*copacity);
|
|
}
|
|
} else if (is_normalized_iteration) {
|
|
const float
|
|
normz = (float)cimg::abs(zr*zr + zi*zi),
|
|
niteration = (float)(iteration + 1 - std::log(std::log(normz))/ln2);
|
|
if (palette) {
|
|
if (opacity>=1) cimg_forC(*this,c) (*this)(p,q,0,c) = (T)palette._linear_atX(niteration,c);
|
|
else cimg_forC(*this,c)
|
|
(*this)(p,q,0,c) = (T)(palette._linear_atX(niteration,c)*nopacity + (*this)(p,q,0,c)*copacity);
|
|
} else {
|
|
if (opacity>=1) cimg_forC(*this,c) (*this)(p,q,0,c) = (T)niteration;
|
|
else cimg_forC(*this,c) (*this)(p,q,0,c) = (T)(niteration*nopacity + (*this)(p,q,0,c)*copacity);
|
|
}
|
|
} else {
|
|
if (palette) {
|
|
if (opacity>=1) cimg_forC(*this,c) (*this)(p,q,0,c) = (T)palette._atX(iteration,c);
|
|
else cimg_forC(*this,c) (*this)(p,q,0,c) = (T)(palette(iteration,c)*nopacity + (*this)(p,q,0,c)*copacity);
|
|
} else {
|
|
if (opacity>=1) cimg_forC(*this,c) (*this)(p,q,0,c) = (T)iteration;
|
|
else cimg_forC(*this,c) (*this)(p,q,0,c) = (T)(iteration*nopacity + (*this)(p,q,0,c)*copacity);
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a quadratic Mandelbrot or Julia 2D fractal \overloading.
|
|
template<typename tc>
|
|
CImg<T>& draw_mandelbrot(const CImg<tc>& colormap, const float opacity=1,
|
|
const double z0r=-2, const double z0i=-2, const double z1r=2, const double z1i=2,
|
|
const unsigned int iteration_max=255,
|
|
const bool is_normalized_iteration=false,
|
|
const bool is_julia_set=false,
|
|
const double param_r=0, const double param_i=0) {
|
|
return draw_mandelbrot(0,0,_width - 1,_height - 1,colormap,opacity,
|
|
z0r,z0i,z1r,z1i,iteration_max,is_normalized_iteration,is_julia_set,param_r,param_i);
|
|
}
|
|
|
|
//! Draw a 1D gaussian function.
|
|
/**
|
|
\param xc X-coordinate of the gaussian center.
|
|
\param sigma Standard variation of the gaussian distribution.
|
|
\param color Pointer to \c spectrum() consecutive values, defining the drawing color.
|
|
\param opacity Drawing opacity.
|
|
**/
|
|
template<typename tc>
|
|
CImg<T>& draw_gaussian(const float xc, const float sigma,
|
|
const tc *const color, const float opacity=1) {
|
|
if (is_empty()) return *this;
|
|
if (!color)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_gaussian(): Specified color is (null).",
|
|
cimg_instance);
|
|
const float sigma2 = 2*sigma*sigma, nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.f);
|
|
const ulongT whd = (ulongT)_width*_height*_depth;
|
|
const tc *col = color;
|
|
cimg_forX(*this,x) {
|
|
const float dx = (x - xc), val = (float)std::exp(-dx*dx/sigma2);
|
|
T *ptrd = data(x,0,0,0);
|
|
if (opacity>=1) cimg_forC(*this,c) { *ptrd = (T)(val*(*col++)); ptrd+=whd; }
|
|
else cimg_forC(*this,c) { *ptrd = (T)(nopacity*val*(*col++) + *ptrd*copacity); ptrd+=whd; }
|
|
col-=_spectrum;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a 2D gaussian function.
|
|
/**
|
|
\param xc X-coordinate of the gaussian center.
|
|
\param yc Y-coordinate of the gaussian center.
|
|
\param tensor Covariance matrix (must be 2x2).
|
|
\param color Pointer to \c spectrum() consecutive values, defining the drawing color.
|
|
\param opacity Drawing opacity.
|
|
**/
|
|
template<typename t, typename tc>
|
|
CImg<T>& draw_gaussian(const float xc, const float yc, const CImg<t>& tensor,
|
|
const tc *const color, const float opacity=1) {
|
|
if (is_empty()) return *this;
|
|
if (tensor._width!=2 || tensor._height!=2 || tensor._depth!=1 || tensor._spectrum!=1)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_gaussian(): Specified tensor (%u,%u,%u,%u,%p) is not a 2x2 matrix.",
|
|
cimg_instance,
|
|
tensor._width,tensor._height,tensor._depth,tensor._spectrum,tensor._data);
|
|
if (!color)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_gaussian(): Specified color is (null).",
|
|
cimg_instance);
|
|
typedef typename CImg<t>::Tfloat tfloat;
|
|
const CImg<tfloat> invT = tensor.get_invert(), invT2 = (invT*invT)/=-2.;
|
|
const tfloat a = invT2(0,0), b = 2*invT2(1,0), c = invT2(1,1);
|
|
const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.f);
|
|
const ulongT whd = (ulongT)_width*_height*_depth;
|
|
const tc *col = color;
|
|
float dy = -yc;
|
|
cimg_forY(*this,y) {
|
|
float dx = -xc;
|
|
cimg_forX(*this,x) {
|
|
const float val = (float)std::exp(a*dx*dx + b*dx*dy + c*dy*dy);
|
|
T *ptrd = data(x,y,0,0);
|
|
if (opacity>=1) cimg_forC(*this,k) { *ptrd = (T)(val*(*col++)); ptrd+=whd; }
|
|
else cimg_forC(*this,k) { *ptrd = (T)(nopacity*val*(*col++) + *ptrd*copacity); ptrd+=whd; }
|
|
col-=_spectrum;
|
|
++dx;
|
|
}
|
|
++dy;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a 2D gaussian function \overloading.
|
|
template<typename tc>
|
|
CImg<T>& draw_gaussian(const int xc, const int yc, const float r1, const float r2, const float ru, const float rv,
|
|
const tc *const color, const float opacity=1) {
|
|
const double
|
|
a = r1*ru*ru + r2*rv*rv,
|
|
b = (r1-r2)*ru*rv,
|
|
c = r1*rv*rv + r2*ru*ru;
|
|
const CImg<Tfloat> tensor(2,2,1,1, a,b,b,c);
|
|
return draw_gaussian(xc,yc,tensor,color,opacity);
|
|
}
|
|
|
|
//! Draw a 2D gaussian function \overloading.
|
|
template<typename tc>
|
|
CImg<T>& draw_gaussian(const float xc, const float yc, const float sigma,
|
|
const tc *const color, const float opacity=1) {
|
|
return draw_gaussian(xc,yc,CImg<floatT>::diagonal(sigma,sigma),color,opacity);
|
|
}
|
|
|
|
//! Draw a 3D gaussian function \overloading.
|
|
template<typename t, typename tc>
|
|
CImg<T>& draw_gaussian(const float xc, const float yc, const float zc, const CImg<t>& tensor,
|
|
const tc *const color, const float opacity=1) {
|
|
if (is_empty()) return *this;
|
|
typedef typename CImg<t>::Tfloat tfloat;
|
|
if (tensor._width!=3 || tensor._height!=3 || tensor._depth!=1 || tensor._spectrum!=1)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_gaussian(): Specified tensor (%u,%u,%u,%u,%p) is not a 3x3 matrix.",
|
|
cimg_instance,
|
|
tensor._width,tensor._height,tensor._depth,tensor._spectrum,tensor._data);
|
|
|
|
const CImg<tfloat> invT = tensor.get_invert(), invT2 = (invT*invT)/=-2.;
|
|
const tfloat a = invT2(0,0), b = 2*invT2(1,0), c = 2*invT2(2,0), d = invT2(1,1), e = 2*invT2(2,1), f = invT2(2,2);
|
|
const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.f);
|
|
const ulongT whd = (ulongT)_width*_height*_depth;
|
|
const tc *col = color;
|
|
cimg_forXYZ(*this,x,y,z) {
|
|
const float
|
|
dx = (x - xc), dy = (y - yc), dz = (z - zc),
|
|
val = (float)std::exp(a*dx*dx + b*dx*dy + c*dx*dz + d*dy*dy + e*dy*dz + f*dz*dz);
|
|
T *ptrd = data(x,y,z,0);
|
|
if (opacity>=1) cimg_forC(*this,k) { *ptrd = (T)(val*(*col++)); ptrd+=whd; }
|
|
else cimg_forC(*this,k) { *ptrd = (T)(nopacity*val*(*col++) + *ptrd*copacity); ptrd+=whd; }
|
|
col-=_spectrum;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Draw a 3D gaussian function \overloading.
|
|
template<typename tc>
|
|
CImg<T>& draw_gaussian(const float xc, const float yc, const float zc, const float sigma,
|
|
const tc *const color, const float opacity=1) {
|
|
return draw_gaussian(xc,yc,zc,CImg<floatT>::diagonal(sigma,sigma,sigma),color,opacity);
|
|
}
|
|
|
|
//! Draw a 3D object.
|
|
/**
|
|
\param x0 X-coordinate of the 3D object position
|
|
\param y0 Y-coordinate of the 3D object position
|
|
\param z0 Z-coordinate of the 3D object position
|
|
\param vertices Image Nx3 describing 3D point coordinates
|
|
\param primitives List of P primitives
|
|
\param colors List of P color (or textures)
|
|
\param opacities Image or list of P opacities
|
|
\param render_type d Render type (0=Points, 1=Lines, 2=Faces (no light), 3=Faces (flat), 4=Faces(Gouraud)
|
|
\param is_double_sided Tells if object faces have two sides or are oriented.
|
|
\param focale length of the focale (0 for parallel projection)
|
|
\param lightx X-coordinate of the light
|
|
\param lighty Y-coordinate of the light
|
|
\param lightz Z-coordinate of the light
|
|
\param specular_lightness Amount of specular light.
|
|
\param specular_shininess Shininess of the object
|
|
\param g_opacity Global opacity of the object.
|
|
**/
|
|
template<typename tp, typename tf, typename tc, typename to>
|
|
CImg<T>& draw_object3d(const float x0, const float y0, const float z0,
|
|
const CImg<tp>& vertices, const CImgList<tf>& primitives,
|
|
const CImgList<tc>& colors, const CImg<to>& opacities,
|
|
const unsigned int render_type=4,
|
|
const bool is_double_sided=false, const float focale=700,
|
|
const float lightx=0, const float lighty=0, const float lightz=-5e8,
|
|
const float specular_lightness=0.2f, const float specular_shininess=0.1f,
|
|
const float g_opacity=1) {
|
|
return draw_object3d(x0,y0,z0,vertices,primitives,colors,opacities,render_type,
|
|
is_double_sided,focale,lightx,lighty,lightz,
|
|
specular_lightness,specular_shininess,g_opacity,CImg<floatT>::empty());
|
|
}
|
|
|
|
//! Draw a 3D object \simplification.
|
|
template<typename tp, typename tf, typename tc, typename to, typename tz>
|
|
CImg<T>& draw_object3d(const float x0, const float y0, const float z0,
|
|
const CImg<tp>& vertices, const CImgList<tf>& primitives,
|
|
const CImgList<tc>& colors, const CImg<to>& opacities,
|
|
const unsigned int render_type,
|
|
const bool is_double_sided, const float focale,
|
|
const float lightx, const float lighty, const float lightz,
|
|
const float specular_lightness, const float specular_shininess,
|
|
const float g_opacity, CImg<tz>& zbuffer) {
|
|
return _draw_object3d(0,zbuffer,x0,y0,z0,vertices,primitives,colors,opacities,
|
|
render_type,is_double_sided,focale,lightx,lighty,lightz,
|
|
specular_lightness,specular_shininess,g_opacity,1);
|
|
}
|
|
|
|
#ifdef cimg_use_board
|
|
template<typename tp, typename tf, typename tc, typename to>
|
|
CImg<T>& draw_object3d(LibBoard::Board& board,
|
|
const float x0, const float y0, const float z0,
|
|
const CImg<tp>& vertices, const CImgList<tf>& primitives,
|
|
const CImgList<tc>& colors, const CImg<to>& opacities,
|
|
const unsigned int render_type=4,
|
|
const bool is_double_sided=false, const float focale=700,
|
|
const float lightx=0, const float lighty=0, const float lightz=-5e8,
|
|
const float specular_lightness=0.2f, const float specular_shininess=0.1f,
|
|
const float g_opacity=1) {
|
|
return draw_object3d(board,x0,y0,z0,vertices,primitives,colors,opacities,render_type,
|
|
is_double_sided,focale,lightx,lighty,lightz,
|
|
specular_lightness,specular_shininess,g_opacity,CImg<floatT>::empty());
|
|
}
|
|
|
|
template<typename tp, typename tf, typename tc, typename to, typename tz>
|
|
CImg<T>& draw_object3d(LibBoard::Board& board,
|
|
const float x0, const float y0, const float z0,
|
|
const CImg<tp>& vertices, const CImgList<tf>& primitives,
|
|
const CImgList<tc>& colors, const CImg<to>& opacities,
|
|
const unsigned int render_type,
|
|
const bool is_double_sided, const float focale,
|
|
const float lightx, const float lighty, const float lightz,
|
|
const float specular_lightness, const float specular_shininess,
|
|
const float g_opacity, CImg<tz>& zbuffer) {
|
|
return _draw_object3d((void*)&board,zbuffer,x0,y0,z0,vertices,primitives,colors,opacities,
|
|
render_type,is_double_sided,focale,lightx,lighty,lightz,
|
|
specular_lightness,specular_shininess,g_opacity,1);
|
|
}
|
|
#endif
|
|
|
|
//! Draw a 3D object \simplification.
|
|
template<typename tp, typename tf, typename tc, typename to>
|
|
CImg<T>& draw_object3d(const float x0, const float y0, const float z0,
|
|
const CImg<tp>& vertices, const CImgList<tf>& primitives,
|
|
const CImgList<tc>& colors, const CImgList<to>& opacities,
|
|
const unsigned int render_type=4,
|
|
const bool is_double_sided=false, const float focale=700,
|
|
const float lightx=0, const float lighty=0, const float lightz=-5e8,
|
|
const float specular_lightness=0.2f, const float specular_shininess=0.1f,
|
|
const float g_opacity=1) {
|
|
return draw_object3d(x0,y0,z0,vertices,primitives,colors,opacities,render_type,
|
|
is_double_sided,focale,lightx,lighty,lightz,
|
|
specular_lightness,specular_shininess,g_opacity,CImg<floatT>::empty());
|
|
}
|
|
|
|
//! Draw a 3D object \simplification.
|
|
template<typename tp, typename tf, typename tc, typename to, typename tz>
|
|
CImg<T>& draw_object3d(const float x0, const float y0, const float z0,
|
|
const CImg<tp>& vertices, const CImgList<tf>& primitives,
|
|
const CImgList<tc>& colors, const CImgList<to>& opacities,
|
|
const unsigned int render_type,
|
|
const bool is_double_sided, const float focale,
|
|
const float lightx, const float lighty, const float lightz,
|
|
const float specular_lightness, const float specular_shininess,
|
|
const float g_opacity, CImg<tz>& zbuffer) {
|
|
return _draw_object3d(0,zbuffer,x0,y0,z0,vertices,primitives,colors,opacities,
|
|
render_type,is_double_sided,focale,lightx,lighty,lightz,
|
|
specular_lightness,specular_shininess,g_opacity,1);
|
|
}
|
|
|
|
#ifdef cimg_use_board
|
|
template<typename tp, typename tf, typename tc, typename to>
|
|
CImg<T>& draw_object3d(LibBoard::Board& board,
|
|
const float x0, const float y0, const float z0,
|
|
const CImg<tp>& vertices, const CImgList<tf>& primitives,
|
|
const CImgList<tc>& colors, const CImgList<to>& opacities,
|
|
const unsigned int render_type=4,
|
|
const bool is_double_sided=false, const float focale=700,
|
|
const float lightx=0, const float lighty=0, const float lightz=-5e8,
|
|
const float specular_lightness=0.2f, const float specular_shininess=0.1f,
|
|
const float g_opacity=1) {
|
|
return draw_object3d(board,x0,y0,z0,vertices,primitives,colors,opacities,render_type,
|
|
is_double_sided,focale,lightx,lighty,lightz,
|
|
specular_lightness,specular_shininess,g_opacity,CImg<floatT>::empty());
|
|
}
|
|
|
|
template<typename tp, typename tf, typename tc, typename to, typename tz>
|
|
CImg<T>& draw_object3d(LibBoard::Board& board,
|
|
const float x0, const float y0, const float z0,
|
|
const CImg<tp>& vertices, const CImgList<tf>& primitives,
|
|
const CImgList<tc>& colors, const CImgList<to>& opacities,
|
|
const unsigned int render_type,
|
|
const bool is_double_sided, const float focale,
|
|
const float lightx, const float lighty, const float lightz,
|
|
const float specular_lightness, const float specular_shininess,
|
|
const float g_opacity, CImg<tz>& zbuffer) {
|
|
return _draw_object3d((void*)&board,zbuffer,x0,y0,z0,vertices,primitives,colors,opacities,
|
|
render_type,is_double_sided,focale,lightx,lighty,lightz,
|
|
specular_lightness,specular_shininess,g_opacity,1);
|
|
}
|
|
#endif
|
|
|
|
//! Draw a 3D object \simplification.
|
|
template<typename tp, typename tf, typename tc>
|
|
CImg<T>& draw_object3d(const float x0, const float y0, const float z0,
|
|
const CImg<tp>& vertices, const CImgList<tf>& primitives,
|
|
const CImgList<tc>& colors,
|
|
const unsigned int render_type=4,
|
|
const bool is_double_sided=false, const float focale=700,
|
|
const float lightx=0, const float lighty=0, const float lightz=-5e8,
|
|
const float specular_lightness=0.2f, const float specular_shininess=0.1f,
|
|
const float g_opacity=1) {
|
|
return draw_object3d(x0,y0,z0,vertices,primitives,colors,CImg<floatT>::const_empty(),
|
|
render_type,is_double_sided,focale,lightx,lighty,lightz,
|
|
specular_lightness,specular_shininess,g_opacity,CImg<floatT>::empty());
|
|
}
|
|
|
|
//! Draw a 3D object \simplification.
|
|
template<typename tp, typename tf, typename tc, typename tz>
|
|
CImg<T>& draw_object3d(const float x0, const float y0, const float z0,
|
|
const CImg<tp>& vertices, const CImgList<tf>& primitives,
|
|
const CImgList<tc>& colors,
|
|
const unsigned int render_type,
|
|
const bool is_double_sided, const float focale,
|
|
const float lightx, const float lighty, const float lightz,
|
|
const float specular_lightness, const float specular_shininess,
|
|
const float g_opacity, CImg<tz>& zbuffer) {
|
|
return draw_object3d(x0,y0,z0,vertices,primitives,colors,CImg<floatT>::const_empty(),
|
|
render_type,is_double_sided,focale,lightx,lighty,lightz,
|
|
specular_lightness,specular_shininess,g_opacity,zbuffer);
|
|
}
|
|
|
|
#ifdef cimg_use_board
|
|
template<typename tp, typename tf, typename tc, typename to>
|
|
CImg<T>& draw_object3d(LibBoard::Board& board,
|
|
const float x0, const float y0, const float z0,
|
|
const CImg<tp>& vertices, const CImgList<tf>& primitives,
|
|
const CImgList<tc>& colors,
|
|
const unsigned int render_type=4,
|
|
const bool is_double_sided=false, const float focale=700,
|
|
const float lightx=0, const float lighty=0, const float lightz=-5e8,
|
|
const float specular_lightness=0.2f, const float specular_shininess=0.1f,
|
|
const float g_opacity=1) {
|
|
return draw_object3d(x0,y0,z0,vertices,primitives,colors,CImg<floatT>::const_empty(),
|
|
render_type,is_double_sided,focale,lightx,lighty,lightz,
|
|
specular_lightness,specular_shininess,g_opacity,CImg<floatT>::empty());
|
|
}
|
|
|
|
template<typename tp, typename tf, typename tc, typename to, typename tz>
|
|
CImg<T>& draw_object3d(LibBoard::Board& board,
|
|
const float x0, const float y0, const float z0,
|
|
const CImg<tp>& vertices, const CImgList<tf>& primitives,
|
|
const CImgList<tc>& colors,
|
|
const unsigned int render_type,
|
|
const bool is_double_sided, const float focale,
|
|
const float lightx, const float lighty, const float lightz,
|
|
const float specular_lightness, const float specular_shininess,
|
|
const float g_opacity, CImg<tz>& zbuffer) {
|
|
return draw_object3d(x0,y0,z0,vertices,primitives,colors,CImg<floatT>::const_empty(),
|
|
render_type,is_double_sided,focale,lightx,lighty,lightz,
|
|
specular_lightness,specular_shininess,g_opacity,zbuffer);
|
|
}
|
|
#endif
|
|
|
|
template<typename t, typename to>
|
|
static float __draw_object3d(const CImgList<t>& opacities, const unsigned int n_primitive, CImg<to>& opacity) {
|
|
if (n_primitive>=opacities._width || opacities[n_primitive].is_empty()) { opacity.assign(); return 1; }
|
|
if (opacities[n_primitive].size()==1) { opacity.assign(); return opacities(n_primitive,0); }
|
|
opacity.assign(opacities[n_primitive],true);
|
|
return 1.f;
|
|
}
|
|
|
|
template<typename t, typename to>
|
|
static float __draw_object3d(const CImg<t>& opacities, const unsigned int n_primitive, CImg<to>& opacity) {
|
|
opacity.assign();
|
|
return n_primitive>=opacities._width?1.f:(float)opacities[n_primitive];
|
|
}
|
|
|
|
template<typename t>
|
|
static float ___draw_object3d(const CImgList<t>& opacities, const unsigned int n_primitive) {
|
|
return n_primitive<opacities._width && opacities[n_primitive].size()==1?(float)opacities(n_primitive,0):1.f;
|
|
}
|
|
|
|
template<typename t>
|
|
static float ___draw_object3d(const CImg<t>& opacities, const unsigned int n_primitive) {
|
|
return n_primitive<opacities._width?(float)opacities[n_primitive]:1.f;
|
|
}
|
|
|
|
template<typename tz, typename tp, typename tf, typename tc, typename to>
|
|
CImg<T>& _draw_object3d(void *const pboard, CImg<tz>& zbuffer,
|
|
const float X, const float Y, const float Z,
|
|
const CImg<tp>& vertices,
|
|
const CImgList<tf>& primitives,
|
|
const CImgList<tc>& colors,
|
|
const to& opacities,
|
|
const unsigned int render_type,
|
|
const bool is_double_sided, const float focale,
|
|
const float lightx, const float lighty, const float lightz,
|
|
const float specular_lightness, const float specular_shininess,
|
|
const float g_opacity, const float sprite_scale) {
|
|
typedef typename cimg::superset2<tp,tz,float>::type tpfloat;
|
|
typedef typename to::value_type _to;
|
|
if (is_empty() || !vertices || !primitives) return *this;
|
|
CImg<char> error_message(1024);
|
|
if (!vertices.is_object3d(primitives,colors,opacities,false,error_message))
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_object3d(): Invalid specified 3D object (%u,%u) (%s).",
|
|
cimg_instance,vertices._width,primitives._width,error_message.data());
|
|
#ifndef cimg_use_board
|
|
if (pboard) return *this;
|
|
#endif
|
|
if (render_type==5) cimg::mutex(10); // Static variable used in this case, breaks thread-safety
|
|
|
|
const float
|
|
nspec = 1 - (specular_lightness<0.f?0.f:(specular_lightness>1.f?1.f:specular_lightness)),
|
|
nspec2 = 1 + (specular_shininess<0.f?0.f:specular_shininess),
|
|
nsl1 = (nspec2 - 1)/cimg::sqr(nspec - 1),
|
|
nsl2 = 1 - 2*nsl1*nspec,
|
|
nsl3 = nspec2 - nsl1 - nsl2;
|
|
|
|
// Create light texture for phong-like rendering.
|
|
CImg<floatT> light_texture;
|
|
if (render_type==5) {
|
|
if (colors._width>primitives._width) {
|
|
static CImg<floatT> default_light_texture;
|
|
static const tc *lptr = 0;
|
|
static tc ref_values[64] = {};
|
|
const CImg<tc>& img = colors.back();
|
|
bool is_same_texture = (lptr==img._data);
|
|
if (is_same_texture)
|
|
for (unsigned int r = 0, j = 0; j<8; ++j)
|
|
for (unsigned int i = 0; i<8; ++i)
|
|
if (ref_values[r++]!=img(i*img._width/9,j*img._height/9,0,(i + j)%img._spectrum)) {
|
|
is_same_texture = false; break;
|
|
}
|
|
if (!is_same_texture || default_light_texture._spectrum<_spectrum) {
|
|
(default_light_texture.assign(img,false)/=255).resize(-100,-100,1,_spectrum);
|
|
lptr = colors.back().data();
|
|
for (unsigned int r = 0, j = 0; j<8; ++j)
|
|
for (unsigned int i = 0; i<8; ++i)
|
|
ref_values[r++] = img(i*img._width/9,j*img._height/9,0,(i + j)%img._spectrum);
|
|
}
|
|
light_texture.assign(default_light_texture,true);
|
|
} else {
|
|
static CImg<floatT> default_light_texture;
|
|
static float olightx = 0, olighty = 0, olightz = 0, ospecular_shininess = 0;
|
|
if (!default_light_texture ||
|
|
lightx!=olightx || lighty!=olighty || lightz!=olightz ||
|
|
specular_shininess!=ospecular_shininess || default_light_texture._spectrum<_spectrum) {
|
|
default_light_texture.assign(512,512);
|
|
const float
|
|
dlx = lightx - X,
|
|
dly = lighty - Y,
|
|
dlz = lightz - Z,
|
|
nl = cimg::hypot(dlx,dly,dlz),
|
|
nlx = (default_light_texture._width - 1)/2*(1 + dlx/nl),
|
|
nly = (default_light_texture._height - 1)/2*(1 + dly/nl),
|
|
white[] = { 1 };
|
|
default_light_texture.draw_gaussian(nlx,nly,default_light_texture._width/3.f,white);
|
|
cimg_forXY(default_light_texture,x,y) {
|
|
const float factor = default_light_texture(x,y);
|
|
if (factor>nspec) default_light_texture(x,y) = std::min(2.f,nsl1*factor*factor + nsl2*factor + nsl3);
|
|
}
|
|
default_light_texture.resize(-100,-100,1,_spectrum);
|
|
olightx = lightx; olighty = lighty; olightz = lightz; ospecular_shininess = specular_shininess;
|
|
}
|
|
light_texture.assign(default_light_texture,true);
|
|
}
|
|
}
|
|
|
|
// Compute 3D to 2D projection.
|
|
CImg<tpfloat> projections(vertices._width,2);
|
|
tpfloat parallzmin = cimg::type<tpfloat>::max();
|
|
const float absfocale = focale?cimg::abs(focale):0;
|
|
if (absfocale) {
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(projections.size(),4096))
|
|
cimg_forX(projections,l) { // Perspective projection
|
|
const tpfloat
|
|
x = (tpfloat)vertices(l,0),
|
|
y = (tpfloat)vertices(l,1),
|
|
z = (tpfloat)vertices(l,2);
|
|
const tpfloat projectedz = z + Z + absfocale;
|
|
projections(l,1) = Y + absfocale*y/projectedz;
|
|
projections(l,0) = X + absfocale*x/projectedz;
|
|
}
|
|
} else {
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(projections.size(),4096))
|
|
cimg_forX(projections,l) { // Parallel projection
|
|
const tpfloat
|
|
x = (tpfloat)vertices(l,0),
|
|
y = (tpfloat)vertices(l,1),
|
|
z = (tpfloat)vertices(l,2);
|
|
if (z<parallzmin) parallzmin = z;
|
|
projections(l,1) = Y + y;
|
|
projections(l,0) = X + x;
|
|
}
|
|
}
|
|
|
|
const float _focale = absfocale?absfocale:(1e5f-parallzmin);
|
|
float zmax = 0;
|
|
if (zbuffer) zmax = vertices.get_shared_row(2).max();
|
|
|
|
// Compute visible primitives.
|
|
CImg<uintT> visibles(primitives._width,1,1,1,~0U);
|
|
CImg<tpfloat> zrange(primitives._width);
|
|
const tpfloat zmin = absfocale?(tpfloat)(1.5f - absfocale):cimg::type<tpfloat>::min();
|
|
bool is_forward = zbuffer?true:false;
|
|
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(primitives.size(),4096))
|
|
cimglist_for(primitives,l) {
|
|
const CImg<tf>& primitive = primitives[l];
|
|
switch (primitive.size()) {
|
|
case 1 : { // Point
|
|
CImg<_to> _opacity;
|
|
__draw_object3d(opacities,l,_opacity);
|
|
if (l<=colors.width() && (colors[l].size()!=_spectrum || _opacity)) is_forward = false;
|
|
const unsigned int i0 = (unsigned int)primitive(0);
|
|
const tpfloat z0 = Z + vertices(i0,2);
|
|
if (z0>zmin) {
|
|
visibles(l) = (unsigned int)l;
|
|
zrange(l) = z0;
|
|
}
|
|
} break;
|
|
case 5 : { // Sphere
|
|
const unsigned int
|
|
i0 = (unsigned int)primitive(0),
|
|
i1 = (unsigned int)primitive(1);
|
|
const tpfloat
|
|
Xc = 0.5f*((float)vertices(i0,0) + (float)vertices(i1,0)),
|
|
Yc = 0.5f*((float)vertices(i0,1) + (float)vertices(i1,1)),
|
|
Zc = 0.5f*((float)vertices(i0,2) + (float)vertices(i1,2)),
|
|
_zc = Z + Zc,
|
|
zc = _zc + _focale,
|
|
xc = X + Xc*(absfocale?absfocale/zc:1),
|
|
yc = Y + Yc*(absfocale?absfocale/zc:1),
|
|
radius = 0.5f*cimg::hypot(vertices(i1,0) - vertices(i0,0),
|
|
vertices(i1,1) - vertices(i0,1),
|
|
vertices(i1,2) - vertices(i0,2))*(absfocale?absfocale/zc:1),
|
|
xm = xc - radius,
|
|
ym = yc - radius,
|
|
xM = xc + radius,
|
|
yM = yc + radius;
|
|
if (xM>=0 && xm<_width && yM>=0 && ym<_height && _zc>zmin) {
|
|
visibles(l) = (unsigned int)l;
|
|
zrange(l) = _zc;
|
|
}
|
|
is_forward = false;
|
|
} break;
|
|
case 2 : case 6 : { // Segment
|
|
const unsigned int
|
|
i0 = (unsigned int)primitive(0),
|
|
i1 = (unsigned int)primitive(1);
|
|
const tpfloat
|
|
x0 = projections(i0,0), y0 = projections(i0,1), z0 = Z + vertices(i0,2),
|
|
x1 = projections(i1,0), y1 = projections(i1,1), z1 = Z + vertices(i1,2);
|
|
tpfloat xm, xM, ym, yM;
|
|
if (x0<x1) { xm = x0; xM = x1; } else { xm = x1; xM = x0; }
|
|
if (y0<y1) { ym = y0; yM = y1; } else { ym = y1; yM = y0; }
|
|
if (xM>=0 && xm<_width && yM>=0 && ym<_height && z0>zmin && z1>zmin) {
|
|
visibles(l) = (unsigned int)l;
|
|
zrange(l) = (z0 + z1)/2;
|
|
}
|
|
} break;
|
|
case 3 : case 9 : { // Triangle
|
|
const unsigned int
|
|
i0 = (unsigned int)primitive(0),
|
|
i1 = (unsigned int)primitive(1),
|
|
i2 = (unsigned int)primitive(2);
|
|
const tpfloat
|
|
x0 = projections(i0,0), y0 = projections(i0,1), z0 = Z + vertices(i0,2),
|
|
x1 = projections(i1,0), y1 = projections(i1,1), z1 = Z + vertices(i1,2),
|
|
x2 = projections(i2,0), y2 = projections(i2,1), z2 = Z + vertices(i2,2);
|
|
tpfloat xm, xM, ym, yM;
|
|
if (x0<x1) { xm = x0; xM = x1; } else { xm = x1; xM = x0; }
|
|
if (x2<xm) xm = x2;
|
|
if (x2>xM) xM = x2;
|
|
if (y0<y1) { ym = y0; yM = y1; } else { ym = y1; yM = y0; }
|
|
if (y2<ym) ym = y2;
|
|
if (y2>yM) yM = y2;
|
|
if (xM>=0 && xm<_width && yM>=0 && ym<_height && z0>zmin && z1>zmin && z2>zmin) {
|
|
const tpfloat d = (x1-x0)*(y2-y0) - (x2-x0)*(y1-y0);
|
|
if (is_double_sided || d<0) {
|
|
visibles(l) = (unsigned int)l;
|
|
zrange(l) = (z0 + z1 + z2)/3;
|
|
}
|
|
}
|
|
} break;
|
|
case 4 : case 12 : { // Quadrangle
|
|
const unsigned int
|
|
i0 = (unsigned int)primitive(0),
|
|
i1 = (unsigned int)primitive(1),
|
|
i2 = (unsigned int)primitive(2),
|
|
i3 = (unsigned int)primitive(3);
|
|
const tpfloat
|
|
x0 = projections(i0,0), y0 = projections(i0,1), z0 = Z + vertices(i0,2),
|
|
x1 = projections(i1,0), y1 = projections(i1,1), z1 = Z + vertices(i1,2),
|
|
x2 = projections(i2,0), y2 = projections(i2,1), z2 = Z + vertices(i2,2),
|
|
x3 = projections(i3,0), y3 = projections(i3,1), z3 = Z + vertices(i3,2);
|
|
tpfloat xm, xM, ym, yM;
|
|
if (x0<x1) { xm = x0; xM = x1; } else { xm = x1; xM = x0; }
|
|
if (x2<xm) xm = x2;
|
|
if (x2>xM) xM = x2;
|
|
if (x3<xm) xm = x3;
|
|
if (x3>xM) xM = x3;
|
|
if (y0<y1) { ym = y0; yM = y1; } else { ym = y1; yM = y0; }
|
|
if (y2<ym) ym = y2;
|
|
if (y2>yM) yM = y2;
|
|
if (y3<ym) ym = y3;
|
|
if (y3>yM) yM = y3;
|
|
if (xM>=0 && xm<_width && yM>=0 && ym<_height && z0>zmin && z1>zmin && z2>zmin && z3>zmin) {
|
|
const float d = (x1 - x0)*(y2 - y0) - (x2 - x0)*(y1 - y0);
|
|
if (is_double_sided || d<0) {
|
|
visibles(l) = (unsigned int)l;
|
|
zrange(l) = (z0 + z1 + z2 + z3)/4;
|
|
}
|
|
}
|
|
} break;
|
|
default :
|
|
if (render_type==5) cimg::mutex(10,0);
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_object3d(): Invalid primitive[%u] with size %u "
|
|
"(should have size 1,2,3,4,5,6,9 or 12).",
|
|
cimg_instance,
|
|
l,primitive.size());
|
|
}
|
|
}
|
|
|
|
// Force transparent primitives to be drawn last when zbuffer is activated
|
|
// (and if object contains no spheres or sprites).
|
|
if (is_forward)
|
|
cimglist_for(primitives,l)
|
|
if (___draw_object3d(opacities,l)!=1) zrange(l) = 2*zmax - zrange(l);
|
|
|
|
// Sort only visibles primitives.
|
|
unsigned int *p_visibles = visibles._data;
|
|
tpfloat *p_zrange = zrange._data;
|
|
const tpfloat *ptrz = p_zrange;
|
|
cimg_for(visibles,ptr,unsigned int) {
|
|
if (*ptr!=~0U) { *(p_visibles++) = *ptr; *(p_zrange++) = *ptrz; }
|
|
++ptrz;
|
|
}
|
|
const unsigned int nb_visibles = (unsigned int)(p_zrange - zrange._data);
|
|
if (!nb_visibles) {
|
|
if (render_type==5) cimg::mutex(10,0);
|
|
return *this;
|
|
}
|
|
CImg<uintT> permutations;
|
|
CImg<tpfloat>(zrange._data,nb_visibles,1,1,1,true).sort(permutations,is_forward);
|
|
|
|
// Compute light properties
|
|
CImg<floatT> lightprops;
|
|
switch (render_type) {
|
|
case 3 : { // Flat Shading
|
|
lightprops.assign(nb_visibles);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(nb_visibles,4096))
|
|
cimg_forX(lightprops,l) {
|
|
const CImg<tf>& primitive = primitives(visibles(permutations(l)));
|
|
const unsigned int psize = (unsigned int)primitive.size();
|
|
if (psize==3 || psize==4 || psize==9 || psize==12) {
|
|
const unsigned int
|
|
i0 = (unsigned int)primitive(0),
|
|
i1 = (unsigned int)primitive(1),
|
|
i2 = (unsigned int)primitive(2);
|
|
const tpfloat
|
|
x0 = (tpfloat)vertices(i0,0), y0 = (tpfloat)vertices(i0,1), z0 = (tpfloat)vertices(i0,2),
|
|
x1 = (tpfloat)vertices(i1,0), y1 = (tpfloat)vertices(i1,1), z1 = (tpfloat)vertices(i1,2),
|
|
x2 = (tpfloat)vertices(i2,0), y2 = (tpfloat)vertices(i2,1), z2 = (tpfloat)vertices(i2,2),
|
|
dx1 = x1 - x0, dy1 = y1 - y0, dz1 = z1 - z0,
|
|
dx2 = x2 - x0, dy2 = y2 - y0, dz2 = z2 - z0,
|
|
nx = dy1*dz2 - dz1*dy2,
|
|
ny = dz1*dx2 - dx1*dz2,
|
|
nz = dx1*dy2 - dy1*dx2,
|
|
norm = 1e-5f + cimg::hypot(nx,ny,nz),
|
|
lx = X + (x0 + x1 + x2)/3 - lightx,
|
|
ly = Y + (y0 + y1 + y2)/3 - lighty,
|
|
lz = Z + (z0 + z1 + z2)/3 - lightz,
|
|
nl = 1e-5f + cimg::hypot(lx,ly,lz),
|
|
factor = std::max(cimg::abs(-lx*nx - ly*ny - lz*nz)/(norm*nl),(tpfloat)0);
|
|
lightprops[l] = factor<=nspec?factor:(nsl1*factor*factor + nsl2*factor + nsl3);
|
|
} else lightprops[l] = 1;
|
|
}
|
|
} break;
|
|
|
|
case 4 : // Gouraud Shading
|
|
case 5 : { // Phong-Shading
|
|
CImg<tpfloat> vertices_normals(vertices._width,6,1,1,0);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(nb_visibles,4096))
|
|
for (int l = 0; l<(int)nb_visibles; ++l) {
|
|
const CImg<tf>& primitive = primitives[visibles(l)];
|
|
const unsigned int psize = (unsigned int)primitive.size();
|
|
const bool
|
|
triangle_flag = (psize==3) || (psize==9),
|
|
quadrangle_flag = (psize==4) || (psize==12);
|
|
if (triangle_flag || quadrangle_flag) {
|
|
const unsigned int
|
|
i0 = (unsigned int)primitive(0),
|
|
i1 = (unsigned int)primitive(1),
|
|
i2 = (unsigned int)primitive(2),
|
|
i3 = quadrangle_flag?(unsigned int)primitive(3):0;
|
|
const tpfloat
|
|
x0 = (tpfloat)vertices(i0,0), y0 = (tpfloat)vertices(i0,1), z0 = (tpfloat)vertices(i0,2),
|
|
x1 = (tpfloat)vertices(i1,0), y1 = (tpfloat)vertices(i1,1), z1 = (tpfloat)vertices(i1,2),
|
|
x2 = (tpfloat)vertices(i2,0), y2 = (tpfloat)vertices(i2,1), z2 = (tpfloat)vertices(i2,2),
|
|
dx1 = x1 - x0, dy1 = y1 - y0, dz1 = z1 - z0,
|
|
dx2 = x2 - x0, dy2 = y2 - y0, dz2 = z2 - z0,
|
|
nnx = dy1*dz2 - dz1*dy2,
|
|
nny = dz1*dx2 - dx1*dz2,
|
|
nnz = dx1*dy2 - dy1*dx2,
|
|
norm = 1e-5f + cimg::hypot(nnx,nny,nnz),
|
|
nx = nnx/norm,
|
|
ny = nny/norm,
|
|
nz = nnz/norm;
|
|
unsigned int ix = 0, iy = 1, iz = 2;
|
|
if (is_double_sided && nz>0) { ix = 3; iy = 4; iz = 5; }
|
|
vertices_normals(i0,ix)+=nx; vertices_normals(i0,iy)+=ny; vertices_normals(i0,iz)+=nz;
|
|
vertices_normals(i1,ix)+=nx; vertices_normals(i1,iy)+=ny; vertices_normals(i1,iz)+=nz;
|
|
vertices_normals(i2,ix)+=nx; vertices_normals(i2,iy)+=ny; vertices_normals(i2,iz)+=nz;
|
|
if (quadrangle_flag) {
|
|
vertices_normals(i3,ix)+=nx; vertices_normals(i3,iy)+=ny; vertices_normals(i3,iz)+=nz;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (is_double_sided) cimg_forX(vertices_normals,p) {
|
|
const float
|
|
nx0 = vertices_normals(p,0), ny0 = vertices_normals(p,1), nz0 = vertices_normals(p,2),
|
|
nx1 = vertices_normals(p,3), ny1 = vertices_normals(p,4), nz1 = vertices_normals(p,5),
|
|
n0 = nx0*nx0 + ny0*ny0 + nz0*nz0, n1 = nx1*nx1 + ny1*ny1 + nz1*nz1;
|
|
if (n1>n0) {
|
|
vertices_normals(p,0) = -nx1;
|
|
vertices_normals(p,1) = -ny1;
|
|
vertices_normals(p,2) = -nz1;
|
|
}
|
|
}
|
|
|
|
if (render_type==4) {
|
|
lightprops.assign(vertices._width);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(nb_visibles,4096))
|
|
cimg_forX(lightprops,l) {
|
|
const tpfloat
|
|
nx = vertices_normals(l,0),
|
|
ny = vertices_normals(l,1),
|
|
nz = vertices_normals(l,2),
|
|
norm = 1e-5f + cimg::hypot(nx,ny,nz),
|
|
lx = X + vertices(l,0) - lightx,
|
|
ly = Y + vertices(l,1) - lighty,
|
|
lz = Z + vertices(l,2) - lightz,
|
|
nl = 1e-5f + cimg::hypot(lx,ly,lz),
|
|
factor = std::max((-lx*nx - ly*ny - lz*nz)/(norm*nl),(tpfloat)0);
|
|
lightprops[l] = factor<=nspec?factor:(nsl1*factor*factor + nsl2*factor + nsl3);
|
|
}
|
|
} else {
|
|
const unsigned int
|
|
lw2 = light_texture._width/2 - 1,
|
|
lh2 = light_texture._height/2 - 1;
|
|
lightprops.assign(vertices._width,2);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(nb_visibles,4096))
|
|
cimg_forX(lightprops,l) {
|
|
const tpfloat
|
|
nx = vertices_normals(l,0),
|
|
ny = vertices_normals(l,1),
|
|
nz = vertices_normals(l,2),
|
|
norm = 1e-5f + cimg::hypot(nx,ny,nz),
|
|
nnx = nx/norm,
|
|
nny = ny/norm;
|
|
lightprops(l,0) = lw2*(1 + nnx);
|
|
lightprops(l,1) = lh2*(1 + nny);
|
|
}
|
|
}
|
|
} break;
|
|
}
|
|
|
|
// Draw visible primitives
|
|
const CImg<tc> default_color(1,_spectrum,1,1,(tc)200);
|
|
CImg<_to> _opacity;
|
|
|
|
for (unsigned int l = 0; l<nb_visibles; ++l) {
|
|
const unsigned int n_primitive = visibles(permutations(l));
|
|
const CImg<tf>& primitive = primitives[n_primitive];
|
|
const CImg<tc>
|
|
&__color = n_primitive<colors._width?colors[n_primitive]:CImg<tc>(),
|
|
_color = (__color && __color.size()!=_spectrum && __color._spectrum<_spectrum)?
|
|
__color.get_resize(-100,-100,-100,_spectrum,0):CImg<tc>(),
|
|
&color = _color?_color:(__color?__color:default_color);
|
|
const tc *const pcolor = color._data;
|
|
float opacity = __draw_object3d(opacities,n_primitive,_opacity);
|
|
if (_opacity.is_empty()) opacity*=g_opacity;
|
|
|
|
#ifdef cimg_use_board
|
|
LibBoard::Board &board = *(LibBoard::Board*)pboard;
|
|
#endif
|
|
|
|
switch (primitive.size()) {
|
|
case 1 : { // Colored point or sprite
|
|
const unsigned int n0 = (unsigned int)primitive[0];
|
|
const int x0 = cimg::uiround(projections(n0,0)), y0 = cimg::uiround(projections(n0,1));
|
|
|
|
if (_opacity.is_empty()) { // Scalar opacity
|
|
|
|
if (color.size()==_spectrum) { // Colored point
|
|
draw_point(x0,y0,pcolor,opacity);
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255));
|
|
board.drawDot((float)x0,height()-(float)y0);
|
|
}
|
|
#endif
|
|
} else { // Sprite
|
|
const tpfloat z = Z + vertices(n0,2);
|
|
const float factor = focale<0?1:sprite_scale*(absfocale?absfocale/(z + absfocale):1);
|
|
const unsigned int
|
|
_sw = (unsigned int)(color._width*factor),
|
|
_sh = (unsigned int)(color._height*factor),
|
|
sw = _sw?_sw:1, sh = _sh?_sh:1;
|
|
const int nx0 = x0 - (int)sw/2, ny0 = y0 - (int)sh/2;
|
|
if (sw<=3*_width/2 && sh<=3*_height/2 &&
|
|
(nx0 + (int)sw/2>=0 || nx0 - (int)sw/2<width() || ny0 + (int)sh/2>=0 || ny0 - (int)sh/2<height())) {
|
|
const CImg<tc>
|
|
_sprite = (sw!=color._width || sh!=color._height)?
|
|
color.get_resize(sw,sh,1,-100,render_type<=3?1:3):CImg<tc>(),
|
|
&sprite = _sprite?_sprite:color;
|
|
draw_image(nx0,ny0,sprite,opacity);
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
board.setPenColorRGBi(128,128,128);
|
|
board.setFillColor(LibBoard::Color::Null);
|
|
board.drawRectangle((float)nx0,height() - (float)ny0,sw,sh);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
} else { // Opacity mask
|
|
const tpfloat z = Z + vertices(n0,2);
|
|
const float factor = focale<0?1:sprite_scale*(absfocale?absfocale/(z + absfocale):1);
|
|
const unsigned int
|
|
_sw = (unsigned int)(std::max(color._width,_opacity._width)*factor),
|
|
_sh = (unsigned int)(std::max(color._height,_opacity._height)*factor),
|
|
sw = _sw?_sw:1, sh = _sh?_sh:1;
|
|
const int nx0 = x0 - (int)sw/2, ny0 = y0 - (int)sh/2;
|
|
if (sw<=3*_width/2 && sh<=3*_height/2 &&
|
|
(nx0 + (int)sw/2>=0 || nx0 - (int)sw/2<width() || ny0 + (int)sh/2>=0 || ny0 - (int)sh/2<height())) {
|
|
const CImg<tc>
|
|
_sprite = (sw!=color._width || sh!=color._height)?
|
|
color.get_resize(sw,sh,1,-100,render_type<=3?1:3):CImg<tc>(),
|
|
&sprite = _sprite?_sprite:color;
|
|
const CImg<_to>
|
|
_nopacity = (sw!=_opacity._width || sh!=_opacity._height)?
|
|
_opacity.get_resize(sw,sh,1,-100,render_type<=3?1:3):CImg<_to>(),
|
|
&nopacity = _nopacity?_nopacity:_opacity;
|
|
draw_image(nx0,ny0,sprite,nopacity,g_opacity);
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
board.setPenColorRGBi(128,128,128);
|
|
board.setFillColor(LibBoard::Color::Null);
|
|
board.drawRectangle((float)nx0,height() - (float)ny0,sw,sh);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
} break;
|
|
case 2 : { // Colored line
|
|
const unsigned int
|
|
n0 = (unsigned int)primitive[0],
|
|
n1 = (unsigned int)primitive[1];
|
|
const int
|
|
x0 = cimg::uiround(projections(n0,0)), y0 = cimg::uiround(projections(n0,1)),
|
|
x1 = cimg::uiround(projections(n1,0)), y1 = cimg::uiround(projections(n1,1));
|
|
const float
|
|
z0 = vertices(n0,2) + Z + _focale,
|
|
z1 = vertices(n1,2) + Z + _focale;
|
|
if (render_type) {
|
|
if (zbuffer) draw_line(zbuffer,x0,y0,z0,x1,y1,z1,pcolor,opacity);
|
|
else draw_line(x0,y0,x1,y1,pcolor,opacity);
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255));
|
|
board.drawLine((float)x0,height() - (float)y0,x1,height() - (float)y1);
|
|
}
|
|
#endif
|
|
} else {
|
|
draw_point(x0,y0,pcolor,opacity).draw_point(x1,y1,pcolor,opacity);
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255));
|
|
board.drawDot((float)x0,height() - (float)y0);
|
|
board.drawDot((float)x1,height() - (float)y1);
|
|
}
|
|
#endif
|
|
}
|
|
} break;
|
|
case 5 : { // Colored sphere
|
|
const unsigned int
|
|
n0 = (unsigned int)primitive[0],
|
|
n1 = (unsigned int)primitive[1],
|
|
is_wireframe = (unsigned int)primitive[2],
|
|
is_radius = (unsigned int)primitive[3];
|
|
float Xc,Yc,Zc,radius;
|
|
if (is_radius) {
|
|
Xc = (float)vertices(n0,0);
|
|
Yc = (float)vertices(n0,1);
|
|
Zc = (float)vertices(n0,2);
|
|
radius = cimg::hypot(vertices(n1,0) - vertices(n0,0),
|
|
vertices(n1,1) - vertices(n0,1),
|
|
vertices(n1,2) - vertices(n0,2));
|
|
} else {
|
|
Xc = 0.5f*((float)vertices(n0,0) + (float)vertices(n1,0));
|
|
Yc = 0.5f*((float)vertices(n0,1) + (float)vertices(n1,1));
|
|
Zc = 0.5f*((float)vertices(n0,2) + (float)vertices(n1,2));
|
|
radius = 0.5f*cimg::hypot(vertices(n1,0) - vertices(n0,0),
|
|
vertices(n1,1) - vertices(n0,1),
|
|
vertices(n1,2) - vertices(n0,2));
|
|
}
|
|
const float
|
|
zc = Z + Zc + _focale,
|
|
af = absfocale?absfocale/zc:1,
|
|
xc = X + Xc*af,
|
|
yc = Y + Yc*af;
|
|
radius*=af;
|
|
|
|
switch (render_type) {
|
|
case 0 :
|
|
draw_point((int)xc,(int)yc,pcolor,opacity);
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255));
|
|
board.drawDot(xc,height() - yc);
|
|
}
|
|
#endif
|
|
break;
|
|
case 1 :
|
|
draw_circle((int)xc,(int)yc,(int)radius,pcolor,opacity,~0U);
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255));
|
|
board.setFillColor(LibBoard::Color::Null);
|
|
board.drawCircle(xc,height() - yc,radius);
|
|
}
|
|
#endif
|
|
break;
|
|
default :
|
|
if (is_wireframe) draw_circle((int)xc,(int)yc,(int)radius,pcolor,opacity,~0U);
|
|
else draw_circle((int)xc,(int)yc,(int)radius,pcolor,opacity);
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255));
|
|
if (!is_wireframe) board.fillCircle(xc,height() - yc,radius);
|
|
else {
|
|
board.setFillColor(LibBoard::Color::Null);
|
|
board.drawCircle(xc,height() - yc,radius);
|
|
}
|
|
}
|
|
#endif
|
|
break;
|
|
}
|
|
} break;
|
|
case 6 : { // Textured line
|
|
if (!__color) {
|
|
if (render_type==5) cimg::mutex(10,0);
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_object3d(): Undefined texture for line primitive [%u].",
|
|
cimg_instance,n_primitive);
|
|
}
|
|
const unsigned int
|
|
n0 = (unsigned int)primitive[0],
|
|
n1 = (unsigned int)primitive[1];
|
|
const int
|
|
tx0 = (int)primitive[2], ty0 = (int)primitive[3],
|
|
tx1 = (int)primitive[4], ty1 = (int)primitive[5],
|
|
x0 = cimg::uiround(projections(n0,0)), y0 = cimg::uiround(projections(n0,1)),
|
|
x1 = cimg::uiround(projections(n1,0)), y1 = cimg::uiround(projections(n1,1));
|
|
const float
|
|
z0 = vertices(n0,2) + Z + _focale,
|
|
z1 = vertices(n1,2) + Z + _focale;
|
|
if (render_type) {
|
|
if (zbuffer) draw_line(zbuffer,x0,y0,z0,x1,y1,z1,color,tx0,ty0,tx1,ty1,opacity);
|
|
else draw_line(x0,y0,z0,x1,y1,z1,color,tx0,ty0,tx1,ty1,opacity);
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255));
|
|
board.drawLine((float)x0,height() - (float)y0,(float)x1,height() - (float)y1);
|
|
}
|
|
#endif
|
|
} else {
|
|
draw_point(x0,y0,color.get_vector_at(tx0<=0?0:tx0>=color.width()?color.width() - 1:tx0,
|
|
ty0<=0?0:ty0>=color.height()?color.height() - 1:ty0)._data,opacity).
|
|
draw_point(x1,y1,color.get_vector_at(tx1<=0?0:tx1>=color.width()?color.width() - 1:tx1,
|
|
ty1<=0?0:ty1>=color.height()?color.height() - 1:ty1)._data,opacity);
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255));
|
|
board.drawDot((float)x0,height() - (float)y0);
|
|
board.drawDot((float)x1,height() - (float)y1);
|
|
}
|
|
#endif
|
|
}
|
|
} break;
|
|
case 3 : { // Colored triangle
|
|
const unsigned int
|
|
n0 = (unsigned int)primitive[0],
|
|
n1 = (unsigned int)primitive[1],
|
|
n2 = (unsigned int)primitive[2];
|
|
const int
|
|
x0 = cimg::uiround(projections(n0,0)), y0 = cimg::uiround(projections(n0,1)),
|
|
x1 = cimg::uiround(projections(n1,0)), y1 = cimg::uiround(projections(n1,1)),
|
|
x2 = cimg::uiround(projections(n2,0)), y2 = cimg::uiround(projections(n2,1));
|
|
const float
|
|
z0 = vertices(n0,2) + Z + _focale,
|
|
z1 = vertices(n1,2) + Z + _focale,
|
|
z2 = vertices(n2,2) + Z + _focale;
|
|
switch (render_type) {
|
|
case 0 :
|
|
draw_point(x0,y0,pcolor,opacity).draw_point(x1,y1,pcolor,opacity).draw_point(x2,y2,pcolor,opacity);
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255));
|
|
board.drawDot((float)x0,height() - (float)y0);
|
|
board.drawDot((float)x1,height() - (float)y1);
|
|
board.drawDot((float)x2,height() - (float)y2);
|
|
}
|
|
#endif
|
|
break;
|
|
case 1 :
|
|
if (zbuffer)
|
|
draw_line(zbuffer,x0,y0,z0,x1,y1,z1,pcolor,opacity).draw_line(zbuffer,x0,y0,z0,x2,y2,z2,pcolor,opacity).
|
|
draw_line(zbuffer,x1,y1,z1,x2,y2,z2,pcolor,opacity);
|
|
else
|
|
draw_line(x0,y0,x1,y1,pcolor,opacity).draw_line(x0,y0,x2,y2,pcolor,opacity).
|
|
draw_line(x1,y1,x2,y2,pcolor,opacity);
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255));
|
|
board.drawLine((float)x0,height() - (float)y0,(float)x1,height() - (float)y1);
|
|
board.drawLine((float)x0,height() - (float)y0,(float)x2,height() - (float)y2);
|
|
board.drawLine((float)x1,height() - (float)y1,(float)x2,height() - (float)y2);
|
|
}
|
|
#endif
|
|
break;
|
|
case 2 :
|
|
if (zbuffer) draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,pcolor,opacity);
|
|
else draw_triangle(x0,y0,x1,y1,x2,y2,pcolor,opacity);
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255));
|
|
board.fillTriangle((float)x0,height() - (float)y0,
|
|
(float)x1,height() - (float)y1,
|
|
(float)x2,height() - (float)y2);
|
|
}
|
|
#endif
|
|
break;
|
|
case 3 :
|
|
if (zbuffer) draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,pcolor,opacity,lightprops(l));
|
|
else _draw_triangle(x0,y0,x1,y1,x2,y2,pcolor,opacity,lightprops(l));
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
const float lp = std::min(lightprops(l),1.f);
|
|
board.setPenColorRGBi((unsigned char)(color[0]*lp),
|
|
(unsigned char)(color[1]*lp),
|
|
(unsigned char)(color[2]*lp),
|
|
(unsigned char)(opacity*255));
|
|
board.fillTriangle((float)x0,height() - (float)y0,
|
|
(float)x1,height() - (float)y1,
|
|
(float)x2,height() - (float)y2);
|
|
}
|
|
#endif
|
|
break;
|
|
case 4 :
|
|
if (zbuffer)
|
|
draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,pcolor,
|
|
lightprops(n0),lightprops(n1),lightprops(n2),opacity);
|
|
else draw_triangle(x0,y0,x1,y1,x2,y2,pcolor,lightprops(n0),lightprops(n1),lightprops(n2),opacity);
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
board.setPenColorRGBi((unsigned char)(color[0]),
|
|
(unsigned char)(color[1]),
|
|
(unsigned char)(color[2]),
|
|
(unsigned char)(opacity*255));
|
|
board.fillGouraudTriangle((float)x0,height() - (float)y0,lightprops(n0),
|
|
(float)x1,height() - (float)y1,lightprops(n1),
|
|
(float)x2,height() - (float)y2,lightprops(n2));
|
|
}
|
|
#endif
|
|
break;
|
|
case 5 : {
|
|
const unsigned int
|
|
lx0 = (unsigned int)cimg::uiround(lightprops(n0,0)), ly0 = (unsigned int)cimg::uiround(lightprops(n0,1)),
|
|
lx1 = (unsigned int)cimg::uiround(lightprops(n1,0)), ly1 = (unsigned int)cimg::uiround(lightprops(n1,1)),
|
|
lx2 = (unsigned int)cimg::uiround(lightprops(n2,0)), ly2 = (unsigned int)cimg::uiround(lightprops(n2,1));
|
|
if (zbuffer)
|
|
draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,pcolor,light_texture,lx0,ly0,lx1,ly1,lx2,ly2,opacity);
|
|
else draw_triangle(x0,y0,x1,y1,x2,y2,pcolor,light_texture,lx0,ly0,lx1,ly1,lx2,ly2,opacity);
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
const float
|
|
l0 = light_texture((int)(light_texture.width()/2*(1 + lightprops(n0,0))),
|
|
(int)(light_texture.height()/2*(1 + lightprops(n0,1)))),
|
|
l1 = light_texture((int)(light_texture.width()/2*(1 + lightprops(n1,0))),
|
|
(int)(light_texture.height()/2*(1 + lightprops(n1,1)))),
|
|
l2 = light_texture((int)(light_texture.width()/2*(1 + lightprops(n2,0))),
|
|
(int)(light_texture.height()/2*(1 + lightprops(n2,1))));
|
|
board.setPenColorRGBi((unsigned char)(color[0]),
|
|
(unsigned char)(color[1]),
|
|
(unsigned char)(color[2]),
|
|
(unsigned char)(opacity*255));
|
|
board.fillGouraudTriangle((float)x0,height() - (float)y0,l0,
|
|
(float)x1,height() - (float)y1,l1,
|
|
(float)x2,height() - (float)y2,l2);
|
|
}
|
|
#endif
|
|
} break;
|
|
}
|
|
} break;
|
|
case 4 : { // Colored quadrangle
|
|
const unsigned int
|
|
n0 = (unsigned int)primitive[0],
|
|
n1 = (unsigned int)primitive[1],
|
|
n2 = (unsigned int)primitive[2],
|
|
n3 = (unsigned int)primitive[3];
|
|
const int
|
|
x0 = cimg::uiround(projections(n0,0)), y0 = cimg::uiround(projections(n0,1)),
|
|
x1 = cimg::uiround(projections(n1,0)), y1 = cimg::uiround(projections(n1,1)),
|
|
x2 = cimg::uiround(projections(n2,0)), y2 = cimg::uiround(projections(n2,1)),
|
|
x3 = cimg::uiround(projections(n3,0)), y3 = cimg::uiround(projections(n3,1)),
|
|
xc = (x0 + x1 + x2 + x3)/4, yc = (y0 + y1 + y2 + y3)/4;
|
|
const float
|
|
z0 = vertices(n0,2) + Z + _focale,
|
|
z1 = vertices(n1,2) + Z + _focale,
|
|
z2 = vertices(n2,2) + Z + _focale,
|
|
z3 = vertices(n3,2) + Z + _focale,
|
|
zc = (z0 + z1 + z2 + z3)/4;
|
|
|
|
switch (render_type) {
|
|
case 0 :
|
|
draw_point(x0,y0,pcolor,opacity).draw_point(x1,y1,pcolor,opacity).
|
|
draw_point(x2,y2,pcolor,opacity).draw_point(x3,y3,pcolor,opacity);
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255));
|
|
board.drawDot((float)x0,height() - (float)y0);
|
|
board.drawDot((float)x1,height() - (float)y1);
|
|
board.drawDot((float)x2,height() - (float)y2);
|
|
board.drawDot((float)x3,height() - (float)y3);
|
|
}
|
|
#endif
|
|
break;
|
|
case 1 :
|
|
if (zbuffer)
|
|
draw_line(zbuffer,x0,y0,z0,x1,y1,z1,pcolor,opacity).draw_line(zbuffer,x1,y1,z1,x2,y2,z2,pcolor,opacity).
|
|
draw_line(zbuffer,x2,y2,z2,x3,y3,z3,pcolor,opacity).draw_line(zbuffer,x3,y3,z3,x0,y0,z0,pcolor,opacity);
|
|
else
|
|
draw_line(x0,y0,x1,y1,pcolor,opacity).draw_line(x1,y1,x2,y2,pcolor,opacity).
|
|
draw_line(x2,y2,x3,y3,pcolor,opacity).draw_line(x3,y3,x0,y0,pcolor,opacity);
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255));
|
|
board.drawLine((float)x0,height() - (float)y0,(float)x1,height() - (float)y1);
|
|
board.drawLine((float)x1,height() - (float)y1,(float)x2,height() - (float)y2);
|
|
board.drawLine((float)x2,height() - (float)y2,(float)x3,height() - (float)y3);
|
|
board.drawLine((float)x3,height() - (float)y3,(float)x0,height() - (float)y0);
|
|
}
|
|
#endif
|
|
break;
|
|
case 2 :
|
|
if (zbuffer)
|
|
draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,pcolor,opacity).
|
|
draw_triangle(zbuffer,x0,y0,z0,x2,y2,z2,x3,y3,z3,pcolor,opacity);
|
|
else
|
|
draw_triangle(x0,y0,x1,y1,x2,y2,pcolor,opacity).draw_triangle(x0,y0,x2,y2,x3,y3,pcolor,opacity);
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255));
|
|
board.fillTriangle((float)x0,height() - (float)y0,
|
|
(float)x1,height() - (float)y1,
|
|
(float)x2,height() - (float)y2);
|
|
board.fillTriangle((float)x0,height() - (float)y0,
|
|
(float)x2,height() - (float)y2,
|
|
(float)x3,height() - (float)y3);
|
|
}
|
|
#endif
|
|
break;
|
|
case 3 :
|
|
if (zbuffer)
|
|
draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,pcolor,opacity,lightprops(l)).
|
|
draw_triangle(zbuffer,x0,y0,z0,x2,y2,z2,x3,y3,z3,pcolor,opacity,lightprops(l));
|
|
else
|
|
_draw_triangle(x0,y0,x1,y1,x2,y2,pcolor,opacity,lightprops(l)).
|
|
_draw_triangle(x0,y0,x2,y2,x3,y3,pcolor,opacity,lightprops(l));
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
const float lp = std::min(lightprops(l),1.f);
|
|
board.setPenColorRGBi((unsigned char)(color[0]*lp),
|
|
(unsigned char)(color[1]*lp),
|
|
(unsigned char)(color[2]*lp),(unsigned char)(opacity*255));
|
|
board.fillTriangle((float)x0,height() - (float)y0,
|
|
(float)x1,height() - (float)y1,
|
|
(float)x2,height() - (float)y2);
|
|
board.fillTriangle((float)x0,height() - (float)y0,
|
|
(float)x2,height() - (float)y2,
|
|
(float)x3,height() - (float)y3);
|
|
}
|
|
#endif
|
|
break;
|
|
case 4 : {
|
|
const float
|
|
lightprop0 = lightprops(n0), lightprop1 = lightprops(n1),
|
|
lightprop2 = lightprops(n2), lightprop3 = lightprops(n3),
|
|
lightpropc = (lightprop0 + lightprop1 + lightprop2 + lightprop2)/4;
|
|
if (zbuffer)
|
|
draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,xc,yc,zc,pcolor,lightprop0,lightprop1,lightpropc,opacity).
|
|
draw_triangle(zbuffer,x1,y1,z1,x2,y2,z2,xc,yc,zc,pcolor,lightprop1,lightprop2,lightpropc,opacity).
|
|
draw_triangle(zbuffer,x2,y2,z2,x3,y3,z3,xc,yc,zc,pcolor,lightprop2,lightprop3,lightpropc,opacity).
|
|
draw_triangle(zbuffer,x3,y3,z3,x0,y0,z0,xc,yc,zc,pcolor,lightprop3,lightprop0,lightpropc,opacity);
|
|
else
|
|
draw_triangle(x0,y0,x1,y1,xc,yc,pcolor,lightprop0,lightprop1,lightpropc,opacity).
|
|
draw_triangle(x1,y1,x2,y2,xc,yc,pcolor,lightprop1,lightprop2,lightpropc,opacity).
|
|
draw_triangle(x2,y2,x3,y3,xc,yc,pcolor,lightprop2,lightprop3,lightpropc,opacity).
|
|
draw_triangle(x3,y3,x0,y0,xc,yc,pcolor,lightprop3,lightprop0,lightpropc,opacity);
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
board.setPenColorRGBi((unsigned char)(color[0]),
|
|
(unsigned char)(color[1]),
|
|
(unsigned char)(color[2]),
|
|
(unsigned char)(opacity*255));
|
|
board.fillGouraudTriangle((float)x0,height() - (float)y0,lightprop0,
|
|
(float)x1,height() - (float)y1,lightprop1,
|
|
(float)x2,height() - (float)y2,lightprop2);
|
|
board.fillGouraudTriangle((float)x0,height() - (float)y0,lightprop0,
|
|
(float)x2,height() - (float)y2,lightprop2,
|
|
(float)x3,height() - (float)y3,lightprop3);
|
|
}
|
|
#endif
|
|
} break;
|
|
case 5 : {
|
|
const unsigned int
|
|
lx0 = (unsigned int)cimg::uiround(lightprops(n0,0)), ly0 = (unsigned int)cimg::uiround(lightprops(n0,1)),
|
|
lx1 = (unsigned int)cimg::uiround(lightprops(n1,0)), ly1 = (unsigned int)cimg::uiround(lightprops(n1,1)),
|
|
lx2 = (unsigned int)cimg::uiround(lightprops(n2,0)), ly2 = (unsigned int)cimg::uiround(lightprops(n2,1)),
|
|
lx3 = (unsigned int)cimg::uiround(lightprops(n3,0)), ly3 = (unsigned int)cimg::uiround(lightprops(n3,1)),
|
|
lxc = (lx0 + lx1 + lx2 + lx3)/4, lyc = (ly0 + ly1 + ly2 + ly3)/4;
|
|
if (zbuffer)
|
|
draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,xc,yc,zc,pcolor,light_texture,lx0,ly0,lx1,ly1,lxc,lyc,opacity).
|
|
draw_triangle(zbuffer,x1,y1,z1,x2,y2,z2,xc,yc,zc,pcolor,light_texture,lx1,ly1,lx2,ly2,lxc,lyc,opacity).
|
|
draw_triangle(zbuffer,x2,y2,z2,x3,y3,z3,xc,yc,zc,pcolor,light_texture,lx2,ly2,lx3,ly3,lxc,lyc,opacity).
|
|
draw_triangle(zbuffer,x3,y3,z3,x0,y0,z0,xc,yc,zc,pcolor,light_texture,lx3,ly3,lx0,ly0,lxc,lyc,opacity);
|
|
else
|
|
draw_triangle(x0,y0,x1,y1,xc,yc,pcolor,light_texture,lx0,ly0,lx1,ly1,lxc,lyc,opacity).
|
|
draw_triangle(x1,y1,x2,y2,xc,yc,pcolor,light_texture,lx1,ly1,lx2,ly2,lxc,lyc,opacity).
|
|
draw_triangle(x2,y2,x3,y3,xc,yc,pcolor,light_texture,lx2,ly2,lx3,ly3,lxc,lyc,opacity).
|
|
draw_triangle(x3,y3,x0,y0,xc,yc,pcolor,light_texture,lx3,ly3,lx0,ly0,lxc,lyc,opacity);
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
const float
|
|
l0 = light_texture((int)(light_texture.width()/2*(1 + lx0)), (int)(light_texture.height()/2*(1 + ly0))),
|
|
l1 = light_texture((int)(light_texture.width()/2*(1 + lx1)), (int)(light_texture.height()/2*(1 + ly1))),
|
|
l2 = light_texture((int)(light_texture.width()/2*(1 + lx2)), (int)(light_texture.height()/2*(1 + ly2))),
|
|
l3 = light_texture((int)(light_texture.width()/2*(1 + lx3)), (int)(light_texture.height()/2*(1 + ly3)));
|
|
board.setPenColorRGBi((unsigned char)(color[0]),
|
|
(unsigned char)(color[1]),
|
|
(unsigned char)(color[2]),
|
|
(unsigned char)(opacity*255));
|
|
board.fillGouraudTriangle((float)x0,height() - (float)y0,l0,
|
|
(float)x1,height() - (float)y1,l1,
|
|
(float)x2,height() - (float)y2,l2);
|
|
board.fillGouraudTriangle((float)x0,height() - (float)y0,l0,
|
|
(float)x2,height() - (float)y2,l2,
|
|
(float)x3,height() - (float)y3,l3);
|
|
}
|
|
#endif
|
|
} break;
|
|
}
|
|
} break;
|
|
case 9 : { // Textured triangle
|
|
if (!__color) {
|
|
if (render_type==5) cimg::mutex(10,0);
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_object3d(): Undefined texture for triangle primitive [%u].",
|
|
cimg_instance,n_primitive);
|
|
}
|
|
const unsigned int
|
|
n0 = (unsigned int)primitive[0],
|
|
n1 = (unsigned int)primitive[1],
|
|
n2 = (unsigned int)primitive[2];
|
|
const int
|
|
tx0 = (int)primitive[3], ty0 = (int)primitive[4],
|
|
tx1 = (int)primitive[5], ty1 = (int)primitive[6],
|
|
tx2 = (int)primitive[7], ty2 = (int)primitive[8],
|
|
x0 = cimg::uiround(projections(n0,0)), y0 = cimg::uiround(projections(n0,1)),
|
|
x1 = cimg::uiround(projections(n1,0)), y1 = cimg::uiround(projections(n1,1)),
|
|
x2 = cimg::uiround(projections(n2,0)), y2 = cimg::uiround(projections(n2,1));
|
|
const float
|
|
z0 = vertices(n0,2) + Z + _focale,
|
|
z1 = vertices(n1,2) + Z + _focale,
|
|
z2 = vertices(n2,2) + Z + _focale;
|
|
switch (render_type) {
|
|
case 0 :
|
|
draw_point(x0,y0,color.get_vector_at(tx0<=0?0:tx0>=color.width()?color.width() - 1:tx0,
|
|
ty0<=0?0:ty0>=color.height()?color.height() - 1:ty0)._data,opacity).
|
|
draw_point(x1,y1,color.get_vector_at(tx1<=0?0:tx1>=color.width()?color.width() - 1:tx1,
|
|
ty1<=0?0:ty1>=color.height()?color.height() - 1:ty1)._data,opacity).
|
|
draw_point(x2,y2,color.get_vector_at(tx2<=0?0:tx2>=color.width()?color.width() - 1:tx2,
|
|
ty2<=0?0:ty2>=color.height()?color.height() - 1:ty2)._data,opacity);
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255));
|
|
board.drawDot((float)x0,height() - (float)y0);
|
|
board.drawDot((float)x1,height() - (float)y1);
|
|
board.drawDot((float)x2,height() - (float)y2);
|
|
}
|
|
#endif
|
|
break;
|
|
case 1 :
|
|
if (zbuffer)
|
|
draw_line(zbuffer,x0,y0,z0,x1,y1,z1,color,tx0,ty0,tx1,ty1,opacity).
|
|
draw_line(zbuffer,x0,y0,z0,x2,y2,z2,color,tx0,ty0,tx2,ty2,opacity).
|
|
draw_line(zbuffer,x1,y1,z1,x2,y2,z2,color,tx1,ty1,tx2,ty2,opacity);
|
|
else
|
|
draw_line(x0,y0,z0,x1,y1,z1,color,tx0,ty0,tx1,ty1,opacity).
|
|
draw_line(x0,y0,z0,x2,y2,z2,color,tx0,ty0,tx2,ty2,opacity).
|
|
draw_line(x1,y1,z1,x2,y2,z2,color,tx1,ty1,tx2,ty2,opacity);
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255));
|
|
board.drawLine((float)x0,height() - (float)y0,(float)x1,height() - (float)y1);
|
|
board.drawLine((float)x0,height() - (float)y0,(float)x2,height() - (float)y2);
|
|
board.drawLine((float)x1,height() - (float)y1,(float)x2,height() - (float)y2);
|
|
}
|
|
#endif
|
|
break;
|
|
case 2 :
|
|
if (zbuffer) draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,opacity);
|
|
else draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,opacity);
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255));
|
|
board.fillTriangle((float)x0,height() - (float)y0,
|
|
(float)x1,height() - (float)y1,
|
|
(float)x2,height() - (float)y2);
|
|
}
|
|
#endif
|
|
break;
|
|
case 3 :
|
|
if (zbuffer)
|
|
draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,opacity,lightprops(l));
|
|
else draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,opacity,lightprops(l));
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
const float lp = std::min(lightprops(l),1.f);
|
|
board.setPenColorRGBi((unsigned char)(128*lp),
|
|
(unsigned char)(128*lp),
|
|
(unsigned char)(128*lp),
|
|
(unsigned char)(opacity*255));
|
|
board.fillTriangle((float)x0,height() - (float)y0,
|
|
(float)x1,height() - (float)y1,
|
|
(float)x2,height() - (float)y2);
|
|
}
|
|
#endif
|
|
break;
|
|
case 4 :
|
|
if (zbuffer)
|
|
draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,
|
|
lightprops(n0),lightprops(n1),lightprops(n2),opacity);
|
|
else
|
|
draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,
|
|
lightprops(n0),lightprops(n1),lightprops(n2),opacity);
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255));
|
|
board.fillGouraudTriangle((float)x0,height() - (float)y0,lightprops(n0),
|
|
(float)x1,height() - (float)y1,lightprops(n1),
|
|
(float)x2,height() - (float)y2,lightprops(n2));
|
|
}
|
|
#endif
|
|
break;
|
|
case 5 :
|
|
if (zbuffer)
|
|
draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,light_texture,
|
|
(unsigned int)lightprops(n0,0),(unsigned int)lightprops(n0,1),
|
|
(unsigned int)lightprops(n1,0),(unsigned int)lightprops(n1,1),
|
|
(unsigned int)lightprops(n2,0),(unsigned int)lightprops(n2,1),
|
|
opacity);
|
|
else
|
|
draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,light_texture,
|
|
(unsigned int)lightprops(n0,0),(unsigned int)lightprops(n0,1),
|
|
(unsigned int)lightprops(n1,0),(unsigned int)lightprops(n1,1),
|
|
(unsigned int)lightprops(n2,0),(unsigned int)lightprops(n2,1),
|
|
opacity);
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
const float
|
|
l0 = light_texture((int)(light_texture.width()/2*(1 + lightprops(n0,0))),
|
|
(int)(light_texture.height()/2*(1 + lightprops(n0,1)))),
|
|
l1 = light_texture((int)(light_texture.width()/2*(1 + lightprops(n1,0))),
|
|
(int)(light_texture.height()/2*(1 + lightprops(n1,1)))),
|
|
l2 = light_texture((int)(light_texture.width()/2*(1 + lightprops(n2,0))),
|
|
(int)(light_texture.height()/2*(1 + lightprops(n2,1))));
|
|
board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255));
|
|
board.fillGouraudTriangle((float)x0,height() - (float)y0,l0,
|
|
(float)x1,height() - (float)y1,l1,
|
|
(float)x2,height() - (float)y2,l2);
|
|
}
|
|
#endif
|
|
break;
|
|
}
|
|
} break;
|
|
case 12 : { // Textured quadrangle
|
|
if (!__color) {
|
|
if (render_type==5) cimg::mutex(10,0);
|
|
throw CImgArgumentException(_cimg_instance
|
|
"draw_object3d(): Undefined texture for quadrangle primitive [%u].",
|
|
cimg_instance,n_primitive);
|
|
}
|
|
const unsigned int
|
|
n0 = (unsigned int)primitive[0],
|
|
n1 = (unsigned int)primitive[1],
|
|
n2 = (unsigned int)primitive[2],
|
|
n3 = (unsigned int)primitive[3];
|
|
const int
|
|
tx0 = (int)primitive[4], ty0 = (int)primitive[5],
|
|
tx1 = (int)primitive[6], ty1 = (int)primitive[7],
|
|
tx2 = (int)primitive[8], ty2 = (int)primitive[9],
|
|
tx3 = (int)primitive[10], ty3 = (int)primitive[11],
|
|
x0 = cimg::uiround(projections(n0,0)), y0 = cimg::uiround(projections(n0,1)),
|
|
x1 = cimg::uiround(projections(n1,0)), y1 = cimg::uiround(projections(n1,1)),
|
|
x2 = cimg::uiround(projections(n2,0)), y2 = cimg::uiround(projections(n2,1)),
|
|
x3 = cimg::uiround(projections(n3,0)), y3 = cimg::uiround(projections(n3,1));
|
|
const float
|
|
z0 = vertices(n0,2) + Z + _focale,
|
|
z1 = vertices(n1,2) + Z + _focale,
|
|
z2 = vertices(n2,2) + Z + _focale,
|
|
z3 = vertices(n3,2) + Z + _focale;
|
|
|
|
switch (render_type) {
|
|
case 0 :
|
|
draw_point(x0,y0,color.get_vector_at(tx0<=0?0:tx0>=color.width()?color.width() - 1:tx0,
|
|
ty0<=0?0:ty0>=color.height()?color.height() - 1:ty0)._data,opacity).
|
|
draw_point(x1,y1,color.get_vector_at(tx1<=0?0:tx1>=color.width()?color.width() - 1:tx1,
|
|
ty1<=0?0:ty1>=color.height()?color.height() - 1:ty1)._data,opacity).
|
|
draw_point(x2,y2,color.get_vector_at(tx2<=0?0:tx2>=color.width()?color.width() - 1:tx2,
|
|
ty2<=0?0:ty2>=color.height()?color.height() - 1:ty2)._data,opacity).
|
|
draw_point(x3,y3,color.get_vector_at(tx3<=0?0:tx3>=color.width()?color.width() - 1:tx3,
|
|
ty3<=0?0:ty3>=color.height()?color.height() - 1:ty3)._data,opacity);
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255));
|
|
board.drawDot((float)x0,height() - (float)y0);
|
|
board.drawDot((float)x1,height() - (float)y1);
|
|
board.drawDot((float)x2,height() - (float)y2);
|
|
board.drawDot((float)x3,height() - (float)y3);
|
|
}
|
|
#endif
|
|
break;
|
|
case 1 :
|
|
if (zbuffer)
|
|
draw_line(zbuffer,x0,y0,z0,x1,y1,z1,color,tx0,ty0,tx1,ty1,opacity).
|
|
draw_line(zbuffer,x1,y1,z1,x2,y2,z2,color,tx1,ty1,tx2,ty2,opacity).
|
|
draw_line(zbuffer,x2,y2,z2,x3,y3,z3,color,tx2,ty2,tx3,ty3,opacity).
|
|
draw_line(zbuffer,x3,y3,z3,x0,y0,z0,color,tx3,ty3,tx0,ty0,opacity);
|
|
else
|
|
draw_line(x0,y0,z0,x1,y1,z1,color,tx0,ty0,tx1,ty1,opacity).
|
|
draw_line(x1,y1,z1,x2,y2,z2,color,tx1,ty1,tx2,ty2,opacity).
|
|
draw_line(x2,y2,z2,x3,y3,z3,color,tx2,ty2,tx3,ty3,opacity).
|
|
draw_line(x3,y3,z3,x0,y0,z0,color,tx3,ty3,tx0,ty0,opacity);
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255));
|
|
board.drawLine((float)x0,height() - (float)y0,(float)x1,height() - (float)y1);
|
|
board.drawLine((float)x1,height() - (float)y1,(float)x2,height() - (float)y2);
|
|
board.drawLine((float)x2,height() - (float)y2,(float)x3,height() - (float)y3);
|
|
board.drawLine((float)x3,height() - (float)y3,(float)x0,height() - (float)y0);
|
|
}
|
|
#endif
|
|
break;
|
|
case 2 :
|
|
if (zbuffer)
|
|
draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,opacity).
|
|
draw_triangle(zbuffer,x0,y0,z0,x2,y2,z2,x3,y3,z3,color,tx0,ty0,tx2,ty2,tx3,ty3,opacity);
|
|
else
|
|
draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,opacity).
|
|
draw_triangle(x0,y0,z0,x2,y2,z2,x3,y3,z3,color,tx0,ty0,tx2,ty2,tx3,ty3,opacity);
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255));
|
|
board.fillTriangle((float)x0,height() - (float)y0,
|
|
(float)x1,height() - (float)y1,
|
|
(float)x2,height() - (float)y2);
|
|
board.fillTriangle((float)x0,height() - (float)y0,
|
|
(float)x2,height() - (float)y2,
|
|
(float)x3,height() - (float)y3);
|
|
}
|
|
#endif
|
|
break;
|
|
case 3 :
|
|
if (zbuffer)
|
|
draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,opacity,lightprops(l)).
|
|
draw_triangle(zbuffer,x0,y0,z0,x2,y2,z2,x3,y3,z3,color,tx0,ty0,tx2,ty2,tx3,ty3,opacity,lightprops(l));
|
|
else
|
|
draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,opacity,lightprops(l)).
|
|
draw_triangle(x0,y0,z0,x2,y2,z2,x3,y3,z3,color,tx0,ty0,tx2,ty2,tx3,ty3,opacity,lightprops(l));
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
const float lp = std::min(lightprops(l),1.f);
|
|
board.setPenColorRGBi((unsigned char)(128*lp),
|
|
(unsigned char)(128*lp),
|
|
(unsigned char)(128*lp),
|
|
(unsigned char)(opacity*255));
|
|
board.fillTriangle((float)x0,height() - (float)y0,
|
|
(float)x1,height() - (float)y1,
|
|
(float)x2,height() - (float)y2);
|
|
board.fillTriangle((float)x0,height() - (float)y0,
|
|
(float)x2,height() - (float)y2,
|
|
(float)x3,height() - (float)y3);
|
|
}
|
|
#endif
|
|
break;
|
|
case 4 : {
|
|
const float
|
|
lightprop0 = lightprops(n0), lightprop1 = lightprops(n1),
|
|
lightprop2 = lightprops(n2), lightprop3 = lightprops(n3);
|
|
if (zbuffer)
|
|
draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,
|
|
lightprop0,lightprop1,lightprop2,opacity).
|
|
draw_triangle(zbuffer,x0,y0,z0,x2,y2,z2,x3,y3,z3,color,tx0,ty0,tx2,ty2,tx3,ty3,
|
|
lightprop0,lightprop2,lightprop3,opacity);
|
|
else
|
|
draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,
|
|
lightprop0,lightprop1,lightprop2,opacity).
|
|
draw_triangle(x0,y0,z0,x2,y2,z2,x3,y3,z3,color,tx0,ty0,tx2,ty2,tx3,ty3,
|
|
lightprop0,lightprop2,lightprop3,opacity);
|
|
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255));
|
|
board.fillGouraudTriangle((float)x0,height() - (float)y0,lightprop0,
|
|
(float)x1,height() - (float)y1,lightprop1,
|
|
(float)x2,height() - (float)y2,lightprop2);
|
|
board.fillGouraudTriangle((float)x0,height() -(float)y0,lightprop0,
|
|
(float)x2,height() - (float)y2,lightprop2,
|
|
(float)x3,height() - (float)y3,lightprop3);
|
|
}
|
|
#endif
|
|
} break;
|
|
case 5 : {
|
|
const unsigned int
|
|
lx0 = (unsigned int)cimg::uiround(lightprops(n0,0)), ly0 = (unsigned int)cimg::uiround(lightprops(n0,1)),
|
|
lx1 = (unsigned int)cimg::uiround(lightprops(n1,0)), ly1 = (unsigned int)cimg::uiround(lightprops(n1,1)),
|
|
lx2 = (unsigned int)cimg::uiround(lightprops(n2,0)), ly2 = (unsigned int)cimg::uiround(lightprops(n2,1)),
|
|
lx3 = (unsigned int)cimg::uiround(lightprops(n3,0)), ly3 = (unsigned int)cimg::uiround(lightprops(n3,1));
|
|
if (zbuffer)
|
|
draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,
|
|
light_texture,lx0,ly0,lx1,ly1,lx2,ly2,opacity).
|
|
draw_triangle(zbuffer,x0,y0,z0,x2,y2,z2,x3,y3,z3,color,tx0,ty0,tx2,ty2,tx3,ty3,
|
|
light_texture,lx0,ly0,lx2,ly2,lx3,ly3,opacity);
|
|
else
|
|
draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,
|
|
light_texture,lx0,ly0,lx1,ly1,lx2,ly2,opacity).
|
|
draw_triangle(x0,y0,z0,x2,y2,z2,x3,y3,z3,color,tx0,ty0,tx2,ty2,tx3,ty3,
|
|
light_texture,lx0,ly0,lx2,ly2,lx3,ly3,opacity);
|
|
#ifdef cimg_use_board
|
|
if (pboard) {
|
|
const float
|
|
l0 = light_texture((int)(light_texture.width()/2*(1 + lx0)), (int)(light_texture.height()/2*(1 + ly0))),
|
|
l1 = light_texture((int)(light_texture.width()/2*(1 + lx1)), (int)(light_texture.height()/2*(1 + ly1))),
|
|
l2 = light_texture((int)(light_texture.width()/2*(1 + lx2)), (int)(light_texture.height()/2*(1 + ly2))),
|
|
l3 = light_texture((int)(light_texture.width()/2*(1 + lx3)), (int)(light_texture.height()/2*(1 + ly3)));
|
|
board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255));
|
|
board.fillGouraudTriangle((float)x0,height() - (float)y0,l0,
|
|
(float)x1,height() - (float)y1,l1,
|
|
(float)x2,height() - (float)y2,l2);
|
|
board.fillGouraudTriangle((float)x0,height() -(float)y0,l0,
|
|
(float)x2,height() - (float)y2,l2,
|
|
(float)x3,height() - (float)y3,l3);
|
|
}
|
|
#endif
|
|
} break;
|
|
}
|
|
} break;
|
|
}
|
|
}
|
|
if (render_type==5) cimg::mutex(10,0);
|
|
return *this;
|
|
}
|
|
|
|
//@}
|
|
//---------------------------
|
|
//
|
|
//! \name Data Input
|
|
//@{
|
|
//---------------------------
|
|
|
|
//! Launch simple interface to select a shape from an image.
|
|
/**
|
|
\param disp Display window to use.
|
|
\param feature_type Type of feature to select. Can be <tt>{ 0=point | 1=line | 2=rectangle | 3=ellipse }</tt>.
|
|
\param XYZ Pointer to 3 values X,Y,Z which tells about the projection point coordinates, for volumetric images.
|
|
\param exit_on_anykey Exit function when any key is pressed.
|
|
**/
|
|
CImg<T>& select(CImgDisplay &disp,
|
|
const unsigned int feature_type=2, unsigned int *const XYZ=0,
|
|
const bool exit_on_anykey=false,
|
|
const bool is_deep_selection_default=false) {
|
|
return get_select(disp,feature_type,XYZ,exit_on_anykey,is_deep_selection_default).move_to(*this);
|
|
}
|
|
|
|
//! Simple interface to select a shape from an image \overloading.
|
|
CImg<T>& select(const char *const title,
|
|
const unsigned int feature_type=2, unsigned int *const XYZ=0,
|
|
const bool exit_on_anykey=false,
|
|
const bool is_deep_selection_default=false) {
|
|
return get_select(title,feature_type,XYZ,exit_on_anykey,is_deep_selection_default).move_to(*this);
|
|
}
|
|
|
|
//! Simple interface to select a shape from an image \newinstance.
|
|
CImg<intT> get_select(CImgDisplay &disp,
|
|
const unsigned int feature_type=2, unsigned int *const XYZ=0,
|
|
const bool exit_on_anykey=false,
|
|
const bool is_deep_selection_default=false) const {
|
|
return _select(disp,0,feature_type,XYZ,0,0,0,exit_on_anykey,true,false,is_deep_selection_default);
|
|
}
|
|
|
|
//! Simple interface to select a shape from an image \newinstance.
|
|
CImg<intT> get_select(const char *const title,
|
|
const unsigned int feature_type=2, unsigned int *const XYZ=0,
|
|
const bool exit_on_anykey=false,
|
|
const bool is_deep_selection_default=false) const {
|
|
CImgDisplay disp;
|
|
return _select(disp,title,feature_type,XYZ,0,0,0,exit_on_anykey,true,false,is_deep_selection_default);
|
|
}
|
|
|
|
CImg<intT> _select(CImgDisplay &disp, const char *const title,
|
|
const unsigned int feature_type, unsigned int *const XYZ,
|
|
const int origX, const int origY, const int origZ,
|
|
const bool exit_on_anykey,
|
|
const bool reset_view3d,
|
|
const bool force_display_z_coord,
|
|
const bool is_deep_selection_default) const {
|
|
if (is_empty()) return CImg<intT>(1,feature_type==0?3:6,1,1,-1);
|
|
if (!disp) {
|
|
disp.assign(cimg_fitscreen(_width,_height,_depth),title?title:0,1);
|
|
if (!title) disp.set_title("CImg<%s> (%ux%ux%ux%u)",pixel_type(),_width,_height,_depth,_spectrum);
|
|
} else {
|
|
if (title) disp.set_title("%s",title);
|
|
disp.move_inside_screen();
|
|
}
|
|
|
|
CImg<T> thumb;
|
|
if (width()>disp.screen_width() || height()>disp.screen_height())
|
|
get_resize(cimg_fitscreen(width(),height(),depth()),depth(),-100).move_to(thumb);
|
|
|
|
const unsigned int old_normalization = disp.normalization();
|
|
bool old_is_resized = disp.is_resized();
|
|
disp._normalization = 0;
|
|
disp.show().set_key(0).set_wheel().show_mouse();
|
|
|
|
static const unsigned char foreground_color[] = { 255,255,255 }, background_color[] = { 0,0,0 };
|
|
int area = 0, area_started = 0, area_clicked = 0, phase = 0,
|
|
X0 = (int)((XYZ?XYZ[0]:_width/2)%_width),
|
|
Y0 = (int)((XYZ?XYZ[1]:_height/2)%_height),
|
|
Z0 = (int)((XYZ?XYZ[2]:_depth/2)%_depth),
|
|
X1 =-1, Y1 = -1, Z1 = -1,
|
|
X3d = -1, Y3d = -1,
|
|
oX3d = X3d, oY3d = -1,
|
|
omx = -1, omy = -1;
|
|
float X = -1, Y = -1, Z = -1;
|
|
unsigned int key = 0, font_size = 32;
|
|
|
|
bool is_deep_selection = is_deep_selection_default,
|
|
shape_selected = false, text_down = false, visible_cursor = true;
|
|
static CImg<floatT> pose3d;
|
|
static bool is_view3d = false, is_axes = true;
|
|
if (reset_view3d) { pose3d.assign(); is_view3d = false; }
|
|
CImg<floatT> points3d, opacities3d, sel_opacities3d;
|
|
CImgList<uintT> primitives3d, sel_primitives3d;
|
|
CImgList<ucharT> colors3d, sel_colors3d;
|
|
CImg<ucharT> visu, visu0, view3d;
|
|
CImg<charT> text(1024); *text = 0;
|
|
|
|
while (!key && !disp.is_closed() && !shape_selected) {
|
|
|
|
// Handle mouse motion and selection
|
|
int
|
|
mx = disp.mouse_x(),
|
|
my = disp.mouse_y();
|
|
|
|
const float
|
|
mX = mx<0?-1.f:(float)mx*(width() + (depth()>1?depth():0))/disp.width(),
|
|
mY = my<0?-1.f:(float)my*(height() + (depth()>1?depth():0))/disp.height();
|
|
|
|
area = 0;
|
|
if (mX>=0 && mY>=0 && mX<width() && mY<height()) { area = 1; X = mX; Y = mY; Z = (float)(phase?Z1:Z0); }
|
|
if (mX>=0 && mX<width() && mY>=height()) { area = 2; X = mX; Z = mY - _height; Y = (float)(phase?Y1:Y0); }
|
|
if (mY>=0 && mX>=width() && mY<height()) { area = 3; Y = mY; Z = mX - _width; X = (float)(phase?X1:X0); }
|
|
if (mX>=width() && mY>=height()) area = 4;
|
|
if (disp.button()) { if (!area_clicked) area_clicked = area; } else area_clicked = 0;
|
|
|
|
CImg<charT> filename(32);
|
|
|
|
switch (key = disp.key()) {
|
|
#if cimg_OS!=2
|
|
case cimg::keyCTRLRIGHT :
|
|
#endif
|
|
case 0 : case cimg::keyCTRLLEFT : key = 0; break;
|
|
case cimg::keyPAGEUP :
|
|
if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { disp.set_wheel(1); key = 0; } break;
|
|
case cimg::keyPAGEDOWN :
|
|
if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { disp.set_wheel(-1); key = 0; } break;
|
|
case cimg::keyX : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
is_axes = !is_axes; disp.set_key(key,false); key = 0; visu0.assign();
|
|
} break;
|
|
case cimg::keyD : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
disp.set_fullscreen(false).
|
|
resize(CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,false),
|
|
CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,true),false).
|
|
_is_resized = true;
|
|
disp.set_key(key,false); key = 0; visu0.assign();
|
|
} break;
|
|
case cimg::keyC : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
disp.set_fullscreen(false).
|
|
resize(cimg_fitscreen(2*disp.width()/3,2*disp.height()/3,1),false)._is_resized = true;
|
|
disp.set_key(key,false); key = 0; visu0.assign();
|
|
} break;
|
|
case cimg::keyR : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
disp.set_fullscreen(false).resize(cimg_fitscreen(_width,_height,_depth),false)._is_resized = true;
|
|
disp.set_key(key,false); key = 0; visu0.assign();
|
|
} break;
|
|
case cimg::keyF : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
disp.resize(disp.screen_width(),disp.screen_height(),false).toggle_fullscreen()._is_resized = true;
|
|
disp.set_key(key,false); key = 0; visu0.assign();
|
|
} break;
|
|
case cimg::keyV : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
is_view3d = !is_view3d; disp.set_key(key,false); key = 0; visu0.assign();
|
|
} break;
|
|
case cimg::keyS : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
static unsigned int snap_number = 0;
|
|
std::FILE *file;
|
|
do {
|
|
cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.bmp",snap_number++);
|
|
if ((file=cimg::std_fopen(filename,"r"))!=0) cimg::fclose(file);
|
|
} while (file);
|
|
if (visu0) {
|
|
(+visu0).__draw_text(" Saving snapshot...",font_size,(int)text_down).display(disp);
|
|
visu0.save(filename);
|
|
(+visu0).__draw_text(" Snapshot '%s' saved. ",font_size,(int)text_down,filename._data).display(disp);
|
|
}
|
|
disp.set_key(key,false); key = 0;
|
|
} break;
|
|
case cimg::keyO : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
static unsigned int snap_number = 0;
|
|
std::FILE *file;
|
|
do {
|
|
|
|
#ifdef cimg_use_zlib
|
|
cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.cimgz",snap_number++);
|
|
#else
|
|
cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.cimg",snap_number++);
|
|
#endif
|
|
if ((file=cimg::std_fopen(filename,"r"))!=0) cimg::fclose(file);
|
|
} while (file);
|
|
(+visu0).__draw_text(" Saving instance... ",font_size,(int)text_down).display(disp);
|
|
save(filename);
|
|
(+visu0).__draw_text(" Instance '%s' saved. ",font_size,(int)text_down,filename._data).display(disp);
|
|
disp.set_key(key,false); key = 0;
|
|
} break;
|
|
}
|
|
|
|
switch (area) {
|
|
|
|
case 0 : // When mouse is out of image range
|
|
mx = my = -1; X = Y = Z = -1;
|
|
break;
|
|
|
|
case 1 : case 2 : case 3 : { // When mouse is over the XY,XZ or YZ projections
|
|
const unsigned int but = disp.button();
|
|
const bool b1 = (bool)(but&1), b2 = (bool)(but&2), b3 = (bool)(but&4);
|
|
|
|
if (b1 && phase==1 && area_clicked==area) { // When selection has been started (1st step)
|
|
if (_depth>1 && (X1!=(int)X || Y1!=(int)Y || Z1!=(int)Z)) visu0.assign();
|
|
X1 = (int)X; Y1 = (int)Y; Z1 = (int)Z;
|
|
}
|
|
if (!b1 && phase==2 && area_clicked!=area) { // When selection is at 2nd step (for volumes)
|
|
switch (area_started) {
|
|
case 1 : if (Z1!=(int)Z) visu0.assign(); Z1 = (int)Z; break;
|
|
case 2 : if (Y1!=(int)Y) visu0.assign(); Y1 = (int)Y; break;
|
|
case 3 : if (X1!=(int)X) visu0.assign(); X1 = (int)X; break;
|
|
}
|
|
}
|
|
if (b2 && area_clicked==area) { // When moving through the image/volume
|
|
if (phase) {
|
|
if (_depth>1 && (X1!=(int)X || Y1!=(int)Y || Z1!=(int)Z)) visu0.assign();
|
|
X1 = (int)X; Y1 = (int)Y; Z1 = (int)Z;
|
|
} else {
|
|
if (_depth>1 && (X0!=(int)X || Y0!=(int)Y || Z0!=(int)Z)) visu0.assign();
|
|
X0 = (int)X; Y0 = (int)Y; Z0 = (int)Z;
|
|
}
|
|
}
|
|
if (b3) { // Reset selection
|
|
X = (float)X0; Y = (float)Y0; Z = (float)Z0; phase = area = area_clicked = area_started = 0;
|
|
visu0.assign();
|
|
}
|
|
if (disp.wheel()) { // When moving through the slices of the volume (with mouse wheel)
|
|
if (_depth>1 && !disp.is_keyCTRLLEFT() && !disp.is_keyCTRLRIGHT() &&
|
|
!disp.is_keySHIFTLEFT() && !disp.is_keySHIFTRIGHT()) {
|
|
switch (area) {
|
|
case 1 :
|
|
if (phase) Z = (float)(Z1+=disp.wheel()); else Z = (float)(Z0+=disp.wheel());
|
|
visu0.assign(); break;
|
|
case 2 :
|
|
if (phase) Y = (float)(Y1+=disp.wheel()); else Y = (float)(Y0+=disp.wheel());
|
|
visu0.assign(); break;
|
|
case 3 :
|
|
if (phase) X = (float)(X1+=disp.wheel()); else X = (float)(X0+=disp.wheel());
|
|
visu0.assign(); break;
|
|
}
|
|
disp.set_wheel();
|
|
} else key = ~0U;
|
|
}
|
|
|
|
if ((phase==0 && b1) ||
|
|
(phase==1 && !b1) ||
|
|
(phase==2 && b1)) switch (phase) { // Detect change of phase
|
|
case 0 :
|
|
if (area==area_clicked) {
|
|
X0 = X1 = (int)X; Y0 = Y1 = (int)Y; Z0 = Z1 = (int)Z; area_started = area; ++phase;
|
|
} break;
|
|
case 1 :
|
|
if (area==area_started) {
|
|
X1 = (int)X; Y1 = (int)Y; Z1 = (int)Z; ++phase;
|
|
if (_depth>1) {
|
|
if (disp.is_keyCTRLLEFT()) is_deep_selection = !is_deep_selection_default;
|
|
if (is_deep_selection) ++phase;
|
|
}
|
|
} else if (!b1) { X = (float)X0; Y = (float)Y0; Z = (float)Z0; phase = 0; visu0.assign(); }
|
|
break;
|
|
case 2 : ++phase; break;
|
|
}
|
|
} break;
|
|
|
|
case 4 : // When mouse is over the 3D view
|
|
if (is_view3d && points3d) {
|
|
X3d = mx - width()*disp.width()/(width() + (depth()>1?depth():0));
|
|
Y3d = my - height()*disp.height()/(height() + (depth()>1?depth():0));
|
|
if (oX3d<0) { oX3d = X3d; oY3d = Y3d; }
|
|
// Left + right buttons: reset.
|
|
if ((disp.button()&3)==3) { pose3d.assign(); view3d.assign(); oX3d = oY3d = X3d = Y3d = -1; }
|
|
else if (disp.button()&1 && pose3d && (oX3d!=X3d || oY3d!=Y3d)) { // Left button: rotate
|
|
const float
|
|
R = 0.45f*std::min(view3d._width,view3d._height),
|
|
R2 = R*R,
|
|
u0 = (float)(oX3d - view3d.width()/2),
|
|
v0 = (float)(oY3d - view3d.height()/2),
|
|
u1 = (float)(X3d - view3d.width()/2),
|
|
v1 = (float)(Y3d - view3d.height()/2),
|
|
n0 = cimg::hypot(u0,v0),
|
|
n1 = cimg::hypot(u1,v1),
|
|
nu0 = n0>R?(u0*R/n0):u0,
|
|
nv0 = n0>R?(v0*R/n0):v0,
|
|
nw0 = (float)std::sqrt(std::max(0.f,R2 - nu0*nu0 - nv0*nv0)),
|
|
nu1 = n1>R?(u1*R/n1):u1,
|
|
nv1 = n1>R?(v1*R/n1):v1,
|
|
nw1 = (float)std::sqrt(std::max(0.f,R2 - nu1*nu1 - nv1*nv1)),
|
|
u = nv0*nw1 - nw0*nv1,
|
|
v = nw0*nu1 - nu0*nw1,
|
|
w = nv0*nu1 - nu0*nv1,
|
|
n = cimg::hypot(u,v,w),
|
|
alpha = (float)std::asin(n/R2)*180/cimg::PI;
|
|
pose3d.draw_image(CImg<floatT>::rotation_matrix(u,v,w,-alpha)*pose3d.get_crop(0,0,2,2));
|
|
view3d.assign();
|
|
} else if (disp.button()&2 && pose3d && oY3d!=Y3d) { // Right button: zoom
|
|
pose3d(3,2)+=(Y3d - oY3d)*1.5f; view3d.assign();
|
|
}
|
|
if (disp.wheel()) { // Wheel: zoom
|
|
pose3d(3,2)-=disp.wheel()*15; view3d.assign(); disp.set_wheel();
|
|
}
|
|
if (disp.button()&4 && pose3d && (oX3d!=X3d || oY3d!=Y3d)) { // Middle button: shift
|
|
pose3d(3,0)-=oX3d - X3d; pose3d(3,1)-=oY3d - Y3d; view3d.assign();
|
|
}
|
|
oX3d = X3d; oY3d = Y3d;
|
|
}
|
|
mx = my = -1; X = Y = Z = -1;
|
|
break;
|
|
}
|
|
|
|
if (phase) {
|
|
if (!feature_type) shape_selected = phase?true:false;
|
|
else {
|
|
if (_depth>1) shape_selected = (phase==3)?true:false;
|
|
else shape_selected = (phase==2)?true:false;
|
|
}
|
|
}
|
|
|
|
if (X0<0) X0 = 0;
|
|
if (X0>=width()) X0 = width() - 1;
|
|
if (Y0<0) Y0 = 0;
|
|
if (Y0>=height()) Y0 = height() - 1;
|
|
if (Z0<0) Z0 = 0;
|
|
if (Z0>=depth()) Z0 = depth() - 1;
|
|
if (X1<1) X1 = 0;
|
|
if (X1>=width()) X1 = width() - 1;
|
|
if (Y1<0) Y1 = 0;
|
|
if (Y1>=height()) Y1 = height() - 1;
|
|
if (Z1<0) Z1 = 0;
|
|
if (Z1>=depth()) Z1 = depth() - 1;
|
|
|
|
// Draw visualization image on the display
|
|
if (mx!=omx || my!=omy || !visu0 || (_depth>1 && !view3d)) {
|
|
|
|
if (!visu0) { // Create image of projected planes
|
|
if (thumb) thumb._get_select(disp,old_normalization,phase?X1:X0,phase?Y1:Y0,phase?Z1:Z0).move_to(visu0);
|
|
else _get_select(disp,old_normalization,phase?X1:X0,phase?Y1:Y0,phase?Z1:Z0).move_to(visu0);
|
|
visu0.resize(disp);
|
|
view3d.assign();
|
|
points3d.assign();
|
|
}
|
|
|
|
if (is_view3d && _depth>1 && !view3d) { // Create 3D view for volumetric images
|
|
const unsigned int
|
|
_x3d = (unsigned int)cimg::round((float)_width*visu0._width/(_width + _depth),1,1),
|
|
_y3d = (unsigned int)cimg::round((float)_height*visu0._height/(_height + _depth),1,1),
|
|
x3d = _x3d>=visu0._width?visu0._width - 1:_x3d,
|
|
y3d = _y3d>=visu0._height?visu0._height - 1:_y3d;
|
|
CImg<ucharT>(1,2,1,1,64,128).resize(visu0._width - x3d,visu0._height - y3d,1,visu0._spectrum,3).
|
|
move_to(view3d);
|
|
if (!points3d) {
|
|
get_projections3d(primitives3d,colors3d,phase?X1:X0,phase?Y1:Y0,phase?Z1:Z0,true).move_to(points3d);
|
|
points3d.append(CImg<floatT>(8,3,1,1,
|
|
0,_width - 1,_width - 1,0,0,_width - 1,_width - 1,0,
|
|
0,0,_height - 1,_height - 1,0,0,_height - 1,_height - 1,
|
|
0,0,0,0,_depth - 1,_depth - 1,_depth - 1,_depth - 1),'x');
|
|
CImg<uintT>::vector(12,13).move_to(primitives3d); CImg<uintT>::vector(13,14).move_to(primitives3d);
|
|
CImg<uintT>::vector(14,15).move_to(primitives3d); CImg<uintT>::vector(15,12).move_to(primitives3d);
|
|
CImg<uintT>::vector(16,17).move_to(primitives3d); CImg<uintT>::vector(17,18).move_to(primitives3d);
|
|
CImg<uintT>::vector(18,19).move_to(primitives3d); CImg<uintT>::vector(19,16).move_to(primitives3d);
|
|
CImg<uintT>::vector(12,16).move_to(primitives3d); CImg<uintT>::vector(13,17).move_to(primitives3d);
|
|
CImg<uintT>::vector(14,18).move_to(primitives3d); CImg<uintT>::vector(15,19).move_to(primitives3d);
|
|
colors3d.insert(12,CImg<ucharT>::vector(255,255,255));
|
|
opacities3d.assign(primitives3d.width(),1,1,1,0.5f);
|
|
if (!phase) {
|
|
opacities3d[0] = opacities3d[1] = opacities3d[2] = 0.8f;
|
|
sel_primitives3d.assign();
|
|
sel_colors3d.assign();
|
|
sel_opacities3d.assign();
|
|
} else {
|
|
if (feature_type==2) {
|
|
points3d.append(CImg<floatT>(8,3,1,1,
|
|
X0,X1,X1,X0,X0,X1,X1,X0,
|
|
Y0,Y0,Y1,Y1,Y0,Y0,Y1,Y1,
|
|
Z0,Z0,Z0,Z0,Z1,Z1,Z1,Z1),'x');
|
|
sel_primitives3d.assign();
|
|
CImg<uintT>::vector(20,21).move_to(sel_primitives3d);
|
|
CImg<uintT>::vector(21,22).move_to(sel_primitives3d);
|
|
CImg<uintT>::vector(22,23).move_to(sel_primitives3d);
|
|
CImg<uintT>::vector(23,20).move_to(sel_primitives3d);
|
|
CImg<uintT>::vector(24,25).move_to(sel_primitives3d);
|
|
CImg<uintT>::vector(25,26).move_to(sel_primitives3d);
|
|
CImg<uintT>::vector(26,27).move_to(sel_primitives3d);
|
|
CImg<uintT>::vector(27,24).move_to(sel_primitives3d);
|
|
CImg<uintT>::vector(20,24).move_to(sel_primitives3d);
|
|
CImg<uintT>::vector(21,25).move_to(sel_primitives3d);
|
|
CImg<uintT>::vector(22,26).move_to(sel_primitives3d);
|
|
CImg<uintT>::vector(23,27).move_to(sel_primitives3d);
|
|
} else {
|
|
points3d.append(CImg<floatT>(2,3,1,1,
|
|
X0,X1,
|
|
Y0,Y1,
|
|
Z0,Z1),'x');
|
|
sel_primitives3d.assign(CImg<uintT>::vector(20,21));
|
|
}
|
|
sel_colors3d.assign(sel_primitives3d._width,CImg<ucharT>::vector(255,255,255));
|
|
sel_opacities3d.assign(sel_primitives3d._width,1,1,1,0.8f);
|
|
}
|
|
points3d.shift_object3d(-0.5f*(_width - 1),-0.5f*(_height - 1),-0.5f*(_depth - 1)).resize_object3d();
|
|
points3d*=0.75f*std::min(view3d._width,view3d._height);
|
|
}
|
|
|
|
if (!pose3d) CImg<floatT>(4,3,1,1, 1,0,0,0, 0,1,0,0, 0,0,1,0).move_to(pose3d);
|
|
CImg<floatT> zbuffer3d(view3d._width,view3d._height,1,1,0);
|
|
const CImg<floatT> rotated_points3d = pose3d.get_crop(0,0,2,2)*points3d;
|
|
if (sel_primitives3d)
|
|
view3d.draw_object3d(pose3d(3,0) + 0.5f*view3d._width,
|
|
pose3d(3,1) + 0.5f*view3d._height,
|
|
pose3d(3,2),
|
|
rotated_points3d,sel_primitives3d,sel_colors3d,sel_opacities3d,
|
|
2,true,500,0,0,0,0,0,1,zbuffer3d);
|
|
view3d.draw_object3d(pose3d(3,0) + 0.5f*view3d._width,
|
|
pose3d(3,1) + 0.5f*view3d._height,
|
|
pose3d(3,2),
|
|
rotated_points3d,primitives3d,colors3d,opacities3d,
|
|
2,true,500,0,0,0,0,0,1,zbuffer3d);
|
|
visu0.draw_image(x3d,y3d,view3d);
|
|
}
|
|
visu = visu0;
|
|
|
|
if (X<0 || Y<0 || Z<0) { if (!visible_cursor) { disp.show_mouse(); visible_cursor = true; }}
|
|
else {
|
|
if (is_axes) { if (visible_cursor) { disp.hide_mouse(); visible_cursor = false; }}
|
|
else { if (!visible_cursor) { disp.show_mouse(); visible_cursor = true; }}
|
|
const int d = (depth()>1)?depth():0;
|
|
int _vX = (int)X, _vY = (int)Y, _vZ = (int)Z;
|
|
if (phase>=2) { _vX = X1; _vY = Y1; _vZ = Z1; }
|
|
int
|
|
w = disp.width(), W = width() + d,
|
|
h = disp.height(), H = height() + d,
|
|
_xp = (int)(_vX*(float)w/W), xp = _xp + ((int)(_xp*(float)W/w)!=_vX),
|
|
_yp = (int)(_vY*(float)h/H), yp = _yp + ((int)(_yp*(float)H/h)!=_vY),
|
|
_xn = (int)((_vX + 1.f)*w/W - 1), xn = _xn + ((int)((_xn + 1.f)*W/w)!=_vX + 1),
|
|
_yn = (int)((_vY + 1.f)*h/H - 1), yn = _yn + ((int)((_yn + 1.f)*H/h)!=_vY + 1),
|
|
_zxp = (int)((_vZ + width())*(float)w/W), zxp = _zxp + ((int)(_zxp*(float)W/w)!=_vZ + width()),
|
|
_zyp = (int)((_vZ + height())*(float)h/H), zyp = _zyp + ((int)(_zyp*(float)H/h)!=_vZ + height()),
|
|
_zxn = (int)((_vZ + width() + 1.f)*w/W - 1),
|
|
zxn = _zxn + ((int)((_zxn + 1.f)*W/w)!=_vZ + width() + 1),
|
|
_zyn = (int)((_vZ + height() + 1.f)*h/H - 1),
|
|
zyn = _zyn + ((int)((_zyn + 1.f)*H/h)!=_vZ + height() + 1),
|
|
_xM = (int)(width()*(float)w/W - 1), xM = _xM + ((int)((_xM + 1.f)*W/w)!=width()),
|
|
_yM = (int)(height()*(float)h/H - 1), yM = _yM + ((int)((_yM + 1.f)*H/h)!=height()),
|
|
xc = (xp + xn)/2,
|
|
yc = (yp + yn)/2,
|
|
zxc = (zxp + zxn)/2,
|
|
zyc = (zyp + zyn)/2,
|
|
xf = (int)(X*w/W),
|
|
yf = (int)(Y*h/H),
|
|
zxf = (int)((Z + width())*w/W),
|
|
zyf = (int)((Z + height())*h/H);
|
|
|
|
if (is_axes) { // Draw axes
|
|
visu.draw_line(0,yf,visu.width() - 1,yf,foreground_color,0.7f,0xFF00FF00).
|
|
draw_line(0,yf,visu.width() - 1,yf,background_color,0.7f,0x00FF00FF).
|
|
draw_line(xf,0,xf,visu.height() - 1,foreground_color,0.7f,0xFF00FF00).
|
|
draw_line(xf,0,xf,visu.height() - 1,background_color,0.7f,0x00FF00FF);
|
|
if (_depth>1)
|
|
visu.draw_line(zxf,0,zxf,yM,foreground_color,0.7f,0xFF00FF00).
|
|
draw_line(zxf,0,zxf,yM,background_color,0.7f,0x00FF00FF).
|
|
draw_line(0,zyf,xM,zyf,foreground_color,0.7f,0xFF00FF00).
|
|
draw_line(0,zyf,xM,zyf,background_color,0.7f,0x00FF00FF);
|
|
}
|
|
|
|
// Draw box cursor.
|
|
if (xn - xp>=4 && yn - yp>=4)
|
|
visu.draw_rectangle(xp,yp,xn,yn,foreground_color,0.2f).
|
|
draw_rectangle(xp,yp,xn,yn,foreground_color,1,0xAAAAAAAA).
|
|
draw_rectangle(xp,yp,xn,yn,background_color,1,0x55555555);
|
|
if (_depth>1) {
|
|
if (yn - yp>=4 && zxn - zxp>=4)
|
|
visu.draw_rectangle(zxp,yp,zxn,yn,background_color,0.2f).
|
|
draw_rectangle(zxp,yp,zxn,yn,foreground_color,1,0xAAAAAAAA).
|
|
draw_rectangle(zxp,yp,zxn,yn,background_color,1,0x55555555);
|
|
if (xn - xp>=4 && zyn - zyp>=4)
|
|
visu.draw_rectangle(xp,zyp,xn,zyn,background_color,0.2f).
|
|
draw_rectangle(xp,zyp,xn,zyn,foreground_color,1,0xAAAAAAAA).
|
|
draw_rectangle(xp,zyp,xn,zyn,background_color,1,0x55555555);
|
|
}
|
|
|
|
// Draw selection.
|
|
if (phase && (phase!=1 || area_started==area)) {
|
|
const int
|
|
_xp0 = (int)(X0*(float)w/W), xp0 = _xp0 + ((int)(_xp0*(float)W/w)!=X0),
|
|
_yp0 = (int)(Y0*(float)h/H), yp0 = _yp0 + ((int)(_yp0*(float)H/h)!=Y0),
|
|
_xn0 = (int)((X0 + 1.f)*w/W - 1), xn0 = _xn0 + ((int)((_xn0 + 1.f)*W/w)!=X0 + 1),
|
|
_yn0 = (int)((Y0 + 1.f)*h/H - 1), yn0 = _yn0 + ((int)((_yn0 + 1.f)*H/h)!=Y0 + 1),
|
|
_zxp0 = (int)((Z0 + width())*(float)w/W), zxp0 = _zxp0 + ((int)(_zxp0*(float)W/w)!=Z0 + width()),
|
|
_zyp0 = (int)((Z0 + height())*(float)h/H), zyp0 = _zyp0 + ((int)(_zyp0*(float)H/h)!=Z0 + height()),
|
|
_zxn0 = (int)((Z0 + width() + 1.f)*w/W - 1),
|
|
zxn0 = _zxn0 + ((int)((_zxn0 + 1.f)*W/w)!=Z0 + width() + 1),
|
|
_zyn0 = (int)((Z0 + height() + 1.f)*h/H - 1),
|
|
zyn0 = _zyn0 + ((int)((_zyn0 + 1.f)*H/h)!=Z0 + height() + 1),
|
|
xc0 = (xp0 + xn0)/2,
|
|
yc0 = (yp0 + yn0)/2,
|
|
zxc0 = (zxp0 + zxn0)/2,
|
|
zyc0 = (zyp0 + zyn0)/2;
|
|
|
|
switch (feature_type) {
|
|
case 1 : { // Vector
|
|
visu.draw_arrow(xc0,yc0,xc,yc,background_color,0.9f,30,5,0x33333333).
|
|
draw_arrow(xc0,yc0,xc,yc,foreground_color,0.9f,30,5,0xCCCCCCCC);
|
|
if (d) {
|
|
visu.draw_arrow(zxc0,yc0,zxc,yc,background_color,0.9f,30,5,0x33333333).
|
|
draw_arrow(zxc0,yc0,zxc,yc,foreground_color,0.9f,30,5,0xCCCCCCCC).
|
|
draw_arrow(xc0,zyc0,xc,zyc,background_color,0.9f,30,5,0x33333333).
|
|
draw_arrow(xc0,zyc0,xc,zyc,foreground_color,0.9f,30,5,0xCCCCCCCC);
|
|
}
|
|
} break;
|
|
case 2 : { // Box
|
|
visu.draw_rectangle(X0<X1?xp0:xp,Y0<Y1?yp0:yp,X0<X1?xn:xn0,Y0<Y1?yn:yn0,background_color,0.2f).
|
|
draw_rectangle(X0<X1?xp0:xp,Y0<Y1?yp0:yp,X0<X1?xn:xn0,Y0<Y1?yn:yn0,background_color,0.9f,0x55555555).
|
|
draw_rectangle(X0<X1?xp0:xp,Y0<Y1?yp0:yp,X0<X1?xn:xn0,Y0<Y1?yn:yn0,foreground_color,0.9f,0xAAAAAAAA);
|
|
if (xc0!=xc && yc0!=yc)
|
|
visu.draw_line(xc0,yc0,xc,yc,background_color,0.9f,0x33333333).
|
|
draw_line(xc0,yc0,xc,yc,foreground_color,0.9f,0xCCCCCCCC);
|
|
if (d) {
|
|
visu.draw_rectangle(Z0<Z1?zxp0:zxp,Y0<Y1?yp0:yp,Z0<Z1?zxn:zxn0,Y0<Y1?yn:yn0,background_color,0.2f).
|
|
draw_rectangle(Z0<Z1?zxp0:zxp,Y0<Y1?yp0:yp,Z0<Z1?zxn:zxn0,Y0<Y1?yn:yn0,
|
|
background_color,0.9f,0x55555555).
|
|
draw_rectangle(Z0<Z1?zxp0:zxp,Y0<Y1?yp0:yp,Z0<Z1?zxn:zxn0,Y0<Y1?yn:yn0,
|
|
foreground_color,0.9f,0xAAAAAAAA);
|
|
if (zxc0!=zxc && yc0!=yc)
|
|
visu.draw_line(zxc0,yc0,zxc,yc,background_color,0.9f,0x33333333).
|
|
draw_line(zxc0,yc0,zxc,yc,foreground_color,0.9f,0xCCCCCCCC);
|
|
visu.draw_rectangle(X0<X1?xp0:xp,Z0<Z1?zyp0:zyp,X0<X1?xn:xn0,Z0<Z1?zyn:zyn0,
|
|
background_color,0.2f).
|
|
draw_rectangle(X0<X1?xp0:xp,Z0<Z1?zyp0:zyp,X0<X1?xn:xn0,Z0<Z1?zyn:zyn0,
|
|
background_color,0.9f,0x55555555).
|
|
draw_rectangle(X0<X1?xp0:xp,Z0<Z1?zyp0:zyp,X0<X1?xn:xn0,Z0<Z1?zyn:zyn0,
|
|
foreground_color,0.9f,0xAAAAAAAA);
|
|
if (xp0!=xn && zyp0!=zyn)
|
|
visu.draw_line(xp0,zyp0,xn,zyn,background_color,0.9f,0x33333333).
|
|
draw_line(xp0,zyp0,xn,zyn,foreground_color,0.9f,0xCCCCCCCC);
|
|
}
|
|
} break;
|
|
case 3 : { // Ellipse
|
|
visu.draw_ellipse(xc0,yc0,
|
|
(float)cimg::abs(xc - xc0),
|
|
(float)cimg::abs(yc - yc0),0,background_color,0.2f).
|
|
draw_ellipse(xc0,yc0,
|
|
(float)cimg::abs(xc - xc0),
|
|
(float)cimg::abs(yc - yc0),0,foreground_color,0.9f,~0U).
|
|
draw_point(xc0,yc0,foreground_color,0.9f);
|
|
if (d) {
|
|
visu.draw_ellipse(zxc0,yc0,(float)cimg::abs(zxc - zxc0),(float)cimg::abs(yc - yc0),0,
|
|
background_color,0.2f).
|
|
draw_ellipse(zxc0,yc0,(float)cimg::abs(zxc - zxc0),(float)cimg::abs(yc - yc0),0,
|
|
foreground_color,0.9f,~0U).
|
|
draw_point(zxc0,yc0,foreground_color,0.9f).
|
|
draw_ellipse(xc0,zyc0,(float)cimg::abs(xc - xc0),(float)cimg::abs(zyc - zyc0),0,
|
|
background_color,0.2f).
|
|
draw_ellipse(xc0,zyc0,(float)cimg::abs(xc - xc0),(float)cimg::abs(zyc - zyc0),0,
|
|
foreground_color,0.9f,~0U).
|
|
draw_point(xc0,zyc0,foreground_color,0.9f);
|
|
}
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// Draw text info.
|
|
if (my>=0 && my<13) text_down = true; else if (my>=visu.height() - 13) text_down = false;
|
|
if (!feature_type || !phase) {
|
|
if (X>=0 && Y>=0 && Z>=0 && X<width() && Y<height() && Z<depth()) {
|
|
if (_depth>1 || force_display_z_coord)
|
|
cimg_snprintf(text,text._width," Point (%d,%d,%d) = [ ",origX + (int)X,origY + (int)Y,origZ + (int)Z);
|
|
else cimg_snprintf(text,text._width," Point (%d,%d) = [ ",origX + (int)X,origY + (int)Y);
|
|
CImg<T> values = get_vector_at((int)X,(int)Y,(int)Z);
|
|
const bool is_large_spectrum = values._height>8;
|
|
if (is_large_spectrum)
|
|
values.draw_image(0,4,values.get_rows(values._height - 4,values._height - 1)).resize(1,8,1,1,0);
|
|
char *ctext = text._data + std::strlen(text), *const ltext = text._data + 512;
|
|
for (unsigned int c = 0; c<values._height && ctext<ltext; ++c) {
|
|
cimg_snprintf(ctext,24,cimg::type<T>::format_s(),
|
|
cimg::type<T>::format(values[c]));
|
|
ctext += std::strlen(ctext);
|
|
if (c==3 && is_large_spectrum) {
|
|
cimg_snprintf(ctext,24," ...");
|
|
ctext += std::strlen(ctext);
|
|
}
|
|
*(ctext++) = ' '; *ctext = 0;
|
|
}
|
|
std::strcpy(text._data + std::strlen(text),"] ");
|
|
}
|
|
} else switch (feature_type) {
|
|
case 1 : {
|
|
const double dX = (double)(X0 - X1), dY = (double)(Y0 - Y1), dZ = (double)(Z0 - Z1),
|
|
length = cimg::round(cimg::hypot(dX,dY,dZ),0.1);
|
|
if (_depth>1 || force_display_z_coord)
|
|
cimg_snprintf(text,text._width," Vect (%d,%d,%d)-(%d,%d,%d), Length = %g ",
|
|
origX + X0,origY + Y0,origZ + Z0,origX + X1,origY + Y1,origZ + Z1,length);
|
|
else if (_width!=1 && _height!=1)
|
|
cimg_snprintf(text,text._width," Vect (%d,%d)-(%d,%d), Length = %g, Angle = %g\260 ",
|
|
origX + X0,origY + Y0,origX + X1,origY + Y1,length,
|
|
cimg::round(cimg::mod(180*std::atan2(-dY,-dX)/cimg::PI,360.),0.1));
|
|
else
|
|
cimg_snprintf(text,text._width," Vect (%d,%d)-(%d,%d), Length = %g ",
|
|
origX + X0,origY + Y0,origX + X1,origY + Y1,length);
|
|
} break;
|
|
case 2 : {
|
|
const double dX = (double)(X0 - X1), dY = (double)(Y0 - Y1), dZ = (double)(Z0 - Z1),
|
|
length = cimg::round(cimg::hypot(dX,dY,dZ),0.1);
|
|
if (_depth>1 || force_display_z_coord)
|
|
cimg_snprintf(text,text._width,
|
|
" Box ( %d,%d,%d ) - ( %d,%d,%d )\n Size = ( %d,%d,%d ), Length = %g ",
|
|
origX + (X0<X1?X0:X1),origY + (Y0<Y1?Y0:Y1),origZ + (Z0<Z1?Z0:Z1),
|
|
origX + (X0<X1?X1:X0),origY + (Y0<Y1?Y1:Y0),origZ + (Z0<Z1?Z1:Z0),
|
|
1 + cimg::abs(X0 - X1),1 + cimg::abs(Y0 - Y1),1 + cimg::abs(Z0 - Z1),length);
|
|
else if (_width!=1 && _height!=1)
|
|
cimg_snprintf(text,text._width,
|
|
" Box ( %d,%d ) - ( %d,%d )\n Size = ( %d,%d ), Length = %g \n Angle = %g\260 ",
|
|
origX + (X0<X1?X0:X1),origY + (Y0<Y1?Y0:Y1),
|
|
origX + (X0<X1?X1:X0),origY + (Y0<Y1?Y1:Y0),
|
|
1 + cimg::abs(X0 - X1),1 + cimg::abs(Y0 - Y1),length,
|
|
cimg::round(cimg::mod(180*std::atan2(-dY,-dX)/cimg::PI,360.),0.1));
|
|
else
|
|
cimg_snprintf(text,text._width,
|
|
" Box ( %d,%d ) - ( %d,%d )\n Size = (%d,%d), Length = %g ",
|
|
origX + (X0<X1?X0:X1),origY + (Y0<Y1?Y0:Y1),
|
|
origX + (X0<X1?X1:X0),origY + (Y0<Y1?Y1:Y0),
|
|
1 + cimg::abs(X0 - X1),1 + cimg::abs(Y0 - Y1),length);
|
|
} break;
|
|
default :
|
|
if (_depth>1 || force_display_z_coord)
|
|
cimg_snprintf(text,text._width," Ellipse ( %d,%d,%d ) - ( %d,%d,%d ), Radii = ( %d,%d,%d ) ",
|
|
origX + X0,origY + Y0,origZ + Z0,origX + X1,origY + Y1,origZ + Z1,
|
|
1 + cimg::abs(X0 - X1),1 + cimg::abs(Y0 - Y1),1 + cimg::abs(Z0 - Z1));
|
|
else cimg_snprintf(text,text._width," Ellipse ( %d,%d ) - ( %d,%d ), Radii = ( %d,%d ) ",
|
|
origX + X0,origY + Y0,origX + X1,origY + Y1,
|
|
1 + cimg::abs(X0 - X1),1 + cimg::abs(Y0 - Y1));
|
|
}
|
|
if (phase || (mx>=0 && my>=0)) visu.__draw_text("%s",font_size,(int)text_down,text._data);
|
|
}
|
|
|
|
disp.display(visu);
|
|
}
|
|
if (!shape_selected) disp.wait();
|
|
if (disp.is_resized()) { disp.resize(false)._is_resized = false; old_is_resized = true; visu0.assign(); }
|
|
omx = mx; omy = my;
|
|
if (!exit_on_anykey && key && key!=cimg::keyESC &&
|
|
(key!=cimg::keyW || (!disp.is_keyCTRLLEFT() && !disp.is_keyCTRLRIGHT()))) {
|
|
key = 0;
|
|
}
|
|
}
|
|
|
|
// Return result.
|
|
CImg<intT> res(1,feature_type==0?3:6,1,1,-1);
|
|
if (XYZ) { XYZ[0] = (unsigned int)X0; XYZ[1] = (unsigned int)Y0; XYZ[2] = (unsigned int)Z0; }
|
|
if (shape_selected) {
|
|
if (feature_type==2) {
|
|
if (is_deep_selection) switch (area_started) {
|
|
case 1 : Z0 = 0; Z1 = _depth - 1; break;
|
|
case 2 : Y0 = 0; Y1 = _height - 1; break;
|
|
case 3 : X0 = 0; X1 = _width - 1; break;
|
|
}
|
|
if (X0>X1) cimg::swap(X0,X1);
|
|
if (Y0>Y1) cimg::swap(Y0,Y1);
|
|
if (Z0>Z1) cimg::swap(Z0,Z1);
|
|
}
|
|
if (X1<0 || Y1<0 || Z1<0) X0 = Y0 = Z0 = X1 = Y1 = Z1 = -1;
|
|
switch (feature_type) {
|
|
case 1 : case 2 : res[0] = X0; res[1] = Y0; res[2] = Z0; res[3] = X1; res[4] = Y1; res[5] = Z1; break;
|
|
case 3 :
|
|
res[3] = cimg::abs(X1 - X0); res[4] = cimg::abs(Y1 - Y0); res[5] = cimg::abs(Z1 - Z0);
|
|
res[0] = X0; res[1] = Y0; res[2] = Z0;
|
|
break;
|
|
default : res[0] = X0; res[1] = Y0; res[2] = Z0;
|
|
}
|
|
}
|
|
if (!exit_on_anykey || !(disp.button()&4)) disp.set_button();
|
|
if (!visible_cursor) disp.show_mouse();
|
|
disp._normalization = old_normalization;
|
|
disp._is_resized = old_is_resized;
|
|
if (key!=~0U) disp.set_key(key);
|
|
return res;
|
|
}
|
|
|
|
// Return a visualizable uchar8 image for display routines.
|
|
CImg<ucharT> _get_select(const CImgDisplay& disp, const int normalization,
|
|
const int x, const int y, const int z) const {
|
|
if (is_empty()) return CImg<ucharT>(1,1,1,1,0);
|
|
const CImg<T> crop = get_shared_channels(0,std::min(2,spectrum() - 1));
|
|
CImg<Tuchar> img2d;
|
|
if (_depth>1) {
|
|
const int mdisp = std::min(disp.screen_width(),disp.screen_height());
|
|
if (depth()>mdisp) {
|
|
crop.get_resize(-100,-100,mdisp,-100,0).move_to(img2d);
|
|
img2d.projections2d(x,y,z*img2d._depth/_depth);
|
|
} else crop.get_projections2d(x,y,z).move_to(img2d);
|
|
} else CImg<Tuchar>(crop,false).move_to(img2d);
|
|
|
|
// Check for inf and NaN values.
|
|
if (cimg::type<T>::is_float() && normalization) {
|
|
bool is_inf = false, is_nan = false;
|
|
cimg_for(img2d,ptr,Tuchar)
|
|
if (cimg::type<T>::is_inf(*ptr)) { is_inf = true; break; }
|
|
else if (cimg::type<T>::is_nan(*ptr)) { is_nan = true; break; }
|
|
if (is_inf || is_nan) {
|
|
Tint m0 = (Tint)cimg::type<T>::max(), M0 = (Tint)cimg::type<T>::min();
|
|
if (!normalization) { m0 = 0; M0 = 255; }
|
|
else if (normalization==2) { m0 = (Tint)disp._min; M0 = (Tint)disp._max; }
|
|
else {
|
|
cimg_for(img2d,ptr,Tuchar)
|
|
if (!cimg::type<T>::is_inf(*ptr) && !cimg::type<T>::is_nan(*ptr)) {
|
|
if (*ptr<(Tuchar)m0) m0 = *ptr;
|
|
if (*ptr>(Tuchar)M0) M0 = *ptr;
|
|
}
|
|
}
|
|
const T
|
|
val_minf = (T)(normalization==1 || normalization==3?m0 - cimg::abs(m0):m0),
|
|
val_pinf = (T)(normalization==1 || normalization==3?M0 + cimg::abs(M0):M0);
|
|
if (is_nan)
|
|
cimg_for(img2d,ptr,Tuchar)
|
|
if (cimg::type<T>::is_nan(*ptr)) *ptr = val_minf; // Replace NaN values
|
|
if (is_inf)
|
|
cimg_for(img2d,ptr,Tuchar)
|
|
if (cimg::type<T>::is_inf(*ptr)) *ptr = (float)*ptr<0?val_minf:val_pinf; // Replace +-inf values
|
|
}
|
|
}
|
|
|
|
switch (normalization) {
|
|
case 1 : img2d.normalize((ucharT)0,(ucharT)255); break;
|
|
case 2 : {
|
|
const float m = disp._min, M = disp._max;
|
|
(img2d-=m)*=255.f/(M - m>0?M - m:1);
|
|
} break;
|
|
case 3 :
|
|
if (cimg::type<T>::is_float()) img2d.normalize((ucharT)0,(ucharT)255);
|
|
else {
|
|
const float
|
|
m = (float)cimg::type<T>::min(),
|
|
M = (float)cimg::type<T>::max();
|
|
(img2d-=m)*=255.f/(M - m>0?M - m:1);
|
|
} break;
|
|
}
|
|
if (img2d.spectrum()==2) img2d.channels(0,2);
|
|
return img2d;
|
|
}
|
|
|
|
//! Select sub-graph in a graph.
|
|
CImg<intT> get_select_graph(CImgDisplay &disp,
|
|
const unsigned int plot_type=1, const unsigned int vertex_type=1,
|
|
const char *const labelx=0, const double xmin=0, const double xmax=0,
|
|
const char *const labely=0, const double ymin=0, const double ymax=0,
|
|
const bool exit_on_anykey=false) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"select_graph(): Empty instance.",
|
|
cimg_instance);
|
|
if (!disp) disp.assign(cimg_fitscreen(CImgDisplay::screen_width()/2,CImgDisplay::screen_height()/2,1),0,0).
|
|
set_title("CImg<%s>",pixel_type());
|
|
const ulongT siz = (ulongT)_width*_height*_depth;
|
|
const unsigned int old_normalization = disp.normalization();
|
|
disp.show().set_button().set_wheel()._normalization = 0;
|
|
|
|
double nymin = ymin, nymax = ymax, nxmin = xmin, nxmax = xmax;
|
|
if (nymin==nymax) { nymin = (Tfloat)min_max(nymax); const double dy = nymax - nymin; nymin-=dy/20; nymax+=dy/20; }
|
|
if (nymin==nymax) { --nymin; ++nymax; }
|
|
if (nxmin==nxmax && nxmin==0) { nxmin = 0; nxmax = siz - 1.; }
|
|
|
|
static const unsigned char black[] = { 0, 0, 0 }, white[] = { 255, 255, 255 }, gray[] = { 220, 220, 220 };
|
|
static const unsigned char gray2[] = { 110, 110, 110 }, ngray[] = { 35, 35, 35 };
|
|
|
|
CImg<ucharT> colormap(3,_spectrum);
|
|
if (_spectrum==1) { colormap[0] = colormap[1] = 120; colormap[2] = 200; }
|
|
else {
|
|
colormap(0,0) = 220; colormap(1,0) = 10; colormap(2,0) = 10;
|
|
if (_spectrum>1) { colormap(0,1) = 10; colormap(1,1) = 220; colormap(2,1) = 10; }
|
|
if (_spectrum>2) { colormap(0,2) = 10; colormap(1,2) = 10; colormap(2,2) = 220; }
|
|
if (_spectrum>3) { colormap(0,3) = 220; colormap(1,3) = 220; colormap(2,3) = 10; }
|
|
if (_spectrum>4) { colormap(0,4) = 220; colormap(1,4) = 10; colormap(2,4) = 220; }
|
|
if (_spectrum>5) { colormap(0,5) = 10; colormap(1,5) = 220; colormap(2,5) = 220; }
|
|
if (_spectrum>6) {
|
|
cimg_uint64 rng = 10;
|
|
cimg_for_inY(colormap,6,colormap.height()-1,k) {
|
|
colormap(0,k) = (unsigned char)(120 + cimg::rand(-100.f,100.f,&rng));
|
|
colormap(1,k) = (unsigned char)(120 + cimg::rand(-100.f,100.f,&rng));
|
|
colormap(2,k) = (unsigned char)(120 + cimg::rand(-100.f,100.f,&rng));
|
|
}
|
|
}
|
|
}
|
|
|
|
CImg<ucharT> visu0, visu, graph, text, axes;
|
|
int x0 = -1, x1 = -1, y0 = -1, y1 = -1, omouse_x = -2, omouse_y = -2;
|
|
const unsigned int one = plot_type==3?0U:1U;
|
|
unsigned int okey = 0, obutton = 0, font_size = 32;
|
|
CImg<charT> message(1024);
|
|
CImg_3x3(I,unsigned char);
|
|
|
|
for (bool selected = false; !selected && !disp.is_closed() && !okey && !disp.wheel(); ) {
|
|
const int mouse_x = disp.mouse_x(), mouse_y = disp.mouse_y();
|
|
const unsigned int key = disp.key(), button = disp.button();
|
|
|
|
// Generate graph representation.
|
|
if (!visu0) {
|
|
visu0.assign(disp.width(),disp.height(),1,3,220);
|
|
const int gdimx = disp.width() - 32, gdimy = disp.height() - 32;
|
|
if (gdimx>0 && gdimy>0) {
|
|
graph.assign(gdimx,gdimy,1,3,255);
|
|
if (siz<32) {
|
|
if (siz>1) graph.draw_grid(gdimx/(float)(siz - one),gdimy/(float)(siz - one),0,0,
|
|
false,true,black,0.2f,0x33333333,0x33333333);
|
|
} else graph.draw_grid(-10,-10,0,0,false,true,black,0.2f,0x33333333,0x33333333);
|
|
cimg_forC(*this,c)
|
|
graph.draw_graph(get_shared_channel(c),&colormap(0,c),(plot_type!=3 || _spectrum==1)?1:0.6f,
|
|
plot_type,vertex_type,nymax,nymin);
|
|
|
|
axes.assign(gdimx,gdimy,1,1,0);
|
|
const float
|
|
dx = (float)cimg::abs(nxmax - nxmin), dy = (float)cimg::abs(nymax - nymin),
|
|
px = (float)std::pow(10.,(int)std::log10(dx?dx:1) - 2.),
|
|
py = (float)std::pow(10.,(int)std::log10(dy?dy:1) - 2.);
|
|
const CImg<Tdouble>
|
|
seqx = dx<=0?CImg<Tdouble>::vector(nxmin):
|
|
CImg<Tdouble>::sequence(1 + gdimx/60,nxmin,one?nxmax:nxmin + (nxmax - nxmin)*(siz + 1)/siz),
|
|
seqy = CImg<Tdouble>::sequence(1 + gdimy/60,nymax,nymin);
|
|
|
|
const bool allow_zero = (nxmin*nxmax>0) || (nymin*nymax>0);
|
|
axes.draw_axes(seqx,seqy,white,1,~0U,~0U,13,allow_zero,px,py);
|
|
if (nymin>0) axes.draw_axis(seqx,gdimy - 1,gray,1,~0U,13,allow_zero,px);
|
|
if (nymax<0) axes.draw_axis(seqx,0,gray,1,~0U,13,allow_zero,px);
|
|
if (nxmin>0) axes.draw_axis(0,seqy,gray,1,~0U,13,allow_zero,py);
|
|
if (nxmax<0) axes.draw_axis(gdimx - 1,seqy,gray,1,~0U,13,allow_zero,py);
|
|
|
|
cimg_for3x3(axes,x,y,0,0,I,unsigned char)
|
|
if (Icc) {
|
|
if (Icc==255) cimg_forC(graph,c) graph(x,y,c) = 0;
|
|
else cimg_forC(graph,c) graph(x,y,c) = (unsigned char)(2*graph(x,y,c)/3);
|
|
}
|
|
else if (Ipc || Inc || Icp || Icn || Ipp || Inn || Ipn || Inp)
|
|
cimg_forC(graph,c) graph(x,y,c) = (unsigned char)((graph(x,y,c) + 511)/3);
|
|
|
|
visu0.draw_image(16,16,graph);
|
|
visu0.draw_line(15,15,16 + gdimx,15,gray2).draw_line(16 + gdimx,15,16 + gdimx,16 + gdimy,gray2).
|
|
draw_line(16 + gdimx,16 + gdimy,15,16 + gdimy,white).draw_line(15,16 + gdimy,15,15,white);
|
|
} else graph.assign();
|
|
text.assign().draw_text(0,0,labelx?labelx:"X-axis",white,ngray,1,13).resize(-100,-100,1,3);
|
|
visu0.draw_image((visu0.width() - text.width())/2,visu0.height() - 14,~text);
|
|
text.assign().draw_text(0,0,labely?labely:"Y-axis",white,ngray,1,13).rotate(-90).resize(-100,-100,1,3);
|
|
visu0.draw_image(1,(visu0.height() - text.height())/2,~text);
|
|
visu.assign();
|
|
}
|
|
|
|
// Generate and display current view.
|
|
if (!visu) {
|
|
visu.assign(visu0);
|
|
if (graph && x0>=0 && x1>=0) {
|
|
const int
|
|
nx0 = x0<=x1?x0:x1,
|
|
nx1 = x0<=x1?x1:x0,
|
|
ny0 = y0<=y1?y0:y1,
|
|
ny1 = y0<=y1?y1:y0,
|
|
sx0 = (int)(16 + nx0*(visu.width() - 32)/std::max((ulongT)1,siz - one)),
|
|
sx1 = (int)(15 + (nx1 + 1)*(visu.width() - 32)/std::max((ulongT)1,siz - one)),
|
|
sy0 = 16 + ny0,
|
|
sy1 = 16 + ny1;
|
|
if (y0>=0 && y1>=0)
|
|
visu.draw_rectangle(sx0,sy0,sx1,sy1,gray,0.5f).draw_rectangle(sx0,sy0,sx1,sy1,black,0.5f,0xCCCCCCCCU);
|
|
else visu.draw_rectangle(sx0,0,sx1,visu.height() - 17,gray,0.5f).
|
|
draw_line(sx0,16,sx0,visu.height() - 17,black,0.5f,0xCCCCCCCCU).
|
|
draw_line(sx1,16,sx1,visu.height() - 17,black,0.5f,0xCCCCCCCCU);
|
|
}
|
|
if (mouse_x>=16 && mouse_y>=16 && mouse_x<visu.width() - 16 && mouse_y<visu.height() - 16) {
|
|
if (graph) visu.draw_line(mouse_x,16,mouse_x,visu.height() - 17,black,0.5f,0x55555555U);
|
|
const unsigned int
|
|
x = (unsigned int)cimg::round((mouse_x - 16.f)*(siz - one)/(disp.width() - 32),1,one?0:-1);
|
|
const double cx = nxmin + x*(nxmax - nxmin)/std::max((ulongT)1,siz - 1);
|
|
if (_spectrum>=7)
|
|
cimg_snprintf(message,message._width,"Value[%u:%g] = ( %g %g %g ... %g %g %g )",x,cx,
|
|
(double)(*this)(x,0,0,0),(double)(*this)(x,0,0,1),(double)(*this)(x,0,0,2),
|
|
(double)(*this)(x,0,0,_spectrum - 4),(double)(*this)(x,0,0,_spectrum - 3),
|
|
(double)(*this)(x,0,0,_spectrum - 1));
|
|
else {
|
|
cimg_snprintf(message,message._width,"Value[%u:%g] = ( ",x,cx);
|
|
unsigned int len = (unsigned int)std::strlen(message);
|
|
cimg_forC(*this,c)
|
|
cimg_snprintf(message._data + len,message._width - len,"%g ",(double)(*this)(x,0,0,c));
|
|
len = std::strlen(message);
|
|
cimg_snprintf(message._data + len,message._width - len,")");
|
|
}
|
|
if (x0>=0 && x1>=0) {
|
|
const unsigned int
|
|
nx0 = (unsigned int)(x0<=x1?x0:x1),
|
|
nx1 = (unsigned int)(x0<=x1?x1:x0),
|
|
ny0 = (unsigned int)(y0<=y1?y0:y1),
|
|
ny1 = (unsigned int)(y0<=y1?y1:y0),
|
|
len = (unsigned int)std::strlen(message);
|
|
const double
|
|
cx0 = nxmin + nx0*(nxmax - nxmin)/std::max((ulongT)1,siz - 1),
|
|
cx1 = nxmin + (nx1 + one)*(nxmax - nxmin)/std::max((ulongT)1,siz - 1),
|
|
cy0 = nymax - ny0*(nymax - nymin)/(visu._height - 32),
|
|
cy1 = nymax - ny1*(nymax - nymin)/(visu._height - 32);
|
|
if (y0>=0 && y1>=0)
|
|
cimg_snprintf(message._data + len,message._width - len," - Range ( %u:%g, %g ) - ( %u:%g, %g )",
|
|
x0,cx0,cy0,x1 + one,cx1,cy1);
|
|
else
|
|
cimg_snprintf(message._data + len,message._width - len," - Range [ %u:%g - %u:%g ]",
|
|
x0,cx0,x1 + one,cx1);
|
|
}
|
|
text.assign().draw_text(0,0,message,white,ngray,1,13).resize(-100,-100,1,3);
|
|
visu.draw_image((visu.width() - text.width())/2,1,~text);
|
|
}
|
|
visu.display(disp);
|
|
}
|
|
|
|
// Test keys.
|
|
CImg<charT> filename(32);
|
|
switch (okey = key) {
|
|
#if cimg_OS!=2
|
|
case cimg::keyCTRLRIGHT : case cimg::keySHIFTRIGHT :
|
|
#endif
|
|
case cimg::keyCTRLLEFT : case cimg::keySHIFTLEFT : okey = 0; break;
|
|
case cimg::keyD : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
disp.set_fullscreen(false).
|
|
resize(CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,false),
|
|
CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,true),false).
|
|
_is_resized = true;
|
|
disp.set_key(key,false); okey = 0;
|
|
} break;
|
|
case cimg::keyC : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
disp.set_fullscreen(false).
|
|
resize(cimg_fitscreen(2*disp.width()/3,2*disp.height()/3,1),false)._is_resized = true;
|
|
disp.set_key(key,false); okey = 0;
|
|
} break;
|
|
case cimg::keyR : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
disp.set_fullscreen(false).
|
|
resize(cimg_fitscreen(CImgDisplay::screen_width()/2,
|
|
CImgDisplay::screen_height()/2,1),false)._is_resized = true;
|
|
disp.set_key(key,false); okey = 0;
|
|
} break;
|
|
case cimg::keyF : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
disp.resize(disp.screen_width(),disp.screen_height(),false).toggle_fullscreen()._is_resized = true;
|
|
disp.set_key(key,false); okey = 0;
|
|
} break;
|
|
case cimg::keyS : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
static unsigned int snap_number = 0;
|
|
if (visu || visu0) {
|
|
CImg<ucharT> &screen = visu?visu:visu0;
|
|
std::FILE *file;
|
|
do {
|
|
cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.bmp",snap_number++);
|
|
if ((file=cimg::std_fopen(filename,"r"))!=0) cimg::fclose(file);
|
|
} while (file);
|
|
(+screen).__draw_text(" Saving snapshot... ",font_size,0).display(disp);
|
|
screen.save(filename);
|
|
(+screen).__draw_text(" Snapshot '%s' saved. ",font_size,0,filename._data).display(disp);
|
|
}
|
|
disp.set_key(key,false); okey = 0;
|
|
} break;
|
|
case cimg::keyO : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
static unsigned int snap_number = 0;
|
|
if (visu || visu0) {
|
|
CImg<ucharT> &screen = visu?visu:visu0;
|
|
std::FILE *file;
|
|
do {
|
|
|
|
#ifdef cimg_use_zlib
|
|
cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.cimgz",snap_number++);
|
|
#else
|
|
cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.cimg",snap_number++);
|
|
#endif
|
|
if ((file=cimg::std_fopen(filename,"r"))!=0) cimg::fclose(file);
|
|
} while (file);
|
|
(+screen).__draw_text(" Saving instance... ",font_size,0).display(disp);
|
|
save(filename);
|
|
(+screen).__draw_text(" Instance '%s' saved. ",font_size,0,filename._data).display(disp);
|
|
}
|
|
disp.set_key(key,false); okey = 0;
|
|
} break;
|
|
}
|
|
|
|
// Handle mouse motion and mouse buttons.
|
|
if (obutton!=button || omouse_x!=mouse_x || omouse_y!=mouse_y) {
|
|
visu.assign();
|
|
if (disp.mouse_x()>=0 && disp.mouse_y()>=0) {
|
|
const int
|
|
mx = (mouse_x - 16)*(int)(siz - one)/(disp.width() - 32),
|
|
cx = cimg::cut(mx,0,(int)(siz - 1 - one)),
|
|
my = mouse_y - 16,
|
|
cy = cimg::cut(my,0,disp.height() - 32);
|
|
if (button&1) {
|
|
if (!obutton) { x0 = cx; y0 = -1; } else { x1 = cx; y1 = -1; }
|
|
}
|
|
else if (button&2) {
|
|
if (!obutton) { x0 = cx; y0 = cy; } else { x1 = cx; y1 = cy; }
|
|
}
|
|
else if (obutton) { x1 = x1>=0?cx:-1; y1 = y1>=0?cy:-1; selected = true; }
|
|
} else if (!button && obutton) selected = true;
|
|
obutton = button; omouse_x = mouse_x; omouse_y = mouse_y;
|
|
}
|
|
if (disp.is_resized()) { disp.resize(false); visu0.assign(); }
|
|
if (visu && visu0) disp.wait();
|
|
if (!exit_on_anykey && okey && okey!=cimg::keyESC &&
|
|
(okey!=cimg::keyW || (!disp.is_keyCTRLLEFT() && !disp.is_keyCTRLRIGHT()))) {
|
|
disp.set_key(key,false);
|
|
okey = 0;
|
|
}
|
|
}
|
|
|
|
disp._normalization = old_normalization;
|
|
if (x1>=0 && x1<x0) cimg::swap(x0,x1);
|
|
if (y1<y0) cimg::swap(y0,y1);
|
|
disp.set_key(okey);
|
|
return CImg<intT>(4,1,1,1,x0,y0,x1>=0?x1 + (int)one:-1,y1);
|
|
}
|
|
|
|
//! Load image from a file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\note The extension of \c filename defines the file format. If no filename
|
|
extension is provided, CImg<T>::get_load() will try to load the file as a .cimg or .cimgz file.
|
|
**/
|
|
CImg<T>& load(const char *const filename) {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"load(): Specified filename is (null).",
|
|
cimg_instance);
|
|
|
|
if (!cimg::strncasecmp(filename,"http://",7) || !cimg::strncasecmp(filename,"https://",8)) {
|
|
CImg<charT> filename_local(256);
|
|
load(cimg::load_network(filename,filename_local));
|
|
std::remove(filename_local);
|
|
return *this;
|
|
}
|
|
|
|
const char *const ext = cimg::split_filename(filename);
|
|
const unsigned int omode = cimg::exception_mode();
|
|
cimg::exception_mode(0);
|
|
bool is_loaded = true;
|
|
try {
|
|
#ifdef cimg_load_plugin
|
|
cimg_load_plugin(filename);
|
|
#endif
|
|
#ifdef cimg_load_plugin1
|
|
cimg_load_plugin1(filename);
|
|
#endif
|
|
#ifdef cimg_load_plugin2
|
|
cimg_load_plugin2(filename);
|
|
#endif
|
|
#ifdef cimg_load_plugin3
|
|
cimg_load_plugin3(filename);
|
|
#endif
|
|
#ifdef cimg_load_plugin4
|
|
cimg_load_plugin4(filename);
|
|
#endif
|
|
#ifdef cimg_load_plugin5
|
|
cimg_load_plugin5(filename);
|
|
#endif
|
|
#ifdef cimg_load_plugin6
|
|
cimg_load_plugin6(filename);
|
|
#endif
|
|
#ifdef cimg_load_plugin7
|
|
cimg_load_plugin7(filename);
|
|
#endif
|
|
#ifdef cimg_load_plugin8
|
|
cimg_load_plugin8(filename);
|
|
#endif
|
|
// Text formats
|
|
if (!cimg::strcasecmp(ext,"asc")) load_ascii(filename);
|
|
else if (!cimg::strcasecmp(ext,"csv") ||
|
|
!cimg::strcasecmp(ext,"dlm") ||
|
|
!cimg::strcasecmp(ext,"txt")) load_dlm(filename);
|
|
else if (!cimg::strcasecmp(ext,"pdf")) load_pdf_external(filename);
|
|
|
|
// 2D binary formats
|
|
else if (!cimg::strcasecmp(ext,"bmp")) load_bmp(filename);
|
|
else if (!cimg::strcasecmp(ext,"jpg") ||
|
|
!cimg::strcasecmp(ext,"jpeg") ||
|
|
!cimg::strcasecmp(ext,"jpe") ||
|
|
!cimg::strcasecmp(ext,"jfif") ||
|
|
!cimg::strcasecmp(ext,"jif")) load_jpeg(filename);
|
|
else if (!cimg::strcasecmp(ext,"png")) load_png(filename);
|
|
else if (!cimg::strcasecmp(ext,"ppm") ||
|
|
!cimg::strcasecmp(ext,"pgm") ||
|
|
!cimg::strcasecmp(ext,"pnm") ||
|
|
!cimg::strcasecmp(ext,"pbm") ||
|
|
!cimg::strcasecmp(ext,"pnk")) load_pnm(filename);
|
|
else if (!cimg::strcasecmp(ext,"pfm")) load_pfm(filename);
|
|
else if (!cimg::strcasecmp(ext,"tif") ||
|
|
!cimg::strcasecmp(ext,"tiff")) load_tiff(filename);
|
|
else if (!cimg::strcasecmp(ext,"exr")) load_exr(filename);
|
|
else if (!cimg::strcasecmp(ext,"arw") ||
|
|
!cimg::strcasecmp(ext,"cr2") ||
|
|
!cimg::strcasecmp(ext,"crw") ||
|
|
!cimg::strcasecmp(ext,"dcr") ||
|
|
!cimg::strcasecmp(ext,"dng") ||
|
|
!cimg::strcasecmp(ext,"mrw") ||
|
|
!cimg::strcasecmp(ext,"nef") ||
|
|
!cimg::strcasecmp(ext,"orf") ||
|
|
!cimg::strcasecmp(ext,"pix") ||
|
|
!cimg::strcasecmp(ext,"ptx") ||
|
|
!cimg::strcasecmp(ext,"raf") ||
|
|
!cimg::strcasecmp(ext,"srf")) load_dcraw_external(filename);
|
|
else if (!cimg::strcasecmp(ext,"gif")) load_gif_external(filename);
|
|
else if (!cimg::strcasecmp(ext,"heic") ||
|
|
!cimg::strcasecmp(ext,"avif")) load_heif(filename);
|
|
|
|
// 3D binary formats
|
|
else if (!cimg::strcasecmp(ext,"dcm") ||
|
|
!cimg::strcasecmp(ext,"dicom")) load_medcon_external(filename);
|
|
else if (!cimg::strcasecmp(ext,"hdr") ||
|
|
!cimg::strcasecmp(ext,"nii")) load_analyze(filename);
|
|
else if (!cimg::strcasecmp(ext,"par") ||
|
|
!cimg::strcasecmp(ext,"rec")) load_parrec(filename);
|
|
else if (!cimg::strcasecmp(ext,"mnc")) load_minc2(filename);
|
|
else if (!cimg::strcasecmp(ext,"inr")) load_inr(filename);
|
|
else if (!cimg::strcasecmp(ext,"pan")) load_pandore(filename);
|
|
else if (!cimg::strcasecmp(ext,"cimg") ||
|
|
!cimg::strcasecmp(ext,"cimgz") ||
|
|
!*ext) return load_cimg(filename);
|
|
|
|
// Archive files
|
|
else if (!cimg::strcasecmp(ext,"gz")) load_gzip_external(filename);
|
|
|
|
// Image sequences
|
|
else if (!cimg::strcasecmp(ext,"avi") ||
|
|
!cimg::strcasecmp(ext,"mov") ||
|
|
!cimg::strcasecmp(ext,"asf") ||
|
|
!cimg::strcasecmp(ext,"divx") ||
|
|
!cimg::strcasecmp(ext,"flv") ||
|
|
!cimg::strcasecmp(ext,"mpg") ||
|
|
!cimg::strcasecmp(ext,"m1v") ||
|
|
!cimg::strcasecmp(ext,"m2v") ||
|
|
!cimg::strcasecmp(ext,"m4v") ||
|
|
!cimg::strcasecmp(ext,"mjp") ||
|
|
!cimg::strcasecmp(ext,"mp4") ||
|
|
!cimg::strcasecmp(ext,"mkv") ||
|
|
!cimg::strcasecmp(ext,"mpe") ||
|
|
!cimg::strcasecmp(ext,"movie") ||
|
|
!cimg::strcasecmp(ext,"ogm") ||
|
|
!cimg::strcasecmp(ext,"ogg") ||
|
|
!cimg::strcasecmp(ext,"ogv") ||
|
|
!cimg::strcasecmp(ext,"qt") ||
|
|
!cimg::strcasecmp(ext,"rm") ||
|
|
!cimg::strcasecmp(ext,"vob") ||
|
|
!cimg::strcasecmp(ext,"webm") ||
|
|
!cimg::strcasecmp(ext,"wmv") ||
|
|
!cimg::strcasecmp(ext,"xvid") ||
|
|
!cimg::strcasecmp(ext,"mpeg")) load_video(filename);
|
|
else is_loaded = false;
|
|
} catch (CImgIOException&) { is_loaded = false; }
|
|
|
|
// If nothing loaded, try to guess file format from magic number in file.
|
|
if (!is_loaded) {
|
|
std::FILE *file = cimg::std_fopen(filename,"rb");
|
|
if (!file) {
|
|
cimg::exception_mode(omode);
|
|
throw CImgIOException(_cimg_instance
|
|
"load(): Failed to open file '%s'.",
|
|
cimg_instance,
|
|
filename);
|
|
}
|
|
|
|
const char *const f_type = cimg::ftype(file,filename);
|
|
cimg::fclose(file);
|
|
is_loaded = true;
|
|
try {
|
|
if (!cimg::strcasecmp(f_type,"pnm")) load_pnm(filename);
|
|
else if (!cimg::strcasecmp(f_type,"pfm")) load_pfm(filename);
|
|
else if (!cimg::strcasecmp(f_type,"bmp")) load_bmp(filename);
|
|
else if (!cimg::strcasecmp(f_type,"inr")) load_inr(filename);
|
|
else if (!cimg::strcasecmp(f_type,"jpg")) load_jpeg(filename);
|
|
else if (!cimg::strcasecmp(f_type,"pan")) load_pandore(filename);
|
|
else if (!cimg::strcasecmp(f_type,"png")) load_png(filename);
|
|
else if (!cimg::strcasecmp(f_type,"tif")) load_tiff(filename);
|
|
else if (!cimg::strcasecmp(f_type,"gif")) load_gif_external(filename);
|
|
else if (!cimg::strcasecmp(f_type,"dcm")) load_medcon_external(filename);
|
|
else is_loaded = false;
|
|
} catch (CImgIOException&) { is_loaded = false; }
|
|
}
|
|
|
|
// If nothing loaded, try to load file with other means.
|
|
if (!is_loaded) {
|
|
try {
|
|
load_other(filename);
|
|
} catch (CImgIOException&) {
|
|
cimg::exception_mode(omode);
|
|
throw CImgIOException(_cimg_instance
|
|
"load(): Failed to recognize format of file '%s'.",
|
|
cimg_instance,
|
|
filename);
|
|
}
|
|
}
|
|
cimg::exception_mode(omode);
|
|
return *this;
|
|
}
|
|
|
|
//! Load image from a file \newinstance.
|
|
static CImg<T> get_load(const char *const filename) {
|
|
return CImg<T>().load(filename);
|
|
}
|
|
|
|
//! Load image from an ascii file.
|
|
/**
|
|
\param filename Filename, as a C -string.
|
|
**/
|
|
CImg<T>& load_ascii(const char *const filename) {
|
|
return _load_ascii(0,filename);
|
|
}
|
|
|
|
//! Load image from an ascii file \inplace.
|
|
static CImg<T> get_load_ascii(const char *const filename) {
|
|
return CImg<T>().load_ascii(filename);
|
|
}
|
|
|
|
//! Load image from an ascii file \overloading.
|
|
CImg<T>& load_ascii(std::FILE *const file) {
|
|
return _load_ascii(file,0);
|
|
}
|
|
|
|
//! Loadimage from an ascii file \newinstance.
|
|
static CImg<T> get_load_ascii(std::FILE *const file) {
|
|
return CImg<T>().load_ascii(file);
|
|
}
|
|
|
|
CImg<T>& _load_ascii(std::FILE *const file, const char *const filename) {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"load_ascii(): Specified filename is (null).",
|
|
cimg_instance);
|
|
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"rb");
|
|
CImg<charT> line(256); *line = 0;
|
|
int err = std::fscanf(nfile,"%255[^\n]",line._data);
|
|
unsigned int dx = 0, dy = 1, dz = 1, dc = 1;
|
|
cimg_sscanf(line,"%u%*c%u%*c%u%*c%u",&dx,&dy,&dz,&dc);
|
|
err = std::fscanf(nfile,"%*[^0-9.eEinfa+-]");
|
|
if (!dx || !dy || !dz || !dc) {
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_ascii(): Invalid ascii header in file '%s', image dimensions are set "
|
|
"to (%u,%u,%u,%u).",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)",dx,dy,dz,dc);
|
|
}
|
|
assign(dx,dy,dz,dc);
|
|
const ulongT siz = size();
|
|
ulongT off = 0;
|
|
double val;
|
|
T *ptr = _data;
|
|
for (err = 1, off = 0; off<siz && err==1; ++off) {
|
|
err = std::fscanf(nfile,"%lf%*[^0-9.eEinfa+-]",&val);
|
|
*(ptr++) = (T)val;
|
|
}
|
|
if (err!=1)
|
|
cimg::warn(_cimg_instance
|
|
"load_ascii(): Only %lu/%lu values read from file '%s'.",
|
|
cimg_instance,
|
|
off - 1,siz,filename?filename:"(FILE*)");
|
|
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
}
|
|
|
|
//! Load image from a DLM file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
**/
|
|
CImg<T>& load_dlm(const char *const filename) {
|
|
return _load_dlm(0,filename);
|
|
}
|
|
|
|
//! Load image from a DLM file \newinstance.
|
|
static CImg<T> get_load_dlm(const char *const filename) {
|
|
return CImg<T>().load_dlm(filename);
|
|
}
|
|
|
|
//! Load image from a DLM file \overloading.
|
|
CImg<T>& load_dlm(std::FILE *const file) {
|
|
return _load_dlm(file,0);
|
|
}
|
|
|
|
//! Load image from a DLM file \newinstance.
|
|
static CImg<T> get_load_dlm(std::FILE *const file) {
|
|
return CImg<T>().load_dlm(file);
|
|
}
|
|
|
|
CImg<T>& _load_dlm(std::FILE *const file, const char *const filename) {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"load_dlm(): Specified filename is (null).",
|
|
cimg_instance);
|
|
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"r");
|
|
CImg<charT> delimiter(256), tmp(256); *delimiter = *tmp = 0;
|
|
unsigned int cdx = 0, dx = 0, dy = 0;
|
|
int err = 0;
|
|
double val;
|
|
assign(256,256,1,1,(T)0);
|
|
while ((err = std::fscanf(nfile,"%lf%255[^0-9eEinfa.+-]",&val,delimiter._data))>0) {
|
|
if (err>0) (*this)(cdx++,dy) = (T)val;
|
|
if (cdx>=_width) resize(3*_width/2,_height,1,1,0);
|
|
char c = 0;
|
|
if (!cimg_sscanf(delimiter,"%255[^\n]%c",tmp._data,&c) || c=='\n') {
|
|
dx = std::max(cdx,dx);
|
|
if (++dy>=_height) resize(_width,3*_height/2,1,1,0);
|
|
cdx = 0;
|
|
}
|
|
}
|
|
if (cdx && err==1) { dx = cdx; ++dy; }
|
|
if (!dx || !dy) {
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_dlm(): Invalid DLM file '%s'.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)");
|
|
}
|
|
resize(dx,dy,1,1,0);
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
}
|
|
|
|
//! Load image from a BMP file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
**/
|
|
CImg<T>& load_bmp(const char *const filename) {
|
|
return _load_bmp(0,filename);
|
|
}
|
|
|
|
//! Load image from a BMP file \newinstance.
|
|
static CImg<T> get_load_bmp(const char *const filename) {
|
|
return CImg<T>().load_bmp(filename);
|
|
}
|
|
|
|
//! Load image from a BMP file \overloading.
|
|
CImg<T>& load_bmp(std::FILE *const file) {
|
|
return _load_bmp(file,0);
|
|
}
|
|
|
|
//! Load image from a BMP file \newinstance.
|
|
static CImg<T> get_load_bmp(std::FILE *const file) {
|
|
return CImg<T>().load_bmp(file);
|
|
}
|
|
|
|
CImg<T>& _load_bmp(std::FILE *const file, const char *const filename) {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"load_bmp(): Specified filename is (null).",
|
|
cimg_instance);
|
|
|
|
const ulongT fsiz = file?(ulongT)cimg_max_buf_size:(ulongT)cimg::fsize(filename);
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"rb");
|
|
CImg<ucharT> header(54);
|
|
cimg::fread(header._data,54,nfile);
|
|
if (*header!='B' || header[1]!='M') {
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_bmp(): Invalid BMP file '%s'.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)");
|
|
}
|
|
|
|
// Read header and pixel buffer
|
|
int
|
|
file_size = header[0x02] + (header[0x03]<<8) + (header[0x04]<<16) + (header[0x05]<<24),
|
|
offset = header[0x0A] + (header[0x0B]<<8) + (header[0x0C]<<16) + (header[0x0D]<<24),
|
|
header_size = header[0x0E] + (header[0x0F]<<8) + (header[0x10]<<16) + (header[0x11]<<24),
|
|
dx = header[0x12] + (header[0x13]<<8) + (header[0x14]<<16) + (header[0x15]<<24),
|
|
dy = header[0x16] + (header[0x17]<<8) + (header[0x18]<<16) + (header[0x19]<<24),
|
|
compression = header[0x1E] + (header[0x1F]<<8) + (header[0x20]<<16) + (header[0x21]<<24),
|
|
nb_colors = header[0x2E] + (header[0x2F]<<8) + (header[0x30]<<16) + (header[0x31]<<24),
|
|
bpp = header[0x1C] + (header[0x1D]<<8);
|
|
|
|
if (!file_size || file_size==offset) {
|
|
cimg::fseek(nfile,0,SEEK_END);
|
|
file_size = (int)cimg::ftell(nfile);
|
|
cimg::fseek(nfile,54,SEEK_SET);
|
|
}
|
|
if (header_size>40) cimg::fseek(nfile,header_size - 40,SEEK_CUR);
|
|
|
|
const int
|
|
dx_bytes = (bpp==1)?(dx/8 + (dx%8?1:0)):((bpp==4)?(dx/2 + (dx%2)):(int)((longT)dx*bpp/8)),
|
|
align_bytes = (4 - dx_bytes%4)%4;
|
|
const ulongT
|
|
cimg_iobuffer = (ulongT)24*1024*1024,
|
|
buf_size = (ulongT)cimg::abs(dy)*(dx_bytes + align_bytes);
|
|
|
|
if (buf_size>fsiz)
|
|
throw CImgIOException(_cimg_instance
|
|
"load_bmp(): File size %lu for filename '%s' does not match "
|
|
"encoded image dimensions (%d,%d).",
|
|
cimg_instance,
|
|
(long)fsiz,filename?filename:"(FILE*)",dx,dy);
|
|
|
|
CImg<intT> colormap;
|
|
if (bpp<16) { if (!nb_colors) nb_colors = 1<<bpp; } else nb_colors = 0;
|
|
if (nb_colors) { colormap.assign(nb_colors); cimg::fread(colormap._data,nb_colors,nfile); }
|
|
const int xoffset = offset - 14 - header_size - 4*nb_colors;
|
|
if (xoffset>0) cimg::fseek(nfile,xoffset,SEEK_CUR);
|
|
|
|
CImg<ucharT> buffer;
|
|
if (buf_size<cimg_iobuffer) {
|
|
buffer.assign(buf_size,1,1,1,0);
|
|
cimg::fread(buffer._data,buf_size,nfile);
|
|
} else buffer.assign(dx_bytes + align_bytes);
|
|
unsigned char *ptrs = buffer;
|
|
|
|
// Decompress buffer (if necessary)
|
|
if (compression==1 || compression==2) {
|
|
if (file)
|
|
throw CImgIOException(_cimg_instance
|
|
"load_bmp(): Unable to load compressed data from '(*FILE)' inputs.",
|
|
cimg_instance);
|
|
else {
|
|
if (!file) cimg::fclose(nfile);
|
|
return load_other(filename);
|
|
}
|
|
}
|
|
|
|
// Read pixel data
|
|
assign(dx,cimg::abs(dy),1,3,0);
|
|
switch (bpp) {
|
|
case 1 : { // Monochrome
|
|
if (colormap._width>=2) for (int y = height() - 1; y>=0; --y) {
|
|
if (buf_size>=cimg_iobuffer) {
|
|
if (!cimg::fread(ptrs=buffer._data,dx_bytes,nfile)) break;
|
|
cimg::fseek(nfile,align_bytes,SEEK_CUR);
|
|
}
|
|
unsigned char mask = 0x80, val = 0;
|
|
cimg_forX(*this,x) {
|
|
if (mask==0x80) val = *(ptrs++);
|
|
const unsigned char *col = (unsigned char*)(colormap._data + (val&mask?1:0));
|
|
(*this)(x,y,2) = (T)*(col++);
|
|
(*this)(x,y,1) = (T)*(col++);
|
|
(*this)(x,y,0) = (T)*(col++);
|
|
mask = cimg::ror(mask);
|
|
}
|
|
ptrs+=align_bytes;
|
|
}
|
|
} break;
|
|
case 4 : { // 16 colors
|
|
if (colormap._width>=16) for (int y = height() - 1; y>=0; --y) {
|
|
if (buf_size>=cimg_iobuffer) {
|
|
if (!cimg::fread(ptrs=buffer._data,dx_bytes,nfile)) break;
|
|
cimg::fseek(nfile,align_bytes,SEEK_CUR);
|
|
}
|
|
unsigned char mask = 0xF0, val = 0;
|
|
cimg_forX(*this,x) {
|
|
if (mask==0xF0) val = *(ptrs++);
|
|
const unsigned char color = (unsigned char)((mask<16)?(val&mask):((val&mask)>>4));
|
|
const unsigned char *col = (unsigned char*)(colormap._data + color);
|
|
(*this)(x,y,2) = (T)*(col++);
|
|
(*this)(x,y,1) = (T)*(col++);
|
|
(*this)(x,y,0) = (T)*(col++);
|
|
mask = cimg::ror(mask,4);
|
|
}
|
|
ptrs+=align_bytes;
|
|
}
|
|
} break;
|
|
case 8 : { // 256 colors
|
|
if (colormap._width>=256) for (int y = height() - 1; y>=0; --y) {
|
|
if (buf_size>=cimg_iobuffer) {
|
|
if (!cimg::fread(ptrs=buffer._data,dx_bytes,nfile)) break;
|
|
cimg::fseek(nfile,align_bytes,SEEK_CUR);
|
|
}
|
|
cimg_forX(*this,x) {
|
|
const unsigned char *col = (unsigned char*)(colormap._data + *(ptrs++));
|
|
(*this)(x,y,2) = (T)*(col++);
|
|
(*this)(x,y,1) = (T)*(col++);
|
|
(*this)(x,y,0) = (T)*(col++);
|
|
}
|
|
ptrs+=align_bytes;
|
|
}
|
|
} break;
|
|
case 16 : { // 16 bits colors (RGB565)
|
|
for (int y = height() - 1; y>=0; --y) {
|
|
if (buf_size>=cimg_iobuffer) {
|
|
if (!cimg::fread(ptrs=buffer._data,dx_bytes,nfile)) break;
|
|
cimg::fseek(nfile,align_bytes,SEEK_CUR);
|
|
}
|
|
cimg_forX(*this,x) {
|
|
const unsigned char c1 = *(ptrs++), c2 = *(ptrs++);
|
|
const unsigned short col = (unsigned short)c2<<8 | c1;
|
|
(*this)(x,y,2) = (T)((col&0x1F)<<3);
|
|
(*this)(x,y,1) = (T)(((col>>5)&0x3F)<<3);
|
|
(*this)(x,y,0) = (T)(((col>>11)&0x1F)<<3);
|
|
}
|
|
ptrs+=align_bytes;
|
|
}
|
|
} break;
|
|
case 24 : { // 24 bits colors
|
|
for (int y = height() - 1; y>=0; --y) {
|
|
if (buf_size>=cimg_iobuffer) {
|
|
if (!cimg::fread(ptrs=buffer._data,dx_bytes,nfile)) break;
|
|
cimg::fseek(nfile,align_bytes,SEEK_CUR);
|
|
}
|
|
cimg_forX(*this,x) {
|
|
(*this)(x,y,2) = (T)*(ptrs++);
|
|
(*this)(x,y,1) = (T)*(ptrs++);
|
|
(*this)(x,y,0) = (T)*(ptrs++);
|
|
}
|
|
ptrs+=align_bytes;
|
|
}
|
|
} break;
|
|
case 32 : { // 32 bits colors
|
|
for (int y = height() - 1; y>=0; --y) {
|
|
if (buf_size>=cimg_iobuffer) {
|
|
if (!cimg::fread(ptrs=buffer._data,dx_bytes,nfile)) break;
|
|
cimg::fseek(nfile,align_bytes,SEEK_CUR);
|
|
}
|
|
cimg_forX(*this,x) {
|
|
(*this)(x,y,2) = (T)*(ptrs++);
|
|
(*this)(x,y,1) = (T)*(ptrs++);
|
|
(*this)(x,y,0) = (T)*(ptrs++);
|
|
++ptrs;
|
|
}
|
|
ptrs+=align_bytes;
|
|
}
|
|
} break;
|
|
}
|
|
if (dy<0) mirror('y');
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
}
|
|
|
|
//! Load image from a JPEG file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
**/
|
|
CImg<T>& load_jpeg(const char *const filename) {
|
|
return _load_jpeg(0,filename);
|
|
}
|
|
|
|
//! Load image from a JPEG file \newinstance.
|
|
static CImg<T> get_load_jpeg(const char *const filename) {
|
|
return CImg<T>().load_jpeg(filename);
|
|
}
|
|
|
|
//! Load image from a JPEG file \overloading.
|
|
CImg<T>& load_jpeg(std::FILE *const file) {
|
|
return _load_jpeg(file,0);
|
|
}
|
|
|
|
//! Load image from a JPEG file \newinstance.
|
|
static CImg<T> get_load_jpeg(std::FILE *const file) {
|
|
return CImg<T>().load_jpeg(file);
|
|
}
|
|
|
|
// Custom error handler for libjpeg.
|
|
#ifdef cimg_use_jpeg
|
|
struct _cimg_error_mgr {
|
|
struct jpeg_error_mgr original;
|
|
jmp_buf setjmp_buffer;
|
|
char message[JMSG_LENGTH_MAX];
|
|
};
|
|
|
|
typedef struct _cimg_error_mgr *_cimg_error_ptr;
|
|
|
|
METHODDEF(void) _cimg_jpeg_error_exit(j_common_ptr cinfo) {
|
|
_cimg_error_ptr c_err = (_cimg_error_ptr) cinfo->err; // Return control to the setjmp point
|
|
(*cinfo->err->format_message)(cinfo,c_err->message);
|
|
jpeg_destroy(cinfo); // Clean memory and temp files
|
|
longjmp(c_err->setjmp_buffer,1);
|
|
}
|
|
#endif
|
|
|
|
CImg<T>& _load_jpeg(std::FILE *const file, const char *const filename) {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"load_jpeg(): Specified filename is (null).",
|
|
cimg_instance);
|
|
|
|
#ifndef cimg_use_jpeg
|
|
if (file)
|
|
throw CImgIOException(_cimg_instance
|
|
"load_jpeg(): Unable to load data from '(FILE*)' unless libjpeg is enabled.",
|
|
cimg_instance);
|
|
else return load_other(filename);
|
|
#else
|
|
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"rb");
|
|
struct jpeg_decompress_struct cinfo;
|
|
struct _cimg_error_mgr jerr;
|
|
cinfo.err = jpeg_std_error(&jerr.original);
|
|
jerr.original.error_exit = _cimg_jpeg_error_exit;
|
|
if (setjmp(jerr.setjmp_buffer)) { // JPEG error
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_jpeg(): Error message returned by libjpeg: %s.",
|
|
cimg_instance,jerr.message);
|
|
}
|
|
|
|
jpeg_create_decompress(&cinfo);
|
|
jpeg_stdio_src(&cinfo,nfile);
|
|
jpeg_read_header(&cinfo,TRUE);
|
|
jpeg_start_decompress(&cinfo);
|
|
|
|
if (cinfo.output_components!=1 && cinfo.output_components!=3 && cinfo.output_components!=4) {
|
|
if (!file) {
|
|
cimg::fclose(nfile);
|
|
return load_other(filename);
|
|
} else
|
|
throw CImgIOException(_cimg_instance
|
|
"load_jpeg(): Failed to load JPEG data from file '%s'.",
|
|
cimg_instance,filename?filename:"(FILE*)");
|
|
}
|
|
CImg<ucharT> buffer(cinfo.output_width*cinfo.output_components);
|
|
JSAMPROW row_pointer[1];
|
|
try { assign(cinfo.output_width,cinfo.output_height,1,cinfo.output_components); }
|
|
catch (...) { if (!file) cimg::fclose(nfile); throw; }
|
|
T *ptr_r = _data, *ptr_g = _data + 1UL*_width*_height, *ptr_b = _data + 2UL*_width*_height,
|
|
*ptr_a = _data + 3UL*_width*_height;
|
|
while (cinfo.output_scanline<cinfo.output_height) {
|
|
*row_pointer = buffer._data;
|
|
if (jpeg_read_scanlines(&cinfo,row_pointer,1)!=1) {
|
|
cimg::warn(_cimg_instance
|
|
"load_jpeg(): Incomplete data in file '%s'.",
|
|
cimg_instance,filename?filename:"(FILE*)");
|
|
break;
|
|
}
|
|
const unsigned char *ptrs = buffer._data;
|
|
switch (_spectrum) {
|
|
case 1 : {
|
|
cimg_forX(*this,x) *(ptr_r++) = (T)*(ptrs++);
|
|
} break;
|
|
case 3 : {
|
|
cimg_forX(*this,x) {
|
|
*(ptr_r++) = (T)*(ptrs++);
|
|
*(ptr_g++) = (T)*(ptrs++);
|
|
*(ptr_b++) = (T)*(ptrs++);
|
|
}
|
|
} break;
|
|
case 4 : {
|
|
cimg_forX(*this,x) {
|
|
*(ptr_r++) = (T)*(ptrs++);
|
|
*(ptr_g++) = (T)*(ptrs++);
|
|
*(ptr_b++) = (T)*(ptrs++);
|
|
*(ptr_a++) = (T)*(ptrs++);
|
|
}
|
|
} break;
|
|
}
|
|
}
|
|
jpeg_finish_decompress(&cinfo);
|
|
jpeg_destroy_decompress(&cinfo);
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
#endif
|
|
}
|
|
|
|
//! Load image from a file, using Magick++ library.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
**/
|
|
// Added April/may 2006 by Christoph Hormann <chris_hormann@gmx.de>
|
|
// This is experimental code, not much tested, use with care.
|
|
CImg<T>& load_magick(const char *const filename) {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"load_magick(): Specified filename is (null).",
|
|
cimg_instance);
|
|
|
|
#ifdef cimg_use_magick
|
|
Magick::Image image(filename);
|
|
const unsigned int W = image.size().width(), H = image.size().height();
|
|
switch (image.type()) {
|
|
case Magick::PaletteMatteType :
|
|
case Magick::TrueColorMatteType :
|
|
case Magick::ColorSeparationType : {
|
|
assign(W,H,1,4);
|
|
T *ptr_r = data(0,0,0,0), *ptr_g = data(0,0,0,1), *ptr_b = data(0,0,0,2), *ptr_a = data(0,0,0,3);
|
|
Magick::PixelPacket *pixels = image.getPixels(0,0,W,H);
|
|
for (ulongT off = (ulongT)W*H; off; --off) {
|
|
*(ptr_r++) = (T)(pixels->red);
|
|
*(ptr_g++) = (T)(pixels->green);
|
|
*(ptr_b++) = (T)(pixels->blue);
|
|
*(ptr_a++) = (T)(pixels->opacity);
|
|
++pixels;
|
|
}
|
|
} break;
|
|
case Magick::PaletteType :
|
|
case Magick::TrueColorType : {
|
|
assign(W,H,1,3);
|
|
T *ptr_r = data(0,0,0,0), *ptr_g = data(0,0,0,1), *ptr_b = data(0,0,0,2);
|
|
Magick::PixelPacket *pixels = image.getPixels(0,0,W,H);
|
|
for (ulongT off = (ulongT)W*H; off; --off) {
|
|
*(ptr_r++) = (T)(pixels->red);
|
|
*(ptr_g++) = (T)(pixels->green);
|
|
*(ptr_b++) = (T)(pixels->blue);
|
|
++pixels;
|
|
}
|
|
} break;
|
|
case Magick::GrayscaleMatteType : {
|
|
assign(W,H,1,2);
|
|
T *ptr_r = data(0,0,0,0), *ptr_a = data(0,0,0,1);
|
|
Magick::PixelPacket *pixels = image.getPixels(0,0,W,H);
|
|
for (ulongT off = (ulongT)W*H; off; --off) {
|
|
*(ptr_r++) = (T)(pixels->red);
|
|
*(ptr_a++) = (T)(pixels->opacity);
|
|
++pixels;
|
|
}
|
|
} break;
|
|
default : {
|
|
assign(W,H,1,1);
|
|
T *ptr_r = data(0,0,0,0);
|
|
Magick::PixelPacket *pixels = image.getPixels(0,0,W,H);
|
|
for (ulongT off = (ulongT)W*H; off; --off) {
|
|
*(ptr_r++) = (T)(pixels->red);
|
|
++pixels;
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
#else
|
|
throw CImgIOException(_cimg_instance
|
|
"load_magick(): Unable to load file '%s' unless libMagick++ is enabled.",
|
|
cimg_instance,
|
|
filename);
|
|
#endif
|
|
}
|
|
|
|
//! Load image from a file, using Magick++ library \newinstance.
|
|
static CImg<T> get_load_magick(const char *const filename) {
|
|
return CImg<T>().load_magick(filename);
|
|
}
|
|
|
|
//! Load image from a PNG file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param[out] bits_per_value Number of bits used to store a scalar value in the image file.
|
|
**/
|
|
CImg<T>& load_png(const char *const filename, unsigned int *const bits_per_value=0) {
|
|
return _load_png(0,filename,bits_per_value);
|
|
}
|
|
|
|
//! Load image from a PNG file \newinstance.
|
|
static CImg<T> get_load_png(const char *const filename, unsigned int *const bits_per_value=0) {
|
|
return CImg<T>().load_png(filename,bits_per_value);
|
|
}
|
|
|
|
//! Load image from a PNG file \overloading.
|
|
CImg<T>& load_png(std::FILE *const file, unsigned int *const bits_per_value=0) {
|
|
return _load_png(file,0,bits_per_value);
|
|
}
|
|
|
|
//! Load image from a PNG file \newinstance.
|
|
static CImg<T> get_load_png(std::FILE *const file, unsigned int *const bits_per_value=0) {
|
|
return CImg<T>().load_png(file,bits_per_value);
|
|
}
|
|
|
|
// (Note: Most of this function has been written by Eric Fausett)
|
|
CImg<T>& _load_png(std::FILE *const file, const char *const filename, unsigned int *const bits_per_value) {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"load_png(): Specified filename is (null).",
|
|
cimg_instance);
|
|
|
|
#ifndef cimg_use_png
|
|
cimg::unused(bits_per_value);
|
|
if (file)
|
|
throw CImgIOException(_cimg_instance
|
|
"load_png(): Unable to load data from '(FILE*)' unless libpng is enabled.",
|
|
cimg_instance);
|
|
|
|
else return load_other(filename);
|
|
#else
|
|
// Open file and check for PNG validity
|
|
#if defined __GNUC__
|
|
const char *volatile nfilename = filename; // Use 'volatile' to avoid (wrong) g++ warning
|
|
std::FILE *volatile nfile = file?file:cimg::fopen(nfilename,"rb");
|
|
#else
|
|
const char *nfilename = filename;
|
|
std::FILE *nfile = file?file:cimg::fopen(nfilename,"rb");
|
|
#endif
|
|
unsigned char pngCheck[8] = {};
|
|
cimg::fread(pngCheck,8,(std::FILE*)nfile);
|
|
if (png_sig_cmp(pngCheck,0,8)) {
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_png(): Invalid PNG file '%s'.",
|
|
cimg_instance,
|
|
nfilename?nfilename:"(FILE*)");
|
|
}
|
|
|
|
// Setup PNG structures for read
|
|
png_voidp user_error_ptr = 0;
|
|
png_error_ptr user_error_fn = 0, user_warning_fn = 0;
|
|
png_structp png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING,user_error_ptr,user_error_fn,user_warning_fn);
|
|
if (!png_ptr) {
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_png(): Failed to initialize 'png_ptr' structure for file '%s'.",
|
|
cimg_instance,
|
|
nfilename?nfilename:"(FILE*)");
|
|
}
|
|
png_infop info_ptr = png_create_info_struct(png_ptr);
|
|
if (!info_ptr) {
|
|
if (!file) cimg::fclose(nfile);
|
|
png_destroy_read_struct(&png_ptr,(png_infopp)0,(png_infopp)0);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_png(): Failed to initialize 'info_ptr' structure for file '%s'.",
|
|
cimg_instance,
|
|
nfilename?nfilename:"(FILE*)");
|
|
}
|
|
png_infop end_info = png_create_info_struct(png_ptr);
|
|
if (!end_info) {
|
|
if (!file) cimg::fclose(nfile);
|
|
png_destroy_read_struct(&png_ptr,&info_ptr,(png_infopp)0);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_png(): Failed to initialize 'end_info' structure for file '%s'.",
|
|
cimg_instance,
|
|
nfilename?nfilename:"(FILE*)");
|
|
}
|
|
|
|
// Error handling callback for png file reading
|
|
if (setjmp(png_jmpbuf(png_ptr))) {
|
|
if (!file) cimg::fclose((std::FILE*)nfile);
|
|
png_destroy_read_struct(&png_ptr, &end_info, (png_infopp)0);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_png(): Encountered unknown fatal error in libpng for file '%s'.",
|
|
cimg_instance,
|
|
nfilename?nfilename:"(FILE*)");
|
|
}
|
|
png_init_io(png_ptr, nfile);
|
|
png_set_sig_bytes(png_ptr, 8);
|
|
|
|
// Get PNG Header Info up to data block
|
|
png_read_info(png_ptr,info_ptr);
|
|
png_uint_32 W, H;
|
|
int bit_depth, color_type, interlace_type;
|
|
bool is_gray = false;
|
|
png_get_IHDR(png_ptr,info_ptr,&W,&H,&bit_depth,&color_type,&interlace_type,(int*)0,(int*)0);
|
|
png_set_interlace_handling(png_ptr);
|
|
if (bits_per_value) *bits_per_value = (unsigned int)bit_depth;
|
|
|
|
// Transforms to unify image data
|
|
if (color_type==PNG_COLOR_TYPE_PALETTE) {
|
|
png_set_palette_to_rgb(png_ptr);
|
|
color_type = PNG_COLOR_TYPE_RGB;
|
|
bit_depth = 8;
|
|
}
|
|
if (color_type==PNG_COLOR_TYPE_GRAY && bit_depth<8) {
|
|
png_set_expand_gray_1_2_4_to_8(png_ptr);
|
|
is_gray = true;
|
|
bit_depth = 8;
|
|
}
|
|
if (png_get_valid(png_ptr,info_ptr,PNG_INFO_tRNS)) {
|
|
png_set_tRNS_to_alpha(png_ptr);
|
|
color_type |= PNG_COLOR_MASK_ALPHA;
|
|
}
|
|
if (color_type==PNG_COLOR_TYPE_GRAY || color_type==PNG_COLOR_TYPE_GRAY_ALPHA) {
|
|
png_set_gray_to_rgb(png_ptr);
|
|
color_type |= PNG_COLOR_MASK_COLOR;
|
|
is_gray = true;
|
|
}
|
|
if (color_type==PNG_COLOR_TYPE_RGB)
|
|
png_set_filler(png_ptr,0xffffU,PNG_FILLER_AFTER);
|
|
|
|
png_read_update_info(png_ptr,info_ptr);
|
|
if (bit_depth!=8 && bit_depth!=16) {
|
|
if (!file) cimg::fclose(nfile);
|
|
png_destroy_read_struct(&png_ptr,&end_info,(png_infopp)0);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_png(): Invalid bit depth %u in file '%s'.",
|
|
cimg_instance,
|
|
bit_depth,nfilename?nfilename:"(FILE*)");
|
|
}
|
|
const int byte_depth = bit_depth>>3;
|
|
|
|
// Allocate memory for image reading
|
|
png_bytep *const imgData = new png_bytep[H];
|
|
for (unsigned int row = 0; row<H; ++row) imgData[row] = new png_byte[(size_t)byte_depth*4*W];
|
|
png_read_image(png_ptr,imgData);
|
|
png_read_end(png_ptr,end_info);
|
|
|
|
// Read pixel data
|
|
if (color_type!=PNG_COLOR_TYPE_RGB && color_type!=PNG_COLOR_TYPE_RGB_ALPHA) {
|
|
if (!file) cimg::fclose(nfile);
|
|
png_destroy_read_struct(&png_ptr,&end_info,(png_infopp)0);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_png(): Invalid color coding type %u in file '%s'.",
|
|
cimg_instance,
|
|
color_type,nfilename?nfilename:"(FILE*)");
|
|
}
|
|
const bool is_alpha = (color_type==PNG_COLOR_TYPE_RGBA);
|
|
try { assign(W,H,1,(is_gray?1:3) + (is_alpha?1:0)); }
|
|
catch (...) { if (!file) cimg::fclose(nfile); throw; }
|
|
T
|
|
*ptr_r = data(0,0,0,0),
|
|
*ptr_g = is_gray?0:data(0,0,0,1),
|
|
*ptr_b = is_gray?0:data(0,0,0,2),
|
|
*ptr_a = !is_alpha?0:data(0,0,0,is_gray?1:3);
|
|
switch (bit_depth) {
|
|
case 8 : {
|
|
cimg_forY(*this,y) {
|
|
const unsigned char *ptrs = (unsigned char*)imgData[y];
|
|
cimg_forX(*this,x) {
|
|
*(ptr_r++) = (T)*(ptrs++);
|
|
if (ptr_g) *(ptr_g++) = (T)*(ptrs++); else ++ptrs;
|
|
if (ptr_b) *(ptr_b++) = (T)*(ptrs++); else ++ptrs;
|
|
if (ptr_a) *(ptr_a++) = (T)*(ptrs++); else ++ptrs;
|
|
}
|
|
}
|
|
} break;
|
|
case 16 : {
|
|
cimg_forY(*this,y) {
|
|
const unsigned short *ptrs = (unsigned short*)(imgData[y]);
|
|
if (!cimg::endianness()) cimg::invert_endianness(ptrs,4*_width);
|
|
cimg_forX(*this,x) {
|
|
*(ptr_r++) = (T)*(ptrs++);
|
|
if (ptr_g) *(ptr_g++) = (T)*(ptrs++); else ++ptrs;
|
|
if (ptr_b) *(ptr_b++) = (T)*(ptrs++); else ++ptrs;
|
|
if (ptr_a) *(ptr_a++) = (T)*(ptrs++); else ++ptrs;
|
|
}
|
|
}
|
|
} break;
|
|
}
|
|
png_destroy_read_struct(&png_ptr, &info_ptr, &end_info);
|
|
|
|
// Deallocate image read memory
|
|
cimg_forY(*this,n) delete[] imgData[n];
|
|
delete[] imgData;
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
#endif
|
|
}
|
|
|
|
//! Load image from a PNM file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
**/
|
|
CImg<T>& load_pnm(const char *const filename) {
|
|
return _load_pnm(0,filename);
|
|
}
|
|
|
|
//! Load image from a PNM file \newinstance.
|
|
static CImg<T> get_load_pnm(const char *const filename) {
|
|
return CImg<T>().load_pnm(filename);
|
|
}
|
|
|
|
//! Load image from a PNM file \overloading.
|
|
CImg<T>& load_pnm(std::FILE *const file) {
|
|
return _load_pnm(file,0);
|
|
}
|
|
|
|
//! Load image from a PNM file \newinstance.
|
|
static CImg<T> get_load_pnm(std::FILE *const file) {
|
|
return CImg<T>().load_pnm(file);
|
|
}
|
|
|
|
CImg<T>& _load_pnm(std::FILE *const file, const char *const filename) {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"load_pnm(): Specified filename is (null).",
|
|
cimg_instance);
|
|
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"rb");
|
|
unsigned int ppm_type, W, H, D = 1, colormax = 255;
|
|
CImg<charT> item(16384,1,1,1,0);
|
|
int err, rval, gval, bval;
|
|
const longT cimg_iobuffer = (longT)24*1024*1024;
|
|
while ((err=std::fscanf(nfile,"%16383[^\n]",item.data()))!=EOF && (*item=='#' || !err)) std::fgetc(nfile);
|
|
if (cimg_sscanf(item," P%u",&ppm_type)!=1) {
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_pnm(): PNM header not found in file '%s'.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)");
|
|
}
|
|
while ((err=std::fscanf(nfile," %16383[^\n]",item.data()))!=EOF && (*item=='#' || !err)) std::fgetc(nfile);
|
|
if ((err=cimg_sscanf(item," %u %u %u %u",&W,&H,&D,&colormax))<2) {
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_pnm(): WIDTH and HEIGHT fields undefined in file '%s'.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)");
|
|
}
|
|
if (ppm_type!=1 && ppm_type!=4) {
|
|
if (err==2 || (err==3 && (ppm_type==5 || ppm_type==7 || ppm_type==8 || ppm_type==9))) {
|
|
while ((err=std::fscanf(nfile," %16383[^\n]",item.data()))!=EOF && (*item=='#' || !err)) std::fgetc(nfile);
|
|
if (cimg_sscanf(item,"%u",&colormax)!=1)
|
|
cimg::warn(_cimg_instance
|
|
"load_pnm(): COLORMAX field is undefined in file '%s'.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)");
|
|
} else { colormax = D; D = 1; }
|
|
}
|
|
std::fgetc(nfile);
|
|
|
|
if (filename) { // Check that dimensions specified in file does not exceed the buffer dimension
|
|
const cimg_int64 siz = cimg::fsize(filename);
|
|
if (W*H*D>siz)
|
|
throw CImgIOException(_cimg_instance
|
|
"load_pnm(): Specified image dimensions in file '%s' exceed file size.",
|
|
cimg_instance,
|
|
filename);
|
|
}
|
|
|
|
switch (ppm_type) {
|
|
case 1 : { // 2D B&W ascii
|
|
assign(W,H,1,1);
|
|
T* ptrd = _data;
|
|
cimg_foroff(*this,off) { if (std::fscanf(nfile,"%d",&rval)>0) *(ptrd++) = (T)(rval?0:255); else break; }
|
|
} break;
|
|
case 2 : { // 2D grey ascii
|
|
assign(W,H,1,1);
|
|
T* ptrd = _data;
|
|
cimg_foroff(*this,off) { if (std::fscanf(nfile,"%d",&rval)>0) *(ptrd++) = (T)rval; else break; }
|
|
} break;
|
|
case 3 : { // 2D color ascii
|
|
assign(W,H,1,3);
|
|
T *ptrd = data(0,0,0,0), *ptr_g = data(0,0,0,1), *ptr_b = data(0,0,0,2);
|
|
cimg_forXY(*this,x,y) {
|
|
if (std::fscanf(nfile,"%d %d %d",&rval,&gval,&bval)==3) {
|
|
*(ptrd++) = (T)rval; *(ptr_g++) = (T)gval; *(ptr_b++) = (T)bval;
|
|
} else break;
|
|
}
|
|
} break;
|
|
case 4 : { // 2D b&w binary (support 3D PINK extension)
|
|
CImg<ucharT> raw;
|
|
assign(W,H,D,1);
|
|
T *ptrd = data(0,0,0,0);
|
|
unsigned int w = 0, h = 0, d = 0;
|
|
for (longT to_read = (longT)((W/8 + (W%8?1:0))*H*D); to_read>0; ) {
|
|
raw.assign(std::min(to_read,cimg_iobuffer));
|
|
cimg::fread(raw._data,raw._width,nfile);
|
|
to_read-=raw._width;
|
|
const unsigned char *ptrs = raw._data;
|
|
unsigned char mask = 0, val = 0;
|
|
for (ulongT off = (ulongT)raw._width; off || mask; mask>>=1) {
|
|
if (!mask) { if (off--) val = *(ptrs++); mask = 128; }
|
|
*(ptrd++) = (T)((val&mask)?0:255);
|
|
if (++w==W) { w = 0; mask = 0; if (++h==H) { h = 0; if (++d==D) break; }}
|
|
}
|
|
}
|
|
} break;
|
|
case 5 : case 7 : { // 2D/3D grey binary (support 3D PINK extension)
|
|
if (colormax<256) { // 8 bits
|
|
CImg<ucharT> raw;
|
|
assign(W,H,D,1);
|
|
T *ptrd = data(0,0,0,0);
|
|
for (longT to_read = (longT)size(); to_read>0; ) {
|
|
raw.assign(std::min(to_read,cimg_iobuffer));
|
|
cimg::fread(raw._data,raw._width,nfile);
|
|
to_read-=raw._width;
|
|
const unsigned char *ptrs = raw._data;
|
|
for (ulongT off = (ulongT)raw._width; off; --off) *(ptrd++) = (T)*(ptrs++);
|
|
}
|
|
} else { // 16 bits
|
|
CImg<ushortT> raw;
|
|
assign(W,H,D,1);
|
|
T *ptrd = data(0,0,0,0);
|
|
for (longT to_read = (longT)size(); to_read>0; ) {
|
|
raw.assign(std::min(to_read,cimg_iobuffer/2));
|
|
cimg::fread(raw._data,raw._width,nfile);
|
|
if (!cimg::endianness()) cimg::invert_endianness(raw._data,raw._width);
|
|
to_read-=raw._width;
|
|
const unsigned short *ptrs = raw._data;
|
|
for (ulongT off = (ulongT)raw._width; off; --off) *(ptrd++) = (T)*(ptrs++);
|
|
}
|
|
}
|
|
} break;
|
|
case 6 : { // 2D color binary
|
|
if (colormax<256) { // 8 bits
|
|
CImg<ucharT> raw;
|
|
assign(W,H,1,3);
|
|
T
|
|
*ptr_r = data(0,0,0,0),
|
|
*ptr_g = data(0,0,0,1),
|
|
*ptr_b = data(0,0,0,2);
|
|
for (longT to_read = (longT)size(); to_read>0; ) {
|
|
raw.assign(std::min(to_read,cimg_iobuffer));
|
|
cimg::fread(raw._data,raw._width,nfile);
|
|
to_read-=raw._width;
|
|
const unsigned char *ptrs = raw._data;
|
|
for (ulongT off = (ulongT)raw._width/3; off; --off) {
|
|
*(ptr_r++) = (T)*(ptrs++);
|
|
*(ptr_g++) = (T)*(ptrs++);
|
|
*(ptr_b++) = (T)*(ptrs++);
|
|
}
|
|
}
|
|
} else { // 16 bits
|
|
CImg<ushortT> raw;
|
|
assign(W,H,1,3);
|
|
T
|
|
*ptr_r = data(0,0,0,0),
|
|
*ptr_g = data(0,0,0,1),
|
|
*ptr_b = data(0,0,0,2);
|
|
for (longT to_read = (longT)size(); to_read>0; ) {
|
|
raw.assign(std::min(to_read,cimg_iobuffer/2));
|
|
cimg::fread(raw._data,raw._width,nfile);
|
|
if (!cimg::endianness()) cimg::invert_endianness(raw._data,raw._width);
|
|
to_read-=raw._width;
|
|
const unsigned short *ptrs = raw._data;
|
|
for (ulongT off = (ulongT)raw._width/3; off; --off) {
|
|
*(ptr_r++) = (T)*(ptrs++);
|
|
*(ptr_g++) = (T)*(ptrs++);
|
|
*(ptr_b++) = (T)*(ptrs++);
|
|
}
|
|
}
|
|
}
|
|
} break;
|
|
case 8 : { // 2D/3D grey binary with int32 integers (PINK extension)
|
|
CImg<intT> raw;
|
|
assign(W,H,D,1);
|
|
T *ptrd = data(0,0,0,0);
|
|
for (longT to_read = (longT)size(); to_read>0; ) {
|
|
raw.assign(std::min(to_read,cimg_iobuffer));
|
|
cimg::fread(raw._data,raw._width,nfile);
|
|
to_read-=raw._width;
|
|
const int *ptrs = raw._data;
|
|
for (ulongT off = (ulongT)raw._width; off; --off) *(ptrd++) = (T)*(ptrs++);
|
|
}
|
|
} break;
|
|
case 9 : { // 2D/3D grey binary with float values (PINK extension)
|
|
CImg<floatT> raw;
|
|
assign(W,H,D,1);
|
|
T *ptrd = data(0,0,0,0);
|
|
for (longT to_read = (longT)size(); to_read>0; ) {
|
|
raw.assign(std::min(to_read,cimg_iobuffer));
|
|
cimg::fread(raw._data,raw._width,nfile);
|
|
to_read-=raw._width;
|
|
const float *ptrs = raw._data;
|
|
for (ulongT off = (ulongT)raw._width; off; --off) *(ptrd++) = (T)*(ptrs++);
|
|
}
|
|
} break;
|
|
default :
|
|
assign();
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_pnm(): PNM type 'P%d' found, but type is not supported.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)",ppm_type);
|
|
}
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
}
|
|
|
|
//! Load image from a PFM file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
**/
|
|
CImg<T>& load_pfm(const char *const filename) {
|
|
return _load_pfm(0,filename);
|
|
}
|
|
|
|
//! Load image from a PFM file \newinstance.
|
|
static CImg<T> get_load_pfm(const char *const filename) {
|
|
return CImg<T>().load_pfm(filename);
|
|
}
|
|
|
|
//! Load image from a PFM file \overloading.
|
|
CImg<T>& load_pfm(std::FILE *const file) {
|
|
return _load_pfm(file,0);
|
|
}
|
|
|
|
//! Load image from a PFM file \newinstance.
|
|
static CImg<T> get_load_pfm(std::FILE *const file) {
|
|
return CImg<T>().load_pfm(file);
|
|
}
|
|
|
|
CImg<T>& _load_pfm(std::FILE *const file, const char *const filename) {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"load_pfm(): Specified filename is (null).",
|
|
cimg_instance);
|
|
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"rb");
|
|
char pfm_type;
|
|
CImg<charT> item(16384,1,1,1,0);
|
|
int W = 0, H = 0, err = 0;
|
|
double scale = 0;
|
|
while ((err=std::fscanf(nfile,"%16383[^\n]",item.data()))!=EOF && (*item=='#' || !err)) std::fgetc(nfile);
|
|
if (cimg_sscanf(item," P%c",&pfm_type)!=1) {
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_pfm(): PFM header not found in file '%s'.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)");
|
|
}
|
|
while ((err=std::fscanf(nfile," %16383[^\n]",item.data()))!=EOF && (*item=='#' || !err)) std::fgetc(nfile);
|
|
if ((err=cimg_sscanf(item," %d %d",&W,&H))<2) {
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_pfm(): WIDTH and HEIGHT fields are undefined in file '%s'.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)");
|
|
} else if (W<=0 || H<=0) {
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_pfm(): WIDTH (%d) and HEIGHT (%d) fields are invalid in file '%s'.",
|
|
cimg_instance,W,H,
|
|
filename?filename:"(FILE*)");
|
|
}
|
|
if (err==2) {
|
|
while ((err=std::fscanf(nfile," %16383[^\n]",item.data()))!=EOF && (*item=='#' || !err)) std::fgetc(nfile);
|
|
if (cimg_sscanf(item,"%lf",&scale)!=1)
|
|
cimg::warn(_cimg_instance
|
|
"load_pfm(): SCALE field is undefined in file '%s'.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)");
|
|
}
|
|
std::fgetc(nfile);
|
|
const bool is_color = (pfm_type=='F'), is_inverted = (scale>0)!=cimg::endianness();
|
|
if (is_color) {
|
|
assign(W,H,1,3,(T)0);
|
|
CImg<floatT> buf(3*W);
|
|
T *ptr_r = data(0,0,0,0), *ptr_g = data(0,0,0,1), *ptr_b = data(0,0,0,2);
|
|
cimg_forY(*this,y) {
|
|
cimg::fread(buf._data,3*W,nfile);
|
|
if (is_inverted) cimg::invert_endianness(buf._data,3*W);
|
|
const float *ptrs = buf._data;
|
|
cimg_forX(*this,x) {
|
|
*(ptr_r++) = (T)*(ptrs++);
|
|
*(ptr_g++) = (T)*(ptrs++);
|
|
*(ptr_b++) = (T)*(ptrs++);
|
|
}
|
|
}
|
|
} else {
|
|
assign(W,H,1,1,(T)0);
|
|
CImg<floatT> buf(W);
|
|
T *ptrd = data(0,0,0,0);
|
|
cimg_forY(*this,y) {
|
|
cimg::fread(buf._data,W,nfile);
|
|
if (is_inverted) cimg::invert_endianness(buf._data,W);
|
|
const float *ptrs = buf._data;
|
|
cimg_forX(*this,x) *(ptrd++) = (T)*(ptrs++);
|
|
}
|
|
}
|
|
if (!file) cimg::fclose(nfile);
|
|
return mirror('y'); // Most of the .pfm files are flipped along the y-axis
|
|
}
|
|
|
|
//! Load image from a RGB file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param dimw Width of the image buffer.
|
|
\param dimh Height of the image buffer.
|
|
**/
|
|
CImg<T>& load_rgb(const char *const filename, const unsigned int dimw, const unsigned int dimh=1) {
|
|
return _load_rgb(0,filename,dimw,dimh);
|
|
}
|
|
|
|
//! Load image from a RGB file \newinstance.
|
|
static CImg<T> get_load_rgb(const char *const filename, const unsigned int dimw, const unsigned int dimh=1) {
|
|
return CImg<T>().load_rgb(filename,dimw,dimh);
|
|
}
|
|
|
|
//! Load image from a RGB file \overloading.
|
|
CImg<T>& load_rgb(std::FILE *const file, const unsigned int dimw, const unsigned int dimh=1) {
|
|
return _load_rgb(file,0,dimw,dimh);
|
|
}
|
|
|
|
//! Load image from a RGB file \newinstance.
|
|
static CImg<T> get_load_rgb(std::FILE *const file, const unsigned int dimw, const unsigned int dimh=1) {
|
|
return CImg<T>().load_rgb(file,dimw,dimh);
|
|
}
|
|
|
|
CImg<T>& _load_rgb(std::FILE *const file, const char *const filename,
|
|
const unsigned int dimw, const unsigned int dimh) {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"load_rgb(): Specified filename is (null).",
|
|
cimg_instance);
|
|
|
|
if (!dimw || !dimh) return assign();
|
|
const longT cimg_iobuffer = (longT)24*1024*1024;
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"rb");
|
|
CImg<ucharT> raw;
|
|
assign(dimw,dimh,1,3);
|
|
T
|
|
*ptr_r = data(0,0,0,0),
|
|
*ptr_g = data(0,0,0,1),
|
|
*ptr_b = data(0,0,0,2);
|
|
for (longT to_read = (longT)size(); to_read>0; ) {
|
|
raw.assign(std::min(to_read,cimg_iobuffer));
|
|
cimg::fread(raw._data,raw._width,nfile);
|
|
to_read-=raw._width;
|
|
const unsigned char *ptrs = raw._data;
|
|
for (ulongT off = raw._width/3UL; off; --off) {
|
|
*(ptr_r++) = (T)*(ptrs++);
|
|
*(ptr_g++) = (T)*(ptrs++);
|
|
*(ptr_b++) = (T)*(ptrs++);
|
|
}
|
|
}
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
}
|
|
|
|
//! Load image from a RGBA file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param dimw Width of the image buffer.
|
|
\param dimh Height of the image buffer.
|
|
**/
|
|
CImg<T>& load_rgba(const char *const filename, const unsigned int dimw, const unsigned int dimh=1) {
|
|
return _load_rgba(0,filename,dimw,dimh);
|
|
}
|
|
|
|
//! Load image from a RGBA file \newinstance.
|
|
static CImg<T> get_load_rgba(const char *const filename, const unsigned int dimw, const unsigned int dimh=1) {
|
|
return CImg<T>().load_rgba(filename,dimw,dimh);
|
|
}
|
|
|
|
//! Load image from a RGBA file \overloading.
|
|
CImg<T>& load_rgba(std::FILE *const file, const unsigned int dimw, const unsigned int dimh=1) {
|
|
return _load_rgba(file,0,dimw,dimh);
|
|
}
|
|
|
|
//! Load image from a RGBA file \newinstance.
|
|
static CImg<T> get_load_rgba(std::FILE *const file, const unsigned int dimw, const unsigned int dimh=1) {
|
|
return CImg<T>().load_rgba(file,dimw,dimh);
|
|
}
|
|
|
|
CImg<T>& _load_rgba(std::FILE *const file, const char *const filename,
|
|
const unsigned int dimw, const unsigned int dimh) {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"load_rgba(): Specified filename is (null).",
|
|
cimg_instance);
|
|
|
|
if (!dimw || !dimh) return assign();
|
|
const longT cimg_iobuffer = (longT)24*1024*1024;
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"rb");
|
|
CImg<ucharT> raw;
|
|
assign(dimw,dimh,1,4);
|
|
T
|
|
*ptr_r = data(0,0,0,0),
|
|
*ptr_g = data(0,0,0,1),
|
|
*ptr_b = data(0,0,0,2),
|
|
*ptr_a = data(0,0,0,3);
|
|
for (longT to_read = (longT)size(); to_read>0; ) {
|
|
raw.assign(std::min(to_read,cimg_iobuffer));
|
|
cimg::fread(raw._data,raw._width,nfile);
|
|
to_read-=raw._width;
|
|
const unsigned char *ptrs = raw._data;
|
|
for (ulongT off = raw._width/4UL; off; --off) {
|
|
*(ptr_r++) = (T)*(ptrs++);
|
|
*(ptr_g++) = (T)*(ptrs++);
|
|
*(ptr_b++) = (T)*(ptrs++);
|
|
*(ptr_a++) = (T)*(ptrs++);
|
|
}
|
|
}
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
}
|
|
|
|
//! Load image from a TIFF file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param first_frame First frame to read (for multi-pages tiff).
|
|
\param last_frame Last frame to read (for multi-pages tiff).
|
|
\param step_frame Step value of frame reading.
|
|
\param[out] bits_per_value Number of bits used to store a scalar value in the image file.
|
|
\param[out] voxel_size Voxel size, as stored in the filename.
|
|
\param[out] description Description, as stored in the filename.
|
|
\note
|
|
- libtiff support is enabled by defining the precompilation
|
|
directive \c cimg_use_tif.
|
|
- When libtiff is enabled, 2D and 3D (multipage) several
|
|
channel per pixel are supported for
|
|
<tt>char,uchar,short,ushort,float</tt> and \c double pixel types.
|
|
- If \c cimg_use_tiff is not defined at compile time the
|
|
function uses CImg<T>& load_other(const char*).
|
|
**/
|
|
CImg<T>& load_tiff(const char *const filename,
|
|
const unsigned int first_frame=0, const unsigned int last_frame=~0U,
|
|
const unsigned int step_frame=1, unsigned int *const bits_per_value=0,
|
|
float *const voxel_size=0, CImg<charT> *const description=0) {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"load_tiff(): Specified filename is (null).",
|
|
cimg_instance);
|
|
|
|
const unsigned int
|
|
nfirst_frame = first_frame<last_frame?first_frame:last_frame,
|
|
nstep_frame = step_frame?step_frame:1;
|
|
unsigned int nlast_frame = first_frame<last_frame?last_frame:first_frame;
|
|
|
|
#ifndef cimg_use_tiff
|
|
cimg::unused(bits_per_value,voxel_size,description);
|
|
if (nfirst_frame || nlast_frame!=~0U || nstep_frame>1)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"load_tiff(): Unable to read sub-images from file '%s' unless libtiff is enabled.",
|
|
cimg_instance,
|
|
filename);
|
|
return load_other(filename);
|
|
#else
|
|
#if cimg_verbosity<3
|
|
TIFFSetWarningHandler(0);
|
|
TIFFSetErrorHandler(0);
|
|
#endif
|
|
TIFF *tif = TIFFOpen(filename,"r");
|
|
if (tif) {
|
|
unsigned int nb_images = 0;
|
|
do ++nb_images; while (TIFFReadDirectory(tif));
|
|
if (nfirst_frame>=nb_images || (nlast_frame!=~0U && nlast_frame>=nb_images))
|
|
cimg::warn(_cimg_instance
|
|
"load_tiff(): File '%s' contains %u image(s) while specified frame range is [%u,%u] (step %u).",
|
|
cimg_instance,
|
|
filename,nb_images,nfirst_frame,nlast_frame,nstep_frame);
|
|
|
|
if (nfirst_frame>=nb_images) return assign();
|
|
if (nlast_frame>=nb_images) nlast_frame = nb_images - 1;
|
|
TIFFSetDirectory(tif,0);
|
|
CImg<T> frame;
|
|
for (unsigned int l = nfirst_frame; l<=nlast_frame; l+=nstep_frame) {
|
|
frame._load_tiff(tif,l,bits_per_value,voxel_size,description);
|
|
if (l==nfirst_frame)
|
|
assign(frame._width,frame._height,1 + (nlast_frame - nfirst_frame)/nstep_frame,frame._spectrum);
|
|
if (frame._width>_width || frame._height>_height || frame._spectrum>_spectrum)
|
|
resize(std::max(frame._width,_width),
|
|
std::max(frame._height,_height),-100,
|
|
std::max(frame._spectrum,_spectrum),0);
|
|
draw_image(0,0,(l - nfirst_frame)/nstep_frame,frame);
|
|
}
|
|
TIFFClose(tif);
|
|
} else throw CImgIOException(_cimg_instance
|
|
"load_tiff(): Failed to open file '%s'.",
|
|
cimg_instance,
|
|
filename);
|
|
return *this;
|
|
#endif
|
|
}
|
|
|
|
//! Load image from a TIFF file \newinstance.
|
|
static CImg<T> get_load_tiff(const char *const filename,
|
|
const unsigned int first_frame=0, const unsigned int last_frame=~0U,
|
|
const unsigned int step_frame=1, unsigned int *const bits_per_value=0,
|
|
float *const voxel_size=0, CImg<charT> *const description=0) {
|
|
return CImg<T>().load_tiff(filename,first_frame,last_frame,step_frame,bits_per_value,voxel_size,description);
|
|
}
|
|
|
|
// (Original contribution by Jerome Boulanger).
|
|
#ifdef cimg_use_tiff
|
|
template<typename t>
|
|
void _load_tiff_tiled_contig(TIFF *const tif, const cimg_uint16 samplesperpixel,
|
|
const cimg_uint32 nx, const cimg_uint32 ny,
|
|
const cimg_uint32 tw, const cimg_uint32 th) {
|
|
t *const buf = (t*)_TIFFmalloc(TIFFTileSize(tif));
|
|
if (buf) {
|
|
for (unsigned int row = 0; row<ny; row+=th)
|
|
for (unsigned int col = 0; col<nx; col+=tw) {
|
|
if (TIFFReadTile(tif,buf,col,row,0,0)<0) {
|
|
_TIFFfree(buf); TIFFClose(tif);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_tiff(): Invalid tile in file '%s'.",
|
|
cimg_instance,
|
|
TIFFFileName(tif));
|
|
}
|
|
const t *ptr = buf;
|
|
for (unsigned int rr = row; rr<std::min((unsigned int)(row + th),(unsigned int)ny); ++rr)
|
|
for (unsigned int cc = col; cc<std::min((unsigned int)(col + tw),(unsigned int)nx); ++cc)
|
|
for (unsigned int vv = 0; vv<samplesperpixel; ++vv)
|
|
(*this)(cc,rr,vv) = (T)(ptr[(rr - row)*th*samplesperpixel + (cc - col)*samplesperpixel + vv]);
|
|
}
|
|
_TIFFfree(buf);
|
|
}
|
|
}
|
|
|
|
template<typename t>
|
|
void _load_tiff_tiled_separate(TIFF *const tif, const cimg_uint16 samplesperpixel,
|
|
const cimg_uint32 nx, const cimg_uint32 ny,
|
|
const cimg_uint32 tw, const cimg_uint32 th) {
|
|
t *const buf = (t*)_TIFFmalloc(TIFFTileSize(tif));
|
|
if (buf) {
|
|
for (unsigned int vv = 0; vv<samplesperpixel; ++vv)
|
|
for (unsigned int row = 0; row<ny; row+=th)
|
|
for (unsigned int col = 0; col<nx; col+=tw) {
|
|
if (TIFFReadTile(tif,buf,col,row,0,vv)<0) {
|
|
_TIFFfree(buf); TIFFClose(tif);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_tiff(): Invalid tile in file '%s'.",
|
|
cimg_instance,
|
|
TIFFFileName(tif));
|
|
}
|
|
const t *ptr = buf;
|
|
for (unsigned int rr = row; rr<std::min((unsigned int)(row + th),(unsigned int)ny); ++rr)
|
|
for (unsigned int cc = col; cc<std::min((unsigned int)(col + tw),(unsigned int)nx); ++cc)
|
|
(*this)(cc,rr,vv) = (T)*(ptr++);
|
|
}
|
|
_TIFFfree(buf);
|
|
}
|
|
}
|
|
|
|
template<typename t>
|
|
void _load_tiff_contig(TIFF *const tif, const cimg_uint16 samplesperpixel,
|
|
const cimg_uint32 nx, const cimg_uint32 ny) {
|
|
t *const buf = (t*)_TIFFmalloc(TIFFStripSize(tif));
|
|
if (buf) {
|
|
cimg_uint32 row, rowsperstrip = (cimg_uint32)-1;
|
|
TIFFGetField(tif,TIFFTAG_ROWSPERSTRIP,&rowsperstrip);
|
|
for (row = 0; row<ny; row+= rowsperstrip) {
|
|
cimg_uint32 nrow = (row + rowsperstrip>ny?ny - row:rowsperstrip);
|
|
tstrip_t strip = TIFFComputeStrip(tif, row, 0);
|
|
if ((TIFFReadEncodedStrip(tif,strip,buf,-1))<0) {
|
|
_TIFFfree(buf); TIFFClose(tif);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_tiff(): Invalid strip in file '%s'.",
|
|
cimg_instance,
|
|
TIFFFileName(tif));
|
|
}
|
|
const t *ptr = buf;
|
|
for (unsigned int rr = 0; rr<nrow; ++rr)
|
|
for (unsigned int cc = 0; cc<nx; ++cc)
|
|
for (unsigned int vv = 0; vv<samplesperpixel; ++vv) (*this)(cc,row + rr,vv) = (T)*(ptr++);
|
|
}
|
|
_TIFFfree(buf);
|
|
}
|
|
}
|
|
|
|
template<typename t>
|
|
void _load_tiff_separate(TIFF *const tif, const cimg_uint16 samplesperpixel,
|
|
const cimg_uint32 nx, const cimg_uint32 ny) {
|
|
t *buf = (t*)_TIFFmalloc(TIFFStripSize(tif));
|
|
if (buf) {
|
|
cimg_uint32 row, rowsperstrip = (cimg_uint32)-1;
|
|
TIFFGetField(tif,TIFFTAG_ROWSPERSTRIP,&rowsperstrip);
|
|
for (unsigned int vv = 0; vv<samplesperpixel; ++vv)
|
|
for (row = 0; row<ny; row+= rowsperstrip) {
|
|
cimg_uint32 nrow = (row + rowsperstrip>ny?ny - row:rowsperstrip);
|
|
tstrip_t strip = TIFFComputeStrip(tif, row, vv);
|
|
if ((TIFFReadEncodedStrip(tif,strip,buf,-1))<0) {
|
|
_TIFFfree(buf); TIFFClose(tif);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_tiff(): Invalid strip in file '%s'.",
|
|
cimg_instance,
|
|
TIFFFileName(tif));
|
|
}
|
|
const t *ptr = buf;
|
|
for (unsigned int rr = 0;rr<nrow; ++rr)
|
|
for (unsigned int cc = 0; cc<nx; ++cc)
|
|
(*this)(cc,row + rr,vv) = (T)*(ptr++);
|
|
}
|
|
_TIFFfree(buf);
|
|
}
|
|
}
|
|
|
|
CImg<T>& _load_tiff(TIFF *const tif, const unsigned int directory, unsigned int *const bits_per_value,
|
|
float *const voxel_size, CImg<charT> *const description) {
|
|
if (!TIFFSetDirectory(tif,directory)) return assign();
|
|
cimg_uint16 samplesperpixel = 1, bitspersample = 8, photo = 0;
|
|
cimg_uint16 sampleformat = 1;
|
|
cimg_uint32 nx = 1, ny = 1;
|
|
const char *const filename = TIFFFileName(tif);
|
|
const bool is_spp = (bool)TIFFGetField(tif,TIFFTAG_SAMPLESPERPIXEL,&samplesperpixel);
|
|
TIFFGetField(tif,TIFFTAG_IMAGEWIDTH,&nx);
|
|
TIFFGetField(tif,TIFFTAG_IMAGELENGTH,&ny);
|
|
TIFFGetField(tif, TIFFTAG_SAMPLEFORMAT, &sampleformat);
|
|
TIFFGetFieldDefaulted(tif,TIFFTAG_BITSPERSAMPLE,&bitspersample);
|
|
TIFFGetField(tif,TIFFTAG_PHOTOMETRIC,&photo);
|
|
if (bits_per_value) *bits_per_value = (unsigned int)bitspersample;
|
|
if (voxel_size) {
|
|
const char *s_description = 0;
|
|
float vx = 0, vy = 0, vz = 0;
|
|
if (TIFFGetField(tif,TIFFTAG_IMAGEDESCRIPTION,&s_description) && s_description) {
|
|
const char *s_desc = std::strstr(s_description,"VX=");
|
|
if (s_desc && cimg_sscanf(s_desc,"VX=%f VY=%f VZ=%f",&vx,&vy,&vz)==3) { // CImg format
|
|
voxel_size[0] = vx; voxel_size[1] = vy; voxel_size[2] = vz;
|
|
}
|
|
s_desc = std::strstr(s_description,"spacing=");
|
|
if (s_desc && cimg_sscanf(s_desc,"spacing=%f",&vz)==1) { // Fiji format
|
|
voxel_size[2] = vz;
|
|
}
|
|
}
|
|
TIFFGetField(tif,TIFFTAG_XRESOLUTION,voxel_size);
|
|
TIFFGetField(tif,TIFFTAG_YRESOLUTION,voxel_size + 1);
|
|
voxel_size[0] = 1.f/voxel_size[0];
|
|
voxel_size[1] = 1.f/voxel_size[1];
|
|
}
|
|
if (description) {
|
|
const char *s_description = 0;
|
|
if (TIFFGetField(tif,TIFFTAG_IMAGEDESCRIPTION,&s_description) && s_description)
|
|
CImg<charT>::string(s_description).move_to(*description);
|
|
}
|
|
const unsigned int spectrum = !is_spp || photo>=3?(photo>1?3:1):samplesperpixel;
|
|
assign(nx,ny,1,spectrum);
|
|
|
|
if ((photo>=3 && sampleformat==1 &&
|
|
(bitspersample==4 || bitspersample==8) &&
|
|
(samplesperpixel==1 || samplesperpixel==3 || samplesperpixel==4)) ||
|
|
(bitspersample==1 && samplesperpixel==1)) {
|
|
// Special case for unsigned color images.
|
|
cimg_uint32 *const raster = (cimg_uint32*)_TIFFmalloc(nx*ny*sizeof(cimg_uint32));
|
|
if (!raster) {
|
|
_TIFFfree(raster); TIFFClose(tif);
|
|
throw CImgException(_cimg_instance
|
|
"load_tiff(): Failed to allocate memory (%s) for file '%s'.",
|
|
cimg_instance,
|
|
cimg::strbuffersize(nx*ny*sizeof(cimg_uint32)),filename);
|
|
}
|
|
TIFFReadRGBAImage(tif,nx,ny,raster,0);
|
|
switch (spectrum) {
|
|
case 1 :
|
|
cimg_forXY(*this,x,y)
|
|
(*this)(x,y,0) = (T)(float)TIFFGetR(raster[nx*(ny - 1 -y) + x]);
|
|
break;
|
|
case 3 :
|
|
cimg_forXY(*this,x,y) {
|
|
(*this)(x,y,0) = (T)(float)TIFFGetR(raster[nx*(ny - 1 - y) + x]);
|
|
(*this)(x,y,1) = (T)(float)TIFFGetG(raster[nx*(ny - 1 - y) + x]);
|
|
(*this)(x,y,2) = (T)(float)TIFFGetB(raster[nx*(ny - 1 - y) + x]);
|
|
}
|
|
break;
|
|
case 4 :
|
|
cimg_forXY(*this,x,y) {
|
|
(*this)(x,y,0) = (T)(float)TIFFGetR(raster[nx*(ny - 1 - y) + x]);
|
|
(*this)(x,y,1) = (T)(float)TIFFGetG(raster[nx*(ny - 1 - y) + x]);
|
|
(*this)(x,y,2) = (T)(float)TIFFGetB(raster[nx*(ny - 1 - y) + x]);
|
|
(*this)(x,y,3) = (T)(float)TIFFGetA(raster[nx*(ny - 1 - y) + x]);
|
|
}
|
|
break;
|
|
}
|
|
_TIFFfree(raster);
|
|
} else { // Other cases
|
|
cimg_uint16 config;
|
|
TIFFGetField(tif,TIFFTAG_PLANARCONFIG,&config);
|
|
if (TIFFIsTiled(tif)) {
|
|
cimg_uint32 tw = 1, th = 1;
|
|
TIFFGetField(tif,TIFFTAG_TILEWIDTH,&tw);
|
|
TIFFGetField(tif,TIFFTAG_TILELENGTH,&th);
|
|
if (config==PLANARCONFIG_CONTIG) switch (bitspersample) {
|
|
case 8 :
|
|
if (sampleformat==SAMPLEFORMAT_UINT)
|
|
_load_tiff_tiled_contig<unsigned char>(tif,samplesperpixel,nx,ny,tw,th);
|
|
else _load_tiff_tiled_contig<signed char>(tif,samplesperpixel,nx,ny,tw,th);
|
|
break;
|
|
case 16 :
|
|
if (sampleformat==SAMPLEFORMAT_UINT)
|
|
_load_tiff_tiled_contig<unsigned short>(tif,samplesperpixel,nx,ny,tw,th);
|
|
else _load_tiff_tiled_contig<short>(tif,samplesperpixel,nx,ny,tw,th);
|
|
break;
|
|
case 32 :
|
|
if (sampleformat==SAMPLEFORMAT_UINT)
|
|
_load_tiff_tiled_contig<unsigned int>(tif,samplesperpixel,nx,ny,tw,th);
|
|
else if (sampleformat==SAMPLEFORMAT_INT)
|
|
_load_tiff_tiled_contig<int>(tif,samplesperpixel,nx,ny,tw,th);
|
|
else _load_tiff_tiled_contig<float>(tif,samplesperpixel,nx,ny,tw,th);
|
|
break;
|
|
case 64 :
|
|
if (sampleformat==SAMPLEFORMAT_UINT)
|
|
_load_tiff_tiled_contig<uint64T>(tif,samplesperpixel,nx,ny,tw,th);
|
|
else if (sampleformat==SAMPLEFORMAT_INT)
|
|
_load_tiff_tiled_contig<int64T>(tif,samplesperpixel,nx,ny,tw,th);
|
|
else _load_tiff_tiled_contig<double>(tif,samplesperpixel,nx,ny,tw,th);
|
|
break;
|
|
} else switch (bitspersample) {
|
|
case 8 :
|
|
if (sampleformat==SAMPLEFORMAT_UINT)
|
|
_load_tiff_tiled_separate<unsigned char>(tif,samplesperpixel,nx,ny,tw,th);
|
|
else _load_tiff_tiled_separate<signed char>(tif,samplesperpixel,nx,ny,tw,th);
|
|
break;
|
|
case 16 :
|
|
if (sampleformat==SAMPLEFORMAT_UINT)
|
|
_load_tiff_tiled_separate<unsigned short>(tif,samplesperpixel,nx,ny,tw,th);
|
|
else _load_tiff_tiled_separate<short>(tif,samplesperpixel,nx,ny,tw,th);
|
|
break;
|
|
case 32 :
|
|
if (sampleformat==SAMPLEFORMAT_UINT)
|
|
_load_tiff_tiled_separate<unsigned int>(tif,samplesperpixel,nx,ny,tw,th);
|
|
else if (sampleformat==SAMPLEFORMAT_INT)
|
|
_load_tiff_tiled_separate<int>(tif,samplesperpixel,nx,ny,tw,th);
|
|
else _load_tiff_tiled_separate<float>(tif,samplesperpixel,nx,ny,tw,th);
|
|
break;
|
|
case 64 :
|
|
if (sampleformat==SAMPLEFORMAT_UINT)
|
|
_load_tiff_tiled_separate<uint64T>(tif,samplesperpixel,nx,ny,tw,th);
|
|
else if (sampleformat==SAMPLEFORMAT_INT)
|
|
_load_tiff_tiled_separate<int64T>(tif,samplesperpixel,nx,ny,tw,th);
|
|
else _load_tiff_tiled_separate<double>(tif,samplesperpixel,nx,ny,tw,th);
|
|
break;
|
|
}
|
|
} else {
|
|
if (config==PLANARCONFIG_CONTIG) switch (bitspersample) {
|
|
case 8 :
|
|
if (sampleformat==SAMPLEFORMAT_UINT)
|
|
_load_tiff_contig<unsigned char>(tif,samplesperpixel,nx,ny);
|
|
else _load_tiff_contig<signed char>(tif,samplesperpixel,nx,ny);
|
|
break;
|
|
case 16 :
|
|
if (sampleformat==SAMPLEFORMAT_UINT) _load_tiff_contig<unsigned short>(tif,samplesperpixel,nx,ny);
|
|
else _load_tiff_contig<short>(tif,samplesperpixel,nx,ny);
|
|
break;
|
|
case 32 :
|
|
if (sampleformat==SAMPLEFORMAT_UINT) _load_tiff_contig<unsigned int>(tif,samplesperpixel,nx,ny);
|
|
else if (sampleformat==SAMPLEFORMAT_INT) _load_tiff_contig<int>(tif,samplesperpixel,nx,ny);
|
|
else _load_tiff_contig<float>(tif,samplesperpixel,nx,ny);
|
|
break;
|
|
case 64 :
|
|
if (sampleformat==SAMPLEFORMAT_UINT) _load_tiff_contig<uint64T>(tif,samplesperpixel,nx,ny);
|
|
else if (sampleformat==SAMPLEFORMAT_INT) _load_tiff_contig<int64T>(tif,samplesperpixel,nx,ny);
|
|
else _load_tiff_contig<double>(tif,samplesperpixel,nx,ny);
|
|
break;
|
|
} else switch (bitspersample) {
|
|
case 8 :
|
|
if (sampleformat==SAMPLEFORMAT_UINT) _load_tiff_separate<unsigned char>(tif,samplesperpixel,nx,ny);
|
|
else _load_tiff_separate<signed char>(tif,samplesperpixel,nx,ny);
|
|
break;
|
|
case 16 :
|
|
if (sampleformat==SAMPLEFORMAT_UINT) _load_tiff_separate<unsigned short>(tif,samplesperpixel,nx,ny);
|
|
else _load_tiff_separate<short>(tif,samplesperpixel,nx,ny);
|
|
break;
|
|
case 32 :
|
|
if (sampleformat==SAMPLEFORMAT_UINT) _load_tiff_separate<unsigned int>(tif,samplesperpixel,nx,ny);
|
|
else if (sampleformat==SAMPLEFORMAT_INT) _load_tiff_separate<int>(tif,samplesperpixel,nx,ny);
|
|
else _load_tiff_separate<float>(tif,samplesperpixel,nx,ny);
|
|
break;
|
|
case 64 :
|
|
if (sampleformat==SAMPLEFORMAT_UINT) _load_tiff_separate<uint64T>(tif,samplesperpixel,nx,ny);
|
|
else if (sampleformat==SAMPLEFORMAT_INT) _load_tiff_separate<int64T>(tif,samplesperpixel,nx,ny);
|
|
else _load_tiff_separate<double>(tif,samplesperpixel,nx,ny);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
#endif
|
|
|
|
//! Load image from a MINC2 file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
**/
|
|
// (Original code by Haz-Edine Assemlal).
|
|
CImg<T>& load_minc2(const char *const filename) {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"load_minc2(): Specified filename is (null).",
|
|
cimg_instance);
|
|
#ifndef cimg_use_minc2
|
|
return load_other(filename);
|
|
#else
|
|
minc::minc_1_reader rdr;
|
|
rdr.open(filename);
|
|
assign(rdr.ndim(1)?rdr.ndim(1):1,
|
|
rdr.ndim(2)?rdr.ndim(2):1,
|
|
rdr.ndim(3)?rdr.ndim(3):1,
|
|
rdr.ndim(4)?rdr.ndim(4):1);
|
|
if (pixel_type()==cimg::type<unsigned char>::string())
|
|
rdr.setup_read_byte();
|
|
else if (pixel_type()==cimg::type<int>::string())
|
|
rdr.setup_read_int();
|
|
else if (pixel_type()==cimg::type<double>::string())
|
|
rdr.setup_read_double();
|
|
else
|
|
rdr.setup_read_float();
|
|
minc::load_standard_volume(rdr,this->_data);
|
|
return *this;
|
|
#endif
|
|
}
|
|
|
|
//! Load image from a MINC2 file \newinstance.
|
|
static CImg<T> get_load_minc2(const char *const filename) {
|
|
return CImg<T>().load_analyze(filename);
|
|
}
|
|
|
|
//! Load image from an ANALYZE7.5/NIFTI file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param[out] voxel_size Pointer to the three voxel sizes read from the file.
|
|
**/
|
|
CImg<T>& load_analyze(const char *const filename, float *const voxel_size=0) {
|
|
return _load_analyze(0,filename,voxel_size);
|
|
}
|
|
|
|
//! Load image from an ANALYZE7.5/NIFTI file \newinstance.
|
|
static CImg<T> get_load_analyze(const char *const filename, float *const voxel_size=0) {
|
|
return CImg<T>().load_analyze(filename,voxel_size);
|
|
}
|
|
|
|
//! Load image from an ANALYZE7.5/NIFTI file \overloading.
|
|
CImg<T>& load_analyze(std::FILE *const file, float *const voxel_size=0) {
|
|
return _load_analyze(file,0,voxel_size);
|
|
}
|
|
|
|
//! Load image from an ANALYZE7.5/NIFTI file \newinstance.
|
|
static CImg<T> get_load_analyze(std::FILE *const file, float *const voxel_size=0) {
|
|
return CImg<T>().load_analyze(file,voxel_size);
|
|
}
|
|
|
|
CImg<T>& _load_analyze(std::FILE *const file, const char *const filename, float *const voxel_size=0) {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"load_analyze(): Specified filename is (null).",
|
|
cimg_instance);
|
|
|
|
std::FILE *nfile_header = 0, *nfile = 0;
|
|
if (!file) {
|
|
CImg<charT> body(1024);
|
|
const char *const ext = cimg::split_filename(filename,body);
|
|
const unsigned int len = (unsigned int)std::strlen(body);
|
|
if (!cimg::strcasecmp(ext,"hdr")) { // File is an Analyze header file
|
|
nfile_header = cimg::fopen(filename,"rb");
|
|
cimg_snprintf(body._data + len,body._width - len,".img");
|
|
nfile = cimg::fopen(body,"rb");
|
|
} else if (!cimg::strcasecmp(ext,"img")) { // File is an Analyze data file
|
|
nfile = cimg::fopen(filename,"rb");
|
|
cimg_snprintf(body._data + len,body._width - len,".hdr");
|
|
nfile_header = cimg::fopen(body,"rb");
|
|
} else nfile_header = nfile = cimg::fopen(filename,"rb"); // File is a Niftii file
|
|
} else nfile_header = nfile = file; // File is a Niftii file
|
|
if (!nfile || !nfile_header)
|
|
throw CImgIOException(_cimg_instance
|
|
"load_analyze(): Invalid Analyze7.5 or NIFTI header in file '%s'.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)");
|
|
|
|
// Read header.
|
|
bool endian = false;
|
|
unsigned int header_size;
|
|
cimg::fread(&header_size,1,nfile_header);
|
|
if (!header_size)
|
|
throw CImgIOException(_cimg_instance
|
|
"load_analyze(): Invalid zero-size header in file '%s'.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)");
|
|
if (header_size>=4096) { endian = true; cimg::invert_endianness(header_size); }
|
|
|
|
unsigned char *const header = new unsigned char[header_size];
|
|
cimg::fread(header + 4,header_size - 4,nfile_header);
|
|
if (!file && nfile_header!=nfile) cimg::fclose(nfile_header);
|
|
if (endian) {
|
|
cimg::invert_endianness((short*)(header + 40),5);
|
|
cimg::invert_endianness((short*)(header + 70),1);
|
|
cimg::invert_endianness((short*)(header + 72),1);
|
|
cimg::invert_endianness((float*)(header + 76),4);
|
|
cimg::invert_endianness((float*)(header + 108),1);
|
|
cimg::invert_endianness((float*)(header + 112),1);
|
|
}
|
|
|
|
if (nfile_header==nfile) {
|
|
const unsigned int vox_offset = (unsigned int)*(float*)(header + 108);
|
|
std::fseek(nfile,vox_offset,SEEK_SET);
|
|
}
|
|
|
|
unsigned short *dim = (unsigned short*)(header + 40), dimx = 1, dimy = 1, dimz = 1, dimv = 1;
|
|
if (!dim[0])
|
|
cimg::warn(_cimg_instance
|
|
"load_analyze(): File '%s' defines an image with zero dimensions.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)");
|
|
|
|
if (dim[0]>4)
|
|
cimg::warn(_cimg_instance
|
|
"load_analyze(): File '%s' defines an image with %u dimensions, reading only the 4 first.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)",dim[0]);
|
|
|
|
if (dim[0]>=1) dimx = dim[1];
|
|
if (dim[0]>=2) dimy = dim[2];
|
|
if (dim[0]>=3) dimz = dim[3];
|
|
if (dim[0]>=4) dimv = dim[4];
|
|
float scalefactor = *(float*)(header + 112); if (scalefactor==0) scalefactor = 1;
|
|
const unsigned short datatype = *(unsigned short*)(header + 70);
|
|
if (voxel_size) {
|
|
const float *vsize = (float*)(header + 76);
|
|
voxel_size[0] = vsize[1]; voxel_size[1] = vsize[2]; voxel_size[2] = vsize[3];
|
|
}
|
|
delete[] header;
|
|
|
|
// Read pixel data.
|
|
assign(dimx,dimy,dimz,dimv);
|
|
const size_t pdim = (size_t)dimx*dimy*dimz*dimv;
|
|
switch (datatype) {
|
|
case 2 : {
|
|
unsigned char *const buffer = new unsigned char[pdim];
|
|
cimg::fread(buffer,pdim,nfile);
|
|
cimg_foroff(*this,off) _data[off] = (T)(buffer[off]*scalefactor);
|
|
delete[] buffer;
|
|
} break;
|
|
case 4 : {
|
|
short *const buffer = new short[pdim];
|
|
cimg::fread(buffer,pdim,nfile);
|
|
if (endian) cimg::invert_endianness(buffer,pdim);
|
|
cimg_foroff(*this,off) _data[off] = (T)(buffer[off]*scalefactor);
|
|
delete[] buffer;
|
|
} break;
|
|
case 8 : {
|
|
int *const buffer = new int[pdim];
|
|
cimg::fread(buffer,pdim,nfile);
|
|
if (endian) cimg::invert_endianness(buffer,pdim);
|
|
cimg_foroff(*this,off) _data[off] = (T)(buffer[off]*scalefactor);
|
|
delete[] buffer;
|
|
} break;
|
|
case 16 : {
|
|
float *const buffer = new float[pdim];
|
|
cimg::fread(buffer,pdim,nfile);
|
|
if (endian) cimg::invert_endianness(buffer,pdim);
|
|
cimg_foroff(*this,off) _data[off] = (T)(buffer[off]*scalefactor);
|
|
delete[] buffer;
|
|
} break;
|
|
case 64 : {
|
|
double *const buffer = new double[pdim];
|
|
cimg::fread(buffer,pdim,nfile);
|
|
if (endian) cimg::invert_endianness(buffer,pdim);
|
|
cimg_foroff(*this,off) _data[off] = (T)(buffer[off]*scalefactor);
|
|
delete[] buffer;
|
|
} break;
|
|
default :
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_analyze(): Unable to load datatype %d in file '%s'",
|
|
cimg_instance,
|
|
datatype,filename?filename:"(FILE*)");
|
|
}
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
}
|
|
|
|
//! Load image from a .cimg[z] file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param axis Appending axis, if file contains multiple images. Can be <tt>{ 'x' | 'y' | 'z' | 'c' }</tt>.
|
|
\param align Appending alignment.
|
|
**/
|
|
CImg<T>& load_cimg(const char *const filename, const char axis='z', const float align=0) {
|
|
CImgList<T> list;
|
|
list.load_cimg(filename);
|
|
if (list._width==1) return list[0].move_to(*this);
|
|
return assign(list.get_append(axis,align));
|
|
}
|
|
|
|
//! Load image from a .cimg[z] file \newinstance
|
|
static CImg<T> get_load_cimg(const char *const filename, const char axis='z', const float align=0) {
|
|
return CImg<T>().load_cimg(filename,axis,align);
|
|
}
|
|
|
|
//! Load image from a .cimg[z] file \overloading.
|
|
CImg<T>& load_cimg(std::FILE *const file, const char axis='z', const float align=0) {
|
|
CImgList<T> list;
|
|
list.load_cimg(file);
|
|
if (list._width==1) return list[0].move_to(*this);
|
|
return assign(list.get_append(axis,align));
|
|
}
|
|
|
|
//! Load image from a .cimg[z] file \newinstance
|
|
static CImg<T> get_load_cimg(std::FILE *const file, const char axis='z', const float align=0) {
|
|
return CImg<T>().load_cimg(file,axis,align);
|
|
}
|
|
|
|
//! Load sub-images of a .cimg file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param n0 Starting frame.
|
|
\param n1 Ending frame (~0U for max).
|
|
\param x0 X-coordinate of the starting sub-image vertex.
|
|
\param y0 Y-coordinate of the starting sub-image vertex.
|
|
\param z0 Z-coordinate of the starting sub-image vertex.
|
|
\param c0 C-coordinate of the starting sub-image vertex.
|
|
\param x1 X-coordinate of the ending sub-image vertex (~0U for max).
|
|
\param y1 Y-coordinate of the ending sub-image vertex (~0U for max).
|
|
\param z1 Z-coordinate of the ending sub-image vertex (~0U for max).
|
|
\param c1 C-coordinate of the ending sub-image vertex (~0U for max).
|
|
\param axis Appending axis, if file contains multiple images. Can be <tt>{ 'x' | 'y' | 'z' | 'c' }</tt>.
|
|
\param align Appending alignment.
|
|
**/
|
|
CImg<T>& load_cimg(const char *const filename,
|
|
const unsigned int n0, const unsigned int n1,
|
|
const unsigned int x0, const unsigned int y0,
|
|
const unsigned int z0, const unsigned int c0,
|
|
const unsigned int x1, const unsigned int y1,
|
|
const unsigned int z1, const unsigned int c1,
|
|
const char axis='z', const float align=0) {
|
|
CImgList<T> list;
|
|
list.load_cimg(filename,n0,n1,x0,y0,z0,c0,x1,y1,z1,c1);
|
|
if (list._width==1) return list[0].move_to(*this);
|
|
return assign(list.get_append(axis,align));
|
|
}
|
|
|
|
//! Load sub-images of a .cimg file \newinstance.
|
|
static CImg<T> get_load_cimg(const char *const filename,
|
|
const unsigned int n0, const unsigned int n1,
|
|
const unsigned int x0, const unsigned int y0,
|
|
const unsigned int z0, const unsigned int c0,
|
|
const unsigned int x1, const unsigned int y1,
|
|
const unsigned int z1, const unsigned int c1,
|
|
const char axis='z', const float align=0) {
|
|
return CImg<T>().load_cimg(filename,n0,n1,x0,y0,z0,c0,x1,y1,z1,c1,axis,align);
|
|
}
|
|
|
|
//! Load sub-images of a .cimg file \overloading.
|
|
CImg<T>& load_cimg(std::FILE *const file,
|
|
const unsigned int n0, const unsigned int n1,
|
|
const unsigned int x0, const unsigned int y0,
|
|
const unsigned int z0, const unsigned int c0,
|
|
const unsigned int x1, const unsigned int y1,
|
|
const unsigned int z1, const unsigned int c1,
|
|
const char axis='z', const float align=0) {
|
|
CImgList<T> list;
|
|
list.load_cimg(file,n0,n1,x0,y0,z0,c0,x1,y1,z1,c1);
|
|
if (list._width==1) return list[0].move_to(*this);
|
|
return assign(list.get_append(axis,align));
|
|
}
|
|
|
|
//! Load sub-images of a .cimg file \newinstance.
|
|
static CImg<T> get_load_cimg(std::FILE *const file,
|
|
const unsigned int n0, const unsigned int n1,
|
|
const unsigned int x0, const unsigned int y0,
|
|
const unsigned int z0, const unsigned int c0,
|
|
const unsigned int x1, const unsigned int y1,
|
|
const unsigned int z1, const unsigned int c1,
|
|
const char axis='z', const float align=0) {
|
|
return CImg<T>().load_cimg(file,n0,n1,x0,y0,z0,c0,x1,y1,z1,c1,axis,align);
|
|
}
|
|
|
|
//! Load image from an INRIMAGE-4 file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param[out] voxel_size Pointer to the three voxel sizes read from the file.
|
|
**/
|
|
CImg<T>& load_inr(const char *const filename, float *const voxel_size=0) {
|
|
return _load_inr(0,filename,voxel_size);
|
|
}
|
|
|
|
//! Load image from an INRIMAGE-4 file \newinstance.
|
|
static CImg<T> get_load_inr(const char *const filename, float *const voxel_size=0) {
|
|
return CImg<T>().load_inr(filename,voxel_size);
|
|
}
|
|
|
|
//! Load image from an INRIMAGE-4 file \overloading.
|
|
CImg<T>& load_inr(std::FILE *const file, float *const voxel_size=0) {
|
|
return _load_inr(file,0,voxel_size);
|
|
}
|
|
|
|
//! Load image from an INRIMAGE-4 file \newinstance.
|
|
static CImg<T> get_load_inr(std::FILE *const file, float *voxel_size=0) {
|
|
return CImg<T>().load_inr(file,voxel_size);
|
|
}
|
|
|
|
static void _load_inr_header(std::FILE *file, int out[8], float *const voxel_size) {
|
|
CImg<charT> item(1024), tmp1(64), tmp2(64);
|
|
*item = *tmp1 = *tmp2 = 0;
|
|
out[0] = std::fscanf(file,"%63s",item._data);
|
|
out[0] = out[1] = out[2] = out[3] = out[5] = 1; out[4] = out[6] = out[7] = -1;
|
|
if (cimg::strncasecmp(item,"#INRIMAGE-4#{",13)!=0)
|
|
throw CImgIOException("CImg<%s>::load_inr(): INRIMAGE-4 header not found.",
|
|
pixel_type());
|
|
|
|
while (std::fscanf(file," %63[^\n]%*c",item._data)!=EOF && std::strncmp(item,"##}",3)) {
|
|
cimg_sscanf(item," XDIM%*[^0-9]%d",out);
|
|
cimg_sscanf(item," YDIM%*[^0-9]%d",out + 1);
|
|
cimg_sscanf(item," ZDIM%*[^0-9]%d",out + 2);
|
|
cimg_sscanf(item," VDIM%*[^0-9]%d",out + 3);
|
|
cimg_sscanf(item," PIXSIZE%*[^0-9]%d",out + 6);
|
|
if (voxel_size) {
|
|
cimg_sscanf(item," VX%*[^0-9.+-]%f",voxel_size);
|
|
cimg_sscanf(item," VY%*[^0-9.+-]%f",voxel_size + 1);
|
|
cimg_sscanf(item," VZ%*[^0-9.+-]%f",voxel_size + 2);
|
|
}
|
|
if (cimg_sscanf(item," CPU%*[ =]%s",tmp1._data)) out[7] = cimg::strncasecmp(tmp1,"sun",3)?0:1;
|
|
switch (cimg_sscanf(item," TYPE%*[ =]%s %s",tmp1._data,tmp2._data)) {
|
|
case 0 : break;
|
|
case 2 :
|
|
out[5] = cimg::strncasecmp(tmp1,"unsigned",8)?1:0;
|
|
std::strncpy(tmp1,tmp2,tmp1._width - 1); // Fallthrough
|
|
case 1 :
|
|
if (!cimg::strncasecmp(tmp1,"int",3) || !cimg::strncasecmp(tmp1,"fixed",5)) out[4] = 0;
|
|
if (!cimg::strncasecmp(tmp1,"float",5) || !cimg::strncasecmp(tmp1,"double",6)) out[4] = 1;
|
|
if (!cimg::strncasecmp(tmp1,"packed",6)) out[4] = 2;
|
|
if (out[4]>=0) break; // Fallthrough
|
|
default :
|
|
throw CImgIOException("CImg<%s>::load_inr(): Invalid pixel type '%s' defined in header.",
|
|
pixel_type(),
|
|
tmp2._data);
|
|
}
|
|
}
|
|
if (out[0]<0 || out[1]<0 || out[2]<0 || out[3]<0)
|
|
throw CImgIOException("CImg<%s>::load_inr(): Invalid dimensions (%d,%d,%d,%d) defined in header.",
|
|
pixel_type(),
|
|
out[0],out[1],out[2],out[3]);
|
|
if (out[4]<0 || out[5]<0)
|
|
throw CImgIOException("CImg<%s>::load_inr(): Incomplete pixel type defined in header.",
|
|
pixel_type());
|
|
if (out[6]<0)
|
|
throw CImgIOException("CImg<%s>::load_inr(): Incomplete PIXSIZE field defined in header.",
|
|
pixel_type());
|
|
if (out[7]<0)
|
|
throw CImgIOException("CImg<%s>::load_inr(): Big/Little Endian coding type undefined in header.",
|
|
pixel_type());
|
|
}
|
|
|
|
CImg<T>& _load_inr(std::FILE *const file, const char *const filename, float *const voxel_size) {
|
|
#define _cimg_load_inr_case(Tf,sign,pixsize,Ts) \
|
|
if (!loaded && fopt[6]==pixsize && fopt[4]==Tf && fopt[5]==sign) { \
|
|
Ts *xval, *const val = new Ts[(size_t)fopt[0]*fopt[3]]; \
|
|
cimg_forYZ(*this,y,z) { \
|
|
cimg::fread(val,fopt[0]*fopt[3],nfile); \
|
|
if (fopt[7]!=endian) cimg::invert_endianness(val,fopt[0]*fopt[3]); \
|
|
xval = val; cimg_forX(*this,x) cimg_forC(*this,c) (*this)(x,y,z,c) = (T)*(xval++); \
|
|
} \
|
|
delete[] val; \
|
|
loaded = true; \
|
|
}
|
|
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"load_inr(): Specified filename is (null).",
|
|
cimg_instance);
|
|
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"rb");
|
|
int fopt[8], endian = cimg::endianness()?1:0;
|
|
bool loaded = false;
|
|
if (voxel_size) voxel_size[0] = voxel_size[1] = voxel_size[2] = 1;
|
|
_load_inr_header(nfile,fopt,voxel_size);
|
|
assign(fopt[0],fopt[1],fopt[2],fopt[3]);
|
|
_cimg_load_inr_case(0,0,8,unsigned char);
|
|
_cimg_load_inr_case(0,1,8,char);
|
|
_cimg_load_inr_case(0,0,16,unsigned short);
|
|
_cimg_load_inr_case(0,1,16,short);
|
|
_cimg_load_inr_case(0,0,32,unsigned int);
|
|
_cimg_load_inr_case(0,1,32,int);
|
|
_cimg_load_inr_case(1,0,32,float);
|
|
_cimg_load_inr_case(1,1,32,float);
|
|
_cimg_load_inr_case(1,0,64,double);
|
|
_cimg_load_inr_case(1,1,64,double);
|
|
if (!loaded) {
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_inr(): Unknown pixel type defined in file '%s'.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)");
|
|
}
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
}
|
|
|
|
//! Load image from a EXR file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
**/
|
|
CImg<T>& load_exr(const char *const filename) {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"load_exr(): Specified filename is (null).",
|
|
cimg_instance);
|
|
#if defined(cimg_use_openexr)
|
|
Imf::RgbaInputFile file(filename);
|
|
Imath::Box2i dw = file.dataWindow();
|
|
const int
|
|
inwidth = dw.max.x - dw.min.x + 1,
|
|
inheight = dw.max.y - dw.min.y + 1;
|
|
Imf::Array2D<Imf::Rgba> pixels;
|
|
pixels.resizeErase(inheight,inwidth);
|
|
file.setFrameBuffer(&pixels[0][0] - dw.min.x - dw.min.y*inwidth, 1, inwidth);
|
|
file.readPixels(dw.min.y, dw.max.y);
|
|
assign(inwidth,inheight,1,4);
|
|
T *ptr_r = data(0,0,0,0), *ptr_g = data(0,0,0,1), *ptr_b = data(0,0,0,2), *ptr_a = data(0,0,0,3);
|
|
cimg_forXY(*this,x,y) {
|
|
*(ptr_r++) = (T)pixels[y][x].r;
|
|
*(ptr_g++) = (T)pixels[y][x].g;
|
|
*(ptr_b++) = (T)pixels[y][x].b;
|
|
*(ptr_a++) = (T)pixels[y][x].a;
|
|
}
|
|
return *this;
|
|
#elif defined(cimg_use_tinyexr)
|
|
float *res;
|
|
const char *err = 0;
|
|
int width = 0, height = 0;
|
|
const int ret = LoadEXR(&res,&width,&height,filename,&err);
|
|
if (ret) throw CImgIOException(_cimg_instance
|
|
"load_exr(): Unable to load EXR file '%s'.",
|
|
cimg_instance,filename);
|
|
CImg<floatT>(res,4,width,height,1,true).get_permute_axes("yzcx").move_to(*this);
|
|
std::free(res);
|
|
return *this;
|
|
#else
|
|
return load_other(filename);
|
|
#endif
|
|
}
|
|
|
|
//! Load image from a EXR file \newinstance.
|
|
static CImg<T> get_load_exr(const char *const filename) {
|
|
return CImg<T>().load_exr(filename);
|
|
}
|
|
|
|
//! Load image from a PANDORE-5 file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
**/
|
|
CImg<T>& load_pandore(const char *const filename) {
|
|
return _load_pandore(0,filename);
|
|
}
|
|
|
|
//! Load image from a PANDORE-5 file \newinstance.
|
|
static CImg<T> get_load_pandore(const char *const filename) {
|
|
return CImg<T>().load_pandore(filename);
|
|
}
|
|
|
|
//! Load image from a PANDORE-5 file \overloading.
|
|
CImg<T>& load_pandore(std::FILE *const file) {
|
|
return _load_pandore(file,0);
|
|
}
|
|
|
|
//! Load image from a PANDORE-5 file \newinstance.
|
|
static CImg<T> get_load_pandore(std::FILE *const file) {
|
|
return CImg<T>().load_pandore(file);
|
|
}
|
|
|
|
CImg<T>& _load_pandore(std::FILE *const file, const char *const filename) {
|
|
#define __cimg_load_pandore_case(nbdim,nwidth,nheight,ndepth,ndim,stype) \
|
|
cimg::fread(dims,nbdim,nfile); \
|
|
if (endian) cimg::invert_endianness(dims,nbdim); \
|
|
if ((ulongT)nwidth*nheight*ndepth*ndim>fsiz) \
|
|
throw CImgIOException(_cimg_instance \
|
|
"load_pandore(): File size %lu for filename '%s' does not match "\
|
|
"encoded image dimensions (%d,%d,%d,%d).",\
|
|
cimg_instance,\
|
|
(long)fsiz,filename?filename:"(FILE*)",\
|
|
(int)nwidth,(int)nheight,(int)ndepth,(int)ndim); \
|
|
assign(nwidth,nheight,ndepth,ndim); \
|
|
const size_t siz = size(); \
|
|
stype *buffer = new stype[siz]; \
|
|
cimg::fread(buffer,siz,nfile); \
|
|
if (endian) cimg::invert_endianness(buffer,siz); \
|
|
T *ptrd = _data; \
|
|
cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++); \
|
|
buffer-=siz; \
|
|
delete[] buffer
|
|
|
|
#define _cimg_load_pandore_case(nbdim,nwidth,nheight,ndepth,dim,stype1,stype2,stype3,ltype) { \
|
|
if (sizeof(stype1)==ltype) { __cimg_load_pandore_case(nbdim,nwidth,nheight,ndepth,dim,stype1); } \
|
|
else if (sizeof(stype2)==ltype) { __cimg_load_pandore_case(nbdim,nwidth,nheight,ndepth,dim,stype2); } \
|
|
else if (sizeof(stype3)==ltype) { __cimg_load_pandore_case(nbdim,nwidth,nheight,ndepth,dim,stype3); } \
|
|
else throw CImgIOException(_cimg_instance \
|
|
"load_pandore(): Unknown pixel datatype in file '%s'.", \
|
|
cimg_instance, \
|
|
filename?filename:"(FILE*)"); }
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"load_pandore(): Specified filename is (null).",
|
|
cimg_instance);
|
|
|
|
const ulongT fsiz = file?(ulongT)cimg_max_buf_size:(ulongT)cimg::fsize(filename);
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"rb");
|
|
CImg<charT> header(32);
|
|
cimg::fread(header._data,12,nfile);
|
|
if (cimg::strncasecmp("PANDORE",header,7)) {
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_pandore(): PANDORE header not found in file '%s'.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)");
|
|
}
|
|
unsigned int imageid, dims[8] = {};
|
|
int ptbuf[4] = {};
|
|
cimg::fread(&imageid,1,nfile);
|
|
const bool endian = imageid>255;
|
|
if (endian) cimg::invert_endianness(imageid);
|
|
cimg::fread(header._data,20,nfile);
|
|
|
|
switch (imageid) {
|
|
case 2 : _cimg_load_pandore_case(2,dims[1],1,1,1,unsigned char,unsigned char,unsigned char,1); break;
|
|
case 3 : _cimg_load_pandore_case(2,dims[1],1,1,1,long,int,short,4); break;
|
|
case 4 : _cimg_load_pandore_case(2,dims[1],1,1,1,double,float,float,4); break;
|
|
case 5 : _cimg_load_pandore_case(3,dims[2],dims[1],1,1,unsigned char,unsigned char,unsigned char,1); break;
|
|
case 6 : _cimg_load_pandore_case(3,dims[2],dims[1],1,1,long,int,short,4); break;
|
|
case 7 : _cimg_load_pandore_case(3,dims[2],dims[1],1,1,double,float,float,4); break;
|
|
case 8 : _cimg_load_pandore_case(4,dims[3],dims[2],dims[1],1,unsigned char,unsigned char,unsigned char,1); break;
|
|
case 9 : _cimg_load_pandore_case(4,dims[3],dims[2],dims[1],1,long,int,short,4); break;
|
|
case 10 : _cimg_load_pandore_case(4,dims[3],dims[2],dims[1],1,double,float,float,4); break;
|
|
case 11 : { // Region 1D
|
|
cimg::fread(dims,3,nfile);
|
|
if (endian) cimg::invert_endianness(dims,3);
|
|
assign(dims[1],1,1,1);
|
|
const unsigned siz = size();
|
|
if (dims[2]<256) {
|
|
unsigned char *buffer = new unsigned char[siz];
|
|
cimg::fread(buffer,siz,nfile);
|
|
T *ptrd = _data;
|
|
cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++);
|
|
buffer-=siz;
|
|
delete[] buffer;
|
|
} else {
|
|
if (dims[2]<65536) {
|
|
unsigned short *buffer = new unsigned short[siz];
|
|
cimg::fread(buffer,siz,nfile);
|
|
if (endian) cimg::invert_endianness(buffer,siz);
|
|
T *ptrd = _data;
|
|
cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++);
|
|
buffer-=siz;
|
|
delete[] buffer;
|
|
} else {
|
|
unsigned int *buffer = new unsigned int[siz];
|
|
cimg::fread(buffer,siz,nfile);
|
|
if (endian) cimg::invert_endianness(buffer,siz);
|
|
T *ptrd = _data;
|
|
cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++);
|
|
buffer-=siz;
|
|
delete[] buffer;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case 12 : { // Region 2D
|
|
cimg::fread(dims,4,nfile);
|
|
if (endian) cimg::invert_endianness(dims,4);
|
|
assign(dims[2],dims[1],1,1);
|
|
const size_t siz = size();
|
|
if (dims[3]<256) {
|
|
unsigned char *buffer = new unsigned char[siz];
|
|
cimg::fread(buffer,siz,nfile);
|
|
T *ptrd = _data;
|
|
cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++);
|
|
buffer-=siz;
|
|
delete[] buffer;
|
|
} else {
|
|
if (dims[3]<65536) {
|
|
unsigned short *buffer = new unsigned short[siz];
|
|
cimg::fread(buffer,siz,nfile);
|
|
if (endian) cimg::invert_endianness(buffer,siz);
|
|
T *ptrd = _data;
|
|
cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++);
|
|
buffer-=siz;
|
|
delete[] buffer;
|
|
} else {
|
|
unsigned int *buffer = new unsigned int[siz];
|
|
cimg::fread(buffer,siz,nfile);
|
|
if (endian) cimg::invert_endianness(buffer,siz);
|
|
T *ptrd = _data;
|
|
cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++);
|
|
buffer-=siz;
|
|
delete[] buffer;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case 13 : { // Region 3D
|
|
cimg::fread(dims,5,nfile);
|
|
if (endian) cimg::invert_endianness(dims,5);
|
|
assign(dims[3],dims[2],dims[1],1);
|
|
const size_t siz = size();
|
|
if (dims[4]<256) {
|
|
unsigned char *buffer = new unsigned char[siz];
|
|
cimg::fread(buffer,siz,nfile);
|
|
T *ptrd = _data;
|
|
cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++);
|
|
buffer-=siz;
|
|
delete[] buffer;
|
|
} else {
|
|
if (dims[4]<65536) {
|
|
unsigned short *buffer = new unsigned short[siz];
|
|
cimg::fread(buffer,siz,nfile);
|
|
if (endian) cimg::invert_endianness(buffer,siz);
|
|
T *ptrd = _data;
|
|
cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++);
|
|
buffer-=siz;
|
|
delete[] buffer;
|
|
} else {
|
|
unsigned int *buffer = new unsigned int[siz];
|
|
cimg::fread(buffer,siz,nfile);
|
|
if (endian) cimg::invert_endianness(buffer,siz);
|
|
T *ptrd = _data;
|
|
cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++);
|
|
buffer-=siz;
|
|
delete[] buffer;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case 16 : _cimg_load_pandore_case(4,dims[2],dims[1],1,3,unsigned char,unsigned char,unsigned char,1); break;
|
|
case 17 : _cimg_load_pandore_case(4,dims[2],dims[1],1,3,long,int,short,4); break;
|
|
case 18 : _cimg_load_pandore_case(4,dims[2],dims[1],1,3,double,float,float,4); break;
|
|
case 19 : _cimg_load_pandore_case(5,dims[3],dims[2],dims[1],3,unsigned char,unsigned char,unsigned char,1); break;
|
|
case 20 : _cimg_load_pandore_case(5,dims[3],dims[2],dims[1],3,long,int,short,4); break;
|
|
case 21 : _cimg_load_pandore_case(5,dims[3],dims[2],dims[1],3,double,float,float,4); break;
|
|
case 22 : _cimg_load_pandore_case(2,dims[1],1,1,dims[0],unsigned char,unsigned char,unsigned char,1); break;
|
|
case 23 : _cimg_load_pandore_case(2,dims[1],1,1,dims[0],long,int,short,4); break;
|
|
case 24 : _cimg_load_pandore_case(2,dims[1],1,1,dims[0],unsigned long,unsigned int,unsigned short,4); break;
|
|
case 25 : _cimg_load_pandore_case(2,dims[1],1,1,dims[0],double,float,float,4); break;
|
|
case 26 : _cimg_load_pandore_case(3,dims[2],dims[1],1,dims[0],unsigned char,unsigned char,unsigned char,1); break;
|
|
case 27 : _cimg_load_pandore_case(3,dims[2],dims[1],1,dims[0],long,int,short,4); break;
|
|
case 28 : _cimg_load_pandore_case(3,dims[2],dims[1],1,dims[0],unsigned long,unsigned int,unsigned short,4); break;
|
|
case 29 : _cimg_load_pandore_case(3,dims[2],dims[1],1,dims[0],double,float,float,4); break;
|
|
case 30 : _cimg_load_pandore_case(4,dims[3],dims[2],dims[1],dims[0],unsigned char,unsigned char,unsigned char,1);
|
|
break;
|
|
case 31 : _cimg_load_pandore_case(4,dims[3],dims[2],dims[1],dims[0],long,int,short,4); break;
|
|
case 32 : _cimg_load_pandore_case(4,dims[3],dims[2],dims[1],dims[0],unsigned long,unsigned int,unsigned short,4);
|
|
break;
|
|
case 33 : _cimg_load_pandore_case(4,dims[3],dims[2],dims[1],dims[0],double,float,float,4); break;
|
|
case 34 : { // Points 1D
|
|
cimg::fread(ptbuf,1,nfile);
|
|
if (endian) cimg::invert_endianness(ptbuf,1);
|
|
assign(1); (*this)(0) = (T)ptbuf[0];
|
|
} break;
|
|
case 35 : { // Points 2D
|
|
cimg::fread(ptbuf,2,nfile);
|
|
if (endian) cimg::invert_endianness(ptbuf,2);
|
|
assign(2); (*this)(0) = (T)ptbuf[1]; (*this)(1) = (T)ptbuf[0];
|
|
} break;
|
|
case 36 : { // Points 3D
|
|
cimg::fread(ptbuf,3,nfile);
|
|
if (endian) cimg::invert_endianness(ptbuf,3);
|
|
assign(3); (*this)(0) = (T)ptbuf[2]; (*this)(1) = (T)ptbuf[1]; (*this)(2) = (T)ptbuf[0];
|
|
} break;
|
|
default :
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_pandore(): Unable to load data with ID_type %u in file '%s'.",
|
|
cimg_instance,
|
|
imageid,filename?filename:"(FILE*)");
|
|
}
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
}
|
|
|
|
//! Load image from a PAR-REC (Philips) file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param axis Appending axis, if file contains multiple images. Can be <tt>{ 'x' | 'y' | 'z' | 'c' }</tt>.
|
|
\param align Appending alignment.
|
|
**/
|
|
CImg<T>& load_parrec(const char *const filename, const char axis='c', const float align=0) {
|
|
CImgList<T> list;
|
|
list.load_parrec(filename);
|
|
if (list._width==1) return list[0].move_to(*this);
|
|
return assign(list.get_append(axis,align));
|
|
}
|
|
|
|
//! Load image from a PAR-REC (Philips) file \newinstance.
|
|
static CImg<T> get_load_parrec(const char *const filename, const char axis='c', const float align=0) {
|
|
return CImg<T>().load_parrec(filename,axis,align);
|
|
}
|
|
|
|
//! Load image from a raw binary file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param size_x Width of the image buffer.
|
|
\param size_y Height of the image buffer.
|
|
\param size_z Depth of the image buffer.
|
|
\param size_c Spectrum of the image buffer.
|
|
\param is_multiplexed Tells if the image values are multiplexed along the C-axis.
|
|
\param invert_endianness Tells if the endianness of the image buffer must be inverted.
|
|
\param offset Starting offset of the read in the specified file.
|
|
**/
|
|
CImg<T>& load_raw(const char *const filename,
|
|
const unsigned int size_x=0, const unsigned int size_y=1,
|
|
const unsigned int size_z=1, const unsigned int size_c=1,
|
|
const bool is_multiplexed=false, const bool invert_endianness=false,
|
|
const ulongT offset=0) {
|
|
return _load_raw(0,filename,size_x,size_y,size_z,size_c,is_multiplexed,invert_endianness,offset);
|
|
}
|
|
|
|
//! Load image from a raw binary file \newinstance.
|
|
static CImg<T> get_load_raw(const char *const filename,
|
|
const unsigned int size_x=0, const unsigned int size_y=1,
|
|
const unsigned int size_z=1, const unsigned int size_c=1,
|
|
const bool is_multiplexed=false, const bool invert_endianness=false,
|
|
const ulongT offset=0) {
|
|
return CImg<T>().load_raw(filename,size_x,size_y,size_z,size_c,is_multiplexed,invert_endianness,offset);
|
|
}
|
|
|
|
//! Load image from a raw binary file \overloading.
|
|
CImg<T>& load_raw(std::FILE *const file,
|
|
const unsigned int size_x=0, const unsigned int size_y=1,
|
|
const unsigned int size_z=1, const unsigned int size_c=1,
|
|
const bool is_multiplexed=false, const bool invert_endianness=false,
|
|
const ulongT offset=0) {
|
|
return _load_raw(file,0,size_x,size_y,size_z,size_c,is_multiplexed,invert_endianness,offset);
|
|
}
|
|
|
|
//! Load image from a raw binary file \newinstance.
|
|
static CImg<T> get_load_raw(std::FILE *const file,
|
|
const unsigned int size_x=0, const unsigned int size_y=1,
|
|
const unsigned int size_z=1, const unsigned int size_c=1,
|
|
const bool is_multiplexed=false, const bool invert_endianness=false,
|
|
const ulongT offset=0) {
|
|
return CImg<T>().load_raw(file,size_x,size_y,size_z,size_c,is_multiplexed,invert_endianness,offset);
|
|
}
|
|
|
|
CImg<T>& _load_raw(std::FILE *const file, const char *const filename,
|
|
const unsigned int size_x, const unsigned int size_y,
|
|
const unsigned int size_z, const unsigned int size_c,
|
|
const bool is_multiplexed, const bool invert_endianness,
|
|
const ulongT offset) {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"load_raw(): Specified filename is (null).",
|
|
cimg_instance);
|
|
if (cimg::is_directory(filename))
|
|
throw CImgArgumentException(_cimg_instance
|
|
"load_raw(): Specified filename '%s' is a directory.",
|
|
cimg_instance,filename);
|
|
const bool is_bool = pixel_type()==cimg::type<bool>::string();
|
|
ulongT siz = (ulongT)size_x*size_y*size_z*size_c;
|
|
unsigned int
|
|
_size_x = size_x,
|
|
_size_y = size_y,
|
|
_size_z = size_z,
|
|
_size_c = size_c;
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"rb");
|
|
if (!siz) { // Retrieve file size
|
|
const longT fpos = cimg::ftell(nfile);
|
|
if (fpos<0) throw CImgArgumentException(_cimg_instance
|
|
"load_raw(): Cannot determine size of input file '%s'.",
|
|
cimg_instance,filename?filename:"(FILE*)");
|
|
cimg::fseek(nfile,0,SEEK_END);
|
|
siz = (ulongT)cimg::ftell(nfile);
|
|
if (!is_bool) { siz/=sizeof(T); _size_y = (unsigned int)siz; }
|
|
else _size_y = (unsigned int)(siz*8);
|
|
_size_x = _size_z = _size_c = 1;
|
|
cimg::fseek(nfile,fpos,SEEK_SET);
|
|
}
|
|
cimg::fseek(nfile,(longT)offset,SEEK_SET);
|
|
assign(_size_x,_size_y,_size_z,_size_c,0);
|
|
|
|
if (is_bool) { // Boolean data (bitwise)
|
|
unsigned char *const buf = new unsigned char[siz];
|
|
cimg::fread(buf,siz,nfile);
|
|
_uchar2bool(buf,siz,is_multiplexed);
|
|
delete[] buf;
|
|
} else { // Non-boolean data
|
|
if (siz && (!is_multiplexed || size_c==1)) { // Non-multiplexed
|
|
cimg::fread(_data,siz,nfile);
|
|
if (invert_endianness) cimg::invert_endianness(_data,siz);
|
|
} else if (siz) { // Multiplexed
|
|
CImg<T> buf(1,1,1,_size_c);
|
|
cimg_forXYZ(*this,x,y,z) {
|
|
cimg::fread(buf._data,_size_c,nfile);
|
|
if (invert_endianness) cimg::invert_endianness(buf._data,_size_c);
|
|
set_vector_at(buf,x,y,z);
|
|
}
|
|
}
|
|
}
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
}
|
|
|
|
//! Load image sequence from a YUV file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param size_x Width of the frames.
|
|
\param size_y Height of the frames.
|
|
\param chroma_subsampling Type of chroma subsampling. Can be <tt>{ 420 | 422 | 444 }</tt>.
|
|
\param first_frame Index of the first frame to read.
|
|
\param last_frame Index of the last frame to read.
|
|
\param step_frame Step value for frame reading.
|
|
\param yuv2rgb Tells if the YUV to RGB transform must be applied.
|
|
\param axis Appending axis, if file contains multiple images. Can be <tt>{ 'x' | 'y' | 'z' | 'c' }</tt>.
|
|
**/
|
|
CImg<T>& load_yuv(const char *const filename,
|
|
const unsigned int size_x, const unsigned int size_y=1,
|
|
const unsigned int chroma_subsampling=444,
|
|
const unsigned int first_frame=0, const unsigned int last_frame=~0U,
|
|
const unsigned int step_frame=1, const bool yuv2rgb=true, const char axis='z') {
|
|
return get_load_yuv(filename,size_x,size_y,chroma_subsampling,
|
|
first_frame,last_frame,step_frame,yuv2rgb,axis).move_to(*this);
|
|
}
|
|
|
|
//! Load image sequence from a YUV file \newinstance.
|
|
static CImg<T> get_load_yuv(const char *const filename,
|
|
const unsigned int size_x, const unsigned int size_y=1,
|
|
const unsigned int chroma_subsampling=444,
|
|
const unsigned int first_frame=0, const unsigned int last_frame=~0U,
|
|
const unsigned int step_frame=1, const bool yuv2rgb=true, const char axis='z') {
|
|
return CImgList<T>().load_yuv(filename,size_x,size_y,chroma_subsampling,
|
|
first_frame,last_frame,step_frame,yuv2rgb).get_append(axis);
|
|
}
|
|
|
|
//! Load image sequence from a YUV file \overloading.
|
|
CImg<T>& load_yuv(std::FILE *const file,
|
|
const unsigned int size_x, const unsigned int size_y=1,
|
|
const unsigned int chroma_subsampling=444,
|
|
const unsigned int first_frame=0, const unsigned int last_frame=~0U,
|
|
const unsigned int step_frame=1, const bool yuv2rgb=true, const char axis='z') {
|
|
return get_load_yuv(file,size_x,size_y,chroma_subsampling,
|
|
first_frame,last_frame,step_frame,yuv2rgb,axis).move_to(*this);
|
|
}
|
|
|
|
//! Load image sequence from a YUV file \newinstance.
|
|
static CImg<T> get_load_yuv(std::FILE *const file,
|
|
const unsigned int size_x, const unsigned int size_y=1,
|
|
const unsigned int chroma_subsampling=444,
|
|
const unsigned int first_frame=0, const unsigned int last_frame=~0U,
|
|
const unsigned int step_frame=1, const bool yuv2rgb=true, const char axis='z') {
|
|
return CImgList<T>().load_yuv(file,size_x,size_y,chroma_subsampling,
|
|
first_frame,last_frame,step_frame,yuv2rgb).get_append(axis);
|
|
}
|
|
|
|
//! Load 3D object from a .OFF file.
|
|
/**
|
|
\param[out] primitives Primitives data of the 3D object.
|
|
\param[out] colors Colors data of the 3D object.
|
|
\param filename Filename, as a C-string.
|
|
**/
|
|
template<typename tf, typename tc>
|
|
CImg<T>& load_off(CImgList<tf>& primitives, CImgList<tc>& colors, const char *const filename) {
|
|
return _load_off(primitives,colors,0,filename);
|
|
}
|
|
|
|
//! Load 3D object from a .OFF file \newinstance.
|
|
template<typename tf, typename tc>
|
|
static CImg<T> get_load_off(CImgList<tf>& primitives, CImgList<tc>& colors, const char *const filename) {
|
|
return CImg<T>().load_off(primitives,colors,filename);
|
|
}
|
|
|
|
//! Load 3D object from a .OFF file \overloading.
|
|
template<typename tf, typename tc>
|
|
CImg<T>& load_off(CImgList<tf>& primitives, CImgList<tc>& colors, std::FILE *const file) {
|
|
return _load_off(primitives,colors,file,0);
|
|
}
|
|
|
|
//! Load 3D object from a .OFF file \newinstance.
|
|
template<typename tf, typename tc>
|
|
static CImg<T> get_load_off(CImgList<tf>& primitives, CImgList<tc>& colors, std::FILE *const file) {
|
|
return CImg<T>().load_off(primitives,colors,file);
|
|
}
|
|
|
|
template<typename tf, typename tc>
|
|
CImg<T>& _load_off(CImgList<tf>& primitives, CImgList<tc>& colors,
|
|
std::FILE *const file, const char *const filename) {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"load_off(): Specified filename is (null).",
|
|
cimg_instance);
|
|
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"r");
|
|
unsigned int nb_points = 0, nb_primitives = 0, nb_read = 0;
|
|
CImg<charT> line(256); *line = 0;
|
|
int err;
|
|
|
|
// Skip comments, and read magic string OFF
|
|
do { err = std::fscanf(nfile,"%255[^\n] ",line._data); } while (!err || (err==1 && *line=='#'));
|
|
if (cimg::strncasecmp(line,"OFF",3) && cimg::strncasecmp(line,"COFF",4)) {
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_off(): OFF header not found in file '%s'.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)");
|
|
}
|
|
do { err = std::fscanf(nfile,"%255[^\n] ",line._data); } while (!err || (err==1 && *line=='#'));
|
|
if ((err = cimg_sscanf(line,"%u%u%*[^\n] ",&nb_points,&nb_primitives))!=2) {
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_off(): Invalid number of vertices or primitives specified in file '%s'.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)");
|
|
}
|
|
|
|
// Read points data
|
|
assign(nb_points,3);
|
|
float X = 0, Y = 0, Z = 0;
|
|
cimg_forX(*this,l) {
|
|
do { err = std::fscanf(nfile,"%255[^\n] ",line._data); } while (!err || (err==1 && *line=='#'));
|
|
if ((err = cimg_sscanf(line,"%f%f%f%*[^\n] ",&X,&Y,&Z))!=3) {
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_off(): Failed to read vertex %u/%u in file '%s'.",
|
|
cimg_instance,
|
|
l + 1,nb_points,filename?filename:"(FILE*)");
|
|
}
|
|
(*this)(l,0) = (T)X; (*this)(l,1) = (T)Y; (*this)(l,2) = (T)Z;
|
|
}
|
|
|
|
// Read primitive data
|
|
primitives.assign();
|
|
colors.assign();
|
|
bool stop_flag = false;
|
|
while (!stop_flag) {
|
|
float c0 = 0.7f, c1 = 0.7f, c2 = 0.7f;
|
|
unsigned int prim = 0, i0 = 0, i1 = 0, i2 = 0, i3 = 0, i4 = 0, i5 = 0, i6 = 0, i7 = 0;
|
|
*line = 0;
|
|
if ((err = std::fscanf(nfile,"%u",&prim))!=1) stop_flag = true;
|
|
else {
|
|
++nb_read;
|
|
switch (prim) {
|
|
case 1 : {
|
|
if ((err = std::fscanf(nfile,"%u%255[^\n] ",&i0,line._data))<2) {
|
|
cimg::warn(_cimg_instance
|
|
"load_off(): Failed to read primitive %u/%u from file '%s'.",
|
|
cimg_instance,
|
|
nb_read,nb_primitives,filename?filename:"(FILE*)");
|
|
|
|
err = std::fscanf(nfile,"%*[^\n] ");
|
|
} else {
|
|
err = cimg_sscanf(line,"%f%f%f",&c0,&c1,&c2);
|
|
CImg<tf>::vector(i0).move_to(primitives);
|
|
CImg<tc>::vector((tc)(c0*255),(tc)(c1*255),(tc)(c2*255)).move_to(colors);
|
|
}
|
|
} break;
|
|
case 2 : {
|
|
if ((err = std::fscanf(nfile,"%u%u%255[^\n] ",&i0,&i1,line._data))<2) {
|
|
cimg::warn(_cimg_instance
|
|
"load_off(): Failed to read primitive %u/%u from file '%s'.",
|
|
cimg_instance,
|
|
nb_read,nb_primitives,filename?filename:"(FILE*)");
|
|
|
|
err = std::fscanf(nfile,"%*[^\n] ");
|
|
} else {
|
|
err = cimg_sscanf(line,"%f%f%f",&c0,&c1,&c2);
|
|
CImg<tf>::vector(i0,i1).move_to(primitives);
|
|
CImg<tc>::vector((tc)(c0*255),(tc)(c1*255),(tc)(c2*255)).move_to(colors);
|
|
}
|
|
} break;
|
|
case 3 : {
|
|
if ((err = std::fscanf(nfile,"%u%u%u%255[^\n] ",&i0,&i1,&i2,line._data))<3) {
|
|
cimg::warn(_cimg_instance
|
|
"load_off(): Failed to read primitive %u/%u from file '%s'.",
|
|
cimg_instance,
|
|
nb_read,nb_primitives,filename?filename:"(FILE*)");
|
|
|
|
err = std::fscanf(nfile,"%*[^\n] ");
|
|
} else {
|
|
err = cimg_sscanf(line,"%f%f%f",&c0,&c1,&c2);
|
|
CImg<tf>::vector(i0,i2,i1).move_to(primitives);
|
|
CImg<tc>::vector((tc)(c0*255),(tc)(c1*255),(tc)(c2*255)).move_to(colors);
|
|
}
|
|
} break;
|
|
case 4 : {
|
|
if ((err = std::fscanf(nfile,"%u%u%u%u%255[^\n] ",&i0,&i1,&i2,&i3,line._data))<4) {
|
|
cimg::warn(_cimg_instance
|
|
"load_off(): Failed to read primitive %u/%u from file '%s'.",
|
|
cimg_instance,
|
|
nb_read,nb_primitives,filename?filename:"(FILE*)");
|
|
|
|
err = std::fscanf(nfile,"%*[^\n] ");
|
|
} else {
|
|
err = cimg_sscanf(line,"%f%f%f",&c0,&c1,&c2);
|
|
CImg<tf>::vector(i0,i3,i2,i1).move_to(primitives);
|
|
CImg<tc>::vector((tc)(c0*255),(tc)(c1*255),(tc)(c2*255)).move_to(colors);
|
|
}
|
|
} break;
|
|
case 5 : {
|
|
if ((err = std::fscanf(nfile,"%u%u%u%u%u%255[^\n] ",&i0,&i1,&i2,&i3,&i4,line._data))<5) {
|
|
cimg::warn(_cimg_instance
|
|
"load_off(): Failed to read primitive %u/%u from file '%s'.",
|
|
cimg_instance,
|
|
nb_read,nb_primitives,filename?filename:"(FILE*)");
|
|
|
|
err = std::fscanf(nfile,"%*[^\n] ");
|
|
} else {
|
|
err = cimg_sscanf(line,"%f%f%f",&c0,&c1,&c2);
|
|
CImg<tf>::vector(i0,i3,i2,i1).move_to(primitives);
|
|
CImg<tf>::vector(i0,i4,i3).move_to(primitives);
|
|
colors.insert(2,CImg<tc>::vector((tc)(c0*255),(tc)(c1*255),(tc)(c2*255)));
|
|
++nb_primitives;
|
|
}
|
|
} break;
|
|
case 6 : {
|
|
if ((err = std::fscanf(nfile,"%u%u%u%u%u%u%255[^\n] ",&i0,&i1,&i2,&i3,&i4,&i5,line._data))<6) {
|
|
cimg::warn(_cimg_instance
|
|
"load_off(): Failed to read primitive %u/%u from file '%s'.",
|
|
cimg_instance,
|
|
nb_read,nb_primitives,filename?filename:"(FILE*)");
|
|
|
|
err = std::fscanf(nfile,"%*[^\n] ");
|
|
} else {
|
|
err = cimg_sscanf(line,"%f%f%f",&c0,&c1,&c2);
|
|
CImg<tf>::vector(i0,i3,i2,i1).move_to(primitives);
|
|
CImg<tf>::vector(i0,i5,i4,i3).move_to(primitives);
|
|
colors.insert(2,CImg<tc>::vector((tc)(c0*255),(tc)(c1*255),(tc)(c2*255)));
|
|
++nb_primitives;
|
|
}
|
|
} break;
|
|
case 7 : {
|
|
if ((err = std::fscanf(nfile,"%u%u%u%u%u%u%u%255[^\n] ",&i0,&i1,&i2,&i3,&i4,&i5,&i6,line._data))<7) {
|
|
cimg::warn(_cimg_instance
|
|
"load_off(): Failed to read primitive %u/%u from file '%s'.",
|
|
cimg_instance,
|
|
nb_read,nb_primitives,filename?filename:"(FILE*)");
|
|
|
|
err = std::fscanf(nfile,"%*[^\n] ");
|
|
} else {
|
|
err = cimg_sscanf(line,"%f%f%f",&c0,&c1,&c2);
|
|
CImg<tf>::vector(i0,i4,i3,i1).move_to(primitives);
|
|
CImg<tf>::vector(i0,i6,i5,i4).move_to(primitives);
|
|
CImg<tf>::vector(i3,i2,i1).move_to(primitives);
|
|
colors.insert(3,CImg<tc>::vector((tc)(c0*255),(tc)(c1*255),(tc)(c2*255)));
|
|
++(++nb_primitives);
|
|
}
|
|
} break;
|
|
case 8 : {
|
|
if ((err = std::fscanf(nfile,"%u%u%u%u%u%u%u%u%255[^\n] ",&i0,&i1,&i2,&i3,&i4,&i5,&i6,&i7,line._data))<7) {
|
|
cimg::warn(_cimg_instance
|
|
"load_off(): Failed to read primitive %u/%u from file '%s'.",
|
|
cimg_instance,
|
|
nb_read,nb_primitives,filename?filename:"(FILE*)");
|
|
|
|
err = std::fscanf(nfile,"%*[^\n] ");
|
|
} else {
|
|
err = cimg_sscanf(line,"%f%f%f",&c0,&c1,&c2);
|
|
CImg<tf>::vector(i0,i3,i2,i1).move_to(primitives);
|
|
CImg<tf>::vector(i0,i5,i4,i3).move_to(primitives);
|
|
CImg<tf>::vector(i0,i7,i6,i5).move_to(primitives);
|
|
colors.insert(3,CImg<tc>::vector((tc)(c0*255),(tc)(c1*255),(tc)(c2*255)));
|
|
++(++nb_primitives);
|
|
}
|
|
} break;
|
|
default :
|
|
cimg::warn(_cimg_instance
|
|
"load_off(): Failed to read primitive %u/%u (%u vertices) from file '%s'.",
|
|
cimg_instance,
|
|
nb_read,nb_primitives,prim,filename?filename:"(FILE*)");
|
|
|
|
err = std::fscanf(nfile,"%*[^\n] ");
|
|
}
|
|
}
|
|
}
|
|
if (!file) cimg::fclose(nfile);
|
|
if (primitives._width!=nb_primitives)
|
|
cimg::warn(_cimg_instance
|
|
"load_off(): Only %u/%u primitives read from file '%s'.",
|
|
cimg_instance,
|
|
primitives._width,nb_primitives,filename?filename:"(FILE*)");
|
|
return *this;
|
|
}
|
|
|
|
//! Load image sequence from a video file, using OpenCV library.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param first_frame Index of the first frame to read.
|
|
\param last_frame Index of the last frame to read.
|
|
\param step_frame Step value for frame reading.
|
|
\param axis Alignment axis.
|
|
\param align Appending alignment.
|
|
**/
|
|
CImg<T>& load_video(const char *const filename,
|
|
const unsigned int first_frame=0, const unsigned int last_frame=~0U,
|
|
const unsigned int step_frame=1,
|
|
const char axis='z', const float align=0) {
|
|
return get_load_video(filename,first_frame,last_frame,step_frame,axis,align).move_to(*this);
|
|
}
|
|
|
|
//! Load image sequence from a video file, using OpenCV library \newinstance.
|
|
static CImg<T> get_load_video(const char *const filename,
|
|
const unsigned int first_frame=0, const unsigned int last_frame=~0U,
|
|
const unsigned int step_frame=1,
|
|
const char axis='z', const float align=0) {
|
|
return CImgList<T>().load_video(filename,first_frame,last_frame,step_frame).get_append(axis,align);
|
|
}
|
|
|
|
//! Load image sequence using FFMPEG's external tool 'ffmpeg'.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param axis Appending axis, if file contains multiple images. Can be <tt>{ 'x' | 'y' | 'z' | 'c' }</tt>.
|
|
\param align Appending alignment.
|
|
**/
|
|
CImg<T>& load_ffmpeg_external(const char *const filename, const char axis='z', const float align=0) {
|
|
return get_load_ffmpeg_external(filename,axis,align).move_to(*this);
|
|
}
|
|
|
|
//! Load image sequence using FFMPEG's external tool 'ffmpeg' \newinstance.
|
|
static CImg<T> get_load_ffmpeg_external(const char *const filename, const char axis='z', const float align=0) {
|
|
return CImgList<T>().load_ffmpeg_external(filename).get_append(axis,align);
|
|
}
|
|
|
|
//! Load gif file, using Imagemagick or GraphicsMagicks's external tools.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param axis Appending axis, if file contains multiple images. Can be <tt>{ 'x' | 'y' | 'z' | 'c' }</tt>.
|
|
\param align Appending alignment.
|
|
**/
|
|
CImg<T>& load_gif_external(const char *const filename,
|
|
const char axis='z', const float align=0) {
|
|
return get_load_gif_external(filename,axis,align).move_to(*this);
|
|
}
|
|
|
|
//! Load gif file, using ImageMagick or GraphicsMagick's external tool 'convert' \newinstance.
|
|
static CImg<T> get_load_gif_external(const char *const filename,
|
|
const char axis='z', const float align=0) {
|
|
return CImgList<T>().load_gif_external(filename).get_append(axis,align);
|
|
}
|
|
|
|
//! Load image from a HEIC file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
**/
|
|
CImg<T>& load_heif(const char *const filename) {
|
|
return _load_heif(filename);
|
|
}
|
|
|
|
//! Load image from a HEIC file \newinstance.
|
|
static CImg<T> get_load_heif(const char *const filename) {
|
|
return CImg<T>().load_heif(filename);
|
|
}
|
|
|
|
CImg<T>& _load_heif(const char *const filename) {
|
|
#ifndef cimg_use_heif
|
|
return load_other(filename);
|
|
#else
|
|
try {
|
|
heif::Context ctx;
|
|
ctx.read_from_file(filename);
|
|
|
|
heif::ImageHandle handle = ctx.get_primary_image_handle();
|
|
const heif::Image image =
|
|
handle.decode_image(heif_colorspace_RGB,handle.has_alpha_channel()?heif_chroma_interleaved_RGBA:
|
|
heif_chroma_interleaved_RGB);
|
|
const int
|
|
W = image.get_width(heif_channel_interleaved),
|
|
H = image.get_height(heif_channel_interleaved),
|
|
S = handle.has_alpha_channel()?4:3;
|
|
assign(W,H,1,S);
|
|
|
|
int stride;
|
|
const unsigned char *const buffer = image.get_plane(heif_channel_interleaved,&stride);
|
|
T *ptr_r = _data, *ptr_g = data(0,0,0,1), *ptr_b = data(0,0,0,2), *ptr_a = S>3?data(0,0,0,3):0;
|
|
cimg_forY(*this,y) {
|
|
const unsigned char *ptrs = buffer + y*stride;
|
|
if (ptr_a) cimg_forX(*this,x) { // RGBA
|
|
*(ptr_r++) = (T)*(ptrs++);
|
|
*(ptr_g++) = (T)*(ptrs++);
|
|
*(ptr_b++) = (T)*(ptrs++);
|
|
*(ptr_a++) = (T)*(ptrs++);
|
|
}
|
|
else cimg_forX(*this,x) { // RGB
|
|
*(ptr_r++) = (T)*(ptrs++);
|
|
*(ptr_g++) = (T)*(ptrs++);
|
|
*(ptr_b++) = (T)*(ptrs++);
|
|
}
|
|
}
|
|
} catch (const heif::Error& e) {
|
|
throw CImgInstanceException(_cimg_instance
|
|
"load_heif(): Unable to decode image: %s",
|
|
cimg_instance,
|
|
e.get_message().c_str());
|
|
} catch (...) {
|
|
throw;
|
|
}
|
|
return *this;
|
|
#endif
|
|
}
|
|
|
|
//! Load image using GraphicsMagick's external tool 'gm'.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
**/
|
|
CImg<T>& load_graphicsmagick_external(const char *const filename) {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"load_graphicsmagick_external(): Specified filename is (null).",
|
|
cimg_instance);
|
|
cimg::fclose(cimg::fopen(filename,"rb")); // Check if file exists
|
|
CImg<charT> command(1024), filename_tmp(256);
|
|
std::FILE *file = 0;
|
|
const CImg<charT> s_filename = CImg<charT>::string(filename)._system_strescape();
|
|
#if cimg_OS==1
|
|
if (!cimg::system("which gm")) {
|
|
cimg_snprintf(command,command._width,"%s convert \"%s\" %s:-",
|
|
cimg::graphicsmagick_path(),
|
|
s_filename.data(),
|
|
#ifdef cimg_use_png
|
|
"png"
|
|
#else
|
|
"pnm"
|
|
#endif
|
|
);
|
|
file = popen(command,"r");
|
|
if (file) {
|
|
const unsigned int omode = cimg::exception_mode();
|
|
cimg::exception_mode(0);
|
|
try {
|
|
#ifdef cimg_use_png
|
|
load_png(file);
|
|
#else
|
|
load_pnm(file);
|
|
#endif
|
|
} catch (...) {
|
|
pclose(file);
|
|
cimg::exception_mode(omode);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_graphicsmagick_external(): Failed to load file '%s' "
|
|
"with external command 'gm'.",
|
|
cimg_instance,
|
|
filename);
|
|
}
|
|
pclose(file);
|
|
return *this;
|
|
}
|
|
}
|
|
#endif
|
|
do {
|
|
cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s",
|
|
cimg::temporary_path(),
|
|
cimg_file_separator,
|
|
cimg::filenamerand(),
|
|
#ifdef cimg_use_png
|
|
"png"
|
|
#else
|
|
"pnm"
|
|
#endif
|
|
);
|
|
if ((file=cimg::std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file);
|
|
} while (file);
|
|
cimg_snprintf(command,command._width,"\"%s\" convert \"%s\" \"%s\"",
|
|
cimg::graphicsmagick_path(),
|
|
s_filename.data(),
|
|
CImg<charT>::string(filename_tmp)._system_strescape().data());
|
|
cimg::system(command,cimg::graphicsmagick_path());
|
|
if (!(file=cimg::std_fopen(filename_tmp,"rb"))) {
|
|
cimg::fclose(cimg::fopen(filename,"r"));
|
|
throw CImgIOException(_cimg_instance
|
|
"load_graphicsmagick_external(): Failed to load file '%s' with external command 'gm'.",
|
|
cimg_instance,
|
|
filename);
|
|
|
|
} else cimg::fclose(file);
|
|
#ifdef cimg_use_png
|
|
load_png(filename_tmp);
|
|
#else
|
|
load_pnm(filename_tmp);
|
|
#endif
|
|
std::remove(filename_tmp);
|
|
return *this;
|
|
}
|
|
|
|
//! Load image using GraphicsMagick's external tool 'gm' \newinstance.
|
|
static CImg<T> get_load_graphicsmagick_external(const char *const filename) {
|
|
return CImg<T>().load_graphicsmagick_external(filename);
|
|
}
|
|
|
|
//! Load gzipped image file, using external tool 'gunzip'.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
**/
|
|
CImg<T>& load_gzip_external(const char *const filename) {
|
|
if (!filename)
|
|
throw CImgIOException(_cimg_instance
|
|
"load_gzip_external(): Specified filename is (null).",
|
|
cimg_instance);
|
|
cimg::fclose(cimg::fopen(filename,"rb")); // Check if file exists
|
|
CImg<charT> command(1024), filename_tmp(256), body(256);
|
|
const char
|
|
*const ext = cimg::split_filename(filename,body),
|
|
*const ext2 = cimg::split_filename(body,0);
|
|
|
|
std::FILE *file = 0;
|
|
do {
|
|
if (!cimg::strcasecmp(ext,"gz")) {
|
|
if (*ext2) cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s",
|
|
cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(),ext2);
|
|
else cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s",
|
|
cimg::temporary_path(),cimg_file_separator,cimg::filenamerand());
|
|
} else {
|
|
if (*ext) cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s",
|
|
cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(),ext);
|
|
else cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s",
|
|
cimg::temporary_path(),cimg_file_separator,cimg::filenamerand());
|
|
}
|
|
if ((file=cimg::std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file);
|
|
} while (file);
|
|
cimg_snprintf(command,command._width,"\"%s\" -c \"%s\" > \"%s\"",
|
|
cimg::gunzip_path(),
|
|
CImg<charT>::string(filename)._system_strescape().data(),
|
|
CImg<charT>::string(filename_tmp)._system_strescape().data());
|
|
cimg::system(command);
|
|
if (!(file=cimg::std_fopen(filename_tmp,"rb"))) {
|
|
cimg::fclose(cimg::fopen(filename,"r"));
|
|
throw CImgIOException(_cimg_instance
|
|
"load_gzip_external(): Failed to load file '%s' with external command 'gunzip'.",
|
|
cimg_instance,
|
|
filename);
|
|
|
|
} else cimg::fclose(file);
|
|
load(filename_tmp);
|
|
std::remove(filename_tmp);
|
|
return *this;
|
|
}
|
|
|
|
//! Load gzipped image file, using external tool 'gunzip' \newinstance.
|
|
static CImg<T> get_load_gzip_external(const char *const filename) {
|
|
return CImg<T>().load_gzip_external(filename);
|
|
}
|
|
|
|
//! Load image using ImageMagick's external tool 'convert'.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
**/
|
|
CImg<T>& load_imagemagick_external(const char *const filename) {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"load_imagemagick_external(): Specified filename is (null).",
|
|
cimg_instance);
|
|
cimg::fclose(cimg::fopen(filename,"rb")); // Check if file exists
|
|
CImg<charT> command(1024), filename_tmp(256);
|
|
std::FILE *file = 0;
|
|
const CImg<charT> s_filename = CImg<charT>::string(filename)._system_strescape();
|
|
#if cimg_OS==1
|
|
if (!cimg::system("which convert")) {
|
|
cimg_snprintf(command,command._width,"%s%s \"%s\" %s:-",
|
|
cimg::imagemagick_path(),
|
|
!cimg::strcasecmp(cimg::split_filename(filename),"pdf")?" -density 400x400":"",
|
|
s_filename.data(),
|
|
#ifdef cimg_use_png
|
|
"png"
|
|
#else
|
|
"pnm"
|
|
#endif
|
|
);
|
|
file = popen(command,"r");
|
|
if (file) {
|
|
const unsigned int omode = cimg::exception_mode();
|
|
cimg::exception_mode(0);
|
|
try {
|
|
#ifdef cimg_use_png
|
|
load_png(file);
|
|
#else
|
|
load_pnm(file);
|
|
#endif
|
|
} catch (...) {
|
|
pclose(file);
|
|
cimg::exception_mode(omode);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_imagemagick_external(): Failed to load file '%s' with "
|
|
"external command 'magick/convert'.",
|
|
cimg_instance,
|
|
filename);
|
|
}
|
|
pclose(file);
|
|
return *this;
|
|
}
|
|
}
|
|
#endif
|
|
do {
|
|
cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s",
|
|
cimg::temporary_path(),
|
|
cimg_file_separator,
|
|
cimg::filenamerand(),
|
|
#ifdef cimg_use_png
|
|
"png"
|
|
#else
|
|
"pnm"
|
|
#endif
|
|
);
|
|
if ((file=cimg::std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file);
|
|
} while (file);
|
|
cimg_snprintf(command,command._width,"\"%s\"%s \"%s\" \"%s\"",
|
|
cimg::imagemagick_path(),
|
|
!cimg::strcasecmp(cimg::split_filename(filename),"pdf")?" -density 400x400":"",
|
|
s_filename.data(),
|
|
CImg<charT>::string(filename_tmp)._system_strescape().data());
|
|
cimg::system(command,cimg::imagemagick_path());
|
|
if (!(file=cimg::std_fopen(filename_tmp,"rb"))) {
|
|
cimg::fclose(cimg::fopen(filename,"r"));
|
|
throw CImgIOException(_cimg_instance
|
|
"load_imagemagick_external(): Failed to load file '%s' with "
|
|
"external command 'magick/convert'.",
|
|
cimg_instance,
|
|
filename);
|
|
|
|
} else cimg::fclose(file);
|
|
#ifdef cimg_use_png
|
|
load_png(filename_tmp);
|
|
#else
|
|
load_pnm(filename_tmp);
|
|
#endif
|
|
std::remove(filename_tmp);
|
|
return *this;
|
|
}
|
|
|
|
//! Load image using ImageMagick's external tool 'convert' \newinstance.
|
|
static CImg<T> get_load_imagemagick_external(const char *const filename) {
|
|
return CImg<T>().load_imagemagick_external(filename);
|
|
}
|
|
|
|
//! Load image from a DICOM file, using Medcon's external tool 'medcon'.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
**/
|
|
CImg<T>& load_medcon_external(const char *const filename) {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"load_medcon_external(): Specified filename is (null).",
|
|
cimg_instance);
|
|
cimg::fclose(cimg::fopen(filename,"rb")); // Check if file exists
|
|
CImg<charT> command(1024), filename_tmp(256), body(256);
|
|
cimg::fclose(cimg::fopen(filename,"r"));
|
|
std::FILE *file = 0;
|
|
do {
|
|
cimg_snprintf(filename_tmp,filename_tmp._width,"%s.hdr",cimg::filenamerand());
|
|
if ((file=cimg::std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file);
|
|
} while (file);
|
|
cimg_snprintf(command,command._width,"\"%s\" -w -c anlz -o \"%s\" -f \"%s\"",
|
|
cimg::medcon_path(),
|
|
CImg<charT>::string(filename_tmp)._system_strescape().data(),
|
|
CImg<charT>::string(filename)._system_strescape().data());
|
|
cimg::system(command,cimg::medcon_path());
|
|
cimg::split_filename(filename_tmp,body);
|
|
|
|
cimg_snprintf(command,command._width,"%s.hdr",body._data);
|
|
file = cimg::std_fopen(command,"rb");
|
|
if (!file) {
|
|
cimg_snprintf(command,command._width,"m000-%s.hdr",body._data);
|
|
file = cimg::std_fopen(command,"rb");
|
|
if (!file) {
|
|
throw CImgIOException(_cimg_instance
|
|
"load_medcon_external(): Failed to load file '%s' with external command 'medcon'.",
|
|
cimg_instance,
|
|
filename);
|
|
}
|
|
}
|
|
cimg::fclose(file);
|
|
load_analyze(command);
|
|
std::remove(command);
|
|
cimg::split_filename(command,body);
|
|
cimg_snprintf(command,command._width,"%s.img",body._data);
|
|
std::remove(command);
|
|
return *this;
|
|
}
|
|
|
|
//! Load image from a DICOM file, using Medcon's external tool 'medcon' \newinstance.
|
|
static CImg<T> get_load_medcon_external(const char *const filename) {
|
|
return CImg<T>().load_medcon_external(filename);
|
|
}
|
|
|
|
//! Load image from a .pdf file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param resolution Image resolution.
|
|
**/
|
|
CImg<T>& load_pdf_external(const char *const filename, const unsigned int resolution=400) {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"load_pdf_external(): Specified filename is (null).",
|
|
cimg_instance);
|
|
CImg<charT> command(1024), filename_tmp(256);
|
|
std::FILE *file = 0;
|
|
const CImg<charT> s_filename = CImg<charT>::string(filename)._system_strescape();
|
|
#if cimg_OS==1
|
|
cimg_snprintf(command,command._width,"gs -q -dNOPAUSE -sDEVICE=ppmraw -o - -r%u \"%s\"",
|
|
resolution,s_filename.data());
|
|
file = popen(command,"r");
|
|
if (file) {
|
|
const unsigned int omode = cimg::exception_mode();
|
|
cimg::exception_mode(0);
|
|
try { load_pnm(file); } catch (...) {
|
|
pclose(file);
|
|
cimg::exception_mode(omode);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_pdf_external(): Failed to load file '%s' with external command 'gs'.",
|
|
cimg_instance,
|
|
filename);
|
|
}
|
|
pclose(file);
|
|
return *this;
|
|
}
|
|
#endif
|
|
do {
|
|
cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.ppm",
|
|
cimg::temporary_path(),cimg_file_separator,cimg::filenamerand());
|
|
if ((file=cimg::std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file);
|
|
} while (file);
|
|
cimg_snprintf(command,command._width,"gs -q -dNOPAUSE -sDEVICE=ppmraw -o \"%s\" -r%u \"%s\"",
|
|
CImg<charT>::string(filename_tmp)._system_strescape().data(),resolution,s_filename.data());
|
|
cimg::system(command,"gs");
|
|
if (!(file=cimg::std_fopen(filename_tmp,"rb"))) {
|
|
cimg::fclose(cimg::fopen(filename,"r"));
|
|
throw CImgIOException(_cimg_instance
|
|
"load_pdf_external(): Failed to load file '%s' with external command 'gs'.",
|
|
cimg_instance,
|
|
filename);
|
|
} else cimg::fclose(file);
|
|
load_pnm(filename_tmp);
|
|
std::remove(filename_tmp);
|
|
return *this;
|
|
}
|
|
|
|
//! Load image from a .pdf file \newinstance.
|
|
static CImg<T> get_load_pdf_external(const char *const filename, const unsigned int resolution=400) {
|
|
return CImg<T>().load_pdf_external(filename,resolution);
|
|
}
|
|
|
|
//! Load image from a RAW Color Camera file, using external tool 'dcraw'.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
**/
|
|
CImg<T>& load_dcraw_external(const char *const filename) {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"load_dcraw_external(): Specified filename is (null).",
|
|
cimg_instance);
|
|
cimg::fclose(cimg::fopen(filename,"rb")); // Check if file exists
|
|
CImg<charT> command(1024), filename_tmp(256);
|
|
std::FILE *file = 0;
|
|
const CImg<charT> s_filename = CImg<charT>::string(filename)._system_strescape();
|
|
#if cimg_OS==1
|
|
cimg_snprintf(command,command._width,"%s -w -4 -c \"%s\"",
|
|
cimg::dcraw_path(),s_filename.data());
|
|
file = popen(command,"r");
|
|
if (file) {
|
|
const unsigned int omode = cimg::exception_mode();
|
|
cimg::exception_mode(0);
|
|
try { load_pnm(file); } catch (...) {
|
|
pclose(file);
|
|
cimg::exception_mode(omode);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_dcraw_external(): Failed to load file '%s' with external command 'dcraw'.",
|
|
cimg_instance,
|
|
filename);
|
|
}
|
|
pclose(file);
|
|
return *this;
|
|
}
|
|
#endif
|
|
do {
|
|
cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.ppm",
|
|
cimg::temporary_path(),cimg_file_separator,cimg::filenamerand());
|
|
if ((file=cimg::std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file);
|
|
} while (file);
|
|
cimg_snprintf(command,command._width,"\"%s\" -w -4 -c \"%s\" > \"%s\"",
|
|
cimg::dcraw_path(),s_filename.data(),CImg<charT>::string(filename_tmp)._system_strescape().data());
|
|
cimg::system(command,cimg::dcraw_path());
|
|
if (!(file=cimg::std_fopen(filename_tmp,"rb"))) {
|
|
cimg::fclose(cimg::fopen(filename,"r"));
|
|
throw CImgIOException(_cimg_instance
|
|
"load_dcraw_external(): Failed to load file '%s' with external command 'dcraw'.",
|
|
cimg_instance,
|
|
filename);
|
|
|
|
} else cimg::fclose(file);
|
|
load_pnm(filename_tmp);
|
|
std::remove(filename_tmp);
|
|
return *this;
|
|
}
|
|
|
|
//! Load image from a RAW Color Camera file, using external tool 'dcraw' \newinstance.
|
|
static CImg<T> get_load_dcraw_external(const char *const filename) {
|
|
return CImg<T>().load_dcraw_external(filename);
|
|
}
|
|
|
|
#ifdef cimg_use_opencv
|
|
|
|
// Convert a continuous cv::Mat<uchar> to a CImg<uchar>.
|
|
static CImg<ucharT> _cvmat2cimg(const cv::Mat &src) {
|
|
if (src.channels()==1) return CImg<ucharT>(src.ptr(),src.cols,src.rows,1,1);
|
|
else if (src.channels()==3) { // BGR
|
|
CImg<ucharT> res(src.cols,src.rows,1,src.channels());
|
|
const unsigned char *ptrs = src.ptr();
|
|
unsigned char *pR = res.data(), *pG = res.data(0,0,0,1), *pB = res.data(0,0,0,2);
|
|
cimg_forXY(res,x,y) { *(pB++) = *(ptrs++); *(pG++) = *(ptrs++); *(pR++) = *(ptrs++); }
|
|
return res;
|
|
}
|
|
return CImg<ucharT>(src.ptr(),src.channels(),src.cols,src.rows,1,true).get_permute_axes("yzcx");
|
|
}
|
|
|
|
// Convert a CImg<T> to a cv::Mat.
|
|
cv::Mat _cimg2cvmat() const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"_cimg2cvmat() : Instance image is empty.",
|
|
cimg_instance);
|
|
if (_spectrum==2)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"_cimg2cvmat() : Invalid number of channels (should be '1' or '3+').",
|
|
cimg_instance);
|
|
if (_depth!=1)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"_cimg2cvmat() : Invalid number of slices (should be '1').",
|
|
cimg_instance);
|
|
int mat_type = -1;
|
|
if (pixel_type()==cimg::type<unsigned char>::string()) mat_type = CV_8UC1;
|
|
if (pixel_type()==cimg::type<char>::string()) mat_type = CV_8SC1;
|
|
if (pixel_type()==cimg::type<unsigned short>::string()) mat_type = CV_16UC1;
|
|
if (pixel_type()==cimg::type<short>::string()) mat_type = CV_16SC1;
|
|
if (pixel_type()==cimg::type<int>::string()) mat_type = CV_32SC1;
|
|
if (pixel_type()==cimg::type<float>::string()) mat_type = CV_32FC1;
|
|
if (pixel_type()==cimg::type<double>::string()) mat_type = CV_64FC1;
|
|
if (mat_type<0)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"_cvmat2cimg() : pixel type '%s' is not supported.",
|
|
cimg_instance,pixel_type());
|
|
cv::Mat res;
|
|
std::vector<cv::Mat> channels(_spectrum);
|
|
if (_spectrum>1) {
|
|
cimg_forC(*this,c)
|
|
channels[c] = cv::Mat(_height,_width,mat_type,_data + _width*_height*(_spectrum - 1 - c));
|
|
cv::merge(channels,res);
|
|
} else res = cv::Mat(_height,_width,mat_type,_data).clone();
|
|
return res;
|
|
}
|
|
|
|
#endif
|
|
|
|
//! Load image from a camera stream, using OpenCV.
|
|
/**
|
|
\param index Index of the camera to capture images from (from 0 to 63).
|
|
\param capture_width Width of the desired image ('0' stands for default value).
|
|
\param capture_height Height of the desired image ('0' stands for default value).
|
|
\param skip_frames Number of frames to skip before the capture.
|
|
\param release_camera Tells if the camera resource must be released at the end of the method.
|
|
**/
|
|
CImg<T>& load_camera(const unsigned int camera_index=0,
|
|
const unsigned int capture_width=0, const unsigned int capture_height=0,
|
|
const unsigned int skip_frames=0, const bool release_camera=true) {
|
|
#ifdef cimg_use_opencv
|
|
if (camera_index>=64)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"load_camera(): Invalid request for camera #%u "
|
|
"(no more than 100 cameras can be managed simultaneously).",
|
|
cimg_instance,
|
|
camera_index);
|
|
static cv::VideoCapture *captures[64] = {};
|
|
static unsigned int captures_w[64], captures_h[64];
|
|
if (release_camera) {
|
|
cimg::mutex(9);
|
|
if (captures[camera_index]) captures[camera_index]->release();
|
|
delete captures[camera_index];
|
|
captures[camera_index] = 0;
|
|
captures_w[camera_index] = captures_h[camera_index] = 0;
|
|
cimg::mutex(9,0);
|
|
return *this;
|
|
}
|
|
if (!captures[camera_index]) {
|
|
cimg::mutex(9);
|
|
captures[camera_index] = new cv::VideoCapture(camera_index);
|
|
captures_w[camera_index] = captures_h[camera_index] = 0;
|
|
if (!captures[camera_index]->isOpened()) {
|
|
delete captures[camera_index];
|
|
captures[camera_index] = 0;
|
|
cimg::mutex(9,0);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_camera(): Failed to initialize camera #%u.",
|
|
cimg_instance,
|
|
camera_index);
|
|
}
|
|
cimg::mutex(9,0);
|
|
}
|
|
cimg::mutex(9);
|
|
if (capture_width!=captures_w[camera_index]) {
|
|
captures[camera_index]->set(_cimg_cap_prop_frame_width,capture_width);
|
|
captures_w[camera_index] = capture_width;
|
|
}
|
|
if (capture_height!=captures_h[camera_index]) {
|
|
captures[camera_index]->set(_cimg_cap_prop_frame_height,capture_height);
|
|
captures_h[camera_index] = capture_height;
|
|
}
|
|
for (unsigned int i = 0; i<skip_frames; ++i) captures[camera_index]->grab();
|
|
cv::Mat cvimg;
|
|
captures[camera_index]->read(cvimg);
|
|
if (cvimg.empty()) {
|
|
cimg::mutex(9,0);
|
|
load_camera(camera_index,0,0,0,true); // Release camera
|
|
throw CImgIOException(_cimg_instance
|
|
"load_camera(): Failed to retrieve a %ux%u frame from camera #%u.",
|
|
cimg_instance,
|
|
capture_width,capture_height,camera_index);
|
|
} else _cvmat2cimg(cvimg).move_to(*this);
|
|
cimg::mutex(9,0);
|
|
return *this;
|
|
#else
|
|
cimg::unused(camera_index,skip_frames,release_camera,capture_width,capture_height);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_camera(): This function requires features from the OpenCV library "
|
|
"('-Dcimg_use_opencv' must be defined).",
|
|
cimg_instance);
|
|
#endif
|
|
}
|
|
|
|
//! Load image from a camera stream, using OpenCV \newinstance.
|
|
static CImg<T> get_load_camera(const unsigned int camera_index=0,
|
|
const unsigned int capture_width=0, const unsigned int capture_height=0,
|
|
const unsigned int skip_frames=0, const bool release_camera=true) {
|
|
return CImg<T>().load_camera(camera_index,capture_width,capture_height,skip_frames,release_camera);
|
|
}
|
|
|
|
//! Load image using various non-native ways.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
**/
|
|
CImg<T>& load_other(const char *const filename) {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"load_other(): Specified filename is (null).",
|
|
cimg_instance);
|
|
|
|
const unsigned int omode = cimg::exception_mode();
|
|
cimg::exception_mode(0);
|
|
try { load_magick(filename); }
|
|
catch (CImgException&) {
|
|
try { load_imagemagick_external(filename); }
|
|
catch (CImgException&) {
|
|
try { load_graphicsmagick_external(filename); }
|
|
catch (CImgException&) {
|
|
try { load_cimg(filename); }
|
|
catch (CImgException&) {
|
|
try {
|
|
cimg::fclose(cimg::fopen(filename,"rb"));
|
|
} catch (CImgException&) {
|
|
cimg::exception_mode(omode);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_other(): Failed to open file '%s'.",
|
|
cimg_instance,
|
|
filename);
|
|
}
|
|
cimg::exception_mode(omode);
|
|
throw CImgIOException(_cimg_instance
|
|
"load_other(): Failed to recognize format of file '%s'.",
|
|
cimg_instance,
|
|
filename);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
cimg::exception_mode(omode);
|
|
return *this;
|
|
}
|
|
|
|
//! Load image using various non-native ways \newinstance.
|
|
static CImg<T> get_load_other(const char *const filename) {
|
|
return CImg<T>().load_other(filename);
|
|
}
|
|
|
|
//@}
|
|
//---------------------------
|
|
//
|
|
//! \name Data Output
|
|
//@{
|
|
//---------------------------
|
|
|
|
//! Display information about the image data.
|
|
/**
|
|
\param title Name for the considered image.
|
|
\param display_stats Tells to compute and display image statistics.
|
|
**/
|
|
const CImg<T>& print(const char *const title=0, const bool display_stats=true) const {
|
|
|
|
int xm = 0, ym = 0, zm = 0, vm = 0, xM = 0, yM = 0, zM = 0, vM = 0;
|
|
CImg<doubleT> st;
|
|
if (!is_empty() && display_stats) {
|
|
st = get_stats();
|
|
xm = (int)st[4]; ym = (int)st[5], zm = (int)st[6], vm = (int)st[7];
|
|
xM = (int)st[8]; yM = (int)st[9], zM = (int)st[10], vM = (int)st[11];
|
|
}
|
|
|
|
const ulongT siz = size(), msiz = siz*sizeof(T), siz1 = siz - 1,
|
|
mdisp = msiz<8*1024?0U:msiz<8*1024*1024?1U:2U, width1 = _width - 1;
|
|
|
|
CImg<charT> _title(64);
|
|
if (!title) cimg_snprintf(_title,_title._width,"CImg<%s>",pixel_type());
|
|
|
|
std::fprintf(cimg::output(),"%s%s%s%s: %sthis%s = %p, %ssize%s = (%u,%u,%u,%u) [%lu %s], %sdata%s = (%s*)%p",
|
|
cimg::t_magenta,cimg::t_bold,title?title:_title._data,cimg::t_normal,
|
|
cimg::t_bold,cimg::t_normal,(void*)this,
|
|
cimg::t_bold,cimg::t_normal,_width,_height,_depth,_spectrum,
|
|
(unsigned long)(mdisp==0?msiz:(mdisp==1?(msiz>>10):(msiz>>20))),
|
|
mdisp==0?"b":(mdisp==1?"Kio":"Mio"),
|
|
cimg::t_bold,cimg::t_normal,pixel_type(),(void*)begin());
|
|
if (_data)
|
|
std::fprintf(cimg::output(),"..%p (%s) = [ ",(void*)((char*)end() - 1),_is_shared?"shared":"non-shared");
|
|
else std::fprintf(cimg::output()," (%s) = [ ",_is_shared?"shared":"non-shared");
|
|
|
|
if (!is_empty()) cimg_foroff(*this,off) {
|
|
std::fprintf(cimg::output(),"%g",(double)_data[off]);
|
|
if (off!=siz1) std::fprintf(cimg::output(),"%s",off%_width==width1?" ; ":" ");
|
|
if (off==7 && siz>16) { off = siz1 - 8; std::fprintf(cimg::output(),"... "); }
|
|
}
|
|
if (!is_empty() && display_stats)
|
|
std::fprintf(cimg::output(),
|
|
" ], %smin%s = %g, %smax%s = %g, %smean%s = %g, %sstd%s = %g, %scoords_min%s = (%u,%u,%u,%u), "
|
|
"%scoords_max%s = (%u,%u,%u,%u).\n",
|
|
cimg::t_bold,cimg::t_normal,st[0],
|
|
cimg::t_bold,cimg::t_normal,st[1],
|
|
cimg::t_bold,cimg::t_normal,st[2],
|
|
cimg::t_bold,cimg::t_normal,std::sqrt(st[3]),
|
|
cimg::t_bold,cimg::t_normal,xm,ym,zm,vm,
|
|
cimg::t_bold,cimg::t_normal,xM,yM,zM,vM);
|
|
else std::fprintf(cimg::output(),"%s].\n",is_empty()?"":" ");
|
|
std::fflush(cimg::output());
|
|
return *this;
|
|
}
|
|
|
|
//! Display image into a CImgDisplay window.
|
|
/**
|
|
\param disp Display window.
|
|
**/
|
|
const CImg<T>& display(CImgDisplay& disp) const {
|
|
disp.display(*this);
|
|
return *this;
|
|
}
|
|
|
|
//! Display image into a CImgDisplay window, in an interactive way.
|
|
/**
|
|
\param disp Display window.
|
|
\param display_info Tells if image information are displayed on the standard output.
|
|
\param[in,out] XYZ Contains the XYZ coordinates at start / exit of the function.
|
|
\param exit_on_anykey Exit function when any key is pressed.
|
|
**/
|
|
const CImg<T>& display(CImgDisplay &disp, const bool display_info, unsigned int *const XYZ=0,
|
|
const bool exit_on_anykey=false) const {
|
|
return _display(disp,0,display_info,XYZ,exit_on_anykey,false);
|
|
}
|
|
|
|
//! Display image into an interactive window.
|
|
/**
|
|
\param title Window title
|
|
\param display_info Tells if image information are displayed on the standard output.
|
|
\param[in,out] XYZ Contains the XYZ coordinates at start / exit of the function.
|
|
\param exit_on_anykey Exit function when any key is pressed.
|
|
**/
|
|
const CImg<T>& display(const char *const title=0, const bool display_info=true, unsigned int *const XYZ=0,
|
|
const bool exit_on_anykey=false) const {
|
|
CImgDisplay disp;
|
|
return _display(disp,title,display_info,XYZ,exit_on_anykey,false);
|
|
}
|
|
|
|
const CImg<T>& _display(CImgDisplay &disp, const char *const title, const bool display_info,
|
|
unsigned int *const XYZ, const bool exit_on_anykey,
|
|
const bool exit_on_singleclick) const {
|
|
unsigned int oldw = 0, oldh = 0, _XYZ[3] = {}, key = 0;
|
|
int x0 = 0, y0 = 0, z0 = 0, x1 = width() - 1, y1 = height() - 1, z1 = depth() - 1,
|
|
old_mouse_x = -1, old_mouse_y = -1;
|
|
|
|
if (!disp) {
|
|
disp.assign(cimg_fitscreen(_width,_height,_depth),title?title:0,1);
|
|
if (!title) disp.set_title("CImg<%s> (%ux%ux%ux%u)",pixel_type(),_width,_height,_depth,_spectrum);
|
|
else disp.set_title("%s",title);
|
|
} else if (title) disp.set_title("%s",title);
|
|
disp.show().flush();
|
|
|
|
const CImg<char> dtitle = CImg<char>::string(disp.title());
|
|
if (display_info) print(dtitle);
|
|
|
|
CImg<T> zoom;
|
|
for (bool reset_view = true, resize_disp = false, is_first_select = true; !key && !disp.is_closed(); ) {
|
|
if (reset_view) {
|
|
if (XYZ) { _XYZ[0] = XYZ[0]; _XYZ[1] = XYZ[1]; _XYZ[2] = XYZ[2]; }
|
|
else {
|
|
_XYZ[0] = (unsigned int)(x0 + x1 + 1)/2;
|
|
_XYZ[1] = (unsigned int)(y0 + y1 + 1)/2;
|
|
_XYZ[2] = (unsigned int)(z0 + z1 + 1)/2;
|
|
}
|
|
x0 = 0; y0 = 0; z0 = 0; x1 = width() - 1; y1 = height() - 1; z1 = depth() - 1;
|
|
disp.resize(cimg_fitscreen(_width,_height,_depth),false);
|
|
oldw = disp._width; oldh = disp._height;
|
|
resize_disp = true;
|
|
reset_view = false;
|
|
}
|
|
if (!x0 && !y0 && !z0 && x1==width() - 1 && y1==height() - 1 && z1==depth() - 1) {
|
|
if (is_empty()) zoom.assign(1,1,1,1,(T)0); else zoom.assign();
|
|
} else zoom = get_crop(x0,y0,z0,x1,y1,z1);
|
|
|
|
const CImg<T>& visu = zoom?zoom:*this;
|
|
const unsigned int
|
|
dx = 1U + x1 - x0, dy = 1U + y1 - y0, dz = 1U + z1 - z0,
|
|
tw = dx + (dz>1?dz:0U), th = dy + (dz>1?dz:0U);
|
|
if (!is_empty() && !disp.is_fullscreen() && resize_disp) {
|
|
const float
|
|
ttw = (float)tw*disp.width()/oldw, tth = (float)th*disp.height()/oldh,
|
|
dM = std::max(ttw,tth), diM = (float)std::max(disp.width(),disp.height());
|
|
const unsigned int
|
|
imgw = (unsigned int)(ttw*diM/dM), imgh = (unsigned int)(tth*diM/dM);
|
|
disp.set_fullscreen(false).resize(cimg_fitscreen(imgw,imgh,1),false);
|
|
resize_disp = false;
|
|
}
|
|
oldw = tw; oldh = th;
|
|
|
|
bool
|
|
go_up = false, go_down = false, go_left = false, go_right = false,
|
|
go_inc = false, go_dec = false, go_in = false, go_out = false,
|
|
go_in_center = false;
|
|
|
|
disp.set_title("%s",dtitle._data);
|
|
if (_width>1 && visu._width==1) disp.set_title("%s | x=%u",disp._title,x0);
|
|
if (_height>1 && visu._height==1) disp.set_title("%s | y=%u",disp._title,y0);
|
|
if (_depth>1 && visu._depth==1) disp.set_title("%s | z=%u",disp._title,z0);
|
|
|
|
disp._mouse_x = old_mouse_x; disp._mouse_y = old_mouse_y;
|
|
CImg<intT> selection = visu._select(disp,0,2,_XYZ,x0,y0,z0,true,is_first_select,_depth>1,true);
|
|
old_mouse_x = disp._mouse_x; old_mouse_y = disp._mouse_y;
|
|
is_first_select = false;
|
|
|
|
if (disp.wheel()) {
|
|
if ((disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) &&
|
|
(disp.is_keySHIFTLEFT() || disp.is_keySHIFTRIGHT())) {
|
|
go_left = !(go_right = disp.wheel()>0);
|
|
} else if (disp.is_keySHIFTLEFT() || disp.is_keySHIFTRIGHT()) {
|
|
go_down = !(go_up = disp.wheel()>0);
|
|
} else if (depth()==1 || disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
go_out = !(go_in = disp.wheel()>0); go_in_center = false;
|
|
}
|
|
disp.set_wheel();
|
|
}
|
|
|
|
const int
|
|
sx0 = selection(0), sy0 = selection(1), sz0 = selection(2),
|
|
sx1 = selection(3), sy1 = selection(4), sz1 = selection(5);
|
|
if (sx0>=0 && sy0>=0 && sz0>=0 && sx1>=0 && sy1>=0 && sz1>=0) {
|
|
x1 = x0 + sx1; y1 = y0 + sy1; z1 = z0 + sz1;
|
|
x0+=sx0; y0+=sy0; z0+=sz0;
|
|
if ((sx0==sx1 && sy0==sy1) || (_depth>1 && sx0==sx1 && sz0==sz1) || (_depth>1 && sy0==sy1 && sz0==sz1)) {
|
|
if (exit_on_singleclick && (!zoom || is_empty())) break; else reset_view = true;
|
|
}
|
|
resize_disp = true;
|
|
} else switch (key = disp.key()) {
|
|
#if cimg_OS!=2
|
|
case cimg::keyCTRLRIGHT : case cimg::keySHIFTRIGHT :
|
|
#endif
|
|
case 0 : case cimg::keyCTRLLEFT : case cimg::keySHIFTLEFT : key = 0; break;
|
|
case cimg::keyP : if (visu._depth>1 && (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT())) {
|
|
// Special mode: play stack of frames
|
|
const unsigned int
|
|
w1 = visu._width*disp.width()/(visu._width + (visu._depth>1?visu._depth:0)),
|
|
h1 = visu._height*disp.height()/(visu._height + (visu._depth>1?visu._depth:0));
|
|
float frame_timing = 5;
|
|
bool is_stopped = false;
|
|
disp.set_key(key,false).set_wheel().resize(cimg_fitscreen(w1,h1,1),false); key = 0;
|
|
for (unsigned int timer = 0; !key && !disp.is_closed() && !disp.button(); ) {
|
|
if (disp.is_resized()) disp.resize(false);
|
|
if (!timer) {
|
|
visu.get_slice((int)_XYZ[2]).display(disp.set_title("%s | z=%d",dtitle.data(),_XYZ[2]));
|
|
(++_XYZ[2])%=visu._depth;
|
|
}
|
|
if (!is_stopped) { if (++timer>(unsigned int)frame_timing) timer = 0; } else timer = ~0U;
|
|
if (disp.wheel()) { frame_timing-=disp.wheel()/3.f; disp.set_wheel(); }
|
|
switch (key = disp.key()) {
|
|
#if cimg_OS!=2
|
|
case cimg::keyCTRLRIGHT :
|
|
#endif
|
|
case cimg::keyCTRLLEFT : key = 0; break;
|
|
case cimg::keyPAGEUP : frame_timing-=0.3f; key = 0; break;
|
|
case cimg::keyPAGEDOWN : frame_timing+=0.3f; key = 0; break;
|
|
case cimg::keySPACE : is_stopped = !is_stopped; disp.set_key(key,false); key = 0; break;
|
|
case cimg::keyARROWLEFT : case cimg::keyARROWUP : is_stopped = true; timer = 0; key = 0; break;
|
|
case cimg::keyARROWRIGHT : case cimg::keyARROWDOWN : is_stopped = true;
|
|
(_XYZ[2]+=visu._depth - 2)%=visu._depth; timer = 0; key = 0; break;
|
|
case cimg::keyD : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
disp.set_fullscreen(false).
|
|
resize(CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,false),
|
|
CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,true),false);
|
|
disp.set_key(key,false); key = 0;
|
|
} break;
|
|
case cimg::keyC : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
disp.set_fullscreen(false).
|
|
resize(cimg_fitscreen(2*disp.width()/3,2*disp.height()/3,1),false).set_key(key,false); key = 0;
|
|
} break;
|
|
case cimg::keyR : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
disp.set_fullscreen(false).
|
|
resize(cimg_fitscreen(_width,_height,_depth),false).set_key(key,false); key = 0;
|
|
} break;
|
|
case cimg::keyF : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
disp.resize(disp.screen_width(),disp.screen_height(),false).
|
|
toggle_fullscreen().set_key(key,false); key = 0;
|
|
} break;
|
|
}
|
|
frame_timing = frame_timing<1?1:(frame_timing>39?39:frame_timing);
|
|
disp.wait(20);
|
|
}
|
|
const unsigned int
|
|
w2 = (visu._width + (visu._depth>1?visu._depth:0))*disp.width()/visu._width,
|
|
h2 = (visu._height + (visu._depth>1?visu._depth:0))*disp.height()/visu._height;
|
|
disp.resize(cimg_fitscreen(w2,h2,1),false).set_title(dtitle.data()).set_key().set_button().set_wheel();
|
|
key = 0;
|
|
} break;
|
|
case cimg::keyHOME : reset_view = resize_disp = true; key = 0; break;
|
|
case cimg::keyPADADD : go_in = true; go_in_center = true; key = 0; break;
|
|
case cimg::keyPADSUB : go_out = true; key = 0; break;
|
|
case cimg::keyARROWLEFT : case cimg::keyPAD4: go_left = true; key = 0; break;
|
|
case cimg::keyARROWRIGHT : case cimg::keyPAD6: go_right = true; key = 0; break;
|
|
case cimg::keyARROWUP : case cimg::keyPAD8: go_up = true; key = 0; break;
|
|
case cimg::keyARROWDOWN : case cimg::keyPAD2: go_down = true; key = 0; break;
|
|
case cimg::keyPAD7 : go_up = go_left = true; key = 0; break;
|
|
case cimg::keyPAD9 : go_up = go_right = true; key = 0; break;
|
|
case cimg::keyPAD1 : go_down = go_left = true; key = 0; break;
|
|
case cimg::keyPAD3 : go_down = go_right = true; key = 0; break;
|
|
case cimg::keyPAGEUP : go_inc = true; key = 0; break;
|
|
case cimg::keyPAGEDOWN : go_dec = true; key = 0; break;
|
|
}
|
|
if (go_in) {
|
|
const int
|
|
mx = go_in_center?disp.width()/2:disp.mouse_x(),
|
|
my = go_in_center?disp.height()/2:disp.mouse_y(),
|
|
mX = mx*(width() + (depth()>1?depth():0))/disp.width(),
|
|
mY = my*(height() + (depth()>1?depth():0))/disp.height();
|
|
int X = (int)_XYZ[0], Y = (int)_XYZ[1], Z = (int)_XYZ[2];
|
|
if (mX<width() && mY<height()) {
|
|
X = x0 + mX*(1 + x1 - x0)/width(); Y = y0 + mY*(1 + y1 - y0)/height();
|
|
}
|
|
if (mX<width() && mY>=height()) {
|
|
X = x0 + mX*(1 + x1 - x0)/width(); Z = z0 + (mY - height())*(1 + z1 - z0)/depth();
|
|
}
|
|
if (mX>=width() && mY<height()) {
|
|
Y = y0 + mY*(1 + y1 - y0)/height(); Z = z0 + (mX - width())*(1 + z1 - z0)/depth();
|
|
}
|
|
if (x1 - x0>4) { x0 = X - 3*(X - x0)/4; x1 = X + 3*(x1 - X)/4; }
|
|
if (y1 - y0>4) { y0 = Y - 3*(Y - y0)/4; y1 = Y + 3*(y1 - Y)/4; }
|
|
if (z1 - z0>4) { z0 = Z - 3*(Z - z0)/4; z1 = Z + 3*(z1 - Z)/4; }
|
|
}
|
|
if (go_out) {
|
|
const int
|
|
delta_x = (x1 - x0)/8, delta_y = (y1 - y0)/8, delta_z = (z1 - z0)/8,
|
|
ndelta_x = delta_x?delta_x:(_width>1),
|
|
ndelta_y = delta_y?delta_y:(_height>1),
|
|
ndelta_z = delta_z?delta_z:(_depth>1);
|
|
x0-=ndelta_x; y0-=ndelta_y; z0-=ndelta_z;
|
|
x1+=ndelta_x; y1+=ndelta_y; z1+=ndelta_z;
|
|
if (x0<0) { x1-=x0; x0 = 0; if (x1>=width()) x1 = width() - 1; }
|
|
if (y0<0) { y1-=y0; y0 = 0; if (y1>=height()) y1 = height() - 1; }
|
|
if (z0<0) { z1-=z0; z0 = 0; if (z1>=depth()) z1 = depth() - 1; }
|
|
if (x1>=width()) { x0-=(x1 - width() + 1); x1 = width() - 1; if (x0<0) x0 = 0; }
|
|
if (y1>=height()) { y0-=(y1 - height() + 1); y1 = height() - 1; if (y0<0) y0 = 0; }
|
|
if (z1>=depth()) { z0-=(z1 - depth() + 1); z1 = depth() - 1; if (z0<0) z0 = 0; }
|
|
const float
|
|
ratio = (float)(x1-x0)/(y1-y0),
|
|
ratiow = (float)disp._width/disp._height,
|
|
sub = std::min(cimg::abs(ratio - ratiow),cimg::abs(1/ratio-1/ratiow));
|
|
if (sub>0.01) resize_disp = true;
|
|
}
|
|
if (go_left) {
|
|
const int delta = (x1 - x0)/4, ndelta = delta?delta:(_width>1);
|
|
if (x0 - ndelta>=0) { x0-=ndelta; x1-=ndelta; }
|
|
else { x1-=x0; x0 = 0; }
|
|
}
|
|
if (go_right) {
|
|
const int delta = (x1 - x0)/4, ndelta = delta?delta:(_width>1);
|
|
if (x1+ndelta<width()) { x0+=ndelta; x1+=ndelta; }
|
|
else { x0+=(width() - 1 - x1); x1 = width() - 1; }
|
|
}
|
|
if (go_up) {
|
|
const int delta = (y1 - y0)/4, ndelta = delta?delta:(_height>1);
|
|
if (y0 - ndelta>=0) { y0-=ndelta; y1-=ndelta; }
|
|
else { y1-=y0; y0 = 0; }
|
|
}
|
|
if (go_down) {
|
|
const int delta = (y1 - y0)/4, ndelta = delta?delta:(_height>1);
|
|
if (y1+ndelta<height()) { y0+=ndelta; y1+=ndelta; }
|
|
else { y0+=(height() - 1 - y1); y1 = height() - 1; }
|
|
}
|
|
if (go_inc) {
|
|
const int delta = (z1 - z0)/4, ndelta = delta?delta:(_depth>1);
|
|
if (z0 - ndelta>=0) { z0-=ndelta; z1-=ndelta; }
|
|
else { z1-=z0; z0 = 0; }
|
|
}
|
|
if (go_dec) {
|
|
const int delta = (z1 - z0)/4, ndelta = delta?delta:(_depth>1);
|
|
if (z1+ndelta<depth()) { z0+=ndelta; z1+=ndelta; }
|
|
else { z0+=(depth() - 1 - z1); z1 = depth() - 1; }
|
|
}
|
|
disp.wait(100);
|
|
if (!exit_on_anykey && key && key!=cimg::keyESC &&
|
|
(key!=cimg::keyW || (!disp.is_keyCTRLLEFT() && !disp.is_keyCTRLRIGHT()))) {
|
|
key = 0;
|
|
}
|
|
}
|
|
disp.set_key(key);
|
|
if (XYZ) { XYZ[0] = _XYZ[0]; XYZ[1] = _XYZ[1]; XYZ[2] = _XYZ[2]; }
|
|
return *this;
|
|
}
|
|
|
|
//! Display object 3D in an interactive window.
|
|
/**
|
|
\param disp Display window.
|
|
\param vertices Vertices data of the 3D object.
|
|
\param primitives Primitives data of the 3D object.
|
|
\param colors Colors data of the 3D object.
|
|
\param opacities Opacities data of the 3D object.
|
|
\param centering Tells if the 3D object must be centered for the display.
|
|
\param render_static Rendering mode.
|
|
\param render_motion Rendering mode, when the 3D object is moved.
|
|
\param is_double_sided Tells if the object primitives are double-sided.
|
|
\param focale Focale
|
|
\param light_x X-coordinate of the light source.
|
|
\param light_y Y-coordinate of the light source.
|
|
\param light_z Z-coordinate of the light source.
|
|
\param specular_lightness Amount of specular light.
|
|
\param specular_shininess Shininess of the object material.
|
|
\param display_axes Tells if the 3D axes are displayed.
|
|
\param pose_matrix Pointer to 12 values, defining a 3D pose (as a 4x3 matrix).
|
|
\param exit_on_anykey Exit function when any key is pressed.
|
|
**/
|
|
template<typename tp, typename tf, typename tc, typename to>
|
|
const CImg<T>& display_object3d(CImgDisplay& disp,
|
|
const CImg<tp>& vertices,
|
|
const CImgList<tf>& primitives,
|
|
const CImgList<tc>& colors,
|
|
const to& opacities,
|
|
const bool centering=true,
|
|
const int render_static=4, const int render_motion=1,
|
|
const bool is_double_sided=true, const float focale=700,
|
|
const float light_x=0, const float light_y=0, const float light_z=-5e8f,
|
|
const float specular_lightness=0.2f, const float specular_shininess=0.1f,
|
|
const bool display_axes=true, float *const pose_matrix=0,
|
|
const bool exit_on_anykey=false) const {
|
|
return _display_object3d(disp,0,vertices,primitives,colors,opacities,centering,render_static,
|
|
render_motion,is_double_sided,focale,
|
|
light_x,light_y,light_z,specular_lightness,specular_shininess,
|
|
display_axes,pose_matrix,exit_on_anykey);
|
|
}
|
|
|
|
//! Display object 3D in an interactive window \simplification.
|
|
template<typename tp, typename tf, typename tc, typename to>
|
|
const CImg<T>& display_object3d(const char *const title,
|
|
const CImg<tp>& vertices,
|
|
const CImgList<tf>& primitives,
|
|
const CImgList<tc>& colors,
|
|
const to& opacities,
|
|
const bool centering=true,
|
|
const int render_static=4, const int render_motion=1,
|
|
const bool is_double_sided=true, const float focale=700,
|
|
const float light_x=0, const float light_y=0, const float light_z=-5e8f,
|
|
const float specular_lightness=0.2f, const float specular_shininess=0.1f,
|
|
const bool display_axes=true, float *const pose_matrix=0,
|
|
const bool exit_on_anykey=false) const {
|
|
CImgDisplay disp;
|
|
return _display_object3d(disp,title,vertices,primitives,colors,opacities,centering,render_static,
|
|
render_motion,is_double_sided,focale,
|
|
light_x,light_y,light_z,specular_lightness,specular_shininess,
|
|
display_axes,pose_matrix,exit_on_anykey);
|
|
}
|
|
|
|
//! Display object 3D in an interactive window \simplification.
|
|
template<typename tp, typename tf, typename tc>
|
|
const CImg<T>& display_object3d(CImgDisplay &disp,
|
|
const CImg<tp>& vertices,
|
|
const CImgList<tf>& primitives,
|
|
const CImgList<tc>& colors,
|
|
const bool centering=true,
|
|
const int render_static=4, const int render_motion=1,
|
|
const bool is_double_sided=true, const float focale=700,
|
|
const float light_x=0, const float light_y=0, const float light_z=-5e8f,
|
|
const float specular_lightness=0.2f, const float specular_shininess=0.1f,
|
|
const bool display_axes=true, float *const pose_matrix=0,
|
|
const bool exit_on_anykey=false) const {
|
|
return display_object3d(disp,vertices,primitives,colors,CImgList<floatT>(),centering,
|
|
render_static,render_motion,is_double_sided,focale,
|
|
light_x,light_y,light_z,specular_lightness,specular_shininess,
|
|
display_axes,pose_matrix,exit_on_anykey);
|
|
}
|
|
|
|
//! Display object 3D in an interactive window \simplification.
|
|
template<typename tp, typename tf, typename tc>
|
|
const CImg<T>& display_object3d(const char *const title,
|
|
const CImg<tp>& vertices,
|
|
const CImgList<tf>& primitives,
|
|
const CImgList<tc>& colors,
|
|
const bool centering=true,
|
|
const int render_static=4, const int render_motion=1,
|
|
const bool is_double_sided=true, const float focale=700,
|
|
const float light_x=0, const float light_y=0, const float light_z=-5e8f,
|
|
const float specular_lightness=0.2f, const float specular_shininess=0.1f,
|
|
const bool display_axes=true, float *const pose_matrix=0,
|
|
const bool exit_on_anykey=false) const {
|
|
return display_object3d(title,vertices,primitives,colors,CImgList<floatT>(),centering,
|
|
render_static,render_motion,is_double_sided,focale,
|
|
light_x,light_y,light_z,specular_lightness,specular_shininess,
|
|
display_axes,pose_matrix,exit_on_anykey);
|
|
}
|
|
|
|
//! Display object 3D in an interactive window \simplification.
|
|
template<typename tp, typename tf>
|
|
const CImg<T>& display_object3d(CImgDisplay &disp,
|
|
const CImg<tp>& vertices,
|
|
const CImgList<tf>& primitives,
|
|
const bool centering=true,
|
|
const int render_static=4, const int render_motion=1,
|
|
const bool is_double_sided=true, const float focale=700,
|
|
const float light_x=0, const float light_y=0, const float light_z=-5e8f,
|
|
const float specular_lightness=0.2f, const float specular_shininess=0.1f,
|
|
const bool display_axes=true, float *const pose_matrix=0,
|
|
const bool exit_on_anykey=false) const {
|
|
return display_object3d(disp,vertices,primitives,CImgList<T>(),centering,
|
|
render_static,render_motion,is_double_sided,focale,
|
|
light_x,light_y,light_z,specular_lightness,specular_shininess,
|
|
display_axes,pose_matrix,exit_on_anykey);
|
|
}
|
|
|
|
|
|
//! Display object 3D in an interactive window \simplification.
|
|
template<typename tp, typename tf>
|
|
const CImg<T>& display_object3d(const char *const title,
|
|
const CImg<tp>& vertices,
|
|
const CImgList<tf>& primitives,
|
|
const bool centering=true,
|
|
const int render_static=4, const int render_motion=1,
|
|
const bool is_double_sided=true, const float focale=700,
|
|
const float light_x=0, const float light_y=0, const float light_z=-5e8f,
|
|
const float specular_lightness=0.2f, const float specular_shininess=0.1f,
|
|
const bool display_axes=true, float *const pose_matrix=0,
|
|
const bool exit_on_anykey=false) const {
|
|
return display_object3d(title,vertices,primitives,CImgList<T>(),centering,
|
|
render_static,render_motion,is_double_sided,focale,
|
|
light_x,light_y,light_z,specular_lightness,specular_shininess,
|
|
display_axes,pose_matrix,exit_on_anykey);
|
|
}
|
|
|
|
//! Display object 3D in an interactive window \simplification.
|
|
template<typename tp>
|
|
const CImg<T>& display_object3d(CImgDisplay &disp,
|
|
const CImg<tp>& vertices,
|
|
const bool centering=true,
|
|
const int render_static=4, const int render_motion=1,
|
|
const bool is_double_sided=true, const float focale=700,
|
|
const float light_x=0, const float light_y=0, const float light_z=-5e8f,
|
|
const float specular_lightness=0.2f, const float specular_shininess=0.1f,
|
|
const bool display_axes=true, float *const pose_matrix=0,
|
|
const bool exit_on_anykey=false) const {
|
|
return display_object3d(disp,vertices,CImgList<uintT>(),centering,
|
|
render_static,render_motion,is_double_sided,focale,
|
|
light_x,light_y,light_z,specular_lightness,specular_shininess,
|
|
display_axes,pose_matrix,exit_on_anykey);
|
|
}
|
|
|
|
//! Display object 3D in an interactive window \simplification.
|
|
template<typename tp>
|
|
const CImg<T>& display_object3d(const char *const title,
|
|
const CImg<tp>& vertices,
|
|
const bool centering=true,
|
|
const int render_static=4, const int render_motion=1,
|
|
const bool is_double_sided=true, const float focale=700,
|
|
const float light_x=0, const float light_y=0, const float light_z=-5e8f,
|
|
const float specular_lightness=0.2f, const float specular_shininess=0.1f,
|
|
const bool display_axes=true, float *const pose_matrix=0,
|
|
const bool exit_on_anykey=false) const {
|
|
return display_object3d(title,vertices,CImgList<uintT>(),centering,
|
|
render_static,render_motion,is_double_sided,focale,
|
|
light_x,light_y,light_z,specular_lightness,specular_shininess,
|
|
display_axes,pose_matrix,exit_on_anykey);
|
|
}
|
|
|
|
template<typename tp, typename tf, typename tc, typename to>
|
|
const CImg<T>& _display_object3d(CImgDisplay& disp, const char *const title,
|
|
const CImg<tp>& vertices,
|
|
const CImgList<tf>& primitives,
|
|
const CImgList<tc>& colors,
|
|
const to& opacities,
|
|
const bool centering,
|
|
const int render_static, const int render_motion,
|
|
const bool is_double_sided, const float focale,
|
|
const float light_x, const float light_y, const float light_z,
|
|
const float specular_lightness, const float specular_shininess,
|
|
const bool display_axes, float *const pose_matrix,
|
|
const bool exit_on_anykey) const {
|
|
typedef typename cimg::superset<tp,float>::type tpfloat;
|
|
|
|
// Check input arguments
|
|
if (is_empty()) {
|
|
CImg<T> background;
|
|
if (colors && colors[0].size()==1) background.assign(1,2,1,1,64,128);
|
|
else background.assign(1,2,1,3,32,64,32,116,64,96);
|
|
if (disp) background.resize(disp.width(),disp.height(),1,-100,3);
|
|
else background.resize(cimg_fitscreen(CImgDisplay::screen_width()/2,
|
|
CImgDisplay::screen_height()/2,1),1,-100,3);
|
|
return background._display_object3d(disp,title,vertices,primitives,colors,opacities,centering,
|
|
render_static,render_motion,is_double_sided,focale,
|
|
light_x,light_y,light_z,specular_lightness,specular_shininess,
|
|
display_axes,pose_matrix,exit_on_anykey);
|
|
} else { if (disp) disp.resize(*this,false); }
|
|
CImg<charT> error_message(1024);
|
|
if (!vertices.is_object3d(primitives,colors,opacities,true,error_message))
|
|
throw CImgArgumentException(_cimg_instance
|
|
"display_object3d(): Invalid specified 3D object (%u,%u) (%s).",
|
|
cimg_instance,vertices._width,primitives._width,error_message.data());
|
|
if (vertices._width && !primitives) {
|
|
CImgList<tf> nprimitives(vertices._width,1,1,1,1);
|
|
cimglist_for(nprimitives,l) nprimitives(l,0) = (tf)l;
|
|
return _display_object3d(disp,title,vertices,nprimitives,colors,opacities,centering,
|
|
render_static,render_motion,is_double_sided,focale,
|
|
light_x,light_y,light_z,specular_lightness,specular_shininess,
|
|
display_axes,pose_matrix,exit_on_anykey);
|
|
}
|
|
if (!disp) {
|
|
disp.assign(cimg_fitscreen(_width,_height,_depth),title?title:0,3);
|
|
if (!title) disp.set_title("CImg<%s> (%u vertices, %u primitives)",
|
|
pixel_type(),vertices._width,primitives._width);
|
|
} else if (title) disp.set_title("%s",title);
|
|
|
|
// Init 3D objects and compute object statistics
|
|
CImg<floatT>
|
|
pose,
|
|
rotated_vertices(vertices._width,3),
|
|
bbox_vertices, rotated_bbox_vertices,
|
|
axes_vertices, rotated_axes_vertices,
|
|
bbox_opacities, axes_opacities;
|
|
CImgList<uintT> bbox_primitives, axes_primitives;
|
|
CImgList<tf> reverse_primitives;
|
|
CImgList<T> bbox_colors, bbox_colors2, axes_colors;
|
|
unsigned int ns_width = 0, ns_height = 0;
|
|
int _is_double_sided = (int)is_double_sided;
|
|
bool ndisplay_axes = display_axes;
|
|
const CImg<T>
|
|
background_color(1,1,1,_spectrum,0),
|
|
foreground_color(1,1,1,_spectrum,(T)std::min((int)cimg::type<T>::max(),255));
|
|
float
|
|
Xoff = 0, Yoff = 0, Zoff = 0, sprite_scale = 1,
|
|
xm = 0, xM = vertices?vertices.get_shared_row(0).max_min(xm):0,
|
|
ym = 0, yM = vertices?vertices.get_shared_row(1).max_min(ym):0,
|
|
zm = 0, zM = vertices?vertices.get_shared_row(2).max_min(zm):0;
|
|
const float delta = cimg::max(xM - xm,yM - ym,zM - zm);
|
|
|
|
rotated_bbox_vertices = bbox_vertices.assign(8,3,1,1,
|
|
xm,xM,xM,xm,xm,xM,xM,xm,
|
|
ym,ym,yM,yM,ym,ym,yM,yM,
|
|
zm,zm,zm,zm,zM,zM,zM,zM);
|
|
bbox_primitives.assign(6,1,4,1,1, 0,3,2,1, 4,5,6,7, 1,2,6,5, 0,4,7,3, 0,1,5,4, 2,3,7,6);
|
|
bbox_colors.assign(6,_spectrum,1,1,1,background_color[0]);
|
|
bbox_colors2.assign(6,_spectrum,1,1,1,foreground_color[0]);
|
|
bbox_opacities.assign(bbox_colors._width,1,1,1,0.3f);
|
|
|
|
rotated_axes_vertices = axes_vertices.assign(7,3,1,1,
|
|
0,20,0,0,22,-6,-6,
|
|
0,0,20,0,-6,22,-6,
|
|
0,0,0,20,0,0,22);
|
|
axes_opacities.assign(3,1,1,1,1);
|
|
axes_colors.assign(3,_spectrum,1,1,1,foreground_color[0]);
|
|
axes_primitives.assign(3,1,2,1,1, 0,1, 0,2, 0,3);
|
|
|
|
// Begin user interaction loop
|
|
CImg<T> visu0(*this,false), visu;
|
|
CImg<tpfloat> zbuffer(visu0.width(),visu0.height(),1,1,0);
|
|
bool init_pose = true, clicked = false, redraw = true;
|
|
unsigned int key = 0, font_size = 32;
|
|
int
|
|
x0 = 0, y0 = 0, x1 = 0, y1 = 0,
|
|
nrender_static = render_static,
|
|
nrender_motion = render_motion;
|
|
disp.show().flush();
|
|
|
|
while (!disp.is_closed() && !key) {
|
|
|
|
// Init object pose
|
|
if (init_pose) {
|
|
const float
|
|
ratio = delta>0?(2.f*std::min(disp.width(),disp.height())/(3.f*delta)):1,
|
|
dx = (xM + xm)/2, dy = (yM + ym)/2, dz = (zM + zm)/2;
|
|
if (centering)
|
|
CImg<floatT>(4,3,1,1, ratio,0.,0.,-ratio*dx, 0.,ratio,0.,-ratio*dy, 0.,0.,ratio,-ratio*dz).move_to(pose);
|
|
else CImg<floatT>(4,3,1,1, 1,0,0,0, 0,1,0,0, 0,0,1,0).move_to(pose);
|
|
if (pose_matrix) {
|
|
CImg<floatT> pose0(pose_matrix,4,3,1,1,false);
|
|
pose0.resize(4,4,1,1,0); pose.resize(4,4,1,1,0);
|
|
pose0(3,3) = pose(3,3) = 1;
|
|
(pose0*pose).get_crop(0,0,3,2).move_to(pose);
|
|
Xoff = pose_matrix[12]; Yoff = pose_matrix[13]; Zoff = pose_matrix[14]; sprite_scale = pose_matrix[15];
|
|
} else { Xoff = Yoff = Zoff = 0; sprite_scale = 1; }
|
|
init_pose = false;
|
|
redraw = true;
|
|
}
|
|
|
|
// Rotate and draw 3D object
|
|
if (redraw) {
|
|
const float
|
|
r00 = pose(0,0), r10 = pose(1,0), r20 = pose(2,0), r30 = pose(3,0),
|
|
r01 = pose(0,1), r11 = pose(1,1), r21 = pose(2,1), r31 = pose(3,1),
|
|
r02 = pose(0,2), r12 = pose(1,2), r22 = pose(2,2), r32 = pose(3,2);
|
|
if ((clicked && nrender_motion>=0) || (!clicked && nrender_static>=0)) {
|
|
const tp *const pv0 = vertices.data(), *const pv1 = vertices.data(0,1), *const pv2 = vertices.data(0,2);
|
|
float
|
|
*const prv0 = rotated_vertices.data(),
|
|
*const prv1 = rotated_vertices.data(0,1),
|
|
*const prv2 = rotated_vertices.data(0,2);
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if(vertices.width()>(cimg_openmp_sizefactor)*1024))
|
|
cimg_forX(vertices,l) {
|
|
const float x = (float)pv0[l], y = (float)pv1[l], z = (float)pv2[l];
|
|
prv0[l] = r00*x + r10*y + r20*z + r30;
|
|
prv1[l] = r01*x + r11*y + r21*z + r31;
|
|
prv2[l] = r02*x + r12*y + r22*z + r32;
|
|
}
|
|
}
|
|
else cimg_forX(bbox_vertices,l) {
|
|
const float x = bbox_vertices(l,0), y = bbox_vertices(l,1), z = bbox_vertices(l,2);
|
|
rotated_bbox_vertices(l,0) = r00*x + r10*y + r20*z + r30;
|
|
rotated_bbox_vertices(l,1) = r01*x + r11*y + r21*z + r31;
|
|
rotated_bbox_vertices(l,2) = r02*x + r12*y + r22*z + r32;
|
|
}
|
|
|
|
// Draw objects
|
|
const bool render_with_zbuffer = !clicked && nrender_static>0;
|
|
visu = visu0;
|
|
if ((clicked && nrender_motion<0) || (!clicked && nrender_static<0))
|
|
visu.draw_object3d(Xoff + visu._width/2.f,Yoff + visu._height/2.f,Zoff,
|
|
rotated_bbox_vertices,bbox_primitives,bbox_colors,bbox_opacities,2,false,focale).
|
|
draw_object3d(Xoff + visu._width/2.f,Yoff + visu._height/2.f,Zoff,
|
|
rotated_bbox_vertices,bbox_primitives,bbox_colors2,1,false,focale);
|
|
else visu._draw_object3d((void*)0,render_with_zbuffer?zbuffer.fill(0):CImg<tpfloat>::empty(),
|
|
Xoff + visu._width/2.f,Yoff + visu._height/2.f,Zoff,
|
|
rotated_vertices,reverse_primitives?reverse_primitives:primitives,
|
|
colors,opacities,clicked?nrender_motion:nrender_static,_is_double_sided==1,focale,
|
|
width()/2.f + light_x,height()/2.f + light_y,light_z + Zoff,
|
|
specular_lightness,specular_shininess,1,sprite_scale);
|
|
// Draw axes
|
|
if (ndisplay_axes) {
|
|
const float
|
|
n = 1e-8f + cimg::hypot(r00,r01,r02),
|
|
_r00 = r00/n, _r10 = r10/n, _r20 = r20/n,
|
|
_r01 = r01/n, _r11 = r11/n, _r21 = r21/n,
|
|
_r02 = r01/n, _r12 = r12/n, _r22 = r22/n,
|
|
Xaxes = 25, Yaxes = visu._height - 38.f;
|
|
cimg_forX(axes_vertices,l) {
|
|
const float
|
|
x = axes_vertices(l,0),
|
|
y = axes_vertices(l,1),
|
|
z = axes_vertices(l,2);
|
|
rotated_axes_vertices(l,0) = _r00*x + _r10*y + _r20*z;
|
|
rotated_axes_vertices(l,1) = _r01*x + _r11*y + _r21*z;
|
|
rotated_axes_vertices(l,2) = _r02*x + _r12*y + _r22*z;
|
|
}
|
|
axes_opacities(0,0) = (rotated_axes_vertices(1,2)>0)?0.5f:1.f;
|
|
axes_opacities(1,0) = (rotated_axes_vertices(2,2)>0)?0.5f:1.f;
|
|
axes_opacities(2,0) = (rotated_axes_vertices(3,2)>0)?0.5f:1.f;
|
|
visu.draw_object3d(Xaxes,Yaxes,0,rotated_axes_vertices,axes_primitives,
|
|
axes_colors,axes_opacities,1,false,focale).
|
|
draw_text((int)(Xaxes + rotated_axes_vertices(4,0)),
|
|
(int)(Yaxes + rotated_axes_vertices(4,1)),
|
|
"X",axes_colors[0]._data,0,axes_opacities(0,0),13).
|
|
draw_text((int)(Xaxes + rotated_axes_vertices(5,0)),
|
|
(int)(Yaxes + rotated_axes_vertices(5,1)),
|
|
"Y",axes_colors[1]._data,0,axes_opacities(1,0),13).
|
|
draw_text((int)(Xaxes + rotated_axes_vertices(6,0)),
|
|
(int)(Yaxes + rotated_axes_vertices(6,1)),
|
|
"Z",axes_colors[2]._data,0,axes_opacities(2,0),13);
|
|
}
|
|
visu.display(disp);
|
|
if (!clicked || nrender_motion==nrender_static) redraw = false;
|
|
}
|
|
|
|
// Handle user interaction
|
|
if (!redraw) disp.wait();
|
|
if ((disp.button() || disp.wheel()) && disp.mouse_x()>=0 && disp.mouse_y()>=0) {
|
|
redraw = true;
|
|
if (!clicked) { x0 = x1 = disp.mouse_x(); y0 = y1 = disp.mouse_y(); if (!disp.wheel()) clicked = true; }
|
|
else { x1 = disp.mouse_x(); y1 = disp.mouse_y(); }
|
|
const bool is_keyCTRL = disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT();
|
|
if (disp.button()&1 && !is_keyCTRL) {
|
|
const float
|
|
R = 0.45f*std::min(disp.width(),disp.height()),
|
|
R2 = R*R,
|
|
u0 = (float)(x0 - disp.width()/2),
|
|
v0 = (float)(y0 - disp.height()/2),
|
|
u1 = (float)(x1 - disp.width()/2),
|
|
v1 = (float)(y1 - disp.height()/2),
|
|
n0 = cimg::hypot(u0,v0),
|
|
n1 = cimg::hypot(u1,v1),
|
|
nu0 = n0>R?(u0*R/n0):u0,
|
|
nv0 = n0>R?(v0*R/n0):v0,
|
|
nw0 = (float)std::sqrt(std::max(0.f,R2 - nu0*nu0 - nv0*nv0)),
|
|
nu1 = n1>R?(u1*R/n1):u1,
|
|
nv1 = n1>R?(v1*R/n1):v1,
|
|
nw1 = (float)std::sqrt(std::max(0.f,R2 - nu1*nu1 - nv1*nv1)),
|
|
u = nv0*nw1 - nw0*nv1,
|
|
v = nw0*nu1 - nu0*nw1,
|
|
w = nv0*nu1 - nu0*nv1,
|
|
n = cimg::hypot(u,v,w),
|
|
alpha = (float)std::asin(n/R2)*180/cimg::PI;
|
|
(CImg<floatT>::rotation_matrix(u,v,w,-alpha)*pose).move_to(pose);
|
|
x0 = x1; y0 = y1;
|
|
}
|
|
if (disp.button()&2 && !is_keyCTRL) {
|
|
if (focale>0) Zoff-=(y0 - y1)*focale/400;
|
|
else { const float s = std::exp((y0 - y1)/400.f); pose*=s; sprite_scale*=s; }
|
|
x0 = x1; y0 = y1;
|
|
}
|
|
if (disp.wheel()) {
|
|
if (focale>0) Zoff-=disp.wheel()*focale/20;
|
|
else { const float s = std::exp(disp.wheel()/20.f); pose*=s; sprite_scale*=s; }
|
|
disp.set_wheel();
|
|
}
|
|
if (disp.button()&4 || (disp.button()&1 && is_keyCTRL)) {
|
|
Xoff+=(x1 - x0); Yoff+=(y1 - y0); x0 = x1; y0 = y1;
|
|
}
|
|
if ((disp.button()&1) && (disp.button()&2) && !is_keyCTRL) {
|
|
init_pose = true; disp.set_button(); x0 = x1; y0 = y1;
|
|
pose = CImg<floatT>(4,3,1,1, 1,0,0,0, 0,1,0,0, 0,0,1,0);
|
|
}
|
|
} else if (clicked) { x0 = x1; y0 = y1; clicked = false; redraw = true; }
|
|
|
|
CImg<charT> filename(32);
|
|
switch (key = disp.key()) {
|
|
#if cimg_OS!=2
|
|
case cimg::keyCTRLRIGHT :
|
|
#endif
|
|
case 0 : case cimg::keyCTRLLEFT : key = 0; break;
|
|
case cimg::keyD: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
disp.set_fullscreen(false).
|
|
resize(CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,false),
|
|
CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,true),false).
|
|
_is_resized = true;
|
|
disp.set_key(key,false); key = 0;
|
|
} break;
|
|
case cimg::keyC : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
disp.set_fullscreen(false).
|
|
resize(cimg_fitscreen(2*disp.width()/3,2*disp.height()/3,1),false)._is_resized = true;
|
|
disp.set_key(key,false); key = 0;
|
|
} break;
|
|
case cimg::keyR : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
disp.set_fullscreen(false).resize(cimg_fitscreen(_width,_height,_depth),false)._is_resized = true;
|
|
disp.set_key(key,false); key = 0;
|
|
} break;
|
|
case cimg::keyF : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
if (!ns_width || !ns_height ||
|
|
ns_width>(unsigned int)disp.screen_width() || ns_height>(unsigned int)disp.screen_height()) {
|
|
ns_width = disp.screen_width()*3U/4;
|
|
ns_height = disp.screen_height()*3U/4;
|
|
}
|
|
if (disp.is_fullscreen()) disp.resize(ns_width,ns_height,false);
|
|
else {
|
|
ns_width = disp._width; ns_height = disp._height;
|
|
disp.resize(disp.screen_width(),disp.screen_height(),false);
|
|
}
|
|
disp.toggle_fullscreen()._is_resized = true;
|
|
disp.set_key(key,false); key = 0;
|
|
} break;
|
|
case cimg::keyT : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
// Switch single/double-sided primitives.
|
|
if (--_is_double_sided==-2) _is_double_sided = 1;
|
|
if (_is_double_sided>=0) reverse_primitives.assign();
|
|
else primitives.get_reverse_object3d().move_to(reverse_primitives);
|
|
disp.set_key(key,false); key = 0; redraw = true;
|
|
} break;
|
|
case cimg::keyZ : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Enable/disable Z-buffer
|
|
if (zbuffer) zbuffer.assign();
|
|
else zbuffer.assign(visu0.width(),visu0.height(),1,1,0);
|
|
disp.set_key(key,false); key = 0; redraw = true;
|
|
} break;
|
|
case cimg::keyX : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Show/hide 3D axes
|
|
ndisplay_axes = !ndisplay_axes;
|
|
disp.set_key(key,false); key = 0; redraw = true;
|
|
} break;
|
|
case cimg::keyF1 : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Set rendering mode to points
|
|
nrender_motion = (nrender_static==0 && nrender_motion!=0)?0:-1; nrender_static = 0;
|
|
disp.set_key(key,false); key = 0; redraw = true;
|
|
} break;
|
|
case cimg::keyF2 : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Set rendering mode to lines
|
|
nrender_motion = (nrender_static==1 && nrender_motion!=1)?1:-1; nrender_static = 1;
|
|
disp.set_key(key,false); key = 0; redraw = true;
|
|
} break;
|
|
case cimg::keyF3 : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Set rendering mode to flat
|
|
nrender_motion = (nrender_static==2 && nrender_motion!=2)?2:-1; nrender_static = 2;
|
|
disp.set_key(key,false); key = 0; redraw = true;
|
|
} break;
|
|
case cimg::keyF4 : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Set rendering mode to flat-shaded
|
|
nrender_motion = (nrender_static==3 && nrender_motion!=3)?3:-1; nrender_static = 3;
|
|
disp.set_key(key,false); key = 0; redraw = true;
|
|
} break;
|
|
case cimg::keyF5 : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
// Set rendering mode to gouraud-shaded.
|
|
nrender_motion = (nrender_static==4 && nrender_motion!=4)?4:-1; nrender_static = 4;
|
|
disp.set_key(key,false); key = 0; redraw = true;
|
|
} break;
|
|
case cimg::keyF6 : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Set rendering mode to phong-shaded
|
|
nrender_motion = (nrender_static==5 && nrender_motion!=5)?5:-1; nrender_static = 5;
|
|
disp.set_key(key,false); key = 0; redraw = true;
|
|
} break;
|
|
case cimg::keyS : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Save snapshot
|
|
static unsigned int snap_number = 0;
|
|
std::FILE *file;
|
|
do {
|
|
cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.bmp",snap_number++);
|
|
if ((file=cimg::std_fopen(filename,"r"))!=0) cimg::fclose(file);
|
|
} while (file);
|
|
(+visu).__draw_text(" Saving snapshot... ",font_size,0).display(disp);
|
|
visu.save(filename);
|
|
(+visu).__draw_text(" Snapshot '%s' saved. ",font_size,0,filename._data).display(disp);
|
|
disp.set_key(key,false); key = 0;
|
|
} break;
|
|
case cimg::keyG : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Save object as a .off file
|
|
static unsigned int snap_number = 0;
|
|
std::FILE *file;
|
|
do {
|
|
cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.off",snap_number++);
|
|
if ((file=cimg::std_fopen(filename,"r"))!=0) cimg::fclose(file);
|
|
} while (file);
|
|
(+visu).__draw_text(" Saving object... ",font_size,0).display(disp);
|
|
vertices.save_off(reverse_primitives?reverse_primitives:primitives,colors,filename);
|
|
(+visu).__draw_text(" Object '%s' saved. ",font_size,0,filename._data).display(disp);
|
|
disp.set_key(key,false); key = 0;
|
|
} break;
|
|
case cimg::keyO : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Save object as a .cimg file
|
|
static unsigned int snap_number = 0;
|
|
std::FILE *file;
|
|
do {
|
|
|
|
#ifdef cimg_use_zlib
|
|
cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.cimgz",snap_number++);
|
|
#else
|
|
cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.cimg",snap_number++);
|
|
#endif
|
|
if ((file=cimg::std_fopen(filename,"r"))!=0) cimg::fclose(file);
|
|
} while (file);
|
|
(+visu).__draw_text(" Saving object... ",font_size,0).display(disp);
|
|
vertices.get_object3dtoCImg3d(reverse_primitives?reverse_primitives:primitives,colors,opacities).
|
|
save(filename);
|
|
(+visu).__draw_text(" Object '%s' saved. ",font_size,0,filename._data).display(disp);
|
|
disp.set_key(key,false); key = 0;
|
|
} break;
|
|
|
|
#ifdef cimg_use_board
|
|
case cimg::keyP : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Save object as a .EPS file
|
|
static unsigned int snap_number = 0;
|
|
std::FILE *file;
|
|
do {
|
|
cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.eps",snap_number++);
|
|
if ((file=cimg::std_fopen(filename,"r"))!=0) cimg::fclose(file);
|
|
} while (file);
|
|
(+visu).__draw_text(" Saving EPS snapshot... ",font_size,0).display(disp);
|
|
LibBoard::Board board;
|
|
(+visu)._draw_object3d(&board,zbuffer.fill(0),
|
|
Xoff + visu._width/2.f,Yoff + visu._height/2.f,Zoff,
|
|
rotated_vertices,reverse_primitives?reverse_primitives:primitives,
|
|
colors,opacities,clicked?nrender_motion:nrender_static,
|
|
_is_double_sided==1,focale,
|
|
visu.width()/2.f + light_x,visu.height()/2.f + light_y,light_z + Zoff,
|
|
specular_lightness,specular_shininess,1,
|
|
sprite_scale);
|
|
board.saveEPS(filename);
|
|
(+visu).__draw_text(" Object '%s' saved. ",font_size,0,filename._data).display(disp);
|
|
disp.set_key(key,false); key = 0;
|
|
} break;
|
|
case cimg::keyV : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Save object as a .SVG file
|
|
static unsigned int snap_number = 0;
|
|
std::FILE *file;
|
|
do {
|
|
cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.svg",snap_number++);
|
|
if ((file=cimg::std_fopen(filename,"r"))!=0) cimg::fclose(file);
|
|
} while (file);
|
|
(+visu).__draw_text(" Saving SVG snapshot... ",font_size,0).display(disp);
|
|
LibBoard::Board board;
|
|
(+visu)._draw_object3d(&board,zbuffer.fill(0),
|
|
Xoff + visu._width/2.f,Yoff + visu._height/2.f,Zoff,
|
|
rotated_vertices,reverse_primitives?reverse_primitives:primitives,
|
|
colors,opacities,clicked?nrender_motion:nrender_static,
|
|
_is_double_sided==1,focale,
|
|
visu.width()/2.f + light_x,visu.height()/2.f + light_y,light_z + Zoff,
|
|
specular_lightness,specular_shininess,1,
|
|
sprite_scale);
|
|
board.saveSVG(filename);
|
|
(+visu).__draw_text(" Object '%s' saved. ",font_size,0,filename._data).display(disp);
|
|
disp.set_key(key,false); key = 0;
|
|
} break;
|
|
#endif
|
|
}
|
|
if (disp.is_resized()) {
|
|
disp.resize(false); visu0 = get_resize(disp,1);
|
|
if (zbuffer) zbuffer.assign(disp.width(),disp.height());
|
|
redraw = true;
|
|
}
|
|
if (!exit_on_anykey && key && key!=cimg::keyESC &&
|
|
(key!=cimg::keyW || (!disp.is_keyCTRLLEFT() && !disp.is_keyCTRLRIGHT()))) {
|
|
key = 0;
|
|
}
|
|
}
|
|
if (pose_matrix) {
|
|
std::memcpy(pose_matrix,pose._data,12*sizeof(float));
|
|
pose_matrix[12] = Xoff; pose_matrix[13] = Yoff; pose_matrix[14] = Zoff; pose_matrix[15] = sprite_scale;
|
|
}
|
|
disp.set_button().set_key(key);
|
|
return *this;
|
|
}
|
|
|
|
//! Display 1D graph in an interactive window.
|
|
/**
|
|
\param disp Display window.
|
|
\param plot_type Plot type. Can be <tt>{ 0=points | 1=segments | 2=splines | 3=bars }</tt>.
|
|
\param vertex_type Vertex type.
|
|
\param labelx Title for the horizontal axis, as a C-string.
|
|
\param xmin Minimum value along the X-axis.
|
|
\param xmax Maximum value along the X-axis.
|
|
\param labely Title for the vertical axis, as a C-string.
|
|
\param ymin Minimum value along the X-axis.
|
|
\param ymax Maximum value along the X-axis.
|
|
\param exit_on_anykey Exit function when any key is pressed.
|
|
**/
|
|
const CImg<T>& display_graph(CImgDisplay &disp,
|
|
const unsigned int plot_type=1, const unsigned int vertex_type=1,
|
|
const char *const labelx=0, const double xmin=0, const double xmax=0,
|
|
const char *const labely=0, const double ymin=0, const double ymax=0,
|
|
const bool exit_on_anykey=false) const {
|
|
return _display_graph(disp,0,plot_type,vertex_type,labelx,xmin,xmax,labely,ymin,ymax,exit_on_anykey);
|
|
}
|
|
|
|
//! Display 1D graph in an interactive window \overloading.
|
|
const CImg<T>& display_graph(const char *const title=0,
|
|
const unsigned int plot_type=1, const unsigned int vertex_type=1,
|
|
const char *const labelx=0, const double xmin=0, const double xmax=0,
|
|
const char *const labely=0, const double ymin=0, const double ymax=0,
|
|
const bool exit_on_anykey=false) const {
|
|
CImgDisplay disp;
|
|
return _display_graph(disp,title,plot_type,vertex_type,labelx,xmin,xmax,labely,ymin,ymax,exit_on_anykey);
|
|
}
|
|
|
|
const CImg<T>& _display_graph(CImgDisplay &disp, const char *const title=0,
|
|
const unsigned int plot_type=1, const unsigned int vertex_type=1,
|
|
const char *const labelx=0, const double xmin=0, const double xmax=0,
|
|
const char *const labely=0, const double ymin=0, const double ymax=0,
|
|
const bool exit_on_anykey=false) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"display_graph(): Empty instance.",
|
|
cimg_instance);
|
|
if (!disp) disp.assign(cimg_fitscreen(CImgDisplay::screen_width()/2,CImgDisplay::screen_height()/2,1),0,0).
|
|
set_title(title?"%s":"CImg<%s>",title?title:pixel_type());
|
|
const ulongT siz = (ulongT)_width*_height*_depth, siz1 = std::max((ulongT)1,siz - 1);
|
|
const unsigned int old_normalization = disp.normalization();
|
|
disp.show().flush()._normalization = 0;
|
|
|
|
double y0 = ymin, y1 = ymax, nxmin = xmin, nxmax = xmax;
|
|
if (nxmin==nxmax) { nxmin = 0; nxmax = siz1; }
|
|
int x0 = 0, x1 = width()*height()*depth() - 1, key = 0;
|
|
|
|
for (bool reset_view = true; !key && !disp.is_closed(); ) {
|
|
if (reset_view) { x0 = 0; x1 = width()*height()*depth() - 1; y0 = ymin; y1 = ymax; reset_view = false; }
|
|
CImg<T> zoom(x1 - x0 + 1,1,1,spectrum());
|
|
cimg_forC(*this,c) zoom.get_shared_channel(c) = CImg<T>(data(x0,0,0,c),x1 - x0 + 1,1,1,1,true);
|
|
if (y0==y1) { y0 = zoom.min_max(y1); const double dy = y1 - y0; y0-=dy/20; y1+=dy/20; }
|
|
if (y0==y1) { --y0; ++y1; }
|
|
|
|
const CImg<intT> selection = zoom.get_select_graph(disp,plot_type,vertex_type,
|
|
labelx,
|
|
nxmin + x0*(nxmax - nxmin)/siz1,
|
|
nxmin + x1*(nxmax - nxmin)/siz1,
|
|
labely,y0,y1,true);
|
|
const int mouse_x = disp.mouse_x(), mouse_y = disp.mouse_y();
|
|
if (selection[0]>=0) {
|
|
if (selection[2]<0) reset_view = true;
|
|
else {
|
|
x1 = x0 + selection[2]; x0+=selection[0];
|
|
if (selection[1]>=0 && selection[3]>=0) {
|
|
y0 = y1 - selection[3]*(y1 - y0)/(disp.height() - 32);
|
|
y1-=selection[1]*(y1 - y0)/(disp.height() - 32);
|
|
}
|
|
}
|
|
} else {
|
|
bool go_in = false, go_out = false, go_left = false, go_right = false, go_up = false, go_down = false;
|
|
switch (key = (int)disp.key()) {
|
|
case cimg::keyHOME : reset_view = true; key = 0; disp.set_key(); break;
|
|
case cimg::keyPADADD : go_in = true; go_out = false; key = 0; disp.set_key(); break;
|
|
case cimg::keyPADSUB : go_out = true; go_in = false; key = 0; disp.set_key(); break;
|
|
case cimg::keyARROWLEFT : case cimg::keyPAD4 : go_left = true; go_right = false; key = 0; disp.set_key();
|
|
break;
|
|
case cimg::keyARROWRIGHT : case cimg::keyPAD6 : go_right = true; go_left = false; key = 0; disp.set_key();
|
|
break;
|
|
case cimg::keyARROWUP : case cimg::keyPAD8 : go_up = true; go_down = false; key = 0; disp.set_key(); break;
|
|
case cimg::keyARROWDOWN : case cimg::keyPAD2 : go_down = true; go_up = false; key = 0; disp.set_key(); break;
|
|
case cimg::keyPAD7 : go_left = true; go_up = true; key = 0; disp.set_key(); break;
|
|
case cimg::keyPAD9 : go_right = true; go_up = true; key = 0; disp.set_key(); break;
|
|
case cimg::keyPAD1 : go_left = true; go_down = true; key = 0; disp.set_key(); break;
|
|
case cimg::keyPAD3 : go_right = true; go_down = true; key = 0; disp.set_key(); break;
|
|
}
|
|
if (disp.wheel()) {
|
|
if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) go_up = !(go_down = disp.wheel()<0);
|
|
else if (disp.is_keySHIFTLEFT() || disp.is_keySHIFTRIGHT()) go_left = !(go_right = disp.wheel()>0);
|
|
else go_out = !(go_in = disp.wheel()>0);
|
|
key = 0;
|
|
}
|
|
|
|
if (go_in) {
|
|
const int
|
|
xsiz = x1 - x0,
|
|
mx = (mouse_x - 16)*xsiz/(disp.width() - 32),
|
|
cx = x0 + cimg::cut(mx,0,xsiz);
|
|
if (x1 - x0>4) {
|
|
x0 = cx - 7*(cx - x0)/8; x1 = cx + 7*(x1 - cx)/8;
|
|
if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
const double
|
|
ysiz = y1 - y0,
|
|
my = (mouse_y - 16)*ysiz/(disp.height() - 32),
|
|
cy = y1 - cimg::cut(my,0.,ysiz);
|
|
y0 = cy - 7*(cy - y0)/8; y1 = cy + 7*(y1 - cy)/8;
|
|
} else y0 = y1 = 0;
|
|
}
|
|
}
|
|
if (go_out) {
|
|
if (x0>0 || x1<(int)siz1) {
|
|
const int delta_x = (x1 - x0)/8, ndelta_x = delta_x?delta_x:(siz>1);
|
|
const double ndelta_y = (y1 - y0)/8;
|
|
x0-=ndelta_x; x1+=ndelta_x;
|
|
y0-=ndelta_y; y1+=ndelta_y;
|
|
if (x0<0) { x1-=x0; x0 = 0; if (x1>=(int)siz) x1 = (int)siz1; }
|
|
if (x1>=(int)siz) { x0-=(x1 - siz1); x1 = (int)siz1; if (x0<0) x0 = 0; }
|
|
}
|
|
}
|
|
if (go_left) {
|
|
const int delta = (x1 - x0)/5, ndelta = delta?delta:1;
|
|
if (x0 - ndelta>=0) { x0-=ndelta; x1-=ndelta; }
|
|
else { x1-=x0; x0 = 0; }
|
|
go_left = false;
|
|
}
|
|
if (go_right) {
|
|
const int delta = (x1 - x0)/5, ndelta = delta?delta:1;
|
|
if (x1 + ndelta<(int)siz) { x0+=ndelta; x1+=ndelta; }
|
|
else { x0+=(siz1 - x1); x1 = (int)siz1; }
|
|
go_right = false;
|
|
}
|
|
if (go_up) {
|
|
const double delta = (y1 - y0)/10, ndelta = delta?delta:1;
|
|
y0+=ndelta; y1+=ndelta;
|
|
go_up = false;
|
|
}
|
|
if (go_down) {
|
|
const double delta = (y1 - y0)/10, ndelta = delta?delta:1;
|
|
y0-=ndelta; y1-=ndelta;
|
|
go_down = false;
|
|
}
|
|
}
|
|
if (!exit_on_anykey && key && key!=(int)cimg::keyESC &&
|
|
(key!=(int)cimg::keyW || (!disp.is_keyCTRLLEFT() && !disp.is_keyCTRLRIGHT()))) {
|
|
disp.set_key(key,false);
|
|
key = 0;
|
|
}
|
|
}
|
|
disp._normalization = old_normalization;
|
|
return *this;
|
|
}
|
|
|
|
//! Save image as a file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param number When positive, represents an index added to the filename. Otherwise, no number is added.
|
|
\param digits Number of digits used for adding the number to the filename.
|
|
\note
|
|
- The used file format is defined by the file extension in the filename \p filename.
|
|
- Parameter \p number can be used to add a 6-digit number to the filename before saving.
|
|
|
|
**/
|
|
const CImg<T>& save(const char *const filename, const int number=-1, const unsigned int digits=6) const {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"save(): Specified filename is (null).",
|
|
cimg_instance);
|
|
// Do not test for empty instances, since .cimg format is able to manage empty instances.
|
|
const bool is_stdout = *filename=='-' && (!filename[1] || filename[1]=='.');
|
|
const char *const ext = cimg::split_filename(filename);
|
|
CImg<charT> nfilename(1024);
|
|
const char *const fn = is_stdout?filename:(number>=0)?cimg::number_filename(filename,number,digits,nfilename):
|
|
filename;
|
|
|
|
#ifdef cimg_save_plugin
|
|
cimg_save_plugin(fn);
|
|
#endif
|
|
#ifdef cimg_save_plugin1
|
|
cimg_save_plugin1(fn);
|
|
#endif
|
|
#ifdef cimg_save_plugin2
|
|
cimg_save_plugin2(fn);
|
|
#endif
|
|
#ifdef cimg_save_plugin3
|
|
cimg_save_plugin3(fn);
|
|
#endif
|
|
#ifdef cimg_save_plugin4
|
|
cimg_save_plugin4(fn);
|
|
#endif
|
|
#ifdef cimg_save_plugin5
|
|
cimg_save_plugin5(fn);
|
|
#endif
|
|
#ifdef cimg_save_plugin6
|
|
cimg_save_plugin6(fn);
|
|
#endif
|
|
#ifdef cimg_save_plugin7
|
|
cimg_save_plugin7(fn);
|
|
#endif
|
|
#ifdef cimg_save_plugin8
|
|
cimg_save_plugin8(fn);
|
|
#endif
|
|
// Text formats
|
|
if (!cimg::strcasecmp(ext,"asc")) return save_ascii(fn);
|
|
else if (!cimg::strcasecmp(ext,"csv") ||
|
|
!cimg::strcasecmp(ext,"dlm") ||
|
|
!cimg::strcasecmp(ext,"txt")) return save_dlm(fn);
|
|
else if (!cimg::strcasecmp(ext,"cpp") ||
|
|
!cimg::strcasecmp(ext,"hpp") ||
|
|
!cimg::strcasecmp(ext,"h") ||
|
|
!cimg::strcasecmp(ext,"c")) return save_cpp(fn);
|
|
|
|
// 2D binary formats
|
|
else if (!cimg::strcasecmp(ext,"bmp")) return save_bmp(fn);
|
|
else if (!cimg::strcasecmp(ext,"jpg") ||
|
|
!cimg::strcasecmp(ext,"jpeg") ||
|
|
!cimg::strcasecmp(ext,"jpe") ||
|
|
!cimg::strcasecmp(ext,"jfif") ||
|
|
!cimg::strcasecmp(ext,"jif")) return save_jpeg(fn);
|
|
else if (!cimg::strcasecmp(ext,"rgb")) return save_rgb(fn);
|
|
else if (!cimg::strcasecmp(ext,"rgba")) return save_rgba(fn);
|
|
else if (!cimg::strcasecmp(ext,"png")) return save_png(fn);
|
|
else if (!cimg::strcasecmp(ext,"pgm") ||
|
|
!cimg::strcasecmp(ext,"ppm") ||
|
|
!cimg::strcasecmp(ext,"pnm")) return save_pnm(fn);
|
|
else if (!cimg::strcasecmp(ext,"pnk")) return save_pnk(fn);
|
|
else if (!cimg::strcasecmp(ext,"pfm")) return save_pfm(fn);
|
|
else if (!cimg::strcasecmp(ext,"exr")) return save_exr(fn);
|
|
else if (!cimg::strcasecmp(ext,"tif") ||
|
|
!cimg::strcasecmp(ext,"tiff")) return save_tiff(fn);
|
|
|
|
// 3D binary formats
|
|
else if (!*ext) {
|
|
#ifdef cimg_use_zlib
|
|
return save_cimg(fn,true);
|
|
#else
|
|
return save_cimg(fn,false);
|
|
#endif
|
|
} else if (!cimg::strcasecmp(ext,"cimgz")) return save_cimg(fn,true);
|
|
else if (!cimg::strcasecmp(ext,"cimg")) return save_cimg(fn,false);
|
|
else if (!cimg::strcasecmp(ext,"dcm")) return save_medcon_external(fn);
|
|
else if (!cimg::strcasecmp(ext,"hdr") ||
|
|
!cimg::strcasecmp(ext,"nii")) return save_analyze(fn);
|
|
else if (!cimg::strcasecmp(ext,"inr")) return save_inr(fn);
|
|
else if (!cimg::strcasecmp(ext,"mnc")) return save_minc2(fn);
|
|
else if (!cimg::strcasecmp(ext,"pan")) return save_pandore(fn);
|
|
else if (!cimg::strcasecmp(ext,"raw")) return save_raw(fn);
|
|
|
|
// Archive files
|
|
else if (!cimg::strcasecmp(ext,"gz")) return save_gzip_external(fn);
|
|
|
|
// Image sequences
|
|
else if (!cimg::strcasecmp(ext,"yuv")) return save_yuv(fn,444,true);
|
|
else if (!cimg::strcasecmp(ext,"avi") ||
|
|
!cimg::strcasecmp(ext,"mov") ||
|
|
!cimg::strcasecmp(ext,"asf") ||
|
|
!cimg::strcasecmp(ext,"divx") ||
|
|
!cimg::strcasecmp(ext,"flv") ||
|
|
!cimg::strcasecmp(ext,"mpg") ||
|
|
!cimg::strcasecmp(ext,"m1v") ||
|
|
!cimg::strcasecmp(ext,"m2v") ||
|
|
!cimg::strcasecmp(ext,"m4v") ||
|
|
!cimg::strcasecmp(ext,"mjp") ||
|
|
!cimg::strcasecmp(ext,"mp4") ||
|
|
!cimg::strcasecmp(ext,"mkv") ||
|
|
!cimg::strcasecmp(ext,"mpe") ||
|
|
!cimg::strcasecmp(ext,"movie") ||
|
|
!cimg::strcasecmp(ext,"ogm") ||
|
|
!cimg::strcasecmp(ext,"ogg") ||
|
|
!cimg::strcasecmp(ext,"ogv") ||
|
|
!cimg::strcasecmp(ext,"qt") ||
|
|
!cimg::strcasecmp(ext,"rm") ||
|
|
!cimg::strcasecmp(ext,"vob") ||
|
|
!cimg::strcasecmp(ext,"webm") ||
|
|
!cimg::strcasecmp(ext,"wmv") ||
|
|
!cimg::strcasecmp(ext,"xvid") ||
|
|
!cimg::strcasecmp(ext,"mpeg")) return save_video(fn);
|
|
return save_other(fn);
|
|
}
|
|
|
|
//! Save image as an ascii file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
**/
|
|
const CImg<T>& save_ascii(const char *const filename) const {
|
|
return _save_ascii(0,filename);
|
|
}
|
|
|
|
//! Save image as an Ascii file \overloading.
|
|
const CImg<T>& save_ascii(std::FILE *const file) const {
|
|
return _save_ascii(file,0);
|
|
}
|
|
|
|
const CImg<T>& _save_ascii(std::FILE *const file, const char *const filename) const {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"save_ascii(): Specified filename is (null).",
|
|
cimg_instance);
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"w");
|
|
std::fprintf(nfile,"%u %u %u %u\n",_width,_height,_depth,_spectrum);
|
|
const T* ptrs = _data;
|
|
cimg_forYZC(*this,y,z,c) {
|
|
cimg_forX(*this,x) std::fprintf(nfile,"%.17g ",(double)*(ptrs++));
|
|
std::fputc('\n',nfile);
|
|
}
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
}
|
|
|
|
//! Save image as a .cpp source file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
**/
|
|
const CImg<T>& save_cpp(const char *const filename) const {
|
|
return _save_cpp(0,filename);
|
|
}
|
|
|
|
//! Save image as a .cpp source file \overloading.
|
|
const CImg<T>& save_cpp(std::FILE *const file) const {
|
|
return _save_cpp(file,0);
|
|
}
|
|
|
|
const CImg<T>& _save_cpp(std::FILE *const file, const char *const filename) const {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"save_cpp(): Specified filename is (null).",
|
|
cimg_instance);
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"w");
|
|
CImg<charT> varname(1024); *varname = 0;
|
|
if (filename) cimg_sscanf(cimg::basename(filename),"%1023[a-zA-Z0-9_]",varname._data);
|
|
if (!*varname) cimg_snprintf(varname,varname._width,"unnamed");
|
|
std::fprintf(nfile,
|
|
"/* Define image '%s' of size %ux%ux%ux%u and type '%s' */\n"
|
|
"%s data_%s[] = { %s\n ",
|
|
varname._data,_width,_height,_depth,_spectrum,pixel_type(),pixel_type(),varname._data,
|
|
is_empty()?"};":"");
|
|
if (!is_empty()) for (ulongT off = 0, siz = size() - 1; off<=siz; ++off) {
|
|
std::fprintf(nfile,cimg::type<T>::format(),cimg::type<T>::format((*this)[off]));
|
|
if (off==siz) std::fprintf(nfile," };\n");
|
|
else if (!((off + 1)%16)) std::fprintf(nfile,",\n ");
|
|
else std::fprintf(nfile,", ");
|
|
}
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
}
|
|
|
|
//! Save image as a DLM file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
**/
|
|
const CImg<T>& save_dlm(const char *const filename) const {
|
|
return _save_dlm(0,filename);
|
|
}
|
|
|
|
//! Save image as a DLM file \overloading.
|
|
const CImg<T>& save_dlm(std::FILE *const file) const {
|
|
return _save_dlm(file,0);
|
|
}
|
|
|
|
const CImg<T>& _save_dlm(std::FILE *const file, const char *const filename) const {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"save_dlm(): Specified filename is (null).",
|
|
cimg_instance);
|
|
if (is_empty()) { cimg::fempty(file,filename); return *this; }
|
|
if (_depth>1)
|
|
cimg::warn(_cimg_instance
|
|
"save_dlm(): Instance is volumetric, values along Z will be unrolled in file '%s'.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)");
|
|
if (_spectrum>1)
|
|
cimg::warn(_cimg_instance
|
|
"save_dlm(): Instance is multispectral, values along C will be unrolled in file '%s'.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)");
|
|
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"w");
|
|
const T* ptrs = _data;
|
|
cimg_forYZC(*this,y,z,c) {
|
|
cimg_forX(*this,x) std::fprintf(nfile,"%.17g%s",(double)*(ptrs++),(x==width() - 1)?"":",");
|
|
std::fputc('\n',nfile);
|
|
}
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
}
|
|
|
|
//! Save image as a BMP file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
**/
|
|
const CImg<T>& save_bmp(const char *const filename) const {
|
|
return _save_bmp(0,filename);
|
|
}
|
|
|
|
//! Save image as a BMP file \overloading.
|
|
const CImg<T>& save_bmp(std::FILE *const file) const {
|
|
return _save_bmp(file,0);
|
|
}
|
|
|
|
const CImg<T>& _save_bmp(std::FILE *const file, const char *const filename) const {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"save_bmp(): Specified filename is (null).",
|
|
cimg_instance);
|
|
if (is_empty()) { cimg::fempty(file,filename); return *this; }
|
|
if (_depth>1)
|
|
cimg::warn(_cimg_instance
|
|
"save_bmp(): Instance is volumetric, only the first slice will be saved in file '%s'.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)");
|
|
if (_spectrum>3)
|
|
cimg::warn(_cimg_instance
|
|
"save_bmp(): Instance is multispectral, only the three first channels will be saved in file '%s'.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)");
|
|
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"wb");
|
|
CImg<ucharT> header(54,1,1,1,0);
|
|
unsigned char align_buf[4] = {};
|
|
const unsigned int
|
|
align = (4 - (3*_width)%4)%4,
|
|
buf_size = (3*_width + align)*height(),
|
|
file_size = 54 + buf_size;
|
|
header[0] = 'B'; header[1] = 'M';
|
|
header[0x02] = file_size&0xFF;
|
|
header[0x03] = (file_size>>8)&0xFF;
|
|
header[0x04] = (file_size>>16)&0xFF;
|
|
header[0x05] = (file_size>>24)&0xFF;
|
|
header[0x0A] = 0x36;
|
|
header[0x0E] = 0x28;
|
|
header[0x12] = _width&0xFF;
|
|
header[0x13] = (_width>>8)&0xFF;
|
|
header[0x14] = (_width>>16)&0xFF;
|
|
header[0x15] = (_width>>24)&0xFF;
|
|
header[0x16] = _height&0xFF;
|
|
header[0x17] = (_height>>8)&0xFF;
|
|
header[0x18] = (_height>>16)&0xFF;
|
|
header[0x19] = (_height>>24)&0xFF;
|
|
header[0x1A] = 1;
|
|
header[0x1B] = 0;
|
|
header[0x1C] = 24;
|
|
header[0x1D] = 0;
|
|
header[0x22] = buf_size&0xFF;
|
|
header[0x23] = (buf_size>>8)&0xFF;
|
|
header[0x24] = (buf_size>>16)&0xFF;
|
|
header[0x25] = (buf_size>>24)&0xFF;
|
|
header[0x27] = 0x1;
|
|
header[0x2B] = 0x1;
|
|
cimg::fwrite(header._data,54,nfile);
|
|
|
|
const T
|
|
*ptr_r = data(0,_height - 1,0,0),
|
|
*ptr_g = (_spectrum>=2)?data(0,_height - 1,0,1):0,
|
|
*ptr_b = (_spectrum>=3)?data(0,_height - 1,0,2):0;
|
|
|
|
switch (_spectrum) {
|
|
case 1 : {
|
|
cimg_forY(*this,y) {
|
|
cimg_forX(*this,x) {
|
|
const unsigned char val = (unsigned char)*(ptr_r++);
|
|
std::fputc(val,nfile); std::fputc(val,nfile); std::fputc(val,nfile);
|
|
}
|
|
cimg::fwrite(align_buf,align,nfile);
|
|
ptr_r-=2*_width;
|
|
}
|
|
} break;
|
|
case 2 : {
|
|
cimg_forY(*this,y) {
|
|
cimg_forX(*this,x) {
|
|
std::fputc(0,nfile);
|
|
std::fputc((unsigned char)(*(ptr_g++)),nfile);
|
|
std::fputc((unsigned char)(*(ptr_r++)),nfile);
|
|
}
|
|
cimg::fwrite(align_buf,align,nfile);
|
|
ptr_r-=2*_width; ptr_g-=2*_width;
|
|
}
|
|
} break;
|
|
default : {
|
|
cimg_forY(*this,y) {
|
|
cimg_forX(*this,x) {
|
|
std::fputc((unsigned char)(*(ptr_b++)),nfile);
|
|
std::fputc((unsigned char)(*(ptr_g++)),nfile);
|
|
std::fputc((unsigned char)(*(ptr_r++)),nfile);
|
|
}
|
|
cimg::fwrite(align_buf,align,nfile);
|
|
ptr_r-=2*_width; ptr_g-=2*_width; ptr_b-=2*_width;
|
|
}
|
|
}
|
|
}
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
}
|
|
|
|
//! Save image as a JPEG file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param quality Image quality (in %)
|
|
**/
|
|
const CImg<T>& save_jpeg(const char *const filename, const unsigned int quality=100) const {
|
|
return _save_jpeg(0,filename,quality);
|
|
}
|
|
|
|
//! Save image as a JPEG file \overloading.
|
|
const CImg<T>& save_jpeg(std::FILE *const file, const unsigned int quality=100) const {
|
|
return _save_jpeg(file,0,quality);
|
|
}
|
|
|
|
const CImg<T>& _save_jpeg(std::FILE *const file, const char *const filename, const unsigned int quality) const {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"save_jpeg(): Specified filename is (null).",
|
|
cimg_instance);
|
|
if (is_empty()) { cimg::fempty(file,filename); return *this; }
|
|
if (_depth>1)
|
|
cimg::warn(_cimg_instance
|
|
"save_jpeg(): Instance is volumetric, only the first slice will be saved in file '%s'.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)");
|
|
|
|
#ifndef cimg_use_jpeg
|
|
if (!file) return save_other(filename,quality);
|
|
else throw CImgIOException(_cimg_instance
|
|
"save_jpeg(): Unable to save data in '(*FILE)' unless libjpeg is enabled.",
|
|
cimg_instance);
|
|
#else
|
|
unsigned int dimbuf = 0;
|
|
J_COLOR_SPACE colortype = JCS_RGB;
|
|
|
|
switch (_spectrum) {
|
|
case 1 : dimbuf = 1; colortype = JCS_GRAYSCALE; break;
|
|
case 2 : dimbuf = 3; colortype = JCS_RGB; break;
|
|
case 3 : dimbuf = 3; colortype = JCS_RGB; break;
|
|
default : dimbuf = 4; colortype = JCS_CMYK; break;
|
|
}
|
|
|
|
// Call libjpeg functions
|
|
struct jpeg_compress_struct cinfo;
|
|
struct jpeg_error_mgr jerr;
|
|
cinfo.err = jpeg_std_error(&jerr);
|
|
jpeg_create_compress(&cinfo);
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"wb");
|
|
jpeg_stdio_dest(&cinfo,nfile);
|
|
cinfo.image_width = _width;
|
|
cinfo.image_height = _height;
|
|
cinfo.input_components = dimbuf;
|
|
cinfo.in_color_space = colortype;
|
|
jpeg_set_defaults(&cinfo);
|
|
jpeg_set_quality(&cinfo,quality<100?quality:100,TRUE);
|
|
jpeg_start_compress(&cinfo,TRUE);
|
|
|
|
JSAMPROW row_pointer[1];
|
|
CImg<ucharT> buffer(_width*dimbuf);
|
|
|
|
while (cinfo.next_scanline<cinfo.image_height) {
|
|
unsigned char *ptrd = buffer._data;
|
|
|
|
// Fill pixel buffer
|
|
switch (_spectrum) {
|
|
case 1 : { // Greyscale images
|
|
const T *ptr_g = data(0, cinfo.next_scanline);
|
|
for (unsigned int b = 0; b<cinfo.image_width; b++)
|
|
*(ptrd++) = (unsigned char)*(ptr_g++);
|
|
} break;
|
|
case 2 : { // RG images
|
|
const T *ptr_r = data(0,cinfo.next_scanline,0,0),
|
|
*ptr_g = data(0,cinfo.next_scanline,0,1);
|
|
for (unsigned int b = 0; b<cinfo.image_width; ++b) {
|
|
*(ptrd++) = (unsigned char)*(ptr_r++);
|
|
*(ptrd++) = (unsigned char)*(ptr_g++);
|
|
*(ptrd++) = 0;
|
|
}
|
|
} break;
|
|
case 3 : { // RGB images
|
|
const T *ptr_r = data(0,cinfo.next_scanline,0,0),
|
|
*ptr_g = data(0,cinfo.next_scanline,0,1),
|
|
*ptr_b = data(0,cinfo.next_scanline,0,2);
|
|
for (unsigned int b = 0; b<cinfo.image_width; ++b) {
|
|
*(ptrd++) = (unsigned char)*(ptr_r++);
|
|
*(ptrd++) = (unsigned char)*(ptr_g++);
|
|
*(ptrd++) = (unsigned char)*(ptr_b++);
|
|
}
|
|
} break;
|
|
default : { // CMYK images
|
|
const T *ptr_r = data(0,cinfo.next_scanline,0,0),
|
|
*ptr_g = data(0,cinfo.next_scanline,0,1),
|
|
*ptr_b = data(0,cinfo.next_scanline,0,2),
|
|
*ptr_a = data(0,cinfo.next_scanline,0,3);
|
|
for (unsigned int b = 0; b<cinfo.image_width; ++b) {
|
|
*(ptrd++) = (unsigned char)*(ptr_r++);
|
|
*(ptrd++) = (unsigned char)*(ptr_g++);
|
|
*(ptrd++) = (unsigned char)*(ptr_b++);
|
|
*(ptrd++) = (unsigned char)*(ptr_a++);
|
|
}
|
|
}
|
|
}
|
|
*row_pointer = buffer._data;
|
|
jpeg_write_scanlines(&cinfo,row_pointer,1);
|
|
}
|
|
jpeg_finish_compress(&cinfo);
|
|
if (!file) cimg::fclose(nfile);
|
|
jpeg_destroy_compress(&cinfo);
|
|
return *this;
|
|
#endif
|
|
}
|
|
|
|
//! Save image, using built-in ImageMagick++ library.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param bytes_per_pixel Force the number of bytes per pixel for the saving, when possible.
|
|
**/
|
|
const CImg<T>& save_magick(const char *const filename, const unsigned int bytes_per_pixel=0) const {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"save_magick(): Specified filename is (null).",
|
|
cimg_instance);
|
|
if (is_empty()) { cimg::fempty(0,filename); return *this; }
|
|
|
|
#ifdef cimg_use_magick
|
|
double stmin, stmax = (double)max_min(stmin);
|
|
if (_depth>1)
|
|
cimg::warn(_cimg_instance
|
|
"save_magick(): Instance is volumetric, only the first slice will be saved in file '%s'.",
|
|
cimg_instance,
|
|
filename);
|
|
|
|
if (_spectrum>3)
|
|
cimg::warn(_cimg_instance
|
|
"save_magick(): Instance is multispectral, only the three first channels will be "
|
|
"saved in file '%s'.",
|
|
cimg_instance,
|
|
filename);
|
|
|
|
if (stmin<0 || (bytes_per_pixel==1 && stmax>=256) || stmax>=65536)
|
|
cimg::warn(_cimg_instance
|
|
"save_magick(): Instance has pixel values in [%g,%g], probable type overflow in file '%s'.",
|
|
cimg_instance,
|
|
stmin,stmax,filename);
|
|
|
|
Magick::Image image(Magick::Geometry(_width,_height),"black");
|
|
image.type(Magick::TrueColorType);
|
|
image.depth(bytes_per_pixel?(8*bytes_per_pixel):(stmax>=256?16:8));
|
|
const T
|
|
*ptr_r = data(0,0,0,0),
|
|
*ptr_g = _spectrum>1?data(0,0,0,1):0,
|
|
*ptr_b = _spectrum>2?data(0,0,0,2):0;
|
|
Magick::PixelPacket *pixels = image.getPixels(0,0,_width,_height);
|
|
switch (_spectrum) {
|
|
case 1 : // Scalar images
|
|
for (ulongT off = (ulongT)_width*_height; off; --off) {
|
|
pixels->red = pixels->green = pixels->blue = (Magick::Quantum)*(ptr_r++);
|
|
++pixels;
|
|
}
|
|
break;
|
|
case 2 : // RG images
|
|
for (ulongT off = (ulongT)_width*_height; off; --off) {
|
|
pixels->red = (Magick::Quantum)*(ptr_r++);
|
|
pixels->green = (Magick::Quantum)*(ptr_g++);
|
|
pixels->blue = 0; ++pixels;
|
|
}
|
|
break;
|
|
default : // RGB images
|
|
for (ulongT off = (ulongT)_width*_height; off; --off) {
|
|
pixels->red = (Magick::Quantum)*(ptr_r++);
|
|
pixels->green = (Magick::Quantum)*(ptr_g++);
|
|
pixels->blue = (Magick::Quantum)*(ptr_b++);
|
|
++pixels;
|
|
}
|
|
}
|
|
image.syncPixels();
|
|
image.write(filename);
|
|
return *this;
|
|
#else
|
|
cimg::unused(bytes_per_pixel);
|
|
throw CImgIOException(_cimg_instance
|
|
"save_magick(): Unable to save file '%s' unless libMagick++ is enabled.",
|
|
cimg_instance,
|
|
filename);
|
|
#endif
|
|
}
|
|
|
|
//! Save image as a PNG file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param bytes_per_pixel Force the number of bytes per pixels for the saving, when possible.
|
|
**/
|
|
const CImg<T>& save_png(const char *const filename, const unsigned int bytes_per_pixel=0) const {
|
|
return _save_png(0,filename,bytes_per_pixel);
|
|
}
|
|
|
|
//! Save image as a PNG file \overloading.
|
|
const CImg<T>& save_png(std::FILE *const file, const unsigned int bytes_per_pixel=0) const {
|
|
return _save_png(file,0,bytes_per_pixel);
|
|
}
|
|
|
|
const CImg<T>& _save_png(std::FILE *const file, const char *const filename,
|
|
const unsigned int bytes_per_pixel=0) const {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"save_png(): Specified filename is (null).",
|
|
cimg_instance);
|
|
if (is_empty()) { cimg::fempty(file,filename); return *this; }
|
|
|
|
#ifndef cimg_use_png
|
|
cimg::unused(bytes_per_pixel);
|
|
if (!file) return save_other(filename);
|
|
else throw CImgIOException(_cimg_instance
|
|
"save_png(): Unable to save data in '(*FILE)' unless libpng is enabled.",
|
|
cimg_instance);
|
|
#else
|
|
|
|
#if defined __GNUC__
|
|
const char *volatile nfilename = filename; // Use 'volatile' to avoid (wrong) g++ warning
|
|
std::FILE *volatile nfile = file?file:cimg::fopen(nfilename,"wb");
|
|
volatile double stmin, stmax = (double)max_min(stmin);
|
|
#else
|
|
const char *nfilename = filename;
|
|
std::FILE *nfile = file?file:cimg::fopen(nfilename,"wb");
|
|
double stmin, stmax = (double)max_min(stmin);
|
|
#endif
|
|
|
|
if (_depth>1)
|
|
cimg::warn(_cimg_instance
|
|
"save_png(): Instance is volumetric, only the first slice will be saved in file '%s'.",
|
|
cimg_instance,
|
|
filename);
|
|
|
|
if (_spectrum>4)
|
|
cimg::warn(_cimg_instance
|
|
"save_png(): Instance is multispectral, only the three first channels will be saved in file '%s'.",
|
|
cimg_instance,
|
|
filename);
|
|
|
|
if (stmin<0 || (bytes_per_pixel==1 && stmax>=256) || stmax>=65536)
|
|
cimg::warn(_cimg_instance
|
|
"save_png(): Instance has pixel values in [%g,%g], probable type overflow in file '%s'.",
|
|
cimg_instance,
|
|
stmin,stmax,filename);
|
|
|
|
// Setup PNG structures for write
|
|
png_voidp user_error_ptr = 0;
|
|
png_error_ptr user_error_fn = 0, user_warning_fn = 0;
|
|
png_structp png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING,user_error_ptr, user_error_fn,
|
|
user_warning_fn);
|
|
if (!png_ptr){
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimg_instance
|
|
"save_png(): Failed to initialize 'png_ptr' structure when saving file '%s'.",
|
|
cimg_instance,
|
|
nfilename?nfilename:"(FILE*)");
|
|
}
|
|
png_infop info_ptr = png_create_info_struct(png_ptr);
|
|
if (!info_ptr) {
|
|
png_destroy_write_struct(&png_ptr,(png_infopp)0);
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimg_instance
|
|
"save_png(): Failed to initialize 'info_ptr' structure when saving file '%s'.",
|
|
cimg_instance,
|
|
nfilename?nfilename:"(FILE*)");
|
|
}
|
|
if (setjmp(png_jmpbuf(png_ptr))) {
|
|
png_destroy_write_struct(&png_ptr, &info_ptr);
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimg_instance
|
|
"save_png(): Encountered unknown fatal error in libpng when saving file '%s'.",
|
|
cimg_instance,
|
|
nfilename?nfilename:"(FILE*)");
|
|
}
|
|
png_init_io(png_ptr, nfile);
|
|
|
|
const int bit_depth = bytes_per_pixel?(bytes_per_pixel*8):(stmax>=256?16:8);
|
|
|
|
int color_type;
|
|
switch (spectrum()) {
|
|
case 1 : color_type = PNG_COLOR_TYPE_GRAY; break;
|
|
case 2 : color_type = PNG_COLOR_TYPE_GRAY_ALPHA; break;
|
|
case 3 : color_type = PNG_COLOR_TYPE_RGB; break;
|
|
default : color_type = PNG_COLOR_TYPE_RGB_ALPHA;
|
|
}
|
|
const int interlace_type = PNG_INTERLACE_NONE;
|
|
const int compression_type = PNG_COMPRESSION_TYPE_DEFAULT;
|
|
const int filter_method = PNG_FILTER_TYPE_DEFAULT;
|
|
png_set_IHDR(png_ptr,info_ptr,_width,_height,bit_depth,color_type,interlace_type,compression_type,filter_method);
|
|
png_write_info(png_ptr,info_ptr);
|
|
const int byte_depth = bit_depth>>3;
|
|
const int numChan = spectrum()>4?4:spectrum();
|
|
const int pixel_bit_depth_flag = numChan * (bit_depth - 1);
|
|
|
|
// Allocate Memory for Image Save and Fill pixel data
|
|
png_bytep *const imgData = new png_byte*[_height];
|
|
for (unsigned int row = 0; row<_height; ++row) imgData[row] = new png_byte[byte_depth*numChan*_width];
|
|
const T *pC0 = data(0,0,0,0);
|
|
switch (pixel_bit_depth_flag) {
|
|
case 7 : { // Gray 8-bit
|
|
cimg_forY(*this,y) {
|
|
unsigned char *ptrd = imgData[y];
|
|
cimg_forX(*this,x) *(ptrd++) = (unsigned char)*(pC0++);
|
|
}
|
|
} break;
|
|
case 14 : { // Gray w/ Alpha 8-bit
|
|
const T *pC1 = data(0,0,0,1);
|
|
cimg_forY(*this,y) {
|
|
unsigned char *ptrd = imgData[y];
|
|
cimg_forX(*this,x) {
|
|
*(ptrd++) = (unsigned char)*(pC0++);
|
|
*(ptrd++) = (unsigned char)*(pC1++);
|
|
}
|
|
}
|
|
} break;
|
|
case 21 : { // RGB 8-bit
|
|
const T *pC1 = data(0,0,0,1), *pC2 = data(0,0,0,2);
|
|
cimg_forY(*this,y) {
|
|
unsigned char *ptrd = imgData[y];
|
|
cimg_forX(*this,x) {
|
|
*(ptrd++) = (unsigned char)*(pC0++);
|
|
*(ptrd++) = (unsigned char)*(pC1++);
|
|
*(ptrd++) = (unsigned char)*(pC2++);
|
|
}
|
|
}
|
|
} break;
|
|
case 28 : { // RGB x/ Alpha 8-bit
|
|
const T *pC1 = data(0,0,0,1), *pC2 = data(0,0,0,2), *pC3 = data(0,0,0,3);
|
|
cimg_forY(*this,y){
|
|
unsigned char *ptrd = imgData[y];
|
|
cimg_forX(*this,x){
|
|
*(ptrd++) = (unsigned char)*(pC0++);
|
|
*(ptrd++) = (unsigned char)*(pC1++);
|
|
*(ptrd++) = (unsigned char)*(pC2++);
|
|
*(ptrd++) = (unsigned char)*(pC3++);
|
|
}
|
|
}
|
|
} break;
|
|
case 15 : { // Gray 16-bit
|
|
cimg_forY(*this,y){
|
|
unsigned short *ptrd = (unsigned short*)(imgData[y]);
|
|
cimg_forX(*this,x) *(ptrd++) = (unsigned short)*(pC0++);
|
|
if (!cimg::endianness()) cimg::invert_endianness((unsigned short*)imgData[y],_width);
|
|
}
|
|
} break;
|
|
case 30 : { // Gray w/ Alpha 16-bit
|
|
const T *pC1 = data(0,0,0,1);
|
|
cimg_forY(*this,y){
|
|
unsigned short *ptrd = (unsigned short*)(imgData[y]);
|
|
cimg_forX(*this,x) {
|
|
*(ptrd++) = (unsigned short)*(pC0++);
|
|
*(ptrd++) = (unsigned short)*(pC1++);
|
|
}
|
|
if (!cimg::endianness()) cimg::invert_endianness((unsigned short*)imgData[y],2*_width);
|
|
}
|
|
} break;
|
|
case 45 : { // RGB 16-bit
|
|
const T *pC1 = data(0,0,0,1), *pC2 = data(0,0,0,2);
|
|
cimg_forY(*this,y) {
|
|
unsigned short *ptrd = (unsigned short*)(imgData[y]);
|
|
cimg_forX(*this,x) {
|
|
*(ptrd++) = (unsigned short)*(pC0++);
|
|
*(ptrd++) = (unsigned short)*(pC1++);
|
|
*(ptrd++) = (unsigned short)*(pC2++);
|
|
}
|
|
if (!cimg::endianness()) cimg::invert_endianness((unsigned short*)imgData[y],3*_width);
|
|
}
|
|
} break;
|
|
case 60 : { // RGB w/ Alpha 16-bit
|
|
const T *pC1 = data(0,0,0,1), *pC2 = data(0,0,0,2), *pC3 = data(0,0,0,3);
|
|
cimg_forY(*this,y) {
|
|
unsigned short *ptrd = (unsigned short*)(imgData[y]);
|
|
cimg_forX(*this,x) {
|
|
*(ptrd++) = (unsigned short)*(pC0++);
|
|
*(ptrd++) = (unsigned short)*(pC1++);
|
|
*(ptrd++) = (unsigned short)*(pC2++);
|
|
*(ptrd++) = (unsigned short)*(pC3++);
|
|
}
|
|
if (!cimg::endianness()) cimg::invert_endianness((unsigned short*)imgData[y],4*_width);
|
|
}
|
|
} break;
|
|
default :
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimg_instance
|
|
"save_png(): Encountered unknown fatal error in libpng when saving file '%s'.",
|
|
cimg_instance,
|
|
nfilename?nfilename:"(FILE*)");
|
|
}
|
|
png_write_image(png_ptr,imgData);
|
|
png_write_end(png_ptr,info_ptr);
|
|
png_destroy_write_struct(&png_ptr, &info_ptr);
|
|
|
|
// Deallocate Image Write Memory
|
|
cimg_forY(*this,n) delete[] imgData[n];
|
|
delete[] imgData;
|
|
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
#endif
|
|
}
|
|
|
|
//! Save image as a PNM file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param bytes_per_pixel Force the number of bytes per pixels for the saving.
|
|
**/
|
|
const CImg<T>& save_pnm(const char *const filename, const unsigned int bytes_per_pixel=0) const {
|
|
return _save_pnm(0,filename,bytes_per_pixel);
|
|
}
|
|
|
|
//! Save image as a PNM file \overloading.
|
|
const CImg<T>& save_pnm(std::FILE *const file, const unsigned int bytes_per_pixel=0) const {
|
|
return _save_pnm(file,0,bytes_per_pixel);
|
|
}
|
|
|
|
const CImg<T>& _save_pnm(std::FILE *const file, const char *const filename,
|
|
const unsigned int bytes_per_pixel=0) const {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"save_pnm(): Specified filename is (null).",
|
|
cimg_instance);
|
|
if (is_empty()) { cimg::fempty(file,filename); return *this; }
|
|
|
|
double stmin, stmax = (double)max_min(stmin);
|
|
if (_depth>1)
|
|
cimg::warn(_cimg_instance
|
|
"save_pnm(): Instance is volumetric, only the first slice will be saved in file '%s'.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)");
|
|
if (_spectrum>3)
|
|
cimg::warn(_cimg_instance
|
|
"save_pnm(): Instance is multispectral, only the three first channels will be saved in file '%s'.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)");
|
|
if (stmin<0 || (bytes_per_pixel==1 && stmax>=256) || stmax>=65536)
|
|
cimg::warn(_cimg_instance
|
|
"save_pnm(): Instance has pixel values in [%g,%g], probable type overflow in file '%s'.",
|
|
cimg_instance,
|
|
stmin,stmax,filename?filename:"(FILE*)");
|
|
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"wb");
|
|
const T
|
|
*ptr_r = data(0,0,0,0),
|
|
*ptr_g = (_spectrum>=2)?data(0,0,0,1):0,
|
|
*ptr_b = (_spectrum>=3)?data(0,0,0,2):0;
|
|
const ulongT buf_size = std::min((ulongT)(1024*1024),(ulongT)(_width*_height*(_spectrum==1?1UL:3UL)));
|
|
|
|
std::fprintf(nfile,"P%c\n%u %u\n%u\n",
|
|
(_spectrum==1?'5':'6'),_width,_height,stmax<256?255:(stmax<4096?4095:65535));
|
|
|
|
switch (_spectrum) {
|
|
case 1 : { // Scalar image
|
|
if (bytes_per_pixel==1 || (!bytes_per_pixel && stmax<256)) { // Binary PGM 8 bits
|
|
CImg<ucharT> buf((unsigned int)buf_size);
|
|
for (longT to_write = (longT)width()*height(); to_write>0; ) {
|
|
const ulongT N = std::min((ulongT)to_write,buf_size);
|
|
unsigned char *ptrd = buf._data;
|
|
for (ulongT i = N; i>0; --i) *(ptrd++) = (unsigned char)*(ptr_r++);
|
|
cimg::fwrite(buf._data,N,nfile);
|
|
to_write-=N;
|
|
}
|
|
} else { // Binary PGM 16 bits
|
|
CImg<ushortT> buf((unsigned int)buf_size);
|
|
for (longT to_write = (longT)width()*height(); to_write>0; ) {
|
|
const ulongT N = std::min((ulongT)to_write,buf_size);
|
|
unsigned short *ptrd = buf._data;
|
|
for (ulongT i = N; i>0; --i) *(ptrd++) = (unsigned short)*(ptr_r++);
|
|
if (!cimg::endianness()) cimg::invert_endianness(buf._data,buf_size);
|
|
cimg::fwrite(buf._data,N,nfile);
|
|
to_write-=N;
|
|
}
|
|
}
|
|
} break;
|
|
case 2 : { // RG image
|
|
if (bytes_per_pixel==1 || (!bytes_per_pixel && stmax<256)) { // Binary PPM 8 bits
|
|
CImg<ucharT> buf((unsigned int)buf_size);
|
|
for (longT to_write = (longT)width()*height(); to_write>0; ) {
|
|
const ulongT N = std::min((ulongT)to_write,buf_size/3);
|
|
unsigned char *ptrd = buf._data;
|
|
for (ulongT i = N; i>0; --i) {
|
|
*(ptrd++) = (unsigned char)*(ptr_r++);
|
|
*(ptrd++) = (unsigned char)*(ptr_g++);
|
|
*(ptrd++) = 0;
|
|
}
|
|
cimg::fwrite(buf._data,3*N,nfile);
|
|
to_write-=N;
|
|
}
|
|
} else { // Binary PPM 16 bits
|
|
CImg<ushortT> buf((unsigned int)buf_size);
|
|
for (longT to_write = (longT)width()*height(); to_write>0; ) {
|
|
const ulongT N = std::min((ulongT)to_write,buf_size/3);
|
|
unsigned short *ptrd = buf._data;
|
|
for (ulongT i = N; i>0; --i) {
|
|
*(ptrd++) = (unsigned short)*(ptr_r++);
|
|
*(ptrd++) = (unsigned short)*(ptr_g++);
|
|
*(ptrd++) = 0;
|
|
}
|
|
if (!cimg::endianness()) cimg::invert_endianness(buf._data,buf_size);
|
|
cimg::fwrite(buf._data,3*N,nfile);
|
|
to_write-=N;
|
|
}
|
|
}
|
|
} break;
|
|
default : { // RGB image
|
|
if (bytes_per_pixel==1 || (!bytes_per_pixel && stmax<256)) { // Binary PPM 8 bits
|
|
CImg<ucharT> buf((unsigned int)buf_size);
|
|
for (longT to_write = (longT)width()*height(); to_write>0; ) {
|
|
const ulongT N = std::min((ulongT)to_write,buf_size/3);
|
|
unsigned char *ptrd = buf._data;
|
|
for (ulongT i = N; i>0; --i) {
|
|
*(ptrd++) = (unsigned char)*(ptr_r++);
|
|
*(ptrd++) = (unsigned char)*(ptr_g++);
|
|
*(ptrd++) = (unsigned char)*(ptr_b++);
|
|
}
|
|
cimg::fwrite(buf._data,3*N,nfile);
|
|
to_write-=N;
|
|
}
|
|
} else { // Binary PPM 16 bits
|
|
CImg<ushortT> buf((unsigned int)buf_size);
|
|
for (longT to_write = (longT)width()*height(); to_write>0; ) {
|
|
const ulongT N = std::min((ulongT)to_write,buf_size/3);
|
|
unsigned short *ptrd = buf._data;
|
|
for (ulongT i = N; i>0; --i) {
|
|
*(ptrd++) = (unsigned short)*(ptr_r++);
|
|
*(ptrd++) = (unsigned short)*(ptr_g++);
|
|
*(ptrd++) = (unsigned short)*(ptr_b++);
|
|
}
|
|
if (!cimg::endianness()) cimg::invert_endianness(buf._data,buf_size);
|
|
cimg::fwrite(buf._data,3*N,nfile);
|
|
to_write-=N;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
}
|
|
|
|
//! Save image as a PNK file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
**/
|
|
const CImg<T>& save_pnk(const char *const filename) const {
|
|
return _save_pnk(0,filename);
|
|
}
|
|
|
|
//! Save image as a PNK file \overloading.
|
|
const CImg<T>& save_pnk(std::FILE *const file) const {
|
|
return _save_pnk(file,0);
|
|
}
|
|
|
|
const CImg<T>& _save_pnk(std::FILE *const file, const char *const filename) const {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"save_pnk(): Specified filename is (null).",
|
|
cimg_instance);
|
|
if (is_empty()) { cimg::fempty(file,filename); return *this; }
|
|
if (_spectrum>1)
|
|
cimg::warn(_cimg_instance
|
|
"save_pnk(): Instance is multispectral, only the first channel will be saved in file '%s'.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)");
|
|
|
|
const ulongT buf_size = std::min((ulongT)1024*1024,(ulongT)_width*_height*_depth);
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"wb");
|
|
const T *ptr = data(0,0,0,0);
|
|
|
|
if (!cimg::type<T>::is_float() && sizeof(T)==1 && _depth<2) // Can be saved as regular PNM file
|
|
_save_pnm(file,filename,0);
|
|
else if (!cimg::type<T>::is_float() && sizeof(T)==1) { // Save as extended P5 file: Binary byte-valued 3D
|
|
std::fprintf(nfile,"P5\n%u %u %u\n255\n",_width,_height,_depth);
|
|
CImg<ucharT> buf((unsigned int)buf_size);
|
|
for (longT to_write = (longT)width()*height()*depth(); to_write>0; ) {
|
|
const ulongT N = std::min((ulongT)to_write,buf_size);
|
|
unsigned char *ptrd = buf._data;
|
|
for (ulongT i = N; i>0; --i) *(ptrd++) = (unsigned char)*(ptr++);
|
|
cimg::fwrite(buf._data,N,nfile);
|
|
to_write-=N;
|
|
}
|
|
} else if (!cimg::type<T>::is_float()) { // Save as P8: Binary int32-valued 3D
|
|
if (_depth>1) std::fprintf(nfile,"P8\n%u %u %u\n%d\n",_width,_height,_depth,(int)max());
|
|
else std::fprintf(nfile,"P8\n%u %u\n%d\n",_width,_height,(int)max());
|
|
CImg<intT> buf((unsigned int)buf_size);
|
|
for (longT to_write = (longT)width()*height()*depth(); to_write>0; ) {
|
|
const ulongT N = std::min((ulongT)to_write,buf_size);
|
|
int *ptrd = buf._data;
|
|
for (ulongT i = N; i>0; --i) *(ptrd++) = (int)*(ptr++);
|
|
cimg::fwrite(buf._data,N,nfile);
|
|
to_write-=N;
|
|
}
|
|
} else { // Save as P9: Binary float-valued 3D
|
|
if (_depth>1) std::fprintf(nfile,"P9\n%u %u %u\n%g\n",_width,_height,_depth,(double)max());
|
|
else std::fprintf(nfile,"P9\n%u %u\n%g\n",_width,_height,(double)max());
|
|
CImg<floatT> buf((unsigned int)buf_size);
|
|
for (longT to_write = (longT)width()*height()*depth(); to_write>0; ) {
|
|
const ulongT N = std::min((ulongT)to_write,buf_size);
|
|
float *ptrd = buf._data;
|
|
for (ulongT i = N; i>0; --i) *(ptrd++) = (float)*(ptr++);
|
|
cimg::fwrite(buf._data,N,nfile);
|
|
to_write-=N;
|
|
}
|
|
}
|
|
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
}
|
|
|
|
//! Save image as a PFM file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
**/
|
|
const CImg<T>& save_pfm(const char *const filename) const {
|
|
get_mirror('y')._save_pfm(0,filename);
|
|
return *this;
|
|
}
|
|
|
|
//! Save image as a PFM file \overloading.
|
|
const CImg<T>& save_pfm(std::FILE *const file) const {
|
|
get_mirror('y')._save_pfm(file,0);
|
|
return *this;
|
|
}
|
|
|
|
const CImg<T>& _save_pfm(std::FILE *const file, const char *const filename) const {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"save_pfm(): Specified filename is (null).",
|
|
cimg_instance);
|
|
if (is_empty()) { cimg::fempty(file,filename); return *this; }
|
|
if (_depth>1)
|
|
cimg::warn(_cimg_instance
|
|
"save_pfm(): Instance is volumetric, only the first slice will be saved in file '%s'.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)");
|
|
if (_spectrum>3)
|
|
cimg::warn(_cimg_instance
|
|
"save_pfm(): image instance is multispectral, only the three first channels will be saved "
|
|
"in file '%s'.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)");
|
|
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"wb");
|
|
const T
|
|
*ptr_r = data(0,0,0,0),
|
|
*ptr_g = (_spectrum>=2)?data(0,0,0,1):0,
|
|
*ptr_b = (_spectrum>=3)?data(0,0,0,2):0;
|
|
const unsigned int buf_size = std::min(1024*1024U,_width*_height*(_spectrum==1?1:3));
|
|
|
|
std::fprintf(nfile,"P%c\n%u %u\n1.0\n",
|
|
(_spectrum==1?'f':'F'),_width,_height);
|
|
|
|
switch (_spectrum) {
|
|
case 1 : { // Scalar image
|
|
CImg<floatT> buf(buf_size);
|
|
for (longT to_write = (longT)width()*height(); to_write>0; ) {
|
|
const ulongT N = std::min((ulongT)to_write,(ulongT)buf_size);
|
|
float *ptrd = buf._data;
|
|
for (ulongT i = N; i>0; --i) *(ptrd++) = (float)*(ptr_r++);
|
|
if (!cimg::endianness()) cimg::invert_endianness(buf._data,buf_size);
|
|
cimg::fwrite(buf._data,N,nfile);
|
|
to_write-=N;
|
|
}
|
|
} break;
|
|
case 2 : { // RG image
|
|
CImg<floatT> buf(buf_size);
|
|
for (longT to_write = (longT)width()*height(); to_write>0; ) {
|
|
const unsigned int N = std::min((unsigned int)to_write,buf_size/3);
|
|
float *ptrd = buf._data;
|
|
for (ulongT i = N; i>0; --i) {
|
|
*(ptrd++) = (float)*(ptr_r++);
|
|
*(ptrd++) = (float)*(ptr_g++);
|
|
*(ptrd++) = 0;
|
|
}
|
|
if (!cimg::endianness()) cimg::invert_endianness(buf._data,buf_size);
|
|
cimg::fwrite(buf._data,3*N,nfile);
|
|
to_write-=N;
|
|
}
|
|
} break;
|
|
default : { // RGB image
|
|
CImg<floatT> buf(buf_size);
|
|
for (longT to_write = (longT)width()*height(); to_write>0; ) {
|
|
const unsigned int N = std::min((unsigned int)to_write,buf_size/3);
|
|
float *ptrd = buf._data;
|
|
for (ulongT i = N; i>0; --i) {
|
|
*(ptrd++) = (float)*(ptr_r++);
|
|
*(ptrd++) = (float)*(ptr_g++);
|
|
*(ptrd++) = (float)*(ptr_b++);
|
|
}
|
|
if (!cimg::endianness()) cimg::invert_endianness(buf._data,buf_size);
|
|
cimg::fwrite(buf._data,3*N,nfile);
|
|
to_write-=N;
|
|
}
|
|
}
|
|
}
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
}
|
|
|
|
//! Save image as a RGB file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
**/
|
|
const CImg<T>& save_rgb(const char *const filename) const {
|
|
return _save_rgb(0,filename);
|
|
}
|
|
|
|
//! Save image as a RGB file \overloading.
|
|
const CImg<T>& save_rgb(std::FILE *const file) const {
|
|
return _save_rgb(file,0);
|
|
}
|
|
|
|
const CImg<T>& _save_rgb(std::FILE *const file, const char *const filename) const {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"save_rgb(): Specified filename is (null).",
|
|
cimg_instance);
|
|
if (is_empty()) { cimg::fempty(file,filename); return *this; }
|
|
if (_spectrum!=3)
|
|
cimg::warn(_cimg_instance
|
|
"save_rgb(): image instance has not exactly 3 channels, for file '%s'.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)");
|
|
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"wb");
|
|
const ulongT wh = (ulongT)_width*_height;
|
|
unsigned char *const buffer = new unsigned char[3*wh], *nbuffer = buffer;
|
|
const T
|
|
*ptr1 = data(0,0,0,0),
|
|
*ptr2 = _spectrum>1?data(0,0,0,1):0,
|
|
*ptr3 = _spectrum>2?data(0,0,0,2):0;
|
|
switch (_spectrum) {
|
|
case 1 : { // Scalar image
|
|
for (ulongT k = 0; k<wh; ++k) {
|
|
const unsigned char val = (unsigned char)*(ptr1++);
|
|
*(nbuffer++) = val;
|
|
*(nbuffer++) = val;
|
|
*(nbuffer++) = val;
|
|
}
|
|
} break;
|
|
case 2 : { // RG image
|
|
for (ulongT k = 0; k<wh; ++k) {
|
|
*(nbuffer++) = (unsigned char)(*(ptr1++));
|
|
*(nbuffer++) = (unsigned char)(*(ptr2++));
|
|
*(nbuffer++) = 0;
|
|
}
|
|
} break;
|
|
default : { // RGB image
|
|
for (ulongT k = 0; k<wh; ++k) {
|
|
*(nbuffer++) = (unsigned char)(*(ptr1++));
|
|
*(nbuffer++) = (unsigned char)(*(ptr2++));
|
|
*(nbuffer++) = (unsigned char)(*(ptr3++));
|
|
}
|
|
}
|
|
}
|
|
cimg::fwrite(buffer,3*wh,nfile);
|
|
if (!file) cimg::fclose(nfile);
|
|
delete[] buffer;
|
|
return *this;
|
|
}
|
|
|
|
//! Save image as a RGBA file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
**/
|
|
const CImg<T>& save_rgba(const char *const filename) const {
|
|
return _save_rgba(0,filename);
|
|
}
|
|
|
|
//! Save image as a RGBA file \overloading.
|
|
const CImg<T>& save_rgba(std::FILE *const file) const {
|
|
return _save_rgba(file,0);
|
|
}
|
|
|
|
const CImg<T>& _save_rgba(std::FILE *const file, const char *const filename) const {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"save_rgba(): Specified filename is (null).",
|
|
cimg_instance);
|
|
if (is_empty()) { cimg::fempty(file,filename); return *this; }
|
|
if (_spectrum!=4)
|
|
cimg::warn(_cimg_instance
|
|
"save_rgba(): image instance has not exactly 4 channels, for file '%s'.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)");
|
|
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"wb");
|
|
const ulongT wh = (ulongT)_width*_height;
|
|
unsigned char *const buffer = new unsigned char[4*wh], *nbuffer = buffer;
|
|
const T
|
|
*ptr1 = data(0,0,0,0),
|
|
*ptr2 = _spectrum>1?data(0,0,0,1):0,
|
|
*ptr3 = _spectrum>2?data(0,0,0,2):0,
|
|
*ptr4 = _spectrum>3?data(0,0,0,3):0;
|
|
switch (_spectrum) {
|
|
case 1 : { // Scalar images
|
|
for (ulongT k = 0; k<wh; ++k) {
|
|
const unsigned char val = (unsigned char)*(ptr1++);
|
|
*(nbuffer++) = val;
|
|
*(nbuffer++) = val;
|
|
*(nbuffer++) = val;
|
|
*(nbuffer++) = 255;
|
|
}
|
|
} break;
|
|
case 2 : { // RG images
|
|
for (ulongT k = 0; k<wh; ++k) {
|
|
*(nbuffer++) = (unsigned char)(*(ptr1++));
|
|
*(nbuffer++) = (unsigned char)(*(ptr2++));
|
|
*(nbuffer++) = 0;
|
|
*(nbuffer++) = 255;
|
|
}
|
|
} break;
|
|
case 3 : { // RGB images
|
|
for (ulongT k = 0; k<wh; ++k) {
|
|
*(nbuffer++) = (unsigned char)(*(ptr1++));
|
|
*(nbuffer++) = (unsigned char)(*(ptr2++));
|
|
*(nbuffer++) = (unsigned char)(*(ptr3++));
|
|
*(nbuffer++) = 255;
|
|
}
|
|
} break;
|
|
default : { // RGBA images
|
|
for (ulongT k = 0; k<wh; ++k) {
|
|
*(nbuffer++) = (unsigned char)(*(ptr1++));
|
|
*(nbuffer++) = (unsigned char)(*(ptr2++));
|
|
*(nbuffer++) = (unsigned char)(*(ptr3++));
|
|
*(nbuffer++) = (unsigned char)(*(ptr4++));
|
|
}
|
|
}
|
|
}
|
|
cimg::fwrite(buffer,4*wh,nfile);
|
|
if (!file) cimg::fclose(nfile);
|
|
delete[] buffer;
|
|
return *this;
|
|
}
|
|
|
|
//! Save image as a TIFF file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param compression_type Type of data compression. Can be <tt>{ 0=None | 1=LZW | 2=JPEG }</tt>.
|
|
\param[out] voxel_size Voxel size, to be stored in the filename.
|
|
\param[out] description Description, to be stored in the filename.
|
|
\param use_bigtiff Allow to save big tiff files (>4Gb).
|
|
\note
|
|
- libtiff support is enabled by defining the precompilation
|
|
directive \c cimg_use_tif.
|
|
- When libtiff is enabled, 2D and 3D (multipage) several
|
|
channel per pixel are supported for
|
|
<tt>char,uchar,short,ushort,float</tt> and \c double pixel types.
|
|
- If \c cimg_use_tiff is not defined at compile time the
|
|
function uses CImg<T>&save_other(const char*).
|
|
**/
|
|
const CImg<T>& save_tiff(const char *const filename, const unsigned int compression_type=0,
|
|
|
|
const float *const voxel_size=0, const char *const description=0,
|
|
const bool use_bigtiff=true) const {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"save_tiff(): Specified filename is (null).",
|
|
cimg_instance);
|
|
if (is_empty()) { cimg::fempty(0,filename); return *this; }
|
|
|
|
#ifdef cimg_use_tiff
|
|
const bool
|
|
_use_bigtiff = use_bigtiff && sizeof(ulongT)>=8 && size()*sizeof(T)>=1UL<<31; // No bigtiff for small images
|
|
TIFF *tif = TIFFOpen(filename,_use_bigtiff?"w8":"w4");
|
|
if (tif) {
|
|
cimg_forZ(*this,z) _save_tiff(tif,z,z,compression_type,voxel_size,description);
|
|
TIFFClose(tif);
|
|
} else throw CImgIOException(_cimg_instance
|
|
"save_tiff(): Failed to open file '%s' for writing.",
|
|
cimg_instance,
|
|
filename);
|
|
return *this;
|
|
#else
|
|
cimg::unused(compression_type,voxel_size,description,use_bigtiff);
|
|
return save_other(filename);
|
|
#endif
|
|
}
|
|
|
|
#ifdef cimg_use_tiff
|
|
|
|
#define _cimg_save_tiff(types,typed) if (!std::strcmp(types,pixel_type())) { \
|
|
const typed foo = (typed)0; return _save_tiff(tif,directory,z,foo,compression_type,voxel_size,description); }
|
|
|
|
// [internal] Save a plane into a tiff file
|
|
template<typename t>
|
|
const CImg<T>& _save_tiff(TIFF *tif, const unsigned int directory, const unsigned int z, const t& pixel_t,
|
|
const unsigned int compression_type, const float *const voxel_size,
|
|
const char *const description) const {
|
|
if (is_empty() || !tif || pixel_t) return *this;
|
|
const char *const filename = TIFFFileName(tif);
|
|
cimg_uint32 rowsperstrip = (cimg_uint32)-1;
|
|
cimg_uint16 spp = _spectrum, bpp = sizeof(t)*8, photometric;
|
|
if (spp==3 || spp==4) photometric = PHOTOMETRIC_RGB;
|
|
else photometric = PHOTOMETRIC_MINISBLACK;
|
|
TIFFSetDirectory(tif,directory);
|
|
TIFFSetField(tif,TIFFTAG_IMAGEWIDTH,_width);
|
|
TIFFSetField(tif,TIFFTAG_IMAGELENGTH,_height);
|
|
if (voxel_size) {
|
|
const float vx = voxel_size[0], vy = voxel_size[1], vz = voxel_size[2];
|
|
TIFFSetField(tif,TIFFTAG_RESOLUTIONUNIT,RESUNIT_NONE);
|
|
TIFFSetField(tif,TIFFTAG_XRESOLUTION,1.f/vx);
|
|
TIFFSetField(tif,TIFFTAG_YRESOLUTION,1.f/vy);
|
|
CImg<charT> s_description(256);
|
|
cimg_snprintf(s_description,s_description._width,"VX=%g VY=%g VZ=%g spacing=%g",vx,vy,vz,vz);
|
|
TIFFSetField(tif,TIFFTAG_IMAGEDESCRIPTION,s_description.data());
|
|
}
|
|
if (description) TIFFSetField(tif,TIFFTAG_IMAGEDESCRIPTION,description);
|
|
TIFFSetField(tif,TIFFTAG_ORIENTATION,ORIENTATION_TOPLEFT);
|
|
TIFFSetField(tif,TIFFTAG_SAMPLESPERPIXEL,spp);
|
|
if (cimg::type<t>::is_float()) TIFFSetField(tif,TIFFTAG_SAMPLEFORMAT,3);
|
|
else if (cimg::type<t>::min()==0) TIFFSetField(tif,TIFFTAG_SAMPLEFORMAT,1);
|
|
else TIFFSetField(tif,TIFFTAG_SAMPLEFORMAT,2);
|
|
double valm, valM = max_min(valm);
|
|
TIFFSetField(tif,TIFFTAG_SMINSAMPLEVALUE,valm);
|
|
TIFFSetField(tif,TIFFTAG_SMAXSAMPLEVALUE,valM);
|
|
TIFFSetField(tif,TIFFTAG_BITSPERSAMPLE,bpp);
|
|
TIFFSetField(tif,TIFFTAG_PLANARCONFIG,PLANARCONFIG_CONTIG);
|
|
TIFFSetField(tif,TIFFTAG_PHOTOMETRIC,photometric);
|
|
TIFFSetField(tif,TIFFTAG_COMPRESSION,compression_type==2?COMPRESSION_JPEG:
|
|
compression_type==1?COMPRESSION_LZW:COMPRESSION_NONE);
|
|
rowsperstrip = TIFFDefaultStripSize(tif,rowsperstrip);
|
|
TIFFSetField(tif,TIFFTAG_ROWSPERSTRIP,rowsperstrip);
|
|
TIFFSetField(tif,TIFFTAG_FILLORDER,FILLORDER_MSB2LSB);
|
|
TIFFSetField(tif,TIFFTAG_SOFTWARE,cimg_appname);
|
|
|
|
t *const buf = (t*)_TIFFmalloc(TIFFStripSize(tif));
|
|
if (buf) {
|
|
for (unsigned int row = 0; row<_height; row+=rowsperstrip) {
|
|
cimg_uint32 nrow = (row + rowsperstrip>_height?_height - row:rowsperstrip);
|
|
tstrip_t strip = TIFFComputeStrip(tif,row,0);
|
|
tsize_t i = 0;
|
|
for (unsigned int rr = 0; rr<nrow; ++rr)
|
|
for (unsigned int cc = 0; cc<_width; ++cc)
|
|
for (unsigned int vv = 0; vv<spp; ++vv)
|
|
buf[i++] = (t)(*this)(cc,row + rr,z,vv);
|
|
if (TIFFWriteEncodedStrip(tif,strip,buf,i*sizeof(t))<0)
|
|
throw CImgIOException(_cimg_instance
|
|
"save_tiff(): Invalid strip writing when saving file '%s'.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)");
|
|
}
|
|
_TIFFfree(buf);
|
|
}
|
|
TIFFWriteDirectory(tif);
|
|
return *this;
|
|
}
|
|
|
|
const CImg<T>& _save_tiff(TIFF *tif, const unsigned int directory, const unsigned int z,
|
|
const unsigned int compression_type, const float *const voxel_size,
|
|
const char *const description) const {
|
|
_cimg_save_tiff("uint8",cimg_uint8);
|
|
_cimg_save_tiff("int8",cimg_int8);
|
|
_cimg_save_tiff("uint16",cimg_uint16);
|
|
_cimg_save_tiff("int16",cimg_int16);
|
|
_cimg_save_tiff("uint32",cimg_uint32);
|
|
_cimg_save_tiff("int32",cimg_int32);
|
|
_cimg_save_tiff("uint64",cimg_uint32); // 'int64' as 'int32'
|
|
_cimg_save_tiff("int64",cimg_int32);
|
|
_cimg_save_tiff("float32",cimg_float32);
|
|
_cimg_save_tiff("float64",cimg_float32); // 'float64' as 'float32'
|
|
const char *const filename = TIFFFileName(tif);
|
|
throw CImgInstanceException(_cimg_instance
|
|
"save_tiff(): Unsupported pixel type '%s' for file '%s'.",
|
|
cimg_instance,
|
|
pixel_type(),filename?filename:"(FILE*)");
|
|
return *this;
|
|
}
|
|
#endif
|
|
|
|
//! Save image as a MINC2 file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param imitate_file If non-zero, reference filename, as a C-string, to borrow header from.
|
|
**/
|
|
const CImg<T>& save_minc2(const char *const filename,
|
|
const char *const imitate_file=0) const {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"save_minc2(): Specified filename is (null).",
|
|
cimg_instance);
|
|
if (is_empty()) { cimg::fempty(0,filename); return *this; }
|
|
|
|
#ifndef cimg_use_minc2
|
|
cimg::unused(imitate_file);
|
|
return save_other(filename);
|
|
#else
|
|
minc::minc_1_writer wtr;
|
|
if (imitate_file)
|
|
wtr.open(filename, imitate_file);
|
|
else {
|
|
minc::minc_info di;
|
|
if (width()) di.push_back(minc::dim_info(width(),width()*0.5,-1,minc::dim_info::DIM_X));
|
|
if (height()) di.push_back(minc::dim_info(height(),height()*0.5,-1,minc::dim_info::DIM_Y));
|
|
if (depth()) di.push_back(minc::dim_info(depth(),depth()*0.5,-1,minc::dim_info::DIM_Z));
|
|
if (spectrum()) di.push_back(minc::dim_info(spectrum(),spectrum()*0.5,-1,minc::dim_info::DIM_TIME));
|
|
wtr.open(filename,di,1,NC_FLOAT,0);
|
|
}
|
|
if (pixel_type()==cimg::type<unsigned char>::string())
|
|
wtr.setup_write_byte();
|
|
else if (pixel_type()==cimg::type<int>::string())
|
|
wtr.setup_write_int();
|
|
else if (pixel_type()==cimg::type<double>::string())
|
|
wtr.setup_write_double();
|
|
else
|
|
wtr.setup_write_float();
|
|
minc::save_standard_volume(wtr, this->_data);
|
|
return *this;
|
|
#endif
|
|
}
|
|
|
|
//! Save image as an ANALYZE7.5 or NIFTI file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param voxel_size Pointer to 3 consecutive values that tell about the voxel sizes along the X,Y and Z dimensions.
|
|
**/
|
|
const CImg<T>& save_analyze(const char *const filename, const float *const voxel_size=0) const {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"save_analyze(): Specified filename is (null).",
|
|
cimg_instance);
|
|
if (is_empty()) { cimg::fempty(0,filename); return *this; }
|
|
|
|
std::FILE *file;
|
|
CImg<charT> hname(1024), iname(1024);
|
|
const char *const ext = cimg::split_filename(filename);
|
|
short datatype = -1;
|
|
if (!*ext) {
|
|
cimg_snprintf(hname,hname._width,"%s.hdr",filename);
|
|
cimg_snprintf(iname,iname._width,"%s.img",filename);
|
|
}
|
|
if (!cimg::strncasecmp(ext,"hdr",3)) {
|
|
std::strcpy(hname,filename);
|
|
std::strncpy(iname,filename,iname._width - 1);
|
|
cimg_snprintf(iname._data + std::strlen(iname) - 3,4,"img");
|
|
}
|
|
if (!cimg::strncasecmp(ext,"img",3)) {
|
|
std::strcpy(hname,filename);
|
|
std::strncpy(iname,filename,iname._width - 1);
|
|
cimg_snprintf(hname._data + std::strlen(iname) - 3,4,"hdr");
|
|
}
|
|
if (!cimg::strncasecmp(ext,"nii",3)) {
|
|
std::strncpy(hname,filename,hname._width - 1); *iname = 0;
|
|
}
|
|
|
|
CImg<charT> header(*iname?348:352,1,1,1,0);
|
|
int *const iheader = (int*)header._data;
|
|
*iheader = 348;
|
|
std::strcpy(header._data + 4,"CImg");
|
|
std::strcpy(header._data + 14," ");
|
|
((short*)&(header[36]))[0] = 4096;
|
|
((char*)&(header[38]))[0] = 114;
|
|
((short*)&(header[40]))[0] = 4;
|
|
((short*)&(header[40]))[1] = (short)_width;
|
|
((short*)&(header[40]))[2] = (short)_height;
|
|
((short*)&(header[40]))[3] = (short)_depth;
|
|
((short*)&(header[40]))[4] = (short)_spectrum;
|
|
if (!cimg::strcasecmp(pixel_type(),"bool") ||
|
|
!cimg::strcasecmp(pixel_type(),"uint8") ||
|
|
!cimg::strcasecmp(pixel_type(),"int8")) datatype = 2;
|
|
if (!cimg::strcasecmp(pixel_type(),"uint16") ||
|
|
!cimg::strcasecmp(pixel_type(),"int16")) datatype = 4;
|
|
if (!cimg::strcasecmp(pixel_type(),"uint32") ||
|
|
!cimg::strcasecmp(pixel_type(),"int32")) datatype = 8;
|
|
if (!cimg::strcasecmp(pixel_type(),"uint64") ||
|
|
!cimg::strcasecmp(pixel_type(),"int64")) datatype = 8;
|
|
if (!cimg::strcasecmp(pixel_type(),"float32")) datatype = 16;
|
|
if (!cimg::strcasecmp(pixel_type(),"float64")) datatype = 64;
|
|
if (datatype<0)
|
|
throw CImgIOException(_cimg_instance
|
|
"save_analyze(): Unsupported pixel type '%s' for file '%s'.",
|
|
cimg_instance,
|
|
pixel_type(),filename);
|
|
|
|
((short*)&(header[70]))[0] = datatype;
|
|
((short*)&(header[72]))[0] = sizeof(T);
|
|
((float*)&(header[108]))[0] = (float)(*iname?0:header.width());
|
|
((float*)&(header[112]))[0] = 1;
|
|
((float*)&(header[76]))[0] = 0;
|
|
if (voxel_size) {
|
|
((float*)&(header[76]))[1] = voxel_size[0];
|
|
((float*)&(header[76]))[2] = voxel_size[1];
|
|
((float*)&(header[76]))[3] = voxel_size[2];
|
|
} else ((float*)&(header[76]))[1] = ((float*)&(header[76]))[2] = ((float*)&(header[76]))[3] = 1;
|
|
file = cimg::fopen(hname,"wb");
|
|
cimg::fwrite(header._data,header.width(),file);
|
|
if (*iname) { cimg::fclose(file); file = cimg::fopen(iname,"wb"); }
|
|
cimg::fwrite(_data,size(),file);
|
|
cimg::fclose(file);
|
|
return *this;
|
|
}
|
|
|
|
//! Save image as a .cimg file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param is_compressed Tells if the file contains compressed image data.
|
|
**/
|
|
const CImg<T>& save_cimg(const char *const filename, const bool is_compressed=false) const {
|
|
CImgList<T>(*this,true).save_cimg(filename,is_compressed);
|
|
return *this;
|
|
}
|
|
|
|
//! Save image as a .cimg file \overloading.
|
|
const CImg<T>& save_cimg(std::FILE *const file, const bool is_compressed=false) const {
|
|
CImgList<T>(*this,true).save_cimg(file,is_compressed);
|
|
return *this;
|
|
}
|
|
|
|
//! Save image as a sub-image into an existing .cimg file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param n0 Index of the image inside the file.
|
|
\param x0 X-coordinate of the sub-image location.
|
|
\param y0 Y-coordinate of the sub-image location.
|
|
\param z0 Z-coordinate of the sub-image location.
|
|
\param c0 C-coordinate of the sub-image location.
|
|
**/
|
|
const CImg<T>& save_cimg(const char *const filename,
|
|
const unsigned int n0,
|
|
const unsigned int x0, const unsigned int y0,
|
|
const unsigned int z0, const unsigned int c0) const {
|
|
CImgList<T>(*this,true).save_cimg(filename,n0,x0,y0,z0,c0);
|
|
return *this;
|
|
}
|
|
|
|
//! Save image as a sub-image into an existing .cimg file \overloading.
|
|
const CImg<T>& save_cimg(std::FILE *const file,
|
|
const unsigned int n0,
|
|
const unsigned int x0, const unsigned int y0,
|
|
const unsigned int z0, const unsigned int c0) const {
|
|
CImgList<T>(*this,true).save_cimg(file,n0,x0,y0,z0,c0);
|
|
return *this;
|
|
}
|
|
|
|
//! Save blank image as a .cimg file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param dx Width of the image.
|
|
\param dy Height of the image.
|
|
\param dz Depth of the image.
|
|
\param dc Number of channels of the image.
|
|
\note
|
|
- All pixel values of the saved image are set to \c 0.
|
|
- Use this method to save large images without having to instantiate and allocate them.
|
|
**/
|
|
static void save_empty_cimg(const char *const filename,
|
|
const unsigned int dx, const unsigned int dy=1,
|
|
const unsigned int dz=1, const unsigned int dc=1) {
|
|
return CImgList<T>::save_empty_cimg(filename,1,dx,dy,dz,dc);
|
|
}
|
|
|
|
//! Save blank image as a .cimg file \overloading.
|
|
/**
|
|
Same as save_empty_cimg(const char *,unsigned int,unsigned int,unsigned int,unsigned int)
|
|
with a file stream argument instead of a filename string.
|
|
**/
|
|
static void save_empty_cimg(std::FILE *const file,
|
|
const unsigned int dx, const unsigned int dy=1,
|
|
const unsigned int dz=1, const unsigned int dc=1) {
|
|
return CImgList<T>::save_empty_cimg(file,1,dx,dy,dz,dc);
|
|
}
|
|
|
|
//! Save image as an INRIMAGE-4 file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param voxel_size Pointer to 3 values specifying the voxel sizes along the X,Y and Z dimensions.
|
|
**/
|
|
const CImg<T>& save_inr(const char *const filename, const float *const voxel_size=0) const {
|
|
return _save_inr(0,filename,voxel_size);
|
|
}
|
|
|
|
//! Save image as an INRIMAGE-4 file \overloading.
|
|
const CImg<T>& save_inr(std::FILE *const file, const float *const voxel_size=0) const {
|
|
return _save_inr(file,0,voxel_size);
|
|
}
|
|
|
|
const CImg<T>& _save_inr(std::FILE *const file, const char *const filename, const float *const voxel_size) const {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"save_inr(): Specified filename is (null).",
|
|
cimg_instance);
|
|
if (is_empty()) { cimg::fempty(file,filename); return *this; }
|
|
|
|
int inrpixsize = -1;
|
|
const char *inrtype = "unsigned fixed\nPIXSIZE=8 bits\nSCALE=2**0";
|
|
if (!cimg::strcasecmp(pixel_type(),"uint8")) {
|
|
inrtype = "unsigned fixed\nPIXSIZE=8 bits\nSCALE=2**0"; inrpixsize = 1;
|
|
}
|
|
if (!cimg::strcasecmp(pixel_type(),"int8")) {
|
|
inrtype = "fixed\nPIXSIZE=8 bits\nSCALE=2**0"; inrpixsize = 1;
|
|
}
|
|
if (!cimg::strcasecmp(pixel_type(),"uint16")) {
|
|
inrtype = "unsigned fixed\nPIXSIZE=16 bits\nSCALE=2**0";inrpixsize = 2;
|
|
}
|
|
if (!cimg::strcasecmp(pixel_type(),"int16")) {
|
|
inrtype = "fixed\nPIXSIZE=16 bits\nSCALE=2**0"; inrpixsize = 2;
|
|
}
|
|
if (!cimg::strcasecmp(pixel_type(),"uint32")) {
|
|
inrtype = "unsigned fixed\nPIXSIZE=32 bits\nSCALE=2**0";inrpixsize = 4;
|
|
}
|
|
if (!cimg::strcasecmp(pixel_type(),"int32")) {
|
|
inrtype = "fixed\nPIXSIZE=32 bits\nSCALE=2**0"; inrpixsize = 4;
|
|
}
|
|
if (!cimg::strcasecmp(pixel_type(),"float32")) {
|
|
inrtype = "float\nPIXSIZE=32 bits"; inrpixsize = 4;
|
|
}
|
|
if (!cimg::strcasecmp(pixel_type(),"float64")) {
|
|
inrtype = "float\nPIXSIZE=64 bits"; inrpixsize = 8;
|
|
}
|
|
if (inrpixsize<=0)
|
|
throw CImgIOException(_cimg_instance
|
|
"save_inr(): Unsupported pixel type '%s' for file '%s'",
|
|
cimg_instance,
|
|
pixel_type(),filename?filename:"(FILE*)");
|
|
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"wb");
|
|
CImg<charT> header(257);
|
|
int err = cimg_snprintf(header,header._width,"#INRIMAGE-4#{\nXDIM=%u\nYDIM=%u\nZDIM=%u\nVDIM=%u\n",
|
|
_width,_height,_depth,_spectrum);
|
|
if (voxel_size)
|
|
err+=cimg_snprintf(header._data + err,128,"VX=%g\nVY=%g\nVZ=%g\n",
|
|
voxel_size[0],voxel_size[1],voxel_size[2]);
|
|
err+=cimg_snprintf(header._data + err,128,"TYPE=%s\nCPU=%s\n",
|
|
inrtype,cimg::endianness()?"sun":"decm");
|
|
std::memset(header._data + err,'\n',252 - err);
|
|
std::memcpy(header._data + 252,"##}\n",4);
|
|
cimg::fwrite(header._data,256,nfile);
|
|
cimg_forXYZ(*this,x,y,z) cimg_forC(*this,c) cimg::fwrite(&((*this)(x,y,z,c)),1,nfile);
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
}
|
|
|
|
//! Save image as an OpenEXR file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\note The OpenEXR file format is <a href="http://en.wikipedia.org/wiki/OpenEXR">described here</a>.
|
|
**/
|
|
const CImg<T>& save_exr(const char *const filename) const {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"save_exr(): Specified filename is (null).",
|
|
cimg_instance);
|
|
if (is_empty()) { cimg::fempty(0,filename); return *this; }
|
|
if (_depth>1)
|
|
cimg::warn(_cimg_instance
|
|
"save_exr(): Instance is volumetric, only the first slice will be saved in file '%s'.",
|
|
cimg_instance,
|
|
filename);
|
|
|
|
#ifndef cimg_use_openexr
|
|
return save_other(filename);
|
|
#else
|
|
Imf::Rgba *const ptrd0 = new Imf::Rgba[(size_t)_width*_height], *ptrd = ptrd0, rgba;
|
|
switch (_spectrum) {
|
|
case 1 : { // Grayscale image
|
|
for (const T *ptr_r = data(), *const ptr_e = ptr_r + (ulongT)_width*_height; ptr_r<ptr_e;) {
|
|
rgba.r = (half)(*(ptr_r));
|
|
rgba.g = (half)(*(ptr_r));
|
|
rgba.b = (half)(*(ptr_r++));
|
|
rgba.a = (half)1;
|
|
*(ptrd++) = rgba;
|
|
}
|
|
} break;
|
|
case 2 : { // RG image
|
|
for (const T *ptr_r = data(), *ptr_g = data(0,0,0,1),
|
|
*const ptr_e = ptr_r + (ulongT)_width*_height; ptr_r<ptr_e; ) {
|
|
rgba.r = (half)(*(ptr_r++));
|
|
rgba.g = (half)(*(ptr_g++));
|
|
rgba.b = (half)0;
|
|
rgba.a = (half)1;
|
|
*(ptrd++) = rgba;
|
|
}
|
|
} break;
|
|
case 3 : { // RGB image
|
|
for (const T *ptr_r = data(), *ptr_g = data(0,0,0,1), *ptr_b = data(0,0,0,2),
|
|
*const ptr_e = ptr_r + (ulongT)_width*_height; ptr_r<ptr_e;) {
|
|
rgba.r = (half)(*(ptr_r++));
|
|
rgba.g = (half)(*(ptr_g++));
|
|
rgba.b = (half)(*(ptr_b++));
|
|
rgba.a = (half)1;
|
|
*(ptrd++) = rgba;
|
|
}
|
|
} break;
|
|
default : { // RGBA image
|
|
for (const T *ptr_r = data(), *ptr_g = data(0,0,0,1), *ptr_b = data(0,0,0,2), *ptr_a = data(0,0,0,3),
|
|
*const ptr_e = ptr_r + (ulongT)_width*_height; ptr_r<ptr_e;) {
|
|
rgba.r = (half)(*(ptr_r++));
|
|
rgba.g = (half)(*(ptr_g++));
|
|
rgba.b = (half)(*(ptr_b++));
|
|
rgba.a = (half)(*(ptr_a++));
|
|
*(ptrd++) = rgba;
|
|
}
|
|
} break;
|
|
}
|
|
Imf::RgbaOutputFile outFile(filename,_width,_height,
|
|
_spectrum==1?Imf::WRITE_Y:_spectrum==2?Imf::WRITE_YA:_spectrum==3?
|
|
Imf::WRITE_RGB:Imf::WRITE_RGBA);
|
|
outFile.setFrameBuffer(ptrd0,1,_width);
|
|
outFile.writePixels(_height);
|
|
delete[] ptrd0;
|
|
return *this;
|
|
#endif
|
|
}
|
|
|
|
//! Save image as a Pandore-5 file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param colorspace Colorspace data field in output file
|
|
(see <a href="http://www.greyc.ensicaen.fr/~regis/Pandore">Pandore file specifications</a>
|
|
for more information).
|
|
**/
|
|
const CImg<T>& save_pandore(const char *const filename, const unsigned int colorspace=0) const {
|
|
return _save_pandore(0,filename,colorspace);
|
|
}
|
|
|
|
//! Save image as a Pandore-5 file \overloading.
|
|
/**
|
|
Same as save_pandore(const char *,unsigned int) const
|
|
with a file stream argument instead of a filename string.
|
|
**/
|
|
const CImg<T>& save_pandore(std::FILE *const file, const unsigned int colorspace=0) const {
|
|
return _save_pandore(file,0,colorspace);
|
|
}
|
|
|
|
unsigned int _save_pandore_header_length(unsigned int id, unsigned int *dims, const unsigned int colorspace) const {
|
|
unsigned int nbdims = 0;
|
|
if (id==2 || id==3 || id==4) {
|
|
dims[0] = 1; dims[1] = _width; nbdims = 2;
|
|
}
|
|
if (id==5 || id==6 || id==7) {
|
|
dims[0] = 1; dims[1] = _height; dims[2] = _width; nbdims=3;
|
|
}
|
|
if (id==8 || id==9 || id==10) {
|
|
dims[0] = _spectrum; dims[1] = _depth; dims[2] = _height; dims[3] = _width; nbdims = 4;
|
|
}
|
|
if (id==16 || id==17 || id==18) {
|
|
dims[0] = 3; dims[1] = _height; dims[2] = _width; dims[3] = colorspace; nbdims = 4;
|
|
}
|
|
if (id==19 || id==20 || id==21) {
|
|
dims[0] = 3; dims[1] = _depth; dims[2] = _height; dims[3] = _width; dims[4] = colorspace; nbdims = 5;
|
|
}
|
|
if (id==22 || id==23 || id==25) {
|
|
dims[0] = _spectrum; dims[1] = _width; nbdims = 2;
|
|
}
|
|
if (id==26 || id==27 || id==29) {
|
|
dims[0] = _spectrum; dims[1] = _height; dims[2] = _width; nbdims=3;
|
|
}
|
|
if (id==30 || id==31 || id==33) {
|
|
dims[0] = _spectrum; dims[1] = _depth; dims[2] = _height; dims[3] = _width; nbdims = 4;
|
|
}
|
|
return nbdims;
|
|
}
|
|
|
|
const CImg<T>& _save_pandore(std::FILE *const file, const char *const filename,
|
|
const unsigned int colorspace) const {
|
|
|
|
#define __cimg_save_pandore_case(dtype) \
|
|
dtype *buffer = new dtype[size()]; \
|
|
const T *ptrs = _data; \
|
|
cimg_foroff(*this,off) *(buffer++) = (dtype)(*(ptrs++)); \
|
|
buffer-=size(); \
|
|
cimg::fwrite(buffer,size(),nfile); \
|
|
delete[] buffer
|
|
|
|
#define _cimg_save_pandore_case(sy,sz,sv,stype,id) \
|
|
if (!saved && (sy?(sy==_height):true) && (sz?(sz==_depth):true) && \
|
|
(sv?(sv==_spectrum):true) && !std::strcmp(stype,pixel_type())) { \
|
|
unsigned int *iheader = (unsigned int*)(header + 12); \
|
|
nbdims = _save_pandore_header_length((*iheader=id),dims,colorspace); \
|
|
cimg::fwrite(header,36,nfile); \
|
|
if (sizeof(unsigned long)==4) { CImg<ulongT> ndims(5); \
|
|
for (int d = 0; d<5; ++d) ndims[d] = (unsigned long)dims[d]; \
|
|
cimg::fwrite(ndims._data,nbdims,nfile); } \
|
|
else if (sizeof(unsigned int)==4) { CImg<uintT> ndims(5); \
|
|
for (int d = 0; d<5; ++d) ndims[d] = (unsigned int)dims[d]; \
|
|
cimg::fwrite(ndims._data,nbdims,nfile); } \
|
|
else if (sizeof(unsigned short)==4) { CImg<ushortT> ndims(5); \
|
|
for (int d = 0; d<5; ++d) ndims[d] = (unsigned short)dims[d]; \
|
|
cimg::fwrite(ndims._data,nbdims,nfile); } \
|
|
else throw CImgIOException(_cimg_instance \
|
|
"save_pandore(): Unsupported datatype for file '%s'.",\
|
|
cimg_instance, \
|
|
filename?filename:"(FILE*)"); \
|
|
if (id==2 || id==5 || id==8 || id==16 || id==19 || id==22 || id==26 || id==30) { \
|
|
__cimg_save_pandore_case(unsigned char); \
|
|
} else if (id==3 || id==6 || id==9 || id==17 || id==20 || id==23 || id==27 || id==31) { \
|
|
if (sizeof(unsigned long)==4) { __cimg_save_pandore_case(unsigned long); } \
|
|
else if (sizeof(unsigned int)==4) { __cimg_save_pandore_case(unsigned int); } \
|
|
else if (sizeof(unsigned short)==4) { __cimg_save_pandore_case(unsigned short); } \
|
|
else throw CImgIOException(_cimg_instance \
|
|
"save_pandore(): Unsupported datatype for file '%s'.",\
|
|
cimg_instance, \
|
|
filename?filename:"(FILE*)"); \
|
|
} else if (id==4 || id==7 || id==10 || id==18 || id==21 || id==25 || id==29 || id==33) { \
|
|
if (sizeof(double)==4) { __cimg_save_pandore_case(double); } \
|
|
else if (sizeof(float)==4) { __cimg_save_pandore_case(float); } \
|
|
else throw CImgIOException(_cimg_instance \
|
|
"save_pandore(): Unsupported datatype for file '%s'.",\
|
|
cimg_instance, \
|
|
filename?filename:"(FILE*)"); \
|
|
} \
|
|
saved = true; \
|
|
}
|
|
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"save_pandore(): Specified filename is (null).",
|
|
cimg_instance);
|
|
if (is_empty()) { cimg::fempty(file,filename); return *this; }
|
|
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"wb");
|
|
unsigned char header[36] = { 'P','A','N','D','O','R','E','0','4',0,0,0,
|
|
0,0,0,0,'C','I','m','g',0,0,0,0,0,
|
|
'N','o',' ','d','a','t','e',0,0,0,0 };
|
|
unsigned int nbdims, dims[5] = {};
|
|
bool saved = false;
|
|
_cimg_save_pandore_case(1,1,1,"uint8",2);
|
|
_cimg_save_pandore_case(1,1,1,"int8",3);
|
|
_cimg_save_pandore_case(1,1,1,"uint16",3);
|
|
_cimg_save_pandore_case(1,1,1,"int16",3);
|
|
_cimg_save_pandore_case(1,1,1,"uint32",3);
|
|
_cimg_save_pandore_case(1,1,1,"int32",3);
|
|
_cimg_save_pandore_case(1,1,1,"uint64",3);
|
|
_cimg_save_pandore_case(1,1,1,"int64",3);
|
|
_cimg_save_pandore_case(1,1,1,"float32",4);
|
|
_cimg_save_pandore_case(1,1,1,"float64",4);
|
|
|
|
_cimg_save_pandore_case(0,1,1,"uint8",5);
|
|
_cimg_save_pandore_case(0,1,1,"int8",6);
|
|
_cimg_save_pandore_case(0,1,1,"uint16",6);
|
|
_cimg_save_pandore_case(0,1,1,"int16",6);
|
|
_cimg_save_pandore_case(0,1,1,"uint32",6);
|
|
_cimg_save_pandore_case(0,1,1,"int32",6);
|
|
_cimg_save_pandore_case(0,1,1,"uint64",6);
|
|
_cimg_save_pandore_case(0,1,1,"int64",6);
|
|
_cimg_save_pandore_case(0,1,1,"float32",7);
|
|
_cimg_save_pandore_case(0,1,1,"float64",7);
|
|
|
|
_cimg_save_pandore_case(0,0,1,"uint8",8);
|
|
_cimg_save_pandore_case(0,0,1,"int8",9);
|
|
_cimg_save_pandore_case(0,0,1,"uint16",9);
|
|
_cimg_save_pandore_case(0,0,1,"int16",9);
|
|
_cimg_save_pandore_case(0,0,1,"uint32",9);
|
|
_cimg_save_pandore_case(0,0,1,"int32",9);
|
|
_cimg_save_pandore_case(0,0,1,"uint64",9);
|
|
_cimg_save_pandore_case(0,0,1,"int64",9);
|
|
_cimg_save_pandore_case(0,0,1,"float32",10);
|
|
_cimg_save_pandore_case(0,0,1,"float64",10);
|
|
|
|
_cimg_save_pandore_case(0,1,3,"uint8",16);
|
|
_cimg_save_pandore_case(0,1,3,"int8",17);
|
|
_cimg_save_pandore_case(0,1,3,"uint16",17);
|
|
_cimg_save_pandore_case(0,1,3,"int16",17);
|
|
_cimg_save_pandore_case(0,1,3,"uint32",17);
|
|
_cimg_save_pandore_case(0,1,3,"int32",17);
|
|
_cimg_save_pandore_case(0,1,3,"uint64",17);
|
|
_cimg_save_pandore_case(0,1,3,"int64",17);
|
|
_cimg_save_pandore_case(0,1,3,"float32",18);
|
|
_cimg_save_pandore_case(0,1,3,"float64",18);
|
|
|
|
_cimg_save_pandore_case(0,0,3,"uint8",19);
|
|
_cimg_save_pandore_case(0,0,3,"int8",20);
|
|
_cimg_save_pandore_case(0,0,3,"uint16",20);
|
|
_cimg_save_pandore_case(0,0,3,"int16",20);
|
|
_cimg_save_pandore_case(0,0,3,"uint32",20);
|
|
_cimg_save_pandore_case(0,0,3,"int32",20);
|
|
_cimg_save_pandore_case(0,0,3,"uint64",20);
|
|
_cimg_save_pandore_case(0,0,3,"int64",20);
|
|
_cimg_save_pandore_case(0,0,3,"float32",21);
|
|
_cimg_save_pandore_case(0,0,3,"float64",21);
|
|
|
|
_cimg_save_pandore_case(1,1,0,"uint8",22);
|
|
_cimg_save_pandore_case(1,1,0,"int8",23);
|
|
_cimg_save_pandore_case(1,1,0,"uint16",23);
|
|
_cimg_save_pandore_case(1,1,0,"int16",23);
|
|
_cimg_save_pandore_case(1,1,0,"uint32",23);
|
|
_cimg_save_pandore_case(1,1,0,"int32",23);
|
|
_cimg_save_pandore_case(1,1,0,"uint64",23);
|
|
_cimg_save_pandore_case(1,1,0,"int64",23);
|
|
_cimg_save_pandore_case(1,1,0,"float32",25);
|
|
_cimg_save_pandore_case(1,1,0,"float64",25);
|
|
|
|
_cimg_save_pandore_case(0,1,0,"uint8",26);
|
|
_cimg_save_pandore_case(0,1,0,"int8",27);
|
|
_cimg_save_pandore_case(0,1,0,"uint16",27);
|
|
_cimg_save_pandore_case(0,1,0,"int16",27);
|
|
_cimg_save_pandore_case(0,1,0,"uint32",27);
|
|
_cimg_save_pandore_case(0,1,0,"int32",27);
|
|
_cimg_save_pandore_case(0,1,0,"uint64",27);
|
|
_cimg_save_pandore_case(0,1,0,"int64",27);
|
|
_cimg_save_pandore_case(0,1,0,"float32",29);
|
|
_cimg_save_pandore_case(0,1,0,"float64",29);
|
|
|
|
_cimg_save_pandore_case(0,0,0,"uint8",30);
|
|
_cimg_save_pandore_case(0,0,0,"int8",31);
|
|
_cimg_save_pandore_case(0,0,0,"uint16",31);
|
|
_cimg_save_pandore_case(0,0,0,"int16",31);
|
|
_cimg_save_pandore_case(0,0,0,"uint32",31);
|
|
_cimg_save_pandore_case(0,0,0,"int32",31);
|
|
_cimg_save_pandore_case(0,0,0,"uint64",31);
|
|
_cimg_save_pandore_case(0,0,0,"int64",31);
|
|
_cimg_save_pandore_case(0,0,0,"float32",33);
|
|
_cimg_save_pandore_case(0,0,0,"float64",33);
|
|
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
}
|
|
|
|
//! Save image as a raw data file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param is_multiplexed Tells if the image channels are stored in a multiplexed way (\c true) or not (\c false).
|
|
\note The .raw format does not store the image dimensions in the output file,
|
|
so you have to keep track of them somewhere to be able to read the file correctly afterwards.
|
|
**/
|
|
const CImg<T>& save_raw(const char *const filename, const bool is_multiplexed=false) const {
|
|
return _save_raw(0,filename,is_multiplexed);
|
|
}
|
|
|
|
//! Save image as a raw data file \overloading.
|
|
/**
|
|
Same as save_raw(const char *,bool) const
|
|
with a file stream argument instead of a filename string.
|
|
**/
|
|
const CImg<T>& save_raw(std::FILE *const file, const bool is_multiplexed=false) const {
|
|
return _save_raw(file,0,is_multiplexed);
|
|
}
|
|
|
|
const CImg<T>& _save_raw(std::FILE *const file, const char *const filename, const bool is_multiplexed) const {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"save_raw(): Specified filename is (null).",
|
|
cimg_instance);
|
|
if (is_empty()) { cimg::fempty(file,filename); return *this; }
|
|
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"wb");
|
|
if (pixel_type()==cimg::type<bool>::string()) { // Boolean data (bitwise)
|
|
ulongT siz;
|
|
const unsigned char *const buf = _bool2uchar(siz,is_multiplexed);
|
|
cimg::fwrite(buf,siz,nfile);
|
|
delete[] buf;
|
|
} else { // Non boolean data
|
|
if (!is_multiplexed || _spectrum==1) cimg::fwrite(_data,size(),nfile); // Non-multiplexed
|
|
else { // Multiplexed
|
|
CImg<T> buf(_spectrum);
|
|
cimg_forXYZ(*this,x,y,z) {
|
|
cimg_forC(*this,c) buf[c] = (*this)(x,y,z,c);
|
|
cimg::fwrite(buf._data,_spectrum,nfile);
|
|
}
|
|
}
|
|
}
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
}
|
|
|
|
// Return unsigned char buffer that encodes data of a CImg<bool> instance bitwise.
|
|
// (buffer needs to be deallocated afterwards, with delete[]).
|
|
const unsigned char *_bool2uchar(ulongT &siz, const bool is_multiplexed) const {
|
|
const ulongT _siz = size();
|
|
siz = _siz/8 + (_siz%8?1:0);
|
|
unsigned char *const buf = new unsigned char[siz], *ptrd = buf, val = 0, bit = 0;
|
|
|
|
if (!is_multiplexed || _spectrum==1) // Non-multiplexed
|
|
cimg_for(*this,ptrs,T) { (val<<=1)|=(*ptrs?1:0); if (++bit==8) { *(ptrd++) = val; val = bit = 0; }}
|
|
else // Multiplexed
|
|
cimg_forXYZ(*this,x,y,z) cimg_forC(*this,c) {
|
|
(val<<=1)|=((*this)(x,y,z,c)?1:0); if (++bit==8) { *(ptrd++) = val; val = bit = 0; }
|
|
}
|
|
if (bit) *ptrd = val;
|
|
return buf;
|
|
}
|
|
|
|
// Fill CImg<T> instance from bitwise data encoded in an unsigned char buffer.
|
|
void _uchar2bool(const unsigned char *buf, const ulongT siz, const bool is_multiplexed) {
|
|
const ulongT S = std::min(siz*8,size());
|
|
const unsigned char *ptrs = buf;
|
|
unsigned char val = 0, mask = 0;
|
|
T *ptrd = _data;
|
|
if (S && (!is_multiplexed || _spectrum==1)) // Non-multiplexed
|
|
for (ulongT off = 0; off<S; ++off) {
|
|
if (!(mask>>=1)) { val = *(ptrs++); mask = 128; }
|
|
*(ptrd++) = (T)((val&mask)?1:0);
|
|
}
|
|
else if (S) { // Multiplexed
|
|
ulongT off = 0;
|
|
for (int z = 0; z<depth() && off<=S; ++z)
|
|
for (int y = 0; y<height() && off<=S; ++y)
|
|
for (int x = 0; x<width() && off<=S; ++x)
|
|
for (int c = 0; c<spectrum() && off<=S; ++c) {
|
|
if (!(mask>>=1)) { val = *(ptrs++); ++off; mask = 128; }
|
|
(*this)(x,y,z,c) = (T)((val&mask)?1:0);
|
|
}
|
|
}
|
|
}
|
|
|
|
//! Save image as a .yuv video file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param chroma_subsampling Type of chroma subsampling. Can be <tt>{ 420 | 422 | 444 }</tt>.
|
|
\param is_rgb Tells if pixel values of the instance image are RGB-coded (\c true) or YUV-coded (\c false).
|
|
\note Each slice of the instance image is considered to be a single frame of the output video file.
|
|
**/
|
|
const CImg<T>& save_yuv(const char *const filename,
|
|
const unsigned int chroma_subsampling=444,
|
|
const bool is_rgb=true) const {
|
|
CImgList<T>(*this,true).save_yuv(filename,chroma_subsampling,is_rgb);
|
|
return *this;
|
|
}
|
|
|
|
//! Save image as a .yuv video file \overloading.
|
|
/**
|
|
Same as save_yuv(const char*,const unsigned int,const bool) const
|
|
with a file stream argument instead of a filename string.
|
|
**/
|
|
const CImg<T>& save_yuv(std::FILE *const file,
|
|
const unsigned int chroma_subsampling=444,
|
|
const bool is_rgb=true) const {
|
|
CImgList<T>(*this,true).save_yuv(file,chroma_subsampling,is_rgb);
|
|
return *this;
|
|
}
|
|
|
|
//! Save 3D object as an Object File Format (.off) file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param primitives List of 3D object primitives.
|
|
\param colors List of 3D object colors.
|
|
\note
|
|
- Instance image contains the vertices data of the 3D object.
|
|
- Textured, transparent or sphere-shaped primitives cannot be managed by the .off file format.
|
|
Such primitives will be lost or simplified during file saving.
|
|
- The .off file format is <a href="http://people.sc.fsu.edu/~jburkardt/html/off_format.html">described here</a>.
|
|
**/
|
|
template<typename tf, typename tc>
|
|
const CImg<T>& save_off(const CImgList<tf>& primitives, const CImgList<tc>& colors,
|
|
const char *const filename) const {
|
|
return _save_off(primitives,colors,0,filename);
|
|
}
|
|
|
|
//! Save 3D object as an Object File Format (.off) file \overloading.
|
|
/**
|
|
Same as save_off(const CImgList<tf>&,const CImgList<tc>&,const char*) const
|
|
with a file stream argument instead of a filename string.
|
|
**/
|
|
template<typename tf, typename tc>
|
|
const CImg<T>& save_off(const CImgList<tf>& primitives, const CImgList<tc>& colors,
|
|
std::FILE *const file) const {
|
|
return _save_off(primitives,colors,file,0);
|
|
}
|
|
|
|
template<typename tf, typename tc>
|
|
const CImg<T>& _save_off(const CImgList<tf>& primitives, const CImgList<tc>& colors,
|
|
std::FILE *const file, const char *const filename) const {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"save_off(): Specified filename is (null).",
|
|
cimg_instance);
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimg_instance
|
|
"save_off(): Empty instance, for file '%s'.",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)");
|
|
|
|
CImgList<T> opacities;
|
|
CImg<charT> error_message(1024);
|
|
if (!is_object3d(primitives,colors,opacities,true,error_message))
|
|
throw CImgInstanceException(_cimg_instance
|
|
"save_off(): Invalid specified 3D object, for file '%s' (%s).",
|
|
cimg_instance,
|
|
filename?filename:"(FILE*)",error_message.data());
|
|
|
|
const CImg<tc> default_color(1,3,1,1,(tc)std::min((int)cimg::type<tc>::max(),200));
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"w");
|
|
unsigned int supported_primitives = 0;
|
|
cimglist_for(primitives,l) if (primitives[l].size()!=5) ++supported_primitives;
|
|
std::fprintf(nfile,"OFF\n%u %u %u\n",_width,supported_primitives,3*primitives._width);
|
|
cimg_forX(*this,i) std::fprintf(nfile,"%f %f %f\n",
|
|
(float)((*this)(i,0)),(float)((*this)(i,1)),(float)((*this)(i,2)));
|
|
cimglist_for(primitives,l) {
|
|
const CImg<tc>& color = l<colors.width()?colors[l]:default_color;
|
|
const unsigned int psiz = primitives[l].size(), csiz = color.size();
|
|
const float r = color[0]/255.f, g = (csiz>1?color[1]:r)/255.f, b = (csiz>2?color[2]:g)/255.f;
|
|
switch (psiz) {
|
|
case 1 : std::fprintf(nfile,"1 %u %f %f %f\n",
|
|
(unsigned int)primitives(l,0),r,g,b); break;
|
|
case 2 : std::fprintf(nfile,"2 %u %u %f %f %f\n",
|
|
(unsigned int)primitives(l,0),(unsigned int)primitives(l,1),r,g,b); break;
|
|
case 3 : std::fprintf(nfile,"3 %u %u %u %f %f %f\n",
|
|
(unsigned int)primitives(l,0),(unsigned int)primitives(l,2),
|
|
(unsigned int)primitives(l,1),r,g,b); break;
|
|
case 4 : std::fprintf(nfile,"4 %u %u %u %u %f %f %f\n",
|
|
(unsigned int)primitives(l,0),(unsigned int)primitives(l,3),
|
|
(unsigned int)primitives(l,2),(unsigned int)primitives(l,1),r,g,b); break;
|
|
case 5 : std::fprintf(nfile,"2 %u %u %f %f %f\n",
|
|
(unsigned int)primitives(l,0),(unsigned int)primitives(l,1),r,g,b); break;
|
|
case 6 : {
|
|
const unsigned int xt = (unsigned int)primitives(l,2), yt = (unsigned int)primitives(l,3);
|
|
const float
|
|
rt = color.atXY(xt,yt,0)/255.f,
|
|
gt = (csiz>1?color.atXY(xt,yt,1):r)/255.f,
|
|
bt = (csiz>2?color.atXY(xt,yt,2):g)/255.f;
|
|
std::fprintf(nfile,"2 %u %u %f %f %f\n",
|
|
(unsigned int)primitives(l,0),(unsigned int)primitives(l,1),rt,gt,bt);
|
|
} break;
|
|
case 9 : {
|
|
const unsigned int xt = (unsigned int)primitives(l,3), yt = (unsigned int)primitives(l,4);
|
|
const float
|
|
rt = color.atXY(xt,yt,0)/255.f,
|
|
gt = (csiz>1?color.atXY(xt,yt,1):r)/255.f,
|
|
bt = (csiz>2?color.atXY(xt,yt,2):g)/255.f;
|
|
std::fprintf(nfile,"3 %u %u %u %f %f %f\n",
|
|
(unsigned int)primitives(l,0),(unsigned int)primitives(l,2),
|
|
(unsigned int)primitives(l,1),rt,gt,bt);
|
|
} break;
|
|
case 12 : {
|
|
const unsigned int xt = (unsigned int)primitives(l,4), yt = (unsigned int)primitives(l,5);
|
|
const float
|
|
rt = color.atXY(xt,yt,0)/255.f,
|
|
gt = (csiz>1?color.atXY(xt,yt,1):r)/255.f,
|
|
bt = (csiz>2?color.atXY(xt,yt,2):g)/255.f;
|
|
std::fprintf(nfile,"4 %u %u %u %u %f %f %f\n",
|
|
(unsigned int)primitives(l,0),(unsigned int)primitives(l,3),
|
|
(unsigned int)primitives(l,2),(unsigned int)primitives(l,1),rt,gt,bt);
|
|
} break;
|
|
}
|
|
}
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
}
|
|
|
|
//! Save volumetric image as a video (using the OpenCV library when available).
|
|
/**
|
|
\param filename Filename to write data to.
|
|
\param fps Number of frames per second.
|
|
\param codec Type of compression (See http://www.fourcc.org/codecs.php to see available codecs).
|
|
\param keep_open Tells if the video writer associated to the specified filename
|
|
must be kept open or not (to allow frames to be added in the same file afterwards).
|
|
**/
|
|
const CImg<T>& save_video(const char *const filename, const unsigned int fps=25,
|
|
const char *codec=0, const bool keep_open=false) const {
|
|
if (is_empty()) { CImgList<T>().save_video(filename,fps,codec,keep_open); return *this; }
|
|
CImgList<T> list;
|
|
get_split('z').move_to(list);
|
|
list.save_video(filename,fps,codec,keep_open);
|
|
return *this;
|
|
}
|
|
|
|
//! Save volumetric image as a video, using ffmpeg external binary.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param fps Video framerate.
|
|
\param codec Video codec, as a C-string.
|
|
\param bitrate Video bitrate.
|
|
\note
|
|
- Each slice of the instance image is considered to be a single frame of the output video file.
|
|
- This method uses \c ffmpeg, an external executable binary provided by
|
|
<a href="http://www.ffmpeg.org">FFmpeg</a>.
|
|
It must be installed for the method to succeed.
|
|
**/
|
|
const CImg<T>& save_ffmpeg_external(const char *const filename, const unsigned int fps=25,
|
|
const char *const codec=0, const unsigned int bitrate=2048) const {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"save_ffmpeg_external(): Specified filename is (null).",
|
|
cimg_instance);
|
|
if (is_empty()) { cimg::fempty(0,filename); return *this; }
|
|
|
|
CImgList<T> list;
|
|
get_split('z').move_to(list);
|
|
list.save_ffmpeg_external(filename,fps,codec,bitrate);
|
|
return *this;
|
|
}
|
|
|
|
//! Save image using gzip external binary.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\note This method uses \c gzip, an external executable binary provided by
|
|
<a href="//http://www.gzip.org">gzip</a>.
|
|
It must be installed for the method to succeed.
|
|
**/
|
|
const CImg<T>& save_gzip_external(const char *const filename) const {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"save_gzip_external(): Specified filename is (null).",
|
|
cimg_instance);
|
|
if (is_empty()) { cimg::fempty(0,filename); return *this; }
|
|
|
|
CImg<charT> command(1024), filename_tmp(256), body(256);
|
|
const char
|
|
*ext = cimg::split_filename(filename,body),
|
|
*ext2 = cimg::split_filename(body,0);
|
|
std::FILE *file;
|
|
do {
|
|
if (!cimg::strcasecmp(ext,"gz")) {
|
|
if (*ext2) cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s",
|
|
cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(),ext2);
|
|
else cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.cimg",
|
|
cimg::temporary_path(),cimg_file_separator,cimg::filenamerand());
|
|
} else {
|
|
if (*ext) cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s",
|
|
cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(),ext);
|
|
else cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.cimg",
|
|
cimg::temporary_path(),cimg_file_separator,cimg::filenamerand());
|
|
}
|
|
if ((file=cimg::std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file);
|
|
} while (file);
|
|
save(filename_tmp);
|
|
cimg_snprintf(command,command._width,"\"%s\" -c \"%s\" > \"%s\"",
|
|
cimg::gzip_path(),
|
|
CImg<charT>::string(filename_tmp)._system_strescape().data(),
|
|
CImg<charT>::string(filename)._system_strescape().data());
|
|
cimg::system(command,cimg::gzip_path());
|
|
file = cimg::std_fopen(filename,"rb");
|
|
if (!file)
|
|
throw CImgIOException(_cimg_instance
|
|
"save_gzip_external(): Failed to save file '%s' with external command 'gzip'.",
|
|
cimg_instance,
|
|
filename);
|
|
|
|
else cimg::fclose(file);
|
|
std::remove(filename_tmp);
|
|
return *this;
|
|
}
|
|
|
|
//! Save image using GraphicsMagick's external binary.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param quality Image quality (expressed in percent), when the file format supports it.
|
|
\note This method uses \c gm, an external executable binary provided by
|
|
<a href="http://www.graphicsmagick.org">GraphicsMagick</a>.
|
|
It must be installed for the method to succeed.
|
|
**/
|
|
const CImg<T>& save_graphicsmagick_external(const char *const filename, const unsigned int quality=100) const {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"save_graphicsmagick_external(): Specified filename is (null).",
|
|
cimg_instance);
|
|
if (is_empty()) { cimg::fempty(0,filename); return *this; }
|
|
if (_depth>1)
|
|
cimg::warn(_cimg_instance
|
|
"save_other(): File '%s', saving a volumetric image with an external call to "
|
|
"GraphicsMagick only writes the first image slice.",
|
|
cimg_instance,filename);
|
|
|
|
#ifdef cimg_use_png
|
|
#define _cimg_sge_extension1 "png"
|
|
#define _cimg_sge_extension2 "png"
|
|
#else
|
|
#define _cimg_sge_extension1 "pgm"
|
|
#define _cimg_sge_extension2 "ppm"
|
|
#endif
|
|
CImg<charT> command(1024), filename_tmp(256);
|
|
std::FILE *file;
|
|
do {
|
|
cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s",
|
|
cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(),
|
|
_spectrum==1?_cimg_sge_extension1:_cimg_sge_extension2);
|
|
if ((file=cimg::std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file);
|
|
} while (file);
|
|
|
|
#ifdef cimg_use_png
|
|
save_png(filename_tmp);
|
|
#else
|
|
save_pnm(filename_tmp);
|
|
#endif
|
|
cimg_snprintf(command,command._width,"\"%s\" convert -quality %u \"%s\" \"%s\"",
|
|
cimg::graphicsmagick_path(),quality,
|
|
CImg<charT>::string(filename_tmp)._system_strescape().data(),
|
|
CImg<charT>::string(filename)._system_strescape().data());
|
|
cimg::system(command,cimg::graphicsmagick_path());
|
|
file = cimg::std_fopen(filename,"rb");
|
|
if (!file)
|
|
throw CImgIOException(_cimg_instance
|
|
"save_graphicsmagick_external(): Failed to save file '%s' with external command 'gm'.",
|
|
cimg_instance,
|
|
filename);
|
|
|
|
if (file) cimg::fclose(file);
|
|
std::remove(filename_tmp);
|
|
return *this;
|
|
}
|
|
|
|
//! Save image using ImageMagick's external binary.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param quality Image quality (expressed in percent), when the file format supports it.
|
|
\note This method uses \c convert, an external executable binary provided by
|
|
<a href="http://www.imagemagick.org">ImageMagick</a>.
|
|
It must be installed for the method to succeed.
|
|
**/
|
|
const CImg<T>& save_imagemagick_external(const char *const filename, const unsigned int quality=100) const {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"save_imagemagick_external(): Specified filename is (null).",
|
|
cimg_instance);
|
|
if (is_empty()) { cimg::fempty(0,filename); return *this; }
|
|
if (_depth>1)
|
|
cimg::warn(_cimg_instance
|
|
"save_other(): File '%s', saving a volumetric image with an external call to "
|
|
"ImageMagick only writes the first image slice.",
|
|
cimg_instance,filename);
|
|
#ifdef cimg_use_png
|
|
#define _cimg_sie_extension1 "png"
|
|
#define _cimg_sie_extension2 "png"
|
|
#else
|
|
#define _cimg_sie_extension1 "pgm"
|
|
#define _cimg_sie_extension2 "ppm"
|
|
#endif
|
|
CImg<charT> command(1024), filename_tmp(256);
|
|
std::FILE *file;
|
|
do {
|
|
cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s",cimg::temporary_path(),
|
|
cimg_file_separator,cimg::filenamerand(),_spectrum==1?_cimg_sie_extension1:_cimg_sie_extension2);
|
|
if ((file=cimg::std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file);
|
|
} while (file);
|
|
#ifdef cimg_use_png
|
|
save_png(filename_tmp);
|
|
#else
|
|
save_pnm(filename_tmp);
|
|
#endif
|
|
cimg_snprintf(command,command._width,"\"%s\" -quality %u \"%s\" \"%s\"",
|
|
cimg::imagemagick_path(),quality,
|
|
CImg<charT>::string(filename_tmp)._system_strescape().data(),
|
|
CImg<charT>::string(filename)._system_strescape().data());
|
|
cimg::system(command,cimg::imagemagick_path());
|
|
file = cimg::std_fopen(filename,"rb");
|
|
if (!file)
|
|
throw CImgIOException(_cimg_instance
|
|
"save_imagemagick_external(): Failed to save file '%s' with "
|
|
"external command 'magick/convert'.",
|
|
cimg_instance,
|
|
filename);
|
|
|
|
if (file) cimg::fclose(file);
|
|
std::remove(filename_tmp);
|
|
return *this;
|
|
}
|
|
|
|
//! Save image as a Dicom file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\note This method uses \c medcon, an external executable binary provided by
|
|
<a href="http://xmedcon.sourceforge.net">(X)Medcon</a>.
|
|
It must be installed for the method to succeed.
|
|
**/
|
|
const CImg<T>& save_medcon_external(const char *const filename) const {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"save_medcon_external(): Specified filename is (null).",
|
|
cimg_instance);
|
|
if (is_empty()) { cimg::fempty(0,filename); return *this; }
|
|
|
|
CImg<charT> command(1024), filename_tmp(256), body(256);
|
|
std::FILE *file;
|
|
do {
|
|
cimg_snprintf(filename_tmp,filename_tmp._width,"%s.hdr",cimg::filenamerand());
|
|
if ((file=cimg::std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file);
|
|
} while (file);
|
|
save_analyze(filename_tmp);
|
|
cimg_snprintf(command,command._width,"\"%s\" -w -c dicom -o \"%s\" -f \"%s\"",
|
|
cimg::medcon_path(),
|
|
CImg<charT>::string(filename)._system_strescape().data(),
|
|
CImg<charT>::string(filename_tmp)._system_strescape().data());
|
|
cimg::system(command,cimg::medcon_path());
|
|
std::remove(filename_tmp);
|
|
cimg::split_filename(filename_tmp,body);
|
|
cimg_snprintf(filename_tmp,filename_tmp._width,"%s.img",body._data);
|
|
std::remove(filename_tmp);
|
|
|
|
file = cimg::std_fopen(filename,"rb");
|
|
if (!file) {
|
|
cimg_snprintf(command,command._width,"m000-%s",filename);
|
|
file = cimg::std_fopen(command,"rb");
|
|
if (!file) {
|
|
cimg::fclose(cimg::fopen(filename,"r"));
|
|
throw CImgIOException(_cimg_instance
|
|
"save_medcon_external(): Failed to save file '%s' with external command 'medcon'.",
|
|
cimg_instance,
|
|
filename);
|
|
}
|
|
}
|
|
cimg::fclose(file);
|
|
std::rename(command,filename);
|
|
return *this;
|
|
}
|
|
|
|
// Save image for non natively supported formats.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param quality Image quality (expressed in percent), when the file format supports it.
|
|
\note
|
|
- The filename extension tells about the desired file format.
|
|
- This method tries to save the instance image as a file, using external tools from
|
|
<a href="http://www.imagemagick.org">ImageMagick</a> or
|
|
<a href="http://www.graphicsmagick.org">GraphicsMagick</a>.
|
|
At least one of these tool must be installed for the method to succeed.
|
|
- It is recommended to use the generic method save(const char*, int) const instead,
|
|
as it can handle some file formats natively.
|
|
**/
|
|
const CImg<T>& save_other(const char *const filename, const unsigned int quality=100) const {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimg_instance
|
|
"save_other(): Specified filename is (null).",
|
|
cimg_instance);
|
|
if (is_empty()) { cimg::fempty(0,filename); return *this; }
|
|
if (_depth>1)
|
|
cimg::warn(_cimg_instance
|
|
"save_other(): File '%s', saving a volumetric image with an external call to "
|
|
"ImageMagick or GraphicsMagick only writes the first image slice.",
|
|
cimg_instance,filename);
|
|
|
|
const unsigned int omode = cimg::exception_mode();
|
|
bool is_saved = true;
|
|
cimg::exception_mode(0);
|
|
try { save_magick(filename); }
|
|
catch (CImgException&) {
|
|
try { save_imagemagick_external(filename,quality); }
|
|
catch (CImgException&) {
|
|
try { save_graphicsmagick_external(filename,quality); }
|
|
catch (CImgException&) {
|
|
is_saved = false;
|
|
}
|
|
}
|
|
}
|
|
cimg::exception_mode(omode);
|
|
if (!is_saved)
|
|
throw CImgIOException(_cimg_instance
|
|
"save_other(): Failed to save file '%s'. Format is not natively supported, "
|
|
"and no external commands succeeded.",
|
|
cimg_instance,
|
|
filename);
|
|
return *this;
|
|
}
|
|
|
|
//! Serialize a CImg<T> instance into a raw CImg<unsigned char> buffer.
|
|
/**
|
|
\param is_compressed tells if zlib compression must be used for serialization
|
|
(this requires 'cimg_use_zlib' been enabled).
|
|
\param header_size Reserve empty bytes as a starting header.
|
|
**/
|
|
CImg<ucharT> get_serialize(const bool is_compressed=false, const unsigned int header_size=0) const {
|
|
return CImgList<T>(*this,true).get_serialize(is_compressed,header_size);
|
|
}
|
|
|
|
// [internal] Return a 40x38 color logo of a 'danger' item.
|
|
static CImg<T> _logo40x38() {
|
|
CImg<T> res(40,38,1,3);
|
|
const unsigned char *ptrs = cimg::logo40x38;
|
|
T *ptr1 = res.data(0,0,0,0), *ptr2 = res.data(0,0,0,1), *ptr3 = res.data(0,0,0,2);
|
|
for (ulongT off = 0; off<(ulongT)res._width*res._height;) {
|
|
const unsigned char n = *(ptrs++), r = *(ptrs++), g = *(ptrs++), b = *(ptrs++);
|
|
for (unsigned int l = 0; l<n; ++off, ++l) { *(ptr1++) = (T)r; *(ptr2++) = (T)g; *(ptr3++) = (T)b; }
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//@}
|
|
}; // struct CImg { ...
|
|
|
|
/*
|
|
#-----------------------------------------
|
|
#
|
|
#
|
|
#
|
|
# Definition of the CImgList<T> structure
|
|
#
|
|
#
|
|
#
|
|
#------------------------------------------
|
|
*/
|
|
//! Represent a list of images CImg<T>.
|
|
template<typename T>
|
|
struct CImgList {
|
|
unsigned int _width, _allocated_width;
|
|
CImg<T> *_data;
|
|
|
|
//! Simple iterator type, to loop through each image of a list.
|
|
/**
|
|
\note
|
|
- The \c CImgList<T>::iterator type is defined as a <tt>CImg<T>*</tt>.
|
|
- You may use it like this:
|
|
\code
|
|
CImgList<> list; // Assuming this image list is not empty
|
|
for (CImgList<>::iterator it = list.begin(); it<list.end(); ++it) (*it).mirror('x');
|
|
\endcode
|
|
- Using the loop macro \c cimglist_for is another (more concise) alternative:
|
|
\code
|
|
cimglist_for(list,l) list[l].mirror('x');
|
|
\endcode
|
|
**/
|
|
typedef CImg<T>* iterator;
|
|
|
|
//! Simple const iterator type, to loop through each image of a \c const list instance.
|
|
/**
|
|
\note
|
|
- The \c CImgList<T>::const_iterator type is defined to be a <tt>const CImg<T>*</tt>.
|
|
- Similar to CImgList<T>::iterator, but for constant list instances.
|
|
**/
|
|
typedef const CImg<T>* const_iterator;
|
|
|
|
//! Pixel value type.
|
|
/**
|
|
Refer to the pixels value type of the images in the list.
|
|
\note
|
|
- The \c CImgList<T>::value_type type of a \c CImgList<T> is defined to be a \c T.
|
|
It is then similar to CImg<T>::value_type.
|
|
- \c CImgList<T>::value_type is actually not used in %CImg methods. It has been mainly defined for
|
|
compatibility with STL naming conventions.
|
|
**/
|
|
typedef T value_type;
|
|
|
|
// Define common types related to template type T.
|
|
typedef typename cimg::superset<T,bool>::type Tbool;
|
|
typedef typename cimg::superset<T,unsigned char>::type Tuchar;
|
|
typedef typename cimg::superset<T,char>::type Tchar;
|
|
typedef typename cimg::superset<T,unsigned short>::type Tushort;
|
|
typedef typename cimg::superset<T,short>::type Tshort;
|
|
typedef typename cimg::superset<T,unsigned int>::type Tuint;
|
|
typedef typename cimg::superset<T,int>::type Tint;
|
|
typedef typename cimg::superset<T,cimg_ulong>::type Tulong;
|
|
typedef typename cimg::superset<T,cimg_long>::type Tlong;
|
|
typedef typename cimg::superset<T,float>::type Tfloat;
|
|
typedef typename cimg::superset<T,double>::type Tdouble;
|
|
typedef typename cimg::last<T,bool>::type boolT;
|
|
typedef typename cimg::last<T,unsigned char>::type ucharT;
|
|
typedef typename cimg::last<T,char>::type charT;
|
|
typedef typename cimg::last<T,unsigned short>::type ushortT;
|
|
typedef typename cimg::last<T,short>::type shortT;
|
|
typedef typename cimg::last<T,unsigned int>::type uintT;
|
|
typedef typename cimg::last<T,int>::type intT;
|
|
typedef typename cimg::last<T,cimg_ulong>::type ulongT;
|
|
typedef typename cimg::last<T,cimg_long>::type longT;
|
|
typedef typename cimg::last<T,cimg_uint64>::type uint64T;
|
|
typedef typename cimg::last<T,cimg_int64>::type int64T;
|
|
typedef typename cimg::last<T,float>::type floatT;
|
|
typedef typename cimg::last<T,double>::type doubleT;
|
|
|
|
//@}
|
|
//---------------------------
|
|
//
|
|
//! \name Plugins
|
|
//@{
|
|
//---------------------------
|
|
#ifdef cimglist_plugin
|
|
#include cimglist_plugin
|
|
#endif
|
|
#ifdef cimglist_plugin1
|
|
#include cimglist_plugin1
|
|
#endif
|
|
#ifdef cimglist_plugin2
|
|
#include cimglist_plugin2
|
|
#endif
|
|
#ifdef cimglist_plugin3
|
|
#include cimglist_plugin3
|
|
#endif
|
|
#ifdef cimglist_plugin4
|
|
#include cimglist_plugin4
|
|
#endif
|
|
#ifdef cimglist_plugin5
|
|
#include cimglist_plugin5
|
|
#endif
|
|
#ifdef cimglist_plugin6
|
|
#include cimglist_plugin6
|
|
#endif
|
|
#ifdef cimglist_plugin7
|
|
#include cimglist_plugin7
|
|
#endif
|
|
#ifdef cimglist_plugin8
|
|
#include cimglist_plugin8
|
|
#endif
|
|
|
|
//@}
|
|
//--------------------------------------------------------
|
|
//
|
|
//! \name Constructors / Destructor / Instance Management
|
|
//@{
|
|
//--------------------------------------------------------
|
|
|
|
//! Destructor.
|
|
/**
|
|
Destroy current list instance.
|
|
\note
|
|
- Any allocated buffer is deallocated.
|
|
- Destroying an empty list does nothing actually.
|
|
**/
|
|
~CImgList() {
|
|
delete[] _data;
|
|
}
|
|
|
|
//! Default constructor.
|
|
/**
|
|
Construct a new empty list instance.
|
|
\note
|
|
- An empty list has no pixel data and its dimension width() is set to \c 0, as well as its
|
|
image buffer pointer data().
|
|
- An empty list may be reassigned afterwards, with the family of the assign() methods.
|
|
In all cases, the type of pixels stays \c T.
|
|
**/
|
|
CImgList():
|
|
_width(0),_allocated_width(0),_data(0) {}
|
|
|
|
//! Construct list containing empty images.
|
|
/**
|
|
\param n Number of empty images.
|
|
\note Useful when you know by advance the number of images you want to manage, as
|
|
it will allocate the right amount of memory for the list, without needs for reallocation
|
|
(that may occur when starting from an empty list and inserting several images in it).
|
|
**/
|
|
explicit CImgList(const unsigned int n):_width(n) {
|
|
if (n) _data = new CImg<T>[_allocated_width = std::max(16U,(unsigned int)cimg::nearest_pow2(n))];
|
|
else { _allocated_width = 0; _data = 0; }
|
|
}
|
|
|
|
//! Construct list containing images of specified size.
|
|
/**
|
|
\param n Number of images.
|
|
\param width Width of images.
|
|
\param height Height of images.
|
|
\param depth Depth of images.
|
|
\param spectrum Number of channels of images.
|
|
\note Pixel values are not initialized and may probably contain garbage.
|
|
**/
|
|
CImgList(const unsigned int n, const unsigned int width, const unsigned int height=1,
|
|
const unsigned int depth=1, const unsigned int spectrum=1):
|
|
_width(0),_allocated_width(0),_data(0) {
|
|
assign(n);
|
|
cimglist_apply(*this,assign)(width,height,depth,spectrum);
|
|
}
|
|
|
|
//! Construct list containing images of specified size, and initialize pixel values.
|
|
/**
|
|
\param n Number of images.
|
|
\param width Width of images.
|
|
\param height Height of images.
|
|
\param depth Depth of images.
|
|
\param spectrum Number of channels of images.
|
|
\param val Initialization value for images pixels.
|
|
**/
|
|
CImgList(const unsigned int n, const unsigned int width, const unsigned int height,
|
|
const unsigned int depth, const unsigned int spectrum, const T& val):
|
|
_width(0),_allocated_width(0),_data(0) {
|
|
assign(n);
|
|
cimglist_apply(*this,assign)(width,height,depth,spectrum,val);
|
|
}
|
|
|
|
//! Construct list containing images of specified size, and initialize pixel values from a sequence of integers.
|
|
/**
|
|
\param n Number of images.
|
|
\param width Width of images.
|
|
\param height Height of images.
|
|
\param depth Depth of images.
|
|
\param spectrum Number of channels of images.
|
|
\param val0 First value of the initializing integers sequence.
|
|
\param val1 Second value of the initializing integers sequence.
|
|
\warning You must specify at least <tt>width*height*depth*spectrum</tt> values in your argument list,
|
|
or you will probably segfault.
|
|
**/
|
|
CImgList(const unsigned int n, const unsigned int width, const unsigned int height,
|
|
const unsigned int depth, const unsigned int spectrum, const int val0, const int val1, ...):
|
|
_width(0),_allocated_width(0),_data(0) {
|
|
#define _CImgList_stdarg(t) { \
|
|
assign(n,width,height,depth,spectrum); \
|
|
const ulongT siz = (ulongT)width*height*depth*spectrum, nsiz = siz*n; \
|
|
T *ptrd = _data->_data; \
|
|
va_list ap; \
|
|
va_start(ap,val1); \
|
|
for (ulongT l = 0, s = 0, i = 0; i<nsiz; ++i) { \
|
|
*(ptrd++) = (T)(i==0?val0:(i==1?val1:va_arg(ap,t))); \
|
|
if ((++s)==siz) { ptrd = _data[++l]._data; s = 0; } \
|
|
} \
|
|
va_end(ap); \
|
|
}
|
|
_CImgList_stdarg(int);
|
|
}
|
|
|
|
//! Construct list containing images of specified size, and initialize pixel values from a sequence of doubles.
|
|
/**
|
|
\param n Number of images.
|
|
\param width Width of images.
|
|
\param height Height of images.
|
|
\param depth Depth of images.
|
|
\param spectrum Number of channels of images.
|
|
\param val0 First value of the initializing doubles sequence.
|
|
\param val1 Second value of the initializing doubles sequence.
|
|
\warning You must specify at least <tt>width*height*depth*spectrum</tt> values in your argument list,
|
|
or you will probably segfault.
|
|
**/
|
|
CImgList(const unsigned int n, const unsigned int width, const unsigned int height,
|
|
const unsigned int depth, const unsigned int spectrum, const double val0, const double val1, ...):
|
|
_width(0),_allocated_width(0),_data(0) {
|
|
_CImgList_stdarg(double);
|
|
}
|
|
|
|
//! Construct list containing copies of an input image.
|
|
/**
|
|
\param n Number of images.
|
|
\param img Input image to copy in the constructed list.
|
|
\param is_shared Tells if the elements of the list are shared or non-shared copies of \c img.
|
|
**/
|
|
template<typename t>
|
|
CImgList(const unsigned int n, const CImg<t>& img, const bool is_shared=false):
|
|
_width(0),_allocated_width(0),_data(0) {
|
|
assign(n);
|
|
cimglist_apply(*this,assign)(img,is_shared);
|
|
}
|
|
|
|
//! Construct list from one image.
|
|
/**
|
|
\param img Input image to copy in the constructed list.
|
|
\param is_shared Tells if the element of the list is a shared or non-shared copy of \c img.
|
|
**/
|
|
template<typename t>
|
|
explicit CImgList(const CImg<t>& img, const bool is_shared=false):
|
|
_width(0),_allocated_width(0),_data(0) {
|
|
assign(1);
|
|
_data[0].assign(img,is_shared);
|
|
}
|
|
|
|
//! Construct list from two images.
|
|
/**
|
|
\param img1 First input image to copy in the constructed list.
|
|
\param img2 Second input image to copy in the constructed list.
|
|
\param is_shared Tells if the elements of the list are shared or non-shared copies of input images.
|
|
**/
|
|
template<typename t1, typename t2>
|
|
CImgList(const CImg<t1>& img1, const CImg<t2>& img2, const bool is_shared=false):
|
|
_width(0),_allocated_width(0),_data(0) {
|
|
assign(2);
|
|
_data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared);
|
|
}
|
|
|
|
//! Construct list from three images.
|
|
/**
|
|
\param img1 First input image to copy in the constructed list.
|
|
\param img2 Second input image to copy in the constructed list.
|
|
\param img3 Third input image to copy in the constructed list.
|
|
\param is_shared Tells if the elements of the list are shared or non-shared copies of input images.
|
|
**/
|
|
template<typename t1, typename t2, typename t3>
|
|
CImgList(const CImg<t1>& img1, const CImg<t2>& img2, const CImg<t3>& img3, const bool is_shared=false):
|
|
_width(0),_allocated_width(0),_data(0) {
|
|
assign(3);
|
|
_data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared);
|
|
}
|
|
|
|
//! Construct list from four images.
|
|
/**
|
|
\param img1 First input image to copy in the constructed list.
|
|
\param img2 Second input image to copy in the constructed list.
|
|
\param img3 Third input image to copy in the constructed list.
|
|
\param img4 Fourth input image to copy in the constructed list.
|
|
\param is_shared Tells if the elements of the list are shared or non-shared copies of input images.
|
|
**/
|
|
template<typename t1, typename t2, typename t3, typename t4>
|
|
CImgList(const CImg<t1>& img1, const CImg<t2>& img2, const CImg<t3>& img3, const CImg<t4>& img4,
|
|
const bool is_shared=false):
|
|
_width(0),_allocated_width(0),_data(0) {
|
|
assign(4);
|
|
_data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared);
|
|
_data[3].assign(img4,is_shared);
|
|
}
|
|
|
|
//! Construct list from five images.
|
|
/**
|
|
\param img1 First input image to copy in the constructed list.
|
|
\param img2 Second input image to copy in the constructed list.
|
|
\param img3 Third input image to copy in the constructed list.
|
|
\param img4 Fourth input image to copy in the constructed list.
|
|
\param img5 Fifth input image to copy in the constructed list.
|
|
\param is_shared Tells if the elements of the list are shared or non-shared copies of input images.
|
|
**/
|
|
template<typename t1, typename t2, typename t3, typename t4, typename t5>
|
|
CImgList(const CImg<t1>& img1, const CImg<t2>& img2, const CImg<t3>& img3, const CImg<t4>& img4,
|
|
const CImg<t5>& img5, const bool is_shared=false):
|
|
_width(0),_allocated_width(0),_data(0) {
|
|
assign(5);
|
|
_data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared);
|
|
_data[3].assign(img4,is_shared); _data[4].assign(img5,is_shared);
|
|
}
|
|
|
|
//! Construct list from six images.
|
|
/**
|
|
\param img1 First input image to copy in the constructed list.
|
|
\param img2 Second input image to copy in the constructed list.
|
|
\param img3 Third input image to copy in the constructed list.
|
|
\param img4 Fourth input image to copy in the constructed list.
|
|
\param img5 Fifth input image to copy in the constructed list.
|
|
\param img6 Sixth input image to copy in the constructed list.
|
|
\param is_shared Tells if the elements of the list are shared or non-shared copies of input images.
|
|
**/
|
|
template<typename t1, typename t2, typename t3, typename t4, typename t5, typename t6>
|
|
CImgList(const CImg<t1>& img1, const CImg<t2>& img2, const CImg<t3>& img3, const CImg<t4>& img4,
|
|
const CImg<t5>& img5, const CImg<t6>& img6, const bool is_shared=false):
|
|
_width(0),_allocated_width(0),_data(0) {
|
|
assign(6);
|
|
_data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared);
|
|
_data[3].assign(img4,is_shared); _data[4].assign(img5,is_shared); _data[5].assign(img6,is_shared);
|
|
}
|
|
|
|
//! Construct list from seven images.
|
|
/**
|
|
\param img1 First input image to copy in the constructed list.
|
|
\param img2 Second input image to copy in the constructed list.
|
|
\param img3 Third input image to copy in the constructed list.
|
|
\param img4 Fourth input image to copy in the constructed list.
|
|
\param img5 Fifth input image to copy in the constructed list.
|
|
\param img6 Sixth input image to copy in the constructed list.
|
|
\param img7 Seventh input image to copy in the constructed list.
|
|
\param is_shared Tells if the elements of the list are shared or non-shared copies of input images.
|
|
**/
|
|
template<typename t1, typename t2, typename t3, typename t4, typename t5, typename t6, typename t7>
|
|
CImgList(const CImg<t1>& img1, const CImg<t2>& img2, const CImg<t3>& img3, const CImg<t4>& img4,
|
|
const CImg<t5>& img5, const CImg<t6>& img6, const CImg<t7>& img7, const bool is_shared=false):
|
|
_width(0),_allocated_width(0),_data(0) {
|
|
assign(7);
|
|
_data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared);
|
|
_data[3].assign(img4,is_shared); _data[4].assign(img5,is_shared); _data[5].assign(img6,is_shared);
|
|
_data[6].assign(img7,is_shared);
|
|
}
|
|
|
|
//! Construct list from eight images.
|
|
/**
|
|
\param img1 First input image to copy in the constructed list.
|
|
\param img2 Second input image to copy in the constructed list.
|
|
\param img3 Third input image to copy in the constructed list.
|
|
\param img4 Fourth input image to copy in the constructed list.
|
|
\param img5 Fifth input image to copy in the constructed list.
|
|
\param img6 Sixth input image to copy in the constructed list.
|
|
\param img7 Seventh input image to copy in the constructed list.
|
|
\param img8 Eighth input image to copy in the constructed list.
|
|
\param is_shared Tells if the elements of the list are shared or non-shared copies of input images.
|
|
**/
|
|
template<typename t1, typename t2, typename t3, typename t4, typename t5, typename t6, typename t7, typename t8>
|
|
CImgList(const CImg<t1>& img1, const CImg<t2>& img2, const CImg<t3>& img3, const CImg<t4>& img4,
|
|
const CImg<t5>& img5, const CImg<t6>& img6, const CImg<t7>& img7, const CImg<t8>& img8,
|
|
const bool is_shared=false):
|
|
_width(0),_allocated_width(0),_data(0) {
|
|
assign(8);
|
|
_data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared);
|
|
_data[3].assign(img4,is_shared); _data[4].assign(img5,is_shared); _data[5].assign(img6,is_shared);
|
|
_data[6].assign(img7,is_shared); _data[7].assign(img8,is_shared);
|
|
}
|
|
|
|
//! Construct list copy.
|
|
/**
|
|
\param list Input list to copy.
|
|
\note The shared state of each element of the constructed list is kept the same as in \c list.
|
|
**/
|
|
template<typename t>
|
|
CImgList(const CImgList<t>& list):_width(0),_allocated_width(0),_data(0) {
|
|
assign(list._width);
|
|
cimglist_for(*this,l) _data[l].assign(list[l],false);
|
|
}
|
|
|
|
//! Construct list copy \specialization.
|
|
CImgList(const CImgList<T>& list):_width(0),_allocated_width(0),_data(0) {
|
|
assign(list._width);
|
|
cimglist_for(*this,l) _data[l].assign(list[l],list[l]._is_shared);
|
|
}
|
|
|
|
//! Construct list copy, and force the shared state of the list elements.
|
|
/**
|
|
\param list Input list to copy.
|
|
\param is_shared Tells if the elements of the list are shared or non-shared copies of input images.
|
|
**/
|
|
template<typename t>
|
|
CImgList(const CImgList<t>& list, const bool is_shared):_width(0),_allocated_width(0),_data(0) {
|
|
assign(list._width);
|
|
cimglist_for(*this,l) _data[l].assign(list[l],is_shared);
|
|
}
|
|
|
|
//! Construct list by reading the content of a file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
**/
|
|
explicit CImgList(const char *const filename):_width(0),_allocated_width(0),_data(0) {
|
|
assign(filename);
|
|
}
|
|
|
|
//! Construct list from the content of a display window.
|
|
/**
|
|
\param disp Display window to get content from.
|
|
\note Constructed list contains a single image only.
|
|
**/
|
|
explicit CImgList(const CImgDisplay& disp):_width(0),_allocated_width(0),_data(0) {
|
|
assign(disp);
|
|
}
|
|
|
|
//! Return a list with elements being shared copies of images in the list instance.
|
|
/**
|
|
\note <tt>list2 = list1.get_shared()</tt> is equivalent to <tt>list2.assign(list1,true)</tt>.
|
|
**/
|
|
CImgList<T> get_shared() {
|
|
CImgList<T> res(_width);
|
|
cimglist_for(*this,l) res[l].assign(_data[l],true);
|
|
return res;
|
|
}
|
|
|
|
//! Return a list with elements being shared copies of images in the list instance \const.
|
|
const CImgList<T> get_shared() const {
|
|
CImgList<T> res(_width);
|
|
cimglist_for(*this,l) res[l].assign(_data[l],true);
|
|
return res;
|
|
}
|
|
|
|
//! Destructor \inplace.
|
|
/**
|
|
\see CImgList().
|
|
**/
|
|
CImgList<T>& assign() {
|
|
delete[] _data;
|
|
_width = _allocated_width = 0;
|
|
_data = 0;
|
|
return *this;
|
|
}
|
|
|
|
//! Destructor \inplace.
|
|
/**
|
|
Equivalent to assign().
|
|
\note Only here for compatibility with STL naming conventions.
|
|
**/
|
|
CImgList<T>& clear() {
|
|
return assign();
|
|
}
|
|
|
|
//! Construct list containing empty images \inplace.
|
|
/**
|
|
\see CImgList(unsigned int).
|
|
**/
|
|
CImgList<T>& assign(const unsigned int n) {
|
|
if (!n) return assign();
|
|
if (_allocated_width<n || _allocated_width>(n<<2)) {
|
|
delete[] _data;
|
|
_data = new CImg<T>[_allocated_width = std::max(16U,(unsigned int)cimg::nearest_pow2(n))];
|
|
}
|
|
_width = n;
|
|
return *this;
|
|
}
|
|
|
|
//! Construct list containing images of specified size \inplace.
|
|
/**
|
|
\see CImgList(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int).
|
|
**/
|
|
CImgList<T>& assign(const unsigned int n, const unsigned int width, const unsigned int height=1,
|
|
const unsigned int depth=1, const unsigned int spectrum=1) {
|
|
assign(n);
|
|
cimglist_apply(*this,assign)(width,height,depth,spectrum);
|
|
return *this;
|
|
}
|
|
|
|
//! Construct list containing images of specified size, and initialize pixel values \inplace.
|
|
/**
|
|
\see CImgList(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int, const T).
|
|
**/
|
|
CImgList<T>& assign(const unsigned int n, const unsigned int width, const unsigned int height,
|
|
const unsigned int depth, const unsigned int spectrum, const T& val) {
|
|
assign(n);
|
|
cimglist_apply(*this,assign)(width,height,depth,spectrum,val);
|
|
return *this;
|
|
}
|
|
|
|
//! Construct list with images of specified size, and initialize pixel values from a sequence of integers \inplace.
|
|
/**
|
|
\see CImgList(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int, const int, const int, ...).
|
|
**/
|
|
CImgList<T>& assign(const unsigned int n, const unsigned int width, const unsigned int height,
|
|
const unsigned int depth, const unsigned int spectrum, const int val0, const int val1, ...) {
|
|
_CImgList_stdarg(int);
|
|
return *this;
|
|
}
|
|
|
|
//! Construct list with images of specified size, and initialize pixel values from a sequence of doubles \inplace.
|
|
/**
|
|
\see CImgList(unsigned int,unsigned int,unsigned int,unsigned int,unsigned int,const double,const double,...).
|
|
**/
|
|
CImgList<T>& assign(const unsigned int n, const unsigned int width, const unsigned int height,
|
|
const unsigned int depth, const unsigned int spectrum,
|
|
const double val0, const double val1, ...) {
|
|
_CImgList_stdarg(double);
|
|
return *this;
|
|
}
|
|
|
|
//! Construct list containing copies of an input image \inplace.
|
|
/**
|
|
\see CImgList(unsigned int, const CImg<t>&, bool).
|
|
**/
|
|
template<typename t>
|
|
CImgList<T>& assign(const unsigned int n, const CImg<t>& img, const bool is_shared=false) {
|
|
assign(n);
|
|
cimglist_apply(*this,assign)(img,is_shared);
|
|
return *this;
|
|
}
|
|
|
|
//! Construct list from one image \inplace.
|
|
/**
|
|
\see CImgList(const CImg<t>&, bool).
|
|
**/
|
|
template<typename t>
|
|
CImgList<T>& assign(const CImg<t>& img, const bool is_shared=false) {
|
|
assign(1);
|
|
_data[0].assign(img,is_shared);
|
|
return *this;
|
|
}
|
|
|
|
//! Construct list from two images \inplace.
|
|
/**
|
|
\see CImgList(const CImg<t>&, const CImg<t>&, bool).
|
|
**/
|
|
template<typename t1, typename t2>
|
|
CImgList<T>& assign(const CImg<t1>& img1, const CImg<t2>& img2, const bool is_shared=false) {
|
|
assign(2);
|
|
_data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared);
|
|
return *this;
|
|
}
|
|
|
|
//! Construct list from three images \inplace.
|
|
/**
|
|
\see CImgList(const CImg<t>&, const CImg<t>&, const CImg<t>&, bool).
|
|
**/
|
|
template<typename t1, typename t2, typename t3>
|
|
CImgList<T>& assign(const CImg<t1>& img1, const CImg<t2>& img2, const CImg<t3>& img3, const bool is_shared=false) {
|
|
assign(3);
|
|
_data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared);
|
|
return *this;
|
|
}
|
|
|
|
//! Construct list from four images \inplace.
|
|
/**
|
|
\see CImgList(const CImg<t>&, const CImg<t>&, const CImg<t>&, const CImg<t>&, bool).
|
|
**/
|
|
template<typename t1, typename t2, typename t3, typename t4>
|
|
CImgList<T>& assign(const CImg<t1>& img1, const CImg<t2>& img2, const CImg<t3>& img3, const CImg<t4>& img4,
|
|
const bool is_shared=false) {
|
|
assign(4);
|
|
_data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared);
|
|
_data[3].assign(img4,is_shared);
|
|
return *this;
|
|
}
|
|
|
|
//! Construct list from five images \inplace.
|
|
/**
|
|
\see CImgList(const CImg<t>&, const CImg<t>&, const CImg<t>&, const CImg<t>&, const CImg<t>&, bool).
|
|
**/
|
|
template<typename t1, typename t2, typename t3, typename t4, typename t5>
|
|
CImgList<T>& assign(const CImg<t1>& img1, const CImg<t2>& img2, const CImg<t3>& img3, const CImg<t4>& img4,
|
|
const CImg<t5>& img5, const bool is_shared=false) {
|
|
assign(5);
|
|
_data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared);
|
|
_data[3].assign(img4,is_shared); _data[4].assign(img5,is_shared);
|
|
return *this;
|
|
}
|
|
|
|
//! Construct list from six images \inplace.
|
|
/**
|
|
\see CImgList(const CImg<t>&,const CImg<t>&,const CImg<t>&,const CImg<t>&,const CImg<t>&,const CImg<t>&, bool).
|
|
**/
|
|
template<typename t1, typename t2, typename t3, typename t4, typename t5, typename t6>
|
|
CImgList<T>& assign(const CImg<t1>& img1, const CImg<t2>& img2, const CImg<t3>& img3, const CImg<t4>& img4,
|
|
const CImg<t5>& img5, const CImg<t6>& img6, const bool is_shared=false) {
|
|
assign(6);
|
|
_data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared);
|
|
_data[3].assign(img4,is_shared); _data[4].assign(img5,is_shared); _data[5].assign(img6,is_shared);
|
|
return *this;
|
|
}
|
|
|
|
//! Construct list from seven images \inplace.
|
|
/**
|
|
\see CImgList(const CImg<t>&,const CImg<t>&,const CImg<t>&,const CImg<t>&,const CImg<t>&,const CImg<t>&,
|
|
const CImg<t>&, bool).
|
|
**/
|
|
template<typename t1, typename t2, typename t3, typename t4, typename t5, typename t6, typename t7>
|
|
CImgList<T>& assign(const CImg<t1>& img1, const CImg<t2>& img2, const CImg<t3>& img3, const CImg<t4>& img4,
|
|
const CImg<t5>& img5, const CImg<t6>& img6, const CImg<t7>& img7, const bool is_shared=false) {
|
|
assign(7);
|
|
_data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared);
|
|
_data[3].assign(img4,is_shared); _data[4].assign(img5,is_shared); _data[5].assign(img6,is_shared);
|
|
_data[6].assign(img7,is_shared);
|
|
return *this;
|
|
}
|
|
|
|
//! Construct list from eight images \inplace.
|
|
/**
|
|
\see CImgList(const CImg<t>&,const CImg<t>&,const CImg<t>&,const CImg<t>&,const CImg<t>&,const CImg<t>&,
|
|
const CImg<t>&, const CImg<t>&, bool).
|
|
**/
|
|
template<typename t1, typename t2, typename t3, typename t4, typename t5, typename t6, typename t7, typename t8>
|
|
CImgList<T>& assign(const CImg<t1>& img1, const CImg<t2>& img2, const CImg<t3>& img3, const CImg<t4>& img4,
|
|
const CImg<t5>& img5, const CImg<t6>& img6, const CImg<t7>& img7, const CImg<t8>& img8,
|
|
const bool is_shared=false) {
|
|
assign(8);
|
|
_data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared);
|
|
_data[3].assign(img4,is_shared); _data[4].assign(img5,is_shared); _data[5].assign(img6,is_shared);
|
|
_data[6].assign(img7,is_shared); _data[7].assign(img8,is_shared);
|
|
return *this;
|
|
}
|
|
|
|
//! Construct list as a copy of an existing list and force the shared state of the list elements \inplace.
|
|
/**
|
|
\see CImgList(const CImgList<t>&, bool is_shared).
|
|
**/
|
|
template<typename t>
|
|
CImgList<T>& assign(const CImgList<t>& list, const bool is_shared=false) {
|
|
cimg::unused(is_shared);
|
|
assign(list._width);
|
|
cimglist_for(*this,l) _data[l].assign(list[l],false);
|
|
return *this;
|
|
}
|
|
|
|
//! Construct list as a copy of an existing list and force shared state of elements \inplace \specialization.
|
|
CImgList<T>& assign(const CImgList<T>& list, const bool is_shared=false) {
|
|
if (this==&list) return *this;
|
|
CImgList<T> res(list._width);
|
|
cimglist_for(res,l) res[l].assign(list[l],is_shared);
|
|
return res.move_to(*this);
|
|
}
|
|
|
|
//! Construct list by reading the content of a file \inplace.
|
|
/**
|
|
\see CImgList(const char *const).
|
|
**/
|
|
CImgList<T>& assign(const char *const filename) {
|
|
return load(filename);
|
|
}
|
|
|
|
//! Construct list from the content of a display window \inplace.
|
|
/**
|
|
\see CImgList(const CImgDisplay&).
|
|
**/
|
|
CImgList<T>& assign(const CImgDisplay &disp) {
|
|
return assign(CImg<T>(disp));
|
|
}
|
|
|
|
//! Transfer the content of the list instance to another list.
|
|
/**
|
|
\param list Destination list.
|
|
\note When returning, the current list instance is empty and the initial content of \c list is destroyed.
|
|
**/
|
|
template<typename t>
|
|
CImgList<t>& move_to(CImgList<t>& list) {
|
|
list.assign(_width);
|
|
bool is_one_shared_element = false;
|
|
cimglist_for(*this,l) is_one_shared_element|=_data[l]._is_shared;
|
|
if (is_one_shared_element) cimglist_for(*this,l) list[l].assign(_data[l]);
|
|
else cimglist_for(*this,l) _data[l].move_to(list[l]);
|
|
assign();
|
|
return list;
|
|
}
|
|
|
|
//! Transfer the content of the list instance at a specified position in another list.
|
|
/**
|
|
\param list Destination list.
|
|
\param pos Index of the insertion in the list.
|
|
\note When returning, the list instance is empty and the initial content of \c list is preserved
|
|
(only images indexes may be modified).
|
|
**/
|
|
template<typename t>
|
|
CImgList<t>& move_to(CImgList<t>& list, const unsigned int pos) {
|
|
if (is_empty()) return list;
|
|
const unsigned int npos = pos>list._width?list._width:pos;
|
|
list.insert(_width,npos);
|
|
bool is_one_shared_element = false;
|
|
cimglist_for(*this,l) is_one_shared_element|=_data[l]._is_shared;
|
|
if (is_one_shared_element) cimglist_for(*this,l) list[npos + l].assign(_data[l]);
|
|
else cimglist_for(*this,l) _data[l].move_to(list[npos + l]);
|
|
assign();
|
|
return list;
|
|
}
|
|
|
|
//! Swap all fields between two list instances.
|
|
/**
|
|
\param list List to swap fields with.
|
|
\note Can be used to exchange the content of two lists in a fast way.
|
|
**/
|
|
CImgList<T>& swap(CImgList<T>& list) {
|
|
cimg::swap(_width,list._width,_allocated_width,list._allocated_width);
|
|
cimg::swap(_data,list._data);
|
|
return list;
|
|
}
|
|
|
|
//! Return a reference to an empty list.
|
|
/**
|
|
\note Can be used to define default values in a function taking a CImgList<T> as an argument.
|
|
\code
|
|
void f(const CImgList<char>& list=CImgList<char>::empty());
|
|
\endcode
|
|
**/
|
|
static CImgList<T>& empty() {
|
|
static CImgList<T> _empty;
|
|
return _empty.assign();
|
|
}
|
|
|
|
//! Return a reference to an empty list \const.
|
|
static const CImgList<T>& const_empty() {
|
|
static const CImgList<T> _empty;
|
|
return _empty;
|
|
}
|
|
|
|
//@}
|
|
//------------------------------------------
|
|
//
|
|
//! \name Overloaded Operators
|
|
//@{
|
|
//------------------------------------------
|
|
|
|
//! Return a reference to one image element of the list.
|
|
/**
|
|
\param pos Index of the image element.
|
|
**/
|
|
CImg<T>& operator()(const unsigned int pos) {
|
|
#if cimg_verbosity>=3
|
|
if (pos>=_width) {
|
|
cimg::warn(_cimglist_instance
|
|
"operator(): Invalid image request, at position [%u].",
|
|
cimglist_instance,
|
|
pos);
|
|
return *_data;
|
|
}
|
|
#endif
|
|
return _data[pos];
|
|
}
|
|
|
|
//! Return a reference to one image of the list.
|
|
/**
|
|
\param pos Index of the image element.
|
|
**/
|
|
const CImg<T>& operator()(const unsigned int pos) const {
|
|
return const_cast<CImgList<T>*>(this)->operator()(pos);
|
|
}
|
|
|
|
//! Return a reference to one pixel value of one image of the list.
|
|
/**
|
|
\param pos Index of the image element.
|
|
\param x X-coordinate of the pixel value.
|
|
\param y Y-coordinate of the pixel value.
|
|
\param z Z-coordinate of the pixel value.
|
|
\param c C-coordinate of the pixel value.
|
|
\note <tt>list(n,x,y,z,c)</tt> is equivalent to <tt>list[n](x,y,z,c)</tt>.
|
|
**/
|
|
T& operator()(const unsigned int pos, const unsigned int x, const unsigned int y=0,
|
|
const unsigned int z=0, const unsigned int c=0) {
|
|
return (*this)[pos](x,y,z,c);
|
|
}
|
|
|
|
//! Return a reference to one pixel value of one image of the list \const.
|
|
const T& operator()(const unsigned int pos, const unsigned int x, const unsigned int y=0,
|
|
const unsigned int z=0, const unsigned int c=0) const {
|
|
return (*this)[pos](x,y,z,c);
|
|
}
|
|
|
|
//! Return pointer to the first image of the list.
|
|
/**
|
|
\note Images in a list are stored as a buffer of \c CImg<T>.
|
|
**/
|
|
operator CImg<T>*() {
|
|
return _data;
|
|
}
|
|
|
|
//! Return pointer to the first image of the list \const.
|
|
operator const CImg<T>*() const {
|
|
return _data;
|
|
}
|
|
|
|
//! Construct list from one image \inplace.
|
|
/**
|
|
\param img Input image to copy in the constructed list.
|
|
\note <tt>list = img;</tt> is equivalent to <tt>list.assign(img);</tt>.
|
|
**/
|
|
template<typename t>
|
|
CImgList<T>& operator=(const CImg<t>& img) {
|
|
return assign(img);
|
|
}
|
|
|
|
//! Construct list from another list.
|
|
/**
|
|
\param list Input list to copy.
|
|
\note <tt>list1 = list2</tt> is equivalent to <tt>list1.assign(list2);</tt>.
|
|
**/
|
|
template<typename t>
|
|
CImgList<T>& operator=(const CImgList<t>& list) {
|
|
return assign(list);
|
|
}
|
|
|
|
//! Construct list from another list \specialization.
|
|
CImgList<T>& operator=(const CImgList<T>& list) {
|
|
return assign(list);
|
|
}
|
|
|
|
//! Construct list by reading the content of a file \inplace.
|
|
/**
|
|
\see CImgList(const char *const).
|
|
**/
|
|
CImgList<T>& operator=(const char *const filename) {
|
|
return assign(filename);
|
|
}
|
|
|
|
//! Construct list from the content of a display window \inplace.
|
|
/**
|
|
\see CImgList(const CImgDisplay&).
|
|
**/
|
|
CImgList<T>& operator=(const CImgDisplay& disp) {
|
|
return assign(disp);
|
|
}
|
|
|
|
//! Return a non-shared copy of a list.
|
|
/**
|
|
\note <tt>+list</tt> is equivalent to <tt>CImgList<T>(list,false)</tt>.
|
|
It forces the copy to have non-shared elements.
|
|
**/
|
|
CImgList<T> operator+() const {
|
|
return CImgList<T>(*this,false);
|
|
}
|
|
|
|
//! Return a copy of the list instance, where image \c img has been inserted at the end.
|
|
/**
|
|
\param img Image inserted at the end of the instance copy.
|
|
\note Define a convenient way to create temporary lists of images, as in the following code:
|
|
\code
|
|
(img1,img2,img3,img4).display("My four images");
|
|
\endcode
|
|
**/
|
|
template<typename t>
|
|
CImgList<T>& operator,(const CImg<t>& img) {
|
|
return insert(img);
|
|
}
|
|
|
|
//! Return a copy of the list instance, where image \c img has been inserted at the end \const.
|
|
template<typename t>
|
|
CImgList<T> operator,(const CImg<t>& img) const {
|
|
return (+*this).insert(img);
|
|
}
|
|
|
|
//! Return a copy of the list instance, where all elements of input list \c list have been inserted at the end.
|
|
/**
|
|
\param list List inserted at the end of the instance copy.
|
|
**/
|
|
template<typename t>
|
|
CImgList<T>& operator,(const CImgList<t>& list) {
|
|
return insert(list);
|
|
}
|
|
|
|
//! Return a copy of the list instance, where all elements of input \c list have been inserted at the end \const.
|
|
template<typename t>
|
|
CImgList<T>& operator,(const CImgList<t>& list) const {
|
|
return (+*this).insert(list);
|
|
}
|
|
|
|
//! Return image corresponding to the appending of all images of the instance list along specified axis.
|
|
/**
|
|
\param axis Appending axis. Can be <tt>{ 'x' | 'y' | 'z' | 'c' }</tt>.
|
|
\note <tt>list>'x'</tt> is equivalent to <tt>list.get_append('x')</tt>.
|
|
**/
|
|
CImg<T> operator>(const char axis) const {
|
|
return get_append(axis,0);
|
|
}
|
|
|
|
//! Return list corresponding to the splitting of all images of the instance list along specified axis.
|
|
/**
|
|
\param axis Axis used for image splitting.
|
|
\note <tt>list<'x'</tt> is equivalent to <tt>list.get_split('x')</tt>.
|
|
**/
|
|
CImgList<T> operator<(const char axis) const {
|
|
return get_split(axis);
|
|
}
|
|
|
|
//@}
|
|
//-------------------------------------
|
|
//
|
|
//! \name Instance Characteristics
|
|
//@{
|
|
//-------------------------------------
|
|
|
|
//! Return the type of image pixel values as a C string.
|
|
/**
|
|
Return a \c char* string containing the usual type name of the image pixel values
|
|
(i.e. a stringified version of the template parameter \c T).
|
|
\note
|
|
- The returned string does not contain any spaces.
|
|
- If the pixel type \c T does not correspond to a registered type, the string <tt>"unknown"</tt> is returned.
|
|
**/
|
|
static const char* pixel_type() {
|
|
return cimg::type<T>::string();
|
|
}
|
|
|
|
//! Return the size of the list, i.e. the number of images contained in it.
|
|
/**
|
|
\note Similar to size() but returns result as a (signed) integer.
|
|
**/
|
|
int width() const {
|
|
return (int)_width;
|
|
}
|
|
|
|
//! Return the size of the list, i.e. the number of images contained in it.
|
|
/**
|
|
\note Similar to width() but returns result as an unsigned integer.
|
|
**/
|
|
unsigned int size() const {
|
|
return _width;
|
|
}
|
|
|
|
//! Return pointer to the first image of the list.
|
|
/**
|
|
\note Images in a list are stored as a buffer of \c CImg<T>.
|
|
**/
|
|
CImg<T> *data() {
|
|
return _data;
|
|
}
|
|
|
|
//! Return pointer to the first image of the list \const.
|
|
const CImg<T> *data() const {
|
|
return _data;
|
|
}
|
|
|
|
//! Return pointer to the pos-th image of the list.
|
|
/**
|
|
\param pos Index of the image element to access.
|
|
\note <tt>list.data(n);</tt> is equivalent to <tt>list.data + n;</tt>.
|
|
**/
|
|
#if cimg_verbosity>=3
|
|
CImg<T> *data(const unsigned int pos) {
|
|
if (pos>=size())
|
|
cimg::warn(_cimglist_instance
|
|
"data(): Invalid pointer request, at position [%u].",
|
|
cimglist_instance,
|
|
pos);
|
|
return _data + pos;
|
|
}
|
|
|
|
const CImg<T> *data(const unsigned int l) const {
|
|
return const_cast<CImgList<T>*>(this)->data(l);
|
|
}
|
|
#else
|
|
CImg<T> *data(const unsigned int l) {
|
|
return _data + l;
|
|
}
|
|
|
|
//! Return pointer to the pos-th image of the list \const.
|
|
const CImg<T> *data(const unsigned int l) const {
|
|
return _data + l;
|
|
}
|
|
#endif
|
|
|
|
//! Return iterator to the first image of the list.
|
|
/**
|
|
**/
|
|
iterator begin() {
|
|
return _data;
|
|
}
|
|
|
|
//! Return iterator to the first image of the list \const.
|
|
const_iterator begin() const {
|
|
return _data;
|
|
}
|
|
|
|
//! Return iterator to one position after the last image of the list.
|
|
/**
|
|
**/
|
|
iterator end() {
|
|
return _data + _width;
|
|
}
|
|
|
|
//! Return iterator to one position after the last image of the list \const.
|
|
const_iterator end() const {
|
|
return _data + _width;
|
|
}
|
|
|
|
//! Return reference to the first image of the list.
|
|
/**
|
|
**/
|
|
CImg<T>& front() {
|
|
return *_data;
|
|
}
|
|
|
|
//! Return reference to the first image of the list \const.
|
|
const CImg<T>& front() const {
|
|
return *_data;
|
|
}
|
|
|
|
//! Return a reference to the last image of the list.
|
|
/**
|
|
**/
|
|
const CImg<T>& back() const {
|
|
return *(_data + _width - 1);
|
|
}
|
|
|
|
//! Return a reference to the last image of the list \const.
|
|
CImg<T>& back() {
|
|
return *(_data + _width - 1);
|
|
}
|
|
|
|
//! Return pos-th image of the list.
|
|
/**
|
|
\param pos Index of the image element to access.
|
|
**/
|
|
CImg<T>& at(const int pos) {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimglist_instance
|
|
"at(): Empty instance.",
|
|
cimglist_instance);
|
|
|
|
return _data[cimg::cut(pos,0,width() - 1)];
|
|
}
|
|
|
|
//! Access to pixel value with Dirichlet boundary conditions.
|
|
/**
|
|
\param pos Index of the image element to access.
|
|
\param x X-coordinate of the pixel value.
|
|
\param y Y-coordinate of the pixel value.
|
|
\param z Z-coordinate of the pixel value.
|
|
\param c C-coordinate of the pixel value.
|
|
\param out_value Default value returned if \c offset is outside image bounds.
|
|
\note <tt>list.atNXYZC(p,x,y,z,c);</tt> is equivalent to <tt>list[p].atXYZC(x,y,z,c);</tt>.
|
|
**/
|
|
T& atNXYZC(const int pos, const int x, const int y, const int z, const int c, const T& out_value) {
|
|
return (pos<0 || pos>=width())?(cimg::temporary(out_value)=out_value):_data[pos].atXYZC(x,y,z,c,out_value);
|
|
}
|
|
|
|
//! Access to pixel value with Dirichlet boundary conditions \const.
|
|
T atNXYZC(const int pos, const int x, const int y, const int z, const int c, const T& out_value) const {
|
|
return (pos<0 || pos>=width())?out_value:_data[pos].atXYZC(x,y,z,c,out_value);
|
|
}
|
|
|
|
//! Access to pixel value with Neumann boundary conditions.
|
|
/**
|
|
\param pos Index of the image element to access.
|
|
\param x X-coordinate of the pixel value.
|
|
\param y Y-coordinate of the pixel value.
|
|
\param z Z-coordinate of the pixel value.
|
|
\param c C-coordinate of the pixel value.
|
|
\note <tt>list.atNXYZC(p,x,y,z,c);</tt> is equivalent to <tt>list[p].atXYZC(x,y,z,c);</tt>.
|
|
**/
|
|
T& atNXYZC(const int pos, const int x, const int y, const int z, const int c) {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimglist_instance
|
|
"atNXYZC(): Empty instance.",
|
|
cimglist_instance);
|
|
|
|
return _atNXYZC(pos,x,y,z,c);
|
|
}
|
|
|
|
//! Access to pixel value with Neumann boundary conditions \const.
|
|
T atNXYZC(const int pos, const int x, const int y, const int z, const int c) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimglist_instance
|
|
"atNXYZC(): Empty instance.",
|
|
cimglist_instance);
|
|
|
|
return _atNXYZC(pos,x,y,z,c);
|
|
}
|
|
|
|
T& _atNXYZC(const int pos, const int x, const int y, const int z, const int c) {
|
|
return _data[cimg::cut(pos,0,width() - 1)].atXYZC(x,y,z,c);
|
|
}
|
|
|
|
T _atNXYZC(const int pos, const int x, const int y, const int z, const int c) const {
|
|
return _data[cimg::cut(pos,0,width() - 1)].atXYZC(x,y,z,c);
|
|
}
|
|
|
|
//! Access pixel value with Dirichlet boundary conditions for the 3 coordinates (\c pos, \c x,\c y,\c z).
|
|
/**
|
|
\param pos Index of the image element to access.
|
|
\param x X-coordinate of the pixel value.
|
|
\param y Y-coordinate of the pixel value.
|
|
\param z Z-coordinate of the pixel value.
|
|
\param c C-coordinate of the pixel value.
|
|
\param out_value Default value returned if \c offset is outside image bounds.
|
|
\note <tt>list.atNXYZ(p,x,y,z,c);</tt> is equivalent to <tt>list[p].atXYZ(x,y,z,c);</tt>.
|
|
**/
|
|
T& atNXYZ(const int pos, const int x, const int y, const int z, const int c, const T& out_value) {
|
|
return (pos<0 || pos>=width())?(cimg::temporary(out_value)=out_value):_data[pos].atXYZ(x,y,z,c,out_value);
|
|
}
|
|
|
|
//! Access pixel value with Dirichlet boundary conditions for the 3 coordinates (\c pos, \c x,\c y,\c z) \const.
|
|
T atNXYZ(const int pos, const int x, const int y, const int z, const int c, const T& out_value) const {
|
|
return (pos<0 || pos>=width())?out_value:_data[pos].atXYZ(x,y,z,c,out_value);
|
|
}
|
|
|
|
//! Access to pixel value with Neumann boundary conditions for the 4 coordinates (\c pos, \c x,\c y,\c z).
|
|
/**
|
|
\param pos Index of the image element to access.
|
|
\param x X-coordinate of the pixel value.
|
|
\param y Y-coordinate of the pixel value.
|
|
\param z Z-coordinate of the pixel value.
|
|
\param c C-coordinate of the pixel value.
|
|
\note <tt>list.atNXYZ(p,x,y,z,c);</tt> is equivalent to <tt>list[p].atXYZ(x,y,z,c);</tt>.
|
|
**/
|
|
T& atNXYZ(const int pos, const int x, const int y, const int z, const int c=0) {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimglist_instance
|
|
"atNXYZ(): Empty instance.",
|
|
cimglist_instance);
|
|
|
|
return _atNXYZ(pos,x,y,z,c);
|
|
}
|
|
|
|
//! Access to pixel value with Neumann boundary conditions for the 4 coordinates (\c pos, \c x,\c y,\c z) \const.
|
|
T atNXYZ(const int pos, const int x, const int y, const int z, const int c=0) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimglist_instance
|
|
"atNXYZ(): Empty instance.",
|
|
cimglist_instance);
|
|
|
|
return _atNXYZ(pos,x,y,z,c);
|
|
}
|
|
|
|
T& _atNXYZ(const int pos, const int x, const int y, const int z, const int c=0) {
|
|
return _data[cimg::cut(pos,0,width() - 1)].atXYZ(x,y,z,c);
|
|
}
|
|
|
|
T _atNXYZ(const int pos, const int x, const int y, const int z, const int c=0) const {
|
|
return _data[cimg::cut(pos,0,width() - 1)].atXYZ(x,y,z,c);
|
|
}
|
|
|
|
//! Access to pixel value with Dirichlet boundary conditions for the 3 coordinates (\c pos, \c x,\c y).
|
|
/**
|
|
\param pos Index of the image element to access.
|
|
\param x X-coordinate of the pixel value.
|
|
\param y Y-coordinate of the pixel value.
|
|
\param z Z-coordinate of the pixel value.
|
|
\param c C-coordinate of the pixel value.
|
|
\param out_value Default value returned if \c offset is outside image bounds.
|
|
\note <tt>list.atNXYZ(p,x,y,z,c);</tt> is equivalent to <tt>list[p].atXYZ(x,y,z,c);</tt>.
|
|
**/
|
|
T& atNXY(const int pos, const int x, const int y, const int z, const int c, const T& out_value) {
|
|
return (pos<0 || pos>=width())?(cimg::temporary(out_value)=out_value):_data[pos].atXY(x,y,z,c,out_value);
|
|
}
|
|
|
|
//! Access to pixel value with Dirichlet boundary conditions for the 3 coordinates (\c pos, \c x,\c y) \const.
|
|
T atNXY(const int pos, const int x, const int y, const int z, const int c, const T& out_value) const {
|
|
return (pos<0 || pos>=width())?out_value:_data[pos].atXY(x,y,z,c,out_value);
|
|
}
|
|
|
|
//! Access to pixel value with Neumann boundary conditions for the 3 coordinates (\c pos, \c x,\c y).
|
|
/**
|
|
\param pos Index of the image element to access.
|
|
\param x X-coordinate of the pixel value.
|
|
\param y Y-coordinate of the pixel value.
|
|
\param z Z-coordinate of the pixel value.
|
|
\param c C-coordinate of the pixel value.
|
|
\note <tt>list.atNXYZ(p,x,y,z,c);</tt> is equivalent to <tt>list[p].atXYZ(x,y,z,c);</tt>.
|
|
**/
|
|
T& atNXY(const int pos, const int x, const int y, const int z=0, const int c=0) {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimglist_instance
|
|
"atNXY(): Empty instance.",
|
|
cimglist_instance);
|
|
|
|
return _atNXY(pos,x,y,z,c);
|
|
}
|
|
|
|
//! Access to pixel value with Neumann boundary conditions for the 3 coordinates (\c pos, \c x,\c y) \const.
|
|
T atNXY(const int pos, const int x, const int y, const int z=0, const int c=0) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimglist_instance
|
|
"atNXY(): Empty instance.",
|
|
cimglist_instance);
|
|
|
|
return _atNXY(pos,x,y,z,c);
|
|
}
|
|
|
|
T& _atNXY(const int pos, const int x, const int y, const int z=0, const int c=0) {
|
|
return _data[cimg::cut(pos,0,width() - 1)].atXY(x,y,z,c);
|
|
}
|
|
|
|
T _atNXY(const int pos, const int x, const int y, const int z=0, const int c=0) const {
|
|
return _data[cimg::cut(pos,0,width() - 1)].atXY(x,y,z,c);
|
|
}
|
|
|
|
//! Access to pixel value with Dirichlet boundary conditions for the 2 coordinates (\c pos,\c x).
|
|
/**
|
|
\param pos Index of the image element to access.
|
|
\param x X-coordinate of the pixel value.
|
|
\param y Y-coordinate of the pixel value.
|
|
\param z Z-coordinate of the pixel value.
|
|
\param c C-coordinate of the pixel value.
|
|
\param out_value Default value returned if \c offset is outside image bounds.
|
|
\note <tt>list.atNXYZ(p,x,y,z,c);</tt> is equivalent to <tt>list[p].atXYZ(x,y,z,c);</tt>.
|
|
**/
|
|
T& atNX(const int pos, const int x, const int y, const int z, const int c, const T& out_value) {
|
|
return (pos<0 || pos>=width())?(cimg::temporary(out_value)=out_value):_data[pos].atX(x,y,z,c,out_value);
|
|
}
|
|
|
|
//! Access to pixel value with Dirichlet boundary conditions for the 2 coordinates (\c pos,\c x) \const.
|
|
T atNX(const int pos, const int x, const int y, const int z, const int c, const T& out_value) const {
|
|
return (pos<0 || pos>=width())?out_value:_data[pos].atX(x,y,z,c,out_value);
|
|
}
|
|
|
|
//! Access to pixel value with Neumann boundary conditions for the 2 coordinates (\c pos, \c x).
|
|
/**
|
|
\param pos Index of the image element to access.
|
|
\param x X-coordinate of the pixel value.
|
|
\param y Y-coordinate of the pixel value.
|
|
\param z Z-coordinate of the pixel value.
|
|
\param c C-coordinate of the pixel value.
|
|
\note <tt>list.atNXYZ(p,x,y,z,c);</tt> is equivalent to <tt>list[p].atXYZ(x,y,z,c);</tt>.
|
|
**/
|
|
T& atNX(const int pos, const int x, const int y=0, const int z=0, const int c=0) {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimglist_instance
|
|
"atNX(): Empty instance.",
|
|
cimglist_instance);
|
|
|
|
return _atNX(pos,x,y,z,c);
|
|
}
|
|
|
|
//! Access to pixel value with Neumann boundary conditions for the 2 coordinates (\c pos, \c x) \const.
|
|
T atNX(const int pos, const int x, const int y=0, const int z=0, const int c=0) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimglist_instance
|
|
"atNX(): Empty instance.",
|
|
cimglist_instance);
|
|
|
|
return _atNX(pos,x,y,z,c);
|
|
}
|
|
|
|
T& _atNX(const int pos, const int x, const int y=0, const int z=0, const int c=0) {
|
|
return _data[cimg::cut(pos,0,width() - 1)].atX(x,y,z,c);
|
|
}
|
|
|
|
T _atNX(const int pos, const int x, const int y=0, const int z=0, const int c=0) const {
|
|
return _data[cimg::cut(pos,0,width() - 1)].atX(x,y,z,c);
|
|
}
|
|
|
|
//! Access to pixel value with Dirichlet boundary conditions for the coordinate (\c pos).
|
|
/**
|
|
\param pos Index of the image element to access.
|
|
\param x X-coordinate of the pixel value.
|
|
\param y Y-coordinate of the pixel value.
|
|
\param z Z-coordinate of the pixel value.
|
|
\param c C-coordinate of the pixel value.
|
|
\param out_value Default value returned if \c offset is outside image bounds.
|
|
\note <tt>list.atNXYZ(p,x,y,z,c);</tt> is equivalent to <tt>list[p].atXYZ(x,y,z,c);</tt>.
|
|
**/
|
|
T& atN(const int pos, const int x, const int y, const int z, const int c, const T& out_value) {
|
|
return (pos<0 || pos>=width())?(cimg::temporary(out_value)=out_value):(*this)(pos,x,y,z,c);
|
|
}
|
|
|
|
//! Access to pixel value with Dirichlet boundary conditions for the coordinate (\c pos) \const.
|
|
T atN(const int pos, const int x, const int y, const int z, const int c, const T& out_value) const {
|
|
return (pos<0 || pos>=width())?out_value:(*this)(pos,x,y,z,c);
|
|
}
|
|
|
|
//! Return pixel value with Neumann boundary conditions for the coordinate (\c pos).
|
|
/**
|
|
\param pos Index of the image element to access.
|
|
\param x X-coordinate of the pixel value.
|
|
\param y Y-coordinate of the pixel value.
|
|
\param z Z-coordinate of the pixel value.
|
|
\param c C-coordinate of the pixel value.
|
|
\note <tt>list.atNXYZ(p,x,y,z,c);</tt> is equivalent to <tt>list[p].atXYZ(x,y,z,c);</tt>.
|
|
**/
|
|
T& atN(const int pos, const int x=0, const int y=0, const int z=0, const int c=0) {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimglist_instance
|
|
"atN(): Empty instance.",
|
|
cimglist_instance);
|
|
return _atN(pos,x,y,z,c);
|
|
}
|
|
|
|
//! Return pixel value with Neumann boundary conditions for the coordinate (\c pos) \const.
|
|
T atN(const int pos, const int x=0, const int y=0, const int z=0, const int c=0) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimglist_instance
|
|
"atN(): Empty instance.",
|
|
cimglist_instance);
|
|
return _atN(pos,x,y,z,c);
|
|
}
|
|
|
|
T& _atN(const int pos, const int x=0, const int y=0, const int z=0, const int c=0) {
|
|
return _data[cimg::cut(pos,0,width() - 1)](x,y,z,c);
|
|
}
|
|
|
|
T _atN(const int pos, const int x=0, const int y=0, const int z=0, const int c=0) const {
|
|
return _data[cimg::cut(pos,0,width() - 1)](x,y,z,c);
|
|
}
|
|
|
|
//@}
|
|
//-------------------------------------
|
|
//
|
|
//! \name Instance Checking
|
|
//@{
|
|
//-------------------------------------
|
|
|
|
//! Return \c true if list is empty.
|
|
/**
|
|
**/
|
|
bool is_empty() const {
|
|
return (!_data || !_width);
|
|
}
|
|
|
|
//! Test if number of image elements is equal to specified value.
|
|
/**
|
|
\param size_n Number of image elements to test.
|
|
**/
|
|
bool is_sameN(const unsigned int size_n) const {
|
|
return _width==size_n;
|
|
}
|
|
|
|
//! Test if number of image elements is equal between two images lists.
|
|
/**
|
|
\param list Input list to compare with.
|
|
**/
|
|
template<typename t>
|
|
bool is_sameN(const CImgList<t>& list) const {
|
|
return is_sameN(list._width);
|
|
}
|
|
|
|
// Define useful functions to check list dimensions.
|
|
// (cannot be documented because macro-generated).
|
|
#define _cimglist_def_is_same1(axis) \
|
|
bool is_same##axis(const unsigned int val) const { \
|
|
bool res = true; \
|
|
for (unsigned int l = 0; l<_width && res; ++l) res = _data[l].is_same##axis(val); \
|
|
return res; \
|
|
} \
|
|
bool is_sameN##axis(const unsigned int n, const unsigned int val) const { \
|
|
return is_sameN(n) && is_same##axis(val); \
|
|
} \
|
|
|
|
#define _cimglist_def_is_same2(axis1,axis2) \
|
|
bool is_same##axis1##axis2(const unsigned int val1, const unsigned int val2) const { \
|
|
bool res = true; \
|
|
for (unsigned int l = 0; l<_width && res; ++l) res = _data[l].is_same##axis1##axis2(val1,val2); \
|
|
return res; \
|
|
} \
|
|
bool is_sameN##axis1##axis2(const unsigned int n, const unsigned int val1, const unsigned int val2) const { \
|
|
return is_sameN(n) && is_same##axis1##axis2(val1,val2); \
|
|
} \
|
|
|
|
#define _cimglist_def_is_same3(axis1,axis2,axis3) \
|
|
bool is_same##axis1##axis2##axis3(const unsigned int val1, const unsigned int val2, \
|
|
const unsigned int val3) const { \
|
|
bool res = true; \
|
|
for (unsigned int l = 0; l<_width && res; ++l) res = _data[l].is_same##axis1##axis2##axis3(val1,val2,val3); \
|
|
return res; \
|
|
} \
|
|
bool is_sameN##axis1##axis2##axis3(const unsigned int n, const unsigned int val1, \
|
|
const unsigned int val2, const unsigned int val3) const { \
|
|
return is_sameN(n) && is_same##axis1##axis2##axis3(val1,val2,val3); \
|
|
} \
|
|
|
|
#define _cimglist_def_is_same(axis) \
|
|
template<typename t> bool is_same##axis(const CImg<t>& img) const { \
|
|
bool res = true; \
|
|
for (unsigned int l = 0; l<_width && res; ++l) res = _data[l].is_same##axis(img); \
|
|
return res; \
|
|
} \
|
|
template<typename t> bool is_same##axis(const CImgList<t>& list) const { \
|
|
const unsigned int lmin = std::min(_width,list._width); \
|
|
bool res = true; \
|
|
for (unsigned int l = 0; l<lmin && res; ++l) res = _data[l].is_same##axis(list[l]); \
|
|
return res; \
|
|
} \
|
|
template<typename t> bool is_sameN##axis(const unsigned int n, const CImg<t>& img) const { \
|
|
return (is_sameN(n) && is_same##axis(img)); \
|
|
} \
|
|
template<typename t> bool is_sameN##axis(const CImgList<t>& list) const { \
|
|
return (is_sameN(list) && is_same##axis(list)); \
|
|
}
|
|
|
|
_cimglist_def_is_same(XY)
|
|
_cimglist_def_is_same(XZ)
|
|
_cimglist_def_is_same(XC)
|
|
_cimglist_def_is_same(YZ)
|
|
_cimglist_def_is_same(YC)
|
|
_cimglist_def_is_same(XYZ)
|
|
_cimglist_def_is_same(XYC)
|
|
_cimglist_def_is_same(YZC)
|
|
_cimglist_def_is_same(XYZC)
|
|
_cimglist_def_is_same1(X)
|
|
_cimglist_def_is_same1(Y)
|
|
_cimglist_def_is_same1(Z)
|
|
_cimglist_def_is_same1(C)
|
|
_cimglist_def_is_same2(X,Y)
|
|
_cimglist_def_is_same2(X,Z)
|
|
_cimglist_def_is_same2(X,C)
|
|
_cimglist_def_is_same2(Y,Z)
|
|
_cimglist_def_is_same2(Y,C)
|
|
_cimglist_def_is_same2(Z,C)
|
|
_cimglist_def_is_same3(X,Y,Z)
|
|
_cimglist_def_is_same3(X,Y,C)
|
|
_cimglist_def_is_same3(X,Z,C)
|
|
_cimglist_def_is_same3(Y,Z,C)
|
|
|
|
//! Test if dimensions of each image of the list match specified arguments.
|
|
/**
|
|
\param dx Checked image width.
|
|
\param dy Checked image height.
|
|
\param dz Checked image depth.
|
|
\param dc Checked image spectrum.
|
|
**/
|
|
bool is_sameXYZC(const unsigned int dx, const unsigned int dy,
|
|
const unsigned int dz, const unsigned int dc) const {
|
|
bool res = true;
|
|
for (unsigned int l = 0; l<_width && res; ++l) res = _data[l].is_sameXYZC(dx,dy,dz,dc);
|
|
return res;
|
|
}
|
|
|
|
//! Test if list dimensions match specified arguments.
|
|
/**
|
|
\param n Number of images in the list.
|
|
\param dx Checked image width.
|
|
\param dy Checked image height.
|
|
\param dz Checked image depth.
|
|
\param dc Checked image spectrum.
|
|
**/
|
|
bool is_sameNXYZC(const unsigned int n,
|
|
const unsigned int dx, const unsigned int dy,
|
|
const unsigned int dz, const unsigned int dc) const {
|
|
return is_sameN(n) && is_sameXYZC(dx,dy,dz,dc);
|
|
}
|
|
|
|
//! Test if list contains one particular pixel location.
|
|
/**
|
|
\param n Index of the image whom checked pixel value belong to.
|
|
\param x X-coordinate of the checked pixel value.
|
|
\param y Y-coordinate of the checked pixel value.
|
|
\param z Z-coordinate of the checked pixel value.
|
|
\param c C-coordinate of the checked pixel value.
|
|
**/
|
|
bool containsNXYZC(const int n, const int x=0, const int y=0, const int z=0, const int c=0) const {
|
|
if (is_empty()) return false;
|
|
return n>=0 && n<width() && x>=0 && x<_data[n].width() && y>=0 && y<_data[n].height() &&
|
|
z>=0 && z<_data[n].depth() && c>=0 && c<_data[n].spectrum();
|
|
}
|
|
|
|
//! Test if list contains image with specified index.
|
|
/**
|
|
\param n Index of the checked image.
|
|
**/
|
|
bool containsN(const int n) const {
|
|
if (is_empty()) return false;
|
|
return n>=0 && n<width();
|
|
}
|
|
|
|
//! Test if one image of the list contains the specified referenced value.
|
|
/**
|
|
\param pixel Reference to pixel value to test.
|
|
\param[out] n Index of image containing the pixel value, if test succeeds.
|
|
\param[out] x X-coordinate of the pixel value, if test succeeds.
|
|
\param[out] y Y-coordinate of the pixel value, if test succeeds.
|
|
\param[out] z Z-coordinate of the pixel value, if test succeeds.
|
|
\param[out] c C-coordinate of the pixel value, if test succeeds.
|
|
\note If true, set coordinates (n,x,y,z,c).
|
|
**/
|
|
template<typename t>
|
|
bool contains(const T& pixel, t& n, t& x, t&y, t& z, t& c) const {
|
|
if (is_empty()) return false;
|
|
cimglist_for(*this,l) if (_data[l].contains(pixel,x,y,z,c)) { n = (t)l; return true; }
|
|
return false;
|
|
}
|
|
|
|
//! Test if one of the image list contains the specified referenced value.
|
|
/**
|
|
\param pixel Reference to pixel value to test.
|
|
\param[out] n Index of image containing the pixel value, if test succeeds.
|
|
\param[out] x X-coordinate of the pixel value, if test succeeds.
|
|
\param[out] y Y-coordinate of the pixel value, if test succeeds.
|
|
\param[out] z Z-coordinate of the pixel value, if test succeeds.
|
|
\note If true, set coordinates (n,x,y,z).
|
|
**/
|
|
template<typename t>
|
|
bool contains(const T& pixel, t& n, t& x, t&y, t& z) const {
|
|
t c;
|
|
return contains(pixel,n,x,y,z,c);
|
|
}
|
|
|
|
//! Test if one of the image list contains the specified referenced value.
|
|
/**
|
|
\param pixel Reference to pixel value to test.
|
|
\param[out] n Index of image containing the pixel value, if test succeeds.
|
|
\param[out] x X-coordinate of the pixel value, if test succeeds.
|
|
\param[out] y Y-coordinate of the pixel value, if test succeeds.
|
|
\note If true, set coordinates (n,x,y).
|
|
**/
|
|
template<typename t>
|
|
bool contains(const T& pixel, t& n, t& x, t&y) const {
|
|
t z, c;
|
|
return contains(pixel,n,x,y,z,c);
|
|
}
|
|
|
|
//! Test if one of the image list contains the specified referenced value.
|
|
/**
|
|
\param pixel Reference to pixel value to test.
|
|
\param[out] n Index of image containing the pixel value, if test succeeds.
|
|
\param[out] x X-coordinate of the pixel value, if test succeeds.
|
|
\note If true, set coordinates (n,x).
|
|
**/
|
|
template<typename t>
|
|
bool contains(const T& pixel, t& n, t& x) const {
|
|
t y, z, c;
|
|
return contains(pixel,n,x,y,z,c);
|
|
}
|
|
|
|
//! Test if one of the image list contains the specified referenced value.
|
|
/**
|
|
\param pixel Reference to pixel value to test.
|
|
\param[out] n Index of image containing the pixel value, if test succeeds.
|
|
\note If true, set coordinates (n).
|
|
**/
|
|
template<typename t>
|
|
bool contains(const T& pixel, t& n) const {
|
|
t x, y, z, c;
|
|
return contains(pixel,n,x,y,z,c);
|
|
}
|
|
|
|
//! Test if one of the image list contains the specified referenced value.
|
|
/**
|
|
\param pixel Reference to pixel value to test.
|
|
**/
|
|
bool contains(const T& pixel) const {
|
|
unsigned int n, x, y, z, c;
|
|
return contains(pixel,n,x,y,z,c);
|
|
}
|
|
|
|
//! Test if the list contains the image 'img'.
|
|
/**
|
|
\param img Reference to image to test.
|
|
\param[out] n Index of image in the list, if test succeeds.
|
|
\note If true, returns the position (n) of the image in the list.
|
|
**/
|
|
template<typename t>
|
|
bool contains(const CImg<T>& img, t& n) const {
|
|
if (is_empty()) return false;
|
|
const CImg<T> *const ptr = &img;
|
|
cimglist_for(*this,i) if (_data + i==ptr) { n = (t)i; return true; }
|
|
return false;
|
|
}
|
|
|
|
//! Test if the list contains the image img.
|
|
/**
|
|
\param img Reference to image to test.
|
|
**/
|
|
bool contains(const CImg<T>& img) const {
|
|
unsigned int n;
|
|
return contains(img,n);
|
|
}
|
|
|
|
//@}
|
|
//-------------------------------------
|
|
//
|
|
//! \name Mathematical Functions
|
|
//@{
|
|
//-------------------------------------
|
|
|
|
//! Return a reference to the minimum pixel value of the instance list.
|
|
/**
|
|
**/
|
|
T& min() {
|
|
bool is_all_empty = true;
|
|
T *ptr_min = 0;
|
|
cimglist_for(*this,l) if (!_data[l].is_empty()) {
|
|
ptr_min = _data[l]._data;
|
|
is_all_empty = false;
|
|
break;
|
|
}
|
|
if (is_all_empty)
|
|
throw CImgInstanceException(_cimglist_instance
|
|
"min(): %s.",
|
|
_data?"List of empty images":"Empty instance",
|
|
cimglist_instance);
|
|
T min_value = *ptr_min;
|
|
cimglist_for(*this,l) {
|
|
const CImg<T>& img = _data[l];
|
|
cimg_for(img,ptrs,T) if (*ptrs<min_value) min_value = *(ptr_min=ptrs);
|
|
}
|
|
return *ptr_min;
|
|
}
|
|
|
|
//! Return a reference to the minimum pixel value of the instance list \const.
|
|
const T& min() const {
|
|
bool is_all_empty = true;
|
|
T *ptr_min = 0;
|
|
cimglist_for(*this,l) if (!_data[l].is_empty()) {
|
|
ptr_min = _data[l]._data;
|
|
is_all_empty = false;
|
|
break;
|
|
}
|
|
if (is_all_empty)
|
|
throw CImgInstanceException(_cimglist_instance
|
|
"min(): %s.",
|
|
_data?"List of empty images":"Empty instance",
|
|
cimglist_instance);
|
|
T min_value = *ptr_min;
|
|
cimglist_for(*this,l) {
|
|
const CImg<T>& img = _data[l];
|
|
cimg_for(img,ptrs,T) if (*ptrs<min_value) min_value = *(ptr_min=ptrs);
|
|
}
|
|
return *ptr_min;
|
|
}
|
|
|
|
//! Return a reference to the maximum pixel value of the instance list.
|
|
/**
|
|
**/
|
|
T& max() {
|
|
bool is_all_empty = true;
|
|
T *ptr_max = 0;
|
|
cimglist_for(*this,l) if (!_data[l].is_empty()) {
|
|
ptr_max = _data[l]._data;
|
|
is_all_empty = false;
|
|
break;
|
|
}
|
|
if (is_all_empty)
|
|
throw CImgInstanceException(_cimglist_instance
|
|
"max(): %s.",
|
|
_data?"List of empty images":"Empty instance",
|
|
cimglist_instance);
|
|
T max_value = *ptr_max;
|
|
cimglist_for(*this,l) {
|
|
const CImg<T>& img = _data[l];
|
|
cimg_for(img,ptrs,T) if (*ptrs>max_value) max_value = *(ptr_max=ptrs);
|
|
}
|
|
return *ptr_max;
|
|
}
|
|
|
|
//! Return a reference to the maximum pixel value of the instance list \const.
|
|
const T& max() const {
|
|
bool is_all_empty = true;
|
|
T *ptr_max = 0;
|
|
cimglist_for(*this,l) if (!_data[l].is_empty()) {
|
|
ptr_max = _data[l]._data;
|
|
is_all_empty = false;
|
|
break;
|
|
}
|
|
if (is_all_empty)
|
|
throw CImgInstanceException(_cimglist_instance
|
|
"max(): %s.",
|
|
_data?"List of empty images":"Empty instance",
|
|
cimglist_instance);
|
|
T max_value = *ptr_max;
|
|
cimglist_for(*this,l) {
|
|
const CImg<T>& img = _data[l];
|
|
cimg_for(img,ptrs,T) if (*ptrs>max_value) max_value = *(ptr_max=ptrs);
|
|
}
|
|
return *ptr_max;
|
|
}
|
|
|
|
//! Return a reference to the minimum pixel value of the instance list and return the maximum vvalue as well.
|
|
/**
|
|
\param[out] max_val Value of the maximum value found.
|
|
**/
|
|
template<typename t>
|
|
T& min_max(t& max_val) {
|
|
bool is_all_empty = true;
|
|
T *ptr_min = 0;
|
|
cimglist_for(*this,l) if (!_data[l].is_empty()) {
|
|
ptr_min = _data[l]._data;
|
|
is_all_empty = false;
|
|
break;
|
|
}
|
|
if (is_all_empty)
|
|
throw CImgInstanceException(_cimglist_instance
|
|
"min_max(): %s.",
|
|
_data?"List of empty images":"Empty instance",
|
|
cimglist_instance);
|
|
T min_value = *ptr_min, max_value = min_value;
|
|
cimglist_for(*this,l) {
|
|
const CImg<T>& img = _data[l];
|
|
cimg_for(img,ptrs,T) {
|
|
const T val = *ptrs;
|
|
if (val<min_value) { min_value = val; ptr_min = ptrs; }
|
|
if (val>max_value) max_value = val;
|
|
}
|
|
}
|
|
max_val = (t)max_value;
|
|
return *ptr_min;
|
|
}
|
|
|
|
//! Return a reference to the minimum pixel value of the instance list and return the maximum vvalue as well \const.
|
|
/**
|
|
\param[out] max_val Value of the maximum value found.
|
|
**/
|
|
template<typename t>
|
|
const T& min_max(t& max_val) const {
|
|
bool is_all_empty = true;
|
|
T *ptr_min = 0;
|
|
cimglist_for(*this,l) if (!_data[l].is_empty()) {
|
|
ptr_min = _data[l]._data;
|
|
is_all_empty = false;
|
|
break;
|
|
}
|
|
if (is_all_empty)
|
|
throw CImgInstanceException(_cimglist_instance
|
|
"min_max(): %s.",
|
|
_data?"List of empty images":"Empty instance",
|
|
cimglist_instance);
|
|
T min_value = *ptr_min, max_value = min_value;
|
|
cimglist_for(*this,l) {
|
|
const CImg<T>& img = _data[l];
|
|
cimg_for(img,ptrs,T) {
|
|
const T val = *ptrs;
|
|
if (val<min_value) { min_value = val; ptr_min = ptrs; }
|
|
if (val>max_value) max_value = val;
|
|
}
|
|
}
|
|
max_val = (t)max_value;
|
|
return *ptr_min;
|
|
}
|
|
|
|
//! Return a reference to the minimum pixel value of the instance list and return the minimum value as well.
|
|
/**
|
|
\param[out] min_val Value of the minimum value found.
|
|
**/
|
|
template<typename t>
|
|
T& max_min(t& min_val) {
|
|
bool is_all_empty = true;
|
|
T *ptr_max = 0;
|
|
cimglist_for(*this,l) if (!_data[l].is_empty()) {
|
|
ptr_max = _data[l]._data;
|
|
is_all_empty = false;
|
|
break;
|
|
}
|
|
if (is_all_empty)
|
|
throw CImgInstanceException(_cimglist_instance
|
|
"max_min(): %s.",
|
|
_data?"List of empty images":"Empty instance",
|
|
cimglist_instance);
|
|
T min_value = *ptr_max, max_value = min_value;
|
|
cimglist_for(*this,l) {
|
|
const CImg<T>& img = _data[l];
|
|
cimg_for(img,ptrs,T) {
|
|
const T val = *ptrs;
|
|
if (val>max_value) { max_value = val; ptr_max = ptrs; }
|
|
if (val<min_value) min_value = val;
|
|
}
|
|
}
|
|
min_val = (t)min_value;
|
|
return *ptr_max;
|
|
}
|
|
|
|
//! Return a reference to the minimum pixel value of the instance list and return the minimum value as well \const.
|
|
template<typename t>
|
|
const T& max_min(t& min_val) const {
|
|
bool is_all_empty = true;
|
|
T *ptr_max = 0;
|
|
cimglist_for(*this,l) if (!_data[l].is_empty()) {
|
|
ptr_max = _data[l]._data;
|
|
is_all_empty = false;
|
|
break;
|
|
}
|
|
if (is_all_empty)
|
|
throw CImgInstanceException(_cimglist_instance
|
|
"max_min(): %s.",
|
|
_data?"List of empty images":"Empty instance",
|
|
cimglist_instance);
|
|
T min_value = *ptr_max, max_value = min_value;
|
|
cimglist_for(*this,l) {
|
|
const CImg<T>& img = _data[l];
|
|
cimg_for(img,ptrs,T) {
|
|
const T val = *ptrs;
|
|
if (val>max_value) { max_value = val; ptr_max = ptrs; }
|
|
if (val<min_value) min_value = val;
|
|
}
|
|
}
|
|
min_val = (t)min_value;
|
|
return *ptr_max;
|
|
}
|
|
|
|
//@}
|
|
//---------------------------
|
|
//
|
|
//! \name List Manipulation
|
|
//@{
|
|
//---------------------------
|
|
|
|
//! Insert a copy of the image \c img into the current image list, at position \c pos.
|
|
/**
|
|
\param img Image to insert a copy to the list.
|
|
\param pos Index of the insertion.
|
|
\param is_shared Tells if the inserted image is a shared copy of \c img or not.
|
|
**/
|
|
template<typename t>
|
|
CImgList<T>& insert(const CImg<t>& img, const unsigned int pos=~0U, const bool is_shared=false) {
|
|
const unsigned int npos = pos==~0U?_width:pos;
|
|
if (npos>_width)
|
|
throw CImgArgumentException(_cimglist_instance
|
|
"insert(): Invalid insertion request of specified image (%u,%u,%u,%u,%p) "
|
|
"at position %u.",
|
|
cimglist_instance,
|
|
img._width,img._height,img._depth,img._spectrum,img._data,npos);
|
|
if (is_shared)
|
|
throw CImgArgumentException(_cimglist_instance
|
|
"insert(): Invalid insertion request of specified shared image "
|
|
"CImg<%s>(%u,%u,%u,%u,%p) at position %u (pixel types are different).",
|
|
cimglist_instance,
|
|
img.pixel_type(),img._width,img._height,img._depth,img._spectrum,img._data,npos);
|
|
|
|
CImg<T> *const new_data = (++_width>_allocated_width)?new CImg<T>[_allocated_width?(_allocated_width<<=1):
|
|
(_allocated_width=16)]:0;
|
|
if (!_data) { // Insert new element into empty list
|
|
_data = new_data;
|
|
*_data = img;
|
|
} else {
|
|
if (new_data) { // Insert with re-allocation
|
|
if (npos) std::memcpy((void*)new_data,(void*)_data,sizeof(CImg<T>)*npos);
|
|
if (npos!=_width - 1)
|
|
std::memcpy((void*)(new_data + npos + 1),(void*)(_data + npos),sizeof(CImg<T>)*(_width - 1 - npos));
|
|
std::memset((void*)_data,0,sizeof(CImg<T>)*(_width - 1));
|
|
delete[] _data;
|
|
_data = new_data;
|
|
} else if (npos!=_width - 1) // Insert without re-allocation
|
|
std::memmove((void*)(_data + npos + 1),(void*)(_data + npos),sizeof(CImg<T>)*(_width - 1 - npos));
|
|
_data[npos]._width = _data[npos]._height = _data[npos]._depth = _data[npos]._spectrum = 0;
|
|
_data[npos]._data = 0;
|
|
_data[npos] = img;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Insert a copy of the image \c img into the current image list, at position \c pos \specialization.
|
|
CImgList<T>& insert(const CImg<T>& img, const unsigned int pos=~0U, const bool is_shared=false) {
|
|
const unsigned int npos = pos==~0U?_width:pos;
|
|
if (npos>_width)
|
|
throw CImgArgumentException(_cimglist_instance
|
|
"insert(): Invalid insertion request of specified image (%u,%u,%u,%u,%p) "
|
|
"at position %u.",
|
|
cimglist_instance,
|
|
img._width,img._height,img._depth,img._spectrum,img._data,npos);
|
|
CImg<T> *const new_data = (++_width>_allocated_width)?new CImg<T>[_allocated_width?(_allocated_width<<=1):
|
|
(_allocated_width=16)]:0;
|
|
if (!_data) { // Insert new element into empty list
|
|
_data = new_data;
|
|
if (is_shared && img) {
|
|
_data->_width = img._width;
|
|
_data->_height = img._height;
|
|
_data->_depth = img._depth;
|
|
_data->_spectrum = img._spectrum;
|
|
_data->_is_shared = true;
|
|
_data->_data = img._data;
|
|
} else *_data = img;
|
|
}
|
|
else {
|
|
if (new_data) { // Insert with re-allocation
|
|
if (npos) std::memcpy((void*)new_data,(void*)_data,sizeof(CImg<T>)*npos);
|
|
if (npos!=_width - 1)
|
|
std::memcpy((void*)(new_data + npos + 1),(void*)(_data + npos),sizeof(CImg<T>)*(_width - 1 - npos));
|
|
if (is_shared && img) {
|
|
new_data[npos]._width = img._width;
|
|
new_data[npos]._height = img._height;
|
|
new_data[npos]._depth = img._depth;
|
|
new_data[npos]._spectrum = img._spectrum;
|
|
new_data[npos]._is_shared = true;
|
|
new_data[npos]._data = img._data;
|
|
} else {
|
|
new_data[npos]._width = new_data[npos]._height = new_data[npos]._depth = new_data[npos]._spectrum = 0;
|
|
new_data[npos]._data = 0;
|
|
new_data[npos] = img;
|
|
}
|
|
std::memset((void*)_data,0,sizeof(CImg<T>)*(_width - 1));
|
|
delete[] _data;
|
|
_data = new_data;
|
|
} else { // Insert without re-allocation
|
|
if (npos!=_width - 1)
|
|
std::memmove((void*)(_data + npos + 1),(void*)(_data + npos),sizeof(CImg<T>)*(_width - 1 - npos));
|
|
if (is_shared && img) {
|
|
_data[npos]._width = img._width;
|
|
_data[npos]._height = img._height;
|
|
_data[npos]._depth = img._depth;
|
|
_data[npos]._spectrum = img._spectrum;
|
|
_data[npos]._is_shared = true;
|
|
_data[npos]._data = img._data;
|
|
} else {
|
|
_data[npos]._width = _data[npos]._height = _data[npos]._depth = _data[npos]._spectrum = 0;
|
|
_data[npos]._data = 0;
|
|
_data[npos] = img;
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Insert a copy of the image \c img into the current image list, at position \c pos \newinstance.
|
|
template<typename t>
|
|
CImgList<T> get_insert(const CImg<t>& img, const unsigned int pos=~0U, const bool is_shared=false) const {
|
|
return (+*this).insert(img,pos,is_shared);
|
|
}
|
|
|
|
//! Insert n empty images img into the current image list, at position \p pos.
|
|
/**
|
|
\param n Number of empty images to insert.
|
|
\param pos Index of the insertion.
|
|
**/
|
|
CImgList<T>& insert(const unsigned int n, const unsigned int pos=~0U) {
|
|
CImg<T> empty;
|
|
if (!n) return *this;
|
|
const unsigned int npos = pos==~0U?_width:pos;
|
|
for (unsigned int i = 0; i<n; ++i) insert(empty,npos+i);
|
|
return *this;
|
|
}
|
|
|
|
//! Insert n empty images img into the current image list, at position \p pos \newinstance.
|
|
CImgList<T> get_insert(const unsigned int n, const unsigned int pos=~0U) const {
|
|
return (+*this).insert(n,pos);
|
|
}
|
|
|
|
//! Insert \c n copies of the image \c img into the current image list, at position \c pos.
|
|
/**
|
|
\param n Number of image copies to insert.
|
|
\param img Image to insert by copy.
|
|
\param pos Index of the insertion.
|
|
\param is_shared Tells if inserted images are shared copies of \c img or not.
|
|
**/
|
|
template<typename t>
|
|
CImgList<T>& insert(const unsigned int n, const CImg<t>& img, const unsigned int pos=~0U,
|
|
const bool is_shared=false) {
|
|
if (!n) return *this;
|
|
const unsigned int npos = pos==~0U?_width:pos;
|
|
insert(img,npos,is_shared);
|
|
for (unsigned int i = 1; i<n; ++i) insert(_data[npos],npos + i,is_shared);
|
|
return *this;
|
|
}
|
|
|
|
//! Insert \c n copies of the image \c img into the current image list, at position \c pos \newinstance.
|
|
template<typename t>
|
|
CImgList<T> get_insert(const unsigned int n, const CImg<t>& img, const unsigned int pos=~0U,
|
|
const bool is_shared=false) const {
|
|
return (+*this).insert(n,img,pos,is_shared);
|
|
}
|
|
|
|
//! Insert a copy of the image list \c list into the current image list, starting from position \c pos.
|
|
/**
|
|
\param list Image list to insert.
|
|
\param pos Index of the insertion.
|
|
\param is_shared Tells if inserted images are shared copies of images of \c list or not.
|
|
**/
|
|
template<typename t>
|
|
CImgList<T>& insert(const CImgList<t>& list, const unsigned int pos=~0U, const bool is_shared=false) {
|
|
const unsigned int npos = pos==~0U?_width:pos;
|
|
if ((void*)this!=(void*)&list) cimglist_for(list,l) insert(list[l],npos + l,is_shared);
|
|
else insert(CImgList<T>(list),npos,is_shared);
|
|
return *this;
|
|
}
|
|
|
|
//! Insert a copy of the image list \c list into the current image list, starting from position \c pos \newinstance.
|
|
template<typename t>
|
|
CImgList<T> get_insert(const CImgList<t>& list, const unsigned int pos=~0U, const bool is_shared=false) const {
|
|
return (+*this).insert(list,pos,is_shared);
|
|
}
|
|
|
|
//! Insert n copies of the list \c list at position \c pos of the current list.
|
|
/**
|
|
\param n Number of list copies to insert.
|
|
\param list Image list to insert.
|
|
\param pos Index of the insertion.
|
|
\param is_shared Tells if inserted images are shared copies of images of \c list or not.
|
|
**/
|
|
template<typename t>
|
|
CImgList<T>& insert(const unsigned int n, const CImgList<t>& list, const unsigned int pos=~0U,
|
|
const bool is_shared=false) {
|
|
if (!n) return *this;
|
|
const unsigned int npos = pos==~0U?_width:pos;
|
|
for (unsigned int i = 0; i<n; ++i) insert(list,npos,is_shared);
|
|
return *this;
|
|
}
|
|
|
|
//! Insert n copies of the list \c list at position \c pos of the current list \newinstance.
|
|
template<typename t>
|
|
CImgList<T> get_insert(const unsigned int n, const CImgList<t>& list, const unsigned int pos=~0U,
|
|
const bool is_shared=false) const {
|
|
return (+*this).insert(n,list,pos,is_shared);
|
|
}
|
|
|
|
//! Remove all images between from indexes.
|
|
/**
|
|
\param pos1 Starting index of the removal.
|
|
\param pos2 Ending index of the removal.
|
|
**/
|
|
CImgList<T>& remove(const unsigned int pos1, const unsigned int pos2) {
|
|
const unsigned int
|
|
npos1 = pos1<pos2?pos1:pos2,
|
|
tpos2 = pos1<pos2?pos2:pos1,
|
|
npos2 = tpos2<_width?tpos2:_width - 1;
|
|
if (npos1>=_width)
|
|
throw CImgArgumentException(_cimglist_instance
|
|
"remove(): Invalid remove request at positions %u->%u.",
|
|
cimglist_instance,
|
|
npos1,tpos2);
|
|
else {
|
|
if (tpos2>=_width)
|
|
throw CImgArgumentException(_cimglist_instance
|
|
"remove(): Invalid remove request at positions %u->%u.",
|
|
cimglist_instance,
|
|
npos1,tpos2);
|
|
|
|
for (unsigned int k = npos1; k<=npos2; ++k) _data[k].assign();
|
|
const unsigned int nb = 1 + npos2 - npos1;
|
|
if (!(_width-=nb)) return assign();
|
|
if (_width>(_allocated_width>>4) || _allocated_width<=16) { // Removing items without reallocation
|
|
if (npos1!=_width)
|
|
std::memmove((void*)(_data + npos1),(void*)(_data + npos2 + 1),sizeof(CImg<T>)*(_width - npos1));
|
|
std::memset((void*)(_data + _width),0,sizeof(CImg<T>)*nb);
|
|
} else { // Removing items with reallocation
|
|
_allocated_width>>=4;
|
|
while (_allocated_width>16 && _width<(_allocated_width>>1)) _allocated_width>>=1;
|
|
CImg<T> *const new_data = new CImg<T>[_allocated_width];
|
|
if (npos1) std::memcpy((void*)new_data,(void*)_data,sizeof(CImg<T>)*npos1);
|
|
if (npos1!=_width)
|
|
std::memcpy((void*)(new_data + npos1),(void*)(_data + npos2 + 1),sizeof(CImg<T>)*(_width - npos1));
|
|
if (_width!=_allocated_width)
|
|
std::memset((void*)(new_data + _width),0,sizeof(CImg<T>)*(_allocated_width - _width));
|
|
std::memset((void*)_data,0,sizeof(CImg<T>)*(_width + nb));
|
|
delete[] _data;
|
|
_data = new_data;
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Remove all images between from indexes \newinstance.
|
|
CImgList<T> get_remove(const unsigned int pos1, const unsigned int pos2) const {
|
|
return (+*this).remove(pos1,pos2);
|
|
}
|
|
|
|
//! Remove image at index \c pos from the image list.
|
|
/**
|
|
\param pos Index of the image to remove.
|
|
**/
|
|
CImgList<T>& remove(const unsigned int pos) {
|
|
return remove(pos,pos);
|
|
}
|
|
|
|
//! Remove image at index \c pos from the image list \newinstance.
|
|
CImgList<T> get_remove(const unsigned int pos) const {
|
|
return (+*this).remove(pos);
|
|
}
|
|
|
|
//! Remove last image.
|
|
/**
|
|
**/
|
|
CImgList<T>& remove() {
|
|
return remove(_width - 1);
|
|
}
|
|
|
|
//! Remove last image \newinstance.
|
|
CImgList<T> get_remove() const {
|
|
return (+*this).remove();
|
|
}
|
|
|
|
//! Reverse list order.
|
|
CImgList<T>& reverse() {
|
|
for (unsigned int l = 0; l<_width/2; ++l) (*this)[l].swap((*this)[_width - 1 - l]);
|
|
return *this;
|
|
}
|
|
|
|
//! Reverse list order \newinstance.
|
|
CImgList<T> get_reverse() const {
|
|
return (+*this).reverse();
|
|
}
|
|
|
|
//! Return a sublist.
|
|
/**
|
|
\param pos0 Starting index of the sublist.
|
|
\param pos1 Ending index of the sublist.
|
|
**/
|
|
CImgList<T>& images(const unsigned int pos0, const unsigned int pos1) {
|
|
return get_images(pos0,pos1).move_to(*this);
|
|
}
|
|
|
|
//! Return a sublist \newinstance.
|
|
CImgList<T> get_images(const unsigned int pos0, const unsigned int pos1) const {
|
|
if (pos0>pos1 || pos1>=_width)
|
|
throw CImgArgumentException(_cimglist_instance
|
|
"images(): Specified sub-list indices (%u->%u) are out of bounds.",
|
|
cimglist_instance,
|
|
pos0,pos1);
|
|
CImgList<T> res(pos1 - pos0 + 1);
|
|
cimglist_for(res,l) res[l].assign(_data[pos0 + l]);
|
|
return res;
|
|
}
|
|
|
|
//! Return a shared sublist.
|
|
/**
|
|
\param pos0 Starting index of the sublist.
|
|
\param pos1 Ending index of the sublist.
|
|
**/
|
|
CImgList<T> get_shared_images(const unsigned int pos0, const unsigned int pos1) {
|
|
if (pos0>pos1 || pos1>=_width)
|
|
throw CImgArgumentException(_cimglist_instance
|
|
"get_shared_images(): Specified sub-list indices (%u->%u) are out of bounds.",
|
|
cimglist_instance,
|
|
pos0,pos1);
|
|
CImgList<T> res(pos1 - pos0 + 1);
|
|
cimglist_for(res,l) res[l].assign(_data[pos0 + l],_data[pos0 + l]?true:false);
|
|
return res;
|
|
}
|
|
|
|
//! Return a shared sublist \newinstance.
|
|
const CImgList<T> get_shared_images(const unsigned int pos0, const unsigned int pos1) const {
|
|
if (pos0>pos1 || pos1>=_width)
|
|
throw CImgArgumentException(_cimglist_instance
|
|
"get_shared_images(): Specified sub-list indices (%u->%u) are out of bounds.",
|
|
cimglist_instance,
|
|
pos0,pos1);
|
|
CImgList<T> res(pos1 - pos0 + 1);
|
|
cimglist_for(res,l) res[l].assign(_data[pos0 + l],_data[pos0 + l]?true:false);
|
|
return res;
|
|
}
|
|
|
|
//! Return a single image which is the appending of all images of the current CImgList instance.
|
|
/**
|
|
\param axis Appending axis. Can be <tt>{ 'x' | 'y' | 'z' | 'c' }</tt>.
|
|
\param align Appending alignment.
|
|
**/
|
|
CImg<T> get_append(const char axis, const float align=0) const {
|
|
if (is_empty()) return CImg<T>();
|
|
if (_width==1) return +((*this)[0]);
|
|
unsigned int dx = 0, dy = 0, dz = 0, dc = 0, pos = 0;
|
|
CImg<T> res;
|
|
switch (cimg::lowercase(axis)) {
|
|
case 'x' : { // Along the X-axis
|
|
cimglist_for(*this,l) {
|
|
const CImg<T>& img = (*this)[l];
|
|
if (img) {
|
|
dx+=img._width;
|
|
dy = std::max(dy,img._height);
|
|
dz = std::max(dz,img._depth);
|
|
dc = std::max(dc,img._spectrum);
|
|
}
|
|
}
|
|
res.assign(dx,dy,dz,dc,(T)0);
|
|
if (res) cimglist_for(*this,l) {
|
|
const CImg<T>& img = (*this)[l];
|
|
if (img) {
|
|
if (img._height==1 && img._depth==1 && img._spectrum==1 &&
|
|
res._height==1 && res._depth==1 && res._spectrum==1)
|
|
std::memcpy(&res[pos],img._data,sizeof(T)*img._width);
|
|
else
|
|
res.draw_image(pos,
|
|
(int)(align*(dy - img._height)),
|
|
(int)(align*(dz - img._depth)),
|
|
(int)(align*(dc - img._spectrum)),
|
|
img);
|
|
}
|
|
pos+=img._width;
|
|
}
|
|
} break;
|
|
case 'y' : { // Along the Y-axis
|
|
cimglist_for(*this,l) {
|
|
const CImg<T>& img = (*this)[l];
|
|
if (img) {
|
|
dx = std::max(dx,img._width);
|
|
dy+=img._height;
|
|
dz = std::max(dz,img._depth);
|
|
dc = std::max(dc,img._spectrum);
|
|
}
|
|
}
|
|
res.assign(dx,dy,dz,dc,(T)0);
|
|
if (res) cimglist_for(*this,l) {
|
|
const CImg<T>& img = (*this)[l];
|
|
if (img) {
|
|
if (img._width==1 && img._depth==1 && img._spectrum==1 &&
|
|
res._width==1 && res._depth==1 && res._spectrum==1)
|
|
std::memcpy(&res[pos],img._data,sizeof(T)*img._height);
|
|
else
|
|
res.draw_image((int)(align*(dx - img._width)),
|
|
pos,
|
|
(int)(align*(dz - img._depth)),
|
|
(int)(align*(dc - img._spectrum)),
|
|
img);
|
|
}
|
|
pos+=img._height;
|
|
}
|
|
} break;
|
|
case 'z' : { // Along the Z-axis
|
|
cimglist_for(*this,l) {
|
|
const CImg<T>& img = (*this)[l];
|
|
if (img) {
|
|
dx = std::max(dx,img._width);
|
|
dy = std::max(dy,img._height);
|
|
dz+=img._depth;
|
|
dc = std::max(dc,img._spectrum);
|
|
}
|
|
}
|
|
res.assign(dx,dy,dz,dc,(T)0);
|
|
if (res) cimglist_for(*this,l) {
|
|
const CImg<T>& img = (*this)[l];
|
|
if (img) {
|
|
if (img._width==1 && img._height==1 && img._spectrum==1 &&
|
|
res._width==1 && res._height==1 && res._spectrum==1)
|
|
std::memcpy(&res[pos],img._data,sizeof(T)*img._depth);
|
|
else
|
|
res.draw_image((int)(align*(dx - img._width)),
|
|
(int)(align*(dy - img._height)),
|
|
pos,
|
|
(int)(align*(dc - img._spectrum)),
|
|
img);
|
|
}
|
|
pos+=img._depth;
|
|
}
|
|
} break;
|
|
default : { // Along the C-axis
|
|
cimglist_for(*this,l) {
|
|
const CImg<T>& img = (*this)[l];
|
|
if (img) {
|
|
dx = std::max(dx,img._width);
|
|
dy = std::max(dy,img._height);
|
|
dz = std::max(dz,img._depth);
|
|
dc+=img._spectrum;
|
|
}
|
|
}
|
|
res.assign(dx,dy,dz,dc,(T)0);
|
|
if (res) cimglist_for(*this,l) {
|
|
const CImg<T>& img = (*this)[l];
|
|
if (img) {
|
|
if (img._width==1 && img._height==1 && img._depth==1 &&
|
|
res._width==1 && res._height==1 && res._depth==1)
|
|
std::memcpy(&res[pos],img._data,sizeof(T)*img._spectrum);
|
|
else
|
|
res.draw_image((int)(align*(dx - img._width)),
|
|
(int)(align*(dy - img._height)),
|
|
(int)(align*(dz - img._depth)),
|
|
pos,
|
|
img);
|
|
}
|
|
pos+=img._spectrum;
|
|
}
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Return a list where each image has been split along the specified axis.
|
|
/**
|
|
\param axis Axis to split images along.
|
|
\param nb Number of split parts for each image.
|
|
**/
|
|
CImgList<T>& split(const char axis, const int nb=-1) {
|
|
return get_split(axis,nb).move_to(*this);
|
|
}
|
|
|
|
//! Return a list where each image has been split along the specified axis \newinstance.
|
|
CImgList<T> get_split(const char axis, const int nb=-1) const {
|
|
CImgList<T> res;
|
|
cimglist_for(*this,l) _data[l].get_split(axis,nb).move_to(res,~0U);
|
|
return res;
|
|
}
|
|
|
|
//! Insert image at the end of the list.
|
|
/**
|
|
\param img Image to insert.
|
|
**/
|
|
template<typename t>
|
|
CImgList<T>& push_back(const CImg<t>& img) {
|
|
return insert(img);
|
|
}
|
|
|
|
//! Insert image at the front of the list.
|
|
/**
|
|
\param img Image to insert.
|
|
**/
|
|
template<typename t>
|
|
CImgList<T>& push_front(const CImg<t>& img) {
|
|
return insert(img,0);
|
|
}
|
|
|
|
//! Insert list at the end of the current list.
|
|
/**
|
|
\param list List to insert.
|
|
**/
|
|
template<typename t>
|
|
CImgList<T>& push_back(const CImgList<t>& list) {
|
|
return insert(list);
|
|
}
|
|
|
|
//! Insert list at the front of the current list.
|
|
/**
|
|
\param list List to insert.
|
|
**/
|
|
template<typename t>
|
|
CImgList<T>& push_front(const CImgList<t>& list) {
|
|
return insert(list,0);
|
|
}
|
|
|
|
//! Remove last image.
|
|
/**
|
|
**/
|
|
CImgList<T>& pop_back() {
|
|
return remove(_width - 1);
|
|
}
|
|
|
|
//! Remove first image.
|
|
/**
|
|
**/
|
|
CImgList<T>& pop_front() {
|
|
return remove(0);
|
|
}
|
|
|
|
//! Remove image pointed by iterator.
|
|
/**
|
|
\param iter Iterator pointing to the image to remove.
|
|
**/
|
|
CImgList<T>& erase(const iterator iter) {
|
|
return remove(iter - _data);
|
|
}
|
|
|
|
//@}
|
|
//----------------------------------
|
|
//
|
|
//! \name Data Input
|
|
//@{
|
|
//----------------------------------
|
|
|
|
//! Display a simple interactive interface to select images or sublists.
|
|
/**
|
|
\param disp Window instance to display selection and user interface.
|
|
\param feature_type Can be \c false to select a single image, or \c true to select a sublist.
|
|
\param axis Axis along whom images are appended for visualization.
|
|
\param align Alignment setting when images have not all the same size.
|
|
\param exit_on_anykey Exit function when any key is pressed.
|
|
\return A one-column vector containing the selected image indexes.
|
|
**/
|
|
CImg<intT> get_select(CImgDisplay &disp, const bool feature_type=true,
|
|
const char axis='x', const float align=0,
|
|
const bool exit_on_anykey=false) const {
|
|
return _select(disp,0,feature_type,axis,align,exit_on_anykey,0,false,false,false);
|
|
}
|
|
|
|
//! Display a simple interactive interface to select images or sublists.
|
|
/**
|
|
\param title Title of a new window used to display selection and user interface.
|
|
\param feature_type Can be \c false to select a single image, or \c true to select a sublist.
|
|
\param axis Axis along whom images are appended for visualization.
|
|
\param align Alignment setting when images have not all the same size.
|
|
\param exit_on_anykey Exit function when any key is pressed.
|
|
\return A one-column vector containing the selected image indexes.
|
|
**/
|
|
CImg<intT> get_select(const char *const title, const bool feature_type=true,
|
|
const char axis='x', const float align=0,
|
|
const bool exit_on_anykey=false) const {
|
|
CImgDisplay disp;
|
|
return _select(disp,title,feature_type,axis,align,exit_on_anykey,0,false,false,false);
|
|
}
|
|
|
|
CImg<intT> _select(CImgDisplay &disp, const char *const title, const bool feature_type,
|
|
const char axis, const float align, const bool exit_on_anykey,
|
|
const unsigned int orig, const bool resize_disp,
|
|
const bool exit_on_rightbutton, const bool exit_on_wheel) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimglist_instance
|
|
"select(): Empty instance.",
|
|
cimglist_instance);
|
|
|
|
// Create image correspondence table and get list dimensions for visualization.
|
|
CImgList<uintT> _indices;
|
|
unsigned int max_width = 0, max_height = 0, sum_width = 0, sum_height = 0;
|
|
cimglist_for(*this,l) {
|
|
const CImg<T>& img = _data[l];
|
|
const unsigned int
|
|
w = CImgDisplay::_fitscreen(img._width,img._height,img._depth,128,-85,false),
|
|
h = CImgDisplay::_fitscreen(img._width,img._height,img._depth,128,-85,true);
|
|
if (w>max_width) max_width = w;
|
|
if (h>max_height) max_height = h;
|
|
sum_width+=w; sum_height+=h;
|
|
if (axis=='x') CImg<uintT>(w,1,1,1,(unsigned int)l).move_to(_indices);
|
|
else CImg<uintT>(h,1,1,1,(unsigned int)l).move_to(_indices);
|
|
}
|
|
const CImg<uintT> indices0 = _indices>'x';
|
|
|
|
// Create display window.
|
|
if (!disp) {
|
|
if (axis=='x') disp.assign(cimg_fitscreen(sum_width,max_height,1),title?title:0,1);
|
|
else disp.assign(cimg_fitscreen(max_width,sum_height,1),title?title:0,1);
|
|
if (!title) disp.set_title("CImgList<%s> (%u)",pixel_type(),_width);
|
|
} else {
|
|
if (title) disp.set_title("%s",title);
|
|
disp.move_inside_screen();
|
|
}
|
|
if (resize_disp) {
|
|
if (axis=='x') disp.resize(cimg_fitscreen(sum_width,max_height,1),false);
|
|
else disp.resize(cimg_fitscreen(max_width,sum_height,1),false);
|
|
}
|
|
|
|
const unsigned int old_normalization = disp.normalization();
|
|
bool old_is_resized = disp.is_resized();
|
|
disp._normalization = 0;
|
|
disp.show().set_key(0).show_mouse();
|
|
static const unsigned char foreground_color[] = { 255,255,255 }, background_color[] = { 0,0,0 };
|
|
|
|
// Enter event loop.
|
|
CImg<ucharT> visu0, visu;
|
|
CImg<uintT> indices;
|
|
CImg<intT> positions(_width,4,1,1,-1);
|
|
int oindex0 = -1, oindex1 = -1, index0 = -1, index1 = -1;
|
|
bool is_clicked = false, is_selected = false, text_down = false, update_display = true;
|
|
unsigned int key = 0, font_size = 32;
|
|
|
|
while (!is_selected && !disp.is_closed() && !key) {
|
|
|
|
// Create background image.
|
|
if (!visu0) {
|
|
visu0.assign(disp._width,disp._height,1,3,0); visu.assign();
|
|
(indices0.get_resize(axis=='x'?visu0._width:visu0._height,1)).move_to(indices);
|
|
unsigned int _ind = 0;
|
|
const CImg<T> onexone(1,1,1,1,(T)0);
|
|
if (axis=='x')
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(_width,4))
|
|
cimglist_for(*this,ind) {
|
|
unsigned int x0 = 0;
|
|
while (x0<visu0._width && indices[x0++]!=(unsigned int)ind) {}
|
|
unsigned int x1 = x0;
|
|
while (x1<visu0._width && indices[x1++]==(unsigned int)ind) {}
|
|
const CImg<T> &src = _data[ind]?_data[ind]:onexone;
|
|
CImg<ucharT> res;
|
|
src._get_select(disp,old_normalization,src._width/2,src._height/2,src._depth/2).
|
|
move_to(res);
|
|
const unsigned int h = CImgDisplay::_fitscreen(res._width,res._height,1,128,-85,true);
|
|
res.resize(x1 - x0,std::max(32U,h*disp._height/max_height),1,res._spectrum==1?3:-100);
|
|
positions(ind,0) = positions(ind,2) = (int)x0;
|
|
positions(ind,1) = positions(ind,3) = (int)(align*(visu0.height() - res.height()));
|
|
positions(ind,2)+=res._width;
|
|
positions(ind,3)+=res._height - 1;
|
|
visu0.draw_image(positions(ind,0),positions(ind,1),res);
|
|
}
|
|
else
|
|
cimg_pragma_openmp(parallel for cimg_openmp_if_size(_width,4))
|
|
cimglist_for(*this,ind) {
|
|
unsigned int y0 = 0;
|
|
while (y0<visu0._height && indices[y0++]!=(unsigned int)ind) {}
|
|
unsigned int y1 = y0;
|
|
while (y1<visu0._height && indices[y1++]==(unsigned int)ind) {}
|
|
const CImg<T> &src = _data[ind]?_data[ind]:onexone;
|
|
CImg<ucharT> res;
|
|
src._get_select(disp,old_normalization,(src._width - 1)/2,(src._height - 1)/2,(src._depth - 1)/2).
|
|
move_to(res);
|
|
const unsigned int w = CImgDisplay::_fitscreen(res._width,res._height,1,128,-85,false);
|
|
res.resize(std::max(32U,w*disp._width/max_width),y1 - y0,1,res._spectrum==1?3:-100);
|
|
positions(ind,0) = positions(ind,2) = (int)(align*(visu0.width() - res.width()));
|
|
positions(ind,1) = positions(ind,3) = (int)y0;
|
|
positions(ind,2)+=res._width - 1;
|
|
positions(ind,3)+=res._height;
|
|
visu0.draw_image(positions(ind,0),positions(ind,1),res);
|
|
}
|
|
if (axis=='x') --positions(_ind,2); else --positions(_ind,3);
|
|
update_display = true;
|
|
}
|
|
|
|
if (!visu || oindex0!=index0 || oindex1!=index1) {
|
|
if (index0>=0 && index1>=0) {
|
|
visu.assign(visu0,false);
|
|
const int indm = std::min(index0,index1), indM = std::max(index0,index1);
|
|
for (int ind = indm; ind<=indM; ++ind) if (positions(ind,0)>=0) {
|
|
visu.draw_rectangle(positions(ind,0),positions(ind,1),positions(ind,2),positions(ind,3),
|
|
background_color,0.2f);
|
|
if ((axis=='x' && positions(ind,2) - positions(ind,0)>=8) ||
|
|
(axis!='x' && positions(ind,3) - positions(ind,1)>=8))
|
|
visu.draw_rectangle(positions(ind,0),positions(ind,1),positions(ind,2),positions(ind,3),
|
|
foreground_color,0.9f,0xAAAAAAAA);
|
|
}
|
|
if (is_clicked) visu.__draw_text(" Images #%u - #%u, Size = %u ",font_size,(int)text_down,
|
|
orig + indm,orig + indM,indM - indm + 1);
|
|
else visu.__draw_text(" Image #%u (%u,%u,%u,%u) ",font_size,(int)text_down,
|
|
orig + index0,
|
|
_data[index0]._width,
|
|
_data[index0]._height,
|
|
_data[index0]._depth,
|
|
_data[index0]._spectrum);
|
|
update_display = true;
|
|
} else visu.assign();
|
|
}
|
|
if (!visu) { visu.assign(visu0,true); update_display = true; }
|
|
if (update_display) { visu.display(disp); update_display = false; }
|
|
disp.wait();
|
|
|
|
// Manage user events.
|
|
const int xm = disp.mouse_x(), ym = disp.mouse_y();
|
|
int index = -1;
|
|
|
|
if (xm>=0) {
|
|
index = (int)indices(axis=='x'?xm:ym);
|
|
if (disp.button()&1) {
|
|
if (!is_clicked) { is_clicked = true; oindex0 = index0; index0 = index; }
|
|
oindex1 = index1; index1 = index;
|
|
if (!feature_type) is_selected = true;
|
|
} else {
|
|
if (!is_clicked) { oindex0 = oindex1 = index0; index0 = index1 = index; }
|
|
else is_selected = true;
|
|
}
|
|
} else {
|
|
if (is_clicked) {
|
|
if (!(disp.button()&1)) { is_clicked = is_selected = false; index0 = index1 = -1; }
|
|
else index1 = -1;
|
|
} else index0 = index1 = -1;
|
|
}
|
|
|
|
if (disp.button()&4) { is_clicked = is_selected = false; index0 = index1 = -1; }
|
|
if (disp.button()&2 && exit_on_rightbutton) { is_selected = true; index1 = index0 = -1; }
|
|
if (disp.wheel() && exit_on_wheel) is_selected = true;
|
|
|
|
CImg<charT> filename(32);
|
|
switch (key = disp.key()) {
|
|
#if cimg_OS!=2
|
|
case cimg::keyCTRLRIGHT :
|
|
#endif
|
|
case 0 : case cimg::keyCTRLLEFT : key = 0; break;
|
|
case cimg::keyD : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
disp.set_fullscreen(false).
|
|
resize(CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,false),
|
|
CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,true),false).
|
|
_is_resized = true;
|
|
disp.set_key(key,false); key = 0; visu0.assign();
|
|
} break;
|
|
case cimg::keyC : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
disp.set_fullscreen(false).
|
|
resize(cimg_fitscreen(2*disp.width()/3,2*disp.height()/3,1),false)._is_resized = true;
|
|
disp.set_key(key,false); key = 0; visu0.assign();
|
|
} break;
|
|
case cimg::keyR : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
disp.set_fullscreen(false).
|
|
resize(cimg_fitscreen(axis=='x'?sum_width:max_width,axis=='x'?max_height:sum_height,1),false).
|
|
_is_resized = true;
|
|
disp.set_key(key,false); key = 0; visu0.assign();
|
|
} break;
|
|
case cimg::keyF : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
disp.resize(disp.screen_width(),disp.screen_height(),false).toggle_fullscreen()._is_resized = true;
|
|
disp.set_key(key,false); key = 0; visu0.assign();
|
|
} break;
|
|
case cimg::keyS : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
static unsigned int snap_number = 0;
|
|
std::FILE *file;
|
|
do {
|
|
cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.bmp",snap_number++);
|
|
if ((file=cimg::std_fopen(filename,"r"))!=0) cimg::fclose(file);
|
|
} while (file);
|
|
if (visu0) {
|
|
(+visu0).__draw_text(" Saving snapshot... ",font_size,(int)text_down).display(disp);
|
|
visu0.save(filename);
|
|
(+visu0).__draw_text(" Snapshot '%s' saved. ",font_size,(int)text_down,filename._data).display(disp);
|
|
}
|
|
disp.set_key(key,false).wait(); key = 0;
|
|
} break;
|
|
case cimg::keyO :
|
|
if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) {
|
|
static unsigned int snap_number = 0;
|
|
std::FILE *file;
|
|
do {
|
|
#ifdef cimg_use_zlib
|
|
cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.cimgz",snap_number++);
|
|
#else
|
|
cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.cimg",snap_number++);
|
|
#endif
|
|
if ((file=cimg::std_fopen(filename,"r"))!=0) cimg::fclose(file);
|
|
} while (file);
|
|
(+visu0).__draw_text(" Saving instance... ",font_size,(int)text_down).display(disp);
|
|
save(filename);
|
|
(+visu0).__draw_text(" Instance '%s' saved. ",font_size,(int)text_down,filename._data).display(disp);
|
|
disp.set_key(key,false).wait(); key = 0;
|
|
} break;
|
|
}
|
|
if (disp.is_resized()) { disp.resize(false); visu0.assign(); }
|
|
if (ym>=0 && ym<13) { if (!text_down) { visu.assign(); text_down = true; }}
|
|
else if (ym>=visu.height() - 13) { if (text_down) { visu.assign(); text_down = false; }}
|
|
if (!exit_on_anykey && key && key!=cimg::keyESC &&
|
|
(key!=cimg::keyW || (!disp.is_keyCTRLLEFT() && !disp.is_keyCTRLRIGHT()))) {
|
|
key = 0;
|
|
}
|
|
}
|
|
CImg<intT> res(1,2,1,1,-1);
|
|
if (is_selected) {
|
|
if (feature_type) res.fill(std::min(index0,index1),std::max(index0,index1));
|
|
else res.fill(index0);
|
|
}
|
|
if (!(disp.button()&2)) disp.set_button();
|
|
disp._normalization = old_normalization;
|
|
disp._is_resized = old_is_resized;
|
|
disp.set_key(key);
|
|
return res;
|
|
}
|
|
|
|
//! Load a list from a file.
|
|
/**
|
|
\param filename Filename to read data from.
|
|
**/
|
|
CImgList<T>& load(const char *const filename) {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimglist_instance
|
|
"load(): Specified filename is (null).",
|
|
cimglist_instance);
|
|
|
|
if (!cimg::strncasecmp(filename,"http://",7) || !cimg::strncasecmp(filename,"https://",8)) {
|
|
CImg<charT> filename_local(256);
|
|
load(cimg::load_network(filename,filename_local));
|
|
std::remove(filename_local);
|
|
return *this;
|
|
}
|
|
|
|
const bool is_stdin = *filename=='-' && (!filename[1] || filename[1]=='.');
|
|
const char *const ext = cimg::split_filename(filename);
|
|
const unsigned int omode = cimg::exception_mode();
|
|
cimg::exception_mode(0);
|
|
bool is_loaded = true;
|
|
try {
|
|
#ifdef cimglist_load_plugin
|
|
cimglist_load_plugin(filename);
|
|
#endif
|
|
#ifdef cimglist_load_plugin1
|
|
cimglist_load_plugin1(filename);
|
|
#endif
|
|
#ifdef cimglist_load_plugin2
|
|
cimglist_load_plugin2(filename);
|
|
#endif
|
|
#ifdef cimglist_load_plugin3
|
|
cimglist_load_plugin3(filename);
|
|
#endif
|
|
#ifdef cimglist_load_plugin4
|
|
cimglist_load_plugin4(filename);
|
|
#endif
|
|
#ifdef cimglist_load_plugin5
|
|
cimglist_load_plugin5(filename);
|
|
#endif
|
|
#ifdef cimglist_load_plugin6
|
|
cimglist_load_plugin6(filename);
|
|
#endif
|
|
#ifdef cimglist_load_plugin7
|
|
cimglist_load_plugin7(filename);
|
|
#endif
|
|
#ifdef cimglist_load_plugin8
|
|
cimglist_load_plugin8(filename);
|
|
#endif
|
|
if (!cimg::strcasecmp(ext,"tif") ||
|
|
!cimg::strcasecmp(ext,"tiff")) load_tiff(filename);
|
|
else if (!cimg::strcasecmp(ext,"gif")) load_gif_external(filename);
|
|
else if (!cimg::strcasecmp(ext,"cimg") ||
|
|
!cimg::strcasecmp(ext,"cimgz") ||
|
|
!*ext) load_cimg(filename);
|
|
else if (!cimg::strcasecmp(ext,"rec") ||
|
|
!cimg::strcasecmp(ext,"par")) load_parrec(filename);
|
|
else if (!cimg::strcasecmp(ext,"avi") ||
|
|
!cimg::strcasecmp(ext,"mov") ||
|
|
!cimg::strcasecmp(ext,"asf") ||
|
|
!cimg::strcasecmp(ext,"divx") ||
|
|
!cimg::strcasecmp(ext,"flv") ||
|
|
!cimg::strcasecmp(ext,"mpg") ||
|
|
!cimg::strcasecmp(ext,"m1v") ||
|
|
!cimg::strcasecmp(ext,"m2v") ||
|
|
!cimg::strcasecmp(ext,"m4v") ||
|
|
!cimg::strcasecmp(ext,"mjp") ||
|
|
!cimg::strcasecmp(ext,"mp4") ||
|
|
!cimg::strcasecmp(ext,"mkv") ||
|
|
!cimg::strcasecmp(ext,"mpe") ||
|
|
!cimg::strcasecmp(ext,"movie") ||
|
|
!cimg::strcasecmp(ext,"ogm") ||
|
|
!cimg::strcasecmp(ext,"ogg") ||
|
|
!cimg::strcasecmp(ext,"ogv") ||
|
|
!cimg::strcasecmp(ext,"qt") ||
|
|
!cimg::strcasecmp(ext,"rm") ||
|
|
!cimg::strcasecmp(ext,"vob") ||
|
|
!cimg::strcasecmp(ext,"webm") ||
|
|
!cimg::strcasecmp(ext,"wmv") ||
|
|
!cimg::strcasecmp(ext,"xvid") ||
|
|
!cimg::strcasecmp(ext,"mpeg")) load_video(filename);
|
|
else if (!cimg::strcasecmp(ext,"gz")) load_gzip_external(filename);
|
|
else is_loaded = false;
|
|
} catch (CImgIOException&) { is_loaded = false; }
|
|
|
|
// If nothing loaded, try to guess file format from magic number in file.
|
|
if (!is_loaded && !is_stdin) {
|
|
std::FILE *const file = cimg::std_fopen(filename,"rb");
|
|
if (!file) {
|
|
cimg::exception_mode(omode);
|
|
throw CImgIOException(_cimglist_instance
|
|
"load(): Failed to open file '%s'.",
|
|
cimglist_instance,
|
|
filename);
|
|
}
|
|
|
|
const char *const f_type = cimg::ftype(file,filename);
|
|
cimg::fclose(file);
|
|
is_loaded = true;
|
|
try {
|
|
if (!cimg::strcasecmp(f_type,"gif")) load_gif_external(filename);
|
|
else if (!cimg::strcasecmp(f_type,"tif") &&
|
|
cimg::strcasecmp(ext,"nef") &&
|
|
cimg::strcasecmp(ext,"dng")) load_tiff(filename);
|
|
else is_loaded = false;
|
|
} catch (CImgIOException&) { is_loaded = false; }
|
|
}
|
|
|
|
// If nothing loaded, try to load file as a single image.
|
|
if (!is_loaded) {
|
|
assign(1);
|
|
try {
|
|
_data->load(filename);
|
|
} catch (CImgIOException&) {
|
|
cimg::exception_mode(omode);
|
|
throw CImgIOException(_cimglist_instance
|
|
"load(): Failed to recognize format of file '%s'.",
|
|
cimglist_instance,
|
|
filename);
|
|
}
|
|
}
|
|
cimg::exception_mode(omode);
|
|
return *this;
|
|
}
|
|
|
|
//! Load a list from a file \newinstance.
|
|
static CImgList<T> get_load(const char *const filename) {
|
|
return CImgList<T>().load(filename);
|
|
}
|
|
|
|
//! Load a list from a .cimg file.
|
|
/**
|
|
\param filename Filename to read data from.
|
|
**/
|
|
CImgList<T>& load_cimg(const char *const filename) {
|
|
return _load_cimg(0,filename);
|
|
}
|
|
|
|
//! Load a list from a .cimg file \newinstance.
|
|
static CImgList<T> get_load_cimg(const char *const filename) {
|
|
return CImgList<T>().load_cimg(filename);
|
|
}
|
|
|
|
//! Load a list from a .cimg file.
|
|
/**
|
|
\param file File to read data from.
|
|
**/
|
|
CImgList<T>& load_cimg(std::FILE *const file) {
|
|
return _load_cimg(file,0);
|
|
}
|
|
|
|
//! Load a list from a .cimg file \newinstance.
|
|
static CImgList<T> get_load_cimg(std::FILE *const file) {
|
|
return CImgList<T>().load_cimg(file);
|
|
}
|
|
|
|
CImgList<T>& _load_cimg(std::FILE *const file, const char *const filename) {
|
|
#ifdef cimg_use_zlib
|
|
#define _cimgz_load_cimg_case(Tss) { \
|
|
Bytef *const cbuf = new Bytef[csiz]; \
|
|
cimg::fread(cbuf,(size_t)csiz,nfile); \
|
|
if (is_bool) { \
|
|
CImg<ucharT> raw(W*H*D*C/8); \
|
|
uLongf destlen = (uLongf)raw.size(); \
|
|
uncompress((Bytef*)raw._data,&destlen,cbuf,(uLong)csiz); \
|
|
img.assign(W,H,D,C); \
|
|
img._uchar2bool(raw,raw.size(),false); \
|
|
} else { \
|
|
CImg<Tss> raw(W,H,D,C); \
|
|
uLongf destlen = (uLongf)(raw.size()*sizeof(Tss)); \
|
|
uncompress((Bytef*)raw._data,&destlen,cbuf,(uLong)csiz); \
|
|
if (endian!=cimg::endianness()) cimg::invert_endianness(raw._data,raw.size()); \
|
|
raw.move_to(img); \
|
|
} \
|
|
delete[] cbuf; \
|
|
}
|
|
#else
|
|
#define _cimgz_load_cimg_case(Tss) \
|
|
throw CImgIOException(_cimglist_instance \
|
|
"load_cimg(): Unable to load compressed data from file '%s' unless zlib is enabled.", \
|
|
cimglist_instance, \
|
|
filename?filename:"(FILE*)");
|
|
#endif
|
|
|
|
#define _cimg_load_cimg_case(Ts1,Ts2,Ts3,Tss) \
|
|
if (!loaded && ((Ts1 && !cimg::strcasecmp(Ts1,str_pixeltype)) || \
|
|
(Ts2 && !cimg::strcasecmp(Ts2,str_pixeltype)) || \
|
|
(Ts3 && !cimg::strcasecmp(Ts3,str_pixeltype)))) { \
|
|
const bool is_bool = cimg::type<Tss>::string()==cimg::type<bool>::string(); \
|
|
for (unsigned int l = 0; l<N; ++l) { \
|
|
j = 0; while ((i=std::fgetc(nfile))!='\n' && i>=0 && j<255) tmp[j++] = (char)i; tmp[j] = 0; \
|
|
W = H = D = C = 0; csiz = 0; \
|
|
if ((err = cimg_sscanf(tmp,"%u %u %u %u #" cimg_fuint64,&W,&H,&D,&C,&csiz))<4) \
|
|
throw CImgIOException(_cimglist_instance \
|
|
"load_cimg(): Invalid specified size (%u,%u,%u,%u) of image %u in file '%s'.", \
|
|
cimglist_instance, \
|
|
W,H,D,C,l,filename?filename:("(FILE*)")); \
|
|
if (W*H*D*C>0) { \
|
|
CImg<T> &img = _data[l]; \
|
|
if (err==5) _cimgz_load_cimg_case(Tss) \
|
|
else { \
|
|
img.assign(W,H,D,C); \
|
|
T *ptrd = img._data; \
|
|
if (is_bool) { \
|
|
CImg<ucharT> raw; \
|
|
for (ulongT to_read = img.size(); to_read; ) { \
|
|
raw.assign((unsigned int)std::min(to_read,cimg_iobuffer)); \
|
|
cimg::fread(raw._data,raw._width,nfile); \
|
|
CImg<T>(ptrd,std::min(8*raw._width,(unsigned int)(img.end() - ptrd)),1,1,1,true).\
|
|
_uchar2bool(raw,raw._width,false); \
|
|
to_read-=raw._width; \
|
|
} \
|
|
} else { \
|
|
CImg<Tss> raw; \
|
|
for (ulongT to_read = img.size(); to_read; ) { \
|
|
raw.assign((unsigned int)std::min(to_read,cimg_iobuffer)); \
|
|
cimg::fread(raw._data,raw._width,nfile); \
|
|
if (endian!=cimg::endianness()) cimg::invert_endianness(raw._data,raw.size()); \
|
|
const Tss *ptrs = raw._data; \
|
|
for (ulongT off = (ulongT)raw._width; off; --off) *(ptrd++) = (T)*(ptrs++); \
|
|
to_read-=raw._width; \
|
|
} \
|
|
} \
|
|
} \
|
|
} \
|
|
} \
|
|
loaded = true; \
|
|
}
|
|
|
|
if (!filename && !file)
|
|
throw CImgArgumentException(_cimglist_instance
|
|
"load_cimg(): Specified filename is (null).",
|
|
cimglist_instance);
|
|
|
|
const ulongT cimg_iobuffer = (ulongT)24*1024*1024;
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"rb");
|
|
bool loaded = false, endian = cimg::endianness();
|
|
CImg<charT> tmp(256), str_pixeltype(256), str_endian(256);
|
|
*tmp = *str_pixeltype = *str_endian = 0;
|
|
unsigned int j, N = 0, W, H, D, C;
|
|
cimg_uint64 csiz;
|
|
int i, err;
|
|
do {
|
|
j = 0; while ((i=std::fgetc(nfile))!='\n' && i>=0 && j<255) tmp[j++] = (char)i; tmp[j] = 0;
|
|
} while (*tmp=='#' && i>=0);
|
|
err = cimg_sscanf(tmp,"%u%*c%255[A-Za-z123468_]%*c%255[sA-Za-z_ ]",
|
|
&N,str_pixeltype._data,str_endian._data);
|
|
if (err<2) {
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimglist_instance
|
|
"load_cimg(): File or CImg header not found in file '%s'.",
|
|
cimglist_instance,
|
|
filename?filename:"(FILE*)");
|
|
}
|
|
if (!cimg::strncasecmp("little",str_endian,6)) endian = false;
|
|
else if (!cimg::strncasecmp("big",str_endian,3)) endian = true;
|
|
assign(N);
|
|
_cimg_load_cimg_case("bool",0,0,cimg_uint8);
|
|
_cimg_load_cimg_case("uint8","unsigned_char","uchar",cimg_uint8);
|
|
_cimg_load_cimg_case("int8",0,0,cimg_int8);
|
|
_cimg_load_cimg_case("char",0,0,char);
|
|
_cimg_load_cimg_case("uint16","unsigned_short","ushort",cimg_uint16);
|
|
_cimg_load_cimg_case("int16","short",0,cimg_int16);
|
|
_cimg_load_cimg_case("uint32","unsigned_int","uint",cimg_uint32);
|
|
_cimg_load_cimg_case("int32","int",0,cimg_int32);
|
|
_cimg_load_cimg_case("unsigned_long","ulong",0,cimg_ulong);
|
|
_cimg_load_cimg_case("long",0,0,cimg_long);
|
|
_cimg_load_cimg_case("uint64","unsigned_int64",0,cimg_uint64);
|
|
_cimg_load_cimg_case("int64",0,0,cimg_int64);
|
|
_cimg_load_cimg_case("float32","float",0,cimg_float32);
|
|
_cimg_load_cimg_case("float64","double",0,cimg_float64);
|
|
|
|
if (!loaded) {
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimglist_instance
|
|
"load_cimg(): Unsupported pixel type '%s' for file '%s'.",
|
|
cimglist_instance,
|
|
str_pixeltype._data,filename?filename:"(FILE*)");
|
|
}
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
}
|
|
|
|
//! Load a sublist list from a (non compressed) .cimg file.
|
|
/**
|
|
\param filename Filename to read data from.
|
|
\param n0 Starting index of images to read (~0U for max).
|
|
\param n1 Ending index of images to read (~0U for max).
|
|
\param x0 Starting X-coordinates of image regions to read.
|
|
\param y0 Starting Y-coordinates of image regions to read.
|
|
\param z0 Starting Z-coordinates of image regions to read.
|
|
\param c0 Starting C-coordinates of image regions to read.
|
|
\param x1 Ending X-coordinates of image regions to read (~0U for max).
|
|
\param y1 Ending Y-coordinates of image regions to read (~0U for max).
|
|
\param z1 Ending Z-coordinates of image regions to read (~0U for max).
|
|
\param c1 Ending C-coordinates of image regions to read (~0U for max).
|
|
**/
|
|
CImgList<T>& load_cimg(const char *const filename,
|
|
const unsigned int n0, const unsigned int n1,
|
|
const unsigned int x0, const unsigned int y0,
|
|
const unsigned int z0, const unsigned int c0,
|
|
const unsigned int x1, const unsigned int y1,
|
|
const unsigned int z1, const unsigned int c1) {
|
|
return _load_cimg(0,filename,n0,n1,x0,y0,z0,c0,x1,y1,z1,c1);
|
|
}
|
|
|
|
//! Load a sublist list from a (non compressed) .cimg file \newinstance.
|
|
static CImgList<T> get_load_cimg(const char *const filename,
|
|
const unsigned int n0, const unsigned int n1,
|
|
const unsigned int x0, const unsigned int y0,
|
|
const unsigned int z0, const unsigned int c0,
|
|
const unsigned int x1, const unsigned int y1,
|
|
const unsigned int z1, const unsigned int c1) {
|
|
return CImgList<T>().load_cimg(filename,n0,n1,x0,y0,z0,c0,x1,y1,z1,c1);
|
|
}
|
|
|
|
//! Load a sub-image list from a (non compressed) .cimg file \overloading.
|
|
CImgList<T>& load_cimg(std::FILE *const file,
|
|
const unsigned int n0, const unsigned int n1,
|
|
const unsigned int x0, const unsigned int y0,
|
|
const unsigned int z0, const unsigned int c0,
|
|
const unsigned int x1, const unsigned int y1,
|
|
const unsigned int z1, const unsigned int c1) {
|
|
return _load_cimg(file,0,n0,n1,x0,y0,z0,c0,x1,y1,z1,c1);
|
|
}
|
|
|
|
//! Load a sub-image list from a (non compressed) .cimg file \newinstance.
|
|
static CImgList<T> get_load_cimg(std::FILE *const file,
|
|
const unsigned int n0, const unsigned int n1,
|
|
const unsigned int x0, const unsigned int y0,
|
|
const unsigned int z0, const unsigned int c0,
|
|
const unsigned int x1, const unsigned int y1,
|
|
const unsigned int z1, const unsigned int c1) {
|
|
return CImgList<T>().load_cimg(file,n0,n1,x0,y0,z0,c0,x1,y1,z1,c1);
|
|
}
|
|
|
|
CImgList<T>& _load_cimg(std::FILE *const file, const char *const filename,
|
|
const unsigned int n0, const unsigned int n1,
|
|
const unsigned int x0, const unsigned int y0,
|
|
const unsigned int z0, const unsigned int c0,
|
|
const unsigned int x1, const unsigned int y1,
|
|
const unsigned int z1, const unsigned int c1) {
|
|
#define _cimg_load_cimg_case2(Ts1,Ts2,Ts3,Tss) \
|
|
if (!loaded && ((Ts1 && !cimg::strcasecmp(Ts1,str_pixeltype)) || \
|
|
(Ts2 && !cimg::strcasecmp(Ts2,str_pixeltype)) || \
|
|
(Ts3 && !cimg::strcasecmp(Ts3,str_pixeltype)))) { \
|
|
for (unsigned int l = 0; l<=nn1; ++l) { \
|
|
j = 0; while ((i=std::fgetc(nfile))!='\n' && i>=0) tmp[j++] = (char)i; tmp[j] = 0; \
|
|
W = H = D = C = 0; \
|
|
if (cimg_sscanf(tmp,"%u %u %u %u",&W,&H,&D,&C)!=4) \
|
|
throw CImgIOException(_cimglist_instance \
|
|
"load_cimg(): Invalid specified size (%u,%u,%u,%u) of image %u in file '%s'", \
|
|
cimglist_instance, \
|
|
W,H,D,C,l,filename?filename:"(FILE*)"); \
|
|
if (W*H*D*C>0) { \
|
|
if (l<nn0 || nx0>=W || ny0>=H || nz0>=D || nc0>=C) cimg::fseek(nfile,W*H*D*C*sizeof(Tss),SEEK_CUR); \
|
|
else { \
|
|
const unsigned int \
|
|
_nx1 = nx1==~0U?W - 1:nx1, \
|
|
_ny1 = ny1==~0U?H - 1:ny1, \
|
|
_nz1 = nz1==~0U?D - 1:nz1, \
|
|
_nc1 = nc1==~0U?C - 1:nc1; \
|
|
if (_nx1>=W || _ny1>=H || _nz1>=D || _nc1>=C) \
|
|
throw CImgArgumentException(_cimglist_instance \
|
|
"load_cimg(): Invalid specified coordinates " \
|
|
"[%u](%u,%u,%u,%u) -> [%u](%u,%u,%u,%u) " \
|
|
"because image [%u] in file '%s' has size (%u,%u,%u,%u).", \
|
|
cimglist_instance, \
|
|
n0,x0,y0,z0,c0,n1,x1,y1,z1,c1,l,filename?filename:"(FILE*)",W,H,D,C); \
|
|
CImg<Tss> raw(1 + _nx1 - nx0); \
|
|
CImg<T> &img = _data[l - nn0]; \
|
|
img.assign(1 + _nx1 - nx0,1 + _ny1 - ny0,1 + _nz1 - nz0,1 + _nc1 - nc0); \
|
|
T *ptrd = img._data; \
|
|
ulongT skipvb = nc0*W*H*D*sizeof(Tss); \
|
|
if (skipvb) cimg::fseek(nfile,skipvb,SEEK_CUR); \
|
|
for (unsigned int c = 1 + _nc1 - nc0; c; --c) { \
|
|
const ulongT skipzb = nz0*W*H*sizeof(Tss); \
|
|
if (skipzb) cimg::fseek(nfile,skipzb,SEEK_CUR); \
|
|
for (unsigned int z = 1 + _nz1 - nz0; z; --z) { \
|
|
const ulongT skipyb = ny0*W*sizeof(Tss); \
|
|
if (skipyb) cimg::fseek(nfile,skipyb,SEEK_CUR); \
|
|
for (unsigned int y = 1 + _ny1 - ny0; y; --y) { \
|
|
const ulongT skipxb = nx0*sizeof(Tss); \
|
|
if (skipxb) cimg::fseek(nfile,skipxb,SEEK_CUR); \
|
|
cimg::fread(raw._data,raw._width,nfile); \
|
|
if (endian!=cimg::endianness()) cimg::invert_endianness(raw._data,raw._width); \
|
|
const Tss *ptrs = raw._data; \
|
|
for (unsigned int off = raw._width; off; --off) *(ptrd++) = (T)*(ptrs++); \
|
|
const ulongT skipxe = (W - 1 - _nx1)*sizeof(Tss); \
|
|
if (skipxe) cimg::fseek(nfile,skipxe,SEEK_CUR); \
|
|
} \
|
|
const ulongT skipye = (H - 1 - _ny1)*W*sizeof(Tss); \
|
|
if (skipye) cimg::fseek(nfile,skipye,SEEK_CUR); \
|
|
} \
|
|
const ulongT skipze = (D - 1 - _nz1)*W*H*sizeof(Tss); \
|
|
if (skipze) cimg::fseek(nfile,skipze,SEEK_CUR); \
|
|
} \
|
|
const ulongT skipve = (C - 1 - _nc1)*W*H*D*sizeof(Tss); \
|
|
if (skipve) cimg::fseek(nfile,skipve,SEEK_CUR); \
|
|
} \
|
|
} \
|
|
} \
|
|
loaded = true; \
|
|
}
|
|
|
|
if (!filename && !file)
|
|
throw CImgArgumentException(_cimglist_instance
|
|
"load_cimg(): Specified filename is (null).",
|
|
cimglist_instance);
|
|
unsigned int
|
|
nn0 = std::min(n0,n1), nn1 = std::max(n0,n1),
|
|
nx0 = std::min(x0,x1), nx1 = std::max(x0,x1),
|
|
ny0 = std::min(y0,y1), ny1 = std::max(y0,y1),
|
|
nz0 = std::min(z0,z1), nz1 = std::max(z0,z1),
|
|
nc0 = std::min(c0,c1), nc1 = std::max(c0,c1);
|
|
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"rb");
|
|
bool loaded = false, endian = cimg::endianness();
|
|
CImg<charT> tmp(256), str_pixeltype(256), str_endian(256);
|
|
*tmp = *str_pixeltype = *str_endian = 0;
|
|
unsigned int j, N, W, H, D, C;
|
|
int i, err;
|
|
j = 0; while ((i=std::fgetc(nfile))!='\n' && i!=EOF && j<256) tmp[j++] = (char)i; tmp[j] = 0;
|
|
err = cimg_sscanf(tmp,"%u%*c%255[A-Za-z123468_]%*c%255[sA-Za-z_ ]",
|
|
&N,str_pixeltype._data,str_endian._data);
|
|
if (err<2) {
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimglist_instance
|
|
"load_cimg(): CImg header not found in file '%s'.",
|
|
cimglist_instance,
|
|
filename?filename:"(FILE*)");
|
|
}
|
|
if (!cimg::strncasecmp("little",str_endian,6)) endian = false;
|
|
else if (!cimg::strncasecmp("big",str_endian,3)) endian = true;
|
|
nn1 = n1==~0U?N - 1:n1;
|
|
if (nn1>=N)
|
|
throw CImgArgumentException(_cimglist_instance
|
|
"load_cimg(): Invalid specified coordinates [%u](%u,%u,%u,%u) -> [%u](%u,%u,%u,%u) "
|
|
"because file '%s' contains only %u images.",
|
|
cimglist_instance,
|
|
n0,x0,y0,z0,c0,n1,x1,y1,z1,c1,filename?filename:"(FILE*)",N);
|
|
assign(1 + nn1 - n0);
|
|
_cimg_load_cimg_case2("bool",0,0,cimg_uint8);
|
|
_cimg_load_cimg_case2("uint8","unsigned char","uchar",cimg_uint8);
|
|
_cimg_load_cimg_case2("int8",0,0,cimg_int8);
|
|
_cimg_load_cimg_case2("char",0,0,char);
|
|
_cimg_load_cimg_case2("uint16","unsigned_short","ushort",cimg_uint16);
|
|
_cimg_load_cimg_case2("int16","short",0,cimg_int16);
|
|
_cimg_load_cimg_case2("uint32","unsigned_int","uint",cimg_uint32);
|
|
_cimg_load_cimg_case2("int32","int",0,cimg_int32);
|
|
_cimg_load_cimg_case2("unsigned_long","ulong",0,cimg_ulong);
|
|
_cimg_load_cimg_case2("long",0,0,cimg_long);
|
|
_cimg_load_cimg_case2("uint64","unsigned_int64",0,cimg_uint64);
|
|
_cimg_load_cimg_case2("int64",0,0,cimg_int64);
|
|
_cimg_load_cimg_case2("float32","float",0,cimg_float32);
|
|
_cimg_load_cimg_case2("float64","double",0,cimg_float64);
|
|
if (!loaded) {
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimglist_instance
|
|
"load_cimg(): Unsupported pixel type '%s' for file '%s'.",
|
|
cimglist_instance,
|
|
str_pixeltype._data,filename?filename:"(FILE*)");
|
|
}
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
}
|
|
|
|
//! Load a list from a PAR/REC (Philips) file.
|
|
/**
|
|
\param filename Filename to read data from.
|
|
**/
|
|
CImgList<T>& load_parrec(const char *const filename) {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimglist_instance
|
|
"load_parrec(): Specified filename is (null).",
|
|
cimglist_instance);
|
|
|
|
CImg<charT> body(1024), filenamepar(1024), filenamerec(1024);
|
|
*body = *filenamepar = *filenamerec = 0;
|
|
const char *const ext = cimg::split_filename(filename,body);
|
|
if (!std::strcmp(ext,"par")) {
|
|
std::strncpy(filenamepar,filename,filenamepar._width - 1);
|
|
cimg_snprintf(filenamerec,filenamerec._width,"%s.rec",body._data);
|
|
}
|
|
if (!std::strcmp(ext,"PAR")) {
|
|
std::strncpy(filenamepar,filename,filenamepar._width - 1);
|
|
cimg_snprintf(filenamerec,filenamerec._width,"%s.REC",body._data);
|
|
}
|
|
if (!std::strcmp(ext,"rec")) {
|
|
std::strncpy(filenamerec,filename,filenamerec._width - 1);
|
|
cimg_snprintf(filenamepar,filenamepar._width,"%s.par",body._data);
|
|
}
|
|
if (!std::strcmp(ext,"REC")) {
|
|
std::strncpy(filenamerec,filename,filenamerec._width - 1);
|
|
cimg_snprintf(filenamepar,filenamepar._width,"%s.PAR",body._data);
|
|
}
|
|
std::FILE *file = cimg::fopen(filenamepar,"r");
|
|
|
|
// Parse header file
|
|
CImgList<floatT> st_slices;
|
|
CImgList<uintT> st_global;
|
|
CImg<charT> line(256); *line = 0;
|
|
int err;
|
|
do { err = std::fscanf(file,"%255[^\n]%*c",line._data); } while (err!=EOF && (*line=='#' || *line=='.'));
|
|
do {
|
|
unsigned int sn,size_x,size_y,pixsize;
|
|
float rs,ri,ss;
|
|
err = std::fscanf(file,"%u%*u%*u%*u%*u%*u%*u%u%*u%u%u%g%g%g%*[^\n]",&sn,&pixsize,&size_x,&size_y,&ri,&rs,&ss);
|
|
if (err==7) {
|
|
CImg<floatT>::vector((float)sn,(float)pixsize,(float)size_x,(float)size_y,ri,rs,ss,0).move_to(st_slices);
|
|
unsigned int i; for (i = 0; i<st_global._width && sn<=st_global[i][2]; ++i) {}
|
|
if (i==st_global._width) CImg<uintT>::vector(size_x,size_y,sn).move_to(st_global);
|
|
else {
|
|
CImg<uintT> &vec = st_global[i];
|
|
if (size_x>vec[0]) vec[0] = size_x;
|
|
if (size_y>vec[1]) vec[1] = size_y;
|
|
vec[2] = sn;
|
|
}
|
|
st_slices[st_slices._width - 1][7] = (float)i;
|
|
}
|
|
} while (err==7);
|
|
|
|
// Read data
|
|
std::FILE *file2 = cimg::fopen(filenamerec,"rb");
|
|
cimglist_for(st_global,l) {
|
|
const CImg<uintT>& vec = st_global[l];
|
|
CImg<T>(vec[0],vec[1],vec[2]).move_to(*this);
|
|
}
|
|
|
|
cimglist_for(st_slices,l) {
|
|
const CImg<floatT>& vec = st_slices[l];
|
|
const unsigned int
|
|
sn = (unsigned int)vec[0] - 1,
|
|
pixsize = (unsigned int)vec[1],
|
|
size_x = (unsigned int)vec[2],
|
|
size_y = (unsigned int)vec[3],
|
|
imn = (unsigned int)vec[7];
|
|
const float ri = vec[4], rs = vec[5], ss = vec[6];
|
|
switch (pixsize) {
|
|
case 8 : {
|
|
CImg<ucharT> buf(size_x,size_y);
|
|
cimg::fread(buf._data,size_x*size_y,file2);
|
|
if (cimg::endianness()) cimg::invert_endianness(buf._data,size_x*size_y);
|
|
CImg<T>& img = (*this)[imn];
|
|
cimg_forXY(img,x,y) img(x,y,sn) = (T)(( buf(x,y)*rs + ri )/(rs*ss));
|
|
} break;
|
|
case 16 : {
|
|
CImg<ushortT> buf(size_x,size_y);
|
|
cimg::fread(buf._data,size_x*size_y,file2);
|
|
if (cimg::endianness()) cimg::invert_endianness(buf._data,size_x*size_y);
|
|
CImg<T>& img = (*this)[imn];
|
|
cimg_forXY(img,x,y) img(x,y,sn) = (T)(( buf(x,y)*rs + ri )/(rs*ss));
|
|
} break;
|
|
case 32 : {
|
|
CImg<uintT> buf(size_x,size_y);
|
|
cimg::fread(buf._data,size_x*size_y,file2);
|
|
if (cimg::endianness()) cimg::invert_endianness(buf._data,size_x*size_y);
|
|
CImg<T>& img = (*this)[imn];
|
|
cimg_forXY(img,x,y) img(x,y,sn) = (T)(( buf(x,y)*rs + ri )/(rs*ss));
|
|
} break;
|
|
default :
|
|
cimg::fclose(file);
|
|
cimg::fclose(file2);
|
|
throw CImgIOException(_cimglist_instance
|
|
"load_parrec(): Unsupported %d-bits pixel type for file '%s'.",
|
|
cimglist_instance,
|
|
pixsize,filename);
|
|
}
|
|
}
|
|
cimg::fclose(file);
|
|
cimg::fclose(file2);
|
|
if (!_width)
|
|
throw CImgIOException(_cimglist_instance
|
|
"load_parrec(): Failed to recognize valid PAR-REC data in file '%s'.",
|
|
cimglist_instance,
|
|
filename);
|
|
return *this;
|
|
}
|
|
|
|
//! Load a list from a PAR/REC (Philips) file \newinstance.
|
|
static CImgList<T> get_load_parrec(const char *const filename) {
|
|
return CImgList<T>().load_parrec(filename);
|
|
}
|
|
|
|
//! Load a list from a YUV image sequence file.
|
|
/**
|
|
\param filename Filename to read data from.
|
|
\param size_x Width of the images.
|
|
\param size_y Height of the images.
|
|
\param chroma_subsampling Type of chroma subsampling. Can be <tt>{ 420 | 422 | 444 }</tt>.
|
|
\param first_frame Index of first image frame to read.
|
|
\param last_frame Index of last image frame to read.
|
|
\param step_frame Step applied between each frame.
|
|
\param yuv2rgb Apply YUV to RGB transformation during reading.
|
|
**/
|
|
CImgList<T>& load_yuv(const char *const filename,
|
|
const unsigned int size_x, const unsigned int size_y,
|
|
const unsigned int chroma_subsampling=444,
|
|
const unsigned int first_frame=0, const unsigned int last_frame=~0U,
|
|
const unsigned int step_frame=1, const bool yuv2rgb=true) {
|
|
return _load_yuv(0,filename,size_x,size_y,chroma_subsampling,
|
|
first_frame,last_frame,step_frame,yuv2rgb);
|
|
}
|
|
|
|
//! Load a list from a YUV image sequence file \newinstance.
|
|
static CImgList<T> get_load_yuv(const char *const filename,
|
|
const unsigned int size_x, const unsigned int size_y=1,
|
|
const unsigned int chroma_subsampling=444,
|
|
const unsigned int first_frame=0, const unsigned int last_frame=~0U,
|
|
const unsigned int step_frame=1, const bool yuv2rgb=true) {
|
|
return CImgList<T>().load_yuv(filename,size_x,size_y,chroma_subsampling,
|
|
first_frame,last_frame,step_frame,yuv2rgb);
|
|
}
|
|
|
|
//! Load a list from an image sequence YUV file \overloading.
|
|
CImgList<T>& load_yuv(std::FILE *const file,
|
|
const unsigned int size_x, const unsigned int size_y,
|
|
const unsigned int chroma_subsampling=444,
|
|
const unsigned int first_frame=0, const unsigned int last_frame=~0U,
|
|
const unsigned int step_frame=1, const bool yuv2rgb=true) {
|
|
return _load_yuv(file,0,size_x,size_y,chroma_subsampling,
|
|
first_frame,last_frame,step_frame,yuv2rgb);
|
|
}
|
|
|
|
//! Load a list from an image sequence YUV file \newinstance.
|
|
static CImgList<T> get_load_yuv(std::FILE *const file,
|
|
const unsigned int size_x, const unsigned int size_y=1,
|
|
const unsigned int chroma_subsampling=444,
|
|
const unsigned int first_frame=0, const unsigned int last_frame=~0U,
|
|
const unsigned int step_frame=1, const bool yuv2rgb=true) {
|
|
return CImgList<T>().load_yuv(file,size_x,size_y,chroma_subsampling,
|
|
first_frame,last_frame,step_frame,yuv2rgb);
|
|
}
|
|
|
|
CImgList<T>& _load_yuv(std::FILE *const file, const char *const filename,
|
|
const unsigned int size_x, const unsigned int size_y,
|
|
const unsigned int chroma_subsampling,
|
|
const unsigned int first_frame, const unsigned int last_frame,
|
|
const unsigned int step_frame, const bool yuv2rgb) {
|
|
if (!filename && !file)
|
|
throw CImgArgumentException(_cimglist_instance
|
|
"load_yuv(): Specified filename is (null).",
|
|
cimglist_instance);
|
|
if (chroma_subsampling!=420 && chroma_subsampling!=422 && chroma_subsampling!=444)
|
|
throw CImgArgumentException(_cimglist_instance
|
|
"load_yuv(): Specified chroma subsampling %u is invalid, for file '%s'.",
|
|
cimglist_instance,
|
|
chroma_subsampling,filename?filename:"(FILE*)");
|
|
const unsigned int
|
|
cfx = chroma_subsampling==420 || chroma_subsampling==422?2:1,
|
|
cfy = chroma_subsampling==420?2:1,
|
|
nfirst_frame = first_frame<last_frame?first_frame:last_frame,
|
|
nlast_frame = first_frame<last_frame?last_frame:first_frame,
|
|
nstep_frame = step_frame?step_frame:1;
|
|
|
|
if (!size_x || !size_y || size_x%cfx || size_y%cfy)
|
|
throw CImgArgumentException(_cimglist_instance
|
|
"load_yuv(): Specified dimensions (%u,%u) are invalid, for file '%s'.",
|
|
cimglist_instance,
|
|
size_x,size_y,filename?filename:"(FILE*)");
|
|
|
|
CImg<ucharT> YUV(size_x,size_y,1,3), UV(size_x/cfx,size_y/cfy,1,2);
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"rb");
|
|
bool stop_flag = false;
|
|
int err;
|
|
if (nfirst_frame) {
|
|
err = cimg::fseek(nfile,(uint64T)nfirst_frame*(YUV._width*YUV._height + 2*UV._width*UV._height),SEEK_CUR);
|
|
if (err) {
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimglist_instance
|
|
"load_yuv(): File '%s' doesn't contain frame number %u.",
|
|
cimglist_instance,
|
|
filename?filename:"(FILE*)",nfirst_frame);
|
|
}
|
|
}
|
|
unsigned int frame;
|
|
for (frame = nfirst_frame; !stop_flag && frame<=nlast_frame; frame+=nstep_frame) {
|
|
YUV.get_shared_channel(0).fill(0);
|
|
// *TRY* to read the luminance part, do not replace by cimg::fread!
|
|
err = (int)std::fread((void*)(YUV._data),1,(size_t)YUV._width*YUV._height,nfile);
|
|
if (err!=(int)(YUV._width*YUV._height)) {
|
|
stop_flag = true;
|
|
if (err>0)
|
|
cimg::warn(_cimglist_instance
|
|
"load_yuv(): File '%s' contains incomplete data or given image dimensions "
|
|
"(%u,%u) are incorrect.",
|
|
cimglist_instance,
|
|
filename?filename:"(FILE*)",size_x,size_y);
|
|
} else {
|
|
UV.fill(0);
|
|
// *TRY* to read the luminance part, do not replace by cimg::fread!
|
|
err = (int)std::fread((void*)(UV._data),1,(size_t)UV.size(),nfile);
|
|
if (err!=(int)(UV.size())) {
|
|
stop_flag = true;
|
|
if (err>0)
|
|
cimg::warn(_cimglist_instance
|
|
"load_yuv(): File '%s' contains incomplete data or given image dimensions "
|
|
"(%u,%u) are incorrect.",
|
|
cimglist_instance,
|
|
filename?filename:"(FILE*)",size_x,size_y);
|
|
} else {
|
|
const ucharT *ptrs1 = UV._data, *ptrs2 = UV.data(0,0,0,1);
|
|
ucharT *ptrd1 = YUV.data(0,0,0,1), *ptrd2 = YUV.data(0,0,0,2);
|
|
const unsigned int wd = YUV._width;
|
|
switch (chroma_subsampling) {
|
|
case 420 :
|
|
cimg_forY(UV,y) {
|
|
cimg_forX(UV,x) {
|
|
const ucharT U = *(ptrs1++), V = *(ptrs2++);
|
|
ptrd1[wd] = U; *(ptrd1)++ = U;
|
|
ptrd1[wd] = U; *(ptrd1)++ = U;
|
|
ptrd2[wd] = V; *(ptrd2)++ = V;
|
|
ptrd2[wd] = V; *(ptrd2)++ = V;
|
|
}
|
|
ptrd1+=wd; ptrd2+=wd;
|
|
}
|
|
break;
|
|
case 422 :
|
|
cimg_forXY(UV,x,y) {
|
|
const ucharT U = *(ptrs1++), V = *(ptrs2++);
|
|
*(ptrd1++) = U; *(ptrd1++) = U;
|
|
*(ptrd2++) = V; *(ptrd2++) = V;
|
|
}
|
|
break;
|
|
default :
|
|
YUV.draw_image(0,0,0,1,UV);
|
|
}
|
|
if (yuv2rgb) YUV.YCbCrtoRGB();
|
|
insert(YUV);
|
|
if (nstep_frame>1) cimg::fseek(nfile,(uint64T)(nstep_frame - 1)*(size_x*size_y + size_x*size_y/2),SEEK_CUR);
|
|
}
|
|
}
|
|
}
|
|
if (is_empty())
|
|
throw CImgIOException(_cimglist_instance
|
|
"load_yuv() : Missing data in file '%s'.",
|
|
cimglist_instance,
|
|
filename?filename:"(FILE*)");
|
|
if (stop_flag && nlast_frame!=~0U && frame!=nlast_frame)
|
|
cimg::warn(_cimglist_instance
|
|
"load_yuv(): Frame %d not reached since only %u frames were found in file '%s'.",
|
|
cimglist_instance,
|
|
nlast_frame,frame - 1,filename?filename:"(FILE*)");
|
|
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
}
|
|
|
|
//! Load an image from a video file, using OpenCV library.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\param first_frame Index of the first frame to read.
|
|
\param last_frame Index of the last frame to read (can be higher than the actual number of frames, e.g. '~0U').
|
|
\param step_frame Step value for frame reading.
|
|
\note If step_frame==0, the current video stream is forced to be released (without any frames read).
|
|
**/
|
|
CImgList<T>& load_video(const char *const filename,
|
|
const unsigned int first_frame=0, const unsigned int last_frame=~0U,
|
|
const unsigned int step_frame=1) {
|
|
#ifndef cimg_use_opencv
|
|
if (first_frame || last_frame!=~0U || step_frame>1)
|
|
throw CImgArgumentException(_cimglist_instance
|
|
"load_video() : File '%s', arguments 'first_frame', 'last_frame' "
|
|
"and 'step_frame' requires features from the OpenCV library "
|
|
"('-Dcimg_use_opencv' must be defined).",
|
|
cimglist_instance,filename);
|
|
return load_ffmpeg_external(filename);
|
|
#else
|
|
static cv::VideoCapture *captures[32] = {};
|
|
static CImgList<charT> filenames(32);
|
|
static CImg<uintT> positions(32,1,1,1,0);
|
|
static int last_used_index = -1;
|
|
|
|
// Detect if a video capture already exists for the specified filename.
|
|
cimg::mutex(9);
|
|
int index = -1;
|
|
if (filename) {
|
|
if (last_used_index>=0 && !std::strcmp(filename,filenames[last_used_index])) {
|
|
index = last_used_index;
|
|
} else cimglist_for(filenames,l) if (filenames[l] && !std::strcmp(filename,filenames[l])) {
|
|
index = l; break;
|
|
}
|
|
} else index = last_used_index;
|
|
cimg::mutex(9,0);
|
|
|
|
// Release stream if needed.
|
|
if (!step_frame || (index>=0 && positions[index]>first_frame)) {
|
|
if (index>=0) {
|
|
cimg::mutex(9);
|
|
captures[index]->release();
|
|
delete captures[index];
|
|
captures[index] = 0;
|
|
positions[index] = 0;
|
|
filenames[index].assign();
|
|
if (last_used_index==index) last_used_index = -1;
|
|
index = -1;
|
|
cimg::mutex(9,0);
|
|
} else
|
|
if (filename)
|
|
cimg::warn(_cimglist_instance
|
|
"load_video() : File '%s', no opened video stream associated with filename found.",
|
|
cimglist_instance,filename);
|
|
else
|
|
cimg::warn(_cimglist_instance
|
|
"load_video() : No opened video stream found.",
|
|
cimglist_instance,filename);
|
|
if (!step_frame) return *this;
|
|
}
|
|
|
|
// Find empty slot for capturing video stream.
|
|
if (index<0) {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimglist_instance
|
|
"load_video(): No already open video reader found. You must specify a "
|
|
"non-(null) filename argument for the first call.",
|
|
cimglist_instance);
|
|
else { cimg::mutex(9); cimglist_for(filenames,l) if (!filenames[l]) { index = l; break; } cimg::mutex(9,0); }
|
|
if (index<0)
|
|
throw CImgIOException(_cimglist_instance
|
|
"load_video(): File '%s', no video reader slots available. "
|
|
"You have to release some of your previously opened videos.",
|
|
cimglist_instance,filename);
|
|
cimg::mutex(9);
|
|
captures[index] = new cv::VideoCapture(filename);
|
|
positions[index] = 0;
|
|
if (!captures[index]->isOpened()) {
|
|
delete captures[index];
|
|
captures[index] = 0;
|
|
cimg::mutex(9,0);
|
|
cimg::fclose(cimg::fopen(filename,"rb")); // Check file availability
|
|
throw CImgIOException(_cimglist_instance
|
|
"load_video(): File '%s', unable to detect format of video file.",
|
|
cimglist_instance,filename);
|
|
}
|
|
CImg<charT>::string(filename).move_to(filenames[index]);
|
|
cimg::mutex(9,0);
|
|
}
|
|
|
|
cimg::mutex(9);
|
|
const unsigned int nb_frames = (unsigned int)std::max(0.,captures[index]->get(_cimg_cap_prop_frame_count));
|
|
cimg::mutex(9,0);
|
|
assign();
|
|
|
|
// Skip frames if requested.
|
|
bool go_on = true;
|
|
unsigned int &pos = positions[index];
|
|
while (pos<first_frame) {
|
|
cimg::mutex(9);
|
|
if (!captures[index]->grab()) { cimg::mutex(9,0); go_on = false; break; }
|
|
cimg::mutex(9,0);
|
|
++pos;
|
|
}
|
|
|
|
// Read and convert frames.
|
|
const unsigned int _last_frame = std::min(nb_frames?nb_frames - 1:~0U,last_frame);
|
|
while (go_on && pos<=_last_frame) {
|
|
cv::Mat cvimg;
|
|
cimg::mutex(9);
|
|
if (captures[index]->read(cvimg)) { CImg<T>::_cvmat2cimg(cvimg).move_to(*this); ++pos; }
|
|
else go_on = false;
|
|
cimg::mutex(9,0);
|
|
if (go_on)
|
|
for (unsigned int i = 1; go_on && i<step_frame && pos<=_last_frame; ++i, ++pos) {
|
|
cimg::mutex(9);
|
|
if (!captures[index]->grab()) go_on = false;
|
|
cimg::mutex(9,0);
|
|
}
|
|
}
|
|
|
|
if (!go_on || (nb_frames && pos>=nb_frames)) { // Close video stream when necessary
|
|
cimg::mutex(9);
|
|
captures[index]->release();
|
|
delete captures[index];
|
|
captures[index] = 0;
|
|
filenames[index].assign();
|
|
positions[index] = 0;
|
|
index = -1;
|
|
cimg::mutex(9,0);
|
|
}
|
|
|
|
cimg::mutex(9);
|
|
last_used_index = index;
|
|
cimg::mutex(9,0);
|
|
|
|
if (is_empty())
|
|
throw CImgIOException(_cimglist_instance
|
|
"load_video(): File '%s', unable to locate frame %u.",
|
|
cimglist_instance,filename,first_frame);
|
|
return *this;
|
|
#endif
|
|
}
|
|
|
|
//! Load an image from a video file, using OpenCV library \newinstance.
|
|
static CImgList<T> get_load_video(const char *const filename,
|
|
const unsigned int first_frame=0, const unsigned int last_frame=~0U,
|
|
const unsigned int step_frame=1) {
|
|
return CImgList<T>().load_video(filename,first_frame,last_frame,step_frame);
|
|
}
|
|
|
|
//! Load an image from a video file using the external tool 'ffmpeg'.
|
|
/**
|
|
\param filename Filename to read data from.
|
|
**/
|
|
CImgList<T>& load_ffmpeg_external(const char *const filename) {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimglist_instance
|
|
"load_ffmpeg_external(): Specified filename is (null).",
|
|
cimglist_instance);
|
|
cimg::fclose(cimg::fopen(filename,"rb")); // Check if file exists
|
|
CImg<charT> command(1024), filename_tmp(256), filename_tmp2(256);
|
|
std::FILE *file = 0;
|
|
do {
|
|
cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s",
|
|
cimg::temporary_path(),cimg_file_separator,cimg::filenamerand());
|
|
cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s_000001.ppm",filename_tmp._data);
|
|
if ((file=cimg::std_fopen(filename_tmp2,"rb"))!=0) cimg::fclose(file);
|
|
} while (file);
|
|
cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s_%%6d.ppm",filename_tmp._data);
|
|
cimg_snprintf(command,command._width,"\"%s\" -v -8 -i \"%s\" \"%s\"",
|
|
cimg::ffmpeg_path(),
|
|
CImg<charT>::string(filename)._system_strescape().data(),
|
|
CImg<charT>::string(filename_tmp2)._system_strescape().data());
|
|
cimg::system(command,cimg::ffmpeg_path());
|
|
const unsigned int omode = cimg::exception_mode();
|
|
cimg::exception_mode(0);
|
|
assign();
|
|
unsigned int i = 1;
|
|
for (bool stop_flag = false; !stop_flag; ++i) {
|
|
cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s_%.6u.ppm",filename_tmp._data,i);
|
|
CImg<T> img;
|
|
try { img.load_pnm(filename_tmp2); }
|
|
catch (CImgException&) { stop_flag = true; }
|
|
if (img) { img.move_to(*this); std::remove(filename_tmp2); }
|
|
}
|
|
cimg::exception_mode(omode);
|
|
if (is_empty())
|
|
throw CImgIOException(_cimglist_instance
|
|
"load_ffmpeg_external(): Failed to open file '%s' with external command 'ffmpeg'.",
|
|
cimglist_instance,
|
|
filename);
|
|
return *this;
|
|
}
|
|
|
|
//! Load an image from a video file using the external tool 'ffmpeg' \newinstance.
|
|
static CImgList<T> get_load_ffmpeg_external(const char *const filename) {
|
|
return CImgList<T>().load_ffmpeg_external(filename);
|
|
}
|
|
|
|
//! Load gif file, using ImageMagick or GraphicsMagick's external tools.
|
|
/**
|
|
\param filename Filename to read data from.
|
|
**/
|
|
CImgList<T>& load_gif_external(const char *const filename) {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimglist_instance
|
|
"load_gif_external(): Specified filename is (null).",
|
|
cimglist_instance);
|
|
cimg::fclose(cimg::fopen(filename,"rb")); // Check if file exists
|
|
if (!_load_gif_external(filename,false))
|
|
if (!_load_gif_external(filename,true))
|
|
try { assign(CImg<T>().load_other(filename)); } catch (CImgException&) { assign(); }
|
|
if (is_empty())
|
|
throw CImgIOException(_cimglist_instance
|
|
"load_gif_external(): Failed to open file '%s'.",
|
|
cimglist_instance,filename);
|
|
return *this;
|
|
}
|
|
|
|
CImgList<T>& _load_gif_external(const char *const filename, const bool use_graphicsmagick=false) {
|
|
CImg<charT> command(1024), filename_tmp(256), filename_tmp2(256);
|
|
std::FILE *file = 0;
|
|
do {
|
|
cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s",
|
|
cimg::temporary_path(),cimg_file_separator,cimg::filenamerand());
|
|
if (use_graphicsmagick) cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s.png.0",filename_tmp._data);
|
|
else cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s-0.png",filename_tmp._data);
|
|
if ((file=cimg::std_fopen(filename_tmp2,"rb"))!=0) cimg::fclose(file);
|
|
} while (file);
|
|
if (use_graphicsmagick) cimg_snprintf(command,command._width,"%s convert \"%s\" \"%s.png\"",
|
|
cimg::graphicsmagick_path(),
|
|
CImg<charT>::string(filename)._system_strescape().data(),
|
|
CImg<charT>::string(filename_tmp)._system_strescape().data());
|
|
else cimg_snprintf(command,command._width,"\"%s\" -coalesce \"%s\" \"%s.png\"",
|
|
cimg::imagemagick_path(),
|
|
CImg<charT>::string(filename)._system_strescape().data(),
|
|
CImg<charT>::string(filename_tmp)._system_strescape().data());
|
|
cimg::system(command,cimg::imagemagick_path());
|
|
const unsigned int omode = cimg::exception_mode();
|
|
cimg::exception_mode(0);
|
|
assign();
|
|
|
|
// Try to read a single frame gif.
|
|
cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s.png",filename_tmp._data);
|
|
CImg<T> img;
|
|
try { img.load_png(filename_tmp2); }
|
|
catch (CImgException&) { }
|
|
if (img) { img.move_to(*this); std::remove(filename_tmp2); }
|
|
else { // Try to read animated gif
|
|
unsigned int i = 0;
|
|
for (bool stop_flag = false; !stop_flag; ++i) {
|
|
if (use_graphicsmagick) cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s.png.%u",filename_tmp._data,i);
|
|
else cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s-%u.png",filename_tmp._data,i);
|
|
try { img.load_png(filename_tmp2); }
|
|
catch (CImgException&) { stop_flag = true; }
|
|
if (img) { img.move_to(*this); std::remove(filename_tmp2); }
|
|
}
|
|
}
|
|
cimg::exception_mode(omode);
|
|
return *this;
|
|
}
|
|
|
|
//! Load gif file, using ImageMagick or GraphicsMagick's external tools \newinstance.
|
|
static CImgList<T> get_load_gif_external(const char *const filename) {
|
|
return CImgList<T>().load_gif_external(filename);
|
|
}
|
|
|
|
//! Load a gzipped list, using external tool 'gunzip'.
|
|
/**
|
|
\param filename Filename to read data from.
|
|
**/
|
|
CImgList<T>& load_gzip_external(const char *const filename) {
|
|
if (!filename)
|
|
throw CImgIOException(_cimglist_instance
|
|
"load_gzip_external(): Specified filename is (null).",
|
|
cimglist_instance);
|
|
cimg::fclose(cimg::fopen(filename,"rb")); // Check if file exists
|
|
CImg<charT> command(1024), filename_tmp(256), body(256);
|
|
const char
|
|
*ext = cimg::split_filename(filename,body),
|
|
*ext2 = cimg::split_filename(body,0);
|
|
std::FILE *file = 0;
|
|
do {
|
|
if (!cimg::strcasecmp(ext,"gz")) {
|
|
if (*ext2) cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s",
|
|
cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(),ext2);
|
|
else cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s",
|
|
cimg::temporary_path(),cimg_file_separator,cimg::filenamerand());
|
|
} else {
|
|
if (*ext) cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s",
|
|
cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(),ext);
|
|
else cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s",
|
|
cimg::temporary_path(),cimg_file_separator,cimg::filenamerand());
|
|
}
|
|
if ((file=cimg::std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file);
|
|
} while (file);
|
|
cimg_snprintf(command,command._width,"\"%s\" -c \"%s\" > \"%s\"",
|
|
cimg::gunzip_path(),
|
|
CImg<charT>::string(filename)._system_strescape().data(),
|
|
CImg<charT>::string(filename_tmp)._system_strescape().data());
|
|
cimg::system(command,cimg::gunzip_path());
|
|
if (!(file=cimg::std_fopen(filename_tmp,"rb"))) {
|
|
cimg::fclose(cimg::fopen(filename,"r"));
|
|
throw CImgIOException(_cimglist_instance
|
|
"load_gzip_external(): Failed to open file '%s'.",
|
|
cimglist_instance,
|
|
filename);
|
|
|
|
} else cimg::fclose(file);
|
|
load(filename_tmp);
|
|
std::remove(filename_tmp);
|
|
return *this;
|
|
}
|
|
|
|
//! Load a gzipped list, using external tool 'gunzip' \newinstance.
|
|
static CImgList<T> get_load_gzip_external(const char *const filename) {
|
|
return CImgList<T>().load_gzip_external(filename);
|
|
}
|
|
|
|
//! Load images from a TIFF file.
|
|
/**
|
|
\param filename Filename to read data from.
|
|
\param first_frame Index of first image frame to read.
|
|
\param last_frame Index of last image frame to read.
|
|
\param step_frame Step applied between each frame.
|
|
\param[out] bits_per_value Number of bits used to store a scalar value in the image file.
|
|
\param[out] voxel_size Voxel size, as stored in the filename.
|
|
\param[out] description Description, as stored in the filename.
|
|
**/
|
|
CImgList<T>& load_tiff(const char *const filename,
|
|
const unsigned int first_frame=0, const unsigned int last_frame=~0U,
|
|
const unsigned int step_frame=1, unsigned int *const bits_per_value=0,
|
|
float *const voxel_size=0, CImg<charT> *const description=0) {
|
|
const unsigned int
|
|
nfirst_frame = first_frame<last_frame?first_frame:last_frame,
|
|
nstep_frame = step_frame?step_frame:1;
|
|
unsigned int nlast_frame = first_frame<last_frame?last_frame:first_frame;
|
|
#ifndef cimg_use_tiff
|
|
cimg::unused(bits_per_value,voxel_size,description);
|
|
if (nfirst_frame || nlast_frame!=~0U || nstep_frame!=1)
|
|
throw CImgArgumentException(_cimglist_instance
|
|
"load_tiff(): Unable to load sub-images from file '%s' unless libtiff is enabled.",
|
|
cimglist_instance,
|
|
filename);
|
|
|
|
return assign(CImg<T>::get_load_tiff(filename));
|
|
#else
|
|
#if cimg_verbosity<3
|
|
TIFFSetWarningHandler(0);
|
|
TIFFSetErrorHandler(0);
|
|
#endif
|
|
TIFF *tif = TIFFOpen(filename,"r");
|
|
if (tif) {
|
|
unsigned int nb_images = 0;
|
|
do ++nb_images; while (TIFFReadDirectory(tif));
|
|
if (nfirst_frame>=nb_images || (nlast_frame!=~0U && nlast_frame>=nb_images))
|
|
cimg::warn(_cimglist_instance
|
|
"load_tiff(): Invalid specified frame range is [%u,%u] (step %u) since "
|
|
"file '%s' contains %u image(s).",
|
|
cimglist_instance,
|
|
nfirst_frame,nlast_frame,nstep_frame,filename,nb_images);
|
|
|
|
if (nfirst_frame>=nb_images) return assign();
|
|
if (nlast_frame>=nb_images) nlast_frame = nb_images - 1;
|
|
assign(1 + (nlast_frame - nfirst_frame)/nstep_frame);
|
|
TIFFSetDirectory(tif,0);
|
|
cimglist_for(*this,l)
|
|
_data[l]._load_tiff(tif,nfirst_frame + l*nstep_frame,bits_per_value,voxel_size,description);
|
|
TIFFClose(tif);
|
|
} else throw CImgIOException(_cimglist_instance
|
|
"load_tiff(): Failed to open file '%s'.",
|
|
cimglist_instance,
|
|
filename);
|
|
return *this;
|
|
#endif
|
|
}
|
|
|
|
//! Load a multi-page TIFF file \newinstance.
|
|
static CImgList<T> get_load_tiff(const char *const filename,
|
|
const unsigned int first_frame=0, const unsigned int last_frame=~0U,
|
|
const unsigned int step_frame=1, unsigned int *const bits_per_value=0,
|
|
float *const voxel_size=0, CImg<charT> *const description=0) {
|
|
return CImgList<T>().load_tiff(filename,first_frame,last_frame,step_frame,bits_per_value,voxel_size,description);
|
|
}
|
|
|
|
//@}
|
|
//----------------------------------
|
|
//
|
|
//! \name Data Output
|
|
//@{
|
|
//----------------------------------
|
|
|
|
//! Print information about the list on the standard output.
|
|
/**
|
|
\param title Label set to the information displayed.
|
|
\param display_stats Tells if image statistics must be computed and displayed.
|
|
**/
|
|
const CImgList<T>& print(const char *const title=0, const bool display_stats=true) const {
|
|
unsigned int msiz = 0;
|
|
cimglist_for(*this,l) msiz+=_data[l].size();
|
|
msiz*=sizeof(T);
|
|
const unsigned int mdisp = msiz<8*1024?0U:msiz<8*1024*1024?1U:2U;
|
|
CImg<charT> _title(64);
|
|
if (!title) cimg_snprintf(_title,_title._width,"CImgList<%s>",pixel_type());
|
|
std::fprintf(cimg::output(),"%s%s%s%s: %sthis%s = %p, %ssize%s = %u/%u [%u %s], %sdata%s = (CImg<%s>*)%p",
|
|
cimg::t_magenta,cimg::t_bold,title?title:_title._data,cimg::t_normal,
|
|
cimg::t_bold,cimg::t_normal,(void*)this,
|
|
cimg::t_bold,cimg::t_normal,_width,_allocated_width,
|
|
mdisp==0?msiz:(mdisp==1?(msiz>>10):(msiz>>20)),
|
|
mdisp==0?"b":(mdisp==1?"Kio":"Mio"),
|
|
cimg::t_bold,cimg::t_normal,pixel_type(),(void*)begin());
|
|
if (_data) std::fprintf(cimg::output(),"..%p.\n",(void*)((char*)end() - 1));
|
|
else std::fprintf(cimg::output(),".\n");
|
|
|
|
char tmp[16] = {};
|
|
cimglist_for(*this,ll) {
|
|
cimg_snprintf(tmp,sizeof(tmp),"[%d]",ll);
|
|
std::fprintf(cimg::output()," ");
|
|
_data[ll].print(tmp,display_stats);
|
|
if (ll==3 && width()>8) { ll = width() - 5; std::fprintf(cimg::output()," ...\n"); }
|
|
}
|
|
std::fflush(cimg::output());
|
|
return *this;
|
|
}
|
|
|
|
//! Display the current CImgList instance in an existing CImgDisplay window (by reference).
|
|
/**
|
|
\param disp Reference to an existing CImgDisplay instance, where the current image list will be displayed.
|
|
\param axis Appending axis. Can be <tt>{ 'x' | 'y' | 'z' | 'c' }</tt>.
|
|
\param align Appending alignment.
|
|
\note This function displays the list images of the current CImgList instance into an existing
|
|
CImgDisplay window.
|
|
Images of the list are appended in a single temporary image for visualization purposes.
|
|
The function returns immediately.
|
|
**/
|
|
const CImgList<T>& display(CImgDisplay &disp, const char axis='x', const float align=0) const {
|
|
disp.display(*this,axis,align);
|
|
return *this;
|
|
}
|
|
|
|
//! Display the current CImgList instance in a new display window.
|
|
/**
|
|
\param disp Display window.
|
|
\param display_info Tells if image information are displayed on the standard output.
|
|
\param axis Alignment axis for images viewing.
|
|
\param align Appending alignment.
|
|
\param[in,out] XYZ Contains the XYZ coordinates at start / exit of the function.
|
|
\param exit_on_anykey Exit function when any key is pressed.
|
|
\note This function opens a new window with a specific title and displays the list images of the
|
|
current CImgList instance into it.
|
|
Images of the list are appended in a single temporary image for visualization purposes.
|
|
The function returns when a key is pressed or the display window is closed by the user.
|
|
**/
|
|
const CImgList<T>& display(CImgDisplay &disp, const bool display_info,
|
|
const char axis='x', const float align=0,
|
|
unsigned int *const XYZ=0, const bool exit_on_anykey=false) const {
|
|
bool is_exit = false;
|
|
return _display(disp,0,0,display_info,axis,align,XYZ,exit_on_anykey,0,true,is_exit);
|
|
}
|
|
|
|
//! Display the current CImgList instance in a new display window.
|
|
/**
|
|
\param title Title of the opening display window.
|
|
\param display_info Tells if list information must be written on standard output.
|
|
\param axis Appending axis. Can be <tt>{ 'x' | 'y' | 'z' | 'c' }</tt>.
|
|
\param align Appending alignment.
|
|
\param[in,out] XYZ Contains the XYZ coordinates at start / exit of the function.
|
|
\param exit_on_anykey Exit function when any key is pressed.
|
|
**/
|
|
const CImgList<T>& display(const char *const title=0, const bool display_info=true,
|
|
const char axis='x', const float align=0,
|
|
unsigned int *const XYZ=0, const bool exit_on_anykey=false) const {
|
|
CImgDisplay disp;
|
|
bool is_exit = false;
|
|
return _display(disp,title,0,display_info,axis,align,XYZ,exit_on_anykey,0,true,is_exit);
|
|
}
|
|
|
|
const CImgList<T>& _display(CImgDisplay &disp, const char *const title, const CImgList<charT> *const titles,
|
|
const bool display_info, const char axis, const float align, unsigned int *const XYZ,
|
|
const bool exit_on_anykey, const unsigned int orig, const bool is_first_call,
|
|
bool &is_exit) const {
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimglist_instance
|
|
"display(): Empty instance.",
|
|
cimglist_instance);
|
|
if (!disp) {
|
|
if (axis=='x') {
|
|
unsigned int sum_width = 0, max_height = 0;
|
|
cimglist_for(*this,l) {
|
|
const CImg<T> &img = _data[l];
|
|
const unsigned int
|
|
w = CImgDisplay::_fitscreen(img._width,img._height,img._depth,128,-85,false),
|
|
h = CImgDisplay::_fitscreen(img._width,img._height,img._depth,128,-85,true);
|
|
sum_width+=w;
|
|
if (h>max_height) max_height = h;
|
|
}
|
|
disp.assign(cimg_fitscreen(sum_width,max_height,1),title?title:titles?titles->__display()._data:0,1);
|
|
} else {
|
|
unsigned int max_width = 0, sum_height = 0;
|
|
cimglist_for(*this,l) {
|
|
const CImg<T> &img = _data[l];
|
|
const unsigned int
|
|
w = CImgDisplay::_fitscreen(img._width,img._height,img._depth,128,-85,false),
|
|
h = CImgDisplay::_fitscreen(img._width,img._height,img._depth,128,-85,true);
|
|
if (w>max_width) max_width = w;
|
|
sum_height+=h;
|
|
}
|
|
disp.assign(cimg_fitscreen(max_width,sum_height,1),title?title:titles?titles->__display()._data:0,1);
|
|
}
|
|
if (!title && !titles) disp.set_title("CImgList<%s> (%u)",pixel_type(),_width);
|
|
} else if (title) disp.set_title("%s",title);
|
|
else if (titles) disp.set_title("%s",titles->__display()._data);
|
|
const CImg<char> dtitle = CImg<char>::string(disp.title());
|
|
if (display_info) print(disp.title());
|
|
disp.show().flush();
|
|
|
|
if (_width==1) {
|
|
const unsigned int dw = disp._width, dh = disp._height;
|
|
if (!is_first_call)
|
|
disp.resize(cimg_fitscreen(_data[0]._width,_data[0]._height,_data[0]._depth),false);
|
|
disp.set_title("%s (%ux%ux%ux%u)",
|
|
dtitle.data(),_data[0]._width,_data[0]._height,_data[0]._depth,_data[0]._spectrum);
|
|
_data[0]._display(disp,0,false,XYZ,exit_on_anykey,!is_first_call);
|
|
if (disp.key()) is_exit = true;
|
|
disp.resize(cimg_fitscreen(dw,dh,1),false).set_title("%s",dtitle.data());
|
|
} else {
|
|
bool disp_resize = !is_first_call;
|
|
while (!disp.is_closed() && !is_exit) {
|
|
const CImg<intT> s = _select(disp,0,true,axis,align,exit_on_anykey,orig,disp_resize,!is_first_call,true);
|
|
disp_resize = true;
|
|
if (s[0]<0 && !disp.wheel()) { // No selections done
|
|
if (disp.button()&2) { disp.flush(); break; }
|
|
is_exit = true;
|
|
} else if (disp.wheel()) { // Zoom in/out
|
|
const int wheel = disp.wheel();
|
|
disp.set_wheel();
|
|
if (!is_first_call && wheel<0) break;
|
|
if (wheel>0 && _width>=4) {
|
|
const unsigned int
|
|
delta = std::max(1U,(unsigned int)cimg::round(0.3*_width)),
|
|
ind0 = (unsigned int)std::max(0,s[0] - (int)delta),
|
|
ind1 = (unsigned int)std::min(width() - 1,s[0] + (int)delta);
|
|
if ((ind0!=0 || ind1!=_width - 1) && ind1 - ind0>=3) {
|
|
const CImgList<T> sublist = get_shared_images(ind0,ind1);
|
|
CImgList<charT> t_sublist;
|
|
if (titles) t_sublist = titles->get_shared_images(ind0,ind1);
|
|
sublist._display(disp,0,titles?&t_sublist:0,false,axis,align,XYZ,exit_on_anykey,
|
|
orig + ind0,false,is_exit);
|
|
}
|
|
}
|
|
} else if (s[0]!=0 || s[1]!=width() - 1) {
|
|
const CImgList<T> sublist = get_shared_images(s[0],s[1]);
|
|
CImgList<charT> t_sublist;
|
|
if (titles) t_sublist = titles->get_shared_images(s[0],s[1]);
|
|
sublist._display(disp,0,titles?&t_sublist:0,false,axis,align,XYZ,exit_on_anykey,
|
|
orig + s[0],false,is_exit);
|
|
}
|
|
disp.set_title("%s",dtitle.data());
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
// [internal] Return string to describe display title.
|
|
CImg<charT> __display() const {
|
|
CImg<charT> res, str;
|
|
cimglist_for(*this,l) {
|
|
CImg<charT>::string((char*)_data[l]).move_to(str);
|
|
if (l!=width() - 1) {
|
|
str.resize(str._width + 1,1,1,1,0);
|
|
str[str._width - 2] = ',';
|
|
str[str._width - 1] = ' ';
|
|
}
|
|
res.append(str,'x');
|
|
}
|
|
if (!res) return CImg<charT>(1,1,1,1,0).move_to(res);
|
|
cimg::strellipsize(res,128,false);
|
|
if (_width>1) {
|
|
const unsigned int l = (unsigned int)std::strlen(res);
|
|
if (res._width<=l + 16) res.resize(l + 16,1,1,1,0);
|
|
cimg_snprintf(res._data + l,16," (#%u)",_width);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Save list into a file.
|
|
/**
|
|
\param filename Filename to write data to.
|
|
\param number When positive, represents an index added to the filename. Otherwise, no number is added.
|
|
\param digits Number of digits used for adding the number to the filename.
|
|
**/
|
|
const CImgList<T>& save(const char *const filename, const int number=-1, const unsigned int digits=6) const {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimglist_instance
|
|
"save(): Specified filename is (null).",
|
|
cimglist_instance);
|
|
// Do not test for empty instances, since .cimg format is able to manage empty instances.
|
|
const bool is_stdout = *filename=='-' && (!filename[1] || filename[1]=='.');
|
|
const char *const ext = cimg::split_filename(filename);
|
|
CImg<charT> nfilename(1024);
|
|
const char *const fn = is_stdout?filename:number>=0?cimg::number_filename(filename,number,digits,nfilename):
|
|
filename;
|
|
|
|
#ifdef cimglist_save_plugin
|
|
cimglist_save_plugin(fn);
|
|
#endif
|
|
#ifdef cimglist_save_plugin1
|
|
cimglist_save_plugin1(fn);
|
|
#endif
|
|
#ifdef cimglist_save_plugin2
|
|
cimglist_save_plugin2(fn);
|
|
#endif
|
|
#ifdef cimglist_save_plugin3
|
|
cimglist_save_plugin3(fn);
|
|
#endif
|
|
#ifdef cimglist_save_plugin4
|
|
cimglist_save_plugin4(fn);
|
|
#endif
|
|
#ifdef cimglist_save_plugin5
|
|
cimglist_save_plugin5(fn);
|
|
#endif
|
|
#ifdef cimglist_save_plugin6
|
|
cimglist_save_plugin6(fn);
|
|
#endif
|
|
#ifdef cimglist_save_plugin7
|
|
cimglist_save_plugin7(fn);
|
|
#endif
|
|
#ifdef cimglist_save_plugin8
|
|
cimglist_save_plugin8(fn);
|
|
#endif
|
|
if (!cimg::strcasecmp(ext,"cimgz")) return save_cimg(fn,true);
|
|
else if (!cimg::strcasecmp(ext,"cimg") || !*ext) return save_cimg(fn,false);
|
|
else if (!cimg::strcasecmp(ext,"yuv")) return save_yuv(fn,444,true);
|
|
else if (!cimg::strcasecmp(ext,"avi") ||
|
|
!cimg::strcasecmp(ext,"mov") ||
|
|
!cimg::strcasecmp(ext,"asf") ||
|
|
!cimg::strcasecmp(ext,"divx") ||
|
|
!cimg::strcasecmp(ext,"flv") ||
|
|
!cimg::strcasecmp(ext,"mpg") ||
|
|
!cimg::strcasecmp(ext,"m1v") ||
|
|
!cimg::strcasecmp(ext,"m2v") ||
|
|
!cimg::strcasecmp(ext,"m4v") ||
|
|
!cimg::strcasecmp(ext,"mjp") ||
|
|
!cimg::strcasecmp(ext,"mp4") ||
|
|
!cimg::strcasecmp(ext,"mkv") ||
|
|
!cimg::strcasecmp(ext,"mpe") ||
|
|
!cimg::strcasecmp(ext,"movie") ||
|
|
!cimg::strcasecmp(ext,"ogm") ||
|
|
!cimg::strcasecmp(ext,"ogg") ||
|
|
!cimg::strcasecmp(ext,"ogv") ||
|
|
!cimg::strcasecmp(ext,"qt") ||
|
|
!cimg::strcasecmp(ext,"rm") ||
|
|
!cimg::strcasecmp(ext,"vob") ||
|
|
!cimg::strcasecmp(ext,"webm") ||
|
|
!cimg::strcasecmp(ext,"wmv") ||
|
|
!cimg::strcasecmp(ext,"xvid") ||
|
|
!cimg::strcasecmp(ext,"mpeg")) return save_video(fn);
|
|
#ifdef cimg_use_tiff
|
|
else if (!cimg::strcasecmp(ext,"tif") ||
|
|
!cimg::strcasecmp(ext,"tiff")) return save_tiff(fn);
|
|
#endif
|
|
else if (!cimg::strcasecmp(ext,"gz")) return save_gzip_external(fn);
|
|
else {
|
|
if (_width==1) _data[0].save(fn,-1);
|
|
else cimglist_for(*this,l) { _data[l].save(fn,is_stdout?-1:l); if (is_stdout) std::fputc(EOF,cimg::_stdout()); }
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Tell if an image list can be saved as one single file.
|
|
/**
|
|
\param filename Filename, as a C-string.
|
|
\return \c true if the file format supports multiple images, \c false otherwise.
|
|
**/
|
|
static bool is_saveable(const char *const filename) {
|
|
const char *const ext = cimg::split_filename(filename);
|
|
if (!cimg::strcasecmp(ext,"cimgz") ||
|
|
#ifdef cimg_use_tiff
|
|
!cimg::strcasecmp(ext,"tif") ||
|
|
!cimg::strcasecmp(ext,"tiff") ||
|
|
#endif
|
|
!cimg::strcasecmp(ext,"yuv") ||
|
|
!cimg::strcasecmp(ext,"avi") ||
|
|
!cimg::strcasecmp(ext,"mov") ||
|
|
!cimg::strcasecmp(ext,"asf") ||
|
|
!cimg::strcasecmp(ext,"divx") ||
|
|
!cimg::strcasecmp(ext,"flv") ||
|
|
!cimg::strcasecmp(ext,"mpg") ||
|
|
!cimg::strcasecmp(ext,"m1v") ||
|
|
!cimg::strcasecmp(ext,"m2v") ||
|
|
!cimg::strcasecmp(ext,"m4v") ||
|
|
!cimg::strcasecmp(ext,"mjp") ||
|
|
!cimg::strcasecmp(ext,"mp4") ||
|
|
!cimg::strcasecmp(ext,"mkv") ||
|
|
!cimg::strcasecmp(ext,"mpe") ||
|
|
!cimg::strcasecmp(ext,"movie") ||
|
|
!cimg::strcasecmp(ext,"ogm") ||
|
|
!cimg::strcasecmp(ext,"ogg") ||
|
|
!cimg::strcasecmp(ext,"ogv") ||
|
|
!cimg::strcasecmp(ext,"qt") ||
|
|
!cimg::strcasecmp(ext,"rm") ||
|
|
!cimg::strcasecmp(ext,"vob") ||
|
|
!cimg::strcasecmp(ext,"webm") ||
|
|
!cimg::strcasecmp(ext,"wmv") ||
|
|
!cimg::strcasecmp(ext,"xvid") ||
|
|
!cimg::strcasecmp(ext,"mpeg")) return true;
|
|
return false;
|
|
}
|
|
|
|
//! Save image sequence as a GIF animated file.
|
|
/**
|
|
\param filename Filename to write data to.
|
|
\param fps Number of desired frames per second.
|
|
\param nb_loops Number of loops (\c 0 for infinite looping).
|
|
**/
|
|
const CImgList<T>& save_gif_external(const char *const filename, const float fps=25,
|
|
const unsigned int nb_loops=0) {
|
|
CImg<charT> command(1024), filename_tmp(256), filename_tmp2(256);
|
|
CImgList<charT> filenames;
|
|
std::FILE *file = 0;
|
|
|
|
#ifdef cimg_use_png
|
|
#define _cimg_save_gif_extension "png"
|
|
#else
|
|
#define _cimg_save_gif_extension "ppm"
|
|
#endif
|
|
do {
|
|
cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s",
|
|
cimg::temporary_path(),cimg_file_separator,cimg::filenamerand());
|
|
cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s_000001." _cimg_save_gif_extension,filename_tmp._data);
|
|
if ((file=cimg::std_fopen(filename_tmp2,"rb"))!=0) cimg::fclose(file);
|
|
} while (file);
|
|
cimglist_for(*this,l) {
|
|
cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s_%.6u." _cimg_save_gif_extension,filename_tmp._data,l + 1);
|
|
CImg<charT>::string(filename_tmp2).move_to(filenames);
|
|
CImg<T> frame;
|
|
if (_data[l]._depth>1) _data[l].get_slice(0).move_to(frame); else frame.assign(_data[l],true);
|
|
if (frame._spectrum>4) frame.assign(frame.get_channels(0,3),false);
|
|
else if (frame._spectrum==1) frame.assign(frame.get_resize(-100,-100,1,3),false);
|
|
else if (frame._spectrum==2)
|
|
frame.assign(frame.get_resize(-100,-100,1,4).draw_image(0,0,0,2,frame.get_shared_channel(0)),false);
|
|
frame.save(filename_tmp2);
|
|
}
|
|
cimg_snprintf(command,command._width,"\"%s\" -delay %u -loop %u -dispose previous",
|
|
cimg::imagemagick_path(),
|
|
(unsigned int)std::max(0.f,cimg::round(100/fps)),
|
|
nb_loops);
|
|
CImg<ucharT>::string(command).move_to(filenames,0);
|
|
cimg_snprintf(command,command._width,"\"%s\"",
|
|
CImg<charT>::string(filename)._system_strescape().data());
|
|
CImg<ucharT>::string(command).move_to(filenames);
|
|
CImg<charT> _command = filenames>'x';
|
|
cimg_for(_command,p,char) if (!*p) *p = ' ';
|
|
_command.back() = 0;
|
|
|
|
cimg::system(_command,cimg::imagemagick_path());
|
|
file = cimg::std_fopen(filename,"rb");
|
|
if (!file)
|
|
throw CImgIOException(_cimglist_instance
|
|
"save_gif_external(): Failed to save file '%s' with external command 'magick/convert'.",
|
|
cimglist_instance,
|
|
filename);
|
|
else cimg::fclose(file);
|
|
cimglist_for_in(*this,1,filenames._width - 1,l) std::remove(filenames[l]);
|
|
return *this;
|
|
}
|
|
|
|
//! Save list as a YUV image sequence file.
|
|
/**
|
|
\param filename Filename to write data to.
|
|
\param chroma_subsampling Type of chroma subsampling. Can be <tt>{ 420 | 422 | 444 }</tt>.
|
|
\param is_rgb Tells if the RGB to YUV conversion must be done for saving.
|
|
**/
|
|
const CImgList<T>& save_yuv(const char *const filename=0,
|
|
const unsigned int chroma_subsampling=444,
|
|
const bool is_rgb=true) const {
|
|
return _save_yuv(0,filename,chroma_subsampling,is_rgb);
|
|
}
|
|
|
|
//! Save image sequence into a YUV file.
|
|
/**
|
|
\param file File to write data to.
|
|
\param chroma_subsampling Type of chroma subsampling. Can be <tt>{ 420 | 422 | 444 }</tt>.
|
|
\param is_rgb Tells if the RGB to YUV conversion must be done for saving.
|
|
**/
|
|
const CImgList<T>& save_yuv(std::FILE *const file,
|
|
const unsigned int chroma_subsampling=444,
|
|
const bool is_rgb=true) const {
|
|
return _save_yuv(file,0,chroma_subsampling,is_rgb);
|
|
}
|
|
|
|
const CImgList<T>& _save_yuv(std::FILE *const file, const char *const filename,
|
|
const unsigned int chroma_subsampling,
|
|
const bool is_rgb) const {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimglist_instance
|
|
"save_yuv(): Specified filename is (null).",
|
|
cimglist_instance);
|
|
if (chroma_subsampling!=420 && chroma_subsampling!=422 && chroma_subsampling!=444)
|
|
throw CImgArgumentException(_cimglist_instance
|
|
"save_yuv(): Specified chroma subsampling %u is invalid, for file '%s'.",
|
|
cimglist_instance,
|
|
chroma_subsampling,filename?filename:"(FILE*)");
|
|
if (is_empty()) { cimg::fempty(file,filename); return *this; }
|
|
const unsigned int
|
|
cfx = chroma_subsampling==420 || chroma_subsampling==422?2:1,
|
|
cfy = chroma_subsampling==420?2:1,
|
|
w0 = (*this)[0]._width, h0 = (*this)[0]._height,
|
|
width0 = w0 + (w0%cfx), height0 = h0 + (h0%cfy);
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"wb");
|
|
cimglist_for(*this,l) {
|
|
const CImg<T> &frame = (*this)[l];
|
|
cimg_forZ(frame,z) {
|
|
CImg<ucharT> YUV;
|
|
if (sizeof(T)==1 && !is_rgb &&
|
|
frame._width==width0 && frame._height==height0 && frame._depth==1 && frame._spectrum==3)
|
|
YUV.assign((unsigned char*)frame._data,width0,height0,1,3,true);
|
|
else {
|
|
YUV = frame.get_slice(z);
|
|
if (YUV._width!=width0 || YUV._height!=height0) YUV.resize(width0,height0,1,-100,0);
|
|
if (YUV._spectrum!=3) YUV.resize(-100,-100,1,3,YUV._spectrum==1?1:0);
|
|
if (is_rgb) YUV.RGBtoYCbCr();
|
|
}
|
|
if (chroma_subsampling==444)
|
|
cimg::fwrite(YUV._data,(size_t)YUV._width*YUV._height*3,nfile);
|
|
else {
|
|
cimg::fwrite(YUV._data,(size_t)YUV._width*YUV._height,nfile);
|
|
CImg<ucharT> UV = YUV.get_channels(1,2);
|
|
UV.resize(UV._width/cfx,UV._height/cfy,1,2,2);
|
|
cimg::fwrite(UV._data,(size_t)UV._width*UV._height*2,nfile);
|
|
}
|
|
}
|
|
}
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
}
|
|
|
|
//! Save list into a .cimg file.
|
|
/**
|
|
\param filename Filename to write data to.
|
|
\param is_compressed Tells if data compression must be enabled.
|
|
**/
|
|
const CImgList<T>& save_cimg(const char *const filename, const bool is_compressed=false) const {
|
|
return _save_cimg(0,filename,is_compressed);
|
|
}
|
|
|
|
const CImgList<T>& _save_cimg(std::FILE *const file, const char *const filename, const bool is_compressed) const {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimglist_instance
|
|
"save_cimg(): Specified filename is (null).",
|
|
cimglist_instance);
|
|
#ifndef cimg_use_zlib
|
|
if (is_compressed)
|
|
cimg::warn(_cimglist_instance
|
|
"save_cimg(): Unable to save compressed data in file '%s' unless zlib is enabled, "
|
|
"saving them uncompressed.",
|
|
cimglist_instance,
|
|
filename?filename:"(FILE*)");
|
|
#endif
|
|
const char *const ptype = pixel_type(), *const etype = cimg::endianness()?"big":"little";
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"wb");
|
|
const bool is_bool = ptype==cimg::type<bool>::string();
|
|
std::fprintf(nfile,"%u %s %s_endian\n",_width,ptype,etype);
|
|
|
|
cimglist_for(*this,l) {
|
|
const CImg<T>& img = _data[l];
|
|
std::fprintf(nfile,"%u %u %u %u",img._width,img._height,img._depth,img._spectrum);
|
|
if (img._data) {
|
|
CImg<T> tmp;
|
|
if (cimg::endianness()) { tmp = img; cimg::invert_endianness(tmp._data,tmp.size()); }
|
|
const CImg<T>& ref = cimg::endianness()?tmp:img;
|
|
bool failed_to_compress = true;
|
|
if (is_compressed) {
|
|
#ifdef cimg_use_zlib
|
|
Bytef *cbuf = 0;
|
|
uLongf csiz = 0;
|
|
|
|
if (is_bool) { // Boolean data (bitwise)
|
|
ulongT siz;
|
|
const unsigned char *const buf = ref._bool2uchar(siz,false);
|
|
csiz = siz + siz/100 + 16;
|
|
cbuf = new Bytef[csiz];
|
|
failed_to_compress = (bool)compress(cbuf,&csiz,(Bytef*)buf,siz);
|
|
if (!failed_to_compress) {
|
|
std::fprintf(nfile," #%lu\n",csiz);
|
|
cimg::fwrite(cbuf,csiz,nfile);
|
|
}
|
|
delete[] buf;
|
|
} else { // Non-boolean data
|
|
const ulongT siz = sizeof(T)*ref.size();
|
|
csiz = siz + siz/100 + 16;
|
|
cbuf = new Bytef[csiz];
|
|
failed_to_compress = (bool)compress(cbuf,&csiz,(Bytef*)ref._data,siz);
|
|
if (!failed_to_compress) {
|
|
std::fprintf(nfile," #%lu\n",csiz);
|
|
cimg::fwrite(cbuf,csiz,nfile);
|
|
}
|
|
}
|
|
if (failed_to_compress)
|
|
cimg::warn(_cimglist_instance
|
|
"save_cimg(): Failed to save compressed data for file '%s', saving them uncompressed.",
|
|
cimglist_instance,
|
|
filename?filename:"(FILE*)");
|
|
delete[] cbuf;
|
|
#endif
|
|
}
|
|
if (failed_to_compress) { // Write non-compressed
|
|
std::fputc('\n',nfile);
|
|
if (is_bool) { // Boolean data (bitwise)
|
|
ulongT siz;
|
|
const unsigned char *const buf = ref._bool2uchar(siz,false);
|
|
cimg::fwrite(buf,siz,nfile);
|
|
delete[] buf;
|
|
} else cimg::fwrite(ref._data,ref.size(),nfile); // Non-boolean data
|
|
}
|
|
} else std::fputc('\n',nfile);
|
|
}
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
}
|
|
|
|
//! Save list into a .cimg file.
|
|
/**
|
|
\param file File to write data to.
|
|
\param is_compressed Tells if data compression must be enabled.
|
|
**/
|
|
const CImgList<T>& save_cimg(std::FILE *file, const bool is_compressed=false) const {
|
|
return _save_cimg(file,0,is_compressed);
|
|
}
|
|
|
|
const CImgList<T>& _save_cimg(std::FILE *const file, const char *const filename,
|
|
const unsigned int n0,
|
|
const unsigned int x0, const unsigned int y0,
|
|
const unsigned int z0, const unsigned int c0) const {
|
|
#define _cimg_save_cimg_case(Ts1,Ts2,Ts3,Tss) \
|
|
if (!saved && ((Ts1 && !cimg::strcasecmp(Ts1,str_pixeltype)) || \
|
|
(Ts2 && !cimg::strcasecmp(Ts2,str_pixeltype)) || \
|
|
(Ts3 && !cimg::strcasecmp(Ts3,str_pixeltype)))) { \
|
|
for (unsigned int l = 0; l<lmax; ++l) { \
|
|
j = 0; while ((i=std::fgetc(nfile))!='\n') tmp[j++]=(char)i; tmp[j] = 0; \
|
|
W = H = D = C = 0; \
|
|
if (cimg_sscanf(tmp,"%u %u %u %u",&W,&H,&D,&C)!=4) \
|
|
throw CImgIOException(_cimglist_instance \
|
|
"save_cimg(): Invalid size (%u,%u,%u,%u) of image[%u], for file '%s'.", \
|
|
cimglist_instance, \
|
|
W,H,D,C,l,filename?filename:"(FILE*)"); \
|
|
if (W*H*D*C>0) { \
|
|
if (l<n0 || x0>=W || y0>=H || z0>=D || c0>=D) cimg::fseek(nfile,W*H*D*C*sizeof(Tss),SEEK_CUR); \
|
|
else { \
|
|
const CImg<T>& img = (*this)[l - n0]; \
|
|
const T *ptrs = img._data; \
|
|
const unsigned int \
|
|
x1 = x0 + img._width - 1, \
|
|
y1 = y0 + img._height - 1, \
|
|
z1 = z0 + img._depth - 1, \
|
|
c1 = c0 + img._spectrum - 1, \
|
|
nx1 = x1>=W?W - 1:x1, \
|
|
ny1 = y1>=H?H - 1:y1, \
|
|
nz1 = z1>=D?D - 1:z1, \
|
|
nc1 = c1>=C?C - 1:c1; \
|
|
CImg<Tss> raw(1 + nx1 - x0); \
|
|
const unsigned int skipvb = c0*W*H*D*sizeof(Tss); \
|
|
if (skipvb) cimg::fseek(nfile,skipvb,SEEK_CUR); \
|
|
for (unsigned int v = 1 + nc1 - c0; v; --v) { \
|
|
const unsigned int skipzb = z0*W*H*sizeof(Tss); \
|
|
if (skipzb) cimg::fseek(nfile,skipzb,SEEK_CUR); \
|
|
for (unsigned int z = 1 + nz1 - z0; z; --z) { \
|
|
const unsigned int skipyb = y0*W*sizeof(Tss); \
|
|
if (skipyb) cimg::fseek(nfile,skipyb,SEEK_CUR); \
|
|
for (unsigned int y = 1 + ny1 - y0; y; --y) { \
|
|
const unsigned int skipxb = x0*sizeof(Tss); \
|
|
if (skipxb) cimg::fseek(nfile,skipxb,SEEK_CUR); \
|
|
raw.assign(ptrs, raw._width); \
|
|
ptrs+=img._width; \
|
|
if (endian) cimg::invert_endianness(raw._data,raw._width); \
|
|
cimg::fwrite(raw._data,raw._width,nfile); \
|
|
const unsigned int skipxe = (W - 1 - nx1)*sizeof(Tss); \
|
|
if (skipxe) cimg::fseek(nfile,skipxe,SEEK_CUR); \
|
|
} \
|
|
const unsigned int skipye = (H - 1 - ny1)*W*sizeof(Tss); \
|
|
if (skipye) cimg::fseek(nfile,skipye,SEEK_CUR); \
|
|
} \
|
|
const unsigned int skipze = (D - 1 - nz1)*W*H*sizeof(Tss); \
|
|
if (skipze) cimg::fseek(nfile,skipze,SEEK_CUR); \
|
|
} \
|
|
const unsigned int skipve = (C - 1 - nc1)*W*H*D*sizeof(Tss); \
|
|
if (skipve) cimg::fseek(nfile,skipve,SEEK_CUR); \
|
|
} \
|
|
} \
|
|
} \
|
|
saved = true; \
|
|
}
|
|
|
|
if (!file && !filename)
|
|
throw CImgArgumentException(_cimglist_instance
|
|
"save_cimg(): Specified filename is (null).",
|
|
cimglist_instance);
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimglist_instance
|
|
"save_cimg(): Empty instance, for file '%s'.",
|
|
cimglist_instance,
|
|
filename?filename:"(FILE*)");
|
|
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"rb+");
|
|
bool saved = false, endian = cimg::endianness();
|
|
CImg<charT> tmp(256), str_pixeltype(256), str_endian(256);
|
|
*tmp = *str_pixeltype = *str_endian = 0;
|
|
unsigned int j, N, W, H, D, C;
|
|
int i, err;
|
|
j = 0; while ((i=std::fgetc(nfile))!='\n' && i!=EOF && j<256) tmp[j++] = (char)i; tmp[j] = 0;
|
|
err = cimg_sscanf(tmp,"%u%*c%255[A-Za-z123468_]%*c%255[sA-Za-z_ ]",&N,str_pixeltype._data,str_endian._data);
|
|
if (err<2) {
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimglist_instance
|
|
"save_cimg(): CImg header not found in file '%s'.",
|
|
cimglist_instance,
|
|
filename?filename:"(FILE*)");
|
|
}
|
|
if (!cimg::strncasecmp("little",str_endian,6)) endian = false;
|
|
else if (!cimg::strncasecmp("big",str_endian,3)) endian = true;
|
|
const unsigned int lmax = std::min(N,n0 + _width);
|
|
_cimg_save_cimg_case("bool",0,0,cimg_uint8);
|
|
_cimg_save_cimg_case("uint8","unsigned_char","uchar",cimg_uint8);
|
|
_cimg_save_cimg_case("int8",0,0,cimg_int8);
|
|
_cimg_save_cimg_case("char",0,0,char);
|
|
_cimg_save_cimg_case("uint16","unsigned_short","ushort",cimg_uint16);
|
|
_cimg_save_cimg_case("int16","short",0,cimg_int16);
|
|
_cimg_save_cimg_case("uint32","unsigned_int","uint",cimg_uint32);
|
|
_cimg_save_cimg_case("int32","int",0,cimg_int32);
|
|
_cimg_save_cimg_case("uint64","unsigned_int64",0,cimg_uint64);
|
|
_cimg_save_cimg_case("int64",0,0,cimg_int64);
|
|
_cimg_save_cimg_case("float","float32",0,cimg_float32);
|
|
_cimg_save_cimg_case("float64","double",0,cimg_float64);
|
|
|
|
if (!saved) {
|
|
if (!file) cimg::fclose(nfile);
|
|
throw CImgIOException(_cimglist_instance
|
|
"save_cimg(): Unsupported data type '%s' for file '%s'.",
|
|
cimglist_instance,
|
|
filename?filename:"(FILE*)",str_pixeltype._data);
|
|
}
|
|
if (!file) cimg::fclose(nfile);
|
|
return *this;
|
|
}
|
|
|
|
//! Insert the image instance into into an existing .cimg file, at specified coordinates.
|
|
/**
|
|
\param filename Filename to write data to.
|
|
\param n0 Starting index of images to write.
|
|
\param x0 Starting X-coordinates of image regions to write.
|
|
\param y0 Starting Y-coordinates of image regions to write.
|
|
\param z0 Starting Z-coordinates of image regions to write.
|
|
\param c0 Starting C-coordinates of image regions to write.
|
|
**/
|
|
const CImgList<T>& save_cimg(const char *const filename,
|
|
const unsigned int n0,
|
|
const unsigned int x0, const unsigned int y0,
|
|
const unsigned int z0, const unsigned int c0) const {
|
|
return _save_cimg(0,filename,n0,x0,y0,z0,c0);
|
|
}
|
|
|
|
//! Insert the image instance into into an existing .cimg file, at specified coordinates.
|
|
/**
|
|
\param file File to write data to.
|
|
\param n0 Starting index of images to write.
|
|
\param x0 Starting X-coordinates of image regions to write.
|
|
\param y0 Starting Y-coordinates of image regions to write.
|
|
\param z0 Starting Z-coordinates of image regions to write.
|
|
\param c0 Starting C-coordinates of image regions to write.
|
|
**/
|
|
const CImgList<T>& save_cimg(std::FILE *const file,
|
|
const unsigned int n0,
|
|
const unsigned int x0, const unsigned int y0,
|
|
const unsigned int z0, const unsigned int c0) const {
|
|
return _save_cimg(file,0,n0,x0,y0,z0,c0);
|
|
}
|
|
|
|
static void _save_empty_cimg(std::FILE *const file, const char *const filename,
|
|
const unsigned int nb,
|
|
const unsigned int dx, const unsigned int dy,
|
|
const unsigned int dz, const unsigned int dc) {
|
|
std::FILE *const nfile = file?file:cimg::fopen(filename,"wb");
|
|
const ulongT siz = (ulongT)dx*dy*dz*dc*sizeof(T);
|
|
std::fprintf(nfile,"%u %s\n",nb,pixel_type());
|
|
for (unsigned int i=nb; i; --i) {
|
|
std::fprintf(nfile,"%u %u %u %u\n",dx,dy,dz,dc);
|
|
for (ulongT off = siz; off; --off) std::fputc(0,nfile);
|
|
}
|
|
if (!file) cimg::fclose(nfile);
|
|
}
|
|
|
|
//! Save empty (non-compressed) .cimg file with specified dimensions.
|
|
/**
|
|
\param filename Filename to write data to.
|
|
\param nb Number of images to write.
|
|
\param dx Width of images in the written file.
|
|
\param dy Height of images in the written file.
|
|
\param dz Depth of images in the written file.
|
|
\param dc Spectrum of images in the written file.
|
|
**/
|
|
static void save_empty_cimg(const char *const filename,
|
|
const unsigned int nb,
|
|
const unsigned int dx, const unsigned int dy=1,
|
|
const unsigned int dz=1, const unsigned int dc=1) {
|
|
return _save_empty_cimg(0,filename,nb,dx,dy,dz,dc);
|
|
}
|
|
|
|
//! Save empty .cimg file with specified dimensions.
|
|
/**
|
|
\param file File to write data to.
|
|
\param nb Number of images to write.
|
|
\param dx Width of images in the written file.
|
|
\param dy Height of images in the written file.
|
|
\param dz Depth of images in the written file.
|
|
\param dc Spectrum of images in the written file.
|
|
**/
|
|
static void save_empty_cimg(std::FILE *const file,
|
|
const unsigned int nb,
|
|
const unsigned int dx, const unsigned int dy=1,
|
|
const unsigned int dz=1, const unsigned int dc=1) {
|
|
return _save_empty_cimg(file,0,nb,dx,dy,dz,dc);
|
|
}
|
|
|
|
//! Save list as a TIFF file.
|
|
/**
|
|
\param filename Filename to write data to.
|
|
\param compression_type Compression mode used to write data.
|
|
\param voxel_size Voxel size, to be stored in the filename.
|
|
\param description Description, to be stored in the filename.
|
|
\param use_bigtiff Allow to save big tiff files (>4Gb).
|
|
**/
|
|
const CImgList<T>& save_tiff(const char *const filename, const unsigned int compression_type=0,
|
|
const float *const voxel_size=0, const char *const description=0,
|
|
const bool use_bigtiff=true) const {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimglist_instance
|
|
"save_tiff(): Specified filename is (null).",
|
|
cimglist_instance);
|
|
if (is_empty()) { cimg::fempty(0,filename); return *this; }
|
|
|
|
#ifndef cimg_use_tiff
|
|
if (_width==1) _data[0].save_tiff(filename,compression_type,voxel_size,description,use_bigtiff);
|
|
else cimglist_for(*this,l) {
|
|
CImg<charT> nfilename(1024);
|
|
cimg::number_filename(filename,l,6,nfilename);
|
|
_data[l].save_tiff(nfilename,compression_type,voxel_size,description,use_bigtiff);
|
|
}
|
|
#else
|
|
ulongT siz = 0;
|
|
cimglist_for(*this,l) siz+=_data[l].size();
|
|
const bool _use_bigtiff = use_bigtiff && sizeof(siz)>=8 && siz*sizeof(T)>=1UL<<31; // No bigtiff for small images
|
|
TIFF *tif = TIFFOpen(filename,_use_bigtiff?"w8":"w4");
|
|
if (tif) {
|
|
for (unsigned int dir = 0, l = 0; l<_width; ++l) {
|
|
const CImg<T>& img = (*this)[l];
|
|
cimg_forZ(img,z) img._save_tiff(tif,dir++,z,compression_type,voxel_size,description);
|
|
}
|
|
TIFFClose(tif);
|
|
} else
|
|
throw CImgIOException(_cimglist_instance
|
|
"save_tiff(): Failed to open stream for file '%s'.",
|
|
cimglist_instance,
|
|
filename);
|
|
#endif
|
|
return *this;
|
|
}
|
|
|
|
//! Save list as a gzipped file, using external tool 'gzip'.
|
|
/**
|
|
\param filename Filename to write data to.
|
|
**/
|
|
const CImgList<T>& save_gzip_external(const char *const filename) const {
|
|
if (!filename)
|
|
throw CImgIOException(_cimglist_instance
|
|
"save_gzip_external(): Specified filename is (null).",
|
|
cimglist_instance);
|
|
CImg<charT> command(1024), filename_tmp(256), body(256);
|
|
const char
|
|
*ext = cimg::split_filename(filename,body),
|
|
*ext2 = cimg::split_filename(body,0);
|
|
std::FILE *file;
|
|
do {
|
|
if (!cimg::strcasecmp(ext,"gz")) {
|
|
if (*ext2) cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s",
|
|
cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(),ext2);
|
|
else cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.cimg",
|
|
cimg::temporary_path(),cimg_file_separator,cimg::filenamerand());
|
|
} else {
|
|
if (*ext) cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s",
|
|
cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(),ext);
|
|
else cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.cimg",
|
|
cimg::temporary_path(),cimg_file_separator,cimg::filenamerand());
|
|
}
|
|
if ((file=cimg::std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file);
|
|
} while (file);
|
|
|
|
if (is_saveable(body)) {
|
|
save(filename_tmp);
|
|
cimg_snprintf(command,command._width,"\"%s\" -c \"%s\" > \"%s\"",
|
|
cimg::gzip_path(),
|
|
CImg<charT>::string(filename_tmp)._system_strescape().data(),
|
|
CImg<charT>::string(filename)._system_strescape().data());
|
|
cimg::system(command,cimg::gzip_path());
|
|
file = cimg::std_fopen(filename,"rb");
|
|
if (!file)
|
|
throw CImgIOException(_cimglist_instance
|
|
"save_gzip_external(): Failed to save file '%s' with external command 'gzip'.",
|
|
cimglist_instance,
|
|
filename);
|
|
else cimg::fclose(file);
|
|
std::remove(filename_tmp);
|
|
} else {
|
|
CImg<charT> nfilename(1024);
|
|
cimglist_for(*this,l) {
|
|
cimg::number_filename(body,l,6,nfilename);
|
|
if (*ext) cimg_snprintf(nfilename._data + std::strlen(nfilename),64,".%s",ext);
|
|
_data[l].save_gzip_external(nfilename);
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Save image sequence (using the OpenCV library when available).
|
|
/**
|
|
\param filename Filename to write data to.
|
|
\param fps Number of frames per second.
|
|
\param codec Type of compression (See http://www.fourcc.org/codecs.php to see available codecs).
|
|
\param keep_open Tells if the video writer associated to the specified filename
|
|
must be kept open or not (to allow frames to be added in the same file afterwards).
|
|
**/
|
|
const CImgList<T>& save_video(const char *const filename, const unsigned int fps=25,
|
|
const char *codec=0, const bool keep_open=false) const {
|
|
#ifndef cimg_use_opencv
|
|
cimg::unused(codec,keep_open);
|
|
return save_ffmpeg_external(filename,fps);
|
|
#else
|
|
try {
|
|
static cv::VideoWriter *writers[32] = {};
|
|
static CImgList<charT> filenames(32);
|
|
static CImg<intT> sizes(32,2,1,1,0);
|
|
static int last_used_index = -1;
|
|
|
|
// Detect if a video writer already exists for the specified filename.
|
|
cimg::mutex(9);
|
|
int index = -1;
|
|
if (filename) {
|
|
if (last_used_index>=0 && !std::strcmp(filename,filenames[last_used_index])) {
|
|
index = last_used_index;
|
|
} else cimglist_for(filenames,l) if (filenames[l] && !std::strcmp(filename,filenames[l])) {
|
|
index = l; break;
|
|
}
|
|
} else index = last_used_index;
|
|
cimg::mutex(9,0);
|
|
|
|
// Find empty slot for capturing video stream.
|
|
if (index<0) {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimglist_instance
|
|
"save_video(): No already open video writer found. You must specify a "
|
|
"non-(null) filename argument for the first call.",
|
|
cimglist_instance);
|
|
else { cimg::mutex(9); cimglist_for(filenames,l) if (!filenames[l]) { index = l; break; } cimg::mutex(9,0); }
|
|
if (index<0)
|
|
throw CImgIOException(_cimglist_instance
|
|
"save_video(): File '%s', no video writer slots available. "
|
|
"You have to release some of your previously opened videos.",
|
|
cimglist_instance,filename);
|
|
if (is_empty())
|
|
throw CImgInstanceException(_cimglist_instance
|
|
"save_video(): Instance list is empty.",
|
|
cimglist_instance);
|
|
const unsigned int W = _data?_data[0]._width:0, H = _data?_data[0]._height:0;
|
|
if (!W || !H)
|
|
throw CImgInstanceException(_cimglist_instance
|
|
"save_video(): Frame [0] is an empty image.",
|
|
cimglist_instance);
|
|
const char
|
|
*const _codec = codec && *codec?codec:"h264",
|
|
codec0 = cimg::uppercase(_codec[0]),
|
|
codec1 = _codec[0]?cimg::uppercase(_codec[1]):0,
|
|
codec2 = _codec[1]?cimg::uppercase(_codec[2]):0,
|
|
codec3 = _codec[2]?cimg::uppercase(_codec[3]):0;
|
|
cimg::mutex(9);
|
|
writers[index] = new cv::VideoWriter(filename,_cimg_fourcc(codec0,codec1,codec2,codec3),fps,cv::Size(W,H));
|
|
if (!writers[index]->isOpened()) {
|
|
delete writers[index];
|
|
writers[index] = 0;
|
|
cimg::mutex(9,0);
|
|
throw CImgIOException(_cimglist_instance
|
|
"save_video(): File '%s', unable to initialize video writer with codec '%c%c%c%c'.",
|
|
cimglist_instance,filename,
|
|
codec0,codec1,codec2,codec3);
|
|
}
|
|
CImg<charT>::string(filename).move_to(filenames[index]);
|
|
sizes(index,0) = W;
|
|
sizes(index,1) = H;
|
|
cimg::mutex(9,0);
|
|
}
|
|
|
|
if (!is_empty()) {
|
|
const unsigned int W = sizes(index,0), H = sizes(index,1);
|
|
cimg::mutex(9);
|
|
cimglist_for(*this,l) {
|
|
CImg<T> &src = _data[l];
|
|
if (src.is_empty())
|
|
cimg::warn(_cimglist_instance
|
|
"save_video(): Skip empty frame %d for file '%s'.",
|
|
cimglist_instance,l,filename);
|
|
if (src._spectrum>3)
|
|
cimg::warn(_cimglist_instance
|
|
"save_video(): Frame %u has incompatible dimension (%u,%u,%u,%u). "
|
|
"Some image data may be ignored when writing frame into video file '%s'.",
|
|
cimglist_instance,l,src._width,src._height,src._depth,src._spectrum,filename);
|
|
cimg_forZ(src,z) {
|
|
CImg<T> _src = src._depth>1?src.get_slice(z):src.get_shared();
|
|
if (_src._width==W && _src._height==H && _src._spectrum==3)
|
|
writers[index]->write(CImg<ucharT>(_src)._cimg2cvmat());
|
|
else {
|
|
CImg<ucharT> __src(_src,false);
|
|
__src.channels(0,std::min(__src._spectrum - 1,2U)).resize(W,H);
|
|
__src.resize(W,H,1,3,__src._spectrum==1);
|
|
writers[index]->write(__src._cimg2cvmat());
|
|
}
|
|
}
|
|
}
|
|
cimg::mutex(9,0);
|
|
}
|
|
|
|
cimg::mutex(9);
|
|
if (!keep_open) {
|
|
delete writers[index];
|
|
writers[index] = 0;
|
|
filenames[index].assign();
|
|
sizes(index,0) = sizes(index,1) = 0;
|
|
last_used_index = -1;
|
|
} else last_used_index = index;
|
|
cimg::mutex(9,0);
|
|
} catch (CImgIOException &e) {
|
|
if (!keep_open) return save_ffmpeg_external(filename,fps);
|
|
throw e;
|
|
}
|
|
return *this;
|
|
#endif
|
|
}
|
|
|
|
//! Save image sequence, using the external tool 'ffmpeg'.
|
|
/**
|
|
\param filename Filename to write data to.
|
|
\param fps Number of frames per second.
|
|
\param codec Type of compression.
|
|
\param bitrate Output bitrate
|
|
**/
|
|
const CImgList<T>& save_ffmpeg_external(const char *const filename, const unsigned int fps=25,
|
|
const char *const codec=0, const unsigned int bitrate=2048) const {
|
|
if (!filename)
|
|
throw CImgArgumentException(_cimglist_instance
|
|
"save_ffmpeg_external(): Specified filename is (null).",
|
|
cimglist_instance);
|
|
if (is_empty()) { cimg::fempty(0,filename); return *this; }
|
|
|
|
const char
|
|
*const ext = cimg::split_filename(filename),
|
|
*const _codec = codec?codec:
|
|
!cimg::strcasecmp(ext,"flv")?"flv":
|
|
!cimg::strcasecmp(ext,"mp4")?"h264":"mpeg2video";
|
|
|
|
CImg<charT> command(1024), filename_tmp(256), filename_tmp2(256);
|
|
CImgList<charT> filenames;
|
|
std::FILE *file = 0;
|
|
cimglist_for(*this,l) if (!_data[l].is_sameXYZ(_data[0]))
|
|
throw CImgInstanceException(_cimglist_instance
|
|
"save_ffmpeg_external(): Invalid instance dimensions for file '%s'.",
|
|
cimglist_instance,
|
|
filename);
|
|
do {
|
|
cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s",
|
|
cimg::temporary_path(),cimg_file_separator,cimg::filenamerand());
|
|
cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s_000001.ppm",filename_tmp._data);
|
|
if ((file=cimg::std_fopen(filename_tmp2,"rb"))!=0) cimg::fclose(file);
|
|
} while (file);
|
|
unsigned int frame = 1;
|
|
cimglist_for(*this,l) {
|
|
CImg<T>& src = _data[l];
|
|
cimg_forZ(src,z) {
|
|
cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s_%.6u.ppm",filename_tmp._data,frame);
|
|
CImg<charT>::string(filename_tmp2).move_to(filenames);
|
|
CImg<T> _src = src._depth>1?src.get_slice(z):src.get_shared();
|
|
if (_src._width%2 || _src._height%2) // Force output to have an even number of columns and rows
|
|
_src.assign(_src.get_resize(_src._width + (_src._width%2),_src._height + (_src._height%2),1,-100,0),false);
|
|
if (_src._spectrum!=3) // Force output to be one slice, in color
|
|
_src.assign(_src.get_resize(-100,-100,1,3),false);
|
|
_src.save_pnm(filename_tmp2);
|
|
++frame;
|
|
}
|
|
}
|
|
cimg_snprintf(command,command._width,
|
|
"\"%s\" -framerate %u -v -8 -y -i \"%s_%%6d.ppm\" -pix_fmt yuv420p -vcodec %s -b %uk -r %u \"%s\"",
|
|
cimg::ffmpeg_path(),
|
|
fps,CImg<charT>::string(filename_tmp)._system_strescape().data(),
|
|
_codec,bitrate,fps,
|
|
CImg<charT>::string(filename)._system_strescape().data());
|
|
cimg::system(command,cimg::ffmpeg_path());
|
|
file = cimg::std_fopen(filename,"rb");
|
|
if (!file)
|
|
throw CImgIOException(_cimglist_instance
|
|
"save_ffmpeg_external(): Failed to save file '%s' with external command 'ffmpeg'.",
|
|
cimglist_instance,
|
|
filename);
|
|
else cimg::fclose(file);
|
|
cimglist_for(*this,l) std::remove(filenames[l]);
|
|
return *this;
|
|
}
|
|
|
|
//! Serialize a CImgList<T> instance into a raw CImg<unsigned char> buffer.
|
|
/**
|
|
\param is_compressed tells if zlib compression must be used for serialization
|
|
(this requires 'cimg_use_zlib' been enabled).
|
|
\param header_size Reserve empty bytes as a starting header.
|
|
**/
|
|
CImg<ucharT> get_serialize(const bool is_compressed=false, const unsigned int header_size=0) const {
|
|
#ifndef cimg_use_zlib
|
|
if (is_compressed)
|
|
cimg::warn(_cimglist_instance
|
|
"get_serialize(): Unable to compress data unless zlib is enabled, "
|
|
"storing them uncompressed.",
|
|
cimglist_instance);
|
|
#endif
|
|
CImgList<ucharT> stream;
|
|
if (header_size) CImg<ucharT>(1,header_size,1,1,0).move_to(stream);
|
|
CImg<charT> tmpstr(128);
|
|
const char *const ptype = pixel_type(), *const etype = cimg::endianness()?"big":"little";
|
|
cimg_snprintf(tmpstr,tmpstr._width,"%u %s %s_endian\n",_width,ptype,etype);
|
|
CImg<ucharT>::string(tmpstr,false).move_to(stream);
|
|
cimglist_for(*this,l) {
|
|
const CImg<T>& img = _data[l];
|
|
cimg_snprintf(tmpstr,tmpstr._width,"%u %u %u %u",img._width,img._height,img._depth,img._spectrum);
|
|
CImg<ucharT>::string(tmpstr,false).move_to(stream);
|
|
if (img._data) {
|
|
CImg<T> tmp;
|
|
if (cimg::endianness()) { tmp = img; cimg::invert_endianness(tmp._data,tmp.size()); }
|
|
const CImg<T>& ref = cimg::endianness()?tmp:img;
|
|
bool failed_to_compress = true;
|
|
if (is_compressed) {
|
|
#ifdef cimg_use_zlib
|
|
const ulongT siz = sizeof(T)*ref.size();
|
|
uLongf csiz = (ulongT)compressBound(siz);
|
|
Bytef *const cbuf = new Bytef[csiz];
|
|
if (compress(cbuf,&csiz,(Bytef*)ref._data,siz))
|
|
cimg::warn(_cimglist_instance
|
|
"get_serialize(): Failed to save compressed data, saving them uncompressed.",
|
|
cimglist_instance);
|
|
else {
|
|
cimg_snprintf(tmpstr,tmpstr._width," #%lu\n",csiz);
|
|
CImg<ucharT>::string(tmpstr,false).move_to(stream);
|
|
CImg<ucharT>(cbuf,csiz).move_to(stream);
|
|
delete[] cbuf;
|
|
failed_to_compress = false;
|
|
}
|
|
#endif
|
|
}
|
|
if (failed_to_compress) { // Write in a non-compressed way
|
|
CImg<charT>::string("\n",false).move_to(stream);
|
|
stream.insert(1);
|
|
stream.back().
|
|
assign((unsigned char*)ref._data,ref._width,ref._height,ref._depth,ref._spectrum*sizeof(T),true);
|
|
}
|
|
} else CImg<charT>::string("\n",false).move_to(stream);
|
|
}
|
|
|
|
// Determine best serialized image dimensions to store the whole buffer.
|
|
ulongT siz = 0;
|
|
cimglist_for(stream,l) siz+=stream[l].size();
|
|
const ulongT max_siz = (ulongT)cimg::type<int>::max();
|
|
const unsigned int
|
|
nw = (unsigned int)(siz/max_siz + ((siz%max_siz)?1:0)),
|
|
nh = (unsigned int)(siz/nw + (siz%nw?1:0));
|
|
CImg<ucharT> res(nw,nh,1,1,0);
|
|
unsigned char *ptr = res.data();
|
|
cimglist_for(stream,l) { siz = stream[l].size(); std::memcpy(ptr,stream[l]._data,siz); ptr+=siz; }
|
|
return res;
|
|
}
|
|
|
|
//! Unserialize a CImg<unsigned char> serialized buffer into a CImgList<T> list.
|
|
template<typename t>
|
|
static CImgList<T> get_unserialize(const CImg<t>& buffer, const unsigned int header_size=0) {
|
|
#ifdef cimg_use_zlib
|
|
#define _cimgz_unserialize_case(Tss) { \
|
|
Bytef *cbuf = 0; \
|
|
if (sizeof(t)!=1 || buffer.pixel_type()==cimg::type<bool>::string()) { \
|
|
cbuf = new Bytef[csiz]; Bytef *_cbuf = cbuf; \
|
|
for (ulongT k = 0; k<csiz && stream<estream; ++k) *(_cbuf++) = (Bytef)*(stream++); \
|
|
is_bytef = false; \
|
|
} else { cbuf = (Bytef*)stream; stream+=csiz; is_bytef = true; } \
|
|
raw.assign(W,H,D,C); \
|
|
uLongf destlen = raw.size()*sizeof(Tss); \
|
|
uncompress((Bytef*)raw._data,&destlen,cbuf,csiz); \
|
|
if (!is_bytef) delete[] cbuf; \
|
|
}
|
|
#else
|
|
#define _cimgz_unserialize_case(Tss) \
|
|
throw CImgArgumentException("CImgList<%s>::get_unserialize(): Unable to unserialize compressed data " \
|
|
"unless zlib is enabled.", \
|
|
pixel_type());
|
|
#endif
|
|
|
|
#define _cimg_unserialize_case(Ts1,Ts2,Ts3,Tss) \
|
|
if (!loaded && ((Ts1 && !cimg::strcasecmp(Ts1,str_pixeltype)) || \
|
|
(Ts2 && !cimg::strcasecmp(Ts2,str_pixeltype)) || \
|
|
(Ts3 && !cimg::strcasecmp(Ts3,str_pixeltype)))) { \
|
|
for (unsigned int l = 0; l<N; ++l) { \
|
|
j = 0; while ((i=(int)*stream)!='\n' && stream<estream && j<255) { ++stream; tmp[j++] = (char)i; } \
|
|
++stream; tmp[j] = 0; \
|
|
W = H = D = C = 0; csiz = 0; \
|
|
if ((err = cimg_sscanf(tmp,"%u %u %u %u #" cimg_fuint64,&W,&H,&D,&C,&csiz))<4) \
|
|
throw CImgArgumentException("CImgList<%s>::unserialize(): Invalid specified size (%u,%u,%u,%u) for " \
|
|
"image #%u in serialized buffer.", \
|
|
pixel_type(),W,H,D,C,l); \
|
|
if (W*H*D*C>0) { \
|
|
CImg<Tss> raw; \
|
|
CImg<T> &img = res._data[l]; \
|
|
if (err==5) _cimgz_unserialize_case(Tss) \
|
|
else { \
|
|
raw.assign(W,H,D,C); \
|
|
CImg<ucharT> _raw((unsigned char*)raw._data,W*sizeof(Tss),H,D,C,true); \
|
|
if (sizeof(t)==1) { std::memcpy(_raw,stream,_raw.size()); stream+=_raw.size(); } \
|
|
else cimg_for(_raw,p,unsigned char) *p = (unsigned char)*(stream++); \
|
|
} \
|
|
if (endian!=cimg::endianness()) cimg::invert_endianness(raw._data,raw.size()); \
|
|
raw.move_to(img); \
|
|
} \
|
|
} \
|
|
loaded = true; \
|
|
}
|
|
|
|
if (buffer.is_empty())
|
|
throw CImgArgumentException("CImgList<%s>::get_unserialize(): Specified serialized buffer is (null).",
|
|
pixel_type());
|
|
CImgList<T> res;
|
|
const t *stream = buffer._data + header_size, *const estream = buffer._data + buffer.size();
|
|
bool loaded = false, endian = cimg::endianness(), is_bytef = false;
|
|
CImg<charT> tmp(256), str_pixeltype(256), str_endian(256);
|
|
*tmp = *str_pixeltype = *str_endian = 0;
|
|
unsigned int j, N = 0, W, H, D, C;
|
|
uint64T csiz;
|
|
int i, err;
|
|
cimg::unused(is_bytef);
|
|
do {
|
|
j = 0; while ((i=(int)*stream)!='\n' && stream<estream && j<255) { ++stream; tmp[j++] = (char)i; }
|
|
++stream; tmp[j] = 0;
|
|
} while (*tmp=='#' && stream<estream);
|
|
err = cimg_sscanf(tmp,"%u%*c%255[A-Za-z123468_]%*c%255[sA-Za-z_ ]",
|
|
&N,str_pixeltype._data,str_endian._data);
|
|
if (err<2)
|
|
throw CImgArgumentException("CImgList<%s>::get_unserialize(): CImg header not found in serialized buffer.",
|
|
pixel_type());
|
|
if (!cimg::strncasecmp("little",str_endian,6)) endian = false;
|
|
else if (!cimg::strncasecmp("big",str_endian,3)) endian = true;
|
|
res.assign(N);
|
|
_cimg_unserialize_case("bool",0,0,cimg_uint8);
|
|
_cimg_unserialize_case("uint8","unsigned_char","uchar",cimg_uint8);
|
|
_cimg_unserialize_case("int8",0,0,cimg_int8);
|
|
_cimg_unserialize_case("char",0,0,char);
|
|
_cimg_unserialize_case("uint16","unsigned_short","ushort",cimg_uint16);
|
|
_cimg_unserialize_case("int16","short",0,cimg_int16);
|
|
_cimg_unserialize_case("uint32","unsigned_int","uint",cimg_uint32);
|
|
_cimg_unserialize_case("int32","int",0,cimg_int32);
|
|
_cimg_unserialize_case("uint64","unsigned_int64",0,cimg_uint64);
|
|
_cimg_unserialize_case("int64",0,0,cimg_int64);
|
|
_cimg_unserialize_case("float32","float",0,cimg_float32);
|
|
_cimg_unserialize_case("float64","double",0,cimg_float64);
|
|
if (!loaded)
|
|
throw CImgArgumentException("CImgList<%s>::get_unserialize(): Unsupported pixel type '%s' defined "
|
|
"in serialized buffer.",
|
|
pixel_type(),str_pixeltype._data);
|
|
return res;
|
|
}
|
|
|
|
//@}
|
|
//----------------------------------
|
|
//
|
|
//! \name Others
|
|
//@{
|
|
//----------------------------------
|
|
|
|
//! Return a CImg pre-defined font with requested height.
|
|
/**
|
|
\param font_height Height of the desired font (exact match for 13,23,53,103).
|
|
\param is_variable_width Decide if the font has a variable (\c true) or fixed (\c false) width.
|
|
**/
|
|
static const CImgList<ucharT>& font(const unsigned int requested_height, const bool is_variable_width=true) {
|
|
if (!requested_height) return CImgList<ucharT>::const_empty();
|
|
cimg::mutex(11);
|
|
static const unsigned char font_resizemap[] = {
|
|
0, 4, 7, 9, 11, 13, 15, 17, 19, 21, 22, 24, 26, 27, 29, 30,
|
|
32, 33, 35, 36, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 52,
|
|
54, 55, 56, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 71, 72,
|
|
73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
|
|
90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106,
|
|
107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122,
|
|
123, 124, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137,
|
|
138, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 148, 149, 150, 151,
|
|
152, 153, 154, 155, 156, 157, 157, 158, 159, 160, 161, 162, 163, 164, 164, 165,
|
|
166, 167, 168, 169, 170, 170, 171, 172, 173, 174, 175, 176, 176, 177, 178, 179,
|
|
180, 181, 181, 182, 183, 184, 185, 186, 186, 187, 188, 189, 190, 191, 191, 192,
|
|
193, 194, 195, 196, 196, 197, 198, 199, 200, 200, 201, 202, 203, 204, 205, 205,
|
|
206, 207, 208, 209, 209, 210, 211, 212, 213, 213, 214, 215, 216, 216, 217, 218,
|
|
219, 220, 220, 221, 222, 223, 224, 224, 225, 226, 227, 227, 228, 229, 230, 231,
|
|
231, 232, 233, 234, 234, 235, 236, 237, 238, 238, 239, 240, 241, 241, 242, 243,
|
|
244, 244, 245, 246, 247, 247, 248, 249, 250, 250, 251, 252, 253, 253, 254, 255 };
|
|
static const char *const *font_data[] = {
|
|
cimg::data_font_small,
|
|
cimg::data_font_normal,
|
|
cimg::data_font_large,
|
|
cimg::data_font_huge };
|
|
static const unsigned int
|
|
font_width[] = { 10,26,52,104 },
|
|
font_height[] = { 13,32,64,128 },
|
|
font_M[] = { 86,91,91,47 },
|
|
font_chunk[] = { sizeof(cimg::data_font_small)/sizeof(char*),
|
|
sizeof(cimg::data_font_normal)/sizeof(char*),
|
|
sizeof(cimg::data_font_large)/sizeof(char*),
|
|
sizeof(cimg::data_font_huge)/sizeof(char*) };
|
|
static const unsigned char font_is_binary[] = { 1,0,0,1 };
|
|
static CImg<ucharT> font_base[4];
|
|
|
|
unsigned int ind =
|
|
requested_height<=font_height[0]?0U:
|
|
requested_height<=font_height[1]?1U:
|
|
requested_height<=font_height[2]?2U:3U;
|
|
|
|
// Decompress nearest base font data if needed.
|
|
CImg<ucharT> &basef = font_base[ind];
|
|
if (!basef) {
|
|
basef.assign(256*font_width[ind],font_height[ind]);
|
|
|
|
unsigned char *ptrd = basef;
|
|
const unsigned char *const ptrde = basef.end();
|
|
|
|
// Recompose font data from several chunks, to deal with MS compiler limit with big strings (64 Kb).
|
|
CImg<char> dataf;
|
|
for (unsigned int k = 0; k<font_chunk[ind]; ++k)
|
|
dataf.append(CImg<char>::string(font_data[ind][k],k==font_chunk[ind] - 1,true),'x');
|
|
|
|
// Uncompress font data (decode RLE).
|
|
const unsigned int M = font_M[ind];
|
|
if (font_is_binary[ind])
|
|
for (const char *ptrs = dataf; *ptrs; ++ptrs) {
|
|
const int _n = (int)(*ptrs - M - 32), v = _n>=0?255:0, n = _n>=0?_n:-_n;
|
|
if (ptrd + n<=ptrde) { std::memset(ptrd,v,n); ptrd+=n; }
|
|
else { std::memset(ptrd,v,ptrde - ptrd); break; }
|
|
}
|
|
else
|
|
for (const char *ptrs = dataf; *ptrs; ++ptrs) {
|
|
int n = (int)*ptrs - M - 32, v = 0;
|
|
if (n>=0) { v = 85*n; n = 1; }
|
|
else {
|
|
n = -n;
|
|
v = (int)*(++ptrs) - M - 32;
|
|
if (v<0) { v = 0; --ptrs; } else v*=85;
|
|
}
|
|
if (ptrd + n<=ptrde) { std::memset(ptrd,v,n); ptrd+=n; }
|
|
else { std::memset(ptrd,v,ptrde - ptrd); break; }
|
|
}
|
|
}
|
|
|
|
// Find optimal font cache location to return.
|
|
static CImgList<ucharT> fonts[16];
|
|
static bool is_variable_widths[16] = {};
|
|
ind = ~0U;
|
|
for (int i = 0; i<16; ++i)
|
|
if (!fonts[i] || (is_variable_widths[i]==is_variable_width && requested_height==fonts[i][0]._height)) {
|
|
ind = (unsigned int)i; break; // Found empty slot or cached font
|
|
}
|
|
if (ind==~0U) { // No empty slots nor existing font in cache
|
|
fonts->assign();
|
|
std::memmove((void*)fonts,(void*)(fonts + 1),15*sizeof(CImgList<ucharT>));
|
|
std::memmove(is_variable_widths,is_variable_widths + 1,15*sizeof(bool));
|
|
std::memset((void*)(fonts + (ind=15)),0,sizeof(CImgList<ucharT>)); // Free a slot in cache for new font
|
|
}
|
|
CImgList<ucharT> &font = fonts[ind];
|
|
|
|
// Render requested font.
|
|
if (!font) {
|
|
is_variable_widths[ind] = is_variable_width;
|
|
basef.get_split('x',256).move_to(font);
|
|
if (requested_height!=font[0]._height)
|
|
cimglist_for(font,l) {
|
|
font[l].resize(std::max(1U,font[l]._width*requested_height/font[l]._height),requested_height,-100,-100,5);
|
|
cimg_for(font[l],ptr,ucharT) *ptr = font_resizemap[*ptr];
|
|
}
|
|
if (is_variable_width) { // Crop font
|
|
cimglist_for(font,l) {
|
|
CImg<ucharT>& letter = font[l];
|
|
int xmin = letter.width(), xmax = 0;
|
|
cimg_forX(letter,x) { // Find xmin
|
|
cimg_forY(letter,y) if (letter(x,y)) { xmin = x; break; }
|
|
if (xmin!=letter.width()) break;
|
|
}
|
|
cimg_rofX(letter,x) { // Find xmax
|
|
cimg_forY(letter,y) if (letter(x,y)) { xmax = x; break; }
|
|
if (xmax) break;
|
|
}
|
|
if (xmin<=xmax) letter.crop(xmin,0,xmax,letter._height - 1);
|
|
}
|
|
font[(int)' '].resize(font[(int)'f']._width,-100,-100,-100,0);
|
|
if (' ' + 256<font.size()) font[' ' + 256].resize(font[(int)'f']._width,-100,-100,-100,0);
|
|
}
|
|
font.insert(256,0);
|
|
cimglist_for_in(font,0,255,l) font[l].assign(font[l + 256]._width,font[l + 256]._height,1,3,255);
|
|
}
|
|
cimg::mutex(11,0);
|
|
return font;
|
|
}
|
|
|
|
//! Compute a 1D Fast Fourier Transform, along specified axis.
|
|
/**
|
|
\param axis Axis along which the Fourier transform is computed.
|
|
\param invert Tells if the direct (\c false) or inverse transform (\c true) is computed.
|
|
**/
|
|
CImgList<T>& FFT(const char axis, const bool invert=false) {
|
|
if (is_empty()) return *this;
|
|
if (_width==1) insert(1);
|
|
if (_width>2)
|
|
cimg::warn(_cimglist_instance
|
|
"FFT(): Instance has more than 2 images",
|
|
cimglist_instance);
|
|
CImg<T>::FFT(_data[0],_data[1],axis,invert);
|
|
return *this;
|
|
}
|
|
|
|
//! Compute a 1-D Fast Fourier Transform, along specified axis \newinstance.
|
|
CImgList<Tfloat> get_FFT(const char axis, const bool invert=false) const {
|
|
return CImgList<Tfloat>(*this,false).FFT(axis,invert);
|
|
}
|
|
|
|
//! Compute n-D Fast Fourier Transform.
|
|
/**
|
|
\param invert Tells if the direct (\c false) or inverse transform (\c true) is computed.
|
|
**/
|
|
CImgList<T>& FFT(const bool invert=false) {
|
|
if (is_empty()) return *this;
|
|
if (_width==1) insert(1);
|
|
if (_width>2)
|
|
cimg::warn(_cimglist_instance
|
|
"FFT(): Instance has more than 2 images",
|
|
cimglist_instance);
|
|
|
|
CImg<T>::FFT(_data[0],_data[1],invert);
|
|
return *this;
|
|
}
|
|
|
|
//! Compute n-D Fast Fourier Transform \newinstance.
|
|
CImgList<Tfloat> get_FFT(const bool invert=false) const {
|
|
return CImgList<Tfloat>(*this,false).FFT(invert);
|
|
}
|
|
|
|
//! Reverse primitives orientations of a 3D object.
|
|
/**
|
|
**/
|
|
CImgList<T>& reverse_object3d() {
|
|
cimglist_for(*this,l) {
|
|
CImg<T>& p = _data[l];
|
|
switch (p.size()) {
|
|
case 2 : case 3: cimg::swap(p[0],p[1]); break;
|
|
case 6 : cimg::swap(p[0],p[1],p[2],p[4],p[3],p[5]); break;
|
|
case 9 : cimg::swap(p[0],p[1],p[3],p[5],p[4],p[6]); break;
|
|
case 4 : cimg::swap(p[0],p[1],p[2],p[3]); break;
|
|
case 12 : cimg::swap(p[0],p[1],p[2],p[3],p[4],p[6],p[5],p[7],p[8],p[10],p[9],p[11]); break;
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Reverse primitives orientations of a 3D object \newinstance.
|
|
CImgList<T> get_reverse_object3d() const {
|
|
return (+*this).reverse_object3d();
|
|
}
|
|
|
|
//@}
|
|
}; // struct CImgList { ...
|
|
|
|
// Completion of previously declared functions
|
|
//--------------------------------------------
|
|
namespace cimg {
|
|
|
|
// Functions to return standard streams 'stdin', 'stdout' and 'stderr'.
|
|
// (throw a CImgIOException when macro 'cimg_use_r' is defined).
|
|
inline FILE* _stdin(const bool throw_exception) {
|
|
#ifndef cimg_use_r
|
|
cimg::unused(throw_exception);
|
|
return stdin;
|
|
#else
|
|
if (throw_exception) {
|
|
cimg::exception_mode(0);
|
|
throw CImgIOException("cimg::stdin(): Reference to 'stdin' stream not allowed in R mode "
|
|
"('cimg_use_r' is defined).");
|
|
}
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
inline FILE* _stdout(const bool throw_exception) {
|
|
#ifndef cimg_use_r
|
|
cimg::unused(throw_exception);
|
|
return stdout;
|
|
#else
|
|
if (throw_exception) {
|
|
cimg::exception_mode(0);
|
|
throw CImgIOException("cimg::stdout(): Reference to 'stdout' stream not allowed in R mode "
|
|
"('cimg_use_r' is defined).");
|
|
}
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
inline FILE* _stderr(const bool throw_exception) {
|
|
#ifndef cimg_use_r
|
|
cimg::unused(throw_exception);
|
|
return stderr;
|
|
#else
|
|
if (throw_exception) {
|
|
cimg::exception_mode(0);
|
|
throw CImgIOException("cimg::stderr(): Reference to 'stderr' stream not allowed in R mode "
|
|
"('cimg_use_r' is defined).");
|
|
}
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
// Open a file (similar to std:: fopen(), but with wide character support on Windows).
|
|
inline std::FILE *std_fopen(const char *const path, const char *const mode) {
|
|
std::FILE *const res = std::fopen(path,mode);
|
|
if (res) return res;
|
|
#if cimg_OS==2
|
|
// Try alternative method, with wide-character string.
|
|
int err = MultiByteToWideChar(CP_UTF8,0,path,-1,0,0);
|
|
if (err) {
|
|
CImg<wchar_t> wpath((unsigned int)err);
|
|
err = MultiByteToWideChar(CP_UTF8,0,path,-1,wpath,err);
|
|
if (err) { // Convert 'mode' to a wide-character string
|
|
err = MultiByteToWideChar(CP_UTF8,0,mode,-1,0,0);
|
|
if (err) {
|
|
CImg<wchar_t> wmode((unsigned int)err);
|
|
if (MultiByteToWideChar(CP_UTF8,0,mode,-1,wmode,err))
|
|
return _wfopen(wpath,wmode);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
//! Search path of an executable (Windows only).
|
|
#if cimg_OS==2
|
|
inline bool win_searchpath(const char *const exec_name, char *const res, const unsigned int size_res) {
|
|
char *ptr = 0;
|
|
DWORD err = SearchPathA(0,exec_name,0,size_res,res,&ptr);
|
|
return err!=0;
|
|
}
|
|
#endif
|
|
|
|
//! Get the file or directory attributes with support for UTF-8 paths (Windows only).
|
|
#if cimg_OS==2
|
|
inline DWORD win_getfileattributes(const char *const path) {
|
|
DWORD res = GetFileAttributesA(path);
|
|
if (res==INVALID_FILE_ATTRIBUTES) {
|
|
// Try alternative method, with wide-character string.
|
|
int err = MultiByteToWideChar(CP_UTF8,0,path,-1,0,0);
|
|
if (err) {
|
|
CImg<wchar_t> wpath((unsigned int)err);
|
|
if (MultiByteToWideChar(CP_UTF8,0,path,-1,wpath,err)) res = GetFileAttributesW(wpath);
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
#endif
|
|
|
|
//! Get/set path to the <i>Program Files/</i> directory (Windows only).
|
|
/**
|
|
\param user_path Specified path, or \c 0 to get the path currently used.
|
|
\param reinit_path Force path to be recalculated (may take some time).
|
|
\return Path containing the program files.
|
|
**/
|
|
#if cimg_OS==2
|
|
inline const char* win_programfiles_path(const char *const user_path=0, const bool reinit_path=false) {
|
|
static CImg<char> s_path;
|
|
cimg::mutex(7);
|
|
if (reinit_path) s_path.assign();
|
|
if (user_path) {
|
|
if (!s_path) s_path.assign(1024);
|
|
std::strncpy(s_path,user_path,1023);
|
|
} else if (!s_path) {
|
|
s_path.assign(MAX_PATH);
|
|
*s_path = 0;
|
|
// Note: in the following line, 0x26 = CSIDL_PROGRAM_FILES (not defined on every compiler).
|
|
#if !defined(__INTEL_COMPILER)
|
|
if (!SHGetSpecialFolderPathA(0,s_path,0x0026,false)) {
|
|
const char *const pfPath = std::getenv("PROGRAMFILES");
|
|
if (pfPath) std::strncpy(s_path,pfPath,MAX_PATH - 1);
|
|
else std::strcpy(s_path,"C:\\PROGRA~1");
|
|
}
|
|
#else
|
|
std::strcpy(s_path,"C:\\PROGRA~1");
|
|
#endif
|
|
}
|
|
cimg::mutex(7,0);
|
|
return s_path;
|
|
}
|
|
#endif
|
|
|
|
//! Get/set path to the \c curl binary.
|
|
/**
|
|
\param user_path Specified path, or \c 0 to get the path currently used.
|
|
\param reinit_path Force path to be recalculated (may take some time).
|
|
\return Path containing the \c curl binary.
|
|
**/
|
|
inline const char *curl_path(const char *const user_path, const bool reinit_path) {
|
|
static CImg<char> s_path;
|
|
cimg::mutex(7);
|
|
if (reinit_path) s_path.assign();
|
|
if (user_path) {
|
|
if (!s_path) s_path.assign(1024);
|
|
std::strncpy(s_path,user_path,1023);
|
|
} else if (!s_path) {
|
|
s_path.assign(1024);
|
|
bool path_found = false;
|
|
std::FILE *file = 0;
|
|
#if cimg_OS==2
|
|
if (win_searchpath("curl.exe",s_path,s_path._width)) path_found = true;
|
|
if (!path_found) {
|
|
std::strcpy(s_path,".\\curl.exe");
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
if (!path_found) std::strcpy(s_path,"curl.exe");
|
|
#else
|
|
if (!path_found) {
|
|
std::strcpy(s_path,"./curl");
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
if (!path_found) std::strcpy(s_path,"curl");
|
|
#endif
|
|
winformat_string(s_path);
|
|
}
|
|
cimg::mutex(7,0);
|
|
return s_path;
|
|
}
|
|
|
|
//! Get/set path to the \c dcraw binary.
|
|
/**
|
|
\param user_path Specified path, or \c 0 to get the path currently used.
|
|
\param reinit_path Force path to be recalculated (may take some time).
|
|
\return Path containing the \c dcraw binary.
|
|
**/
|
|
inline const char *dcraw_path(const char *const user_path, const bool reinit_path) {
|
|
static CImg<char> s_path;
|
|
cimg::mutex(7);
|
|
if (reinit_path) s_path.assign();
|
|
if (user_path) {
|
|
if (!s_path) s_path.assign(1024);
|
|
std::strncpy(s_path,user_path,1023);
|
|
} else if (!s_path) {
|
|
s_path.assign(1024);
|
|
bool path_found = false;
|
|
std::FILE *file = 0;
|
|
#if cimg_OS==2
|
|
if (win_searchpath("dcraw.exe",s_path,s_path._width)) path_found = true;
|
|
if (!path_found) {
|
|
std::strcpy(s_path,".\\dcraw.exe");
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
if (!path_found) std::strcpy(s_path,"dcraw.exe");
|
|
#else
|
|
if (!path_found) {
|
|
std::strcpy(s_path,"./dcraw");
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
if (!path_found) std::strcpy(s_path,"dcraw");
|
|
#endif
|
|
winformat_string(s_path);
|
|
}
|
|
cimg::mutex(7,0);
|
|
return s_path;
|
|
}
|
|
|
|
//! Get/set path to the FFMPEG's \c ffmpeg binary.
|
|
/**
|
|
\param user_path Specified path, or \c 0 to get the path currently used.
|
|
\param reinit_path Force path to be recalculated (may take some time).
|
|
\return Path containing the \c ffmpeg binary.
|
|
**/
|
|
inline const char *ffmpeg_path(const char *const user_path, const bool reinit_path) {
|
|
static CImg<char> s_path;
|
|
cimg::mutex(7);
|
|
if (reinit_path) s_path.assign();
|
|
if (user_path) {
|
|
if (!s_path) s_path.assign(1024);
|
|
std::strncpy(s_path,user_path,1023);
|
|
} else if (!s_path) {
|
|
s_path.assign(1024);
|
|
bool path_found = false;
|
|
std::FILE *file = 0;
|
|
#if cimg_OS==2
|
|
if (win_searchpath("ffmpeg.exe",s_path,s_path._width)) path_found = true;
|
|
if (!path_found) {
|
|
std::strcpy(s_path,".\\ffmpeg.exe");
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
if (!path_found) std::strcpy(s_path,"ffmpeg.exe");
|
|
#else
|
|
if (!path_found) {
|
|
std::strcpy(s_path,"./ffmpeg");
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
if (!path_found) std::strcpy(s_path,"ffmpeg");
|
|
#endif
|
|
winformat_string(s_path);
|
|
}
|
|
cimg::mutex(7,0);
|
|
return s_path;
|
|
}
|
|
|
|
//! Get/set path to the GraphicsMagick's \c gm binary.
|
|
/**
|
|
\param user_path Specified path, or \c 0 to get the path currently used.
|
|
\param reinit_path Force path to be recalculated (may take some time).
|
|
\return Path containing the \c gm binary.
|
|
**/
|
|
inline const char* graphicsmagick_path(const char *const user_path, const bool reinit_path) {
|
|
static CImg<char> s_path;
|
|
cimg::mutex(7);
|
|
if (reinit_path) s_path.assign();
|
|
if (user_path) {
|
|
if (!s_path) s_path.assign(1024);
|
|
std::strncpy(s_path,user_path,1023);
|
|
} else if (!s_path) {
|
|
s_path.assign(1024);
|
|
bool path_found = false;
|
|
std::FILE *file = 0;
|
|
#if cimg_OS==2
|
|
if (win_searchpath("gm.exe",s_path,s_path._width)) path_found = true;
|
|
const char *const pf_path = win_programfiles_path();
|
|
if (!path_found) {
|
|
std::strcpy(s_path,".\\gm.exe");
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 32; k>=10 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"%s\\GRAPHI~1.%.2d-\\gm.exe",pf_path,k);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 9; k>=0 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"%s\\GRAPHI~1.%d-Q\\gm.exe",pf_path,k);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 32; k>=0 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"%s\\GRAPHI~1.%d\\gm.exe",pf_path,k);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 32; k>=10 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"%s\\GRAPHI~1.%.2d-\\VISUA~1\\BIN\\gm.exe",pf_path,k);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 9; k>=0 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"%s\\GRAPHI~1.%d-Q\\VISUA~1\\BIN\\gm.exe",pf_path,k);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 32; k>=0 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"%s\\GRAPHI~1.%d\\VISUA~1\\BIN\\gm.exe",pf_path,k);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 32; k>=10 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"C:\\GRAPHI~1.%.2d-\\gm.exe",k);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 9; k>=0 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"C:\\GRAPHI~1.%d-Q\\gm.exe",k);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 32; k>=0 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"C:\\GRAPHI~1.%d\\gm.exe",k);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 32; k>=10 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"C:\\GRAPHI~1.%.2d-\\VISUA~1\\BIN\\gm.exe",k);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 9; k>=0 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"C:\\GRAPHI~1.%d-Q\\VISUA~1\\BIN\\gm.exe",k);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 32; k>=0 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"C:\\GRAPHI~1.%d\\VISUA~1\\BIN\\gm.exe",k);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 32; k>=10 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"D:\\GRAPHI~1.%.2d-\\gm.exe",k);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 9; k>=0 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"D:\\GRAPHI~1.%d-Q\\gm.exe",k);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 32; k>=0 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"D:\\GRAPHI~1.%d\\gm.exe",k);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 32; k>=10 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"D:\\GRAPHI~1.%.2d-\\VISUA~1\\BIN\\gm.exe",k);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 9; k>=0 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"D:\\GRAPHI~1.%d-Q\\VISUA~1\\BIN\\gm.exe",k);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 32; k>=0 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"D:\\GRAPHI~1.%d\\VISUA~1\\BIN\\gm.exe",k);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
if (!path_found) std::strcpy(s_path,"gm.exe");
|
|
#else
|
|
if (!path_found) {
|
|
std::strcpy(s_path,"./gm");
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
if (!path_found) std::strcpy(s_path,"gm");
|
|
#endif
|
|
winformat_string(s_path);
|
|
}
|
|
cimg::mutex(7,0);
|
|
return s_path;
|
|
}
|
|
|
|
//! Get/set path to the \c gunzip binary.
|
|
/**
|
|
\param user_path Specified path, or \c 0 to get the path currently used.
|
|
\param reinit_path Force path to be recalculated (may take some time).
|
|
\return Path containing the \c gunzip binary.
|
|
**/
|
|
inline const char *gunzip_path(const char *const user_path, const bool reinit_path) {
|
|
static CImg<char> s_path;
|
|
cimg::mutex(7);
|
|
if (reinit_path) s_path.assign();
|
|
if (user_path) {
|
|
if (!s_path) s_path.assign(1024);
|
|
std::strncpy(s_path,user_path,1023);
|
|
} else if (!s_path) {
|
|
s_path.assign(1024);
|
|
bool path_found = false;
|
|
std::FILE *file = 0;
|
|
#if cimg_OS==2
|
|
if (win_searchpath("gunzip.exe",s_path,s_path._width)) path_found = true;
|
|
if (!path_found) {
|
|
std::strcpy(s_path,".\\gunzip.exe");
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
if (!path_found) std::strcpy(s_path,"gunzip.exe");
|
|
#else
|
|
if (!path_found) {
|
|
std::strcpy(s_path,"./gunzip");
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
if (!path_found) std::strcpy(s_path,"gunzip");
|
|
#endif
|
|
winformat_string(s_path);
|
|
}
|
|
cimg::mutex(7,0);
|
|
return s_path;
|
|
}
|
|
|
|
//! Get/set path to the \c gzip binary.
|
|
/**
|
|
\param user_path Specified path, or \c 0 to get the path currently used.
|
|
\param reinit_path Force path to be recalculated (may take some time).
|
|
\return Path containing the \c gzip binary.
|
|
**/
|
|
inline const char *gzip_path(const char *const user_path, const bool reinit_path) {
|
|
static CImg<char> s_path;
|
|
cimg::mutex(7);
|
|
if (reinit_path) s_path.assign();
|
|
if (user_path) {
|
|
if (!s_path) s_path.assign(1024);
|
|
std::strncpy(s_path,user_path,1023);
|
|
} else if (!s_path) {
|
|
s_path.assign(1024);
|
|
bool path_found = false;
|
|
std::FILE *file = 0;
|
|
#if cimg_OS==2
|
|
if (win_searchpath("gzip.exe",s_path,s_path._width)) path_found = true;
|
|
if (!path_found) {
|
|
std::strcpy(s_path,".\\gzip.exe");
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
if (!path_found) std::strcpy(s_path,"gzip.exe");
|
|
#else
|
|
if (!path_found) {
|
|
std::strcpy(s_path,"./gzip");
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
if (!path_found) std::strcpy(s_path,"gzip");
|
|
#endif
|
|
winformat_string(s_path);
|
|
}
|
|
cimg::mutex(7,0);
|
|
return s_path;
|
|
}
|
|
|
|
//! Get/set path to the ImageMagick's \c convert binary.
|
|
/**
|
|
\param user_path Specified path, or \c 0 to get the path currently used.
|
|
\param reinit_path Force path to be recalculated (may take some time).
|
|
\return Path containing the \c convert binary.
|
|
**/
|
|
inline const char* imagemagick_path(const char *const user_path, const bool reinit_path) {
|
|
static CImg<char> s_path;
|
|
cimg::mutex(7);
|
|
if (reinit_path) s_path.assign();
|
|
if (user_path) {
|
|
if (!s_path) s_path.assign(1024);
|
|
std::strncpy(s_path,user_path,1023);
|
|
} else if (!s_path) {
|
|
s_path.assign(1024);
|
|
bool path_found = false;
|
|
std::FILE *file = 0;
|
|
#if cimg_OS==2
|
|
if (win_searchpath("magick.exe",s_path,s_path._width)) path_found = true;
|
|
const char *const pf_path = win_programfiles_path();
|
|
for (int l = 0; l<2 && !path_found; ++l) {
|
|
const char *const s_exe = l?"convert":"magick";
|
|
cimg_snprintf(s_path,s_path._width,".\\%s.exe",s_exe);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
for (int k = 32; k>=10 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"%s\\IMAGEM~1.%.2d-\\%s.exe",pf_path,k,s_exe);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 9; k>=0 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"%s\\IMAGEM~1.%d-Q\\%s.exe",pf_path,k,s_exe);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 32; k>=0 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"%s\\IMAGEM~1.%d\\%s.exe",pf_path,k,s_exe);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 32; k>=10 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"%s\\IMAGEM~1.%.2d-\\VISUA~1\\BIN\\%s.exe",pf_path,k,s_exe);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 9; k>=0 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"%s\\IMAGEM~1.%d-Q\\VISUA~1\\BIN\\%s.exe",pf_path,k,s_exe);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 32; k>=0 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"%s\\IMAGEM~1.%d\\VISUA~1\\BIN\\%s.exe",pf_path,k,s_exe);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 32; k>=10 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"C:\\IMAGEM~1.%.2d-\\%s.exe",k,s_exe);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 9; k>=0 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"C:\\IMAGEM~1.%d-Q\\%s.exe",k,s_exe);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 32; k>=0 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"C:\\IMAGEM~1.%d\\%s.exe",k,s_exe);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 32; k>=10 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"C:\\IMAGEM~1.%.2d-\\VISUA~1\\BIN\\%s.exe",k,s_exe);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 9; k>=0 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"C:\\IMAGEM~1.%d-Q\\VISUA~1\\BIN\\%s.exe",k,s_exe);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 32; k>=0 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"C:\\IMAGEM~1.%d\\VISUA~1\\BIN\\%s.exe",k,s_exe);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 32; k>=10 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"D:\\IMAGEM~1.%.2d-\\%s.exe",k,s_exe);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 9; k>=0 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"D:\\IMAGEM~1.%d-Q\\%s.exe",k,s_exe);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 32; k>=0 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"D:\\IMAGEM~1.%d\\%s.exe",k,s_exe);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 32; k>=10 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"D:\\IMAGEM~1.%.2d-\\VISUA~1\\BIN\\%s.exe",k,s_exe);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 9; k>=0 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"D:\\IMAGEM~1.%d-Q\\VISUA~1\\BIN\\%s.exe",k,s_exe);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
for (int k = 32; k>=0 && !path_found; --k) {
|
|
cimg_snprintf(s_path,s_path._width,"D:\\IMAGEM~1.%d\\VISUA~1\\BIN\\%s.exe",k,s_exe);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
if (!path_found) cimg_snprintf(s_path,s_path._width,"%s.exe",s_exe);
|
|
}
|
|
#else
|
|
std::strcpy(s_path,"./magick");
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
if (!path_found) {
|
|
std::strcpy(s_path,"./convert");
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
if (!path_found) std::strcpy(s_path,"convert");
|
|
#endif
|
|
winformat_string(s_path);
|
|
}
|
|
cimg::mutex(7,0);
|
|
return s_path;
|
|
}
|
|
|
|
//! Get/set path to the Medcon's \c medcon binary.
|
|
/**
|
|
\param user_path Specified path, or \c 0 to get the path currently used.
|
|
\param reinit_path Force path to be recalculated (may take some time).
|
|
\return Path containing the \c medcon binary.
|
|
**/
|
|
inline const char* medcon_path(const char *const user_path, const bool reinit_path) {
|
|
static CImg<char> s_path;
|
|
cimg::mutex(7);
|
|
if (reinit_path) s_path.assign();
|
|
if (user_path) {
|
|
if (!s_path) s_path.assign(1024);
|
|
std::strncpy(s_path,user_path,1023);
|
|
} else if (!s_path) {
|
|
s_path.assign(1024);
|
|
bool path_found = false;
|
|
std::FILE *file = 0;
|
|
#if cimg_OS==2
|
|
if (win_searchpath("medcon.exe",s_path,s_path._width)) path_found = true;
|
|
const char *const pf_path = win_programfiles_path();
|
|
if (!path_found) {
|
|
std::strcpy(s_path,".\\medcon.exe");
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
if (!path_found) {
|
|
cimg_snprintf(s_path,s_path._width,"%s\\XMedCon\\bin\\medcon.bat",pf_path);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
if (!path_found) {
|
|
cimg_snprintf(s_path,s_path._width,"%s\\XMedCon\\bin\\medcon.exe",pf_path);
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
if (!path_found) {
|
|
std::strcpy(s_path,"C:\\XMedCon\\bin\\medcon.exe");
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
if (!path_found) std::strcpy(s_path,"medcon.exe");
|
|
#else
|
|
if (!path_found) {
|
|
std::strcpy(s_path,"./medcon");
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
if (!path_found) std::strcpy(s_path,"medcon");
|
|
#endif
|
|
winformat_string(s_path);
|
|
}
|
|
cimg::mutex(7,0);
|
|
return s_path;
|
|
}
|
|
|
|
//! Get/set path to store temporary files.
|
|
/**
|
|
\param user_path Specified path, or \c 0 to get the path currently used.
|
|
\param reinit_path Force path to be recalculated (may take some time).
|
|
\return Path where temporary files can be saved.
|
|
**/
|
|
inline const char* temporary_path(const char *const user_path, const bool reinit_path) {
|
|
#define _cimg_test_temporary_path(p) \
|
|
if (!path_found) { \
|
|
cimg_snprintf(s_path,s_path._width,"%s",p); \
|
|
cimg_snprintf(tmp,tmp._width,"%s%c%s",s_path.data(),cimg_file_separator,filename_tmp._data); \
|
|
if ((file=cimg::std_fopen(tmp,"wb"))!=0) { cimg::fclose(file); std::remove(tmp); path_found = true; } \
|
|
}
|
|
static CImg<char> s_path;
|
|
cimg::mutex(7);
|
|
if (reinit_path) s_path.assign();
|
|
if (user_path) {
|
|
if (!s_path) s_path.assign(1024);
|
|
std::strncpy(s_path,user_path,1023);
|
|
} else if (!s_path) {
|
|
s_path.assign(1024);
|
|
bool path_found = false;
|
|
CImg<char> tmp(1024), filename_tmp(256);
|
|
std::FILE *file = 0;
|
|
cimg_snprintf(filename_tmp,filename_tmp._width,"%s.tmp",cimg::filenamerand());
|
|
char *tmpPath = std::getenv("TMP");
|
|
if (!tmpPath) { tmpPath = std::getenv("TEMP"); winformat_string(tmpPath); }
|
|
if (tmpPath) _cimg_test_temporary_path(tmpPath);
|
|
#if cimg_OS==2
|
|
_cimg_test_temporary_path("C:\\WINNT\\Temp");
|
|
_cimg_test_temporary_path("C:\\WINDOWS\\Temp");
|
|
_cimg_test_temporary_path("C:\\Temp");
|
|
_cimg_test_temporary_path("C:");
|
|
_cimg_test_temporary_path("D:\\WINNT\\Temp");
|
|
_cimg_test_temporary_path("D:\\WINDOWS\\Temp");
|
|
_cimg_test_temporary_path("D:\\Temp");
|
|
_cimg_test_temporary_path("D:");
|
|
#else
|
|
_cimg_test_temporary_path("/tmp");
|
|
_cimg_test_temporary_path("/var/tmp");
|
|
#endif
|
|
if (!path_found) {
|
|
*s_path = 0;
|
|
std::strncpy(tmp,filename_tmp,tmp._width - 1);
|
|
if ((file=cimg::std_fopen(tmp,"wb"))!=0) { cimg::fclose(file); std::remove(tmp); path_found = true; }
|
|
}
|
|
if (!path_found) {
|
|
cimg::mutex(7,0);
|
|
throw CImgIOException("cimg::temporary_path(): Failed to locate path for writing temporary files.\n");
|
|
}
|
|
}
|
|
cimg::mutex(7,0);
|
|
return s_path;
|
|
}
|
|
|
|
//! Get/set path to the \c wget binary.
|
|
/**
|
|
\param user_path Specified path, or \c 0 to get the path currently used.
|
|
\param reinit_path Force path to be recalculated (may take some time).
|
|
\return Path containing the \c wget binary.
|
|
**/
|
|
inline const char *wget_path(const char *const user_path, const bool reinit_path) {
|
|
static CImg<char> s_path;
|
|
cimg::mutex(7);
|
|
if (reinit_path) s_path.assign();
|
|
if (user_path) {
|
|
if (!s_path) s_path.assign(1024);
|
|
std::strncpy(s_path,user_path,1023);
|
|
} else if (!s_path) {
|
|
s_path.assign(1024);
|
|
bool path_found = false;
|
|
std::FILE *file = 0;
|
|
#if cimg_OS==2
|
|
if (win_searchpath("wget.exe",s_path,s_path._width)) path_found = true;
|
|
if (!path_found) {
|
|
std::strcpy(s_path,".\\wget.exe");
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
if (!path_found) std::strcpy(s_path,"wget.exe");
|
|
#else
|
|
if (!path_found) {
|
|
std::strcpy(s_path,"./wget");
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
if (!path_found) std::strcpy(s_path,"wget");
|
|
#endif
|
|
winformat_string(s_path);
|
|
}
|
|
cimg::mutex(7,0);
|
|
return s_path;
|
|
}
|
|
|
|
#if cimg_OS==2
|
|
//! Get/set path to the \c powershell binary.
|
|
/**
|
|
\param user_path Specified path, or \c 0 to get the path currently used.
|
|
\param reinit_path Force path to be recalculated (may take some time).
|
|
\return Path containing the \c wget binary.
|
|
**/
|
|
inline const char *powershell_path(const char *const user_path, const bool reinit_path) {
|
|
static CImg<char> s_path;
|
|
cimg::mutex(7);
|
|
if (reinit_path) s_path.assign();
|
|
if (user_path) {
|
|
if (!s_path) s_path.assign(1024);
|
|
std::strncpy(s_path,user_path,1023);
|
|
} else if (!s_path) {
|
|
s_path.assign(1024);
|
|
bool path_found = false;
|
|
std::FILE *file = 0;
|
|
if (win_searchpath("powershell.exe",s_path,s_path._width)) path_found = true;
|
|
if (!path_found) {
|
|
std::strcpy(s_path,".\\powershell.exe");
|
|
if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; }
|
|
}
|
|
if (!path_found) std::strcpy(s_path,"powershell.exe");
|
|
winformat_string(s_path);
|
|
}
|
|
cimg::mutex(7,0);
|
|
return s_path;
|
|
}
|
|
#endif
|
|
|
|
// [internal] Sorting function, used by cimg::files().
|
|
inline int _sort_files(const void* a, const void* b) {
|
|
const CImg<char> &sa = *(CImg<char>*)a, &sb = *(CImg<char>*)b;
|
|
return std::strcmp(sa._data,sb._data);
|
|
}
|
|
|
|
//! Generate a numbered version of a filename.
|
|
inline char* number_filename(const char *const filename, const int number,
|
|
const unsigned int digits, char *const str) {
|
|
if (!filename) { if (str) *str = 0; return 0; }
|
|
const unsigned int siz = (unsigned int)std::strlen(filename);
|
|
CImg<char> format(16), body(siz + 32);
|
|
const char *const ext = cimg::split_filename(filename,body);
|
|
if (*ext) cimg_snprintf(format,format._width,"%%s_%%.%ud.%%s",digits);
|
|
else cimg_snprintf(format,format._width,"%%s_%%.%ud",digits);
|
|
cimg_snprintf(str,1024,format._data,body._data,number,ext);
|
|
return str;
|
|
}
|
|
|
|
//! Return list of files/directories in specified directory.
|
|
/**
|
|
\param path Path to the directory. Set to 0 for current directory.
|
|
\param is_pattern Tell if specified path has a matching pattern in it.
|
|
\param mode Output type, can be primary { 0=files only | 1=folders only | 2=files + folders }.
|
|
\param include_path Tell if \c path must be included in resulting filenames.
|
|
\return A list of filenames.
|
|
**/
|
|
inline CImgList<char> files(const char *const path, const bool is_pattern=false,
|
|
const unsigned int mode=2, const bool include_path=false) {
|
|
if (!path || !*path) return files("*",true,mode,include_path);
|
|
CImgList<char> res;
|
|
|
|
// If path is a valid folder name, ignore argument 'is_pattern'.
|
|
const bool _is_pattern = is_pattern && !cimg::is_directory(path);
|
|
bool is_root = false, is_current = false;
|
|
cimg::unused(is_root,is_current);
|
|
|
|
// Clean format of input path.
|
|
CImg<char> pattern, _path = CImg<char>::string(path);
|
|
#if cimg_OS==2
|
|
for (char *ps = _path; *ps; ++ps) if (*ps=='\\') *ps='/';
|
|
#endif
|
|
char *pd = _path;
|
|
for (char *ps = pd; *ps; ++ps) { if (*ps!='/' || *ps!=*(ps+1)) *(pd++) = *ps; }
|
|
*pd = 0;
|
|
unsigned int lp = (unsigned int)std::strlen(_path);
|
|
if (!_is_pattern && lp && _path[lp - 1]=='/') {
|
|
_path[lp - 1] = 0; --lp;
|
|
#if cimg_OS!=2
|
|
is_root = !*_path;
|
|
#endif
|
|
}
|
|
|
|
// Separate folder path and matching pattern.
|
|
if (_is_pattern) {
|
|
const unsigned int bpos = (unsigned int)(cimg::basename(_path,'/') - _path.data());
|
|
CImg<char>::string(_path).move_to(pattern);
|
|
if (bpos) {
|
|
_path[bpos - 1] = 0; // End 'path' at last slash
|
|
#if cimg_OS!=2
|
|
is_root = !*_path;
|
|
#endif
|
|
} else { // No path to folder specified, assuming current folder
|
|
is_current = true; *_path = 0;
|
|
}
|
|
lp = (unsigned int)std::strlen(_path);
|
|
}
|
|
|
|
// Windows version.
|
|
#if cimg_OS==2
|
|
if (!_is_pattern) {
|
|
pattern.assign(lp + 3);
|
|
std::memcpy(pattern,_path,lp);
|
|
pattern[lp] = '/'; pattern[lp + 1] = '*'; pattern[lp + 2] = 0;
|
|
}
|
|
WIN32_FIND_DATAA file_data;
|
|
const HANDLE dir = FindFirstFileA(pattern.data(),&file_data);
|
|
if (dir==INVALID_HANDLE_VALUE) return CImgList<char>::const_empty();
|
|
do {
|
|
const char *const filename = file_data.cFileName;
|
|
if (*filename!='.' || (filename[1] && (filename[1]!='.' || filename[2]))) {
|
|
const unsigned int lf = (unsigned int)std::strlen(filename);
|
|
const bool is_directory = (file_data.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)!=0;
|
|
if ((!mode && !is_directory) || (mode==1 && is_directory) || mode>=2) {
|
|
if (include_path) {
|
|
CImg<char> full_filename((lp?lp+1:0) + lf + 1);
|
|
if (lp) { std::memcpy(full_filename,_path,lp); full_filename[lp] = '/'; }
|
|
std::memcpy(full_filename._data + (lp?lp + 1:0),filename,lf + 1);
|
|
full_filename.move_to(res);
|
|
} else CImg<char>(filename,lf + 1).move_to(res);
|
|
}
|
|
}
|
|
} while (FindNextFileA(dir,&file_data));
|
|
FindClose(dir);
|
|
|
|
// Unix version (posix).
|
|
#elif cimg_OS == 1
|
|
DIR *const dir = opendir(is_root?"/":is_current?".":_path.data());
|
|
if (!dir) return CImgList<char>::const_empty();
|
|
struct dirent *ent;
|
|
while ((ent=readdir(dir))!=0) {
|
|
const char *const filename = ent->d_name;
|
|
if (*filename!='.' || (filename[1] && (filename[1]!='.' || filename[2]))) {
|
|
const unsigned int lf = (unsigned int)std::strlen(filename);
|
|
CImg<char> full_filename(lp + lf + 2);
|
|
|
|
if (!is_current) {
|
|
full_filename.assign(lp + lf + 2);
|
|
if (lp) std::memcpy(full_filename,_path,lp);
|
|
full_filename[lp] = '/';
|
|
std::memcpy(full_filename._data + lp + 1,filename,lf + 1);
|
|
} else full_filename.assign(filename,lf + 1);
|
|
|
|
struct stat st;
|
|
if (stat(full_filename,&st)==-1) continue;
|
|
const bool is_directory = (st.st_mode & S_IFDIR)!=0;
|
|
if ((!mode && !is_directory) || (mode==1 && is_directory) || mode==2) {
|
|
if (include_path) {
|
|
if (!_is_pattern || (_is_pattern && !fnmatch(pattern,full_filename,0)))
|
|
full_filename.move_to(res);
|
|
} else {
|
|
if (!_is_pattern || (_is_pattern && !fnmatch(pattern,full_filename,0)))
|
|
CImg<char>(filename,lf + 1).move_to(res);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
closedir(dir);
|
|
#endif
|
|
|
|
// Sort resulting list by lexicographic order.
|
|
if (res._width>=2) std::qsort(res._data,res._width,sizeof(CImg<char>),_sort_files);
|
|
|
|
return res;
|
|
}
|
|
|
|
//! Try to guess format from an image file.
|
|
/**
|
|
\param file Input file (can be \c 0 if \c filename is set).
|
|
\param filename Filename, as a C-string (can be \c 0 if \c file is set).
|
|
\return C-string containing the guessed file format, or \c 0 if nothing has been guessed.
|
|
**/
|
|
inline const char *ftype(std::FILE *const file, const char *const filename) {
|
|
if (!file && !filename)
|
|
throw CImgArgumentException("cimg::ftype(): Specified filename is (null).");
|
|
static const char
|
|
*const _bmp = "bmp",
|
|
*const _cr2 = "cr2",
|
|
*const _dcm = "dcm",
|
|
*const _gif = "gif",
|
|
*const _inr = "inr",
|
|
*const _jpg = "jpg",
|
|
*const _off = "off",
|
|
*const _pan = "pan",
|
|
*const _pfm = "pfm",
|
|
*const _png = "png",
|
|
*const _pnm = "pnm",
|
|
*const _tif = "tif";
|
|
|
|
const char *f_type = 0;
|
|
CImg<char> header;
|
|
const unsigned int omode = cimg::exception_mode();
|
|
cimg::exception_mode(0);
|
|
try {
|
|
header._load_raw(file,filename,512,1,1,1,false,false,0);
|
|
const unsigned char *const uheader = (unsigned char*)header._data;
|
|
if (!std::strncmp(header,"OFF\n",4)) f_type = _off; // OFF
|
|
else if (!std::strncmp(header,"#INRIMAGE",9)) // INRIMAGE
|
|
f_type = _inr;
|
|
else if (!std::strncmp(header,"PANDORE",7)) // PANDORE
|
|
f_type = _pan;
|
|
else if (!std::strncmp(header.data() + 128,"DICM",4)) // DICOM
|
|
f_type = _dcm;
|
|
else if (uheader[0]==0xFF && uheader[1]==0xD8 && uheader[2]==0xFF) // JPEG
|
|
f_type = _jpg;
|
|
else if (header[0]=='B' && header[1]=='M') // BMP
|
|
f_type = _bmp;
|
|
else if (header[0]=='G' && header[1]=='I' && header[2]=='F' && header[3]=='8' && header[5]=='a' &&
|
|
(header[4]=='7' || header[4]=='9')) // GIF
|
|
f_type = _gif;
|
|
else if (uheader[0]==0x89 && uheader[1]==0x50 && uheader[2]==0x4E && uheader[3]==0x47 &&
|
|
uheader[4]==0x0D && uheader[5]==0x0A && uheader[6]==0x1A && uheader[7]==0x0A) // PNG
|
|
f_type = _png;
|
|
else if (uheader[0]==0x49 && uheader[1]==0x49 && uheader[2]==0x2A && uheader[3]==0x00 && // CR2
|
|
uheader[4]==0x10 && uheader[5]==0x00 && uheader[6]==0x00 && uheader[7]==0x00 &&
|
|
uheader[8]==0x43 && uheader[9]==0x52)
|
|
f_type = _cr2;
|
|
else if ((uheader[0]==0x49 && uheader[1]==0x49 && uheader[2]==0x2A && uheader[3]==0x00) ||
|
|
(uheader[0]==0x4D && uheader[1]==0x4D && uheader[2]==0x00 && uheader[3]==0x2A)) // TIFF
|
|
f_type = _tif;
|
|
else { // PNM or PFM
|
|
CImgList<char> _header = header.get_split(CImg<char>::vector('\n'),0,false);
|
|
cimglist_for(_header,l) {
|
|
if (_header(l,0)=='#') continue;
|
|
if (_header[l]._width==2 && _header(l,0)=='P') {
|
|
const char c = _header(l,1);
|
|
if (c=='f' || c=='F') { f_type = _pfm; break; }
|
|
if (c>='1' && c<='9') { f_type = _pnm; break; }
|
|
}
|
|
f_type = 0; break;
|
|
}
|
|
}
|
|
} catch (CImgIOException&) { }
|
|
cimg::exception_mode(omode);
|
|
return f_type;
|
|
}
|
|
|
|
//! Load file from network as a local temporary file.
|
|
/**
|
|
\param url URL of the filename, as a C-string.
|
|
\param[out] filename_local C-string containing the path to a local copy of \c filename.
|
|
\param timeout Maximum time (in seconds) authorized for downloading the file from the URL.
|
|
\param try_fallback When using libcurl, tells using system calls as fallbacks in case of libcurl failure.
|
|
\param referer Referer used, as a C-string.
|
|
\param user_agent User agent used, as a C-string.
|
|
\return Value of \c filename_local.
|
|
\note Use the \c libcurl library, or the external binaries \c wget or \c curl to perform the download.
|
|
**/
|
|
inline char *load_network(const char *const url, char *const filename_local,
|
|
const unsigned int timeout, const bool try_fallback,
|
|
const char *const referer, const char *const user_agent) {
|
|
if (!url)
|
|
throw CImgArgumentException("cimg::load_network(): Specified URL is (null).");
|
|
if (!filename_local)
|
|
throw CImgArgumentException("cimg::load_network(): Specified destination string is (null).");
|
|
if (!network_mode())
|
|
throw CImgIOException("cimg::load_network(): Loading files from network is disabled.");
|
|
|
|
const char *const __ext = cimg::split_filename(url), *const _ext = (*__ext && __ext>url)?__ext - 1:__ext;
|
|
CImg<char> ext = CImg<char>::string(_ext);
|
|
std::FILE *file = 0;
|
|
*filename_local = 0;
|
|
if (ext._width>16 || !cimg::strncasecmp(ext,"cgi",3)) *ext = 0;
|
|
else cimg::strwindows_reserved(ext);
|
|
do {
|
|
cimg_snprintf(filename_local,256,"%s%c%s%s",
|
|
cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(),ext._data);
|
|
if ((file = cimg::std_fopen(filename_local,"rb"))!=0) cimg::fclose(file);
|
|
} while (file);
|
|
|
|
#ifdef cimg_use_curl
|
|
const unsigned int omode = cimg::exception_mode();
|
|
cimg::exception_mode(0);
|
|
try {
|
|
CURL *curl = 0;
|
|
CURLcode res;
|
|
curl = curl_easy_init();
|
|
if (curl) {
|
|
file = cimg::fopen(filename_local,"wb");
|
|
curl_easy_setopt(curl,CURLOPT_URL,url);
|
|
curl_easy_setopt(curl,CURLOPT_WRITEFUNCTION,0);
|
|
curl_easy_setopt(curl,CURLOPT_WRITEDATA,file);
|
|
curl_easy_setopt(curl,CURLOPT_SSL_VERIFYPEER,0L);
|
|
curl_easy_setopt(curl,CURLOPT_SSL_VERIFYHOST,0L);
|
|
curl_easy_setopt(curl,CURLOPT_FOLLOWLOCATION,1L);
|
|
curl_easy_setopt(curl,CURLOPT_MAXREDIRS,20L);
|
|
if (timeout) curl_easy_setopt(curl,CURLOPT_TIMEOUT,(long)timeout);
|
|
if (std::strchr(url,'?')) curl_easy_setopt(curl,CURLOPT_HTTPGET,1L);
|
|
if (referer) curl_easy_setopt(curl,CURLOPT_REFERER,referer);
|
|
if (user_agent) curl_easy_setopt(curl,CURLOPT_USERAGENT,user_agent);
|
|
res = curl_easy_perform(curl);
|
|
curl_easy_cleanup(curl);
|
|
cimg::fseek(file,0,SEEK_END); // Check if file size is 0
|
|
const cimg_ulong siz = cimg::ftell(file);
|
|
cimg::fclose(file);
|
|
if (siz>0 && res==CURLE_OK) {
|
|
cimg::exception_mode(omode);
|
|
return filename_local;
|
|
} else std::remove(filename_local);
|
|
}
|
|
} catch (...) { }
|
|
cimg::exception_mode(omode);
|
|
if (!try_fallback) throw CImgIOException("cimg::load_network(): Failed to load file '%s' with libcurl.",url);
|
|
#endif
|
|
|
|
CImg<char> command((unsigned int)std::strlen(url) + 1024), s_referer, s_user_agent, s_timeout;
|
|
cimg::unused(try_fallback);
|
|
|
|
// Try with 'curl' first.
|
|
if (timeout) cimg_snprintf(s_timeout.assign(64),64,"-m %u ",timeout);
|
|
else s_timeout.assign(1,1,1,1,0);
|
|
if (referer) cimg_snprintf(s_referer.assign(1024),1024,"-e %s ",referer);
|
|
else s_referer.assign(1,1,1,1,0);
|
|
if (user_agent) cimg_snprintf(s_user_agent.assign(1024),1024,"-A \"%s\" ",user_agent);
|
|
else s_user_agent.assign(1,1,1,1,0);
|
|
cimg_snprintf(command,command._width,
|
|
"\"%s\" -L --max-redirs 20 %s%s%s-f --silent --compressed -o \"%s\" \"%s\"",
|
|
cimg::curl_path(),s_timeout._data,s_referer._data,s_user_agent._data,filename_local,
|
|
CImg<char>::string(url)._system_strescape().data());
|
|
cimg::system(command,cimg::curl_path());
|
|
|
|
#if cimg_OS==2
|
|
if (cimg::fsize(filename_local)<=0) { // Try with 'powershell' otherwise.
|
|
if (timeout) cimg_snprintf(s_timeout.assign(64),64,"-TimeoutSec %u ",timeout);
|
|
else s_timeout.assign(1,1,1,1,0);
|
|
if (referer) cimg_snprintf(s_referer.assign(1024),1024,"-Headers @{'Referer'='%s'} ",referer);
|
|
else s_referer.assign(1,1,1,1,0);
|
|
if (user_agent) cimg_snprintf(s_user_agent.assign(1024),1024,"-UserAgent \"%s\" ",user_agent);
|
|
else s_user_agent.assign(1,1,1,1,0);
|
|
cimg_snprintf(command,command._width,
|
|
"\"%s\" -NonInteractive -Command Invoke-WebRequest %s%s%s-OutFile \"%s\" -Uri \"%s\"",
|
|
cimg::powershell_path(),s_timeout._data,s_referer._data,s_user_agent._data,filename_local,
|
|
CImg<char>::string(url)._system_strescape().data());
|
|
cimg::system(command,cimg::powershell_path());
|
|
}
|
|
#endif
|
|
|
|
if (cimg::fsize(filename_local)<=0) { // Try with 'wget' otherwise.
|
|
if (timeout) cimg_snprintf(s_timeout.assign(64),64,"-T %u ",timeout);
|
|
else s_timeout.assign(1,1,1,1,0);
|
|
if (referer) cimg_snprintf(s_referer.assign(1024),1024,"--referer=%s ",referer);
|
|
else s_referer.assign(1,1,1,1,0);
|
|
if (user_agent) cimg_snprintf(s_user_agent.assign(1024),1024,"--user-agent=\"%s\" ",user_agent);
|
|
else s_user_agent.assign(1,1,1,1,0);
|
|
cimg_snprintf(command,command._width,
|
|
"\"%s\" --max-redirect=20 %s%s%s-q -r -l 0 --no-cache -O \"%s\" \"%s\"",
|
|
cimg::wget_path(),s_timeout._data,s_referer._data,s_user_agent._data,filename_local,
|
|
CImg<char>::string(url)._system_strescape().data());
|
|
cimg::system(command,cimg::wget_path());
|
|
|
|
if (cimg::fsize(filename_local)<=0)
|
|
throw CImgIOException("cimg::load_network(): Failed to load file '%s' with external commands "
|
|
#if cimg_OS==2
|
|
"'wget', 'curl', or 'powershell'.",url);
|
|
#else
|
|
"'wget' or 'curl'.",url);
|
|
#endif
|
|
cimg::fclose(file);
|
|
|
|
// Try gunzip it.
|
|
cimg_snprintf(command,command._width,"%s.gz",filename_local);
|
|
std::rename(filename_local,command);
|
|
cimg_snprintf(command,command._width,"\"%s\" --quiet \"%s.gz\"",
|
|
gunzip_path(),filename_local);
|
|
cimg::system(command,gunzip_path());
|
|
file = cimg::std_fopen(filename_local,"rb");
|
|
if (!file) {
|
|
cimg_snprintf(command,command._width,"%s.gz",filename_local);
|
|
std::rename(command,filename_local);
|
|
file = cimg::std_fopen(filename_local,"rb");
|
|
}
|
|
}
|
|
|
|
if (file) cimg::fclose(file);
|
|
return filename_local;
|
|
}
|
|
|
|
// Implement a tic/toc mechanism to display elapsed time of algorithms.
|
|
inline cimg_uint64 tictoc(const bool is_tic) {
|
|
cimg::mutex(2);
|
|
static CImg<cimg_uint64> times(64);
|
|
static unsigned int pos = 0;
|
|
const cimg_uint64 t1 = cimg::time();
|
|
if (is_tic) {
|
|
// Tic
|
|
times[pos++] = t1;
|
|
if (pos>=times._width)
|
|
throw CImgArgumentException("cimg::tic(): Too much calls to 'cimg::tic()' without calls to 'cimg::toc()'.");
|
|
cimg::mutex(2,0);
|
|
return t1;
|
|
}
|
|
|
|
// Toc
|
|
if (!pos)
|
|
throw CImgArgumentException("cimg::toc(): No previous call to 'cimg::tic()' has been made.");
|
|
const cimg_uint64
|
|
t0 = times[--pos],
|
|
dt = t1>=t0?(t1 - t0):cimg::type<cimg_uint64>::max();
|
|
const unsigned int
|
|
edays = (unsigned int)(dt/86400000.),
|
|
ehours = (unsigned int)((dt - edays*86400000.)/3600000.),
|
|
emin = (unsigned int)((dt - edays*86400000. - ehours*3600000.)/60000.),
|
|
esec = (unsigned int)((dt - edays*86400000. - ehours*3600000. - emin*60000.)/1000.),
|
|
ems = (unsigned int)(dt - edays*86400000. - ehours*3600000. - emin*60000. - esec*1000.);
|
|
if (!edays && !ehours && !emin && !esec)
|
|
std::fprintf(cimg::output(),"%s[CImg]%*sElapsed time: %u ms%s\n",
|
|
cimg::t_red,1 + 2*pos,"",ems,cimg::t_normal);
|
|
else {
|
|
if (!edays && !ehours && !emin)
|
|
std::fprintf(cimg::output(),"%s[CImg]%*sElapsed time: %u sec %u ms%s\n",
|
|
cimg::t_red,1 + 2*pos,"",esec,ems,cimg::t_normal);
|
|
else {
|
|
if (!edays && !ehours)
|
|
std::fprintf(cimg::output(),"%s[CImg]%*sElapsed time: %u min %u sec %u ms%s\n",
|
|
cimg::t_red,1 + 2*pos,"",emin,esec,ems,cimg::t_normal);
|
|
else{
|
|
if (!edays)
|
|
std::fprintf(cimg::output(),"%s[CImg]%*sElapsed time: %u hours %u min %u sec %u ms%s\n",
|
|
cimg::t_red,1 + 2*pos,"",ehours,emin,esec,ems,cimg::t_normal);
|
|
else{
|
|
std::fprintf(cimg::output(),"%s[CImg]%*sElapsed time: %u days %u hours %u min %u sec %u ms%s\n",
|
|
cimg::t_red,1 + 2*pos,"",edays,ehours,emin,esec,ems,cimg::t_normal);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
cimg::mutex(2,0);
|
|
return dt;
|
|
}
|
|
|
|
// Return a temporary string describing the size of a memory buffer.
|
|
inline const char *strbuffersize(const cimg_ulong size) {
|
|
static CImg<char> res(256);
|
|
cimg::mutex(5);
|
|
if (size<1024LU) cimg_snprintf(res,res._width,"%lu byte%s",(unsigned long)size,size>1?"s":"");
|
|
else if (size<1024*1024LU) { const float nsize = size/1024.f; cimg_snprintf(res,res._width,"%.1f Kio",nsize); }
|
|
else if (size<1024*1024*1024LU) {
|
|
const float nsize = size/(1024*1024.f); cimg_snprintf(res,res._width,"%.1f Mio",nsize);
|
|
} else { const float nsize = size/(1024*1024*1024.f); cimg_snprintf(res,res._width,"%.1f Gio",nsize); }
|
|
cimg::mutex(5,0);
|
|
return res;
|
|
}
|
|
|
|
//! Display a simple dialog box, and wait for the user's response.
|
|
/**
|
|
\param title Title of the dialog window.
|
|
\param msg Main message displayed inside the dialog window.
|
|
\param button1_label Label of the 1st button.
|
|
\param button2_label Label of the 2nd button (\c 0 to hide button).
|
|
\param button3_label Label of the 3rd button (\c 0 to hide button).
|
|
\param button4_label Label of the 4th button (\c 0 to hide button).
|
|
\param button5_label Label of the 5th button (\c 0 to hide button).
|
|
\param button6_label Label of the 6th button (\c 0 to hide button).
|
|
\param logo Image logo displayed at the left of the main message.
|
|
\param is_centered Tells if the dialog window must be centered on the screen.
|
|
\return Index of clicked button (from \c 0 to \c 5), or \c -1 if the dialog window has been closed by the user.
|
|
\note
|
|
- Up to 6 buttons can be defined in the dialog window.
|
|
- The function returns when a user clicked one of the button or closed the dialog window.
|
|
- If a button text is set to 0, the corresponding button (and the following) will not appear in the dialog box.
|
|
At least one button must be specified.
|
|
**/
|
|
template<typename t>
|
|
inline int dialog(const char *const title, const char *const msg,
|
|
const char *const button1_label, const char *const button2_label,
|
|
const char *const button3_label, const char *const button4_label,
|
|
const char *const button5_label, const char *const button6_label,
|
|
const CImg<t>& logo, const bool is_centered=false) {
|
|
#if cimg_display==0
|
|
cimg::unused(title,msg,button1_label,button2_label,button3_label,button4_label,button5_label,button6_label,
|
|
logo._data,is_centered);
|
|
throw CImgIOException("cimg::dialog(): No display available.");
|
|
#else
|
|
static const unsigned char
|
|
black[] = { 0,0,0 }, white[] = { 255,255,255 }, gray[] = { 200,200,200 }, gray2[] = { 150,150,150 };
|
|
|
|
// Create buttons and canvas graphics
|
|
CImgList<unsigned char> buttons, cbuttons, sbuttons;
|
|
if (button1_label) {
|
|
CImg<unsigned char>().draw_text(0,0,button1_label,black,gray,1,13).move_to(buttons);
|
|
if (button2_label) {
|
|
CImg<unsigned char>().draw_text(0,0,button2_label,black,gray,1,13).move_to(buttons);
|
|
if (button3_label) {
|
|
CImg<unsigned char>().draw_text(0,0,button3_label,black,gray,1,13).move_to(buttons);
|
|
if (button4_label) {
|
|
CImg<unsigned char>().draw_text(0,0,button4_label,black,gray,1,13).move_to(buttons);
|
|
if (button5_label) {
|
|
CImg<unsigned char>().draw_text(0,0,button5_label,black,gray,1,13).move_to(buttons);
|
|
if (button6_label) {
|
|
CImg<unsigned char>().draw_text(0,0,button6_label,black,gray,1,13).move_to(buttons);
|
|
}}}}}}
|
|
if (!buttons._width)
|
|
throw CImgArgumentException("cimg::dialog(): No buttons have been defined.");
|
|
cimglist_for(buttons,l) buttons[l].resize(-100,-100,1,3);
|
|
|
|
unsigned int bw = 0, bh = 0;
|
|
cimglist_for(buttons,l) { bw = std::max(bw,buttons[l]._width); bh = std::max(bh,buttons[l]._height); }
|
|
bw+=8; bh+=8;
|
|
if (bw<64) bw = 64;
|
|
if (bw>128) bw = 128;
|
|
if (bh<24) bh = 24;
|
|
if (bh>48) bh = 48;
|
|
|
|
CImg<unsigned char> button(bw,bh,1,3);
|
|
button.draw_rectangle(0,0,bw - 1,bh - 1,gray);
|
|
button.draw_line(0,0,bw - 1,0,white).draw_line(0,bh - 1,0,0,white);
|
|
button.draw_line(bw - 1,0,bw - 1,bh - 1,black).draw_line(bw - 1,bh - 1,0,bh - 1,black);
|
|
button.draw_line(1,bh - 2,bw - 2,bh - 2,gray2).draw_line(bw - 2,bh - 2,bw - 2,1,gray2);
|
|
CImg<unsigned char> sbutton(bw,bh,1,3);
|
|
sbutton.draw_rectangle(0,0,bw - 1,bh - 1,gray);
|
|
sbutton.draw_line(0,0,bw - 1,0,black).draw_line(bw - 1,0,bw - 1,bh - 1,black);
|
|
sbutton.draw_line(bw - 1,bh - 1,0,bh - 1,black).draw_line(0,bh - 1,0,0,black);
|
|
sbutton.draw_line(1,1,bw - 2,1,white).draw_line(1,bh - 2,1,1,white);
|
|
sbutton.draw_line(bw - 2,1,bw - 2,bh - 2,black).draw_line(bw - 2,bh - 2,1,bh - 2,black);
|
|
sbutton.draw_line(2,bh - 3,bw - 3,bh - 3,gray2).draw_line(bw - 3,bh - 3,bw - 3,2,gray2);
|
|
sbutton.draw_line(4,4,bw - 5,4,black,1,0xAAAAAAAA,true).
|
|
draw_line(bw - 5,4,bw - 5,bh - 5,black,1,0xAAAAAAAA,false);
|
|
sbutton.draw_line(bw - 5,bh - 5,4,bh - 5,black,1,0xAAAAAAAA,false).
|
|
draw_line(4,bh - 5,4,4,black,1,0xAAAAAAAA,false);
|
|
CImg<unsigned char> cbutton(bw,bh,1,3);
|
|
cbutton.draw_rectangle(0,0,bw - 1,bh - 1,black).draw_rectangle(1,1,bw - 2,bh - 2,gray2).
|
|
draw_rectangle(2,2,bw - 3,bh - 3,gray);
|
|
cbutton.draw_line(4,4,bw - 5,4,black,1,0xAAAAAAAA,true).
|
|
draw_line(bw - 5,4,bw - 5,bh - 5,black,1,0xAAAAAAAA,false);
|
|
cbutton.draw_line(bw - 5,bh - 5,4,bh - 5,black,1,0xAAAAAAAA,false).
|
|
draw_line(4,bh - 5,4,4,black,1,0xAAAAAAAA,false);
|
|
|
|
cimglist_for(buttons,ll) {
|
|
CImg<unsigned char>(cbutton).
|
|
draw_image(1 + (bw -buttons[ll].width())/2,1 + (bh - buttons[ll].height())/2,buttons[ll]).
|
|
move_to(cbuttons);
|
|
CImg<unsigned char>(sbutton).
|
|
draw_image((bw - buttons[ll].width())/2,(bh - buttons[ll].height())/2,buttons[ll]).
|
|
move_to(sbuttons);
|
|
CImg<unsigned char>(button).
|
|
draw_image((bw - buttons[ll].width())/2,(bh - buttons[ll].height())/2,buttons[ll]).
|
|
move_to(buttons[ll]);
|
|
}
|
|
|
|
CImg<unsigned char> canvas;
|
|
if (msg)
|
|
((CImg<unsigned char>().draw_text(0,0,"%s",gray,0,1,13,msg)*=-1)+=200).resize(-100,-100,1,3).move_to(canvas);
|
|
|
|
const unsigned int
|
|
bwall = (buttons._width - 1)*(12 + bw) + bw,
|
|
w = cimg::max(196U,36 + logo._width + canvas._width,24 + bwall),
|
|
h = cimg::max(96U,36 + canvas._height + bh,36 + logo._height + bh),
|
|
lx = 12 + (canvas._data?0:((w - 24 - logo._width)/2)),
|
|
ly = (h - 12 - bh - logo._height)/2,
|
|
tx = lx + logo._width + 12,
|
|
ty = (h - 12 - bh - canvas._height)/2,
|
|
bx = (w - bwall)/2,
|
|
by = h - 12 - bh;
|
|
|
|
if (canvas._data)
|
|
canvas = CImg<unsigned char>(w,h,1,3).
|
|
draw_rectangle(0,0,w - 1,h - 1,gray).
|
|
draw_line(0,0,w - 1,0,white).draw_line(0,h - 1,0,0,white).
|
|
draw_line(w - 1,0,w - 1,h - 1,black).draw_line(w - 1,h - 1,0,h - 1,black).
|
|
draw_image(tx,ty,canvas);
|
|
else
|
|
canvas = CImg<unsigned char>(w,h,1,3).
|
|
draw_rectangle(0,0,w - 1,h - 1,gray).
|
|
draw_line(0,0,w - 1,0,white).draw_line(0,h - 1,0,0,white).
|
|
draw_line(w - 1,0,w - 1,h - 1,black).draw_line(w - 1,h - 1,0,h - 1,black);
|
|
if (logo._data) canvas.draw_image(lx,ly,logo);
|
|
|
|
unsigned int xbuttons[6] = {};
|
|
cimglist_for(buttons,lll) {
|
|
xbuttons[lll] = bx + (bw + 12)*lll;
|
|
canvas.draw_image(xbuttons[lll],by,buttons[lll]);
|
|
}
|
|
|
|
// Open window and enter events loop
|
|
CImgDisplay disp(canvas,title?title:" ",0,false,is_centered?true:false);
|
|
if (is_centered) disp.move((CImgDisplay::screen_width() - disp.width())/2,
|
|
(CImgDisplay::screen_height() - disp.height())/2);
|
|
bool stop_flag = false, refresh = false;
|
|
int oselected = -1, oclicked = -1, selected = -1, clicked = -1;
|
|
while (!disp.is_closed() && !stop_flag) {
|
|
if (refresh) {
|
|
if (clicked>=0)
|
|
CImg<unsigned char>(canvas).draw_image(xbuttons[clicked],by,cbuttons[clicked]).display(disp);
|
|
else {
|
|
if (selected>=0)
|
|
CImg<unsigned char>(canvas).draw_image(xbuttons[selected],by,sbuttons[selected]).display(disp);
|
|
else canvas.display(disp);
|
|
}
|
|
refresh = false;
|
|
}
|
|
disp.wait(15);
|
|
if (disp.is_resized()) disp.resize(disp,false);
|
|
|
|
if (disp.button()&1) {
|
|
oclicked = clicked;
|
|
clicked = -1;
|
|
cimglist_for(buttons,l)
|
|
if (disp.mouse_y()>=(int)by && disp.mouse_y()<(int)(by + bh) &&
|
|
disp.mouse_x()>=(int)xbuttons[l] && disp.mouse_x()<(int)(xbuttons[l] + bw)) {
|
|
clicked = selected = l;
|
|
refresh = true;
|
|
}
|
|
if (clicked!=oclicked) refresh = true;
|
|
} else if (clicked>=0) stop_flag = true;
|
|
|
|
if (disp.key()) {
|
|
oselected = selected;
|
|
switch (disp.key()) {
|
|
case cimg::keyESC : selected = -1; stop_flag = true; break;
|
|
case cimg::keyENTER : if (selected<0) selected = 0; stop_flag = true; break;
|
|
case cimg::keyTAB :
|
|
case cimg::keyARROWRIGHT :
|
|
case cimg::keyARROWDOWN : selected = (selected + 1)%buttons.width(); break;
|
|
case cimg::keyARROWLEFT :
|
|
case cimg::keyARROWUP : selected = (selected + buttons.width() - 1)%buttons.width(); break;
|
|
}
|
|
disp.set_key();
|
|
if (selected!=oselected) refresh = true;
|
|
}
|
|
}
|
|
if (!disp) selected = -1;
|
|
return selected;
|
|
#endif
|
|
}
|
|
|
|
//! Display a simple dialog box, and wait for the user's response \specialization.
|
|
inline int dialog(const char *const title, const char *const msg,
|
|
const char *const button1_label, const char *const button2_label,
|
|
const char *const button3_label, const char *const button4_label,
|
|
const char *const button5_label, const char *const button6_label,
|
|
const bool is_centered) {
|
|
return dialog(title,msg,button1_label,button2_label,button3_label,button4_label,button5_label,button6_label,
|
|
CImg<unsigned char>::_logo40x38(),is_centered);
|
|
}
|
|
|
|
//! Evaluate math expression.
|
|
/**
|
|
\param expression C-string describing the formula to evaluate.
|
|
\param x Value of the pre-defined variable \c x.
|
|
\param y Value of the pre-defined variable \c y.
|
|
\param z Value of the pre-defined variable \c z.
|
|
\param c Value of the pre-defined variable \c c.
|
|
\return Result of the formula evaluation.
|
|
\note Set \c expression to \c 0 to keep evaluating the last specified \c expression.
|
|
\par Example
|
|
\code
|
|
const double
|
|
res1 = cimg::eval("cos(x)^2 + sin(y)^2",2,2), // will return '1'
|
|
res2 = cimg::eval(0,1,1); // will return '1' too
|
|
\endcode
|
|
**/
|
|
inline double eval(const char *const expression, const double x, const double y, const double z, const double c) {
|
|
static const CImg<float> empty;
|
|
return empty.eval(expression,x,y,z,c);
|
|
}
|
|
|
|
template<typename t>
|
|
inline CImg<typename cimg::superset<double,t>::type> eval(const char *const expression, const CImg<t>& xyzc) {
|
|
static const CImg<float> empty;
|
|
return empty.eval(expression,xyzc);
|
|
}
|
|
|
|
} // namespace cimg { ...
|
|
} // namespace cimg_library { ...
|
|
|
|
//! Short alias name.
|
|
namespace cil = cimg_library;
|
|
|
|
#ifdef _cimg_redefine_False
|
|
#define False 0
|
|
#endif
|
|
#ifdef _cimg_redefine_True
|
|
#define True 1
|
|
#endif
|
|
#ifdef _cimg_redefine_Status
|
|
#define Status int
|
|
#endif
|
|
#ifdef _cimg_redefine_Success
|
|
#define Success 0
|
|
#endif
|
|
#ifdef _cimg_redefine_min
|
|
#define min(a,b) (((a)<(b))?(a):(b))
|
|
#endif
|
|
#ifdef _cimg_redefine_max
|
|
#define max(a,b) (((a)>(b))?(a):(b))
|
|
#endif
|
|
#ifdef _cimg_redefine_PI
|
|
#define PI 3.141592653589793238462643383
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
#pragma warning(pop)
|
|
#endif
|
|
|
|
#endif
|
|
|
|
// Local Variables:
|
|
// mode: c++
|
|
// End:
|