mirror of
				https://github.com/RetroDECK/ES-DE.git
				synced 2025-04-10 19:15:13 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			588 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			588 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  #
 | |
|  #  File        : skeleton.h
 | |
|  #                ( C++ header file - CImg plug-in )
 | |
|  #
 | |
|  #  Description : CImg plugin that implements the computation of the Hamilton-Jacobi skeletons
 | |
|  #                using Siddiqi algorithm with the correction proposed by Torsello,
 | |
|  #                as described in :
 | |
|  #
 | |
|  #  [SBTZ02] K. Siddiqi, S. Bouix, A. Tannenbaum and S.W. Zucker. Hamilton-Jacobi Skeletons
 | |
|  #           International Journal of Computer Vision, 48(3):215-231, 2002
 | |
|  #
 | |
|  #  [TH03]   A. Torsello and E. R. Hancock. Curvature Correction of the Hamilton-Jacobi Skeleton
 | |
|  #           IEEE Computer Vision and Pattern Recognition, 2003
 | |
|  #
 | |
|  #  [BST05] S. Bouix, K. Siddiqi and A. Tannenbaum. Flux driven automatic centerline
 | |
|  #          extraction. Medical Image Analysis, 9:209-221, 2005
 | |
|  #
 | |
|  #  IMPORTANT WARNING : You must include STL's <queue> before plugin inclusion to make it working !
 | |
|  #
 | |
|  #  Copyright   : Francois-Xavier Dupe
 | |
|  #                ( http://www.greyc.ensicaen.fr/~fdupe/ )
 | |
|  #
 | |
|  #  This software is governed by the CeCILL license under French law and
 | |
|  #  abiding by the rules of distribution of free software. You can use,
 | |
|  #  modify and/or redistribute the software under the terms of the CeCILL
 | |
|  #  license as circulated by CEA, CNRS and INRIA at the following URL
 | |
|  #  "http://www.cecill.info".
 | |
|  #
 | |
|  #  As a counterpart to the access to the source code and rights to copy,
 | |
|  #  modify and redistribute granted by the license, users are provided only
 | |
|  #  with a limited warranty and the software's author, the holder of the
 | |
|  #  economic rights, and the successive licensors have only limited
 | |
|  #  liability.
 | |
|  #
 | |
|  #  In this respect, the user's attention is drawn to the risks associated
 | |
|  #  with loading, using, modifying and/or developing or reproducing the
 | |
|  #  software by the user in light of its specific status of free software,
 | |
|  #  that may mean that it is complicated to manipulate, and that also
 | |
|  #  therefore means that it is reserved for developers and experienced
 | |
|  #  professionals having in-depth computer knowledge. Users are therefore
 | |
|  #  encouraged to load and test the software's suitability as regards their
 | |
|  #  requirements in conditions enabling the security of their systems and/or
 | |
|  #  data to be ensured and, more generally, to use and operate it in the
 | |
|  #  same conditions as regards security.
 | |
|  #
 | |
|  #  The fact that you are presently reading this means that you have had
 | |
|  #  knowledge of the CeCILL license and that you accept its terms.
 | |
|  #
 | |
| */
 | |
| #ifndef cimg_plugin_skeleton
 | |
| #define cimg_plugin_skeleton
 | |
| 
 | |
| /**
 | |
|  * Compute the flux of the gradient
 | |
|  * @param grad   the gradient of the distance function
 | |
|  * @param sY     the sampling size in Y
 | |
|  * @param sZ     the sampling size in Z
 | |
|  * @return the flux
 | |
|  */
 | |
| CImg<floatT> get_flux(const CImgList<floatT> & grad,
 | |
|                       const float sY=1.0f, const float sZ=1.0f) const {
 | |
| 
 | |
|   int stop = 0;  // Stop flag
 | |
|   float f = 0;   // The current flux
 | |
|   int count = 0; // Counter
 | |
|   CImg<floatT> flux(width(),height(),depth(),1,0);
 | |
| 
 | |
|   cimg_forXYZ((*this),x,y,z) {
 | |
|     if (!(*this)(x,y,z)) continue; // If the point is the background
 | |
| 
 | |
|     // Look at the neigthboorhound and compute the flux
 | |
|     stop = 0;
 | |
|     f = 0;
 | |
|     count = 0;
 | |
| 
 | |
|     for (int k = -1; k<=1; ++k)
 | |
|       for (int l = -1; l<= 1; ++l)
 | |
|         for (int m = -1; m<= 1; ++m) {
 | |
|           if (stop==1) continue;
 | |
| 
 | |
|           // Protection
 | |
|           if ((x + k<0) || (x + k>=width()) || (y + l<0) || (y + l>=height()) ||
 | |
|               (z + m<0) || (z + m>=depth()) || (k==0 && l==0 && m==0)) continue;
 | |
|           ++count;
 | |
| 
 | |
|           // Test if the point is in the interior
 | |
|           if ((*this)(x + k,y + l,z + m)==0) { stop = 1; continue; }
 | |
| 
 | |
|           // Compute the flux
 | |
|           f+=(grad(0,x + k,y + l,z + m)*k + grad(1,x + k,y + l,z + m)*l/sY + grad(2,x + k,y + l,z + m)*m/sZ)/
 | |
|             std::sqrt((float)(k*k + l*l + m*m));
 | |
|         }
 | |
| 
 | |
|     // Update
 | |
|     if (stop==1 || count==0) flux(x,y,z) = 0;
 | |
|     else flux(x,y,z) = f/count;
 | |
|   }
 | |
| 
 | |
|   return flux;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Definition of a point with his flux value
 | |
|  */
 | |
| struct _PointFlux {
 | |
|   int pos [3];
 | |
|   float flux;
 | |
|   float dist;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Class for the priority queue
 | |
|  */
 | |
| class _compare_point {
 | |
|   /**
 | |
|    * Create medial curves
 | |
|    */
 | |
|   bool curve;
 | |
| 
 | |
|  public:
 | |
|   _compare_point(const bool _curve=false) { this->curve = _curve; }
 | |
| 
 | |
|   bool operator()(const _PointFlux & p1, const _PointFlux & p2) const {
 | |
|     if (curve) {
 | |
|       if (p1.dist>p2.dist) return true;
 | |
|       else if (p1.dist==p2.dist && p1.flux<p2.flux) return true;
 | |
|     } else {
 | |
|       if (p1.flux<p2.flux) return true;
 | |
|       else if (p1.flux==p2.flux && p1.dist>p2.dist) return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Compute the log-density using the algorithm from Torsello
 | |
|  * @param dist  the distance map
 | |
|  * @param grad  the gradient of the distance map, e.g. the flux
 | |
|  * @param flux  the divergence map
 | |
|  * @param delta the threshold for the division
 | |
|  * @return the logdensity \rho
 | |
|  */
 | |
| CImg<floatT> get_logdensity(const CImg<floatT> & dist,
 | |
|                             const CImgList<floatT> & grad,
 | |
|                             const CImg<floatT> & flux, float delta = 0.1) const {
 | |
|   std::priority_queue< _PointFlux, std::vector<_PointFlux>, _compare_point > pqueue(true);
 | |
|   CImg<floatT> logdensity(width(),height(),depth(),1,0);
 | |
| 
 | |
|   // 1 - Put all the pixel inside the priority queue
 | |
|   cimg_forXYZ(dist,x,y,z) if (dist(x,y,z)!=0) {
 | |
|     _PointFlux p;
 | |
|     p.pos[0] = x;
 | |
|     p.pos[1] = y;
 | |
|     p.pos[2] = z;
 | |
|     p.flux = 0;
 | |
|     p.dist = dist(x,y,z);
 | |
|     pqueue.push(p);
 | |
|   }
 | |
| 
 | |
|   // 2 - Compute the logdensity
 | |
|   while (!pqueue.empty()) {
 | |
|     _PointFlux p = pqueue.top();
 | |
|     pqueue.pop();
 | |
| 
 | |
|     const float
 | |
|       Fx = grad(0,p.pos[0],p.pos[1],p.pos[2]),
 | |
|       Fy = grad(1,p.pos[0],p.pos[1],p.pos[2]),
 | |
|       Fz = grad(2,p.pos[0],p.pos[1],p.pos[2]);
 | |
| 
 | |
|     logdensity(p.pos[0],p.pos[1],p.pos[2]) = logdensity.linear_atXYZ(p.pos[0] - Fx,p.pos[1] - Fy,p.pos[2] - Fz)
 | |
|       - 0.5f * (flux(p.pos[0],p.pos[1],p.pos[2]) + flux.linear_atXYZ(p.pos[0] - Fx,p.pos[1] - Fy,p.pos[2] - Fz));
 | |
| 
 | |
|     const float tmp = 1.0f - (1.0f - std::fabs(Fx)) * (1.0f - std::fabs(Fy)) * (1.0f - std::fabs(Fz));
 | |
|     if (tmp>delta) logdensity(p.pos[0],p.pos[1],p.pos[2])/=tmp;
 | |
|     else if (delta<1) logdensity(p.pos[0],p.pos[1],p.pos[2]) = 0;
 | |
|   }
 | |
| 
 | |
|   return logdensity;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Computed the corrected divergence map using Torsello formula and idea
 | |
|  * @param logdensity the log density map
 | |
|  * @param grad       the gradient of the distance map
 | |
|  * @param flux       the flux using siddiqi formula
 | |
|  * @param delta      the discrete step
 | |
|  * @return the corrected divergence map
 | |
|  */
 | |
| CImg<floatT> get_corrected_flux(const CImg<floatT> & logdensity,
 | |
|                                 const CImgList<floatT> & grad,
 | |
|                                 const CImg<floatT> & flux,
 | |
|                                 float delta = 1.0) const {
 | |
| 
 | |
|   CImg<floatT> corr_map(width(),height(),depth(),1,0);
 | |
|   cimg_forXYZ(corr_map,x,y,z) {
 | |
|     const float
 | |
|       Fx = grad(0,x,y,z),
 | |
|       Fy = grad(1,x,y,z),
 | |
|       Fz = grad(2,x,y,z);
 | |
|     corr_map(x,y,z) =
 | |
|       (logdensity(x,y,z) -
 | |
|        logdensity.linear_atXYZ(x - Fx,y - Fy,z - Fz)) * expf(logdensity(x,y,z) - 0.5f * delta) +
 | |
|       0.5f * ( flux.linear_atXYZ(x - Fx,y - Fy,z - Fz)*expf(logdensity.linear_atXYZ(x - Fx,y - Fy,z - Fz)) +
 | |
|                flux(x,y,z)*expf(logdensity(x,y,z)));
 | |
|   }
 | |
| 
 | |
|   return corr_map;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Test if a point is simple using Euler number for 2D case
 | |
|  * or using Malandain criterion for 3D case
 | |
|  * @param img the image
 | |
|  * @param x the x coordinate
 | |
|  * @param y the y coordinate
 | |
|  * @param z the z coordinate
 | |
|  * @return true if simple
 | |
|  */
 | |
| bool _isSimple (const CImg<T> & img, int x, int y, int z ) const {
 | |
|   if (img.depth()==1) { // 2D case
 | |
|     int V = 0, E = 0;  // Number of vertices and edges
 | |
| 
 | |
|     for (int k = -1; k<=1; ++k)
 | |
|       for (int l = -1; l<=1; ++l) {
 | |
|         // Protection
 | |
|         if (x+k<0 || x+k>=img.width() || y+l<0 || y+l>=img.height()) continue;
 | |
| 
 | |
|         // Count the number of vertices
 | |
|         if (img(x + k,y + l)!=0 && !(k==0 && l==0)) {
 | |
|           ++V;
 | |
| 
 | |
|           // Count the number of edges
 | |
|           for (int k1 = -1; k1<=1; ++k1)
 | |
|             for (int l1 = -1; l1<=1; ++l1) {
 | |
|               // Protection
 | |
|               if (x + k + k1<0 || x + k + k1>=img.width() || y + l + l1<0 || y + l + l1>=img.height()) continue;
 | |
| 
 | |
|               if (!(k1==0 && l1==0) && img(x + k + k1,y + l + l1)!=0 && k + k1>-2 && l + l1>-2 &&
 | |
|                   k + k1<2 && l + l1<2 && !(k + k1==0 && l + l1==0))
 | |
|                 ++E;
 | |
|             }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     // Remove the corner if exists
 | |
|     if (x - 1>=0 && y - 1>=0 && img(x - 1,y - 1)!=0 && img(x,y - 1)!=0 && img(x - 1,y)!=0) E-=2;
 | |
|     if (x - 1>=0 && y + 1<img.height() && img(x - 1,y + 1)!=0 && img(x,y + 1)!=0 && img(x - 1,y)!=0) E-=2;
 | |
|     if (x + 1<img.width() && y - 1>=0 && img(x + 1,y - 1)!=0 && img(x,y - 1)!=0 && img(x + 1,y)!=0) E-=2;
 | |
|     if (x + 1<img.width() && y + 1<img.height() && img(x + 1,y + 1)!=0 && img(x,y + 1)!=0 && img(x + 1,y)!=0) E-=2;
 | |
| 
 | |
|     // Final return true if it is a tree (eg euler number equal to 1)
 | |
|     if ((V - E/2)==1) return true;
 | |
| 
 | |
|   } else  { // 3D case
 | |
|     CImg<intT> visit(3,3,3,1,0); // Visitor table
 | |
|     int C_asterix = 0, C_bar = 0, count = 0;
 | |
|     visit(1,1,1) = -1;
 | |
| 
 | |
|     // Compute C^*
 | |
| 
 | |
|     // Seeking for a component
 | |
|     for (int k = -1; k<=1; ++k)
 | |
|       for (int l = -1; l<=1; ++l)
 | |
|         for (int m = -1; m<=1; ++m) {
 | |
|           int a_label = 0;
 | |
| 
 | |
|           // Protection
 | |
|           if (x + k<0 || x + k>=img.width() ||
 | |
|               y + l<0 || y + l>=img.height() ||
 | |
|               z + m<0 || z + m>=img.depth() ||
 | |
|               (k==0 && l==0 && m==0)) continue;
 | |
| 
 | |
|           if (visit(1 + k,1 + l,1 + m)==0 && img(x + k,y + l,z + m)!=0) {
 | |
|             // Look after the neightbor
 | |
|             for (int k1 = -1; k1<=1; ++k1)
 | |
|               for (int l1 = -1; l1<=1; ++l1)
 | |
|                 for (int m1 = -1; m1<=1; ++m1) {
 | |
|                   // Protection
 | |
|                   if (x + k + k1<0 || x + k + k1>=img.width() ||
 | |
|                       y + l + l1<0 || y + l + l1>=img.height() ||
 | |
|                       z + m + m1<0 || z + m + m1>=img.depth() ||
 | |
|                       k + k1>1 || k + k1<-1 ||
 | |
|                       l + l1>1 || l + l1<-1 ||
 | |
|                       m + m1>1 || m + m1<-1 ) continue;
 | |
| 
 | |
|                   // Search for a already knew component
 | |
|                   if (visit(1 + k + k1,1 + l + l1,1 + m + m1)>0 &&
 | |
|                       img(x + k + k1,y + l + l1,z + m + m1)!=0) {
 | |
|                     if (a_label==0) a_label = visit(1 + k + k1,1 + l + l1,1 + m + m1);
 | |
|                     else if (a_label!=visit(1 + k + k1,1 + l + l1,1 + m + m1)) {
 | |
|                       // Meld component
 | |
|                       --C_asterix;
 | |
| 
 | |
|                       int C = visit(1 + k + k1,1 + l + l1,1 + m + m1);
 | |
|                       cimg_forXYZ(visit,a,b,c) if (visit(a,b,c)==C) visit(a,b,c) = a_label;
 | |
|                     }
 | |
|                   }
 | |
|                 }
 | |
| 
 | |
|             // Label the point
 | |
|             if (a_label==0) {
 | |
|               // Find a new component
 | |
|               ++C_asterix;
 | |
|               ++count;
 | |
|               visit(1 + k ,1 + l,1 + m) = count;
 | |
|             } else visit(1 + k,1 + l,1 + m) = a_label;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|     if (C_asterix!=1) return false;
 | |
| 
 | |
|     // Compute \bar{C}
 | |
| 
 | |
|     // Reinit visit
 | |
|     visit.fill(0);
 | |
|     visit(1,1,1) = -1;
 | |
| 
 | |
|     // Seeking for a component
 | |
| 
 | |
|     // Look at X-axis
 | |
|     for (int k = -1; k<=1; ++k)	{
 | |
|       if (x + k<0 || x + k>=img.width()) continue;
 | |
| 
 | |
|       if (img(x + k,y,z)==0 && visit(1 + k,1,1)==0) {
 | |
|         ++C_bar;
 | |
|         ++count;
 | |
|         visit(1 + k,1,1) = count;
 | |
| 
 | |
|         // Follow component
 | |
|         for (int l = -1; l<=1; ++l) {
 | |
|           if (y + l<img.height() && y + l>=0 && img(x + k,y + l,z)==0 && visit(1 + k,1 + l,1)==0)
 | |
|             visit(1 + k,1 + l,1) = count;
 | |
|           if (z + l<img.depth() && z + l>=0 && img(x + k,y,z + l)==0 && visit(1 + k,1,1 + l)==0)
 | |
|             visit(1 + k,1,1 + l) = count;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Look at Y-axis
 | |
|     for (int k = -1; k<=1; ++k)	{
 | |
|       if (y + k<0 || y + k>=img.height()) continue;
 | |
| 
 | |
|       if (img(x,y + k,z)==0 && visit(1,1 + k,1)==0) {
 | |
|         int a_label = 0;
 | |
|         ++C_bar;
 | |
|         ++count;
 | |
|         visit(1,1 + k,1) = count;
 | |
|         a_label = count;
 | |
| 
 | |
|         // Follow component
 | |
|         for (int l = -1; l<=1; ++l) {
 | |
|           if (l==0) continue;
 | |
| 
 | |
|           if (x + l<img.width() && x + l>=0 && img(x + l,y + k,z)==0) {
 | |
|             if (visit(1 + l,1 + k,1)!=0) {
 | |
|               if (a_label!=visit(1 + l,1 + k,1)) {
 | |
|                 // Meld component
 | |
|                 --C_bar;
 | |
| 
 | |
|                 int C = visit(1 + l,1 + k,1);
 | |
|                 cimg_forXYZ(visit,a,b,c)
 | |
|                   if (visit(a,b,c)==C) visit(a,b,c) = a_label;
 | |
|               }
 | |
|             } else visit(1 + l,1 + k,1) = a_label;
 | |
|           }
 | |
| 
 | |
|           if (z + l<img.depth() && z + l>=0 && img(x,y + k,z + l)==0) {
 | |
|             if (visit(1,1 + k,1 + l)!=0) {
 | |
|               if (a_label!=visit(1,1 + k,1 + l)) {
 | |
|                 // Meld component
 | |
|                 --C_bar;
 | |
| 
 | |
|                 int C = visit(1,1 + k,1 + l);
 | |
|                 cimg_forXYZ(visit,a,b,c)
 | |
|                   if (visit(a,b,c)==C) visit(a,b,c) = a_label;
 | |
|               }
 | |
|             } else visit(1,1 + k,1 + l) = a_label;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Look at Z-axis
 | |
|     for (int k = -1; k<=1; ++k)	{
 | |
|       if (z + k<0 || z + k>=img.depth()) continue;
 | |
| 
 | |
|       if (img(x,y,z + k)==0 && visit(1,1,1 + k)==0) {
 | |
|         int a_label = 0;
 | |
|         ++C_bar;
 | |
|         ++count;
 | |
|         visit(1,1,1 + k) = count;
 | |
|         a_label = count;
 | |
| 
 | |
|         // Follow component
 | |
|         for (int l = -1; l<=1; ++l) {
 | |
|           if (l==0) continue;
 | |
| 
 | |
|           if (x + l<img.width() && x + l>=0 && img(x + l,y,z + k)==0) {
 | |
|             if (visit(1 + l,1,1 + k)!=0) {
 | |
|               if (a_label!=visit(1 + l,1,1 + k)) {
 | |
|                 // Meld component
 | |
|                 --C_bar;
 | |
| 
 | |
|                 int C = visit(1 + l,1,1 + k);
 | |
|                 cimg_forXYZ(visit,a,b,c)
 | |
|                   if (visit(a,b,c)==C) visit(a,b,c) = a_label;
 | |
|               }
 | |
|             } else visit(1 + l,1,1 + k) = a_label;
 | |
|           }
 | |
| 
 | |
|           if (y + l<img.height() && y + l>=0 && img(x,y + l,z + k)==0) {
 | |
|             if (visit(1,1 + l,1 + k)!=0) {
 | |
|               if (a_label!=visit(1,1 + l,1 + k)) {
 | |
|                 // Meld component
 | |
|                 --C_bar;
 | |
| 
 | |
|                 int C = visit(1,1 + l,1 + k);
 | |
|                 cimg_forXYZ(visit,a,b,c)
 | |
|                   if (visit(a,b,c)==C) visit(a,b,c) = a_label;
 | |
|               }
 | |
|             } else visit(1,1 + l,1 + k) = a_label;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if (C_bar==1) return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Test if a point is a end point
 | |
|  * @param img the image
 | |
|  * @param a_label the table of labels
 | |
|  * @param curve set it to true for having medial curve
 | |
|  * @param x the x coordinate
 | |
|  * @param y the y coordinate
 | |
|  * @param z the z coordinate
 | |
|  * @return true if simple
 | |
|  */
 | |
| bool _isEndPoint(const CImg<T> & img, const CImg<T> & a_label,
 | |
|                  const bool curve, const int x, const int y, const int z) const {
 | |
|   if (a_label(x,y,z)==1) return true;
 | |
| 
 | |
|   if ((!curve) && (img.depth()!=1)) { // 3D case with medial surface
 | |
|     // Use Pudney specification with the 9 plans
 | |
|     const int plan9 [9][8][3] =
 | |
|       { { {-1,0,-1}, {0,0,-1}, {1,0,-1}, {-1,0,0}, {1,0,0}, {-1,0,1}, {0,0,1}, {1,0,1} }, // Plan 1
 | |
|         { {-1,1,0}, {0,1,0}, {1,1,0}, {-1,0,0}, {1,0,0}, {-1,-1,0}, {0,-1,0}, {1,-1,0} }, // Plan 2
 | |
|         { {0,-1,-1}, {0,0,-1}, {0,1,-1}, {0,-1,0}, {0,1,0}, {0,-1,1}, {0,0,1}, {0,1,1} }, // Plan 3
 | |
|         { {1,1,1}, {0,1,0}, {-1,1,-1}, {1,0,1}, {-1,0,-1}, {-1,-1,-1}, {0,-1,0}, {1,-1,1} }, // Plan 4
 | |
|         { {-1,1,1}, {0,1,0}, {1,1,-1}, {-1,0,1}, {1,0,-1}, {-1,-1,1}, {0,-1,0}, {1,-1,-1} }, // Plan 5
 | |
|         { {-1,1,1}, {0,1,1}, {1,1,1}, {-1,0,0}, {1,0,0}, {-1,-1,-1}, {0,-1,-1}, {1,-1,-1} }, // Plan 6
 | |
|         { {-1,1,-1}, {0,1,-1}, {1,1,-1}, {-1,0,0}, {1,0,0}, {-1,-1,1}, {0,-1,1}, {1,-1,1} }, // Plan 7
 | |
|         { {-1,1,-1}, {-1,1,0}, {-1,1,1}, {0,0,-1}, {0,0,1}, {1,-1,-1}, {1,-1,0}, {1,-1,1} }, // Plan 8
 | |
|         { {1,1,-1}, {1,1,0}, {1,1,1}, {0,0,-1}, {0,0,1}, {-1,-1,-1}, {-1,-1,0}, {-1,-1,1} }  // Plan 9
 | |
|       };
 | |
| 
 | |
|     // Count the number of neighbors on each plan
 | |
|     for (int k = 0; k<9; ++k) {
 | |
|       int count = 0;
 | |
| 
 | |
|       for (int l = 0; l<8; ++l) {
 | |
|         if (x + plan9[k][l][0]<0 || x + plan9[k][l][0]>=img.width() ||
 | |
|             y + plan9[k][l][1]<0 || y + plan9[k][l][1]>=img.height() ||
 | |
|             z + plan9[k][l][2]<0 || z + plan9[k][l][2]>=img.depth()) continue;
 | |
| 
 | |
|         if (img(x + plan9[k][l][0],y + plan9[k][l][1],z + plan9[k][l][2])!=0) ++count;
 | |
|       }
 | |
| 
 | |
|       if (count<2) return true;
 | |
|     }
 | |
|   } else { // 2D or 3D case with medial curve
 | |
|     int isb = 0;
 | |
| 
 | |
|     for (int k = -1; k<=1; ++k)
 | |
|       for (int l = -1; l<=1; ++l)
 | |
|         for (int m = -1; m<=1; ++m) {
 | |
|           // Protection
 | |
|           if (x + k<0 || x + k>=img.width() ||
 | |
|               y + l<0 || y + l>=img.height() ||
 | |
|               z + m<0 || z + m>=img.depth()) continue;
 | |
| 
 | |
|           if (img(x + k,y + l,z + m)!=0) ++isb;
 | |
|         }
 | |
| 
 | |
|     if (isb==2) return true; // The pixel with one neighbor
 | |
|   }
 | |
| 
 | |
|   // Else it's not...
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Compute the skeleton of the shape using Hamilton-Jacobi scheme
 | |
|  * @param flux the flux of the distance gradient
 | |
|  * @param dist the euclidean distance of the object
 | |
|  * @param curve create or not medial curve
 | |
|  * @param thres the threshold on the flux
 | |
|  * @return the skeleton
 | |
|  */
 | |
| CImg<T> get_skeleton (const CImg<floatT> & flux,
 | |
|                       const CImg<floatT> & dist, const bool curve, const float thres) const {
 | |
|   CImg<T>
 | |
|     skeleton(*this),                      // The skeleton
 | |
|     a_label(width(),height(),depth(),1,0),  // Save label
 | |
|     count(width(),height(),depth(),1,0);  // A counter for the queue
 | |
|   std::priority_queue< _PointFlux, std::vector<_PointFlux>, _compare_point > pqueue(curve);
 | |
|   int isb = 0;
 | |
| 
 | |
|   // 1 - Init get the bound points
 | |
|   cimg_forXYZ(*this,x,y,z) {
 | |
|     if (skeleton(x,y,z)==0) continue;
 | |
| 
 | |
|     // Test bound condition
 | |
|     isb = 0;
 | |
|     for (int k = -1; k<=1; ++k)
 | |
|       for (int l = -1; l<=1; ++l)
 | |
|         for (int m = -1; m<=1; ++m) {
 | |
|           // Protection
 | |
|           if (x + k<0 || x + k>=width() ||
 | |
|               y + l<0 || y + l>=height() ||
 | |
|               z + m<0 || z + m>=depth()) continue;
 | |
|           if (skeleton(x + k,y + l,z + m)==0) isb = 1;
 | |
|         }
 | |
| 
 | |
|     if (isb==1 && _isSimple(skeleton,x,y,z)) {
 | |
|       _PointFlux p;
 | |
|       p.pos[0] = x;
 | |
|       p.pos[1] = y;
 | |
|       p.pos[2] = z;
 | |
|       p.flux = flux(x,y,z);
 | |
|       p.dist = dist(x,y,z);
 | |
|       pqueue.push(p);
 | |
|       count(x,y,z) = 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // 2 - Compute the skeleton
 | |
|   while (!pqueue.empty()) {
 | |
|     _PointFlux p = pqueue.top();     // Get the point with the max flux
 | |
|     pqueue.pop();                    // Remove the point from the queue
 | |
|     count(p.pos[0],p.pos[1],p.pos[2]) = 0; // Reinit counter
 | |
| 
 | |
|       // Test if the point is simple
 | |
|     if (_isSimple(skeleton,p.pos[0],p.pos[1],p.pos[2]))	{
 | |
|       if ((! _isEndPoint(skeleton,a_label,curve,p.pos[0],p.pos[1],p.pos[2])) || p.flux>thres) {
 | |
|         skeleton(p.pos[0],p.pos[1],p.pos[2]) = 0; // Remove the point
 | |
| 
 | |
|         for (int k = -1; k<=1; ++k)
 | |
|           for (int l = -1; l<=1; ++l)
 | |
|             for (int m = -1; m<=1; ++m) {
 | |
|               // Protection
 | |
|               if (p.pos[0] + k<0 || p.pos[0] + k>= width() ||
 | |
|                   p.pos[1] + l<0 || p.pos[1] + l>= height() ||
 | |
|                   p.pos[2] + m<0 || p.pos[2] + m>= depth()) continue;
 | |
|               if (skeleton(p.pos[0] + k,p.pos[1] + l,p.pos[2] + m)!=0 &&
 | |
|                   count(p.pos[0] + k,p.pos[1] + l,p.pos[2] + m)<1 &&
 | |
|                   _isSimple(skeleton,p.pos[0] + k,p.pos[1] + l,p.pos[2] + m)) {
 | |
|                 _PointFlux p1;
 | |
|                 p1.pos[0] = p.pos[0] + k;
 | |
|                 p1.pos[1] = p.pos[1] + l;
 | |
|                 p1.pos[2] = p.pos[2] + m;
 | |
|                 p1.flux = flux(p.pos[0] + k,p.pos[1] + l,p.pos[2] + m);
 | |
|                 p1.dist = dist(p.pos[0] + k,p.pos[1] + l,p.pos[2] + m);
 | |
|                 pqueue.push(p1);
 | |
|                 count(p.pos[0] + k,p.pos[1] + l,p.pos[2] + m) = 1;
 | |
|               }
 | |
|             }
 | |
|       } else a_label(p.pos[0],p.pos[1],p.pos[2]) = 1; // Mark the point as skeletal
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return skeleton;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * In place version of get_skeleton
 | |
|  */
 | |
| CImg<T> skeleton(const CImg<floatT> & flux,
 | |
|                  const CImg<floatT> & dist, bool curve ,float thres) {
 | |
|   return get_skeleton(flux,dist,curve,thres).move_to(*this);
 | |
| }
 | |
| 
 | |
| #endif /* cimg_plugin_skeleton */
 | 
