mirror of
https://github.com/RetroDECK/ES-DE.git
synced 2024-12-12 15:35:39 +00:00
213 lines
7.9 KiB
C
213 lines
7.9 KiB
C
/*
|
|
#
|
|
# File : bayer.h
|
|
# ( C++ header file - CImg plug-in )
|
|
#
|
|
# Description : CImg plugin that implements the conversion of a color image to a
|
|
# Bayer-coded matrix, and its reverse transform.
|
|
#
|
|
# Copyright : David Tschumperlé
|
|
# ( https://tschumperle.users.greyc.fr/ )
|
|
#
|
|
# This software is governed by the CeCILL license under French law and
|
|
# abiding by the rules of distribution of free software. You can use,
|
|
# modify and/or redistribute the software under the terms of the CeCILL
|
|
# license as circulated by CEA, CNRS and INRIA at the following URL
|
|
# "http://www.cecill.info".
|
|
#
|
|
# As a counterpart to the access to the source code and rights to copy,
|
|
# modify and redistribute granted by the license, users are provided only
|
|
# with a limited warranty and the software's author, the holder of the
|
|
# economic rights, and the successive licensors have only limited
|
|
# liability.
|
|
#
|
|
# In this respect, the user's attention is drawn to the risks associated
|
|
# with loading, using, modifying and/or developing or reproducing the
|
|
# software by the user in light of its specific status of free software,
|
|
# that may mean that it is complicated to manipulate, and that also
|
|
# therefore means that it is reserved for developers and experienced
|
|
# professionals having in-depth computer knowledge. Users are therefore
|
|
# encouraged to load and test the software's suitability as regards their
|
|
# requirements in conditions enabling the security of their systems and/or
|
|
# data to be ensured and, more generally, to use and operate it in the
|
|
# same conditions as regards security.
|
|
#
|
|
# The fact that you are presently reading this means that you have had
|
|
# knowledge of the CeCILL license and that you accept its terms.
|
|
#
|
|
*/
|
|
#ifndef cimg_plugin_bayer
|
|
#define cimg_plugin_bayer
|
|
|
|
//! Convert RGB color image to a Bayer-coded scalar image.
|
|
/**
|
|
\note First (upper-left) pixel if the red component of the pixel color.
|
|
**/
|
|
CImg<T>& RGBtoBayer() {
|
|
return get_RGBtoBayer().move_to(*this);
|
|
}
|
|
|
|
//! Convert RGB color image to a Bayer-coded scalar image \newinstance.
|
|
CImg<T> get_RGBtoBayer() const {
|
|
if (_spectrum!=3)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"RGBtoBayer(): Instance is not a RGB image.",
|
|
cimg_instance);
|
|
|
|
CImg<T> res(_width,_height,_depth,1);
|
|
const T *ptr_r = data(0,0,0,0), *ptr_g = data(0,0,0,1), *ptr_b = data(0,0,0,2);
|
|
T *ptrd = res._data;
|
|
cimg_forXYZ(*this,x,y,z) {
|
|
if (y%2) {
|
|
if (x%2) *(ptrd++) = *ptr_b;
|
|
else *(ptrd++) = *ptr_g;
|
|
} else {
|
|
if (x%2) *(ptrd++) = *ptr_g;
|
|
else *(ptrd++) = *ptr_r;
|
|
}
|
|
++ptr_r; ++ptr_g; ++ptr_b;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//! Convert Bayer-coded scalar image to a RGB color image.
|
|
CImg<T>& BayertoRGB(const unsigned int interpolation_type=3) {
|
|
return get_BayertoRGB(interpolation_type).move_to(*this);
|
|
}
|
|
|
|
//! Convert Bayer-coded scalar image to a RGB color image \newinstance.
|
|
CImg<Tuchar> get_BayertoRGB(const unsigned int interpolation_type=3) const {
|
|
if (_spectrum!=1)
|
|
throw CImgInstanceException(_cimg_instance
|
|
"BayertoRGB(): Instance is not a Bayer image.",
|
|
cimg_instance);
|
|
|
|
CImg<Tuchar> res(_width,_height,_depth,3);
|
|
CImg_3x3(I,T);
|
|
Tuchar *ptr_r = res.data(0,0,0,0), *ptr_g = res.data(0,0,0,1), *ptr_b = res.data(0,0,0,2);
|
|
switch (interpolation_type) {
|
|
case 3 : { // Edge-directed
|
|
CImg_3x3(R,T);
|
|
CImg_3x3(G,T);
|
|
CImg_3x3(B,T);
|
|
cimg_forXYZ(*this,x,y,z) {
|
|
const int _p1x = x?x - 1:1, _p1y = y?y - 1:1, _n1x = x<width() - 1?x + 1:x - 1, _n1y = y<height() - 1?y + 1:y - 1;
|
|
cimg_get3x3(*this,x,y,z,0,I,T);
|
|
if (y%2) {
|
|
if (x%2) {
|
|
const Tfloat
|
|
alpha = cimg::sqr((Tfloat)Inc - Ipc),
|
|
beta = cimg::sqr((Tfloat)Icn - Icp),
|
|
cx = 1/(1 + alpha), cy = 1/(1 + beta);
|
|
*ptr_g = (Tuchar)((cx*(Inc + Ipc) + cy*(Icn + Icp))/(2*(cx + cy)));
|
|
} else *ptr_g = (Tuchar)Icc;
|
|
} else {
|
|
if (x%2) *ptr_g = (Tuchar)Icc;
|
|
else {
|
|
const Tfloat
|
|
alpha = cimg::sqr((Tfloat)Inc - Ipc),
|
|
beta = cimg::sqr((Tfloat)Icn - Icp),
|
|
cx = 1/(1 + alpha), cy = 1/(1 + beta);
|
|
*ptr_g = (Tuchar)((cx*(Inc + Ipc) + cy*(Icn + Icp))/(2*(cx + cy)));
|
|
}
|
|
}
|
|
++ptr_g;
|
|
}
|
|
cimg_forXYZ(*this,x,y,z) {
|
|
const int _p1x = x?x - 1:1, _p1y = y?y - 1:1, _n1x = x<width() - 1?x + 1:x - 1, _n1y = y<height() - 1?y + 1:y - 1;
|
|
cimg_get3x3(*this,x,y,z,0,I,T);
|
|
cimg_get3x3(res,x,y,z,1,G,T);
|
|
if (y%2) {
|
|
if (x%2) *ptr_b = (Tuchar)Icc;
|
|
else { *ptr_r = (Tuchar)((Icn + Icp)/2); *ptr_b = (Tuchar)((Inc + Ipc)/2); }
|
|
} else {
|
|
if (x%2) { *ptr_r = (Tuchar)((Inc + Ipc)/2); *ptr_b = (Tuchar)((Icn + Icp)/2); }
|
|
else *ptr_r = (Tuchar)Icc;
|
|
}
|
|
++ptr_r; ++ptr_b;
|
|
}
|
|
ptr_r = res.data(0,0,0,0);
|
|
ptr_g = res.data(0,0,0,1);
|
|
ptr_b = res.data(0,0,0,2);
|
|
cimg_forXYZ(*this,x,y,z) {
|
|
const int _p1x = x?x - 1:1, _p1y = y?y - 1:1, _n1x = x<width() - 1?x + 1:x - 1, _n1y = y<height() - 1?y + 1:y - 1;
|
|
cimg_get3x3(res,x,y,z,0,R,T);
|
|
cimg_get3x3(res,x,y,z,1,G,T);
|
|
cimg_get3x3(res,x,y,z,2,B,T);
|
|
if (y%2) {
|
|
if (x%2) {
|
|
const float
|
|
alpha = (float)cimg::sqr(Rnc - Rpc),
|
|
beta = (float)cimg::sqr(Rcn - Rcp),
|
|
cx = 1/(1 + alpha), cy = 1/(1 + beta);
|
|
*ptr_r = (Tuchar)((cx*(Rnc + Rpc) + cy*(Rcn + Rcp))/(2*(cx + cy)));
|
|
}
|
|
} else {
|
|
if (!(x%2)) {
|
|
const float
|
|
alpha = (float)cimg::sqr(Bnc - Bpc),
|
|
beta = (float)cimg::sqr(Bcn - Bcp),
|
|
cx = 1/(1 + alpha), cy = 1/(1 + beta);
|
|
*ptr_b = (Tuchar)((cx*(Bnc + Bpc) + cy*(Bcn + Bcp))/(2*(cx + cy)));
|
|
}
|
|
}
|
|
++ptr_r; ++ptr_g; ++ptr_b;
|
|
}
|
|
} break;
|
|
case 2 : { // Linear interpolation
|
|
cimg_forXYZ(*this,x,y,z) {
|
|
const int _p1x = x?x - 1:1, _p1y = y?y - 1:1, _n1x = x<width() - 1?x + 1:x - 1, _n1y = y<height() - 1?y + 1:y - 1;
|
|
cimg_get3x3(*this,x,y,z,0,I,T);
|
|
if (y%2) {
|
|
if (x%2) {
|
|
*ptr_r = (Tuchar)((Ipp + Inn + Ipn + Inp)/4);
|
|
*ptr_g = (Tuchar)((Inc + Ipc + Icn + Icp)/4);
|
|
*ptr_b = (Tuchar)Icc;
|
|
} else { *ptr_r = (Tuchar)((Icp + Icn)/2); *ptr_g = (Tuchar)Icc; *ptr_b = (Tuchar)((Inc + Ipc)/2); }
|
|
} else {
|
|
if (x%2) { *ptr_r = (Tuchar)((Ipc + Inc)/2); *ptr_g = (Tuchar)Icc; *ptr_b = (Tuchar)((Icn + Icp)/2); }
|
|
else {
|
|
*ptr_r = (Tuchar)Icc;
|
|
*ptr_g = (Tuchar)((Inc + Ipc + Icn + Icp)/4);
|
|
*ptr_b = (Tuchar)((Ipp + Inn + Ipn + Inp)/4);
|
|
}
|
|
}
|
|
++ptr_r; ++ptr_g; ++ptr_b;
|
|
}
|
|
} break;
|
|
case 1 : { // Nearest neighbor interpolation
|
|
cimg_forXYZ(*this,x,y,z) {
|
|
const int _p1x = x?x - 1:1, _p1y = y?y - 1:1, _n1x = x<width() - 1?x + 1:x - 1, _n1y = y<height() - 1?y + 1:y - 1;
|
|
cimg_get3x3(*this,x,y,z,0,I,T);
|
|
if (y%2) {
|
|
if (x%2) {
|
|
*ptr_r = (Tuchar)cimg::min(Ipp,Inn,Ipn,Inp);
|
|
*ptr_g = (Tuchar)cimg::min(Inc,Ipc,Icn,Icp);
|
|
*ptr_b = (Tuchar)Icc;
|
|
} else { *ptr_r = (Tuchar)cimg::min(Icn,Icp); *ptr_g = (Tuchar)Icc; *ptr_b = (Tuchar)cimg::min(Inc,Ipc); }
|
|
} else {
|
|
if (x%2) { *ptr_r = (Tuchar)cimg::min(Inc,Ipc); *ptr_g = (Tuchar)Icc; *ptr_b = (Tuchar)cimg::min(Icn,Icp); }
|
|
else {
|
|
*ptr_r = (Tuchar)Icc;
|
|
*ptr_g = (Tuchar)cimg::min(Inc,Ipc,Icn,Icp);
|
|
*ptr_b = (Tuchar)cimg::min(Ipp,Inn,Ipn,Inp);
|
|
}
|
|
}
|
|
++ptr_r; ++ptr_g; ++ptr_b;
|
|
}
|
|
} break;
|
|
default : { // 0-filling interpolation
|
|
const T *ptrs = _data;
|
|
res.fill(0);
|
|
cimg_forXYZ(*this,x,y,z) {
|
|
const T val = *(ptrs++);
|
|
if (y%2) { if (x%2) *ptr_b = val; else *ptr_g = val; } else { if (x%2) *ptr_g = val; else *ptr_r = val; }
|
|
++ptr_r; ++ptr_g; ++ptr_b;
|
|
}
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
#endif /* cimg_plugin_bayer */
|