ES-DE/external/CImg/examples/CImg_demo.cpp

1713 lines
79 KiB
C++

/*
#
# File : CImg_demo.cpp
# ( C++ source file )
#
# Description : A multi-part demo demonstrating some of the CImg capabilities.
# This file is a part of the CImg Library project.
# ( http://cimg.eu )
#
# Copyright : David Tschumperlé
# ( http://tschumperle.users.greyc.fr/ )
#
# License : CeCILL v2.0
# ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
#
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
#
*/
// Include static image data, so that the exe does not depend on external image files.
#include "img/CImg_demo.h"
// Include CImg library header.
#include "CImg.h"
using namespace cimg_library;
#undef min
#undef max
// Item : Blurring Gradient
//----------------------------
void* item_blurring_gradient() {
const CImg<float> src(data_milla,211,242,1,3);
CImgList<float> grad = src.get_gradient();
CImgList<unsigned char> visu = (src,sqrt(grad[0].pow(2) + grad[1].pow(2)).normalize(0,255),src);
CImgDisplay disp(visu,"[#1] - Color Image, Gradient Norm and Blurring Gradient",0);
for (double sigma = 0; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); sigma+=0.05) {
visu[2] = visu[1].get_blur((float)cimg::abs(30*std::cos(sigma))).normalize(0,255);
disp.resize(false).display(visu).wait(20);
}
return 0;
}
// Item : Rotozoom
//-----------------
void* item_rotozoom() {
CImg<unsigned char> src = CImg<unsigned char>(data_milla,211,242,1,3,false).resize(400,300,1,3,3),
img(src), img2(img);
CImgDisplay disp(img.width(),img.height(),"[#2] - Rotozoom",0);
float alpha = 0, t = 0, angle = 0, zoom0 = -0.9f, w2 = 0.5f*img.width(), h2 = 0.5f*img.height();
const unsigned char color[] = { 16,32,64 };
while (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) {
cimg_forYC(src,y,k) {
const int xc = 4*src.width() + (int)(60*std::sin((float)y*3/src.height() + 10*t));
cimg_forX(src,x) {
const float val = (float)(src((xc + x)%src.width(),y,0,k)*
(1.3f + 0.20*std::sin(alpha + k*k*((float)src.width()/2 - x)*
((float)src.height()/2 - y)*std::cos(t)/300.0)));
img(x,y,0,k) = (unsigned char)(val>255.0f?255:val);
}
}
const float
zoom = 1.0f + (float)(zoom0 + 0.3f*(1 + std::cos(3*t))),
rad = (float)(angle*cimg::PI/180), ca = (float)std::cos(rad)/zoom, sa = (float)std::sin(rad)/zoom;
cimg_forXY(img,x,y) {
const float
cX = x - w2, cY = y - h2,
fX = w2 + cX*ca - cY*sa,
fY = h2 + cX*sa + cY*ca;
const int
X = cimg::mod((int)fX,img.width()),
Y = cimg::mod((int)fY,img.height());
cimg_forC(img,c) img2(x,y,c) = img(X,Y,c);
}
img2.swap(img).draw_text(3,3,"Mouse buttons\nto zoom in/out",color,0,0.8f,24).display(disp.resize(false).wait(20));
alpha+=0.7f; t+=0.01f; angle+=0.8f;
zoom0+=disp.button()&1?0.1f:disp.button()&2?-0.1f:0;
if (disp.is_keyCTRLLEFT() && disp.is_keyF()) disp.resize(400,400,false).toggle_fullscreen(false);
}
return 0;
}
// Item : Anisotropic Smoothing (Total variation PDE, explicit scheme)
//--------------------------------------------------------------------
void* item_anisotropic_smoothing() {
const CImg<float> src = CImg<>(data_milla,211,242,1,3).noise(-30,1);
CImgList<float> images(src,src);
CImgDisplay disp(images,"[#3] - Anisotropic smoothing");
const float white[] = { 255, 255, 255 }, black[] = { 0, 0, 0 };
for (unsigned int iter = 0; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); ++iter) {
// Compute PDE velocity field.
CImg_3x3(I,float);
CImg<float> veloc(src);
float *ptrd = veloc.data(), betamax = 0;
cimg_forC(src,k) cimg_for3x3(images[1],x,y,0,k,I,float) {
const float
ix = (Inc - Ipc)/2,
iy = (Icn - Icp)/2,
ng = (float)std::sqrt(1e-10f + ix*ix + iy*iy),
ixx = Inc + Ipc - 2*Icc,
iyy = Icn + Icp - 2*Icc,
ixy = 0.25f*(Inn + Ipp - Ipn - Inp),
iee = (ix*ix*iyy + iy*iy*ixx - 2*ix*iy*ixy)/(ng*ng),
beta = iee/(0.1f + ng);
if (beta>betamax) betamax = beta; else if (-beta>betamax) betamax = -beta;
*(ptrd++) = beta;
}
veloc*=40.0f/betamax;
images[1]+=veloc;
images[0].draw_text(4,4,"Iteration : %u ",white,black,1,13,iter);
disp.resize(false).display(images);
}
return 0;
}
// Item : Fractal Animation
//--------------------------
void* item_fractal_animation() {
CImg<unsigned char> img(400,400,1,3,0), img2(img), noise(3,2,1,3);
const float w2 = 0.5f*img.width(), h2 = 0.5f*img.height();
CImgDisplay disp(img,"[#4] - Fractal Animation");
float zoom = 0;
for (unsigned int iter = 0; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); ++iter, zoom+=0.2f) {
img.draw_image((img.width() - noise.width())/2,
(img.height() - noise.height())/2,
noise.fill(0).noise(255,1));
const float
nzoom = (float)(1.04f + 0.02f*std::sin(zoom/10)),
rad = (float)(10*std::sin(iter/25.0)*cimg::PI/180),
ca = (float)std::cos(rad)/nzoom, sa = (float)std::sin(rad)/nzoom;
cimg_forXY(img,x,y) {
const float
cX = x - w2, cY = y - h2,
X = w2 + cX*ca - cY*sa,
Y = h2 + cX*sa + cY*ca;
cimg_forC(img,c) img2(x,y,c) = img.atXY((int)X,(int)Y,0,c,0);
}
img2.swap(img).resize(disp.resize(false)).display(disp.wait(25));
if (disp.is_keyCTRLLEFT() && disp.is_keyF()) disp.resize(400,400,false).toggle_fullscreen(false);
}
return 0;
}
// Item : Gamma Correction and Histogram Visualization
//-----------------------------------------------------
void* item_gamma_correction() {
CImg<float> img = CImg<>(data_milla,211,242,1,3).normalize(0,1);
CImgList<unsigned char> visu(img*255.0,CImg<unsigned char>(512,300,1,3,0));
CImgDisplay disp(visu,"[#5] - Gamma Corrected Image and Histogram (Click to set Gamma)");
const unsigned char
yellow[] = { 255, 255, 0 }, blue[] = { 0, 155, 255 }, blue2[] = { 0, 0, 255 },
blue3[] = { 0, 0, 155 }, white[] = { 255, 255, 255 }, green[] = { 50, 128, 50 };
for (double gamma = 1; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); ) {
cimg_forXYZC(visu[0],x,y,z,k) visu[0](x,y,z,k) = (unsigned char)(std::pow((double)img(x,y,z,k),1.0/gamma)*256);
const CImg<float> hist = visu[0].get_histogram(50,0,255);
visu[1].fill(0).draw_text(50,5,"Gamma = %.3g",white,0,1,24,gamma).
draw_graph(hist,green,1,3,0,20000,0).draw_graph(hist,yellow,1,2,0,20000,0).
draw_axes(0,256,20000,0,white,0.7f);
const int xb = (int)(50 + gamma*150);
visu[1].draw_grid(20,20,0,0,false,false,white,0.3f,0xCCCCCCCC,0xCCCCCCCC).
draw_rectangle(51,31,xb - 1,39,blue2).draw_rectangle(50,30,xb,30,blue).draw_rectangle(xb,30,xb,40,blue).
draw_rectangle(xb,40,50,39,blue3).draw_rectangle(50,30,51,40,blue3);
if (disp.button() && disp.mouse_x()>=img.width() + 50 && disp.mouse_x()<=img.width() + 450)
gamma = (disp.mouse_x() - img.width() - 50)/150.0;
disp.resize(disp,false).display(visu).wait();
}
return 0;
}
// Item : Filled Triangles
//-------------------------
void* item_filled_triangles() {
// Create a colored 640x480 background image which consists of different color shades.
CImg<float> background(640,480,1,3);
cimg_forXY(background,x,y) background.fillC(x,y,0,
x*std::cos(6.0*y/background.height()) +
y*std::sin(9.0*x/background.width()),
x*std::sin(8.0*y/background.height()) -
y*std::cos(11.0*x/background.width()),
x*std::cos(13.0*y/background.height()) -
y*std::sin(8.0*x/background.width()));
background.normalize(0,180);
// Init images and create display window.
CImg<unsigned char> img0(background), img;
unsigned char white[] = { 255, 255, 255 }, color[100][3];
CImgDisplay disp(img0,"[#6] - Filled Triangles (Click to shrink)");
// Define random properties (pos, size, colors, ..) for all triangles that will be displayed.
float posx[100], posy[100], rayon[100], angle[100], veloc[100], opacity[100];
int num = 1;
std::srand((unsigned int)time(0));
for (int k = 0; k<100; ++k) {
posx[k] = (float)(cimg::rand()*img0.width());
posy[k] = (float)(cimg::rand()*img0.height());
rayon[k] = (float)(10 + cimg::rand()*50);
angle[k] = (float)(cimg::rand()*360);
veloc[k] = (float)(cimg::rand()*20 - 10);
color[k][0] = (unsigned char)(cimg::rand()*255);
color[k][1] = (unsigned char)(cimg::rand()*255);
color[k][2] = (unsigned char)(cimg::rand()*255);
opacity[k] = (float)(0.3 + 1.5*cimg::rand());
}
// Start animation loop.
while (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) {
img = img0;
// Draw each triangle on the background image.
for (int k = 0; k<num; ++k) {
const int
x0 = (int)(posx[k] + rayon[k]*std::cos(angle[k]*cimg::PI/180)),
y0 = (int)(posy[k] + rayon[k]*std::sin(angle[k]*cimg::PI/180)),
x1 = (int)(posx[k] + rayon[k]*std::cos((angle[k] + 120)*cimg::PI/180)),
y1 = (int)(posy[k] + rayon[k]*std::sin((angle[k] + 120)*cimg::PI/180)),
x2 = (int)(posx[k] + rayon[k]*std::cos((angle[k] + 240)*cimg::PI/180)),
y2 = (int)(posy[k] + rayon[k]*std::sin((angle[k] + 240)*cimg::PI/180));
if (k%10) img.draw_triangle(x0,y0,x1,y1,x2,y2,color[k],opacity[k]);
else img.draw_triangle(x0,y0,x1,y1,x2,y2,img0,0,0,img0.width() - 1,0,0,img.height() - 1,opacity[k]);
img.draw_triangle(x0,y0,x1,y1,x2,y2,white,opacity[k],~0U);
// Make the triangles rotate, and check for mouse click event.
// (to make triangles collapse or join).
angle[k]+=veloc[k];
if (disp.mouse_x()>0 && disp.mouse_y()>0) {
float u = disp.mouse_x() - posx[k], v = disp.mouse_y() - posy[k];
if (disp.button()) { u = -u; v = -v; }
posx[k]-=0.03f*u, posy[k]-=0.03f*v;
if (posx[k]<0 || posx[k]>=img.width()) posx[k] = (float)(cimg::rand()*img.width());
if (posy[k]<0 || posy[k]>=img.height()) posy[k] = (float)(cimg::rand()*img.height());
}
}
// Display current animation framerate, and refresh display window.
img.draw_text(5,5,"%u frames/s",white,0,0.5f,13,(unsigned int)disp.frames_per_second());
img0.resize(disp.display(img).resize(false).wait(20));
if (++num>100) num = 100;
// Allow the user to toggle fullscreen mode, by pressing CTRL+F.
if (disp.is_keyCTRLLEFT() && disp.is_keyF()) disp.resize(640,480,false).toggle_fullscreen(false);
}
return 0;
}
// Item : Mandelbrot/Julia Explorer
//----------------------------------
void* item_mandelbrot_explorer() {
// Define image canvas and corresponding display window.
CImg<unsigned char> img(800,600,1,3,0);
CImgDisplay disp(img);
// Start main explorer loop.
double julia_r = 0, julia_i = 0;
for (bool endflag = false, fractal_type = false, smooth = false, show_help = true; !endflag;) {
bool stopflag = false;
double xmin, xmax, ymin, ymax;
// Init default upper-left/lower-right coordinates of the fractal set.
if (fractal_type) { xmin = -1.5; xmax = 1.5; ymin = -1.5; ymax = 1.5; julia_r = 0.317; julia_i = 0.029; }
else { xmin = -2.25; xmax = 1.0; ymin = -1.5; ymax = 1.5; julia_r = julia_i = 0; }
// Create random palette for displaying the fractal set.
const CImg<unsigned char> palette =
CImg<unsigned char>(256,1,1,3,16 + 120).noise(119,1).resize(1024,1,1,3,3).fillC(0,0,0,0,0,0);
// Enter event loop for the current fractal set.
for (unsigned int maxiter = 64; !stopflag; ) {
// Draw Mandelbrot or Julia fractal set on the image.
img.resize(disp.resize().set_title("[#7] - %s Set : (%g,%g)-(%g,%g), %s = (%g,%g) (%u iter.)",
fractal_type?"Julia":"Mandelbrot",xmin,ymin,xmax,ymax,
fractal_type?"c":"z0",julia_r,julia_i,maxiter)).
fill(0).draw_mandelbrot(palette,1,xmin,ymin,xmax,ymax,maxiter,smooth,fractal_type,julia_r,julia_i);
// Display help if necessary.
if (show_help) {
const unsigned char white[] = { 255, 255, 255 };
static CImg<unsigned char>
help = CImg<unsigned char>().draw_text(0,0,"\n"
" Use mouse to zoom on desired region. \n"
" H Show/Hide help \n"
" PAD 1...9 Fractal navigation \n"
" PAD +/- Zoom/Unzoom \n"
" SPACE Set/Disable color smoothing \n"
" ENTER Switch Mandelbrot/Julia sets \n"
" Arrows Change set parameterization \n"
" Page UP/DOWN Add/Reduce iteration numbers \n\n",
white).resize(-100,-100,1,3);
help.draw_rectangle(2,2,help.width() - 3,help.height() - 3,white,1,~0U);
img.draw_image(img.width() - help.width(),help,0.7f);
}
// Get rectangular shape from the user to define the zoomed region.
const CImg<int> selection = img.get_select(disp,2,0,true);
const int xs0 = selection[0], ys0 = selection[1], xs1 = selection[3], ys1 = selection[4];
// If the user has selected a region with the mouse, then zoom-in !
if (xs0>=0 && ys0>=0 && xs1>=0 && ys1>=0) {
const double dx =(xmax - xmin)/img.width(), dy =(ymax - ymin)/img.height();
const int dsmax = (ys1 - ys0)/2, xs = (xs0 + xs1)/2, ys = (ys0 + ys1)/2;
// If the region is too small (point) then reset the fractal set position and zoom.
if (dsmax<5) stopflag = true;
xmin+=(xs - dsmax*dy/dx)*dx;
ymin+=(ys - dsmax)*dy;
xmax-=(img.width() - xs - dsmax*dy/dx)*dx;
ymax-=(img.height() - ys - dsmax)*dy;
}
// Also, test if a key has been pressed.
// (moving in the fractal set can be done, using keyboard).
switch (disp.key()) {
// Show/hide help.
case cimg::keyH: show_help = !show_help; break;
// Switch between Julia/Mandelbrot sets.
case cimg::keyENTER: fractal_type = !fractal_type; stopflag = true; break;
// Enable/disable smoothed colors.
case cimg::keySPACE: smooth = !smooth; break;
// Change fractal set parameters.
case cimg::keyARROWLEFT: julia_r-=fractal_type?0.001f:0.05f; break;
case cimg::keyARROWRIGHT: julia_r+=fractal_type?0.001f:0.05f; break;
case cimg::keyARROWUP: julia_i+=fractal_type?0.001f:0.05f; break;
case cimg::keyARROWDOWN: julia_i-=fractal_type?0.001f:0.05f; break;
// Add/remove iterations.
case cimg::keyPAGEDOWN: maxiter-=32; break;
case cimg::keyPAGEUP: maxiter+=16; break;
// Move left, right, up and down in the fractal set.
case cimg::keyPAD4: { const double delta = (xmax - xmin)/10; xmin-=delta; xmax-=delta; } break;
case cimg::keyPAD6: { const double delta = (xmax - xmin)/10; xmin+=delta; xmax+=delta; } break;
case cimg::keyPAD8: { const double delta = (ymax - ymin)/10; ymin-=delta; ymax-=delta; } break;
case cimg::keyPAD2: { const double delta = (ymax - ymin)/10; ymin+=delta; ymax+=delta; } break;
// Allow to zoom in/out in the fractal set.
case cimg::keyPADADD: {
const double
xc = 0.5*(xmin + xmax),
yc = 0.5*(ymin + ymax),
dx = (xmax - xmin)*0.85/2,
dy = (ymax - ymin)*0.85/2;
xmin = xc - dx; ymin = yc - dy; xmax = xc + dx; ymax = yc + dy;
} break;
case cimg::keyPADSUB:
const double
xc = 0.5*(xmin + xmax),
yc = 0.5*(ymin + ymax),
dx = (xmax - xmin)*1.15/2,
dy = (ymax - ymin)*1.15/2;
xmin = xc - dx; ymin = yc - dy; xmax = xc + dx; ymax = yc + dy;
break;
}
// Do a simple test to check if more/less iterations are necessary for the next step.
const float value = (float)img.get_norm().get_histogram(256,0,255)(0)*3;
if (value>img.size()/6.0f) maxiter+=16;
if (maxiter>1024) maxiter = 1024;
if (value<img.size()/10.0f) maxiter-=4;
if (maxiter<32) maxiter = 32;
// Check if the user want to quit the explorer.
if (disp.is_closed() || disp.is_keyQ() || disp.is_keyESC()) stopflag = endflag = true;
}
}
return 0;
}
// Item : Mini-Paint
//------------------
void* item_mini_paint() {
int xo = -1, yo = -1, x = -1, y = -1;
bool redraw = true;
CImg<unsigned char> img(256,256 + 64,1,3,0);
unsigned char color[] = { 255, 255, 255 };
cimg_for_inY(img,256,img.height() - 1,yy) cimg_forX(img,xx) img.fillC(xx,yy,0,xx,(yy - 256)*4,(3*xx)%256);
CImgDisplay disp(img.draw_text(5,5," ",color,color),"[#8] - Mini-Paint");
while (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) {
const unsigned int but = disp.button();
redraw = false;
xo = x; yo = y; x = disp.mouse_x(); y = disp.mouse_y();
if (xo>=0 && yo>=0 && x>=0 && y>=0) {
if (but&1 || but&4) {
if (y<253) {
const float tmax = (float)std::max(cimg::abs(xo - x),cimg::abs(yo - y)) + 0.1f;
const int radius = (but&1?3:0) + (but&4?6:0);
for (float t = 0; t<=tmax; ++t)
img.draw_circle((int)(x + t*(xo - x)/tmax),(int)(y + t*(yo - y)/tmax),radius,color);
}
if (y>=256) {
color[0] = img(x,y,0); color[1] = img(x,y,1); color[2] = img(x,y,2);
img.draw_text(5,5," ",color,color);
}
redraw = true;
}
if (y>=253) y = 252;
if (disp.button()&2) { img.draw_fill(x,y,color); redraw = true; }
}
if (redraw) disp.display(img);
disp.resize(disp).wait();
if (disp.key()) cimg_forC(img,k) { img.get_shared_rows(0,255,0,k).fill(0); img.display(disp); }
}
return 0;
}
// Item : Soccer Bobs
//-------------------
void* item_soccer_bobs() {
CImg<unsigned char> foot(data_foot,200,200,1,3,false), canvas0(640,480,1,3,0);
const unsigned char color[] = { 255, 255, 0 };
float zoom = 0.2f;
cimg_forXY(canvas0,x,y) canvas0(x,y,1) = (unsigned char)(20 + (y*215/canvas0.height()) + 19*cimg::rand(-1,1));
canvas0.draw_text(5,5,"Left/Right Mouse Button = Zoom In/Out\nMiddle Button = Reset Screen",color);
CImgList<unsigned char> canvas(16,canvas0);
CImg<float> mask(foot.width(),foot.height());
cimg_forXY(mask,x,y) mask(x,y) = (foot(x,y,0)==255 && !foot(x,y,1) && !foot(x,y,2))?0:0.8f;
CImgDisplay disp(canvas0,"[#9] - Unlimited Soccer Bobs");
for (unsigned int curr_canvas = 0; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); (++curr_canvas) %= 16) {
if (disp.mouse_x()>=0 && disp.mouse_y()>=0)
canvas[curr_canvas].draw_image((int)(disp.mouse_x() - zoom*foot.width()/2),
(int)(disp.mouse_y() - zoom*foot.height()/2),
foot.get_resize((int)(foot.width()*zoom),(int)(foot.height()*zoom)),
mask.get_resize((int)(foot.width()*zoom),(int)(foot.height()*zoom)));
zoom+=disp.button()&1?0.03f:disp.button()&2?-0.03f:0;
zoom = zoom<0.1f?0.1f:zoom>1?1.0f:zoom;
if (disp.button()&4) cimglist_for(canvas,l) canvas[l] = canvas0;
if (disp.is_keyCTRLLEFT() && disp.is_keyF()) disp.toggle_fullscreen(false);
disp.display(canvas[curr_canvas]).resize(disp,false).wait(20);
}
return 0;
}
// Item : Bump Effect
//--------------------
void* item_bump() {
CImg<float> logo = CImg<>(56,32,1,1,0).draw_text(12,3,"I Love\nCImg !",CImg<>::vector(255).data()).
resize(-800,-800,1,1,3).blur(6).normalize(0,255);
logo+=CImg<>(logo.width(),logo.height(),1,1,0).noise(80,1).deriche(2,0,'y',false).deriche(10,0,'x',false);
CImgList<float> grad = logo.get_gradient();
cimglist_apply(grad,normalize)(-140,140);
logo.normalize(0,255);
CImg<float> light = CImg<>(300 + 2*logo.width(),300 + 2*logo.height());
light.draw_gaussian(0.5f*light.width(),0.5f*light.height(),80,CImg<>::vector(255).data());
CImg<unsigned char> img(logo.width(),logo.height(),1,3,0);
CImgDisplay disp(img,"[#10] - Bump Effect (Move lightsource with mouse)");
for (float t = 0; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); t+=0.03f) {
const int
mouse_x = (disp.mouse_x()>=0 && disp.button())?disp.mouse_x()*img.width()/disp.width():
(int)(img.width()/2 + img.width()*std::cos(1*t)/2),
mouse_y = (disp.mouse_y()>=0 && disp.button())?disp.mouse_y()*img.height()/disp.height():
(int)(img.height()/2 + img.height()*std::sin(3*t)/2);
cimg_forXY(img,x,y) {
const int gx = (int)grad[0](x,y), gy = (int)grad[1](x,y);
const float val = 40 + (gx + gy)/2 + light(light.width()/2 + mouse_x - x + gx,
light.height()/2 + mouse_y - y + gy);
img(x,y,0) = img(x,y,1) = img(x,y,2) = (unsigned char)(val>255?255:val<0?0:val);
}
disp.resize(false).display(img.draw_image(0,0,0,1,logo,0.1f)).wait(25);
if (disp.is_keyCTRLLEFT() && disp.is_keyF()) disp.resize(640,480,false).toggle_fullscreen(false);
}
return 0;
}
// Item : Bouncing Bubble
//------------------------
void* item_bouncing_bubble() {
CImg<unsigned char> back(420,256,1,3,0), img;
cimg_forXY(back,x,y) back(x,y,2) = (unsigned char)((y<2*back.height()/3)?30:(255 - 2*(y + back.height()/2)));
CImgDisplay disp(back,"[#11] - Bouncing bubble");
const unsigned char col1[] = { 40, 100, 10 }, col2[] = { 20, 70, 0 }, col3[] = { 40, 150, 10 },
col4[] = { 200, 255, 100 }, white[] = { 255, 255, 255 };
float u = (float)std::sqrt(2.0f), cx = back.width()/2.0f, t = 0, vt = 0.05f, vx = 2;
while (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) {
img = back;
int xm = (int)cx, ym = (int)(img.height()/2 - 70 + (img.height()/2 + 10)*(1 - cimg::abs(std::cos((t+=vt)))));
float r1 = 50, r2 = 50;
vt = 0.05f;
if (xm + r1>=img.width()) { const float delta = (xm + r1) - img.width(); r1-=delta; r2+=delta; }
if (xm - r1<0) { const float delta = -(xm - r1); r1-=delta; r2+=delta; }
if (ym + r2>=img.height() - 40) {
const float delta = (ym + r2) - img.height() + 40;
r2-=delta;
r1+=delta;
vt = 0.05f - 0.0015f*(50 - r2);
}
if (ym - r2<0) { const float delta = -(ym - r2); r2-=delta; r1+=delta; }
img.draw_ellipse(xm,ym,r1,r2,0,col1).
draw_ellipse((int)(xm + 0.03*r1*u),(int)(ym - 0.03*r2*u),0.85f*r1,0.85f*r2,0,col2).
draw_ellipse((int)(xm + 0.1*r1*u),(int)(ym - 0.1*r2*u),0.8f*r1,0.8f*r2,0,col1).
draw_ellipse((int)(xm + 0.2*r1*u),(int)(ym - 0.2*r2*u),r1/2,r2/2,0,col3).
draw_ellipse((int)(xm + 0.3*r1*u),(int)(ym - 0.3*r2*u),r1/4,r2/4,0,col4).
draw_image(0,img.height() - 40,img.get_crop(0,img.height() - 80,img.width() - 1,img.height() - 40).
mirror('y'),0.45f).
draw_text(xm - 70,(int)(ym - r2 - 30),"Bubble (%d,%d)",white,0,0.7f,24,xm,ym);
if ((cx+=20*vt*vx)>=img.width() - 30 || cx<30) vx = -vx;
disp.display(img).wait(20);
if (disp.is_resized()) {
back.resize(disp.resize(disp.window_width()>200?disp.window_width():200,disp.height(),false));
cx = back.width()/2.0f;
}
}
return 0;
}
// Item : Virtual Landscape
//--------------------------
void* item_virtual_landscape() {
CImg<int> background(400,300,1,3,0), visu(background);
cimg_forXY(background,x,y) {
if (y>background.height()/2) {
background(x,y,2) = 255;
background(x,y,0) = (y - background.height()/2)*512/background.height();
} else background(x,y,2) = y*512/background.height();
}
const int white[] = { 255, 255, 255 };
CImgDisplay disp(visu.draw_text(10,10,"Please wait, generating landscape...",white).
normalize(0,255),"[#12] - Virtual Landscape",0);
CImg<float>
map = 5.0*(CImg<>(700,700,1,1,300).noise(300).draw_plasma(0.2f,300).normalize(-140,150).blur(5).cut(0,150)),
cmap(map.width(),map.height());
CImg_3x3(I,float); Ipp = Inp = Icc = Ipn = Inn = 0;
cimg_for3x3(map,x,y,0,0,I,float) {
const float nox = 0.5f*(Inc - Ipc), noy = 0.5f*(Icn - Icp);
cmap(x,y) = std::max(0.0f,0.5f*nox + noy);
}
cmap.normalize(0,255);
for (float t = 0; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); t+=0.0025f) {
visu = background;
const int
xm = (int)(map.width()/2 + (map.width()/3)*std::cos(4.2f*t)),
ym = (int)(map.height()/2 + (map.height()/3)*std::sin(5.6f*t));
const CImg<float>
smap = map.get_crop(xm,ym,xm + 100,ym + 90),
scmap = cmap.get_crop(xm,ym,xm + 100,ym + 90);
CImg<int> ymin(visu.width(),1,1,1,visu.height()), ymax(ymin.width(),1,1,1,0);
cimg_forY(smap,z) {
const int y0 = (int)(visu.height() - 1 - 10*std::pow((double)z,0.63) + 80);
cimg_forX(visu,x) {
const int nz = smap.height() - z;
float mx = x*(smap.width() - 2.0f*nz*0.2f)/visu.width() + 0.2f*nz;
const int y = (int)(y0 - smap.linear_atX(mx,z)/(1 + 0.02*z));
const float cc = (float)scmap.linear_atX(mx,z);
if (y<visu.height() && y<ymin(x)) {
const float cz = (smap.height() - (float)z)/smap.height(), czz = cz>0.25?1:4*cz;
if (y!=y0) for (int l = y>0?y:0; l<ymin(x); ++l) {
visu(x,l,0) = (int)((1 - czz)*visu(x,l,0) + 4*cc*czz);
visu(x,l,1) = (int)((1 - czz)*visu(x,l,1) + 3*cc*czz);
visu(x,l,2) = (int)((1 - czz)*visu(x,l,2) + cc*czz);
} else for (int l = y>0?y:0; l<ymin(x); ++l) {
int cl = l - visu.height()/2;
visu(x,l,0) = 10; visu(x,l,1) = 200 - cl; visu(x,l,2) = 255 - cl;
}
}
ymin(x) = std::min(ymin(x),y); ymax(x) = std::max(ymax(x),y);
}
}
visu.draw_text(5,5,"%u frames/s",white,0,0.5f,13,(unsigned int)disp.frames_per_second());
disp.resize(false).display(visu.cut(0,255)).wait(25);
if (disp.is_keyCTRLLEFT() && disp.is_keyF()) disp.resize(400,300,false).toggle_fullscreen(false);
}
return 0;
}
// Item : Plasma Effect with Sinus Scrolling.
//-------------------------------------------
void* item_plasma() {
CImg<float> plasma, camp(3), cfreq(3), namp(3), nfreq(3);
CImgList<unsigned char> font = CImgList<unsigned char>::font(53);
CImg<unsigned char> visu(400,300,1,3,0),
scroll(visu.width() + 2*font[(int)'W'].width(),font[(int)'W'].height(),1,1,0);
const char *text = " * The CImg Library : C++ Template Image Processing Toolkit *";
CImgDisplay disp(visu,"[#13] - Plasma Effect");
const unsigned char white[] = { 255, 255, 255 };
unsigned int cplasma = 0, pos = 0, tpos = 0, lwidth = 0;
float tx = 0, ts = 0, alpha = 2, beta = 0;
namp.fill(0).noise(visu.height()/4,0);
nfreq.fill(0).noise(0.1);
visu.draw_text(10,10,"Please wait, generating plasma...",white).display(disp);
const unsigned int nb_plasmas = 5;
plasma.assign(5*visu.width()/3,visu.height() + 1,1,nb_plasmas,0).noise(100).draw_plasma();
cimg_forC(plasma,k) plasma.get_shared_channel(k).blur((float)(cimg::rand()*6)).normalize(0,255);
while (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) {
if (alpha>1) {
alpha-=1;
cplasma = (cplasma + 1)%plasma.spectrum();
camp = namp;
cfreq = nfreq;
namp.fill(0).noise(100).normalize(0,visu.height()/4.0f);
nfreq.fill(0).noise(0.2);
}
const unsigned int
v0 = cplasma, v1 = (cplasma + 1)%plasma.spectrum(),
v2 = (cplasma + 2)%plasma.spectrum(), v3 = (cplasma + 3)%plasma.spectrum();
const float umalpha = 1 - alpha;
unsigned char *ptr_r = visu.data(0,0,0,0), *ptr_g = visu.data(0,0,0,1), *ptr_b = visu.data(0,0,0,2);
cimg_forY(visu,y) {
const float
*ptr_r1 = plasma.data((unsigned int)std::max(0.0f,camp(0)*(1.1f + std::sin(tx + cfreq(0)*y))),y,v0),
*ptr_g1 = plasma.data((unsigned int)std::max(0.0f,camp(1)*(1.1f + std::sin(tx + cfreq(1)*y))),y,v1),
*ptr_b1 = plasma.data((unsigned int)std::max(0.0f,camp(2)*(2.0f + std::sin(tx + cfreq(2)*y))),y,v2),
*ptr_r2 = plasma.data((unsigned int)std::max(0.0f,namp(0)*(1.1f + std::sin(tx + nfreq(0)*y))),y,v1),
*ptr_g2 = plasma.data((unsigned int)std::max(0.0f,namp(1)*(1.1f + std::sin(tx + nfreq(1)*y))),y,v2),
*ptr_b2 = plasma.data((unsigned int)std::max(0.0f,namp(2)*(2.0f + std::sin(tx + nfreq(2)*y))),y,v3);
cimg_forX(visu,x) {
*(ptr_r++) = (unsigned char)(umalpha*(*(ptr_r1++)) + alpha*(*(ptr_r2++)));
*(ptr_g++) = (unsigned char)(umalpha*(*(ptr_g1++)) + alpha*(*(ptr_g2++)));
*(ptr_b++) = (unsigned char)(umalpha*(*(ptr_b1++)) + alpha*(*(ptr_b2++)));
}
}
if (!pos) {
const CImg<unsigned char>& letter = font(text[tpos] + 256);
lwidth = (unsigned int)letter.width();
scroll.draw_image(visu.width(),letter);
(++tpos) %= std::strlen(text);
}
scroll.shift(-2);
if ((pos+=2)>lwidth + 2) pos = 0;
cimg_forX(visu,x) {
const int y0 = (int)(visu.height()/2 + visu.height()/4*std::sin(ts + x/(70 + 30*std::cos(beta))));
cimg_forY(scroll,y) if (scroll(x,y)) {
const unsigned int y1 = y0 + y + 2;
const unsigned int y2 = y1 - 6;
const float c = scroll(x,y)/255.0f;
cimg_forC(visu,k) {
visu(x,y1,k) = (unsigned char)(visu(x,y1,k)*0.7f);
visu(x,y2,k) = (unsigned char)(visu(x,y2,k)*(1 - c) + 254*c);
}
}
}
alpha+=0.007f; beta+=0.04f; tx+=0.09f; ts+=0.04f;
disp.resize(false).display(visu).wait(20);
if (disp.is_keyCTRLLEFT() && disp.is_keyF()) disp.resize(640,480,false).toggle_fullscreen(false);
}
return 0;
}
// Item : Oriented Convolutions
//------------------------------
void* item_oriented_convolutions() {
const CImg<unsigned char> img = CImg<float>(data_milla,211,242,1,3).RGBtoYCbCr().channel(0).noise(50,2);
CImgList<unsigned char> visu = (img,img,img);
CImg<float> mask(16,16);
const float value = 255;
CImgDisplay disp(visu,"[#14] - Original image, Oriented kernel and Convolved image");
for (float angle = 0; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); angle+=0.1f) {
const float ca = (float)std::cos(angle), sa = (float)std::sin(angle);
const CImg<float>
u = CImg<>::vector(ca,sa),
v = CImg<>::vector(-sa,ca),
tensor = 30.0*u*u.get_transpose() + 2.0*v*v.get_transpose();
mask.draw_gaussian(0.5f*mask.width(),0.5f*mask.height(),tensor,&value);
mask/=mask.sum();
visu[1] = mask.get_resize(img).normalize(0,255).
draw_text(2,2,"Angle = %d deg",&value,0,1,13,cimg::mod((int)(angle*180/cimg::PI),360));
visu[2] = img.get_convolve(mask);
disp.resize(disp.window_width(),(int)(disp.height()*disp.window_width()/disp.width()),false).
display(visu).wait(25);
}
return 0;
}
// Item : Shade Bobs
//-------------------
void* item_shade_bobs() {
float t = 100, rx = 0, ry = 0, rz = 0, rt = 0, rcx = 0;
CImg<unsigned char> img(512,512,1,1,0), palette;
CImgDisplay disp(img,"[#15] - Shade Bobs");
const unsigned char one = 1;
int nbbobs = 0, rybobs = 0;
while (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) {
if ((t+=0.015f)>4*cimg::PI) {
img.fill(0);
rx = (float)(cimg::rand(-1,1));
ry = (float)(cimg::rand(-1,1));
rz = (float)(cimg::rand(-1,1));
rt = (float)(cimg::rand(-1,1));
rcx = 0.6f*(float)(cimg::rand(-1,1));
t = 0;
palette = CImg<unsigned char>(3,4 + (int)(12*cimg::rand()),1,1,0).noise(255,2).resize(3,256,1,1,3);
palette(0) = palette(1) = palette(2) = 0;
nbbobs = 20 + (int)(cimg::rand()*80);
rybobs = (10 + (int)(cimg::rand()*50))*std::min(img.width(),img.height())/300;
}
for (int i = 0; i<nbbobs; ++i) {
const float
r = (float)(ry + rx*std::cos(6*rz*t) + (1 - rx)*std::sin(6*rt*t)),
a = (float)((360*std::sin(rz*t) + 30*ry*i)*cimg::PI/180),
ax = (float)(i*2*cimg::PI/nbbobs + t);
const int
cx = (int)((1 + rcx*std::cos(ax) + r*std::cos(a))*img.width()/2),
cy = (int)((1 + rcx*std::sin(ax) + r*std::sin(a))*img.height()/2);
img.draw_circle(cx,cy,rybobs,&one,-1.0f);
}
CImg_3x3(I,unsigned char); Ipp = Inp = Ipn = Inn = 0;
CImg<unsigned char> tmp(img);
cimg_for3x3(tmp,x,y,0,0,I,unsigned char) img(x,y) = (Inc + Ipc + Icn + Icp + (Icc<<2))>>3;
CImg<unsigned char> visu(img.width(),img.height(),1,3);
cimg_forXY(visu,xx,yy) {
const unsigned char *col = palette.data(0,img(xx,yy));
visu(xx,yy,0) = *(col++);
visu(xx,yy,1) = *(col++);
visu(xx,yy,2) = *(col++);
}
disp.display(visu).wait(25);
if (disp.is_keyCTRLLEFT() && disp.is_keyF()) disp.resize(640,480,false).toggle_fullscreen(false);
if (disp.is_resized()) img.resize(disp.resize(false),3);
if ((disp.key() && !disp.is_keyCTRLLEFT()) || disp.button()) {
t = 70; if (!(disp.is_keyQ() || disp.is_keyESC())) disp.set_key();
disp.set_button();
}
}
return 0;
}
// Item : Fourier Filtering
//-------------------------
void* item_fourier_filtering() {
const CImg<unsigned char> img = CImg<float>(data_milla,211,242,1,3).RGBtoYCbCr().channel(0).resize(256,256);
CImgList<float> F = img.get_FFT();
cimglist_apply(F,shift)(img.width()/2,img.height()/2,0,0,2);
const CImg<unsigned char> mag = ((F[0].get_pow(2) + F[1].get_pow(2)).sqrt() + 1).log().normalize(0,255);
CImgList<unsigned char> visu(img,mag);
CImgDisplay disp(visu,"[#16] - Fourier Filtering (Click to set filter)");
CImg<unsigned char> mask(img.width(),img.height(),1,1,1);
const unsigned char one[] = { 1 }, zero[] = { 0 }, white[] = { 255 };
int rmin = 0, rmax = 256;
while (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) {
disp.wait();
const int
xm = disp.mouse_x()*2*img.width()/disp.width() - img.width(),
ym = disp.mouse_y()*img.height()/disp.height(),
x = xm - img.width()/2,
y = ym - img.height()/2;
if (disp.button() && xm>=0 && ym>=0) {
const int r = (int)std::max(0.0f,(float)std::sqrt((float)x*x + y*y) - 3);
if (disp.button()&1) rmax = r;
if (disp.button()&2) rmin = r;
if (rmin>=rmax) rmin = std::max(rmax - 1,0);
mask.fill(0).draw_circle(mag.width()/2,mag.height()/2,rmax,one).
draw_circle(mag.width()/2,mag.height()/2,rmin,zero);
CImgList<float> nF(F);
cimglist_for(F,l) nF[l].mul(mask).shift(-img.width()/2,-img.height()/2,0,0,2);
visu[0] = nF.FFT(true)[0].normalize(0,255);
}
if (disp.is_resized()) disp.resize(disp.window_width(),disp.window_width()/2).display(visu);
visu[1] = mag.get_mul(mask).draw_text(5,5,"Freq Min/Max = %d / %d",white,zero,0.6f,13,(int)rmin,(int)rmax);
visu.display(disp);
}
return 0;
}
// Item : Image Zoomer
//---------------------
void* item_image_zoomer() {
const CImg<unsigned char> img = CImg<unsigned char>(data_logo,555,103,1,3,false);
CImgDisplay disp(img,"[#17] - Original Image"), dispz(500,500,"[#17] - Zoomed Image",0);
disp.move((CImgDisplay::screen_width() - dispz.width())/2,
(CImgDisplay::screen_height() - dispz.height() - disp.height())/2);
dispz.move(disp.window_x(),disp.window_y() + disp.window_height() + 40);
int factor = 20, x = 0, y = 0;
bool grid = false, redraw = false;
while (!disp.is_closed() && !dispz.is_closed() &&
!disp.is_keyQ() && !dispz.is_keyQ() && !disp.is_keyESC() && !dispz.is_keyESC()) {
if (disp.mouse_x()>=0) { x = disp.mouse_x(); y = disp.mouse_y(); redraw = true; }
if (redraw) {
const int
x0 = x - factor, y0 = y - factor,
x1 = x + factor, y1 = y + factor;
const unsigned char red[] = { 255, 0, 0 }, black[] = { 0, 0, 0 }, white[] = { 255, 255, 255 };
(+img).draw_rectangle(x0,y0,x1,y1,red,1.0f,~0U).display(disp);
CImg<unsigned char> visu = img.get_crop(x0,y0,x1,y1).draw_point(x - x0,y - y0,red,0.2f).resize(dispz);
if (grid) {
const int bfac = 2*factor + 1;
for (int i = 0; i<bfac; ++i) {
const int X = i*dispz.width()/bfac, Y = i*dispz.height()/bfac;
visu.draw_line(X,0,X,dispz.height() - 1,black).draw_line(0,Y,dispz.width() - 1,Y,black);
}
}
visu.draw_text(2,2,"Coords (%d,%d)",white,0,1,13,x,y).display(dispz);
}
if (disp.button()&1) {
factor = (int)(factor/1.5f);
if (factor<3) factor = 3;
disp.set_button(); redraw = true;
}
if (disp.button()&2) {
factor = (int)(factor*1.5f);
if (factor>100) factor = 100;
disp.set_button(); redraw = true;
}
if (disp.button()&4 || dispz.button()) { grid = !grid; disp.set_button(); dispz.set_button(); redraw = true; }
if (disp.is_resized()) disp.resize(disp);
if (dispz.is_resized()) { dispz.resize(); redraw = true; }
CImgDisplay::wait(disp,dispz);
}
return 0;
}
// Item : Blobs Editor
//--------------------
void* item_blobs_editor() {
CImg<unsigned int> img(300,300,1,3);
CImgList<unsigned int> colors;
CImgList<float> blobs;
CImgDisplay disp(img,"[#18] - Blobs Editor",0);
const unsigned int white[] = { 255, 255, 255 };
bool moving = false;
for (float alpha = 0; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); alpha+=0.1f) {
const int xm = disp.mouse_x()*img.width()/disp.width(), ym = disp.mouse_y()*img.height()/disp.height();
int selected = -1;
img.fill(0);
if (blobs) {
float dist = 0, dist_min = (float)img.width()*img.width() + img.height()*img.height();
cimglist_for(blobs,l) {
const CImg<float>& blob = blobs[l];
const float
xb = blob[0], yb = blob[1], rb = blob[2],
sigma = (float)(rb*(1 + 0.05f*std::cos(blob[3]*alpha))),
sigma2 = 2*sigma*sigma, precision = 4.5f*sigma2;
const int
tx0 = (int)(xb - 3*sigma),
ty0 = (int)(yb - 3*sigma),
tx1 = (int)(xb + 3*sigma),
ty1 = (int)(yb + 3*sigma);
const unsigned int
col1 = colors[l](0), col2 = colors[l](1), col3 = colors[l](2), wh = img.width()*img.height(),
x0 = tx0<0?0:tx0, y0 = ty0<0?0:ty0,
x1 = tx1>=img.width()?img.width() - 1:tx1, y1 = ty1>=img.height()?img.height() - 1:ty1;
float dy = y0 - yb;
unsigned int *ptr = img.data(x0,y0);
for (unsigned int y = y0; y<=y1; ++y) {
float dx = x0 - xb;
for (unsigned int x = x0; x<=x1; ++x) {
float _dist = dx*dx + dy*dy;
if (_dist<precision) {
const float val = (float)std::exp(-_dist/sigma2);
*ptr+=(unsigned int)(val*col1);
*(ptr + wh)+=(unsigned int)(val*col2);
*(ptr + 2*wh)+=(unsigned int)(val*col3);
}
++dx; ++ptr;
}
ptr+=img.width() - (x1 -x0) - 1;
++dy;
}
if ((dist = (xb - xm)*(xb - xm) + (yb - ym)*(yb - ym))<dist_min) { dist_min = dist; selected = l; }
}
for (unsigned int *ptr1 = img.data(0,0,0,1), *ptr2 = img.data(0,0,0,2), *ptr3 = img.end(),
off = 0, wh = img.width()*img.height(); ptr1>img.data(); ++off) {
unsigned int val1 = *(--ptr1), val2 = *(--ptr2), val3 = *(--ptr3);
const unsigned int pot = val1*val1 + val2*val2 + val3*val3;
if (pot<128*128) { *ptr1 = *ptr3 = 255*off/wh; *ptr2 = 180*off/wh; }
else {
if (pot<140*140) { *ptr1 >>= 1; *ptr2 >>= 1; *ptr3 >>= 1; }
else {
*ptr1 = val1<255?val1:255;
*ptr2 = val2<255?val2:255;
*ptr3 = val3<255?val3:255;
}
}
}
cimglist_for(blobs,ll) {
const CImg<float>& blob = blobs[ll];
const int
rb = (int)(blob[2]*(1 + 0.05f*std::cos(blob[3]*alpha))),
xb = (int)(blob[0] + rb/2.5f),
yb = (int)(blob[1] - rb/2.5f);
img.draw_circle(xb,yb,rb>>1,white,0.2f).draw_circle(xb,yb,rb/3,white,0.2f).
draw_circle(xb,yb,rb/5,white,0.2f);
}
} else {
CImg<unsigned int> text;
text.draw_text(0,0,
"CImg Blobs Editor\n"
"-----------------------\n\n"
"* Left mouse button :\n Create and Move Blob.\n\n"
"* Right mouse button :\n Remove nearest Blob.\n\n"
"* Colors and size of Appearing Blobs\n"
" are randomly chosen.\n\n\n"
" >> Press mouse button to start ! <<",
white).resize(-100,-100,1,3);
img.fill(100).draw_image((img.width() - text.width())/2,
(img.height() - text.height())/2,
text,text,1,255U);
}
if (disp.mouse_x()>=0 && disp.mouse_y()>=0) {
if (disp.button()&1) {
float dist_selected = 0;
if (selected>=0) {
const float a = xm - blobs[selected](0), b = ym - blobs[selected](1), c = blobs[selected](2);
dist_selected = a*a + b*b - c*c;
}
if (moving || dist_selected<0) { blobs[selected](0) = (float)xm; blobs[selected](1) = (float)ym; }
else {
blobs.insert(CImg<>::vector((float)xm,(float)ym,(float)(10 + 30*cimg::rand()),(float)(3*cimg::rand())));
colors.insert(CImg<>(3).fill(0).noise(255,1).normalize(0,255));
}
moving = true;
} else moving = false;
if (selected>=0 && disp.button()&2) { blobs.remove(selected); colors.remove(selected); disp.set_button(); }
}
img.display(disp.wait(25));
if (disp.is_resized()) {
img.resize(disp.resize(false));
cimglist_for(blobs,l) if (blobs[l](0)>=img.width() || blobs[l](1)>=img.height()) {
blobs.remove(l); colors.remove(l--);
}
}
}
return 0;
}
// Item : Double Torus
//---------------------
void* item_double_torus() {
CImg<unsigned char> visu(300,256,1,3,0);
CImgDisplay disp(visu,"[#19] - Double 3D Torus");
CImgList<unsigned int> primitives;
CImg<float>
points = CImg<>::torus3d(primitives,60,20),
points2 = CImg<>::rotation_matrix(1,0,0,90)*points;
CImgList<unsigned char> colors(2*primitives.size(),CImg<unsigned char>::vector(255,255,0));
cimglist_for(primitives,ll) colors[ll++].fill(100,255,100);
cimglist_for(primitives,l)
if (l%2) colors[primitives.size() + l].fill(255,200,255); else colors[primitives.size() + l].fill(200,150,255);
const CImg<float> opacities = CImg<>(primitives.size(),1,1,1,1.0f).append(CImg<>(primitives.size(),1,1,1,0.4f));
points.shift_object3d(-30,0,0).append_object3d(primitives,points2.shift_object3d(30,0,0),primitives);
float alpha = 0, beta = 0, gamma = 0, theta = 0;
while (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) {
visu.get_shared_channels(1,2).fill(0);
visu.get_shared_row(visu.height() - 1,0,0).noise(200,1);
CImg_3x3(I,unsigned char); Ipp = Icp = Inp = Ipc = Inc = 0;
cimg_for3x3(visu,x,y,0,0,I,unsigned char) visu(x,y,0) = (Icc + Ipn + Icn + Inn)>>2;
for (unsigned int y = 0; y<100; ++y) std::memset(visu.data(0,y,0,2),255 - y*255/100,visu.width());
const CImg<float>
rpoints = CImg<>::rotation_matrix(1,1,0,(alpha+=1))*CImg<>::rotation_matrix(1,0,1,(beta-=2))*
CImg<>::rotation_matrix(0,1,1,(gamma+=3))*points;
if (disp.is_resized()) disp.resize(false);
if (disp.is_keyCTRLLEFT() && disp.is_keyF()) disp.resize(300,256,false).toggle_fullscreen(false);
visu.draw_object3d(visu.width()/2.0f,visu.height()/2.0f,0,
rpoints,primitives,colors,opacities,4,
false,500.0f,(float)(std::cos(theta+=0.01f) + 1)*visu.width()/2.0f,
(float)visu.height(),-100.0f,0.1f,1.5f).
display(disp.wait(25));
}
return 0;
}
// Item : 3D Metaballs
//---------------------
struct metaballs3d {
float cx1, cy1, cz1, cx2, cy2, cz2, cx3, cy3, cz3;
inline float operator()(const float x, const float y, const float z) const {
const float
x1 = x - cx1, y1 = y - cy1, z1 = z - cz1,
x2 = x - cx2, y2 = y - cy2, z2 = z - cz2,
x3 = x - cx3, y3 = y - cy3, z3 = z - cz3,
r1 = 0.3f*(x1*x1 + y1*y1 + z1*z1),
r2 = 0.4f*(x2*x2 + y2*y2 + z2*z2),
r3 = 0.5f*(x3*x3 + y3*y3 + z3*z3);
float potential = 0;
if (r1<1.3f) potential+= 1.0f - r1*(r1*(4*r1 + 17) - 22)/9;
if (r2<1.3f) potential+= 1.0f - r2*(r2*(4*r2 + 17) - 22)/9;
if (r3<1.3f) potential+= 1.0f - r3*(r3*(4*r3 + 17) - 22)/9;
return potential;
}
};
void* item_3d_metaballs() {
CImg<unsigned char> img = CImg<unsigned char>(100,100,1,3,0).noise(100,2).draw_plasma(1,0,10).
resize(512,320,1,3).blur(4);
img.get_shared_channel(2)/=4; img.get_shared_channel(1)/=2;
metaballs3d met;
CImgList<unsigned int> primitives;
CImgList<unsigned char> colors;
const unsigned char white[] = { 255,255,255 };
float alpha = 0, beta = 0, delta = 0, theta = 0, gamma = 0;
CImgDisplay disp(img,"[#20] - 3D Metaballs");
while (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) {
met.cx2 = 1.5f*(float)std::cos(theta); met.cy2 = 2.5f*(float)std::sin(3*(theta+=0.017f)); met.cz2 = 0;
met.cx1 = 0; met.cy1 = 2.0f*(float)std::sin(4*gamma); met.cz1 = 1.2f*(float)std::cos(2*(gamma-=0.0083f));
met.cx3 = 2.5f*(float)std::cos(2.5*delta); met.cy3 = 0; met.cz3 = 1.5f*(float)std::sin(2*(delta+=0.0125f));
const CImg<float>
points = CImg<>::isosurface3d(primitives,met,0.8f,-4.5f,-4.5f,-3.5f,4.5f,4.5f,3.5f,24,24,24),
rot = 50.0*CImg<>::rotation_matrix(0,0,1,(alpha+=2))*CImg<>::rotation_matrix(1,1,0,(beta+=5.6f)),
rpoints = rot*points;
primitives.reverse_object3d();
if (colors.size()<primitives.size()) colors.assign(primitives.size(),1,3,1,1);
cimglist_for(primitives,ll) {
colors(ll,0) = (unsigned char)(-60 + 191 + 64*ll/primitives.size());
colors(ll,1) = (unsigned char)(-30 + 191 + 64*ll/primitives.size());
colors(ll,2) = (unsigned char)(255*ll/primitives.size());
}
if (primitives.size()) {
(+img).draw_object3d(img.width()/2.0f,img.height()/2.0f,0.0f,
rpoints,primitives,
colors.get_shared_images(0,primitives.size() - 1),
4,false,500, 0,0,-500, 0.1f,1.5f).
draw_text(5,5,"%u frames/s",white,0,0.5f,13,(unsigned int)disp.frames_per_second()).display(disp.wait(20));
}
if (disp.is_resized()) disp.resize(false);
if (disp.is_keyCTRLLEFT() && disp.is_keyF()) disp.resize(512,320,false).toggle_fullscreen(false);
}
return 0;
}
// Item : Fireworks
//------------------
void* item_fireworks() {
CImg<unsigned char> img(640,480,1,3,0);
CImgDisplay disp(img,"[#21] - Fireworks (Click to add/explode rockets)");
CImgList<unsigned char> colors;
const unsigned char white[] = { 255,255,255 }, red[] = { 128,0,0 };
CImgList<float> particles;
float time = 0, speed = 100.0f;
while (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) {
if (disp.button()&1 || !particles.size() || (--time)<0) {
particles.insert(CImg<>::vector((float)cimg::rand()*img.width(),(float)img.height(),
(float)cimg::rand(-1,1)*4,-6 - (float)cimg::rand()*3,
30 + 60*(float)cimg::rand(),3));
colors.insert(CImg<unsigned char>::vector(255,255,255));
time = (float)(cimg::rand()*speed);
}
img*=0.92f;
cimglist_for(particles,l) {
bool remove_particle = false;
float &x = particles(l,0), &y = particles(l,1), &vx = particles(l,2), &vy = particles(l,3),
&t = particles(l,4), &r = particles(l,5);
const float r2 = (t>0 || t<-42)?r/3:r*(1 - 2*(-(t + 2)/40.0f)/3);
img.draw_ellipse((int)x,(int)y,r,r2,(float)(std::atan2(vy,vx)*180/cimg::PI),colors[l].data(),0.6f);
x+=vx; y+=vy; vy+=0.09f; t--;
if (y>img.height() + 10 || x<0 || x>=img.width() + 10) remove_particle = true;
if (t<0 && t>=-1) {
if ((speed*=0.9f)<10) speed=10.0f;
const unsigned char
cr = (unsigned char)std::min(50 + 3*(unsigned char)(100*cimg::rand()), 255),
cg = (unsigned char)std::min(50 + 3*(unsigned char)(100*cimg::rand()), 255),
cb = (unsigned char)std::min(50 + 3*(unsigned char)(100*cimg::rand()), 255);
const float di = 10 + (float)cimg::rand()*60, nr = (float)cimg::rand()*30;
for (float i=0; i<360; i+=di) {
const float rad = i*(float)cimg::PI/180, c = (float)std::cos(rad), s = (float)std::sin(rad);
particles.insert(CImg<>::vector(x,y,2*c + vx/1.5f,2*s + vy/1.5f,-2.0f,nr));
colors.insert(CImg<unsigned char>::vector(cr,cg,cb));
}
remove_particle = true;
} else if (t<-1) { r*=0.95f; if (r<0.5f) remove_particle=true; }
if (remove_particle) { particles.remove(l); colors.remove(l); l--; }
}
if (disp.button()&2) cimglist_for(particles,l) if (particles(l,4)>0) particles(l,4)=0.5f;
img.draw_text(5,5," %u frames/s ",white,red,0.5f,13,(unsigned int)disp.frames_per_second());
disp.display(img).wait(25);
if (disp.is_keyCTRLLEFT() && disp.is_keyF()) disp.resize(640,480,false).toggle_fullscreen(false);
if (disp.is_resized()) disp.resize(disp,false);
}
return 0;
}
// Item : Rubber Logo
//--------------------
void* item_rubber_logo() {
const unsigned char white[] = { 255,255,255 };
CImg<unsigned char> background = CImg<unsigned char>(300,300).noise(100,2);
background(0,0) = background(299,0) = background(299,299) = background(0,299) = 0;
background.draw_plasma().blur(1.0f,14.0f,0.0f,0).resize(-100,-100,1,3);
CImgDisplay disp(CImg<unsigned char>(background).
draw_text(10,10,"Please wait, generating rubber object...",white),"[#22] - 3D Rubber Logo");
CImg<unsigned char> vol = CImg<unsigned char>().draw_text(30,30,"CImg",white,0,1,57).resize(-100,-100,15,1);
for (unsigned int k = 0; k<5; ++k) { vol.get_shared_slice(k).fill(0); vol.get_shared_slice(vol.depth()-1-k).fill(0); }
vol.resize(vol.width() + 30,vol.height() + 30,-100,1,0).blur(2).resize(-50,-50);
CImgList<unsigned int> faces;
CImg<float> points = vol.get_isosurface3d(faces,45);
CImgList<unsigned int> colors(faces.size(),CImg<unsigned char>::vector(100,100,255));
cimglist_for(colors,l) {
const float x = (points(faces(l,0),0) + points(faces(l,1),0) + points(faces(l,2),0))/3;
if (x<30.3) colors[l] = CImg<unsigned char>::vector(255,100,100);
else { if (x<34.6) colors[l] = CImg<unsigned char>::vector(200,155,100);
else { if (x<55.5) colors[l] = CImg<unsigned char>::vector(100,255,155);
}}}
faces.reverse_object3d();
points.shift_object3d()*=5.5f;
CImgList<unsigned char> frames(100,background);
bool ok_visu = false;
unsigned int nb_frame = 0;
float alpha = 0, beta = 0, gamma = 0;
while (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) {
CImg<unsigned char>& frame = frames[nb_frame++];
if (nb_frame>=frames.size()) { ok_visu = true; nb_frame = 0; }
const CImg<float>
rot = CImg<>::rotation_matrix(0,1,0.2f,alpha+=1.1f)*
CImg<>::rotation_matrix(1,0.4f,1,beta+=1.5f)*
(1 + 0.1f*std::cos((double)(gamma+=0.1f)));
(frame=background).draw_object3d(frame.width()/2.0f,frame.height()/2.0f,frame.depth()/2.0f,
rot*points,faces,colors,5,false,500,0,0,-5000,0.1f,1.0f);
if (ok_visu) {
CImg<unsigned char> visu(frame);
cimglist_for(frames,l) {
const unsigned int
y0 = l*visu.height()/frames.size(),
y1 = (l + 1)*visu.height()/frames.size() - 1;
cimg_forC(visu,k)
visu.get_shared_rows(y0,y1,0,k) = frames[(nb_frame + l)%frames.size()].get_shared_rows(y0,y1,0,k);
}
visu.get_resize(disp,1).draw_text(5,5," %u frames/s ",white,0,0.5f,13,(unsigned int)disp.frames_per_second()).
display(disp.wait(20));
}
if (disp.is_keyCTRLLEFT() && disp.is_keyF()) disp.resize(300,300,false).toggle_fullscreen(false);
if (disp.is_resized()) disp.resize();
}
return 0;
}
// Item : Image Waves
//--------------------
void* item_image_waves() {
const CImg<unsigned char> img = CImg<unsigned char>(data_milla,211,242,1,3,false).get_resize(128,128,1,3);
CImgList<unsigned int> faces0;
CImgList<unsigned char> colors0;
const CImgList<float>
points0 = (img.get_elevation3d(faces0,colors0,img.get_channel(0).fill(0)).shift_object3d()*=3)<'x',
opacities0(faces0.size(),1,1,1,1,1.0f);
CImg<unsigned char>
back = CImg<unsigned char>(400,300,1,3).sequence(0,130),
ball = CImg<unsigned char>(12,12,1,3,0).draw_circle(6,6,5,CImg<unsigned char>::vector(0,128,64).data());
const CImg<float> mball = CImg<>(12,12,1,1,0).draw_circle(6,6,5,CImg<>::vector(1.0f).data());
ball.draw_circle(7,5,4,CImg<unsigned char>::vector(16,96,52).data()).
draw_circle(8,4,2,CImg<unsigned char>::vector(0,128,64).data()).
draw_circle(8,4,1,CImg<unsigned char>::vector(64,196,128).data());
CImg<float> uc(img.width()/2,img.height()/2,1,1,0), up(uc), upp(uc);
CImgList<float> particles;
CImgDisplay disp(back,"[#23] - Image Waves (Try mouse buttons!)");
for (float alpha = 0.0f, count = 10.0f; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); ) {
if ((disp.button()&1 && disp.mouse_x()>=0) || --count<0) {
CImg<>::vector((float)(cimg::rand()*(img.width() - 1)),(float)(cimg::rand()*(img.height() - 1)),-200,0).
move_to(particles);
count = (float)(cimg::rand()*15);
}
alpha = (disp.mouse_x()>=0 && disp.button()&2)?(float)(disp.mouse_x()*2*180/disp.width()):(alpha + 2);
if (disp.is_keyCTRLLEFT() && disp.is_keyF()) disp.resize(400,300,false).toggle_fullscreen(false);
cimglist_for(particles,l) {
float& z = up((int)particles(l,0)>>1,(int)particles(l,1)>>1);
if ((particles(l,2)+=(particles(l,3)+=0.5f))>z-10) { z = 250.0f; particles.remove(l--); }
}
CImg_3x3(U,float); Upp = Unp = Ucc = Upn = Unn = 0;
cimg_for3x3(up,x,y,0,0,U,float) uc(x,y) = (Unc + Upc + Ucn + Ucp)/2 - upp(x,y);
(uc-=(float)(uc.blur(0.7f).mean())).swap(upp).swap(up);
CImgList<float> points(points0);
CImgList<unsigned int> faces(faces0);
CImgList<unsigned char> colors(colors0);
CImgList<float> opacities(opacities0);
cimglist_for(points,p)
points(p,2) = std::min(30 + uc.linear_atXY((p%img.width())/2.0f,(p/img.width())/2.0f),70.0f);
cimglist_for(particles,l) {
points.insert(CImg<>::vector(3*(particles(l,0) - img.width()/2.0f),3*(particles(l,1) - img.height()/2.0f),30.0f +
particles(l,2)));
faces.insert(CImg<unsigned int>::vector(points.size() - 1));
colors.insert(ball,~0U,true);
opacities.insert(mball,~0U,true);
}
const CImg<float>
rot = CImg<>::rotation_matrix(1.0f,0,0,-60)*CImg<>::rotation_matrix(0,0,1.0f,-alpha),
rpoints = rot*(points>'x');
(+back).draw_object3d(back.width()/2.0f,back.height()/2.0f,0,rpoints,faces,colors,opacities,4,false,
500.0f,0,0,0,1,1).display(disp.resize(false).wait(30));
}
return 0;
}
// Item : Breakout
//-----------------
void* item_breakout() {
// Init graphics
CImg<unsigned char>
board(8,10,1,1,0),
background = CImg<unsigned char>(board.width()*32,board.height()*16 + 200,1,3,0).noise(20,1).
draw_plasma().blur(1,8,0,true),
visu0(background/2.0), visu(visu0), brick(16,16,1,1,200), racket(64,8,1,3,0), ball(8,8,1,3,0);
const unsigned char white[] = { 255,255,255 }, green1[] = { 60,150,30 }, green2[] = { 130,255,130 };
cimg_for_borderXY(brick,x,y,1) brick(x,y) = x>y?255:128;
cimg_for_insideXY(brick,x,y,1) brick(x,y) = (unsigned char)std::min(255,64 + 8*(x + y));
brick.resize(31,15,1,1,1).resize(32,16,1,1,0);
ball.draw_circle(4,4,2,white); ball-=ball.get_erode(3)/1.5;
racket.draw_circle(4,3,4,green1).draw_circle(3,2,2,green2);
cimg_forY(racket,y)
racket.draw_rectangle(4,y,racket.width() - 7,y,
CImg<unsigned char>::vector((unsigned char)(y*4),
(unsigned char)(255 - y*32),
(unsigned char)(255 - y*25)).data());
racket.draw_image(racket.width()/2,racket.get_crop(0,0,racket.width()/2 - 1,racket.height() - 1).mirror('x'));
const int
w = visu.width(), h = visu.height(), w2 = w/2, h2 = h/2,
bw = ball.width(), bh = ball.height(), bw2 = bw/2, bh2 = bh/2,
rw = racket.width(), rh = racket.height(), rw2 = rw/2;
float xr = (float)(w - rw2), oxr = (float)xr, xb = 0, yb = 0, oxb = 0, oyb = 0, vxb = 0, vyb = 0;
const CImg<unsigned char>
racket_mask = racket.get_threshold(1).channel(1),
ball_mask = ball.get_threshold(1).channel(1);
// Begin game loop
CImgDisplay disp(visu,"[#24] - Breakout");
disp.move((CImgDisplay::screen_width() - w)/2,(CImgDisplay::screen_height() - h)/2);
for (unsigned int N = 0, N0 = 0; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); ) {
if (N0) {
int X = (int)xr;
if (disp.mouse_x()>=0) X = (int)(w2 + ((disp.mouse_x()<0?w2:disp.mouse_x()) - w2)*2);
else disp.set_mouse(xr>w2?w - 81:80,h2);
if (X<rw2) { X = rw2; disp.set_mouse(80,h2); }
if (X>=w - rw2) { X = w - rw2 - 1; disp.set_mouse(w - 81,h2); }
oxr = xr; xr = (float)X; oxb = xb; oyb = yb; xb+=vxb; yb+=vyb;
if ((xb>=w - bw2) || (xb<bw2)) { xb-=vxb; yb-=vyb; vxb=-vxb; }
if (yb<bh2) { yb = (float)bh2; vyb=-vyb; }
if (yb>=h - rh - 8 - bh2 && yb<h - 8 - bh2 && xr - rw2<=xb && xr + rw2>=xb) {
xb = oxb; yb = h - rh - 8.0f - bh2; vyb=-vyb; vxb+=(xr - oxr)/4;
if (cimg::abs(vxb)>8) vxb*=8/cimg::abs(vxb);
}
if (yb<board.height()*16) {
const int cX = (int)xb/32, cY = (int)yb/16;
if (board(cX,cY)) {
board(cX,cY) = 0;
++N;
const unsigned int
x0 = cX*brick.width(), y0 = cY*brick.height(),
x1 = (cX + 1)*brick.width() - 1, y1 = (cY + 1)*brick.height() - 1;
visu0.draw_image(x0,y0,background.get_crop(x0,y0,x1,y1));
if (oxb<(cX<<5) || oxb>=((cX + 1)<<5)) vxb=-vxb;
else if (oyb<(cY<<4) || oyb>=((cY + 1)<<4)) vyb=-vyb;
}
}
disp.set_title("[#24] - Breakout : %u/%u",N,N0);
}
if (yb>h || N==N0) {
disp.show_mouse();
while (!disp.is_closed() && !disp.key() && !disp.button()) {
((visu=visu0)/=2).draw_text(50,visu.height()/2 - 10,N0?" Game Over !":"Get Ready ?",white,0,1,24).
display(disp);
disp.wait();
if (disp.is_resized()) disp.resize(disp);
}
board.fill(0); visu0 = background;
cimg_forXY(board,x,y) if (0.2f + cimg::rand(-1,1)>=0) {
CImg<float> cbrick = CImg<double>::vector(100 + cimg::rand()*155,100 + cimg::rand()*155,100 + cimg::rand()*155).
unroll('v').resize(brick.width(),brick.height());
cimg_forC(cbrick,k) (cbrick.get_shared_channel(k).mul(brick))/=255;
visu0.draw_image(x*32,y*16,cbrick);
board(x,y) = 1;
}
N0 = (int)board.sum(); N = 0;
oxb = xb = (float)w2; oyb = yb = board.height()*16.0f + bh; vxb = 2.0f; vyb = 3.0f;
disp.hide_mouse();
} else disp.display((visu=visu0).draw_image((int)(xr - rw2),h - rh - 8,racket,racket_mask).
draw_image((int)(xb - bw2),(int)(yb - bh2),ball,ball_mask));
if (disp.is_resized()) disp.resize(disp);
disp.wait(20);
}
return 0;
}
// Item : 3D Reflection
//----------------------
void* item_3d_reflection() {
// Init images and display
CImgDisplay disp(512,512,"[#25] - 3D Reflection",0);
CImg<unsigned char> back = CImg<unsigned char>(200,400,1,3,0).rand(0,255).draw_plasma();
((back,back.get_mirror('x'),back)>'x').blur(15,1,0,true).columns(100,499).normalize(0,120).move_to(back);
CImg<unsigned char>
light0 = back.get_resize(-50,-50,1,1).normalize(1,255),
visu(back),
reflect(back.width(),back.height(),1,1),
light(light0);
back.get_shared_channel(0)/=3;
back.get_shared_channel(2)/=2;
// Create 3D objects.
CImgList<unsigned int> back_faces, main_faces;
CImgList<unsigned char> main_colors, back_colors, light_colors, light_colors2;
CImgList<float> back_pts0, main_pts = CImg<>::torus3d(main_faces,30,12,24,12)<'x';
cimglist_for(main_faces,l)
if (l%2) CImg<unsigned char>::vector(255,120,16).move_to(main_colors);
else CImg<unsigned char>::vector(255,100,16).move_to(main_colors);
const unsigned int res1 = 32, res2 = 32;
for (unsigned int v = 1; v<res2; ++v) for (unsigned int u = 0; u<res1; ++u) {
const float
alpha = (float)(u*2*cimg::PI/res1), beta = (float)(-cimg::PI/2 + v*cimg::PI/res2),
x = (float)(std::cos(beta)*std::cos(alpha)),
y = (float)(std::cos(beta)*std::sin(alpha)),
z = (float)(std::sin(beta));
back_pts0.insert(CImg<>::vector(x,y,z));
}
const unsigned int N = back_pts0.size();
back_pts0.insert(CImg<>::vector(0,0,-140)).insert(CImg<>::vector(0,0,140));
CImg<float> back_pts = back_pts0>'x';
for (unsigned int vv = 0; vv<res2 - 2; ++vv) for (unsigned int uu = 0; uu<res1; ++uu) {
const int nv = (vv + 1)%(res2 - 1), nu = (uu + 1)%res1;
back_faces.insert(CImg<unsigned int>::vector(res1*vv + nu,res1*nv + uu,res1*vv + uu));
back_faces.insert(CImg<unsigned int>::vector(res1*vv + nu,res1*nv + nu,res1*nv + uu));
back_colors.insert(CImg<unsigned char>::vector(128,255,255));
back_colors.insert(CImg<unsigned char>::vector(64,240,196));
}
for (unsigned int uu = 0; uu<res1; ++uu) {
const int nu = (uu + 1)%res1;
back_faces.insert(CImg<unsigned int>::vector(nu,uu,N));
back_faces.insert(CImg<unsigned int>::vector(res1*(res2 - 2) + nu, N + 1,res1*(res2 - 2) + uu));
if (uu%2) back_colors.insert(2,CImg<unsigned char>::vector(128,255,255));
else back_colors.insert(2,CImg<unsigned char>::vector(64,240,196));
}
light_colors.assign(main_faces.size(),CImg<unsigned char>::vector(255));
light_colors2.assign(back_faces.size(),CImg<unsigned char>::vector(255)).insert(light,~0U,true);
// Start 3D animation.
for (float main_x = -1.5f*visu.width(),
back_alpha = 0, back_beta = 0, back_theta = -3.0f,
main_alpha = 0, main_beta = 0, main_theta = 0;
!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC();
main_alpha+=2.1f, main_beta+=3.3f, main_theta+=0.02f,
back_alpha+=0.31f, back_beta+=0.43f, back_theta+=0.01f) {
const int
main_X = (int)(visu.width()/2 + main_x + 100*std::cos(2.1*main_theta)),
main_Y = (int)(visu.height()/2 + 120*std::sin(1.8*main_theta));
CImg<float>
rmain_pts = (CImg<>::rotation_matrix(-1,1,0,main_alpha)*CImg<>::rotation_matrix(1,0,1,main_beta))*(main_pts>'x'),
rback_pts = (CImg<>::rotation_matrix(1,1,0,back_alpha)*CImg<>::rotation_matrix(0.5,0,1,back_beta))*back_pts;
(light=light0).draw_object3d(main_X/2.0f,main_Y/2.0f,0,rmain_pts,main_faces,light_colors,3,false,
500,0,0,-5000,0.2f,0.1f);
reflect.fill(0).draw_object3d(2*visu.width()/3.0f,visu.height()/2.0f,0,rback_pts,back_faces,light_colors2,5,false,
500,0,0,-5000,0.2f,0.1f);
rmain_pts*=2;
(visu=back).draw_object3d(2*visu.width()/3.0f,visu.height()/2.0f,0,rback_pts,back_faces,back_colors,3,false,
500,0,0,-5000,0.2f,0.1f);
unsigned char
*ptrs = reflect.data(),
*ptrr = visu.data(0,0,0,0),
*ptrg = visu.data(0,0,0,1),
*ptrb = visu.data(0,0,0,2);
cimg_foroff(reflect,xy) {
const unsigned char v = *(ptrs++);
if (v) { *ptrr = (*ptrr+v)>>1; *ptrg = (*ptrr+v)>>1; *ptrb = (*ptrb+v)>>1; }
++ptrr; ++ptrg; ++ptrb;
}
visu.draw_object3d((float)main_X,(float)main_Y,0,rmain_pts,main_faces,main_colors,4,
false,500,0,0,-5000,0.1f,1.4f);
if (disp.is_resized()) {
const int s = std::min(disp.window_width(),disp.window_height());
disp.resize(s,s,false);
}
if (disp.is_keyCTRLLEFT() && disp.is_keyF()) disp.resize(512,512,false).toggle_fullscreen(false);
disp.display(visu).wait(20);
back.shift(4,0,0,0,2);
light0.shift(-2,0,0,0,2);
if (main_x<0) main_x +=2;
const float H = back_theta<0?0.0f:(float)(0.3f - 0.3f*std::cos(back_theta));
for (unsigned int p = 0, v = 1; v<res2; ++v) for (unsigned int u = 0; u<res1; ++u) {
const float
alpha = (float)(u*2*cimg::PI/res1), beta = (float)(-cimg::PI/2 + v*cimg::PI/res2),
x = back_pts0(p,0), y = back_pts0(p,1), z = back_pts0(p,2),
altitude = 140*(float)cimg::abs(1 + H*std::sin(3*alpha)*std::cos(5*beta));
back_pts(p,0) = altitude*x; back_pts(p,1) = altitude*y; back_pts(p,2) = altitude*z;
++p;
}
}
return 0;
}
// Item : Fish-Eye Magnification
//------------------------------
void* item_fisheye_magnification() {
const unsigned char purple[] = { 255, 0, 255 }, white[] = { 255, 255, 255 }, black[] = { 0, 0, 0 };
const CImg<unsigned char> img0 = CImg<unsigned char>(data_logo,555,103,1,3,true).get_resize(-144,-144,1,3,6);
CImgDisplay disp(img0,"[#26] - Fish-Eye Magnification");
int rm = 80, xc = 0, yc = 0, rc = 0;
CImg<unsigned char> img, res;
for (float alpha = 0; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); alpha+=0.02f) {
if (!img) img = img0.get_resize(disp,3);
if (disp.mouse_x()>=0) { xc = disp.mouse_x(); yc = disp.mouse_y(); rc = rm; }
else {
xc = (int)(img.width()*(1 + 0.9f*std::cos(1.2f*alpha))/2);
yc = (int)(img.height()*(1 + 0.8f*std::sin(3.4f*alpha))/2);
rc = (int)(90 + 60*std::sin(alpha));
}
const int x0 = xc - rc, y0 = yc - rc, x1 = xc + rc, y1 = yc + rc;
res = img;
cimg_for_inXY(res,x0,y0,x1,y1,x,y) {
const float X = (float)x - xc, Y = (float)y - yc, r2 = X*X + Y*Y, rrc = (float)std::sqrt(r2)/rc;
if (rrc<1) {
const int xi = (int)(xc + rrc*X), yi = (int)(yc + rrc*Y);
res(x,y,0) = img(xi,yi,0); res(x,y,1) = img(xi,yi,1); res(x,y,2) = img(xi,yi,2);
}
}
const int xf = xc + 3*rc/8, yf = yc - 3*rc/8;
res.draw_circle(xc,yc,rc,purple,0.2f).draw_circle(xf,yf,rc/3,white,0.2f).draw_circle(xf,yf,rc/5,white,0.2f).
draw_circle(xf,yf,rc/10,white,0.2f).draw_circle(xc,yc,rc,black,0.7f,~0U);
disp.display(res).wait(20);
rm+=(disp.button()&1?8:(disp.button()&2?-8:0));
rm = rm<30?30:(rm>200?200:rm);
if (disp.is_resized()) { disp.resize(false); img.assign(); }
}
return 0;
}
// Item : Word Puzzle
//--------------------
void* item_word_puzzle() {
// Create B&W and color letters
CImg<unsigned char> model(60,60,1,3,0), color(3), background, canvas, elaps;
CImgList<unsigned char> letters('Z' - 'A' + 1), cletters(letters);
const unsigned char white[] = { 255, 255, 255 }, gray[] = { 128, 128, 128 }, black[] = { 0, 0, 0 };
char tmptxt[] = { 'A',0 };
model.fill(255).draw_rectangle(5,5,54,54,gray).blur(3,0).threshold(140).normalize(0,255);
cimglist_for(letters,l)
(letters[l].draw_text(5,2,&(tmptxt[0]=(char)('A' + l)),white,0,1,57).resize(60,60,1,1,0,0,0.5,0.5).
resize(-100,-100,1,3)|=model).blur(0.5);
{ cimglist_for(cletters,l) {
CImg<int> tmp = letters[l];
color.rand(100,255);
cimg_forC(tmp,k) (tmp.get_shared_channel(k)*=color[k])/=255;
cletters[l] = tmp;
}}
CImgDisplay disp(500,400,"[#27] - Word Puzzle",0);
while (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) {
// Create background, word data and display.
background.assign(40,40,1,2,0).noise(30,2).distance(255).normalize(0,255).resize(500,400,1,3,3);
CImg<int> current(14,6,1,1,0), solution(14,4,1,1,0);
current.get_shared_row(0).fill('T','H','E','C','I','M','G','L','I','B','R','A','R','Y');
current.get_shared_row(1).rand(-30,background.width() - 30);
current.get_shared_row(2).rand(-30,background.height() - 30);
solution.get_shared_row(0) = current.get_shared_row(0);
solution.get_shared_row(1).fill(20,80,140,100,180,260,340,40,100,160,220,280,340,400);
solution.get_shared_row(2).fill(20,20,20,120,150,180,210,310,310,310,310,310,310,310);
cimg_forX(solution,l) background.draw_image(solution(l,1),solution(l,2),letters(solution(l) - 'A'),0.3f);
const int last = current.width() - 1;
// Start user interaction
int timer = 0, completed = 0;
for (bool selected = false, refresh_canvas = true, stopflag = false;
!stopflag && !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); disp.resize(disp).wait(20)) {
if (refresh_canvas) {
canvas = background;
cimg_forX(current,l) if (!current(l,5)) {
int &x = current(l,1), &y = current(l,2);
if (x<-30) x = -30; else if (x>canvas.width() - 30) x = canvas.width() - 30;
if (y<-30) y = -30; else if (y>canvas.height() - 30) y = canvas.height() - 30;
canvas.draw_rectangle(x + 8,y + 8,x + 67,y + 67,black,0.3f).draw_image(x,y,cletters(current(l) - 'A'));
}
refresh_canvas = false;
}
(+canvas).draw_text(280,3,"Elapsed Time : %d",white,0,0.7f,24,timer++).display(disp);
if (disp.button()&1) {
const int mx = disp.mouse_x(), my = disp.mouse_y();
if (mx>=0 && my>=0) {
if (!selected) {
int ind = -1;
cimg_forX(current,l) if (!current(l,5)) {
const int x = current(l,1), y = current(l,2), dx = mx - x, dy = my - y;
if (dx>=0 && dx<60 && dy>=0 && dy<60) { selected = true; ind = l; current(l,3) = dx; current(l,4) = dy; }
}
if (ind>=0 && ind<last) {
const CImg<int> vec = current.get_column(ind);
current.draw_image(ind,current.get_crop(ind + 1,last)).draw_image(last,vec);
}
} else {
current(last,1) = mx - current(last,3);
current(last,2) = my - current(last,4);
refresh_canvas = true;
}
}
} else {
bool win = true;
cimg_forX(solution,j) if (!solution(j,3)) {
win = false;
const int x = solution(j,1), y = solution(j,2);
cimg_forX(current,i) if (!current(i,5) && solution(j)==current(i)) {
const int xc = current(i,1), yc = current(i,2), dx = cimg::abs(x - xc), dy = cimg::abs(y - yc);
if (dx<=12 && dy<=12) {
cimg_forC(background,k) cimg_forY(letters[0],ly)
background.get_shared_row(solution(j,2) + ly,0,k).
draw_image(solution(j,1),0,
(CImg<>(cletters(solution(j) - 'A').get_shared_row(ly,0,k))*=2.0*std::cos((ly - 30.0f)/18)).
cut(0,255),0.8f);
current(i,5) = solution(j,3) = 1; refresh_canvas = true;
}
}
}
selected = false;
if (win) { stopflag = true; completed = 1; }
}
}
// Display final score
const char
*const mention0 = "Need more training !", *const mention1 = "Still amateur, hu ?",
*const mention2 = "Not so bad !", *const mention3 = " Good !", *const mention4 = "Very good !",
*const mention5 = " Expert !",
*mention = completed?(timer<700?mention5:timer<800?mention4:timer<900?mention3:
timer<1000?mention2:timer<1200?mention1:mention0):mention0;
canvas.assign().draw_text(0,0,"Final time : %d\n\n%s",white,0,1,32,timer,mention).resize(-100,-100,1,3);
((background/=2)&CImg<unsigned char>(2,2).fill((unsigned char)0,255,255,0).resize(background,0,2)).
draw_image((background.width() - canvas.width())/2,(background.height() - canvas.height())/2,
canvas,canvas.get_dilate(3).dilate(3).dilate(3),1,255).display(disp.flush());
while (!disp.is_closed() && !disp.key() && !disp.button()) disp.resize(disp).wait();
}
return 0;
}
// Run a selected effect
//-----------------------
void start_item(const unsigned int demo_number) {
switch (demo_number) {
case 1: item_blurring_gradient(); break;
case 2: item_rotozoom(); break;
case 3: item_anisotropic_smoothing(); break;
case 4: item_fractal_animation(); break;
case 5: item_gamma_correction(); break;
case 6: item_filled_triangles(); break;
case 7: item_mandelbrot_explorer(); break;
case 8: item_mini_paint(); break;
case 9: item_soccer_bobs(); break;
case 10: item_bump(); break;
case 11: item_bouncing_bubble(); break;
case 12: item_virtual_landscape(); break;
case 13: item_plasma(); break;
case 14: item_oriented_convolutions(); break;
case 15: item_shade_bobs(); break;
case 16: item_fourier_filtering(); break;
case 17: item_image_zoomer(); break;
case 18: item_blobs_editor(); break;
case 19: item_double_torus(); break;
case 20: item_3d_metaballs(); break;
case 21: item_fireworks(); break;
case 22: item_rubber_logo(); break;
case 23: item_image_waves(); break;
case 24: item_breakout(); break;
case 25: item_3d_reflection(); break;
case 26: item_fisheye_magnification(); break;
case 27: item_word_puzzle(); break;
default: break;
}
}
/*---------------------------
Main procedure
--------------------------*/
int main(int argc, char **argv) {
// Display info about the CImg Library configuration
//--------------------------------------------------
unsigned int demo_number = cimg_option("-run",0,0);
if (demo_number) start_item(demo_number);
else {
cimg::info();
// Demo selection menu
//---------------------
const unsigned char
white[] = { 255, 255, 255 }, black[] = { 0, 0, 0 }, red[] = { 120, 50, 80 },
yellow[] = { 200, 155, 0 }, green[] = { 30, 200, 70 }, purple[] = { 175, 32, 186 },
blue[] = { 55, 140, 185 }, grey[] = { 127, 127, 127 };
float
rx = 0, ry = 0, t = 0, gamma = 0, vgamma = 0, T = 0.9f,
nrx = (float)(2*cimg::rand(-1,1)),
nry = (float)(2*cimg::rand(-1,1));
int y0 = 2*13;
CImg<unsigned char> back(1,2,1,3,10), fore, text, img;
back.fillC(0,1,0,10,10,235).resize(350,570,1,3,3).get_shared_channel(2).noise(10,1).draw_plasma();
back.draw_rectangle(0,y0 - 7,back.width() - 1,y0 + 20,red);
fore.assign(back.width(),50,1,1,0).draw_text(20,y0 - 3,"** CImg %u.%u.%u Samples **",grey,0,1,23,
cimg_version/100,(cimg_version/10)%10,cimg_version%10);
fore.max(fore.get_threshold(1).dilate(3)).resize(-100,-100,1,3);
cimg_forXY(fore,x,y) if (fore(x,y)>1) {
const float val = std::min(255.0f,7.0f*(y - 3))*fore(x,y)/127;
fore(x,y,0) = (unsigned char)(val/1.5f);
fore(x,y,1) = (unsigned char)val;
fore(x,y,2) = (unsigned char)(val/1.1f);
}
text.draw_text(1,1,
"1- Blurring Gradient\n"
"2- Rotozoom\n"
"3- Anisotropic Smoothing\n"
"4- Fractal Animation\n"
"5- Gamma Correction\n"
"6- Filled Triangles\n"
"7- Mandelbrot explorer\n"
"8- Mini-Paint\n"
"9- Soccer Bobs\n"
"10- Bump Effect\n"
"11- Bouncing Bubble\n"
"12- Virtual Landscape\n"
"13- Plasma & Sinus Scroll\n"
"14- Oriented Convolutions\n"
"15- Shade Bobs\n"
"16- Fourier Filtering\n"
"17- Image Zoomer\n"
"18- Blobs Editor\n"
"19- Double Torus\n"
"20- 3D Metaballs\n"
"21- Fireworks\n"
"22- Rubber Logo\n"
"23- Image Waves\n"
"24- Breakout\n"
"25- 3D Reflection\n"
"26- Fish-Eye Magnification\n"
"27- Word Puzzle\n",
white,0,1,18).resize(-100,-100,1,3);
fore.resize(back,0).draw_image(20,y0 + 3*13,text|=text.get_dilate(3)>>4);
CImgDisplay disp(back,"CImg Library Samples",0,false,true);
disp.move((disp.screen_width() - disp.window_width())/2,(disp.screen_height() - disp.window_height())/2);
img = back; back*=0.15f;
for (y0+=3*13; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); demo_number = 0) {
while (!demo_number && !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) {
img*=0.85f; img+=back;
for (int i = 0; i<60; ++i) {
const float
mx = (float)(img.width()/2 + (img.width()/2 - 30)*((1 - gamma)*std::cos(3*t + rx*i*18.0f*cimg::PI/180) +
gamma*std::cos(3*t + nrx*i*18.0f*cimg::PI/180))),
my = (float)(img.height()/2 + (img.height()/2 - 30)*((1 - gamma)*std::sin(4*t + ry*i*18.0f*cimg::PI/180) +
gamma*std::sin(4*t + nry*i*18.0f*cimg::PI/180))),
mz = (float)(1.3f + 1.2f*((1 - gamma)*std::sin(2*t + (rx + ry)*i*20*cimg::PI/180) +
gamma*std::sin(2*t + (nrx + nry)*i*20*cimg::PI/180)));
const int j = i%5;
img.draw_circle((int)mx,(int)my,(int)(10*mz),j!=0?(j!=1?(j!=2?(j!=3?green:red):yellow):purple):blue,0.2f).
draw_circle((int)(mx + 4*mz),(int)(my - 4),(int)(3*mz),white,0.1f).
draw_circle((int)mx,(int)my,(int)(10*mz),black,0.2f,~0U);
}
const unsigned char *ptrs = fore.data();
cimg_for(img,ptrd,unsigned char) { const unsigned char val = *(ptrs++); if (val) *ptrd = val; }
const int y = (disp.mouse_y() - y0)/18, _y = 18*y + y0 + 9;
if (y>=0 && y<27) {
for (int yy = _y - 9; yy<=_y + 8; ++yy)
img.draw_rectangle(0,yy,0,1,img.width() - 1,yy,0,1,(unsigned char)(130 - 14*cimg::abs(yy - _y)));
img.draw_triangle(2,_y - 6,2,_y + 6,8,_y,yellow).
draw_triangle(img.width() - 2,_y - 6,img.width() - 2,_y + 6,img.width() - 8,_y,yellow);
}
gamma+=vgamma;
if (gamma>1) {
gamma = vgamma = 0;
rx = nrx;
ry = nry;
nrx=(float)(2*cimg::rand(-1,1)); nry=(float)(2*cimg::rand(-1,1));
}
t+=0.006f; T+=0.005f; if (T>1) { T-=(float)(1 + cimg::rand(-1,1)); vgamma = 0.03f; }
if (disp.button()) { demo_number = 1 + (disp.mouse_y() - y0)/18; disp.set_button(); }
disp.resize(disp,false).display(img).wait(25);
}
start_item(demo_number);
}
}
// Exit demo
//-----------
std::exit(0);
return 0;
}