mirror of
https://github.com/RetroDECK/ES-DE.git
synced 2025-01-08 10:45:38 +00:00
346 lines
10 KiB
C++
346 lines
10 KiB
C++
#include <glm/gtc/constants.hpp>
|
||
#include <glm/gtc/quaternion.hpp>
|
||
#include <glm/gtc/matrix_transform.hpp>
|
||
#include <glm/ext/matrix_relational.hpp>
|
||
#include <glm/ext/vector_relational.hpp>
|
||
#include <glm/ext/scalar_relational.hpp>
|
||
#include <glm/glm.hpp>
|
||
#include <vector>
|
||
|
||
int test_quat_angle()
|
||
{
|
||
int Error = 0;
|
||
|
||
{
|
||
glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
|
||
glm::quat N = glm::normalize(Q);
|
||
float L = glm::length(N);
|
||
Error += glm::equal(L, 1.0f, 0.01f) ? 0 : 1;
|
||
float A = glm::angle(N);
|
||
Error += glm::equal(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1;
|
||
}
|
||
{
|
||
glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::normalize(glm::vec3(0, 1, 1)));
|
||
glm::quat N = glm::normalize(Q);
|
||
float L = glm::length(N);
|
||
Error += glm::equal(L, 1.0f, 0.01f) ? 0 : 1;
|
||
float A = glm::angle(N);
|
||
Error += glm::equal(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1;
|
||
}
|
||
{
|
||
glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::normalize(glm::vec3(1, 2, 3)));
|
||
glm::quat N = glm::normalize(Q);
|
||
float L = glm::length(N);
|
||
Error += glm::equal(L, 1.0f, 0.01f) ? 0 : 1;
|
||
float A = glm::angle(N);
|
||
Error += glm::equal(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1;
|
||
}
|
||
|
||
return Error;
|
||
}
|
||
|
||
int test_quat_angleAxis()
|
||
{
|
||
int Error = 0;
|
||
|
||
glm::quat A = glm::angleAxis(0.f, glm::vec3(0.f, 0.f, 1.f));
|
||
glm::quat B = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1));
|
||
glm::quat C = glm::mix(A, B, 0.5f);
|
||
glm::quat D = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
|
||
|
||
Error += glm::equal(C.x, D.x, 0.01f) ? 0 : 1;
|
||
Error += glm::equal(C.y, D.y, 0.01f) ? 0 : 1;
|
||
Error += glm::equal(C.z, D.z, 0.01f) ? 0 : 1;
|
||
Error += glm::equal(C.w, D.w, 0.01f) ? 0 : 1;
|
||
|
||
return Error;
|
||
}
|
||
|
||
int test_quat_mix()
|
||
{
|
||
int Error = 0;
|
||
|
||
glm::quat A = glm::angleAxis(0.f, glm::vec3(0.f, 0.f, 1.f));
|
||
glm::quat B = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1));
|
||
glm::quat C = glm::mix(A, B, 0.5f);
|
||
glm::quat D = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
|
||
|
||
Error += glm::equal(C.x, D.x, 0.01f) ? 0 : 1;
|
||
Error += glm::equal(C.y, D.y, 0.01f) ? 0 : 1;
|
||
Error += glm::equal(C.z, D.z, 0.01f) ? 0 : 1;
|
||
Error += glm::equal(C.w, D.w, 0.01f) ? 0 : 1;
|
||
|
||
return Error;
|
||
}
|
||
|
||
int test_quat_normalize()
|
||
{
|
||
int Error(0);
|
||
|
||
{
|
||
glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
|
||
glm::quat N = glm::normalize(Q);
|
||
float L = glm::length(N);
|
||
Error += glm::equal(L, 1.0f, 0.000001f) ? 0 : 1;
|
||
}
|
||
{
|
||
glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 2));
|
||
glm::quat N = glm::normalize(Q);
|
||
float L = glm::length(N);
|
||
Error += glm::equal(L, 1.0f, 0.000001f) ? 0 : 1;
|
||
}
|
||
{
|
||
glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(1, 2, 3));
|
||
glm::quat N = glm::normalize(Q);
|
||
float L = glm::length(N);
|
||
Error += glm::equal(L, 1.0f, 0.000001f) ? 0 : 1;
|
||
}
|
||
|
||
return Error;
|
||
}
|
||
|
||
int test_quat_euler()
|
||
{
|
||
int Error = 0;
|
||
|
||
{
|
||
glm::quat q(1.0f, 0.0f, 0.0f, 1.0f);
|
||
float Roll = glm::roll(q);
|
||
float Pitch = glm::pitch(q);
|
||
float Yaw = glm::yaw(q);
|
||
glm::vec3 Angles = glm::eulerAngles(q);
|
||
Error += glm::all(glm::equal(Angles, glm::vec3(Pitch, Yaw, Roll), 0.000001f)) ? 0 : 1;
|
||
}
|
||
|
||
{
|
||
glm::dquat q(1.0, 0.0, 0.0, 1.0);
|
||
double Roll = glm::roll(q);
|
||
double Pitch = glm::pitch(q);
|
||
double Yaw = glm::yaw(q);
|
||
glm::dvec3 Angles = glm::eulerAngles(q);
|
||
Error += glm::all(glm::equal(Angles, glm::dvec3(Pitch, Yaw, Roll), 0.000001)) ? 0 : 1;
|
||
}
|
||
|
||
return Error;
|
||
}
|
||
|
||
int test_quat_slerp()
|
||
{
|
||
int Error = 0;
|
||
|
||
float const Epsilon = 0.0001f;//glm::epsilon<float>();
|
||
|
||
float sqrt2 = std::sqrt(2.0f)/2.0f;
|
||
glm::quat id(static_cast<float>(1), static_cast<float>(0), static_cast<float>(0), static_cast<float>(0));
|
||
glm::quat Y90rot(sqrt2, 0.0f, sqrt2, 0.0f);
|
||
glm::quat Y180rot(0.0f, 0.0f, 1.0f, 0.0f);
|
||
|
||
// Testing a == 0
|
||
// Must be id
|
||
glm::quat id2 = glm::slerp(id, Y90rot, 0.0f);
|
||
Error += glm::all(glm::equal(id, id2, Epsilon)) ? 0 : 1;
|
||
|
||
// Testing a == 1
|
||
// Must be 90<39> rotation on Y : 0 0.7 0 0.7
|
||
glm::quat Y90rot2 = glm::slerp(id, Y90rot, 1.0f);
|
||
Error += glm::all(glm::equal(Y90rot, Y90rot2, Epsilon)) ? 0 : 1;
|
||
|
||
// Testing standard, easy case
|
||
// Must be 45<34> rotation on Y : 0 0.38 0 0.92
|
||
glm::quat Y45rot1 = glm::slerp(id, Y90rot, 0.5f);
|
||
|
||
// Testing reverse case
|
||
// Must be 45<34> rotation on Y : 0 0.38 0 0.92
|
||
glm::quat Ym45rot2 = glm::slerp(Y90rot, id, 0.5f);
|
||
|
||
// Testing against full circle around the sphere instead of shortest path
|
||
// Must be 45<34> rotation on Y
|
||
// certainly not a 135<33> rotation
|
||
glm::quat Y45rot3 = glm::slerp(id , -Y90rot, 0.5f);
|
||
float Y45angle3 = glm::angle(Y45rot3);
|
||
Error += glm::equal(Y45angle3, glm::pi<float>() * 0.25f, Epsilon) ? 0 : 1;
|
||
Error += glm::all(glm::equal(Ym45rot2, Y45rot3, Epsilon)) ? 0 : 1;
|
||
|
||
// Same, but inverted
|
||
// Must also be 45<34> rotation on Y : 0 0.38 0 0.92
|
||
// -0 -0.38 -0 -0.92 is ok too
|
||
glm::quat Y45rot4 = glm::slerp(-Y90rot, id, 0.5f);
|
||
Error += glm::all(glm::equal(Ym45rot2, -Y45rot4, Epsilon)) ? 0 : 1;
|
||
|
||
// Testing q1 = q2
|
||
// Must be 90<39> rotation on Y : 0 0.7 0 0.7
|
||
glm::quat Y90rot3 = glm::slerp(Y90rot, Y90rot, 0.5f);
|
||
Error += glm::all(glm::equal(Y90rot, Y90rot3, Epsilon)) ? 0 : 1;
|
||
|
||
// Testing 180<38> rotation
|
||
// Must be 90<39> rotation on almost any axis that is on the XZ plane
|
||
glm::quat XZ90rot = glm::slerp(id, -Y90rot, 0.5f);
|
||
float XZ90angle = glm::angle(XZ90rot); // Must be PI/4 = 0.78;
|
||
Error += glm::equal(XZ90angle, glm::pi<float>() * 0.25f, Epsilon) ? 0 : 1;
|
||
|
||
// Testing almost equal quaternions (this test should pass through the linear interpolation)
|
||
// Must be 0 0.00X 0 0.99999
|
||
glm::quat almostid = glm::slerp(id, glm::angleAxis(0.1f, glm::vec3(0.0f, 1.0f, 0.0f)), 0.5f);
|
||
|
||
// Testing quaternions with opposite sign
|
||
{
|
||
glm::quat a(-1, 0, 0, 0);
|
||
|
||
glm::quat result = glm::slerp(a, id, 0.5f);
|
||
|
||
Error += glm::equal(glm::pow(glm::dot(id, result), 2.f), 1.f, 0.01f) ? 0 : 1;
|
||
}
|
||
|
||
return Error;
|
||
}
|
||
|
||
int test_quat_slerp_spins()
|
||
{
|
||
int Error = 0;
|
||
|
||
float const Epsilon = 0.0001f;//glm::epsilon<float>();
|
||
|
||
float sqrt2 = std::sqrt(2.0f) / 2.0f;
|
||
glm::quat id(static_cast<float>(1), static_cast<float>(0), static_cast<float>(0), static_cast<float>(0));
|
||
glm::quat Y90rot(sqrt2, 0.0f, sqrt2, 0.0f);
|
||
glm::quat Y180rot(0.0f, 0.0f, 1.0f, 0.0f);
|
||
|
||
// Testing a == 0, k == 1
|
||
// Must be id
|
||
glm::quat id2 = glm::slerp(id, id, 1.0f, 1);
|
||
Error += glm::all(glm::equal(id, id2, Epsilon)) ? 0 : 1;
|
||
|
||
// Testing a == 1, k == 2
|
||
// Must be id
|
||
glm::quat id3 = glm::slerp(id, id, 1.0f, 2);
|
||
Error += glm::all(glm::equal(id, id3, Epsilon)) ? 0 : 1;
|
||
|
||
// Testing a == 1, k == 1
|
||
// Must be 90<39> rotation on Y : 0 0.7 0 0.7
|
||
// Negative quaternion is representing same orientation
|
||
glm::quat Y90rot2 = glm::slerp(id, Y90rot, 1.0f, 1);
|
||
Error += glm::all(glm::equal(Y90rot, -Y90rot2, Epsilon)) ? 0 : 1;
|
||
|
||
// Testing a == 1, k == 2
|
||
// Must be id
|
||
glm::quat Y90rot3 = glm::slerp(id, Y90rot, 8.0f / 9.0f, 2);
|
||
Error += glm::all(glm::equal(id, Y90rot3, Epsilon)) ? 0 : 1;
|
||
|
||
// Testing a == 1, k == 1
|
||
// Must be 90<39> rotation on Y : 0 0.7 0 0.7
|
||
glm::quat Y90rot4 = glm::slerp(id, Y90rot, 0.2f, 1);
|
||
Error += glm::all(glm::equal(Y90rot, Y90rot4, Epsilon)) ? 0 : 1;
|
||
|
||
// Testing reverse case
|
||
// Must be 45<34> rotation on Y : 0 0.38 0 0.92
|
||
// Negative quaternion is representing same orientation
|
||
glm::quat Ym45rot2 = glm::slerp(Y90rot, id, 0.9f, 1);
|
||
glm::quat Ym45rot3 = glm::slerp(Y90rot, id, 0.5f);
|
||
Error += glm::all(glm::equal(-Ym45rot2, Ym45rot3, Epsilon)) ? 0 : 1;
|
||
|
||
// Testing against full circle around the sphere instead of shortest path
|
||
// Must be 45<34> rotation on Y
|
||
// certainly not a 135<33> rotation
|
||
glm::quat Y45rot3 = glm::slerp(id, -Y90rot, 0.5f, 0);
|
||
float Y45angle3 = glm::angle(Y45rot3);
|
||
Error += glm::equal(Y45angle3, glm::pi<float>() * 0.25f, Epsilon) ? 0 : 1;
|
||
Error += glm::all(glm::equal(Ym45rot3, Y45rot3, Epsilon)) ? 0 : 1;
|
||
|
||
// Same, but inverted
|
||
// Must also be 45<34> rotation on Y : 0 0.38 0 0.92
|
||
// -0 -0.38 -0 -0.92 is ok too
|
||
glm::quat Y45rot4 = glm::slerp(-Y90rot, id, 0.5f, 0);
|
||
Error += glm::all(glm::equal(Ym45rot2, Y45rot4, Epsilon)) ? 0 : 1;
|
||
|
||
// Testing q1 = q2 k == 2
|
||
// Must be 90<39> rotation on Y : 0 0.7 0 0.7
|
||
glm::quat Y90rot5 = glm::slerp(Y90rot, Y90rot, 0.5f, 2);
|
||
Error += glm::all(glm::equal(Y90rot, Y90rot5, Epsilon)) ? 0 : 1;
|
||
|
||
// Testing 180<38> rotation
|
||
// Must be 90<39> rotation on almost any axis that is on the XZ plane
|
||
glm::quat XZ90rot = glm::slerp(id, -Y90rot, 0.5f, 1);
|
||
float XZ90angle = glm::angle(XZ90rot); // Must be PI/4 = 0.78;
|
||
Error += glm::equal(XZ90angle, glm::pi<float>() * 1.25f, Epsilon) ? 0 : 1;
|
||
|
||
// Testing rotation over long arc
|
||
// Distance from id to 90<39> is 270<37>, so 2/3 of it should be 180<38>
|
||
// Negative quaternion is representing same orientation
|
||
glm::quat Neg90rot = glm::slerp(id, Y90rot, 2.0f / 3.0f, -1);
|
||
Error += glm::all(glm::equal(Y180rot, -Neg90rot, Epsilon)) ? 0 : 1;
|
||
|
||
return Error;
|
||
}
|
||
|
||
static int test_quat_mul_vec()
|
||
{
|
||
int Error(0);
|
||
|
||
glm::quat q = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1));
|
||
glm::vec3 v(1, 0, 0);
|
||
glm::vec3 u(q * v);
|
||
glm::vec3 w(u * q);
|
||
|
||
Error += glm::all(glm::equal(v, w, 0.01f)) ? 0 : 1;
|
||
|
||
return Error;
|
||
}
|
||
|
||
static int test_mul()
|
||
{
|
||
int Error = 0;
|
||
|
||
glm::quat temp1 = glm::normalize(glm::quat(1.0f, glm::vec3(0.0, 1.0, 0.0)));
|
||
glm::quat temp2 = glm::normalize(glm::quat(0.5f, glm::vec3(1.0, 0.0, 0.0)));
|
||
|
||
glm::vec3 transformed0 = (temp1 * glm::vec3(0.0, 1.0, 0.0) * glm::inverse(temp1));
|
||
glm::vec3 temp4 = temp2 * transformed0 * glm::inverse(temp2);
|
||
|
||
glm::quat temp5 = glm::normalize(temp1 * temp2);
|
||
glm::vec3 temp6 = temp5 * glm::vec3(0.0, 1.0, 0.0) * glm::inverse(temp5);
|
||
|
||
glm::quat temp7(1.0f, glm::vec3(0.0, 1.0, 0.0));
|
||
|
||
temp7 *= temp5;
|
||
temp7 *= glm::inverse(temp5);
|
||
|
||
Error += glm::any(glm::notEqual(temp7, glm::quat(1.0f, glm::vec3(0.0, 1.0, 0.0)), glm::epsilon<float>())) ? 1 : 0;
|
||
|
||
return Error;
|
||
}
|
||
|
||
int test_identity()
|
||
{
|
||
int Error = 0;
|
||
|
||
glm::quat const Q = glm::identity<glm::quat>();
|
||
|
||
Error += glm::all(glm::equal(Q, glm::quat(1, 0, 0, 0), 0.0001f)) ? 0 : 1;
|
||
Error += glm::any(glm::notEqual(Q, glm::quat(1, 0, 0, 0), 0.0001f)) ? 1 : 0;
|
||
|
||
glm::mat4 const M = glm::identity<glm::mat4x4>();
|
||
glm::mat4 const N(1.0f);
|
||
|
||
Error += glm::all(glm::equal(M, N, 0.0001f)) ? 0 : 1;
|
||
|
||
return Error;
|
||
}
|
||
|
||
int main()
|
||
{
|
||
int Error = 0;
|
||
|
||
Error += test_mul();
|
||
Error += test_quat_mul_vec();
|
||
Error += test_quat_angle();
|
||
Error += test_quat_angleAxis();
|
||
Error += test_quat_mix();
|
||
Error += test_quat_normalize();
|
||
Error += test_quat_euler();
|
||
Error += test_quat_slerp();
|
||
Error += test_quat_slerp_spins();
|
||
Error += test_identity();
|
||
|
||
return Error;
|
||
}
|