mirror of
https://github.com/RetroDECK/ES-DE.git
synced 2024-11-27 16:45:38 +00:00
525 lines
17 KiB
C++
525 lines
17 KiB
C++
// SPDX-License-Identifier: MIT
|
|
//
|
|
// EmulationStation Desktop Edition
|
|
// ImageComponent.cpp
|
|
//
|
|
// Handles images: loading, resizing, cropping, color shifting etc.
|
|
//
|
|
|
|
#include "components/ImageComponent.h"
|
|
|
|
#include "Log.h"
|
|
#include "Settings.h"
|
|
#include "ThemeData.h"
|
|
#include "resources/TextureResource.h"
|
|
#include "utils/CImgUtil.h"
|
|
|
|
glm::ivec2 ImageComponent::getTextureSize() const
|
|
{
|
|
if (mTexture)
|
|
return mTexture->getSize();
|
|
else
|
|
return glm::ivec2{};
|
|
}
|
|
|
|
glm::vec2 ImageComponent::getSize() const
|
|
{
|
|
return GuiComponent::getSize() * (mBottomRightCrop - mTopLeftCrop);
|
|
}
|
|
|
|
ImageComponent::ImageComponent(Window* window, bool forceLoad, bool dynamic)
|
|
: GuiComponent(window)
|
|
, mTargetSize({})
|
|
, mFlipX(false)
|
|
, mFlipY(false)
|
|
, mTargetIsMax(false)
|
|
, mTargetIsMin(false)
|
|
, mColorShift(0xFFFFFFFF)
|
|
, mColorShiftEnd(0xFFFFFFFF)
|
|
, mColorGradientHorizontal(true)
|
|
, mFadeOpacity(0)
|
|
, mFading(false)
|
|
, mForceLoad(forceLoad)
|
|
, mDynamic(dynamic)
|
|
, mRotateByTargetSize(false)
|
|
, mTopLeftCrop({})
|
|
, mBottomRightCrop(1.0f, 1.0f)
|
|
{
|
|
updateColors();
|
|
}
|
|
|
|
void ImageComponent::resize()
|
|
{
|
|
if (!mTexture)
|
|
return;
|
|
|
|
const glm::vec2 textureSize{mTexture->getSourceImageSize()};
|
|
if (textureSize == glm::vec2{})
|
|
return;
|
|
|
|
if (mTexture->isTiled()) {
|
|
mSize = mTargetSize;
|
|
}
|
|
else {
|
|
// SVG rasterization is determined by height and rasterization is done in terms of pixels.
|
|
// If rounding is off enough in the rasterization step (for images with extreme aspect
|
|
// ratios), it can cause cutoff when the aspect ratio breaks.
|
|
// So we always make sure the resultant height is an integer to make sure cutoff doesn't
|
|
// happen, and scale width from that (you'll see this scattered throughout the function).
|
|
// It's important to use floorf rather than round for this, as we never want to round up
|
|
// since that can lead to the cutoff just described.
|
|
if (mTargetIsMax) {
|
|
mSize = textureSize;
|
|
|
|
glm::vec2 resizeScale{(mTargetSize.x / mSize.x), (mTargetSize.y / mSize.y)};
|
|
|
|
if (resizeScale.x < resizeScale.y) {
|
|
// This will be mTargetSize.x. We can't exceed it, nor be lower than it.
|
|
mSize.x *= resizeScale.x;
|
|
// We need to make sure we're not creating an image larger than max size.
|
|
mSize.y = std::min(floorf(mSize.y * resizeScale.x), mTargetSize.y);
|
|
}
|
|
else {
|
|
// This will be mTargetSize.y(). We can't exceed it.
|
|
mSize.y = floorf(mSize.y * resizeScale.y);
|
|
// For SVG rasterization, always calculate width from rounded height (see comment
|
|
// above). We need to make sure we're not creating an image larger than max size.
|
|
mSize.x = std::min((mSize.y / textureSize.y) * textureSize.x, mTargetSize.x);
|
|
}
|
|
}
|
|
else if (mTargetIsMin) {
|
|
mSize = textureSize;
|
|
|
|
glm::vec2 resizeScale{(mTargetSize.x / mSize.x), (mTargetSize.y / mSize.y)};
|
|
|
|
if (resizeScale.x > resizeScale.y) {
|
|
mSize.x *= resizeScale.x;
|
|
mSize.y *= resizeScale.x;
|
|
|
|
float cropPercent = (mSize.y - mTargetSize.y) / (mSize.y * 2.0f);
|
|
crop(0.0f, cropPercent, 0.0f, cropPercent);
|
|
}
|
|
else {
|
|
mSize.x *= resizeScale.y;
|
|
mSize.y *= resizeScale.y;
|
|
|
|
float cropPercent = (mSize.x - mTargetSize.x) / (mSize.x * 2.0f);
|
|
crop(cropPercent, 0.0f, cropPercent, 0.0f);
|
|
}
|
|
// For SVG rasterization, always calculate width from rounded height (see comment
|
|
// above). We need to make sure we're not creating an image smaller than min size.
|
|
mSize.y = std::max(floorf(mSize.y), mTargetSize.y);
|
|
mSize.x = std::max((mSize.y / textureSize.y) * textureSize.x, mTargetSize.x);
|
|
}
|
|
else {
|
|
// If both components are set, we just stretch.
|
|
// If no components are set, we don't resize at all.
|
|
mSize = mTargetSize == glm::vec2{} ? textureSize : mTargetSize;
|
|
|
|
// If only one component is set, we resize in a way that maintains aspect ratio.
|
|
// For SVG rasterization, we always calculate width from rounded height (see
|
|
// comment above).
|
|
if (!mTargetSize.x && mTargetSize.y) {
|
|
mSize.y = floorf(mTargetSize.y);
|
|
mSize.x = (mSize.y / textureSize.y) * textureSize.x;
|
|
}
|
|
else if (mTargetSize.x && !mTargetSize.y) {
|
|
mSize.y = floorf((mTargetSize.x / textureSize.x) * textureSize.y);
|
|
mSize.x = (mSize.y / textureSize.y) * textureSize.x;
|
|
}
|
|
}
|
|
}
|
|
|
|
mSize.x = floorf(mSize.x);
|
|
mSize.y = floorf(mSize.y);
|
|
// mSize.y() should already be rounded.
|
|
mTexture->rasterizeAt(static_cast<size_t>(mSize.x), static_cast<size_t>(mSize.y));
|
|
|
|
onSizeChanged();
|
|
}
|
|
|
|
void ImageComponent::setImage(std::string path, bool tile, bool linearMagnify)
|
|
{
|
|
// Always load bundled graphic resources statically, unless mForceLoad has been set.
|
|
// This eliminates annoying texture pop-in problems that would otherwise occur.
|
|
if (!mForceLoad && (path[0] == ':') && (path[1] == '/')) {
|
|
mDynamic = false;
|
|
}
|
|
|
|
if (path.empty() || !ResourceManager::getInstance()->fileExists(path)) {
|
|
if (mDefaultPath.empty() || !ResourceManager::getInstance()->fileExists(mDefaultPath))
|
|
mTexture.reset();
|
|
else
|
|
mTexture =
|
|
TextureResource::get(mDefaultPath, tile, mForceLoad, mDynamic, linearMagnify);
|
|
}
|
|
else {
|
|
mTexture = TextureResource::get(path, tile, mForceLoad, mDynamic, linearMagnify);
|
|
}
|
|
|
|
resize();
|
|
}
|
|
|
|
void ImageComponent::setImage(const char* data, size_t length, bool tile)
|
|
{
|
|
mTexture.reset();
|
|
|
|
mTexture = TextureResource::get("", tile);
|
|
mTexture->initFromMemory(data, length);
|
|
|
|
resize();
|
|
}
|
|
|
|
void ImageComponent::setImage(const std::shared_ptr<TextureResource>& texture, bool resizeTexture)
|
|
{
|
|
mTexture = texture;
|
|
if (resizeTexture)
|
|
resize();
|
|
}
|
|
|
|
void ImageComponent::setResize(float width, float height)
|
|
{
|
|
mTargetSize = glm::vec2{width, height};
|
|
mTargetIsMax = false;
|
|
mTargetIsMin = false;
|
|
resize();
|
|
}
|
|
|
|
void ImageComponent::setMaxSize(float width, float height)
|
|
{
|
|
mTargetSize = glm::vec2{width, height};
|
|
mTargetIsMax = true;
|
|
mTargetIsMin = false;
|
|
resize();
|
|
}
|
|
|
|
void ImageComponent::setMinSize(float width, float height)
|
|
{
|
|
mTargetSize = glm::vec2{width, height};
|
|
mTargetIsMax = false;
|
|
mTargetIsMin = true;
|
|
resize();
|
|
}
|
|
|
|
void ImageComponent::cropLeft(float percent)
|
|
{
|
|
assert(percent >= 0.0f && percent <= 1.0f);
|
|
mTopLeftCrop.x = percent;
|
|
}
|
|
|
|
void ImageComponent::cropTop(float percent)
|
|
{
|
|
assert(percent >= 0.0f && percent <= 1.0f);
|
|
mTopLeftCrop.y = percent;
|
|
}
|
|
|
|
void ImageComponent::cropRight(float percent)
|
|
{
|
|
assert(percent >= 0.0f && percent <= 1.0f);
|
|
mBottomRightCrop.x = 1.0f - percent;
|
|
}
|
|
|
|
void ImageComponent::cropBot(float percent)
|
|
{
|
|
assert(percent >= 0.0f && percent <= 1.0f);
|
|
mBottomRightCrop.y = 1.0f - percent;
|
|
}
|
|
|
|
void ImageComponent::crop(float left, float top, float right, float bot)
|
|
{
|
|
cropLeft(left);
|
|
cropTop(top);
|
|
cropRight(right);
|
|
cropBot(bot);
|
|
}
|
|
|
|
void ImageComponent::uncrop()
|
|
{
|
|
// Remove any applied crop.
|
|
crop(0.0f, 0.0f, 0.0f, 0.0f);
|
|
}
|
|
|
|
void ImageComponent::cropTransparentPadding(float maxSizeX, float maxSizeY)
|
|
{
|
|
if (mSize == glm::vec2{})
|
|
return;
|
|
|
|
std::vector<unsigned char> imageRGBA = mTexture.get()->getRawRGBAData();
|
|
|
|
if (imageRGBA.size() == 0)
|
|
return;
|
|
|
|
glm::ivec2 imageSize{mTexture.get()->getSize()};
|
|
cimg_library::CImg<unsigned char> imageCImg(imageSize.x, imageSize.y, 1, 4, 0);
|
|
|
|
int paddingCoords[4]{};
|
|
|
|
// We need to convert our RGBA data to the CImg internal format as CImg does not interleave
|
|
// the pixels (as in RGBARGBARGBA).
|
|
Utils::CImg::convertRGBAToCImg(imageRGBA, imageCImg);
|
|
|
|
// This will give us the coordinates for the fully transparent areas.
|
|
Utils::CImg::getTransparentPaddingCoords(imageCImg, paddingCoords);
|
|
|
|
glm::vec2 originalSize{mSize};
|
|
|
|
float cropLeft{static_cast<float>(paddingCoords[0]) / static_cast<float>(imageSize.x)};
|
|
float cropTop{static_cast<float>(paddingCoords[1]) / static_cast<float>(imageSize.y)};
|
|
float cropRight{static_cast<float>(paddingCoords[2]) / static_cast<float>(imageSize.x)};
|
|
float cropBottom{static_cast<float>(paddingCoords[3]) / static_cast<float>(imageSize.y)};
|
|
|
|
crop(cropLeft, cropTop, cropRight, cropBottom);
|
|
|
|
// Cropping the image obviously leads to a reduction in size, so we need to determine
|
|
// how much to scale up after cropping to keep within the max size restrictions that
|
|
// were passed as arguments.
|
|
mSize.x -= mSize.x * (cropLeft + cropRight);
|
|
mSize.y -= mSize.y * (cropTop + cropBottom);
|
|
|
|
float scaleFactor = originalSize.y / mSize.y;
|
|
|
|
if (scaleFactor * mSize.x < maxSizeX)
|
|
scaleFactor = maxSizeX / mSize.x;
|
|
|
|
if (scaleFactor * mSize.y < maxSizeY)
|
|
scaleFactor = maxSizeY / mSize.y;
|
|
|
|
if (scaleFactor * mSize.x > maxSizeX)
|
|
scaleFactor = maxSizeX / mSize.x;
|
|
|
|
if (scaleFactor * mSize.y > maxSizeY)
|
|
scaleFactor = maxSizeY / mSize.y;
|
|
|
|
setResize(mSize.x * scaleFactor, mSize.y * scaleFactor);
|
|
updateVertices();
|
|
}
|
|
|
|
void ImageComponent::setFlipX(bool flip)
|
|
{
|
|
mFlipX = flip;
|
|
updateVertices();
|
|
}
|
|
|
|
void ImageComponent::setFlipY(bool flip)
|
|
{
|
|
mFlipY = flip;
|
|
updateVertices();
|
|
}
|
|
|
|
void ImageComponent::setColorShift(unsigned int color)
|
|
{
|
|
mColorShift = color;
|
|
mColorShiftEnd = color;
|
|
updateColors();
|
|
}
|
|
|
|
void ImageComponent::setColorShiftEnd(unsigned int color)
|
|
{
|
|
mColorShiftEnd = color;
|
|
updateColors();
|
|
}
|
|
|
|
void ImageComponent::setColorGradientHorizontal(bool horizontal)
|
|
{
|
|
mColorGradientHorizontal = horizontal;
|
|
updateColors();
|
|
}
|
|
|
|
void ImageComponent::setOpacity(unsigned char opacity)
|
|
{
|
|
mOpacity = opacity;
|
|
updateColors();
|
|
}
|
|
|
|
void ImageComponent::setSaturation(float saturation)
|
|
{
|
|
mSaturation = saturation;
|
|
updateColors();
|
|
}
|
|
|
|
void ImageComponent::updateVertices()
|
|
{
|
|
if (!mTexture || !mTexture->isInitialized())
|
|
return;
|
|
|
|
// We go through this mess to make sure everything is properly rounded.
|
|
// If we just round vertices at the end, edge cases occur near sizes of 0.5.
|
|
const glm::vec2 topLeft{};
|
|
const glm::vec2 bottomRight{mSize};
|
|
const float px{mTexture->isTiled() ? mSize.x / getTextureSize().x : 1.0f};
|
|
const float py{mTexture->isTiled() ? mSize.y / getTextureSize().y : 1.0f};
|
|
|
|
// clang-format off
|
|
mVertices[0] = {{topLeft.x, topLeft.y }, {mTopLeftCrop.x, py - mTopLeftCrop.y }, 0};
|
|
mVertices[1] = {{topLeft.x, bottomRight.y}, {mTopLeftCrop.x, 1.0f - mBottomRightCrop.y}, 0};
|
|
mVertices[2] = {{bottomRight.x, topLeft.y }, {mBottomRightCrop.x * px, py - mTopLeftCrop.y }, 0};
|
|
mVertices[3] = {{bottomRight.x, bottomRight.y}, {mBottomRightCrop.x * px, 1.0f - mBottomRightCrop.y}, 0};
|
|
// clang-format on
|
|
|
|
updateColors();
|
|
|
|
// Round vertices.
|
|
for (int i = 0; i < 4; i++)
|
|
mVertices[i].pos = glm::round(mVertices[i].pos);
|
|
|
|
if (mFlipX) {
|
|
for (int i = 0; i < 4; i++)
|
|
mVertices[i].tex[0] = px - mVertices[i].tex[0];
|
|
}
|
|
|
|
if (mFlipY) {
|
|
for (int i = 0; i < 4; i++)
|
|
mVertices[i].tex[1] = py - mVertices[i].tex[1];
|
|
}
|
|
}
|
|
|
|
void ImageComponent::updateColors()
|
|
{
|
|
const float opacity = (mOpacity * (mFading ? mFadeOpacity / 255.0f : 1.0f)) / 255.0f;
|
|
const unsigned int color = Renderer::convertRGBAToABGR(
|
|
(mColorShift & 0xFFFFFF00) | static_cast<unsigned char>((mColorShift & 0xFF) * opacity));
|
|
const unsigned int colorEnd =
|
|
Renderer::convertRGBAToABGR((mColorShiftEnd & 0xFFFFFF00) |
|
|
static_cast<unsigned char>((mColorShiftEnd & 0xFF) * opacity));
|
|
|
|
mVertices[0].col = color;
|
|
mVertices[1].col = mColorGradientHorizontal ? colorEnd : color;
|
|
mVertices[2].col = mColorGradientHorizontal ? color : colorEnd;
|
|
mVertices[3].col = colorEnd;
|
|
}
|
|
|
|
void ImageComponent::render(const glm::mat4& parentTrans)
|
|
{
|
|
if (!isVisible())
|
|
return;
|
|
|
|
glm::mat4 trans{parentTrans * getTransform()};
|
|
Renderer::setMatrix(trans);
|
|
|
|
if (mTexture && mOpacity > 0) {
|
|
if (Settings::getInstance()->getBool("DebugImage")) {
|
|
glm::vec2 targetSizePos{(mTargetSize - mSize) * mOrigin * glm::vec2{-1.0f}};
|
|
Renderer::drawRect(targetSizePos.x, targetSizePos.y, mTargetSize.x, mTargetSize.y,
|
|
0xFF000033, 0xFF000033);
|
|
Renderer::drawRect(0.0f, 0.0f, mSize.x, mSize.y, 0xFF000033, 0xFF000033);
|
|
}
|
|
// An image with zero size would normally indicate a corrupt image file.
|
|
if (mTexture->isInitialized() && mTexture->getSize() != glm::ivec2{}) {
|
|
// Actually draw the image.
|
|
// The bind() function returns false if the texture is not currently loaded. A blank
|
|
// texture is bound in this case but we want to handle a fade so it doesn't just
|
|
// 'jump' in when it finally loads.
|
|
fadeIn(mTexture->bind());
|
|
#if defined(USE_OPENGL_21)
|
|
if (mSaturation < 1.0) {
|
|
mVertices[0].shaders = Renderer::SHADER_DESATURATE;
|
|
mVertices[0].saturation = mSaturation;
|
|
}
|
|
#endif
|
|
Renderer::drawTriangleStrips(&mVertices[0], 4, trans);
|
|
}
|
|
else {
|
|
if (!mTexture) {
|
|
LOG(LogError) << "Image texture is not initialized";
|
|
}
|
|
else {
|
|
std::string textureFilePath = mTexture->getTextureFilePath();
|
|
if (textureFilePath != "") {
|
|
LOG(LogError) << "Image texture for file \"" << textureFilePath
|
|
<< "\" has zero size";
|
|
}
|
|
else {
|
|
LOG(LogError) << "Image texture has zero size";
|
|
}
|
|
}
|
|
mTexture.reset();
|
|
}
|
|
}
|
|
|
|
GuiComponent::renderChildren(trans);
|
|
}
|
|
|
|
void ImageComponent::fadeIn(bool textureLoaded)
|
|
{
|
|
if (!mForceLoad) {
|
|
if (!textureLoaded) {
|
|
// Start the fade if this is the first time we've encountered the unloaded texture.
|
|
if (!mFading) {
|
|
// Start with a zero opacity and flag it as fading.
|
|
mFadeOpacity = 0;
|
|
mFading = true;
|
|
updateColors();
|
|
}
|
|
}
|
|
else if (mFading) {
|
|
// The texture is loaded and we need to fade it in. The fade is based on the frame
|
|
// rate and is 1/4 second if running at 60 frames per second although the actual
|
|
// value is not that important.
|
|
int opacity = mFadeOpacity + 255 / 15;
|
|
// See if we've finished fading.
|
|
if (opacity >= 255) {
|
|
mFadeOpacity = 255;
|
|
mFading = false;
|
|
}
|
|
else {
|
|
mFadeOpacity = static_cast<unsigned char>(opacity);
|
|
}
|
|
updateColors();
|
|
}
|
|
}
|
|
}
|
|
|
|
void ImageComponent::applyTheme(const std::shared_ptr<ThemeData>& theme,
|
|
const std::string& view,
|
|
const std::string& element,
|
|
unsigned int properties)
|
|
{
|
|
using namespace ThemeFlags;
|
|
|
|
GuiComponent::applyTheme(theme, view, element,
|
|
(properties ^ ThemeFlags::SIZE) |
|
|
((properties & (ThemeFlags::SIZE | POSITION)) ? ORIGIN : 0));
|
|
|
|
const ThemeData::ThemeElement* elem = theme->getElement(view, element, "image");
|
|
if (!elem)
|
|
return;
|
|
|
|
glm::vec2 scale{getParent() ? getParent()->getSize() :
|
|
glm::vec2(static_cast<float>(Renderer::getScreenWidth()),
|
|
static_cast<float>(Renderer::getScreenHeight()))};
|
|
|
|
if (properties & ThemeFlags::SIZE) {
|
|
if (elem->has("size"))
|
|
setResize(elem->get<glm::vec2>("size") * scale);
|
|
else if (elem->has("maxSize"))
|
|
setMaxSize(elem->get<glm::vec2>("maxSize") * scale);
|
|
else if (elem->has("minSize"))
|
|
setMinSize(elem->get<glm::vec2>("minSize") * scale);
|
|
}
|
|
|
|
if (elem->has("default"))
|
|
setDefaultImage(elem->get<std::string>("default"));
|
|
|
|
if (properties & PATH && elem->has("path")) {
|
|
bool tile = (elem->has("tile") && elem->get<bool>("tile"));
|
|
setImage(elem->get<std::string>("path"), tile);
|
|
}
|
|
|
|
if (properties & COLOR) {
|
|
if (elem->has("color"))
|
|
setColorShift(elem->get<unsigned int>("color"));
|
|
if (elem->has("colorEnd"))
|
|
setColorShiftEnd(elem->get<unsigned int>("colorEnd"));
|
|
if (elem->has("gradientType"))
|
|
setColorGradientHorizontal(
|
|
!(elem->get<std::string>("gradientType").compare("horizontal")));
|
|
}
|
|
}
|
|
|
|
std::vector<HelpPrompt> ImageComponent::getHelpPrompts()
|
|
{
|
|
std::vector<HelpPrompt> ret;
|
|
ret.push_back(HelpPrompt("a", "select"));
|
|
return ret;
|
|
}
|