mirror of
				https://github.com/RetroDECK/ES-DE.git
				synced 2025-04-10 19:15:13 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			181 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			181 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  #
 | |
|  #  File        : mcf_levelsets3d.cpp
 | |
|  #                ( C++ source file )
 | |
|  #
 | |
|  #  Description : Implementation of the Mean Curvature Flow on Surfaces
 | |
|  #                using the framework of Level Sets 3D.
 | |
|  #                This file is a part of the CImg Library project.
 | |
|  #                ( http://cimg.eu )
 | |
|  #
 | |
|  #  Copyright   : David Tschumperlé
 | |
|  #                ( http://tschumperle.users.greyc.fr/ )
 | |
|  #
 | |
|  #  License     : CeCILL v2.0
 | |
|  #                ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
 | |
|  #
 | |
|  #  This software is governed by the CeCILL  license under French law and
 | |
|  #  abiding by the rules of distribution of free software.  You can  use,
 | |
|  #  modify and/ or redistribute the software under the terms of the CeCILL
 | |
|  #  license as circulated by CEA, CNRS and INRIA at the following URL
 | |
|  #  "http://www.cecill.info".
 | |
|  #
 | |
|  #  As a counterpart to the access to the source code and  rights to copy,
 | |
|  #  modify and redistribute granted by the license, users are provided only
 | |
|  #  with a limited warranty  and the software's author,  the holder of the
 | |
|  #  economic rights,  and the successive licensors  have only  limited
 | |
|  #  liability.
 | |
|  #
 | |
|  #  In this respect, the user's attention is drawn to the risks associated
 | |
|  #  with loading,  using,  modifying and/or developing or reproducing the
 | |
|  #  software by the user in light of its specific status of free software,
 | |
|  #  that may mean  that it is complicated to manipulate,  and  that  also
 | |
|  #  therefore means  that it is reserved for developers  and  experienced
 | |
|  #  professionals having in-depth computer knowledge. Users are therefore
 | |
|  #  encouraged to load and test the software's suitability as regards their
 | |
|  #  requirements in conditions enabling the security of their systems and/or
 | |
|  #  data to be ensured and,  more generally, to use and operate it in the
 | |
|  #  same conditions as regards security.
 | |
|  #
 | |
|  #  The fact that you are presently reading this means that you have had
 | |
|  #  knowledge of the CeCILL license and that you accept its terms.
 | |
|  #
 | |
| */
 | |
| 
 | |
| #include "CImg.h"
 | |
| using namespace cimg_library;
 | |
| #undef min
 | |
| #undef max
 | |
| 
 | |
| // Apply the Mean curvature flow PDE
 | |
| //-----------------------------------
 | |
| template<typename T> CImg<T>& mcf_PDE(CImg<T>& img, const unsigned int nb_iterations,
 | |
|                                       const float dt=0.25f, const float narrow=4.0f) {
 | |
|   CImg<float> velocity(img.width(),img.height(),img.depth(),img.spectrum());
 | |
|   CImg_3x3x3(I,float);
 | |
|   for (unsigned int iteration = 0; iteration<nb_iterations; ++iteration) {
 | |
|     float *ptrd = velocity.data(), veloc_max = 0;
 | |
|     cimg_for3x3x3(img,x,y,z,0,I,float) if (cimg::abs(Iccc)<narrow) {
 | |
|       const float
 | |
|         ix = (Incc - Ipcc)/2,
 | |
|         iy = (Icnc - Icpc)/2,
 | |
|         iz = (Iccn - Iccp)/2,
 | |
|         norm = (float)std::sqrt(1e-5f + ix*ix + iy*iy + iz*iz),
 | |
|         ixx = Incc + Ipcc - 2*Iccc,
 | |
|         ixy = (Ippc + Innc - Inpc - Ipnc)/4,
 | |
|         ixz = (Ipcp + Incn - Incp - Ipcn)/4,
 | |
|         iyy = Icnc + Icpc - 2*Iccc,
 | |
|         iyz = (Icpp + Icnn - Icnp - Icpn)/4,
 | |
|         izz = Iccn + Iccp - 2*Iccc,
 | |
|         a = ix/norm,
 | |
|         b = iy/norm,
 | |
|         c = iz/norm,
 | |
|         inn = a*a*ixx + b*b*iyy + c*c*izz + 2*a*b*ixy + 2*a*c*ixz + 2*b*c*iyz,
 | |
|         veloc = ixx + iyy + izz - inn;
 | |
|       *(ptrd++) = veloc;
 | |
|       if (veloc>veloc_max) veloc_max = veloc; else if (-veloc>veloc_max) veloc_max = -veloc;
 | |
|     } else *(ptrd++) = 0;
 | |
|     if (veloc_max>0) img+=(velocity*=dt/veloc_max);
 | |
|   }
 | |
|   return img;
 | |
| }
 | |
| 
 | |
| /*----------------------
 | |
| 
 | |
|    Main procedure
 | |
| 
 | |
|   --------------------*/
 | |
| int main(int argc,char **argv) {
 | |
|   cimg_usage("Mean curvature flow of a surface, using 3D level sets");
 | |
|   const char *file_i = cimg_option("-i",(char*)0,"Input image");
 | |
|   const float dt = cimg_option("-dt",0.05f,"PDE Time step");
 | |
|   const float narrow = cimg_option("-band",5.0f,"Size of the narrow band");
 | |
|   const bool both = cimg_option("-both",false,"Show both evolving and initial surface");
 | |
| 
 | |
|   // Define the signed distance map of the initial surface.
 | |
|   CImg<> img;
 | |
|   if (file_i) {
 | |
|     const float sigma = cimg_option("-sigma",1.2f,"Segmentation regularity");
 | |
|     const float alpha = cimg_option("-alpha",5.0f,"Region growing tolerance");
 | |
|     img.load(file_i).channel(0);
 | |
|     CImg<int> s;
 | |
|     CImgDisplay disp(img,"Please select a starting point");
 | |
|     while (!s || s[0]<0) s = img.get_select(0,disp);
 | |
|     CImg<> region;
 | |
|     float tmp[] = { 0 };
 | |
|     img.draw_fill(s[0],s[1],s[2],tmp,1,region,alpha);
 | |
|     ((img = region.normalize(-1,1))*=-1).blur(sigma);
 | |
|   }
 | |
|   else { // Create synthetic implicit function
 | |
|     img.assign(60,60,60);
 | |
|     const float exte[] = { 1 }, inte[] = { -1 };
 | |
|     img.fill(*exte).draw_rectangle(15,15,15,45,45,45,inte).draw_rectangle(25,25,0,35,35,img.depth() - 1,exte).
 | |
|       draw_rectangle(0,25,25,img.width() - 1,35,35,exte).draw_rectangle(25,0,25,35,img.height() - 1,35,exte).noise(0.7);
 | |
|   }
 | |
|   img.distance_eikonal(10,0,0.1f);
 | |
| 
 | |
|   // Compute corresponding surface triangularization by the marching cube algorithm (isovalue 0).
 | |
|   CImg<> points0;
 | |
|   CImgList<unsigned int> faces0;
 | |
|   if (both) points0 = img.get_isosurface3d(faces0,0);
 | |
|   const CImgList<unsigned char> colors0(faces0.size(),CImg<unsigned char>::vector(100,200,255));
 | |
|   const CImgList<> opacities0(faces0.size(),1,1,1,1,0.2f);
 | |
| 
 | |
|   // Perform MCF evolution.
 | |
|   CImgDisplay disp(256,256,0,1), disp3d(512,512,0,0);
 | |
|   float alpha = 0, beta = 0;
 | |
|   for (unsigned int iteration = 0; !disp.is_closed() && !disp3d.is_closed() &&
 | |
|          !disp.is_keyESC() && !disp3d.is_keyESC() && !disp.is_keyQ() && !disp3d.is_keyQ(); ++iteration) {
 | |
|     disp.set_title("3D implicit Function (iter. %u)",iteration);
 | |
|     disp3d.set_title("Mean curvature flow 3D - Isosurface (iter. %u)",iteration);
 | |
| 
 | |
|     // Apply PDE on the distance function.
 | |
|     mcf_PDE(img,1,dt,narrow); // Do one iteration of mean curvature flow
 | |
|     // Every 10 steps, do one iteration of distance function re-initialization.
 | |
|     if (!(iteration%10)) img.distance_eikonal(1,narrow,0.5f);
 | |
| 
 | |
|     // Compute surface triangularization by the marching cube algorithm (isovalue 0)
 | |
|     CImgList<unsigned int> faces;
 | |
|     CImg<> points = img.get_isosurface3d(faces,0);
 | |
|     CImgList<unsigned char> colors(faces.size(),CImg<unsigned char>::vector(200,128,100));
 | |
|     CImgList<> opacities(faces.size(),CImg<>::vector(1.0f));
 | |
|     const float fact = 3*std::max(disp3d.width(),disp3d.height())/(4.0f*std::max(img.width(),img.height()));
 | |
| 
 | |
|     // Append initial object if necessary.
 | |
|     if (both) {
 | |
|       points.append_object3d(faces,points0,faces0);
 | |
|       colors.insert(colors0);
 | |
|       opacities.insert(opacities0);
 | |
|     }
 | |
| 
 | |
|     // Center and rescale the objects
 | |
|     cimg_forX(points,l) {
 | |
|       points(l,0)=(points(l,0) - img.width()/2)*fact;
 | |
|       points(l,1)=(points(l,1) - img.height()/2)*fact;
 | |
|       points(l,2)=(points(l,2) - img.depth()/2)*fact;
 | |
|     }
 | |
| 
 | |
|     // Display 3D object on the display window.
 | |
|     CImg<unsigned char> visu(disp3d.width(),disp3d.height(),1,3,0);
 | |
|     const CImg<> rot = CImg<>::rotation_matrix(1,0,0,(beta+=0.5f))*CImg<>::rotation_matrix(0,1,1,(alpha+=3));
 | |
|     if (points.size()) {
 | |
|       visu.draw_object3d(visu.width()/2.0f,visu.height()/2.0f,0.0f,
 | |
|                          rot*points,faces,colors,opacities,3,
 | |
|                          false,500.0,0.0f,0.0f,-8000.0f).display(disp3d);
 | |
|     } else visu.fill(0).display(disp3d);
 | |
|     img.display(disp.wait(20));
 | |
| 
 | |
|     if ((disp3d.button() || disp3d.key()) && points.size() && !disp3d.is_keyESC() && !disp3d.is_keyQ()) {
 | |
|       const unsigned char white[3] = { 255, 255, 255 };
 | |
|       visu.fill(0).draw_text(10,10,"Time stopped, press any key to start again",white).
 | |
|         display_object3d(disp3d,points,faces,colors,opacities,true,4,3,false,500,0,0,-5000,0.4f,0.3f);
 | |
|       disp3d.set_key();
 | |
|     }
 | |
|     if (disp.is_resized()) disp.resize(false);
 | |
|     if (disp3d.is_resized()) disp3d.resize(false);
 | |
|     disp.wait(50);
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | 
