mirror of
https://github.com/RetroDECK/ES-DE.git
synced 2024-12-11 06:55:40 +00:00
24167 lines
1.8 MiB
24167 lines
1.8 MiB
/*
|
|
#
|
|
# File : loop_macros.h
|
|
# ( C++ header file - CImg plug-in )
|
|
#
|
|
# Description : CImg plug-in adding useful loop macros in CImg, in order to
|
|
# deal with NxN neighborhoods (where N=10..32)
|
|
# and NxNxN neighborhoods (where N=4..8)
|
|
# This file has been automatically generated using the loop
|
|
# macro generator available in 'examples/generate_loop_macros.cpp'
|
|
# This file is a part of the CImg Library project.
|
|
# ( http://cimg.eu )
|
|
#
|
|
# Copyright : David Tschumperlé
|
|
# ( http://tschumperle.users.greyc.fr/ )
|
|
#
|
|
# License : CeCILL v2.0
|
|
# ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
|
|
#
|
|
# This software is governed by the CeCILL license under French law and
|
|
# abiding by the rules of distribution of free software. You can use,
|
|
# modify and/ or redistribute the software under the terms of the CeCILL
|
|
# license as circulated by CEA, CNRS and INRIA at the following URL
|
|
# "http://www.cecill.info".
|
|
#
|
|
# As a counterpart to the access to the source code and rights to copy,
|
|
# modify and redistribute granted by the license, users are provided only
|
|
# with a limited warranty and the software's author, the holder of the
|
|
# economic rights, and the successive licensors have only limited
|
|
# liability.
|
|
#
|
|
# In this respect, the user's attention is drawn to the risks associated
|
|
# with loading, using, modifying and/or developing or reproducing the
|
|
# software by the user in light of its specific status of free software,
|
|
# that may mean that it is complicated to manipulate, and that also
|
|
# therefore means that it is reserved for developers and experienced
|
|
# professionals having in-depth computer knowledge. Users are therefore
|
|
# encouraged to load and test the software's suitability as regards their
|
|
# requirements in conditions enabling the security of their systems and/or
|
|
# data to be ensured and, more generally, to use and operate it in the
|
|
# same conditions as regards security.
|
|
#
|
|
# The fact that you are presently reading this means that you have had
|
|
# knowledge of the CeCILL license and that you accept its terms.
|
|
#
|
|
*/
|
|
|
|
#ifndef cimg_plugin_loop_macros
|
|
#define cimg_plugin_loop_macros
|
|
|
|
// Define 10x10 loop macros
|
|
//-------------------------
|
|
#define cimg_for10(bound,i) for (int i = 0, \
|
|
_p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
|
|
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
|
|
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
|
|
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
|
|
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5; \
|
|
_n5##i<(int)(bound) || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
|
|
_p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i)
|
|
|
|
#define cimg_for10X(img,x) cimg_for10((img)._width,x)
|
|
#define cimg_for10Y(img,y) cimg_for10((img)._height,y)
|
|
#define cimg_for10Z(img,z) cimg_for10((img)._depth,z)
|
|
#define cimg_for10C(img,c) cimg_for10((img)._spectrum,c)
|
|
#define cimg_for10XY(img,x,y) cimg_for10Y(img,y) cimg_for10X(img,x)
|
|
#define cimg_for10XZ(img,x,z) cimg_for10Z(img,z) cimg_for10X(img,x)
|
|
#define cimg_for10XC(img,x,c) cimg_for10C(img,c) cimg_for10X(img,x)
|
|
#define cimg_for10YZ(img,y,z) cimg_for10Z(img,z) cimg_for10Y(img,y)
|
|
#define cimg_for10YC(img,y,c) cimg_for10C(img,c) cimg_for10Y(img,y)
|
|
#define cimg_for10ZC(img,z,c) cimg_for10C(img,c) cimg_for10Z(img,z)
|
|
#define cimg_for10XYZ(img,x,y,z) cimg_for10Z(img,z) cimg_for10XY(img,x,y)
|
|
#define cimg_for10XZC(img,x,z,c) cimg_for10C(img,c) cimg_for10XZ(img,x,z)
|
|
#define cimg_for10YZC(img,y,z,c) cimg_for10C(img,c) cimg_for10YZ(img,y,z)
|
|
#define cimg_for10XYZC(img,x,y,z,c) cimg_for10C(img,c) cimg_for10XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in10(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p4##i = i - 4<0?0:i - 4, \
|
|
_p3##i = i - 3<0?0:i - 3, \
|
|
_p2##i = i - 2<0?0:i - 2, \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
|
|
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
|
|
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
|
|
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
|
|
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5; \
|
|
i<=(int)(i1) && (_n5##i<(int)(bound) || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
|
|
_p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i)
|
|
|
|
#define cimg_for_in10X(img,x0,x1,x) cimg_for_in10((img)._width,x0,x1,x)
|
|
#define cimg_for_in10Y(img,y0,y1,y) cimg_for_in10((img)._height,y0,y1,y)
|
|
#define cimg_for_in10Z(img,z0,z1,z) cimg_for_in10((img)._depth,z0,z1,z)
|
|
#define cimg_for_in10C(img,c0,c1,c) cimg_for_in10((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in10XY(img,x0,y0,x1,y1,x,y) cimg_for_in10Y(img,y0,y1,y) cimg_for_in10X(img,x0,x1,x)
|
|
#define cimg_for_in10XZ(img,x0,z0,x1,z1,x,z) cimg_for_in10Z(img,z0,z1,z) cimg_for_in10X(img,x0,x1,x)
|
|
#define cimg_for_in10XC(img,x0,c0,x1,c1,x,c) cimg_for_in10C(img,c0,c1,c) cimg_for_in10X(img,x0,x1,x)
|
|
#define cimg_for_in10YZ(img,y0,z0,y1,z1,y,z) cimg_for_in10Z(img,z0,z1,z) cimg_for_in10Y(img,y0,y1,y)
|
|
#define cimg_for_in10YC(img,y0,c0,y1,c1,y,c) cimg_for_in10C(img,c0,c1,c) cimg_for_in10Y(img,y0,y1,y)
|
|
#define cimg_for_in10ZC(img,z0,c0,z1,c1,z,c) cimg_for_in10C(img,c0,c1,c) cimg_for_in10Z(img,z0,z1,z)
|
|
#define cimg_for_in10XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in10Z(img,z0,z1,z) cimg_for_in10XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in10XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in10C(img,c0,c1,c) cimg_for_in10XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in10YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in10C(img,c0,c1,c) cimg_for_in10YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in10XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in10C(img,c0,c1,c) cimg_for_in10XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for10x10(img,x,y,z,c,I,T) \
|
|
cimg_for10((img)._height,y) for (int x = 0, \
|
|
_p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
|
|
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
|
|
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
|
|
_n5##x = (int)( \
|
|
(I[0] = I[1] = I[2] = I[3] = I[4] = (T)(img)(0,_p4##y,z,c)), \
|
|
(I[10] = I[11] = I[12] = I[13] = I[14] = (T)(img)(0,_p3##y,z,c)), \
|
|
(I[20] = I[21] = I[22] = I[23] = I[24] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[30] = I[31] = I[32] = I[33] = I[34] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[40] = I[41] = I[42] = I[43] = I[44] = (T)(img)(0,y,z,c)), \
|
|
(I[50] = I[51] = I[52] = I[53] = I[54] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[60] = I[61] = I[62] = I[63] = I[64] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[70] = I[71] = I[72] = I[73] = I[74] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[80] = I[81] = I[82] = I[83] = I[84] = (T)(img)(0,_n4##y,z,c)), \
|
|
(I[90] = I[91] = I[92] = I[93] = I[94] = (T)(img)(0,_n5##y,z,c)), \
|
|
(I[5] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[15] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[25] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[35] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[45] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[55] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[65] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[75] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[85] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[95] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[6] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[16] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[26] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[36] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[46] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[56] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[66] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[76] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[86] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[96] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[7] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[17] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[27] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[37] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[47] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[57] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[67] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[77] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[87] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[97] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[8] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[18] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[28] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[38] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[48] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[58] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[68] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[78] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[88] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[98] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
5>=((img)._width)?(img).width() - 1:5); \
|
|
(_n5##x<(img).width() && ( \
|
|
(I[9] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[19] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[29] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[39] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[49] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[59] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[69] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[79] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[89] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[99] = (T)(img)(_n5##x,_n5##y,z,c)),1)) || \
|
|
_n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], \
|
|
I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \
|
|
I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
|
|
I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \
|
|
I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], \
|
|
I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
|
|
I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \
|
|
I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
|
|
I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
|
|
I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], \
|
|
_p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x)
|
|
|
|
#define cimg_for_in10x10(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in10((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p4##x = x - 4<0?0:x - 4, \
|
|
_p3##x = x - 3<0?0:x - 3, \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
|
|
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
|
|
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
|
|
_n5##x = (int)( \
|
|
(I[0] = (T)(img)(_p4##x,_p4##y,z,c)), \
|
|
(I[10] = (T)(img)(_p4##x,_p3##y,z,c)), \
|
|
(I[20] = (T)(img)(_p4##x,_p2##y,z,c)), \
|
|
(I[30] = (T)(img)(_p4##x,_p1##y,z,c)), \
|
|
(I[40] = (T)(img)(_p4##x,y,z,c)), \
|
|
(I[50] = (T)(img)(_p4##x,_n1##y,z,c)), \
|
|
(I[60] = (T)(img)(_p4##x,_n2##y,z,c)), \
|
|
(I[70] = (T)(img)(_p4##x,_n3##y,z,c)), \
|
|
(I[80] = (T)(img)(_p4##x,_n4##y,z,c)), \
|
|
(I[90] = (T)(img)(_p4##x,_n5##y,z,c)), \
|
|
(I[1] = (T)(img)(_p3##x,_p4##y,z,c)), \
|
|
(I[11] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[21] = (T)(img)(_p3##x,_p2##y,z,c)), \
|
|
(I[31] = (T)(img)(_p3##x,_p1##y,z,c)), \
|
|
(I[41] = (T)(img)(_p3##x,y,z,c)), \
|
|
(I[51] = (T)(img)(_p3##x,_n1##y,z,c)), \
|
|
(I[61] = (T)(img)(_p3##x,_n2##y,z,c)), \
|
|
(I[71] = (T)(img)(_p3##x,_n3##y,z,c)), \
|
|
(I[81] = (T)(img)(_p3##x,_n4##y,z,c)), \
|
|
(I[91] = (T)(img)(_p3##x,_n5##y,z,c)), \
|
|
(I[2] = (T)(img)(_p2##x,_p4##y,z,c)), \
|
|
(I[12] = (T)(img)(_p2##x,_p3##y,z,c)), \
|
|
(I[22] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[32] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[42] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[52] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[62] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[72] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[82] = (T)(img)(_p2##x,_n4##y,z,c)), \
|
|
(I[92] = (T)(img)(_p2##x,_n5##y,z,c)), \
|
|
(I[3] = (T)(img)(_p1##x,_p4##y,z,c)), \
|
|
(I[13] = (T)(img)(_p1##x,_p3##y,z,c)), \
|
|
(I[23] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[33] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[43] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[53] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[63] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[73] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[83] = (T)(img)(_p1##x,_n4##y,z,c)), \
|
|
(I[93] = (T)(img)(_p1##x,_n5##y,z,c)), \
|
|
(I[4] = (T)(img)(x,_p4##y,z,c)), \
|
|
(I[14] = (T)(img)(x,_p3##y,z,c)), \
|
|
(I[24] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[34] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[44] = (T)(img)(x,y,z,c)), \
|
|
(I[54] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[64] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[74] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[84] = (T)(img)(x,_n4##y,z,c)), \
|
|
(I[94] = (T)(img)(x,_n5##y,z,c)), \
|
|
(I[5] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[15] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[25] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[35] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[45] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[55] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[65] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[75] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[85] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[95] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[6] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[16] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[26] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[36] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[46] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[56] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[66] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[76] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[86] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[96] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[7] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[17] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[27] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[37] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[47] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[57] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[67] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[77] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[87] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[97] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[8] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[18] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[28] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[38] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[48] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[58] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[68] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[78] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[88] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[98] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
x + 5>=(img).width()?(img).width() - 1:x + 5); \
|
|
x<=(int)(x1) && ((_n5##x<(img).width() && ( \
|
|
(I[9] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[19] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[29] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[39] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[49] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[59] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[69] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[79] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[89] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[99] = (T)(img)(_n5##x,_n5##y,z,c)),1)) || \
|
|
_n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], \
|
|
I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \
|
|
I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
|
|
I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \
|
|
I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], \
|
|
I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
|
|
I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \
|
|
I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
|
|
I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
|
|
I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], \
|
|
_p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x)
|
|
|
|
#define cimg_get10x10(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p4##x,_p4##y,z,c), I[1] = (T)(img)(_p3##x,_p4##y,z,c), I[2] = (T)(img)(_p2##x,_p4##y,z,c), I[3] = (T)(img)(_p1##x,_p4##y,z,c), I[4] = (T)(img)(x,_p4##y,z,c), I[5] = (T)(img)(_n1##x,_p4##y,z,c), I[6] = (T)(img)(_n2##x,_p4##y,z,c), I[7] = (T)(img)(_n3##x,_p4##y,z,c), I[8] = (T)(img)(_n4##x,_p4##y,z,c), I[9] = (T)(img)(_n5##x,_p4##y,z,c), \
|
|
I[10] = (T)(img)(_p4##x,_p3##y,z,c), I[11] = (T)(img)(_p3##x,_p3##y,z,c), I[12] = (T)(img)(_p2##x,_p3##y,z,c), I[13] = (T)(img)(_p1##x,_p3##y,z,c), I[14] = (T)(img)(x,_p3##y,z,c), I[15] = (T)(img)(_n1##x,_p3##y,z,c), I[16] = (T)(img)(_n2##x,_p3##y,z,c), I[17] = (T)(img)(_n3##x,_p3##y,z,c), I[18] = (T)(img)(_n4##x,_p3##y,z,c), I[19] = (T)(img)(_n5##x,_p3##y,z,c), \
|
|
I[20] = (T)(img)(_p4##x,_p2##y,z,c), I[21] = (T)(img)(_p3##x,_p2##y,z,c), I[22] = (T)(img)(_p2##x,_p2##y,z,c), I[23] = (T)(img)(_p1##x,_p2##y,z,c), I[24] = (T)(img)(x,_p2##y,z,c), I[25] = (T)(img)(_n1##x,_p2##y,z,c), I[26] = (T)(img)(_n2##x,_p2##y,z,c), I[27] = (T)(img)(_n3##x,_p2##y,z,c), I[28] = (T)(img)(_n4##x,_p2##y,z,c), I[29] = (T)(img)(_n5##x,_p2##y,z,c), \
|
|
I[30] = (T)(img)(_p4##x,_p1##y,z,c), I[31] = (T)(img)(_p3##x,_p1##y,z,c), I[32] = (T)(img)(_p2##x,_p1##y,z,c), I[33] = (T)(img)(_p1##x,_p1##y,z,c), I[34] = (T)(img)(x,_p1##y,z,c), I[35] = (T)(img)(_n1##x,_p1##y,z,c), I[36] = (T)(img)(_n2##x,_p1##y,z,c), I[37] = (T)(img)(_n3##x,_p1##y,z,c), I[38] = (T)(img)(_n4##x,_p1##y,z,c), I[39] = (T)(img)(_n5##x,_p1##y,z,c), \
|
|
I[40] = (T)(img)(_p4##x,y,z,c), I[41] = (T)(img)(_p3##x,y,z,c), I[42] = (T)(img)(_p2##x,y,z,c), I[43] = (T)(img)(_p1##x,y,z,c), I[44] = (T)(img)(x,y,z,c), I[45] = (T)(img)(_n1##x,y,z,c), I[46] = (T)(img)(_n2##x,y,z,c), I[47] = (T)(img)(_n3##x,y,z,c), I[48] = (T)(img)(_n4##x,y,z,c), I[49] = (T)(img)(_n5##x,y,z,c), \
|
|
I[50] = (T)(img)(_p4##x,_n1##y,z,c), I[51] = (T)(img)(_p3##x,_n1##y,z,c), I[52] = (T)(img)(_p2##x,_n1##y,z,c), I[53] = (T)(img)(_p1##x,_n1##y,z,c), I[54] = (T)(img)(x,_n1##y,z,c), I[55] = (T)(img)(_n1##x,_n1##y,z,c), I[56] = (T)(img)(_n2##x,_n1##y,z,c), I[57] = (T)(img)(_n3##x,_n1##y,z,c), I[58] = (T)(img)(_n4##x,_n1##y,z,c), I[59] = (T)(img)(_n5##x,_n1##y,z,c), \
|
|
I[60] = (T)(img)(_p4##x,_n2##y,z,c), I[61] = (T)(img)(_p3##x,_n2##y,z,c), I[62] = (T)(img)(_p2##x,_n2##y,z,c), I[63] = (T)(img)(_p1##x,_n2##y,z,c), I[64] = (T)(img)(x,_n2##y,z,c), I[65] = (T)(img)(_n1##x,_n2##y,z,c), I[66] = (T)(img)(_n2##x,_n2##y,z,c), I[67] = (T)(img)(_n3##x,_n2##y,z,c), I[68] = (T)(img)(_n4##x,_n2##y,z,c), I[69] = (T)(img)(_n5##x,_n2##y,z,c), \
|
|
I[70] = (T)(img)(_p4##x,_n3##y,z,c), I[71] = (T)(img)(_p3##x,_n3##y,z,c), I[72] = (T)(img)(_p2##x,_n3##y,z,c), I[73] = (T)(img)(_p1##x,_n3##y,z,c), I[74] = (T)(img)(x,_n3##y,z,c), I[75] = (T)(img)(_n1##x,_n3##y,z,c), I[76] = (T)(img)(_n2##x,_n3##y,z,c), I[77] = (T)(img)(_n3##x,_n3##y,z,c), I[78] = (T)(img)(_n4##x,_n3##y,z,c), I[79] = (T)(img)(_n5##x,_n3##y,z,c), \
|
|
I[80] = (T)(img)(_p4##x,_n4##y,z,c), I[81] = (T)(img)(_p3##x,_n4##y,z,c), I[82] = (T)(img)(_p2##x,_n4##y,z,c), I[83] = (T)(img)(_p1##x,_n4##y,z,c), I[84] = (T)(img)(x,_n4##y,z,c), I[85] = (T)(img)(_n1##x,_n4##y,z,c), I[86] = (T)(img)(_n2##x,_n4##y,z,c), I[87] = (T)(img)(_n3##x,_n4##y,z,c), I[88] = (T)(img)(_n4##x,_n4##y,z,c), I[89] = (T)(img)(_n5##x,_n4##y,z,c), \
|
|
I[90] = (T)(img)(_p4##x,_n5##y,z,c), I[91] = (T)(img)(_p3##x,_n5##y,z,c), I[92] = (T)(img)(_p2##x,_n5##y,z,c), I[93] = (T)(img)(_p1##x,_n5##y,z,c), I[94] = (T)(img)(x,_n5##y,z,c), I[95] = (T)(img)(_n1##x,_n5##y,z,c), I[96] = (T)(img)(_n2##x,_n5##y,z,c), I[97] = (T)(img)(_n3##x,_n5##y,z,c), I[98] = (T)(img)(_n4##x,_n5##y,z,c), I[99] = (T)(img)(_n5##x,_n5##y,z,c);
|
|
|
|
// Define 11x11 loop macros
|
|
//-------------------------
|
|
#define cimg_for11(bound,i) for (int i = 0, \
|
|
_p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
|
|
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
|
|
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
|
|
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
|
|
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5; \
|
|
_n5##i<(int)(bound) || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
|
|
_p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i)
|
|
|
|
#define cimg_for11X(img,x) cimg_for11((img)._width,x)
|
|
#define cimg_for11Y(img,y) cimg_for11((img)._height,y)
|
|
#define cimg_for11Z(img,z) cimg_for11((img)._depth,z)
|
|
#define cimg_for11C(img,c) cimg_for11((img)._spectrum,c)
|
|
#define cimg_for11XY(img,x,y) cimg_for11Y(img,y) cimg_for11X(img,x)
|
|
#define cimg_for11XZ(img,x,z) cimg_for11Z(img,z) cimg_for11X(img,x)
|
|
#define cimg_for11XC(img,x,c) cimg_for11C(img,c) cimg_for11X(img,x)
|
|
#define cimg_for11YZ(img,y,z) cimg_for11Z(img,z) cimg_for11Y(img,y)
|
|
#define cimg_for11YC(img,y,c) cimg_for11C(img,c) cimg_for11Y(img,y)
|
|
#define cimg_for11ZC(img,z,c) cimg_for11C(img,c) cimg_for11Z(img,z)
|
|
#define cimg_for11XYZ(img,x,y,z) cimg_for11Z(img,z) cimg_for11XY(img,x,y)
|
|
#define cimg_for11XZC(img,x,z,c) cimg_for11C(img,c) cimg_for11XZ(img,x,z)
|
|
#define cimg_for11YZC(img,y,z,c) cimg_for11C(img,c) cimg_for11YZ(img,y,z)
|
|
#define cimg_for11XYZC(img,x,y,z,c) cimg_for11C(img,c) cimg_for11XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in11(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p5##i = i - 5<0?0:i - 5, \
|
|
_p4##i = i - 4<0?0:i - 4, \
|
|
_p3##i = i - 3<0?0:i - 3, \
|
|
_p2##i = i - 2<0?0:i - 2, \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
|
|
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
|
|
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
|
|
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
|
|
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5; \
|
|
i<=(int)(i1) && (_n5##i<(int)(bound) || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
|
|
_p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i)
|
|
|
|
#define cimg_for_in11X(img,x0,x1,x) cimg_for_in11((img)._width,x0,x1,x)
|
|
#define cimg_for_in11Y(img,y0,y1,y) cimg_for_in11((img)._height,y0,y1,y)
|
|
#define cimg_for_in11Z(img,z0,z1,z) cimg_for_in11((img)._depth,z0,z1,z)
|
|
#define cimg_for_in11C(img,c0,c1,c) cimg_for_in11((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in11XY(img,x0,y0,x1,y1,x,y) cimg_for_in11Y(img,y0,y1,y) cimg_for_in11X(img,x0,x1,x)
|
|
#define cimg_for_in11XZ(img,x0,z0,x1,z1,x,z) cimg_for_in11Z(img,z0,z1,z) cimg_for_in11X(img,x0,x1,x)
|
|
#define cimg_for_in11XC(img,x0,c0,x1,c1,x,c) cimg_for_in11C(img,c0,c1,c) cimg_for_in11X(img,x0,x1,x)
|
|
#define cimg_for_in11YZ(img,y0,z0,y1,z1,y,z) cimg_for_in11Z(img,z0,z1,z) cimg_for_in11Y(img,y0,y1,y)
|
|
#define cimg_for_in11YC(img,y0,c0,y1,c1,y,c) cimg_for_in11C(img,c0,c1,c) cimg_for_in11Y(img,y0,y1,y)
|
|
#define cimg_for_in11ZC(img,z0,c0,z1,c1,z,c) cimg_for_in11C(img,c0,c1,c) cimg_for_in11Z(img,z0,z1,z)
|
|
#define cimg_for_in11XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in11Z(img,z0,z1,z) cimg_for_in11XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in11XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in11C(img,c0,c1,c) cimg_for_in11XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in11YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in11C(img,c0,c1,c) cimg_for_in11YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in11XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in11C(img,c0,c1,c) cimg_for_in11XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for11x11(img,x,y,z,c,I,T) \
|
|
cimg_for11((img)._height,y) for (int x = 0, \
|
|
_p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
|
|
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
|
|
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
|
|
_n5##x = (int)( \
|
|
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = (T)(img)(0,_p5##y,z,c)), \
|
|
(I[11] = I[12] = I[13] = I[14] = I[15] = I[16] = (T)(img)(0,_p4##y,z,c)), \
|
|
(I[22] = I[23] = I[24] = I[25] = I[26] = I[27] = (T)(img)(0,_p3##y,z,c)), \
|
|
(I[33] = I[34] = I[35] = I[36] = I[37] = I[38] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[44] = I[45] = I[46] = I[47] = I[48] = I[49] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[55] = I[56] = I[57] = I[58] = I[59] = I[60] = (T)(img)(0,y,z,c)), \
|
|
(I[66] = I[67] = I[68] = I[69] = I[70] = I[71] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[77] = I[78] = I[79] = I[80] = I[81] = I[82] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[88] = I[89] = I[90] = I[91] = I[92] = I[93] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[99] = I[100] = I[101] = I[102] = I[103] = I[104] = (T)(img)(0,_n4##y,z,c)), \
|
|
(I[110] = I[111] = I[112] = I[113] = I[114] = I[115] = (T)(img)(0,_n5##y,z,c)), \
|
|
(I[6] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[17] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[28] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[39] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[50] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[61] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[72] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[83] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[94] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[105] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[116] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[7] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[18] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[29] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[40] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[51] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[62] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[73] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[84] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[95] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[106] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[117] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[8] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[19] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[30] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[41] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[52] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[63] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[74] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[85] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[96] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[107] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[118] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[9] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[20] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[31] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[42] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[53] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[64] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[75] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[86] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[97] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[108] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[119] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
5>=((img)._width)?(img).width() - 1:5); \
|
|
(_n5##x<(img).width() && ( \
|
|
(I[10] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[21] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[32] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[43] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[54] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[65] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[76] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[87] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[98] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[109] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[120] = (T)(img)(_n5##x,_n5##y,z,c)),1)) || \
|
|
_n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], \
|
|
I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], \
|
|
I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], \
|
|
I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], \
|
|
I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], \
|
|
I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], \
|
|
I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], \
|
|
I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], \
|
|
I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], \
|
|
I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], \
|
|
I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], \
|
|
_p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x)
|
|
|
|
#define cimg_for_in11x11(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in11((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p5##x = x - 5<0?0:x - 5, \
|
|
_p4##x = x - 4<0?0:x - 4, \
|
|
_p3##x = x - 3<0?0:x - 3, \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
|
|
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
|
|
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
|
|
_n5##x = (int)( \
|
|
(I[0] = (T)(img)(_p5##x,_p5##y,z,c)), \
|
|
(I[11] = (T)(img)(_p5##x,_p4##y,z,c)), \
|
|
(I[22] = (T)(img)(_p5##x,_p3##y,z,c)), \
|
|
(I[33] = (T)(img)(_p5##x,_p2##y,z,c)), \
|
|
(I[44] = (T)(img)(_p5##x,_p1##y,z,c)), \
|
|
(I[55] = (T)(img)(_p5##x,y,z,c)), \
|
|
(I[66] = (T)(img)(_p5##x,_n1##y,z,c)), \
|
|
(I[77] = (T)(img)(_p5##x,_n2##y,z,c)), \
|
|
(I[88] = (T)(img)(_p5##x,_n3##y,z,c)), \
|
|
(I[99] = (T)(img)(_p5##x,_n4##y,z,c)), \
|
|
(I[110] = (T)(img)(_p5##x,_n5##y,z,c)), \
|
|
(I[1] = (T)(img)(_p4##x,_p5##y,z,c)), \
|
|
(I[12] = (T)(img)(_p4##x,_p4##y,z,c)), \
|
|
(I[23] = (T)(img)(_p4##x,_p3##y,z,c)), \
|
|
(I[34] = (T)(img)(_p4##x,_p2##y,z,c)), \
|
|
(I[45] = (T)(img)(_p4##x,_p1##y,z,c)), \
|
|
(I[56] = (T)(img)(_p4##x,y,z,c)), \
|
|
(I[67] = (T)(img)(_p4##x,_n1##y,z,c)), \
|
|
(I[78] = (T)(img)(_p4##x,_n2##y,z,c)), \
|
|
(I[89] = (T)(img)(_p4##x,_n3##y,z,c)), \
|
|
(I[100] = (T)(img)(_p4##x,_n4##y,z,c)), \
|
|
(I[111] = (T)(img)(_p4##x,_n5##y,z,c)), \
|
|
(I[2] = (T)(img)(_p3##x,_p5##y,z,c)), \
|
|
(I[13] = (T)(img)(_p3##x,_p4##y,z,c)), \
|
|
(I[24] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[35] = (T)(img)(_p3##x,_p2##y,z,c)), \
|
|
(I[46] = (T)(img)(_p3##x,_p1##y,z,c)), \
|
|
(I[57] = (T)(img)(_p3##x,y,z,c)), \
|
|
(I[68] = (T)(img)(_p3##x,_n1##y,z,c)), \
|
|
(I[79] = (T)(img)(_p3##x,_n2##y,z,c)), \
|
|
(I[90] = (T)(img)(_p3##x,_n3##y,z,c)), \
|
|
(I[101] = (T)(img)(_p3##x,_n4##y,z,c)), \
|
|
(I[112] = (T)(img)(_p3##x,_n5##y,z,c)), \
|
|
(I[3] = (T)(img)(_p2##x,_p5##y,z,c)), \
|
|
(I[14] = (T)(img)(_p2##x,_p4##y,z,c)), \
|
|
(I[25] = (T)(img)(_p2##x,_p3##y,z,c)), \
|
|
(I[36] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[47] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[58] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[69] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[80] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[91] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[102] = (T)(img)(_p2##x,_n4##y,z,c)), \
|
|
(I[113] = (T)(img)(_p2##x,_n5##y,z,c)), \
|
|
(I[4] = (T)(img)(_p1##x,_p5##y,z,c)), \
|
|
(I[15] = (T)(img)(_p1##x,_p4##y,z,c)), \
|
|
(I[26] = (T)(img)(_p1##x,_p3##y,z,c)), \
|
|
(I[37] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[48] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[59] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[70] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[81] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[92] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[103] = (T)(img)(_p1##x,_n4##y,z,c)), \
|
|
(I[114] = (T)(img)(_p1##x,_n5##y,z,c)), \
|
|
(I[5] = (T)(img)(x,_p5##y,z,c)), \
|
|
(I[16] = (T)(img)(x,_p4##y,z,c)), \
|
|
(I[27] = (T)(img)(x,_p3##y,z,c)), \
|
|
(I[38] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[49] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[60] = (T)(img)(x,y,z,c)), \
|
|
(I[71] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[82] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[93] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[104] = (T)(img)(x,_n4##y,z,c)), \
|
|
(I[115] = (T)(img)(x,_n5##y,z,c)), \
|
|
(I[6] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[17] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[28] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[39] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[50] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[61] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[72] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[83] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[94] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[105] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[116] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[7] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[18] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[29] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[40] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[51] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[62] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[73] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[84] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[95] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[106] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[117] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[8] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[19] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[30] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[41] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[52] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[63] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[74] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[85] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[96] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[107] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[118] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[9] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[20] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[31] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[42] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[53] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[64] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[75] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[86] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[97] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[108] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[119] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
x + 5>=(img).width()?(img).width() - 1:x + 5); \
|
|
x<=(int)(x1) && ((_n5##x<(img).width() && ( \
|
|
(I[10] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[21] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[32] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[43] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[54] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[65] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[76] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[87] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[98] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[109] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[120] = (T)(img)(_n5##x,_n5##y,z,c)),1)) || \
|
|
_n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], \
|
|
I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], \
|
|
I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], \
|
|
I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], \
|
|
I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], \
|
|
I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], \
|
|
I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], \
|
|
I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], \
|
|
I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], \
|
|
I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], \
|
|
I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], \
|
|
_p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x)
|
|
|
|
#define cimg_get11x11(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p5##x,_p5##y,z,c), I[1] = (T)(img)(_p4##x,_p5##y,z,c), I[2] = (T)(img)(_p3##x,_p5##y,z,c), I[3] = (T)(img)(_p2##x,_p5##y,z,c), I[4] = (T)(img)(_p1##x,_p5##y,z,c), I[5] = (T)(img)(x,_p5##y,z,c), I[6] = (T)(img)(_n1##x,_p5##y,z,c), I[7] = (T)(img)(_n2##x,_p5##y,z,c), I[8] = (T)(img)(_n3##x,_p5##y,z,c), I[9] = (T)(img)(_n4##x,_p5##y,z,c), I[10] = (T)(img)(_n5##x,_p5##y,z,c), \
|
|
I[11] = (T)(img)(_p5##x,_p4##y,z,c), I[12] = (T)(img)(_p4##x,_p4##y,z,c), I[13] = (T)(img)(_p3##x,_p4##y,z,c), I[14] = (T)(img)(_p2##x,_p4##y,z,c), I[15] = (T)(img)(_p1##x,_p4##y,z,c), I[16] = (T)(img)(x,_p4##y,z,c), I[17] = (T)(img)(_n1##x,_p4##y,z,c), I[18] = (T)(img)(_n2##x,_p4##y,z,c), I[19] = (T)(img)(_n3##x,_p4##y,z,c), I[20] = (T)(img)(_n4##x,_p4##y,z,c), I[21] = (T)(img)(_n5##x,_p4##y,z,c), \
|
|
I[22] = (T)(img)(_p5##x,_p3##y,z,c), I[23] = (T)(img)(_p4##x,_p3##y,z,c), I[24] = (T)(img)(_p3##x,_p3##y,z,c), I[25] = (T)(img)(_p2##x,_p3##y,z,c), I[26] = (T)(img)(_p1##x,_p3##y,z,c), I[27] = (T)(img)(x,_p3##y,z,c), I[28] = (T)(img)(_n1##x,_p3##y,z,c), I[29] = (T)(img)(_n2##x,_p3##y,z,c), I[30] = (T)(img)(_n3##x,_p3##y,z,c), I[31] = (T)(img)(_n4##x,_p3##y,z,c), I[32] = (T)(img)(_n5##x,_p3##y,z,c), \
|
|
I[33] = (T)(img)(_p5##x,_p2##y,z,c), I[34] = (T)(img)(_p4##x,_p2##y,z,c), I[35] = (T)(img)(_p3##x,_p2##y,z,c), I[36] = (T)(img)(_p2##x,_p2##y,z,c), I[37] = (T)(img)(_p1##x,_p2##y,z,c), I[38] = (T)(img)(x,_p2##y,z,c), I[39] = (T)(img)(_n1##x,_p2##y,z,c), I[40] = (T)(img)(_n2##x,_p2##y,z,c), I[41] = (T)(img)(_n3##x,_p2##y,z,c), I[42] = (T)(img)(_n4##x,_p2##y,z,c), I[43] = (T)(img)(_n5##x,_p2##y,z,c), \
|
|
I[44] = (T)(img)(_p5##x,_p1##y,z,c), I[45] = (T)(img)(_p4##x,_p1##y,z,c), I[46] = (T)(img)(_p3##x,_p1##y,z,c), I[47] = (T)(img)(_p2##x,_p1##y,z,c), I[48] = (T)(img)(_p1##x,_p1##y,z,c), I[49] = (T)(img)(x,_p1##y,z,c), I[50] = (T)(img)(_n1##x,_p1##y,z,c), I[51] = (T)(img)(_n2##x,_p1##y,z,c), I[52] = (T)(img)(_n3##x,_p1##y,z,c), I[53] = (T)(img)(_n4##x,_p1##y,z,c), I[54] = (T)(img)(_n5##x,_p1##y,z,c), \
|
|
I[55] = (T)(img)(_p5##x,y,z,c), I[56] = (T)(img)(_p4##x,y,z,c), I[57] = (T)(img)(_p3##x,y,z,c), I[58] = (T)(img)(_p2##x,y,z,c), I[59] = (T)(img)(_p1##x,y,z,c), I[60] = (T)(img)(x,y,z,c), I[61] = (T)(img)(_n1##x,y,z,c), I[62] = (T)(img)(_n2##x,y,z,c), I[63] = (T)(img)(_n3##x,y,z,c), I[64] = (T)(img)(_n4##x,y,z,c), I[65] = (T)(img)(_n5##x,y,z,c), \
|
|
I[66] = (T)(img)(_p5##x,_n1##y,z,c), I[67] = (T)(img)(_p4##x,_n1##y,z,c), I[68] = (T)(img)(_p3##x,_n1##y,z,c), I[69] = (T)(img)(_p2##x,_n1##y,z,c), I[70] = (T)(img)(_p1##x,_n1##y,z,c), I[71] = (T)(img)(x,_n1##y,z,c), I[72] = (T)(img)(_n1##x,_n1##y,z,c), I[73] = (T)(img)(_n2##x,_n1##y,z,c), I[74] = (T)(img)(_n3##x,_n1##y,z,c), I[75] = (T)(img)(_n4##x,_n1##y,z,c), I[76] = (T)(img)(_n5##x,_n1##y,z,c), \
|
|
I[77] = (T)(img)(_p5##x,_n2##y,z,c), I[78] = (T)(img)(_p4##x,_n2##y,z,c), I[79] = (T)(img)(_p3##x,_n2##y,z,c), I[80] = (T)(img)(_p2##x,_n2##y,z,c), I[81] = (T)(img)(_p1##x,_n2##y,z,c), I[82] = (T)(img)(x,_n2##y,z,c), I[83] = (T)(img)(_n1##x,_n2##y,z,c), I[84] = (T)(img)(_n2##x,_n2##y,z,c), I[85] = (T)(img)(_n3##x,_n2##y,z,c), I[86] = (T)(img)(_n4##x,_n2##y,z,c), I[87] = (T)(img)(_n5##x,_n2##y,z,c), \
|
|
I[88] = (T)(img)(_p5##x,_n3##y,z,c), I[89] = (T)(img)(_p4##x,_n3##y,z,c), I[90] = (T)(img)(_p3##x,_n3##y,z,c), I[91] = (T)(img)(_p2##x,_n3##y,z,c), I[92] = (T)(img)(_p1##x,_n3##y,z,c), I[93] = (T)(img)(x,_n3##y,z,c), I[94] = (T)(img)(_n1##x,_n3##y,z,c), I[95] = (T)(img)(_n2##x,_n3##y,z,c), I[96] = (T)(img)(_n3##x,_n3##y,z,c), I[97] = (T)(img)(_n4##x,_n3##y,z,c), I[98] = (T)(img)(_n5##x,_n3##y,z,c), \
|
|
I[99] = (T)(img)(_p5##x,_n4##y,z,c), I[100] = (T)(img)(_p4##x,_n4##y,z,c), I[101] = (T)(img)(_p3##x,_n4##y,z,c), I[102] = (T)(img)(_p2##x,_n4##y,z,c), I[103] = (T)(img)(_p1##x,_n4##y,z,c), I[104] = (T)(img)(x,_n4##y,z,c), I[105] = (T)(img)(_n1##x,_n4##y,z,c), I[106] = (T)(img)(_n2##x,_n4##y,z,c), I[107] = (T)(img)(_n3##x,_n4##y,z,c), I[108] = (T)(img)(_n4##x,_n4##y,z,c), I[109] = (T)(img)(_n5##x,_n4##y,z,c), \
|
|
I[110] = (T)(img)(_p5##x,_n5##y,z,c), I[111] = (T)(img)(_p4##x,_n5##y,z,c), I[112] = (T)(img)(_p3##x,_n5##y,z,c), I[113] = (T)(img)(_p2##x,_n5##y,z,c), I[114] = (T)(img)(_p1##x,_n5##y,z,c), I[115] = (T)(img)(x,_n5##y,z,c), I[116] = (T)(img)(_n1##x,_n5##y,z,c), I[117] = (T)(img)(_n2##x,_n5##y,z,c), I[118] = (T)(img)(_n3##x,_n5##y,z,c), I[119] = (T)(img)(_n4##x,_n5##y,z,c), I[120] = (T)(img)(_n5##x,_n5##y,z,c);
|
|
|
|
// Define 12x12 loop macros
|
|
//-------------------------
|
|
#define cimg_for12(bound,i) for (int i = 0, \
|
|
_p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
|
|
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
|
|
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
|
|
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
|
|
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
|
|
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6; \
|
|
_n6##i<(int)(bound) || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
|
|
_p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i)
|
|
|
|
#define cimg_for12X(img,x) cimg_for12((img)._width,x)
|
|
#define cimg_for12Y(img,y) cimg_for12((img)._height,y)
|
|
#define cimg_for12Z(img,z) cimg_for12((img)._depth,z)
|
|
#define cimg_for12C(img,c) cimg_for12((img)._spectrum,c)
|
|
#define cimg_for12XY(img,x,y) cimg_for12Y(img,y) cimg_for12X(img,x)
|
|
#define cimg_for12XZ(img,x,z) cimg_for12Z(img,z) cimg_for12X(img,x)
|
|
#define cimg_for12XC(img,x,c) cimg_for12C(img,c) cimg_for12X(img,x)
|
|
#define cimg_for12YZ(img,y,z) cimg_for12Z(img,z) cimg_for12Y(img,y)
|
|
#define cimg_for12YC(img,y,c) cimg_for12C(img,c) cimg_for12Y(img,y)
|
|
#define cimg_for12ZC(img,z,c) cimg_for12C(img,c) cimg_for12Z(img,z)
|
|
#define cimg_for12XYZ(img,x,y,z) cimg_for12Z(img,z) cimg_for12XY(img,x,y)
|
|
#define cimg_for12XZC(img,x,z,c) cimg_for12C(img,c) cimg_for12XZ(img,x,z)
|
|
#define cimg_for12YZC(img,y,z,c) cimg_for12C(img,c) cimg_for12YZ(img,y,z)
|
|
#define cimg_for12XYZC(img,x,y,z,c) cimg_for12C(img,c) cimg_for12XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in12(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p5##i = i - 5<0?0:i - 5, \
|
|
_p4##i = i - 4<0?0:i - 4, \
|
|
_p3##i = i - 3<0?0:i - 3, \
|
|
_p2##i = i - 2<0?0:i - 2, \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
|
|
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
|
|
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
|
|
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
|
|
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
|
|
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6; \
|
|
i<=(int)(i1) && (_n6##i<(int)(bound) || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
|
|
_p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i)
|
|
|
|
#define cimg_for_in12X(img,x0,x1,x) cimg_for_in12((img)._width,x0,x1,x)
|
|
#define cimg_for_in12Y(img,y0,y1,y) cimg_for_in12((img)._height,y0,y1,y)
|
|
#define cimg_for_in12Z(img,z0,z1,z) cimg_for_in12((img)._depth,z0,z1,z)
|
|
#define cimg_for_in12C(img,c0,c1,c) cimg_for_in12((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in12XY(img,x0,y0,x1,y1,x,y) cimg_for_in12Y(img,y0,y1,y) cimg_for_in12X(img,x0,x1,x)
|
|
#define cimg_for_in12XZ(img,x0,z0,x1,z1,x,z) cimg_for_in12Z(img,z0,z1,z) cimg_for_in12X(img,x0,x1,x)
|
|
#define cimg_for_in12XC(img,x0,c0,x1,c1,x,c) cimg_for_in12C(img,c0,c1,c) cimg_for_in12X(img,x0,x1,x)
|
|
#define cimg_for_in12YZ(img,y0,z0,y1,z1,y,z) cimg_for_in12Z(img,z0,z1,z) cimg_for_in12Y(img,y0,y1,y)
|
|
#define cimg_for_in12YC(img,y0,c0,y1,c1,y,c) cimg_for_in12C(img,c0,c1,c) cimg_for_in12Y(img,y0,y1,y)
|
|
#define cimg_for_in12ZC(img,z0,c0,z1,c1,z,c) cimg_for_in12C(img,c0,c1,c) cimg_for_in12Z(img,z0,z1,z)
|
|
#define cimg_for_in12XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in12Z(img,z0,z1,z) cimg_for_in12XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in12XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in12C(img,c0,c1,c) cimg_for_in12XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in12YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in12C(img,c0,c1,c) cimg_for_in12YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in12XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in12C(img,c0,c1,c) cimg_for_in12XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for12x12(img,x,y,z,c,I,T) \
|
|
cimg_for12((img)._height,y) for (int x = 0, \
|
|
_p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
|
|
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
|
|
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
|
|
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
|
|
_n6##x = (int)( \
|
|
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = (T)(img)(0,_p5##y,z,c)), \
|
|
(I[12] = I[13] = I[14] = I[15] = I[16] = I[17] = (T)(img)(0,_p4##y,z,c)), \
|
|
(I[24] = I[25] = I[26] = I[27] = I[28] = I[29] = (T)(img)(0,_p3##y,z,c)), \
|
|
(I[36] = I[37] = I[38] = I[39] = I[40] = I[41] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[48] = I[49] = I[50] = I[51] = I[52] = I[53] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[60] = I[61] = I[62] = I[63] = I[64] = I[65] = (T)(img)(0,y,z,c)), \
|
|
(I[72] = I[73] = I[74] = I[75] = I[76] = I[77] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[84] = I[85] = I[86] = I[87] = I[88] = I[89] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[96] = I[97] = I[98] = I[99] = I[100] = I[101] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[108] = I[109] = I[110] = I[111] = I[112] = I[113] = (T)(img)(0,_n4##y,z,c)), \
|
|
(I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = (T)(img)(0,_n5##y,z,c)), \
|
|
(I[132] = I[133] = I[134] = I[135] = I[136] = I[137] = (T)(img)(0,_n6##y,z,c)), \
|
|
(I[6] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[18] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[30] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[42] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[54] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[66] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[78] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[90] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[102] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[114] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[126] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[138] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[7] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[19] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[31] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[43] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[55] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[67] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[79] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[91] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[103] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[115] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[127] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[139] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[8] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[20] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[32] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[44] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[56] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[68] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[80] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[92] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[104] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[116] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[128] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[140] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[9] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[21] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[33] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[45] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[57] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[69] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[81] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[93] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[105] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[117] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[129] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[141] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[10] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[22] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[34] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[46] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[58] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[70] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[82] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[94] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[106] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[118] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[130] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[142] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
6>=((img)._width)?(img).width() - 1:6); \
|
|
(_n6##x<(img).width() && ( \
|
|
(I[11] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[23] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[35] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[47] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[59] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[71] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[83] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[95] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[107] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[119] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[131] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[143] = (T)(img)(_n6##x,_n6##y,z,c)),1)) || \
|
|
_n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], \
|
|
I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \
|
|
I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \
|
|
I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
|
|
I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
|
|
I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
|
|
I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
|
|
I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
|
|
I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], \
|
|
I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
|
|
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], \
|
|
I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
|
|
_p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x)
|
|
|
|
#define cimg_for_in12x12(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in12((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p5##x = x - 5<0?0:x - 5, \
|
|
_p4##x = x - 4<0?0:x - 4, \
|
|
_p3##x = x - 3<0?0:x - 3, \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
|
|
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
|
|
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
|
|
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
|
|
_n6##x = (int)( \
|
|
(I[0] = (T)(img)(_p5##x,_p5##y,z,c)), \
|
|
(I[12] = (T)(img)(_p5##x,_p4##y,z,c)), \
|
|
(I[24] = (T)(img)(_p5##x,_p3##y,z,c)), \
|
|
(I[36] = (T)(img)(_p5##x,_p2##y,z,c)), \
|
|
(I[48] = (T)(img)(_p5##x,_p1##y,z,c)), \
|
|
(I[60] = (T)(img)(_p5##x,y,z,c)), \
|
|
(I[72] = (T)(img)(_p5##x,_n1##y,z,c)), \
|
|
(I[84] = (T)(img)(_p5##x,_n2##y,z,c)), \
|
|
(I[96] = (T)(img)(_p5##x,_n3##y,z,c)), \
|
|
(I[108] = (T)(img)(_p5##x,_n4##y,z,c)), \
|
|
(I[120] = (T)(img)(_p5##x,_n5##y,z,c)), \
|
|
(I[132] = (T)(img)(_p5##x,_n6##y,z,c)), \
|
|
(I[1] = (T)(img)(_p4##x,_p5##y,z,c)), \
|
|
(I[13] = (T)(img)(_p4##x,_p4##y,z,c)), \
|
|
(I[25] = (T)(img)(_p4##x,_p3##y,z,c)), \
|
|
(I[37] = (T)(img)(_p4##x,_p2##y,z,c)), \
|
|
(I[49] = (T)(img)(_p4##x,_p1##y,z,c)), \
|
|
(I[61] = (T)(img)(_p4##x,y,z,c)), \
|
|
(I[73] = (T)(img)(_p4##x,_n1##y,z,c)), \
|
|
(I[85] = (T)(img)(_p4##x,_n2##y,z,c)), \
|
|
(I[97] = (T)(img)(_p4##x,_n3##y,z,c)), \
|
|
(I[109] = (T)(img)(_p4##x,_n4##y,z,c)), \
|
|
(I[121] = (T)(img)(_p4##x,_n5##y,z,c)), \
|
|
(I[133] = (T)(img)(_p4##x,_n6##y,z,c)), \
|
|
(I[2] = (T)(img)(_p3##x,_p5##y,z,c)), \
|
|
(I[14] = (T)(img)(_p3##x,_p4##y,z,c)), \
|
|
(I[26] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[38] = (T)(img)(_p3##x,_p2##y,z,c)), \
|
|
(I[50] = (T)(img)(_p3##x,_p1##y,z,c)), \
|
|
(I[62] = (T)(img)(_p3##x,y,z,c)), \
|
|
(I[74] = (T)(img)(_p3##x,_n1##y,z,c)), \
|
|
(I[86] = (T)(img)(_p3##x,_n2##y,z,c)), \
|
|
(I[98] = (T)(img)(_p3##x,_n3##y,z,c)), \
|
|
(I[110] = (T)(img)(_p3##x,_n4##y,z,c)), \
|
|
(I[122] = (T)(img)(_p3##x,_n5##y,z,c)), \
|
|
(I[134] = (T)(img)(_p3##x,_n6##y,z,c)), \
|
|
(I[3] = (T)(img)(_p2##x,_p5##y,z,c)), \
|
|
(I[15] = (T)(img)(_p2##x,_p4##y,z,c)), \
|
|
(I[27] = (T)(img)(_p2##x,_p3##y,z,c)), \
|
|
(I[39] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[51] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[63] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[75] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[87] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[99] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[111] = (T)(img)(_p2##x,_n4##y,z,c)), \
|
|
(I[123] = (T)(img)(_p2##x,_n5##y,z,c)), \
|
|
(I[135] = (T)(img)(_p2##x,_n6##y,z,c)), \
|
|
(I[4] = (T)(img)(_p1##x,_p5##y,z,c)), \
|
|
(I[16] = (T)(img)(_p1##x,_p4##y,z,c)), \
|
|
(I[28] = (T)(img)(_p1##x,_p3##y,z,c)), \
|
|
(I[40] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[52] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[64] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[76] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[88] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[100] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[112] = (T)(img)(_p1##x,_n4##y,z,c)), \
|
|
(I[124] = (T)(img)(_p1##x,_n5##y,z,c)), \
|
|
(I[136] = (T)(img)(_p1##x,_n6##y,z,c)), \
|
|
(I[5] = (T)(img)(x,_p5##y,z,c)), \
|
|
(I[17] = (T)(img)(x,_p4##y,z,c)), \
|
|
(I[29] = (T)(img)(x,_p3##y,z,c)), \
|
|
(I[41] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[53] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[65] = (T)(img)(x,y,z,c)), \
|
|
(I[77] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[89] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[101] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[113] = (T)(img)(x,_n4##y,z,c)), \
|
|
(I[125] = (T)(img)(x,_n5##y,z,c)), \
|
|
(I[137] = (T)(img)(x,_n6##y,z,c)), \
|
|
(I[6] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[18] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[30] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[42] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[54] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[66] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[78] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[90] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[102] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[114] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[126] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[138] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[7] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[19] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[31] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[43] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[55] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[67] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[79] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[91] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[103] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[115] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[127] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[139] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[8] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[20] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[32] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[44] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[56] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[68] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[80] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[92] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[104] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[116] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[128] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[140] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[9] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[21] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[33] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[45] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[57] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[69] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[81] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[93] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[105] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[117] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[129] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[141] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[10] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[22] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[34] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[46] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[58] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[70] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[82] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[94] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[106] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[118] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[130] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[142] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
x + 6>=(img).width()?(img).width() - 1:x + 6); \
|
|
x<=(int)(x1) && ((_n6##x<(img).width() && ( \
|
|
(I[11] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[23] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[35] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[47] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[59] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[71] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[83] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[95] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[107] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[119] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[131] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[143] = (T)(img)(_n6##x,_n6##y,z,c)),1)) || \
|
|
_n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], \
|
|
I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \
|
|
I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \
|
|
I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
|
|
I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
|
|
I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
|
|
I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
|
|
I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
|
|
I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], \
|
|
I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
|
|
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], \
|
|
I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
|
|
_p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x)
|
|
|
|
#define cimg_get12x12(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p5##x,_p5##y,z,c), I[1] = (T)(img)(_p4##x,_p5##y,z,c), I[2] = (T)(img)(_p3##x,_p5##y,z,c), I[3] = (T)(img)(_p2##x,_p5##y,z,c), I[4] = (T)(img)(_p1##x,_p5##y,z,c), I[5] = (T)(img)(x,_p5##y,z,c), I[6] = (T)(img)(_n1##x,_p5##y,z,c), I[7] = (T)(img)(_n2##x,_p5##y,z,c), I[8] = (T)(img)(_n3##x,_p5##y,z,c), I[9] = (T)(img)(_n4##x,_p5##y,z,c), I[10] = (T)(img)(_n5##x,_p5##y,z,c), I[11] = (T)(img)(_n6##x,_p5##y,z,c), \
|
|
I[12] = (T)(img)(_p5##x,_p4##y,z,c), I[13] = (T)(img)(_p4##x,_p4##y,z,c), I[14] = (T)(img)(_p3##x,_p4##y,z,c), I[15] = (T)(img)(_p2##x,_p4##y,z,c), I[16] = (T)(img)(_p1##x,_p4##y,z,c), I[17] = (T)(img)(x,_p4##y,z,c), I[18] = (T)(img)(_n1##x,_p4##y,z,c), I[19] = (T)(img)(_n2##x,_p4##y,z,c), I[20] = (T)(img)(_n3##x,_p4##y,z,c), I[21] = (T)(img)(_n4##x,_p4##y,z,c), I[22] = (T)(img)(_n5##x,_p4##y,z,c), I[23] = (T)(img)(_n6##x,_p4##y,z,c), \
|
|
I[24] = (T)(img)(_p5##x,_p3##y,z,c), I[25] = (T)(img)(_p4##x,_p3##y,z,c), I[26] = (T)(img)(_p3##x,_p3##y,z,c), I[27] = (T)(img)(_p2##x,_p3##y,z,c), I[28] = (T)(img)(_p1##x,_p3##y,z,c), I[29] = (T)(img)(x,_p3##y,z,c), I[30] = (T)(img)(_n1##x,_p3##y,z,c), I[31] = (T)(img)(_n2##x,_p3##y,z,c), I[32] = (T)(img)(_n3##x,_p3##y,z,c), I[33] = (T)(img)(_n4##x,_p3##y,z,c), I[34] = (T)(img)(_n5##x,_p3##y,z,c), I[35] = (T)(img)(_n6##x,_p3##y,z,c), \
|
|
I[36] = (T)(img)(_p5##x,_p2##y,z,c), I[37] = (T)(img)(_p4##x,_p2##y,z,c), I[38] = (T)(img)(_p3##x,_p2##y,z,c), I[39] = (T)(img)(_p2##x,_p2##y,z,c), I[40] = (T)(img)(_p1##x,_p2##y,z,c), I[41] = (T)(img)(x,_p2##y,z,c), I[42] = (T)(img)(_n1##x,_p2##y,z,c), I[43] = (T)(img)(_n2##x,_p2##y,z,c), I[44] = (T)(img)(_n3##x,_p2##y,z,c), I[45] = (T)(img)(_n4##x,_p2##y,z,c), I[46] = (T)(img)(_n5##x,_p2##y,z,c), I[47] = (T)(img)(_n6##x,_p2##y,z,c), \
|
|
I[48] = (T)(img)(_p5##x,_p1##y,z,c), I[49] = (T)(img)(_p4##x,_p1##y,z,c), I[50] = (T)(img)(_p3##x,_p1##y,z,c), I[51] = (T)(img)(_p2##x,_p1##y,z,c), I[52] = (T)(img)(_p1##x,_p1##y,z,c), I[53] = (T)(img)(x,_p1##y,z,c), I[54] = (T)(img)(_n1##x,_p1##y,z,c), I[55] = (T)(img)(_n2##x,_p1##y,z,c), I[56] = (T)(img)(_n3##x,_p1##y,z,c), I[57] = (T)(img)(_n4##x,_p1##y,z,c), I[58] = (T)(img)(_n5##x,_p1##y,z,c), I[59] = (T)(img)(_n6##x,_p1##y,z,c), \
|
|
I[60] = (T)(img)(_p5##x,y,z,c), I[61] = (T)(img)(_p4##x,y,z,c), I[62] = (T)(img)(_p3##x,y,z,c), I[63] = (T)(img)(_p2##x,y,z,c), I[64] = (T)(img)(_p1##x,y,z,c), I[65] = (T)(img)(x,y,z,c), I[66] = (T)(img)(_n1##x,y,z,c), I[67] = (T)(img)(_n2##x,y,z,c), I[68] = (T)(img)(_n3##x,y,z,c), I[69] = (T)(img)(_n4##x,y,z,c), I[70] = (T)(img)(_n5##x,y,z,c), I[71] = (T)(img)(_n6##x,y,z,c), \
|
|
I[72] = (T)(img)(_p5##x,_n1##y,z,c), I[73] = (T)(img)(_p4##x,_n1##y,z,c), I[74] = (T)(img)(_p3##x,_n1##y,z,c), I[75] = (T)(img)(_p2##x,_n1##y,z,c), I[76] = (T)(img)(_p1##x,_n1##y,z,c), I[77] = (T)(img)(x,_n1##y,z,c), I[78] = (T)(img)(_n1##x,_n1##y,z,c), I[79] = (T)(img)(_n2##x,_n1##y,z,c), I[80] = (T)(img)(_n3##x,_n1##y,z,c), I[81] = (T)(img)(_n4##x,_n1##y,z,c), I[82] = (T)(img)(_n5##x,_n1##y,z,c), I[83] = (T)(img)(_n6##x,_n1##y,z,c), \
|
|
I[84] = (T)(img)(_p5##x,_n2##y,z,c), I[85] = (T)(img)(_p4##x,_n2##y,z,c), I[86] = (T)(img)(_p3##x,_n2##y,z,c), I[87] = (T)(img)(_p2##x,_n2##y,z,c), I[88] = (T)(img)(_p1##x,_n2##y,z,c), I[89] = (T)(img)(x,_n2##y,z,c), I[90] = (T)(img)(_n1##x,_n2##y,z,c), I[91] = (T)(img)(_n2##x,_n2##y,z,c), I[92] = (T)(img)(_n3##x,_n2##y,z,c), I[93] = (T)(img)(_n4##x,_n2##y,z,c), I[94] = (T)(img)(_n5##x,_n2##y,z,c), I[95] = (T)(img)(_n6##x,_n2##y,z,c), \
|
|
I[96] = (T)(img)(_p5##x,_n3##y,z,c), I[97] = (T)(img)(_p4##x,_n3##y,z,c), I[98] = (T)(img)(_p3##x,_n3##y,z,c), I[99] = (T)(img)(_p2##x,_n3##y,z,c), I[100] = (T)(img)(_p1##x,_n3##y,z,c), I[101] = (T)(img)(x,_n3##y,z,c), I[102] = (T)(img)(_n1##x,_n3##y,z,c), I[103] = (T)(img)(_n2##x,_n3##y,z,c), I[104] = (T)(img)(_n3##x,_n3##y,z,c), I[105] = (T)(img)(_n4##x,_n3##y,z,c), I[106] = (T)(img)(_n5##x,_n3##y,z,c), I[107] = (T)(img)(_n6##x,_n3##y,z,c), \
|
|
I[108] = (T)(img)(_p5##x,_n4##y,z,c), I[109] = (T)(img)(_p4##x,_n4##y,z,c), I[110] = (T)(img)(_p3##x,_n4##y,z,c), I[111] = (T)(img)(_p2##x,_n4##y,z,c), I[112] = (T)(img)(_p1##x,_n4##y,z,c), I[113] = (T)(img)(x,_n4##y,z,c), I[114] = (T)(img)(_n1##x,_n4##y,z,c), I[115] = (T)(img)(_n2##x,_n4##y,z,c), I[116] = (T)(img)(_n3##x,_n4##y,z,c), I[117] = (T)(img)(_n4##x,_n4##y,z,c), I[118] = (T)(img)(_n5##x,_n4##y,z,c), I[119] = (T)(img)(_n6##x,_n4##y,z,c), \
|
|
I[120] = (T)(img)(_p5##x,_n5##y,z,c), I[121] = (T)(img)(_p4##x,_n5##y,z,c), I[122] = (T)(img)(_p3##x,_n5##y,z,c), I[123] = (T)(img)(_p2##x,_n5##y,z,c), I[124] = (T)(img)(_p1##x,_n5##y,z,c), I[125] = (T)(img)(x,_n5##y,z,c), I[126] = (T)(img)(_n1##x,_n5##y,z,c), I[127] = (T)(img)(_n2##x,_n5##y,z,c), I[128] = (T)(img)(_n3##x,_n5##y,z,c), I[129] = (T)(img)(_n4##x,_n5##y,z,c), I[130] = (T)(img)(_n5##x,_n5##y,z,c), I[131] = (T)(img)(_n6##x,_n5##y,z,c), \
|
|
I[132] = (T)(img)(_p5##x,_n6##y,z,c), I[133] = (T)(img)(_p4##x,_n6##y,z,c), I[134] = (T)(img)(_p3##x,_n6##y,z,c), I[135] = (T)(img)(_p2##x,_n6##y,z,c), I[136] = (T)(img)(_p1##x,_n6##y,z,c), I[137] = (T)(img)(x,_n6##y,z,c), I[138] = (T)(img)(_n1##x,_n6##y,z,c), I[139] = (T)(img)(_n2##x,_n6##y,z,c), I[140] = (T)(img)(_n3##x,_n6##y,z,c), I[141] = (T)(img)(_n4##x,_n6##y,z,c), I[142] = (T)(img)(_n5##x,_n6##y,z,c), I[143] = (T)(img)(_n6##x,_n6##y,z,c);
|
|
|
|
// Define 13x13 loop macros
|
|
//-------------------------
|
|
#define cimg_for13(bound,i) for (int i = 0, \
|
|
_p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
|
|
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
|
|
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
|
|
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
|
|
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
|
|
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6; \
|
|
_n6##i<(int)(bound) || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
|
|
_p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i)
|
|
|
|
#define cimg_for13X(img,x) cimg_for13((img)._width,x)
|
|
#define cimg_for13Y(img,y) cimg_for13((img)._height,y)
|
|
#define cimg_for13Z(img,z) cimg_for13((img)._depth,z)
|
|
#define cimg_for13C(img,c) cimg_for13((img)._spectrum,c)
|
|
#define cimg_for13XY(img,x,y) cimg_for13Y(img,y) cimg_for13X(img,x)
|
|
#define cimg_for13XZ(img,x,z) cimg_for13Z(img,z) cimg_for13X(img,x)
|
|
#define cimg_for13XC(img,x,c) cimg_for13C(img,c) cimg_for13X(img,x)
|
|
#define cimg_for13YZ(img,y,z) cimg_for13Z(img,z) cimg_for13Y(img,y)
|
|
#define cimg_for13YC(img,y,c) cimg_for13C(img,c) cimg_for13Y(img,y)
|
|
#define cimg_for13ZC(img,z,c) cimg_for13C(img,c) cimg_for13Z(img,z)
|
|
#define cimg_for13XYZ(img,x,y,z) cimg_for13Z(img,z) cimg_for13XY(img,x,y)
|
|
#define cimg_for13XZC(img,x,z,c) cimg_for13C(img,c) cimg_for13XZ(img,x,z)
|
|
#define cimg_for13YZC(img,y,z,c) cimg_for13C(img,c) cimg_for13YZ(img,y,z)
|
|
#define cimg_for13XYZC(img,x,y,z,c) cimg_for13C(img,c) cimg_for13XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in13(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p6##i = i - 6<0?0:i - 6, \
|
|
_p5##i = i - 5<0?0:i - 5, \
|
|
_p4##i = i - 4<0?0:i - 4, \
|
|
_p3##i = i - 3<0?0:i - 3, \
|
|
_p2##i = i - 2<0?0:i - 2, \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
|
|
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
|
|
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
|
|
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
|
|
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
|
|
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6; \
|
|
i<=(int)(i1) && (_n6##i<(int)(bound) || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
|
|
_p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i)
|
|
|
|
#define cimg_for_in13X(img,x0,x1,x) cimg_for_in13((img)._width,x0,x1,x)
|
|
#define cimg_for_in13Y(img,y0,y1,y) cimg_for_in13((img)._height,y0,y1,y)
|
|
#define cimg_for_in13Z(img,z0,z1,z) cimg_for_in13((img)._depth,z0,z1,z)
|
|
#define cimg_for_in13C(img,c0,c1,c) cimg_for_in13((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in13XY(img,x0,y0,x1,y1,x,y) cimg_for_in13Y(img,y0,y1,y) cimg_for_in13X(img,x0,x1,x)
|
|
#define cimg_for_in13XZ(img,x0,z0,x1,z1,x,z) cimg_for_in13Z(img,z0,z1,z) cimg_for_in13X(img,x0,x1,x)
|
|
#define cimg_for_in13XC(img,x0,c0,x1,c1,x,c) cimg_for_in13C(img,c0,c1,c) cimg_for_in13X(img,x0,x1,x)
|
|
#define cimg_for_in13YZ(img,y0,z0,y1,z1,y,z) cimg_for_in13Z(img,z0,z1,z) cimg_for_in13Y(img,y0,y1,y)
|
|
#define cimg_for_in13YC(img,y0,c0,y1,c1,y,c) cimg_for_in13C(img,c0,c1,c) cimg_for_in13Y(img,y0,y1,y)
|
|
#define cimg_for_in13ZC(img,z0,c0,z1,c1,z,c) cimg_for_in13C(img,c0,c1,c) cimg_for_in13Z(img,z0,z1,z)
|
|
#define cimg_for_in13XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in13Z(img,z0,z1,z) cimg_for_in13XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in13XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in13C(img,c0,c1,c) cimg_for_in13XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in13YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in13C(img,c0,c1,c) cimg_for_in13YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in13XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in13C(img,c0,c1,c) cimg_for_in13XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for13x13(img,x,y,z,c,I,T) \
|
|
cimg_for13((img)._height,y) for (int x = 0, \
|
|
_p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
|
|
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
|
|
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
|
|
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
|
|
_n6##x = (int)( \
|
|
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = (T)(img)(0,_p6##y,z,c)), \
|
|
(I[13] = I[14] = I[15] = I[16] = I[17] = I[18] = I[19] = (T)(img)(0,_p5##y,z,c)), \
|
|
(I[26] = I[27] = I[28] = I[29] = I[30] = I[31] = I[32] = (T)(img)(0,_p4##y,z,c)), \
|
|
(I[39] = I[40] = I[41] = I[42] = I[43] = I[44] = I[45] = (T)(img)(0,_p3##y,z,c)), \
|
|
(I[52] = I[53] = I[54] = I[55] = I[56] = I[57] = I[58] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[65] = I[66] = I[67] = I[68] = I[69] = I[70] = I[71] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[78] = I[79] = I[80] = I[81] = I[82] = I[83] = I[84] = (T)(img)(0,y,z,c)), \
|
|
(I[91] = I[92] = I[93] = I[94] = I[95] = I[96] = I[97] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[104] = I[105] = I[106] = I[107] = I[108] = I[109] = I[110] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[117] = I[118] = I[119] = I[120] = I[121] = I[122] = I[123] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[130] = I[131] = I[132] = I[133] = I[134] = I[135] = I[136] = (T)(img)(0,_n4##y,z,c)), \
|
|
(I[143] = I[144] = I[145] = I[146] = I[147] = I[148] = I[149] = (T)(img)(0,_n5##y,z,c)), \
|
|
(I[156] = I[157] = I[158] = I[159] = I[160] = I[161] = I[162] = (T)(img)(0,_n6##y,z,c)), \
|
|
(I[7] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[20] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[33] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[46] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[59] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[72] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[85] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[98] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[111] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[124] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[137] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[150] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[163] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[8] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[21] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[34] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[47] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[60] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[73] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[86] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[99] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[112] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[125] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[138] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[151] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[164] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[9] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[22] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[35] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[48] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[61] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[74] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[87] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[100] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[113] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[126] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[139] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[152] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[165] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[10] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[23] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[36] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[49] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[62] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[75] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[88] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[101] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[114] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[127] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[140] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[153] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[166] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[11] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[24] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[37] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[50] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[63] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[76] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[89] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[102] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[115] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[128] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[141] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[154] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[167] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
6>=((img)._width)?(img).width() - 1:6); \
|
|
(_n6##x<(img).width() && ( \
|
|
(I[12] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[25] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[38] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[51] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[64] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[77] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[90] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[103] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[116] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[129] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[142] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[155] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[168] = (T)(img)(_n6##x,_n6##y,z,c)),1)) || \
|
|
_n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], \
|
|
I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], \
|
|
I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], \
|
|
I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], \
|
|
I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], \
|
|
I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], \
|
|
I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], \
|
|
I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], \
|
|
I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], \
|
|
I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], \
|
|
I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], \
|
|
I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], \
|
|
I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], \
|
|
_p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x)
|
|
|
|
#define cimg_for_in13x13(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in13((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p6##x = x - 6<0?0:x - 6, \
|
|
_p5##x = x - 5<0?0:x - 5, \
|
|
_p4##x = x - 4<0?0:x - 4, \
|
|
_p3##x = x - 3<0?0:x - 3, \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
|
|
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
|
|
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
|
|
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
|
|
_n6##x = (int)( \
|
|
(I[0] = (T)(img)(_p6##x,_p6##y,z,c)), \
|
|
(I[13] = (T)(img)(_p6##x,_p5##y,z,c)), \
|
|
(I[26] = (T)(img)(_p6##x,_p4##y,z,c)), \
|
|
(I[39] = (T)(img)(_p6##x,_p3##y,z,c)), \
|
|
(I[52] = (T)(img)(_p6##x,_p2##y,z,c)), \
|
|
(I[65] = (T)(img)(_p6##x,_p1##y,z,c)), \
|
|
(I[78] = (T)(img)(_p6##x,y,z,c)), \
|
|
(I[91] = (T)(img)(_p6##x,_n1##y,z,c)), \
|
|
(I[104] = (T)(img)(_p6##x,_n2##y,z,c)), \
|
|
(I[117] = (T)(img)(_p6##x,_n3##y,z,c)), \
|
|
(I[130] = (T)(img)(_p6##x,_n4##y,z,c)), \
|
|
(I[143] = (T)(img)(_p6##x,_n5##y,z,c)), \
|
|
(I[156] = (T)(img)(_p6##x,_n6##y,z,c)), \
|
|
(I[1] = (T)(img)(_p5##x,_p6##y,z,c)), \
|
|
(I[14] = (T)(img)(_p5##x,_p5##y,z,c)), \
|
|
(I[27] = (T)(img)(_p5##x,_p4##y,z,c)), \
|
|
(I[40] = (T)(img)(_p5##x,_p3##y,z,c)), \
|
|
(I[53] = (T)(img)(_p5##x,_p2##y,z,c)), \
|
|
(I[66] = (T)(img)(_p5##x,_p1##y,z,c)), \
|
|
(I[79] = (T)(img)(_p5##x,y,z,c)), \
|
|
(I[92] = (T)(img)(_p5##x,_n1##y,z,c)), \
|
|
(I[105] = (T)(img)(_p5##x,_n2##y,z,c)), \
|
|
(I[118] = (T)(img)(_p5##x,_n3##y,z,c)), \
|
|
(I[131] = (T)(img)(_p5##x,_n4##y,z,c)), \
|
|
(I[144] = (T)(img)(_p5##x,_n5##y,z,c)), \
|
|
(I[157] = (T)(img)(_p5##x,_n6##y,z,c)), \
|
|
(I[2] = (T)(img)(_p4##x,_p6##y,z,c)), \
|
|
(I[15] = (T)(img)(_p4##x,_p5##y,z,c)), \
|
|
(I[28] = (T)(img)(_p4##x,_p4##y,z,c)), \
|
|
(I[41] = (T)(img)(_p4##x,_p3##y,z,c)), \
|
|
(I[54] = (T)(img)(_p4##x,_p2##y,z,c)), \
|
|
(I[67] = (T)(img)(_p4##x,_p1##y,z,c)), \
|
|
(I[80] = (T)(img)(_p4##x,y,z,c)), \
|
|
(I[93] = (T)(img)(_p4##x,_n1##y,z,c)), \
|
|
(I[106] = (T)(img)(_p4##x,_n2##y,z,c)), \
|
|
(I[119] = (T)(img)(_p4##x,_n3##y,z,c)), \
|
|
(I[132] = (T)(img)(_p4##x,_n4##y,z,c)), \
|
|
(I[145] = (T)(img)(_p4##x,_n5##y,z,c)), \
|
|
(I[158] = (T)(img)(_p4##x,_n6##y,z,c)), \
|
|
(I[3] = (T)(img)(_p3##x,_p6##y,z,c)), \
|
|
(I[16] = (T)(img)(_p3##x,_p5##y,z,c)), \
|
|
(I[29] = (T)(img)(_p3##x,_p4##y,z,c)), \
|
|
(I[42] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[55] = (T)(img)(_p3##x,_p2##y,z,c)), \
|
|
(I[68] = (T)(img)(_p3##x,_p1##y,z,c)), \
|
|
(I[81] = (T)(img)(_p3##x,y,z,c)), \
|
|
(I[94] = (T)(img)(_p3##x,_n1##y,z,c)), \
|
|
(I[107] = (T)(img)(_p3##x,_n2##y,z,c)), \
|
|
(I[120] = (T)(img)(_p3##x,_n3##y,z,c)), \
|
|
(I[133] = (T)(img)(_p3##x,_n4##y,z,c)), \
|
|
(I[146] = (T)(img)(_p3##x,_n5##y,z,c)), \
|
|
(I[159] = (T)(img)(_p3##x,_n6##y,z,c)), \
|
|
(I[4] = (T)(img)(_p2##x,_p6##y,z,c)), \
|
|
(I[17] = (T)(img)(_p2##x,_p5##y,z,c)), \
|
|
(I[30] = (T)(img)(_p2##x,_p4##y,z,c)), \
|
|
(I[43] = (T)(img)(_p2##x,_p3##y,z,c)), \
|
|
(I[56] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[69] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[82] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[95] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[108] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[121] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[134] = (T)(img)(_p2##x,_n4##y,z,c)), \
|
|
(I[147] = (T)(img)(_p2##x,_n5##y,z,c)), \
|
|
(I[160] = (T)(img)(_p2##x,_n6##y,z,c)), \
|
|
(I[5] = (T)(img)(_p1##x,_p6##y,z,c)), \
|
|
(I[18] = (T)(img)(_p1##x,_p5##y,z,c)), \
|
|
(I[31] = (T)(img)(_p1##x,_p4##y,z,c)), \
|
|
(I[44] = (T)(img)(_p1##x,_p3##y,z,c)), \
|
|
(I[57] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[70] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[83] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[96] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[109] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[122] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[135] = (T)(img)(_p1##x,_n4##y,z,c)), \
|
|
(I[148] = (T)(img)(_p1##x,_n5##y,z,c)), \
|
|
(I[161] = (T)(img)(_p1##x,_n6##y,z,c)), \
|
|
(I[6] = (T)(img)(x,_p6##y,z,c)), \
|
|
(I[19] = (T)(img)(x,_p5##y,z,c)), \
|
|
(I[32] = (T)(img)(x,_p4##y,z,c)), \
|
|
(I[45] = (T)(img)(x,_p3##y,z,c)), \
|
|
(I[58] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[71] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[84] = (T)(img)(x,y,z,c)), \
|
|
(I[97] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[110] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[123] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[136] = (T)(img)(x,_n4##y,z,c)), \
|
|
(I[149] = (T)(img)(x,_n5##y,z,c)), \
|
|
(I[162] = (T)(img)(x,_n6##y,z,c)), \
|
|
(I[7] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[20] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[33] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[46] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[59] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[72] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[85] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[98] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[111] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[124] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[137] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[150] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[163] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[8] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[21] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[34] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[47] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[60] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[73] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[86] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[99] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[112] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[125] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[138] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[151] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[164] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[9] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[22] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[35] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[48] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[61] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[74] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[87] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[100] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[113] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[126] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[139] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[152] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[165] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[10] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[23] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[36] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[49] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[62] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[75] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[88] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[101] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[114] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[127] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[140] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[153] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[166] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[11] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[24] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[37] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[50] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[63] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[76] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[89] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[102] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[115] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[128] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[141] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[154] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[167] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
x + 6>=(img).width()?(img).width() - 1:x + 6); \
|
|
x<=(int)(x1) && ((_n6##x<(img).width() && ( \
|
|
(I[12] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[25] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[38] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[51] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[64] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[77] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[90] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[103] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[116] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[129] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[142] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[155] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[168] = (T)(img)(_n6##x,_n6##y,z,c)),1)) || \
|
|
_n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], \
|
|
I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], \
|
|
I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], \
|
|
I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], \
|
|
I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], \
|
|
I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], \
|
|
I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], \
|
|
I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], \
|
|
I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], \
|
|
I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], \
|
|
I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], \
|
|
I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], \
|
|
I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], \
|
|
_p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x)
|
|
|
|
#define cimg_get13x13(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p6##x,_p6##y,z,c), I[1] = (T)(img)(_p5##x,_p6##y,z,c), I[2] = (T)(img)(_p4##x,_p6##y,z,c), I[3] = (T)(img)(_p3##x,_p6##y,z,c), I[4] = (T)(img)(_p2##x,_p6##y,z,c), I[5] = (T)(img)(_p1##x,_p6##y,z,c), I[6] = (T)(img)(x,_p6##y,z,c), I[7] = (T)(img)(_n1##x,_p6##y,z,c), I[8] = (T)(img)(_n2##x,_p6##y,z,c), I[9] = (T)(img)(_n3##x,_p6##y,z,c), I[10] = (T)(img)(_n4##x,_p6##y,z,c), I[11] = (T)(img)(_n5##x,_p6##y,z,c), I[12] = (T)(img)(_n6##x,_p6##y,z,c), \
|
|
I[13] = (T)(img)(_p6##x,_p5##y,z,c), I[14] = (T)(img)(_p5##x,_p5##y,z,c), I[15] = (T)(img)(_p4##x,_p5##y,z,c), I[16] = (T)(img)(_p3##x,_p5##y,z,c), I[17] = (T)(img)(_p2##x,_p5##y,z,c), I[18] = (T)(img)(_p1##x,_p5##y,z,c), I[19] = (T)(img)(x,_p5##y,z,c), I[20] = (T)(img)(_n1##x,_p5##y,z,c), I[21] = (T)(img)(_n2##x,_p5##y,z,c), I[22] = (T)(img)(_n3##x,_p5##y,z,c), I[23] = (T)(img)(_n4##x,_p5##y,z,c), I[24] = (T)(img)(_n5##x,_p5##y,z,c), I[25] = (T)(img)(_n6##x,_p5##y,z,c), \
|
|
I[26] = (T)(img)(_p6##x,_p4##y,z,c), I[27] = (T)(img)(_p5##x,_p4##y,z,c), I[28] = (T)(img)(_p4##x,_p4##y,z,c), I[29] = (T)(img)(_p3##x,_p4##y,z,c), I[30] = (T)(img)(_p2##x,_p4##y,z,c), I[31] = (T)(img)(_p1##x,_p4##y,z,c), I[32] = (T)(img)(x,_p4##y,z,c), I[33] = (T)(img)(_n1##x,_p4##y,z,c), I[34] = (T)(img)(_n2##x,_p4##y,z,c), I[35] = (T)(img)(_n3##x,_p4##y,z,c), I[36] = (T)(img)(_n4##x,_p4##y,z,c), I[37] = (T)(img)(_n5##x,_p4##y,z,c), I[38] = (T)(img)(_n6##x,_p4##y,z,c), \
|
|
I[39] = (T)(img)(_p6##x,_p3##y,z,c), I[40] = (T)(img)(_p5##x,_p3##y,z,c), I[41] = (T)(img)(_p4##x,_p3##y,z,c), I[42] = (T)(img)(_p3##x,_p3##y,z,c), I[43] = (T)(img)(_p2##x,_p3##y,z,c), I[44] = (T)(img)(_p1##x,_p3##y,z,c), I[45] = (T)(img)(x,_p3##y,z,c), I[46] = (T)(img)(_n1##x,_p3##y,z,c), I[47] = (T)(img)(_n2##x,_p3##y,z,c), I[48] = (T)(img)(_n3##x,_p3##y,z,c), I[49] = (T)(img)(_n4##x,_p3##y,z,c), I[50] = (T)(img)(_n5##x,_p3##y,z,c), I[51] = (T)(img)(_n6##x,_p3##y,z,c), \
|
|
I[52] = (T)(img)(_p6##x,_p2##y,z,c), I[53] = (T)(img)(_p5##x,_p2##y,z,c), I[54] = (T)(img)(_p4##x,_p2##y,z,c), I[55] = (T)(img)(_p3##x,_p2##y,z,c), I[56] = (T)(img)(_p2##x,_p2##y,z,c), I[57] = (T)(img)(_p1##x,_p2##y,z,c), I[58] = (T)(img)(x,_p2##y,z,c), I[59] = (T)(img)(_n1##x,_p2##y,z,c), I[60] = (T)(img)(_n2##x,_p2##y,z,c), I[61] = (T)(img)(_n3##x,_p2##y,z,c), I[62] = (T)(img)(_n4##x,_p2##y,z,c), I[63] = (T)(img)(_n5##x,_p2##y,z,c), I[64] = (T)(img)(_n6##x,_p2##y,z,c), \
|
|
I[65] = (T)(img)(_p6##x,_p1##y,z,c), I[66] = (T)(img)(_p5##x,_p1##y,z,c), I[67] = (T)(img)(_p4##x,_p1##y,z,c), I[68] = (T)(img)(_p3##x,_p1##y,z,c), I[69] = (T)(img)(_p2##x,_p1##y,z,c), I[70] = (T)(img)(_p1##x,_p1##y,z,c), I[71] = (T)(img)(x,_p1##y,z,c), I[72] = (T)(img)(_n1##x,_p1##y,z,c), I[73] = (T)(img)(_n2##x,_p1##y,z,c), I[74] = (T)(img)(_n3##x,_p1##y,z,c), I[75] = (T)(img)(_n4##x,_p1##y,z,c), I[76] = (T)(img)(_n5##x,_p1##y,z,c), I[77] = (T)(img)(_n6##x,_p1##y,z,c), \
|
|
I[78] = (T)(img)(_p6##x,y,z,c), I[79] = (T)(img)(_p5##x,y,z,c), I[80] = (T)(img)(_p4##x,y,z,c), I[81] = (T)(img)(_p3##x,y,z,c), I[82] = (T)(img)(_p2##x,y,z,c), I[83] = (T)(img)(_p1##x,y,z,c), I[84] = (T)(img)(x,y,z,c), I[85] = (T)(img)(_n1##x,y,z,c), I[86] = (T)(img)(_n2##x,y,z,c), I[87] = (T)(img)(_n3##x,y,z,c), I[88] = (T)(img)(_n4##x,y,z,c), I[89] = (T)(img)(_n5##x,y,z,c), I[90] = (T)(img)(_n6##x,y,z,c), \
|
|
I[91] = (T)(img)(_p6##x,_n1##y,z,c), I[92] = (T)(img)(_p5##x,_n1##y,z,c), I[93] = (T)(img)(_p4##x,_n1##y,z,c), I[94] = (T)(img)(_p3##x,_n1##y,z,c), I[95] = (T)(img)(_p2##x,_n1##y,z,c), I[96] = (T)(img)(_p1##x,_n1##y,z,c), I[97] = (T)(img)(x,_n1##y,z,c), I[98] = (T)(img)(_n1##x,_n1##y,z,c), I[99] = (T)(img)(_n2##x,_n1##y,z,c), I[100] = (T)(img)(_n3##x,_n1##y,z,c), I[101] = (T)(img)(_n4##x,_n1##y,z,c), I[102] = (T)(img)(_n5##x,_n1##y,z,c), I[103] = (T)(img)(_n6##x,_n1##y,z,c), \
|
|
I[104] = (T)(img)(_p6##x,_n2##y,z,c), I[105] = (T)(img)(_p5##x,_n2##y,z,c), I[106] = (T)(img)(_p4##x,_n2##y,z,c), I[107] = (T)(img)(_p3##x,_n2##y,z,c), I[108] = (T)(img)(_p2##x,_n2##y,z,c), I[109] = (T)(img)(_p1##x,_n2##y,z,c), I[110] = (T)(img)(x,_n2##y,z,c), I[111] = (T)(img)(_n1##x,_n2##y,z,c), I[112] = (T)(img)(_n2##x,_n2##y,z,c), I[113] = (T)(img)(_n3##x,_n2##y,z,c), I[114] = (T)(img)(_n4##x,_n2##y,z,c), I[115] = (T)(img)(_n5##x,_n2##y,z,c), I[116] = (T)(img)(_n6##x,_n2##y,z,c), \
|
|
I[117] = (T)(img)(_p6##x,_n3##y,z,c), I[118] = (T)(img)(_p5##x,_n3##y,z,c), I[119] = (T)(img)(_p4##x,_n3##y,z,c), I[120] = (T)(img)(_p3##x,_n3##y,z,c), I[121] = (T)(img)(_p2##x,_n3##y,z,c), I[122] = (T)(img)(_p1##x,_n3##y,z,c), I[123] = (T)(img)(x,_n3##y,z,c), I[124] = (T)(img)(_n1##x,_n3##y,z,c), I[125] = (T)(img)(_n2##x,_n3##y,z,c), I[126] = (T)(img)(_n3##x,_n3##y,z,c), I[127] = (T)(img)(_n4##x,_n3##y,z,c), I[128] = (T)(img)(_n5##x,_n3##y,z,c), I[129] = (T)(img)(_n6##x,_n3##y,z,c), \
|
|
I[130] = (T)(img)(_p6##x,_n4##y,z,c), I[131] = (T)(img)(_p5##x,_n4##y,z,c), I[132] = (T)(img)(_p4##x,_n4##y,z,c), I[133] = (T)(img)(_p3##x,_n4##y,z,c), I[134] = (T)(img)(_p2##x,_n4##y,z,c), I[135] = (T)(img)(_p1##x,_n4##y,z,c), I[136] = (T)(img)(x,_n4##y,z,c), I[137] = (T)(img)(_n1##x,_n4##y,z,c), I[138] = (T)(img)(_n2##x,_n4##y,z,c), I[139] = (T)(img)(_n3##x,_n4##y,z,c), I[140] = (T)(img)(_n4##x,_n4##y,z,c), I[141] = (T)(img)(_n5##x,_n4##y,z,c), I[142] = (T)(img)(_n6##x,_n4##y,z,c), \
|
|
I[143] = (T)(img)(_p6##x,_n5##y,z,c), I[144] = (T)(img)(_p5##x,_n5##y,z,c), I[145] = (T)(img)(_p4##x,_n5##y,z,c), I[146] = (T)(img)(_p3##x,_n5##y,z,c), I[147] = (T)(img)(_p2##x,_n5##y,z,c), I[148] = (T)(img)(_p1##x,_n5##y,z,c), I[149] = (T)(img)(x,_n5##y,z,c), I[150] = (T)(img)(_n1##x,_n5##y,z,c), I[151] = (T)(img)(_n2##x,_n5##y,z,c), I[152] = (T)(img)(_n3##x,_n5##y,z,c), I[153] = (T)(img)(_n4##x,_n5##y,z,c), I[154] = (T)(img)(_n5##x,_n5##y,z,c), I[155] = (T)(img)(_n6##x,_n5##y,z,c), \
|
|
I[156] = (T)(img)(_p6##x,_n6##y,z,c), I[157] = (T)(img)(_p5##x,_n6##y,z,c), I[158] = (T)(img)(_p4##x,_n6##y,z,c), I[159] = (T)(img)(_p3##x,_n6##y,z,c), I[160] = (T)(img)(_p2##x,_n6##y,z,c), I[161] = (T)(img)(_p1##x,_n6##y,z,c), I[162] = (T)(img)(x,_n6##y,z,c), I[163] = (T)(img)(_n1##x,_n6##y,z,c), I[164] = (T)(img)(_n2##x,_n6##y,z,c), I[165] = (T)(img)(_n3##x,_n6##y,z,c), I[166] = (T)(img)(_n4##x,_n6##y,z,c), I[167] = (T)(img)(_n5##x,_n6##y,z,c), I[168] = (T)(img)(_n6##x,_n6##y,z,c);
|
|
|
|
// Define 14x14 loop macros
|
|
//-------------------------
|
|
#define cimg_for14(bound,i) for (int i = 0, \
|
|
_p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
|
|
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
|
|
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
|
|
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
|
|
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
|
|
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
|
|
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7; \
|
|
_n7##i<(int)(bound) || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
|
|
_p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i)
|
|
|
|
#define cimg_for14X(img,x) cimg_for14((img)._width,x)
|
|
#define cimg_for14Y(img,y) cimg_for14((img)._height,y)
|
|
#define cimg_for14Z(img,z) cimg_for14((img)._depth,z)
|
|
#define cimg_for14C(img,c) cimg_for14((img)._spectrum,c)
|
|
#define cimg_for14XY(img,x,y) cimg_for14Y(img,y) cimg_for14X(img,x)
|
|
#define cimg_for14XZ(img,x,z) cimg_for14Z(img,z) cimg_for14X(img,x)
|
|
#define cimg_for14XC(img,x,c) cimg_for14C(img,c) cimg_for14X(img,x)
|
|
#define cimg_for14YZ(img,y,z) cimg_for14Z(img,z) cimg_for14Y(img,y)
|
|
#define cimg_for14YC(img,y,c) cimg_for14C(img,c) cimg_for14Y(img,y)
|
|
#define cimg_for14ZC(img,z,c) cimg_for14C(img,c) cimg_for14Z(img,z)
|
|
#define cimg_for14XYZ(img,x,y,z) cimg_for14Z(img,z) cimg_for14XY(img,x,y)
|
|
#define cimg_for14XZC(img,x,z,c) cimg_for14C(img,c) cimg_for14XZ(img,x,z)
|
|
#define cimg_for14YZC(img,y,z,c) cimg_for14C(img,c) cimg_for14YZ(img,y,z)
|
|
#define cimg_for14XYZC(img,x,y,z,c) cimg_for14C(img,c) cimg_for14XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in14(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p6##i = i - 6<0?0:i - 6, \
|
|
_p5##i = i - 5<0?0:i - 5, \
|
|
_p4##i = i - 4<0?0:i - 4, \
|
|
_p3##i = i - 3<0?0:i - 3, \
|
|
_p2##i = i - 2<0?0:i - 2, \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
|
|
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
|
|
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
|
|
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
|
|
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
|
|
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
|
|
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7; \
|
|
i<=(int)(i1) && (_n7##i<(int)(bound) || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
|
|
_p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i)
|
|
|
|
#define cimg_for_in14X(img,x0,x1,x) cimg_for_in14((img)._width,x0,x1,x)
|
|
#define cimg_for_in14Y(img,y0,y1,y) cimg_for_in14((img)._height,y0,y1,y)
|
|
#define cimg_for_in14Z(img,z0,z1,z) cimg_for_in14((img)._depth,z0,z1,z)
|
|
#define cimg_for_in14C(img,c0,c1,c) cimg_for_in14((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in14XY(img,x0,y0,x1,y1,x,y) cimg_for_in14Y(img,y0,y1,y) cimg_for_in14X(img,x0,x1,x)
|
|
#define cimg_for_in14XZ(img,x0,z0,x1,z1,x,z) cimg_for_in14Z(img,z0,z1,z) cimg_for_in14X(img,x0,x1,x)
|
|
#define cimg_for_in14XC(img,x0,c0,x1,c1,x,c) cimg_for_in14C(img,c0,c1,c) cimg_for_in14X(img,x0,x1,x)
|
|
#define cimg_for_in14YZ(img,y0,z0,y1,z1,y,z) cimg_for_in14Z(img,z0,z1,z) cimg_for_in14Y(img,y0,y1,y)
|
|
#define cimg_for_in14YC(img,y0,c0,y1,c1,y,c) cimg_for_in14C(img,c0,c1,c) cimg_for_in14Y(img,y0,y1,y)
|
|
#define cimg_for_in14ZC(img,z0,c0,z1,c1,z,c) cimg_for_in14C(img,c0,c1,c) cimg_for_in14Z(img,z0,z1,z)
|
|
#define cimg_for_in14XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in14Z(img,z0,z1,z) cimg_for_in14XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in14XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in14C(img,c0,c1,c) cimg_for_in14XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in14YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in14C(img,c0,c1,c) cimg_for_in14YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in14XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in14C(img,c0,c1,c) cimg_for_in14XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for14x14(img,x,y,z,c,I,T) \
|
|
cimg_for14((img)._height,y) for (int x = 0, \
|
|
_p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
|
|
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
|
|
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
|
|
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
|
|
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
|
|
_n7##x = (int)( \
|
|
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = (T)(img)(0,_p6##y,z,c)), \
|
|
(I[14] = I[15] = I[16] = I[17] = I[18] = I[19] = I[20] = (T)(img)(0,_p5##y,z,c)), \
|
|
(I[28] = I[29] = I[30] = I[31] = I[32] = I[33] = I[34] = (T)(img)(0,_p4##y,z,c)), \
|
|
(I[42] = I[43] = I[44] = I[45] = I[46] = I[47] = I[48] = (T)(img)(0,_p3##y,z,c)), \
|
|
(I[56] = I[57] = I[58] = I[59] = I[60] = I[61] = I[62] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[70] = I[71] = I[72] = I[73] = I[74] = I[75] = I[76] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[84] = I[85] = I[86] = I[87] = I[88] = I[89] = I[90] = (T)(img)(0,y,z,c)), \
|
|
(I[98] = I[99] = I[100] = I[101] = I[102] = I[103] = I[104] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[112] = I[113] = I[114] = I[115] = I[116] = I[117] = I[118] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[126] = I[127] = I[128] = I[129] = I[130] = I[131] = I[132] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[140] = I[141] = I[142] = I[143] = I[144] = I[145] = I[146] = (T)(img)(0,_n4##y,z,c)), \
|
|
(I[154] = I[155] = I[156] = I[157] = I[158] = I[159] = I[160] = (T)(img)(0,_n5##y,z,c)), \
|
|
(I[168] = I[169] = I[170] = I[171] = I[172] = I[173] = I[174] = (T)(img)(0,_n6##y,z,c)), \
|
|
(I[182] = I[183] = I[184] = I[185] = I[186] = I[187] = I[188] = (T)(img)(0,_n7##y,z,c)), \
|
|
(I[7] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[21] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[35] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[49] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[63] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[77] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[91] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[105] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[119] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[133] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[147] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[161] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[175] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[189] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[8] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[22] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[36] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[50] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[64] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[78] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[92] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[106] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[120] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[134] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[148] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[162] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[176] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[190] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[9] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[23] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[37] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[51] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[65] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[79] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[93] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[107] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[121] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[135] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[149] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[163] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[177] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[191] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[10] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[24] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[38] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[52] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[66] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[80] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[94] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[108] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[122] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[136] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[150] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[164] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[178] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[192] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[11] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[25] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[39] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[53] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[67] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[81] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[95] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[109] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[123] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[137] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[151] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[165] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[179] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[193] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[12] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[26] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[40] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[54] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[68] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[82] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[96] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[110] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[124] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[138] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[152] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[166] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[180] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[194] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
7>=((img)._width)?(img).width() - 1:7); \
|
|
(_n7##x<(img).width() && ( \
|
|
(I[13] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[27] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[41] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[55] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[69] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[83] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[97] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[111] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[125] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[139] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[153] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[167] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[181] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[195] = (T)(img)(_n7##x,_n7##y,z,c)),1)) || \
|
|
_n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], \
|
|
I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], \
|
|
I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \
|
|
I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \
|
|
I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \
|
|
I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
|
|
I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], \
|
|
I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \
|
|
I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
|
|
I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], \
|
|
I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], \
|
|
I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
|
|
I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], \
|
|
I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], \
|
|
_p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x)
|
|
|
|
#define cimg_for_in14x14(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in14((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p6##x = x - 6<0?0:x - 6, \
|
|
_p5##x = x - 5<0?0:x - 5, \
|
|
_p4##x = x - 4<0?0:x - 4, \
|
|
_p3##x = x - 3<0?0:x - 3, \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
|
|
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
|
|
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
|
|
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
|
|
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
|
|
_n7##x = (int)( \
|
|
(I[0] = (T)(img)(_p6##x,_p6##y,z,c)), \
|
|
(I[14] = (T)(img)(_p6##x,_p5##y,z,c)), \
|
|
(I[28] = (T)(img)(_p6##x,_p4##y,z,c)), \
|
|
(I[42] = (T)(img)(_p6##x,_p3##y,z,c)), \
|
|
(I[56] = (T)(img)(_p6##x,_p2##y,z,c)), \
|
|
(I[70] = (T)(img)(_p6##x,_p1##y,z,c)), \
|
|
(I[84] = (T)(img)(_p6##x,y,z,c)), \
|
|
(I[98] = (T)(img)(_p6##x,_n1##y,z,c)), \
|
|
(I[112] = (T)(img)(_p6##x,_n2##y,z,c)), \
|
|
(I[126] = (T)(img)(_p6##x,_n3##y,z,c)), \
|
|
(I[140] = (T)(img)(_p6##x,_n4##y,z,c)), \
|
|
(I[154] = (T)(img)(_p6##x,_n5##y,z,c)), \
|
|
(I[168] = (T)(img)(_p6##x,_n6##y,z,c)), \
|
|
(I[182] = (T)(img)(_p6##x,_n7##y,z,c)), \
|
|
(I[1] = (T)(img)(_p5##x,_p6##y,z,c)), \
|
|
(I[15] = (T)(img)(_p5##x,_p5##y,z,c)), \
|
|
(I[29] = (T)(img)(_p5##x,_p4##y,z,c)), \
|
|
(I[43] = (T)(img)(_p5##x,_p3##y,z,c)), \
|
|
(I[57] = (T)(img)(_p5##x,_p2##y,z,c)), \
|
|
(I[71] = (T)(img)(_p5##x,_p1##y,z,c)), \
|
|
(I[85] = (T)(img)(_p5##x,y,z,c)), \
|
|
(I[99] = (T)(img)(_p5##x,_n1##y,z,c)), \
|
|
(I[113] = (T)(img)(_p5##x,_n2##y,z,c)), \
|
|
(I[127] = (T)(img)(_p5##x,_n3##y,z,c)), \
|
|
(I[141] = (T)(img)(_p5##x,_n4##y,z,c)), \
|
|
(I[155] = (T)(img)(_p5##x,_n5##y,z,c)), \
|
|
(I[169] = (T)(img)(_p5##x,_n6##y,z,c)), \
|
|
(I[183] = (T)(img)(_p5##x,_n7##y,z,c)), \
|
|
(I[2] = (T)(img)(_p4##x,_p6##y,z,c)), \
|
|
(I[16] = (T)(img)(_p4##x,_p5##y,z,c)), \
|
|
(I[30] = (T)(img)(_p4##x,_p4##y,z,c)), \
|
|
(I[44] = (T)(img)(_p4##x,_p3##y,z,c)), \
|
|
(I[58] = (T)(img)(_p4##x,_p2##y,z,c)), \
|
|
(I[72] = (T)(img)(_p4##x,_p1##y,z,c)), \
|
|
(I[86] = (T)(img)(_p4##x,y,z,c)), \
|
|
(I[100] = (T)(img)(_p4##x,_n1##y,z,c)), \
|
|
(I[114] = (T)(img)(_p4##x,_n2##y,z,c)), \
|
|
(I[128] = (T)(img)(_p4##x,_n3##y,z,c)), \
|
|
(I[142] = (T)(img)(_p4##x,_n4##y,z,c)), \
|
|
(I[156] = (T)(img)(_p4##x,_n5##y,z,c)), \
|
|
(I[170] = (T)(img)(_p4##x,_n6##y,z,c)), \
|
|
(I[184] = (T)(img)(_p4##x,_n7##y,z,c)), \
|
|
(I[3] = (T)(img)(_p3##x,_p6##y,z,c)), \
|
|
(I[17] = (T)(img)(_p3##x,_p5##y,z,c)), \
|
|
(I[31] = (T)(img)(_p3##x,_p4##y,z,c)), \
|
|
(I[45] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[59] = (T)(img)(_p3##x,_p2##y,z,c)), \
|
|
(I[73] = (T)(img)(_p3##x,_p1##y,z,c)), \
|
|
(I[87] = (T)(img)(_p3##x,y,z,c)), \
|
|
(I[101] = (T)(img)(_p3##x,_n1##y,z,c)), \
|
|
(I[115] = (T)(img)(_p3##x,_n2##y,z,c)), \
|
|
(I[129] = (T)(img)(_p3##x,_n3##y,z,c)), \
|
|
(I[143] = (T)(img)(_p3##x,_n4##y,z,c)), \
|
|
(I[157] = (T)(img)(_p3##x,_n5##y,z,c)), \
|
|
(I[171] = (T)(img)(_p3##x,_n6##y,z,c)), \
|
|
(I[185] = (T)(img)(_p3##x,_n7##y,z,c)), \
|
|
(I[4] = (T)(img)(_p2##x,_p6##y,z,c)), \
|
|
(I[18] = (T)(img)(_p2##x,_p5##y,z,c)), \
|
|
(I[32] = (T)(img)(_p2##x,_p4##y,z,c)), \
|
|
(I[46] = (T)(img)(_p2##x,_p3##y,z,c)), \
|
|
(I[60] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[74] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[88] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[102] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[116] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[130] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[144] = (T)(img)(_p2##x,_n4##y,z,c)), \
|
|
(I[158] = (T)(img)(_p2##x,_n5##y,z,c)), \
|
|
(I[172] = (T)(img)(_p2##x,_n6##y,z,c)), \
|
|
(I[186] = (T)(img)(_p2##x,_n7##y,z,c)), \
|
|
(I[5] = (T)(img)(_p1##x,_p6##y,z,c)), \
|
|
(I[19] = (T)(img)(_p1##x,_p5##y,z,c)), \
|
|
(I[33] = (T)(img)(_p1##x,_p4##y,z,c)), \
|
|
(I[47] = (T)(img)(_p1##x,_p3##y,z,c)), \
|
|
(I[61] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[75] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[89] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[103] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[117] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[131] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[145] = (T)(img)(_p1##x,_n4##y,z,c)), \
|
|
(I[159] = (T)(img)(_p1##x,_n5##y,z,c)), \
|
|
(I[173] = (T)(img)(_p1##x,_n6##y,z,c)), \
|
|
(I[187] = (T)(img)(_p1##x,_n7##y,z,c)), \
|
|
(I[6] = (T)(img)(x,_p6##y,z,c)), \
|
|
(I[20] = (T)(img)(x,_p5##y,z,c)), \
|
|
(I[34] = (T)(img)(x,_p4##y,z,c)), \
|
|
(I[48] = (T)(img)(x,_p3##y,z,c)), \
|
|
(I[62] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[76] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[90] = (T)(img)(x,y,z,c)), \
|
|
(I[104] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[118] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[132] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[146] = (T)(img)(x,_n4##y,z,c)), \
|
|
(I[160] = (T)(img)(x,_n5##y,z,c)), \
|
|
(I[174] = (T)(img)(x,_n6##y,z,c)), \
|
|
(I[188] = (T)(img)(x,_n7##y,z,c)), \
|
|
(I[7] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[21] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[35] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[49] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[63] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[77] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[91] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[105] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[119] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[133] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[147] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[161] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[175] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[189] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[8] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[22] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[36] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[50] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[64] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[78] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[92] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[106] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[120] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[134] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[148] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[162] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[176] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[190] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[9] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[23] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[37] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[51] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[65] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[79] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[93] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[107] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[121] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[135] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[149] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[163] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[177] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[191] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[10] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[24] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[38] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[52] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[66] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[80] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[94] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[108] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[122] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[136] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[150] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[164] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[178] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[192] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[11] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[25] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[39] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[53] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[67] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[81] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[95] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[109] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[123] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[137] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[151] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[165] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[179] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[193] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[12] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[26] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[40] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[54] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[68] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[82] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[96] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[110] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[124] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[138] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[152] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[166] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[180] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[194] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
x + 7>=(img).width()?(img).width() - 1:x + 7); \
|
|
x<=(int)(x1) && ((_n7##x<(img).width() && ( \
|
|
(I[13] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[27] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[41] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[55] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[69] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[83] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[97] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[111] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[125] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[139] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[153] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[167] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[181] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[195] = (T)(img)(_n7##x,_n7##y,z,c)),1)) || \
|
|
_n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], \
|
|
I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], \
|
|
I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \
|
|
I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \
|
|
I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \
|
|
I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
|
|
I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], \
|
|
I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \
|
|
I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
|
|
I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], \
|
|
I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], \
|
|
I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
|
|
I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], \
|
|
I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], \
|
|
_p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x)
|
|
|
|
#define cimg_get14x14(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p6##x,_p6##y,z,c), I[1] = (T)(img)(_p5##x,_p6##y,z,c), I[2] = (T)(img)(_p4##x,_p6##y,z,c), I[3] = (T)(img)(_p3##x,_p6##y,z,c), I[4] = (T)(img)(_p2##x,_p6##y,z,c), I[5] = (T)(img)(_p1##x,_p6##y,z,c), I[6] = (T)(img)(x,_p6##y,z,c), I[7] = (T)(img)(_n1##x,_p6##y,z,c), I[8] = (T)(img)(_n2##x,_p6##y,z,c), I[9] = (T)(img)(_n3##x,_p6##y,z,c), I[10] = (T)(img)(_n4##x,_p6##y,z,c), I[11] = (T)(img)(_n5##x,_p6##y,z,c), I[12] = (T)(img)(_n6##x,_p6##y,z,c), I[13] = (T)(img)(_n7##x,_p6##y,z,c), \
|
|
I[14] = (T)(img)(_p6##x,_p5##y,z,c), I[15] = (T)(img)(_p5##x,_p5##y,z,c), I[16] = (T)(img)(_p4##x,_p5##y,z,c), I[17] = (T)(img)(_p3##x,_p5##y,z,c), I[18] = (T)(img)(_p2##x,_p5##y,z,c), I[19] = (T)(img)(_p1##x,_p5##y,z,c), I[20] = (T)(img)(x,_p5##y,z,c), I[21] = (T)(img)(_n1##x,_p5##y,z,c), I[22] = (T)(img)(_n2##x,_p5##y,z,c), I[23] = (T)(img)(_n3##x,_p5##y,z,c), I[24] = (T)(img)(_n4##x,_p5##y,z,c), I[25] = (T)(img)(_n5##x,_p5##y,z,c), I[26] = (T)(img)(_n6##x,_p5##y,z,c), I[27] = (T)(img)(_n7##x,_p5##y,z,c), \
|
|
I[28] = (T)(img)(_p6##x,_p4##y,z,c), I[29] = (T)(img)(_p5##x,_p4##y,z,c), I[30] = (T)(img)(_p4##x,_p4##y,z,c), I[31] = (T)(img)(_p3##x,_p4##y,z,c), I[32] = (T)(img)(_p2##x,_p4##y,z,c), I[33] = (T)(img)(_p1##x,_p4##y,z,c), I[34] = (T)(img)(x,_p4##y,z,c), I[35] = (T)(img)(_n1##x,_p4##y,z,c), I[36] = (T)(img)(_n2##x,_p4##y,z,c), I[37] = (T)(img)(_n3##x,_p4##y,z,c), I[38] = (T)(img)(_n4##x,_p4##y,z,c), I[39] = (T)(img)(_n5##x,_p4##y,z,c), I[40] = (T)(img)(_n6##x,_p4##y,z,c), I[41] = (T)(img)(_n7##x,_p4##y,z,c), \
|
|
I[42] = (T)(img)(_p6##x,_p3##y,z,c), I[43] = (T)(img)(_p5##x,_p3##y,z,c), I[44] = (T)(img)(_p4##x,_p3##y,z,c), I[45] = (T)(img)(_p3##x,_p3##y,z,c), I[46] = (T)(img)(_p2##x,_p3##y,z,c), I[47] = (T)(img)(_p1##x,_p3##y,z,c), I[48] = (T)(img)(x,_p3##y,z,c), I[49] = (T)(img)(_n1##x,_p3##y,z,c), I[50] = (T)(img)(_n2##x,_p3##y,z,c), I[51] = (T)(img)(_n3##x,_p3##y,z,c), I[52] = (T)(img)(_n4##x,_p3##y,z,c), I[53] = (T)(img)(_n5##x,_p3##y,z,c), I[54] = (T)(img)(_n6##x,_p3##y,z,c), I[55] = (T)(img)(_n7##x,_p3##y,z,c), \
|
|
I[56] = (T)(img)(_p6##x,_p2##y,z,c), I[57] = (T)(img)(_p5##x,_p2##y,z,c), I[58] = (T)(img)(_p4##x,_p2##y,z,c), I[59] = (T)(img)(_p3##x,_p2##y,z,c), I[60] = (T)(img)(_p2##x,_p2##y,z,c), I[61] = (T)(img)(_p1##x,_p2##y,z,c), I[62] = (T)(img)(x,_p2##y,z,c), I[63] = (T)(img)(_n1##x,_p2##y,z,c), I[64] = (T)(img)(_n2##x,_p2##y,z,c), I[65] = (T)(img)(_n3##x,_p2##y,z,c), I[66] = (T)(img)(_n4##x,_p2##y,z,c), I[67] = (T)(img)(_n5##x,_p2##y,z,c), I[68] = (T)(img)(_n6##x,_p2##y,z,c), I[69] = (T)(img)(_n7##x,_p2##y,z,c), \
|
|
I[70] = (T)(img)(_p6##x,_p1##y,z,c), I[71] = (T)(img)(_p5##x,_p1##y,z,c), I[72] = (T)(img)(_p4##x,_p1##y,z,c), I[73] = (T)(img)(_p3##x,_p1##y,z,c), I[74] = (T)(img)(_p2##x,_p1##y,z,c), I[75] = (T)(img)(_p1##x,_p1##y,z,c), I[76] = (T)(img)(x,_p1##y,z,c), I[77] = (T)(img)(_n1##x,_p1##y,z,c), I[78] = (T)(img)(_n2##x,_p1##y,z,c), I[79] = (T)(img)(_n3##x,_p1##y,z,c), I[80] = (T)(img)(_n4##x,_p1##y,z,c), I[81] = (T)(img)(_n5##x,_p1##y,z,c), I[82] = (T)(img)(_n6##x,_p1##y,z,c), I[83] = (T)(img)(_n7##x,_p1##y,z,c), \
|
|
I[84] = (T)(img)(_p6##x,y,z,c), I[85] = (T)(img)(_p5##x,y,z,c), I[86] = (T)(img)(_p4##x,y,z,c), I[87] = (T)(img)(_p3##x,y,z,c), I[88] = (T)(img)(_p2##x,y,z,c), I[89] = (T)(img)(_p1##x,y,z,c), I[90] = (T)(img)(x,y,z,c), I[91] = (T)(img)(_n1##x,y,z,c), I[92] = (T)(img)(_n2##x,y,z,c), I[93] = (T)(img)(_n3##x,y,z,c), I[94] = (T)(img)(_n4##x,y,z,c), I[95] = (T)(img)(_n5##x,y,z,c), I[96] = (T)(img)(_n6##x,y,z,c), I[97] = (T)(img)(_n7##x,y,z,c), \
|
|
I[98] = (T)(img)(_p6##x,_n1##y,z,c), I[99] = (T)(img)(_p5##x,_n1##y,z,c), I[100] = (T)(img)(_p4##x,_n1##y,z,c), I[101] = (T)(img)(_p3##x,_n1##y,z,c), I[102] = (T)(img)(_p2##x,_n1##y,z,c), I[103] = (T)(img)(_p1##x,_n1##y,z,c), I[104] = (T)(img)(x,_n1##y,z,c), I[105] = (T)(img)(_n1##x,_n1##y,z,c), I[106] = (T)(img)(_n2##x,_n1##y,z,c), I[107] = (T)(img)(_n3##x,_n1##y,z,c), I[108] = (T)(img)(_n4##x,_n1##y,z,c), I[109] = (T)(img)(_n5##x,_n1##y,z,c), I[110] = (T)(img)(_n6##x,_n1##y,z,c), I[111] = (T)(img)(_n7##x,_n1##y,z,c), \
|
|
I[112] = (T)(img)(_p6##x,_n2##y,z,c), I[113] = (T)(img)(_p5##x,_n2##y,z,c), I[114] = (T)(img)(_p4##x,_n2##y,z,c), I[115] = (T)(img)(_p3##x,_n2##y,z,c), I[116] = (T)(img)(_p2##x,_n2##y,z,c), I[117] = (T)(img)(_p1##x,_n2##y,z,c), I[118] = (T)(img)(x,_n2##y,z,c), I[119] = (T)(img)(_n1##x,_n2##y,z,c), I[120] = (T)(img)(_n2##x,_n2##y,z,c), I[121] = (T)(img)(_n3##x,_n2##y,z,c), I[122] = (T)(img)(_n4##x,_n2##y,z,c), I[123] = (T)(img)(_n5##x,_n2##y,z,c), I[124] = (T)(img)(_n6##x,_n2##y,z,c), I[125] = (T)(img)(_n7##x,_n2##y,z,c), \
|
|
I[126] = (T)(img)(_p6##x,_n3##y,z,c), I[127] = (T)(img)(_p5##x,_n3##y,z,c), I[128] = (T)(img)(_p4##x,_n3##y,z,c), I[129] = (T)(img)(_p3##x,_n3##y,z,c), I[130] = (T)(img)(_p2##x,_n3##y,z,c), I[131] = (T)(img)(_p1##x,_n3##y,z,c), I[132] = (T)(img)(x,_n3##y,z,c), I[133] = (T)(img)(_n1##x,_n3##y,z,c), I[134] = (T)(img)(_n2##x,_n3##y,z,c), I[135] = (T)(img)(_n3##x,_n3##y,z,c), I[136] = (T)(img)(_n4##x,_n3##y,z,c), I[137] = (T)(img)(_n5##x,_n3##y,z,c), I[138] = (T)(img)(_n6##x,_n3##y,z,c), I[139] = (T)(img)(_n7##x,_n3##y,z,c), \
|
|
I[140] = (T)(img)(_p6##x,_n4##y,z,c), I[141] = (T)(img)(_p5##x,_n4##y,z,c), I[142] = (T)(img)(_p4##x,_n4##y,z,c), I[143] = (T)(img)(_p3##x,_n4##y,z,c), I[144] = (T)(img)(_p2##x,_n4##y,z,c), I[145] = (T)(img)(_p1##x,_n4##y,z,c), I[146] = (T)(img)(x,_n4##y,z,c), I[147] = (T)(img)(_n1##x,_n4##y,z,c), I[148] = (T)(img)(_n2##x,_n4##y,z,c), I[149] = (T)(img)(_n3##x,_n4##y,z,c), I[150] = (T)(img)(_n4##x,_n4##y,z,c), I[151] = (T)(img)(_n5##x,_n4##y,z,c), I[152] = (T)(img)(_n6##x,_n4##y,z,c), I[153] = (T)(img)(_n7##x,_n4##y,z,c), \
|
|
I[154] = (T)(img)(_p6##x,_n5##y,z,c), I[155] = (T)(img)(_p5##x,_n5##y,z,c), I[156] = (T)(img)(_p4##x,_n5##y,z,c), I[157] = (T)(img)(_p3##x,_n5##y,z,c), I[158] = (T)(img)(_p2##x,_n5##y,z,c), I[159] = (T)(img)(_p1##x,_n5##y,z,c), I[160] = (T)(img)(x,_n5##y,z,c), I[161] = (T)(img)(_n1##x,_n5##y,z,c), I[162] = (T)(img)(_n2##x,_n5##y,z,c), I[163] = (T)(img)(_n3##x,_n5##y,z,c), I[164] = (T)(img)(_n4##x,_n5##y,z,c), I[165] = (T)(img)(_n5##x,_n5##y,z,c), I[166] = (T)(img)(_n6##x,_n5##y,z,c), I[167] = (T)(img)(_n7##x,_n5##y,z,c), \
|
|
I[168] = (T)(img)(_p6##x,_n6##y,z,c), I[169] = (T)(img)(_p5##x,_n6##y,z,c), I[170] = (T)(img)(_p4##x,_n6##y,z,c), I[171] = (T)(img)(_p3##x,_n6##y,z,c), I[172] = (T)(img)(_p2##x,_n6##y,z,c), I[173] = (T)(img)(_p1##x,_n6##y,z,c), I[174] = (T)(img)(x,_n6##y,z,c), I[175] = (T)(img)(_n1##x,_n6##y,z,c), I[176] = (T)(img)(_n2##x,_n6##y,z,c), I[177] = (T)(img)(_n3##x,_n6##y,z,c), I[178] = (T)(img)(_n4##x,_n6##y,z,c), I[179] = (T)(img)(_n5##x,_n6##y,z,c), I[180] = (T)(img)(_n6##x,_n6##y,z,c), I[181] = (T)(img)(_n7##x,_n6##y,z,c), \
|
|
I[182] = (T)(img)(_p6##x,_n7##y,z,c), I[183] = (T)(img)(_p5##x,_n7##y,z,c), I[184] = (T)(img)(_p4##x,_n7##y,z,c), I[185] = (T)(img)(_p3##x,_n7##y,z,c), I[186] = (T)(img)(_p2##x,_n7##y,z,c), I[187] = (T)(img)(_p1##x,_n7##y,z,c), I[188] = (T)(img)(x,_n7##y,z,c), I[189] = (T)(img)(_n1##x,_n7##y,z,c), I[190] = (T)(img)(_n2##x,_n7##y,z,c), I[191] = (T)(img)(_n3##x,_n7##y,z,c), I[192] = (T)(img)(_n4##x,_n7##y,z,c), I[193] = (T)(img)(_n5##x,_n7##y,z,c), I[194] = (T)(img)(_n6##x,_n7##y,z,c), I[195] = (T)(img)(_n7##x,_n7##y,z,c);
|
|
|
|
// Define 15x15 loop macros
|
|
//-------------------------
|
|
#define cimg_for15(bound,i) for (int i = 0, \
|
|
_p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
|
|
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
|
|
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
|
|
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
|
|
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
|
|
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
|
|
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7; \
|
|
_n7##i<(int)(bound) || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
|
|
_p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i)
|
|
|
|
#define cimg_for15X(img,x) cimg_for15((img)._width,x)
|
|
#define cimg_for15Y(img,y) cimg_for15((img)._height,y)
|
|
#define cimg_for15Z(img,z) cimg_for15((img)._depth,z)
|
|
#define cimg_for15C(img,c) cimg_for15((img)._spectrum,c)
|
|
#define cimg_for15XY(img,x,y) cimg_for15Y(img,y) cimg_for15X(img,x)
|
|
#define cimg_for15XZ(img,x,z) cimg_for15Z(img,z) cimg_for15X(img,x)
|
|
#define cimg_for15XC(img,x,c) cimg_for15C(img,c) cimg_for15X(img,x)
|
|
#define cimg_for15YZ(img,y,z) cimg_for15Z(img,z) cimg_for15Y(img,y)
|
|
#define cimg_for15YC(img,y,c) cimg_for15C(img,c) cimg_for15Y(img,y)
|
|
#define cimg_for15ZC(img,z,c) cimg_for15C(img,c) cimg_for15Z(img,z)
|
|
#define cimg_for15XYZ(img,x,y,z) cimg_for15Z(img,z) cimg_for15XY(img,x,y)
|
|
#define cimg_for15XZC(img,x,z,c) cimg_for15C(img,c) cimg_for15XZ(img,x,z)
|
|
#define cimg_for15YZC(img,y,z,c) cimg_for15C(img,c) cimg_for15YZ(img,y,z)
|
|
#define cimg_for15XYZC(img,x,y,z,c) cimg_for15C(img,c) cimg_for15XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in15(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p7##i = i - 7<0?0:i - 7, \
|
|
_p6##i = i - 6<0?0:i - 6, \
|
|
_p5##i = i - 5<0?0:i - 5, \
|
|
_p4##i = i - 4<0?0:i - 4, \
|
|
_p3##i = i - 3<0?0:i - 3, \
|
|
_p2##i = i - 2<0?0:i - 2, \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
|
|
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
|
|
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
|
|
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
|
|
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
|
|
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
|
|
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7; \
|
|
i<=(int)(i1) && (_n7##i<(int)(bound) || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
|
|
_p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i)
|
|
|
|
#define cimg_for_in15X(img,x0,x1,x) cimg_for_in15((img)._width,x0,x1,x)
|
|
#define cimg_for_in15Y(img,y0,y1,y) cimg_for_in15((img)._height,y0,y1,y)
|
|
#define cimg_for_in15Z(img,z0,z1,z) cimg_for_in15((img)._depth,z0,z1,z)
|
|
#define cimg_for_in15C(img,c0,c1,c) cimg_for_in15((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in15XY(img,x0,y0,x1,y1,x,y) cimg_for_in15Y(img,y0,y1,y) cimg_for_in15X(img,x0,x1,x)
|
|
#define cimg_for_in15XZ(img,x0,z0,x1,z1,x,z) cimg_for_in15Z(img,z0,z1,z) cimg_for_in15X(img,x0,x1,x)
|
|
#define cimg_for_in15XC(img,x0,c0,x1,c1,x,c) cimg_for_in15C(img,c0,c1,c) cimg_for_in15X(img,x0,x1,x)
|
|
#define cimg_for_in15YZ(img,y0,z0,y1,z1,y,z) cimg_for_in15Z(img,z0,z1,z) cimg_for_in15Y(img,y0,y1,y)
|
|
#define cimg_for_in15YC(img,y0,c0,y1,c1,y,c) cimg_for_in15C(img,c0,c1,c) cimg_for_in15Y(img,y0,y1,y)
|
|
#define cimg_for_in15ZC(img,z0,c0,z1,c1,z,c) cimg_for_in15C(img,c0,c1,c) cimg_for_in15Z(img,z0,z1,z)
|
|
#define cimg_for_in15XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in15Z(img,z0,z1,z) cimg_for_in15XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in15XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in15C(img,c0,c1,c) cimg_for_in15XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in15YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in15C(img,c0,c1,c) cimg_for_in15YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in15XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in15C(img,c0,c1,c) cimg_for_in15XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for15x15(img,x,y,z,c,I,T) \
|
|
cimg_for15((img)._height,y) for (int x = 0, \
|
|
_p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
|
|
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
|
|
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
|
|
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
|
|
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
|
|
_n7##x = (int)( \
|
|
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = (T)(img)(0,_p7##y,z,c)), \
|
|
(I[15] = I[16] = I[17] = I[18] = I[19] = I[20] = I[21] = I[22] = (T)(img)(0,_p6##y,z,c)), \
|
|
(I[30] = I[31] = I[32] = I[33] = I[34] = I[35] = I[36] = I[37] = (T)(img)(0,_p5##y,z,c)), \
|
|
(I[45] = I[46] = I[47] = I[48] = I[49] = I[50] = I[51] = I[52] = (T)(img)(0,_p4##y,z,c)), \
|
|
(I[60] = I[61] = I[62] = I[63] = I[64] = I[65] = I[66] = I[67] = (T)(img)(0,_p3##y,z,c)), \
|
|
(I[75] = I[76] = I[77] = I[78] = I[79] = I[80] = I[81] = I[82] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[90] = I[91] = I[92] = I[93] = I[94] = I[95] = I[96] = I[97] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[105] = I[106] = I[107] = I[108] = I[109] = I[110] = I[111] = I[112] = (T)(img)(0,y,z,c)), \
|
|
(I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = I[126] = I[127] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[135] = I[136] = I[137] = I[138] = I[139] = I[140] = I[141] = I[142] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[150] = I[151] = I[152] = I[153] = I[154] = I[155] = I[156] = I[157] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[165] = I[166] = I[167] = I[168] = I[169] = I[170] = I[171] = I[172] = (T)(img)(0,_n4##y,z,c)), \
|
|
(I[180] = I[181] = I[182] = I[183] = I[184] = I[185] = I[186] = I[187] = (T)(img)(0,_n5##y,z,c)), \
|
|
(I[195] = I[196] = I[197] = I[198] = I[199] = I[200] = I[201] = I[202] = (T)(img)(0,_n6##y,z,c)), \
|
|
(I[210] = I[211] = I[212] = I[213] = I[214] = I[215] = I[216] = I[217] = (T)(img)(0,_n7##y,z,c)), \
|
|
(I[8] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[23] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[38] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[53] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[68] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[83] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[98] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[113] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[128] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[143] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[158] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[173] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[188] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[203] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[218] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[9] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[24] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[39] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[54] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[69] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[84] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[99] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[114] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[129] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[144] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[159] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[174] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[189] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[204] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[219] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[10] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[25] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[40] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[55] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[70] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[85] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[100] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[115] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[130] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[145] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[160] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[175] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[190] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[205] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[220] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[11] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[26] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[41] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[56] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[71] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[86] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[101] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[116] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[131] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[146] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[161] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[176] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[191] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[206] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[221] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[12] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[27] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[42] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[57] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[72] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[87] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[102] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[117] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[132] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[147] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[162] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[177] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[192] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[207] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[222] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[13] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[28] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[43] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[58] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[73] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[88] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[103] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[118] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[133] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[148] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[163] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[178] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[193] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[208] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[223] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
7>=((img)._width)?(img).width() - 1:7); \
|
|
(_n7##x<(img).width() && ( \
|
|
(I[14] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[29] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[44] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[59] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[74] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[89] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[104] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[119] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[134] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[149] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[164] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[179] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[194] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[209] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[224] = (T)(img)(_n7##x,_n7##y,z,c)),1)) || \
|
|
_n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], \
|
|
I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
|
|
I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], \
|
|
I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
|
|
I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], \
|
|
I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
|
|
I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \
|
|
I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
|
|
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], \
|
|
I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], \
|
|
I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], \
|
|
I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \
|
|
I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], \
|
|
I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \
|
|
I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], \
|
|
_p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x)
|
|
|
|
#define cimg_for_in15x15(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in15((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p7##x = x - 7<0?0:x - 7, \
|
|
_p6##x = x - 6<0?0:x - 6, \
|
|
_p5##x = x - 5<0?0:x - 5, \
|
|
_p4##x = x - 4<0?0:x - 4, \
|
|
_p3##x = x - 3<0?0:x - 3, \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
|
|
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
|
|
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
|
|
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
|
|
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
|
|
_n7##x = (int)( \
|
|
(I[0] = (T)(img)(_p7##x,_p7##y,z,c)), \
|
|
(I[15] = (T)(img)(_p7##x,_p6##y,z,c)), \
|
|
(I[30] = (T)(img)(_p7##x,_p5##y,z,c)), \
|
|
(I[45] = (T)(img)(_p7##x,_p4##y,z,c)), \
|
|
(I[60] = (T)(img)(_p7##x,_p3##y,z,c)), \
|
|
(I[75] = (T)(img)(_p7##x,_p2##y,z,c)), \
|
|
(I[90] = (T)(img)(_p7##x,_p1##y,z,c)), \
|
|
(I[105] = (T)(img)(_p7##x,y,z,c)), \
|
|
(I[120] = (T)(img)(_p7##x,_n1##y,z,c)), \
|
|
(I[135] = (T)(img)(_p7##x,_n2##y,z,c)), \
|
|
(I[150] = (T)(img)(_p7##x,_n3##y,z,c)), \
|
|
(I[165] = (T)(img)(_p7##x,_n4##y,z,c)), \
|
|
(I[180] = (T)(img)(_p7##x,_n5##y,z,c)), \
|
|
(I[195] = (T)(img)(_p7##x,_n6##y,z,c)), \
|
|
(I[210] = (T)(img)(_p7##x,_n7##y,z,c)), \
|
|
(I[1] = (T)(img)(_p6##x,_p7##y,z,c)), \
|
|
(I[16] = (T)(img)(_p6##x,_p6##y,z,c)), \
|
|
(I[31] = (T)(img)(_p6##x,_p5##y,z,c)), \
|
|
(I[46] = (T)(img)(_p6##x,_p4##y,z,c)), \
|
|
(I[61] = (T)(img)(_p6##x,_p3##y,z,c)), \
|
|
(I[76] = (T)(img)(_p6##x,_p2##y,z,c)), \
|
|
(I[91] = (T)(img)(_p6##x,_p1##y,z,c)), \
|
|
(I[106] = (T)(img)(_p6##x,y,z,c)), \
|
|
(I[121] = (T)(img)(_p6##x,_n1##y,z,c)), \
|
|
(I[136] = (T)(img)(_p6##x,_n2##y,z,c)), \
|
|
(I[151] = (T)(img)(_p6##x,_n3##y,z,c)), \
|
|
(I[166] = (T)(img)(_p6##x,_n4##y,z,c)), \
|
|
(I[181] = (T)(img)(_p6##x,_n5##y,z,c)), \
|
|
(I[196] = (T)(img)(_p6##x,_n6##y,z,c)), \
|
|
(I[211] = (T)(img)(_p6##x,_n7##y,z,c)), \
|
|
(I[2] = (T)(img)(_p5##x,_p7##y,z,c)), \
|
|
(I[17] = (T)(img)(_p5##x,_p6##y,z,c)), \
|
|
(I[32] = (T)(img)(_p5##x,_p5##y,z,c)), \
|
|
(I[47] = (T)(img)(_p5##x,_p4##y,z,c)), \
|
|
(I[62] = (T)(img)(_p5##x,_p3##y,z,c)), \
|
|
(I[77] = (T)(img)(_p5##x,_p2##y,z,c)), \
|
|
(I[92] = (T)(img)(_p5##x,_p1##y,z,c)), \
|
|
(I[107] = (T)(img)(_p5##x,y,z,c)), \
|
|
(I[122] = (T)(img)(_p5##x,_n1##y,z,c)), \
|
|
(I[137] = (T)(img)(_p5##x,_n2##y,z,c)), \
|
|
(I[152] = (T)(img)(_p5##x,_n3##y,z,c)), \
|
|
(I[167] = (T)(img)(_p5##x,_n4##y,z,c)), \
|
|
(I[182] = (T)(img)(_p5##x,_n5##y,z,c)), \
|
|
(I[197] = (T)(img)(_p5##x,_n6##y,z,c)), \
|
|
(I[212] = (T)(img)(_p5##x,_n7##y,z,c)), \
|
|
(I[3] = (T)(img)(_p4##x,_p7##y,z,c)), \
|
|
(I[18] = (T)(img)(_p4##x,_p6##y,z,c)), \
|
|
(I[33] = (T)(img)(_p4##x,_p5##y,z,c)), \
|
|
(I[48] = (T)(img)(_p4##x,_p4##y,z,c)), \
|
|
(I[63] = (T)(img)(_p4##x,_p3##y,z,c)), \
|
|
(I[78] = (T)(img)(_p4##x,_p2##y,z,c)), \
|
|
(I[93] = (T)(img)(_p4##x,_p1##y,z,c)), \
|
|
(I[108] = (T)(img)(_p4##x,y,z,c)), \
|
|
(I[123] = (T)(img)(_p4##x,_n1##y,z,c)), \
|
|
(I[138] = (T)(img)(_p4##x,_n2##y,z,c)), \
|
|
(I[153] = (T)(img)(_p4##x,_n3##y,z,c)), \
|
|
(I[168] = (T)(img)(_p4##x,_n4##y,z,c)), \
|
|
(I[183] = (T)(img)(_p4##x,_n5##y,z,c)), \
|
|
(I[198] = (T)(img)(_p4##x,_n6##y,z,c)), \
|
|
(I[213] = (T)(img)(_p4##x,_n7##y,z,c)), \
|
|
(I[4] = (T)(img)(_p3##x,_p7##y,z,c)), \
|
|
(I[19] = (T)(img)(_p3##x,_p6##y,z,c)), \
|
|
(I[34] = (T)(img)(_p3##x,_p5##y,z,c)), \
|
|
(I[49] = (T)(img)(_p3##x,_p4##y,z,c)), \
|
|
(I[64] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[79] = (T)(img)(_p3##x,_p2##y,z,c)), \
|
|
(I[94] = (T)(img)(_p3##x,_p1##y,z,c)), \
|
|
(I[109] = (T)(img)(_p3##x,y,z,c)), \
|
|
(I[124] = (T)(img)(_p3##x,_n1##y,z,c)), \
|
|
(I[139] = (T)(img)(_p3##x,_n2##y,z,c)), \
|
|
(I[154] = (T)(img)(_p3##x,_n3##y,z,c)), \
|
|
(I[169] = (T)(img)(_p3##x,_n4##y,z,c)), \
|
|
(I[184] = (T)(img)(_p3##x,_n5##y,z,c)), \
|
|
(I[199] = (T)(img)(_p3##x,_n6##y,z,c)), \
|
|
(I[214] = (T)(img)(_p3##x,_n7##y,z,c)), \
|
|
(I[5] = (T)(img)(_p2##x,_p7##y,z,c)), \
|
|
(I[20] = (T)(img)(_p2##x,_p6##y,z,c)), \
|
|
(I[35] = (T)(img)(_p2##x,_p5##y,z,c)), \
|
|
(I[50] = (T)(img)(_p2##x,_p4##y,z,c)), \
|
|
(I[65] = (T)(img)(_p2##x,_p3##y,z,c)), \
|
|
(I[80] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[95] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[110] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[125] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[140] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[155] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[170] = (T)(img)(_p2##x,_n4##y,z,c)), \
|
|
(I[185] = (T)(img)(_p2##x,_n5##y,z,c)), \
|
|
(I[200] = (T)(img)(_p2##x,_n6##y,z,c)), \
|
|
(I[215] = (T)(img)(_p2##x,_n7##y,z,c)), \
|
|
(I[6] = (T)(img)(_p1##x,_p7##y,z,c)), \
|
|
(I[21] = (T)(img)(_p1##x,_p6##y,z,c)), \
|
|
(I[36] = (T)(img)(_p1##x,_p5##y,z,c)), \
|
|
(I[51] = (T)(img)(_p1##x,_p4##y,z,c)), \
|
|
(I[66] = (T)(img)(_p1##x,_p3##y,z,c)), \
|
|
(I[81] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[96] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[111] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[126] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[141] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[156] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[171] = (T)(img)(_p1##x,_n4##y,z,c)), \
|
|
(I[186] = (T)(img)(_p1##x,_n5##y,z,c)), \
|
|
(I[201] = (T)(img)(_p1##x,_n6##y,z,c)), \
|
|
(I[216] = (T)(img)(_p1##x,_n7##y,z,c)), \
|
|
(I[7] = (T)(img)(x,_p7##y,z,c)), \
|
|
(I[22] = (T)(img)(x,_p6##y,z,c)), \
|
|
(I[37] = (T)(img)(x,_p5##y,z,c)), \
|
|
(I[52] = (T)(img)(x,_p4##y,z,c)), \
|
|
(I[67] = (T)(img)(x,_p3##y,z,c)), \
|
|
(I[82] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[97] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[112] = (T)(img)(x,y,z,c)), \
|
|
(I[127] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[142] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[157] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[172] = (T)(img)(x,_n4##y,z,c)), \
|
|
(I[187] = (T)(img)(x,_n5##y,z,c)), \
|
|
(I[202] = (T)(img)(x,_n6##y,z,c)), \
|
|
(I[217] = (T)(img)(x,_n7##y,z,c)), \
|
|
(I[8] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[23] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[38] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[53] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[68] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[83] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[98] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[113] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[128] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[143] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[158] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[173] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[188] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[203] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[218] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[9] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[24] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[39] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[54] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[69] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[84] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[99] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[114] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[129] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[144] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[159] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[174] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[189] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[204] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[219] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[10] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[25] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[40] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[55] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[70] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[85] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[100] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[115] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[130] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[145] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[160] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[175] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[190] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[205] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[220] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[11] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[26] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[41] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[56] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[71] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[86] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[101] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[116] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[131] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[146] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[161] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[176] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[191] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[206] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[221] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[12] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[27] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[42] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[57] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[72] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[87] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[102] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[117] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[132] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[147] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[162] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[177] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[192] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[207] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[222] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[13] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[28] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[43] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[58] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[73] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[88] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[103] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[118] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[133] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[148] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[163] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[178] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[193] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[208] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[223] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
x + 7>=(img).width()?(img).width() - 1:x + 7); \
|
|
x<=(int)(x1) && ((_n7##x<(img).width() && ( \
|
|
(I[14] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[29] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[44] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[59] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[74] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[89] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[104] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[119] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[134] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[149] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[164] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[179] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[194] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[209] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[224] = (T)(img)(_n7##x,_n7##y,z,c)),1)) || \
|
|
_n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], \
|
|
I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
|
|
I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], \
|
|
I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
|
|
I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], \
|
|
I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
|
|
I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \
|
|
I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
|
|
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], \
|
|
I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], \
|
|
I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], \
|
|
I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \
|
|
I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], \
|
|
I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \
|
|
I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], \
|
|
_p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x)
|
|
|
|
#define cimg_get15x15(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p7##x,_p7##y,z,c), I[1] = (T)(img)(_p6##x,_p7##y,z,c), I[2] = (T)(img)(_p5##x,_p7##y,z,c), I[3] = (T)(img)(_p4##x,_p7##y,z,c), I[4] = (T)(img)(_p3##x,_p7##y,z,c), I[5] = (T)(img)(_p2##x,_p7##y,z,c), I[6] = (T)(img)(_p1##x,_p7##y,z,c), I[7] = (T)(img)(x,_p7##y,z,c), I[8] = (T)(img)(_n1##x,_p7##y,z,c), I[9] = (T)(img)(_n2##x,_p7##y,z,c), I[10] = (T)(img)(_n3##x,_p7##y,z,c), I[11] = (T)(img)(_n4##x,_p7##y,z,c), I[12] = (T)(img)(_n5##x,_p7##y,z,c), I[13] = (T)(img)(_n6##x,_p7##y,z,c), I[14] = (T)(img)(_n7##x,_p7##y,z,c), \
|
|
I[15] = (T)(img)(_p7##x,_p6##y,z,c), I[16] = (T)(img)(_p6##x,_p6##y,z,c), I[17] = (T)(img)(_p5##x,_p6##y,z,c), I[18] = (T)(img)(_p4##x,_p6##y,z,c), I[19] = (T)(img)(_p3##x,_p6##y,z,c), I[20] = (T)(img)(_p2##x,_p6##y,z,c), I[21] = (T)(img)(_p1##x,_p6##y,z,c), I[22] = (T)(img)(x,_p6##y,z,c), I[23] = (T)(img)(_n1##x,_p6##y,z,c), I[24] = (T)(img)(_n2##x,_p6##y,z,c), I[25] = (T)(img)(_n3##x,_p6##y,z,c), I[26] = (T)(img)(_n4##x,_p6##y,z,c), I[27] = (T)(img)(_n5##x,_p6##y,z,c), I[28] = (T)(img)(_n6##x,_p6##y,z,c), I[29] = (T)(img)(_n7##x,_p6##y,z,c), \
|
|
I[30] = (T)(img)(_p7##x,_p5##y,z,c), I[31] = (T)(img)(_p6##x,_p5##y,z,c), I[32] = (T)(img)(_p5##x,_p5##y,z,c), I[33] = (T)(img)(_p4##x,_p5##y,z,c), I[34] = (T)(img)(_p3##x,_p5##y,z,c), I[35] = (T)(img)(_p2##x,_p5##y,z,c), I[36] = (T)(img)(_p1##x,_p5##y,z,c), I[37] = (T)(img)(x,_p5##y,z,c), I[38] = (T)(img)(_n1##x,_p5##y,z,c), I[39] = (T)(img)(_n2##x,_p5##y,z,c), I[40] = (T)(img)(_n3##x,_p5##y,z,c), I[41] = (T)(img)(_n4##x,_p5##y,z,c), I[42] = (T)(img)(_n5##x,_p5##y,z,c), I[43] = (T)(img)(_n6##x,_p5##y,z,c), I[44] = (T)(img)(_n7##x,_p5##y,z,c), \
|
|
I[45] = (T)(img)(_p7##x,_p4##y,z,c), I[46] = (T)(img)(_p6##x,_p4##y,z,c), I[47] = (T)(img)(_p5##x,_p4##y,z,c), I[48] = (T)(img)(_p4##x,_p4##y,z,c), I[49] = (T)(img)(_p3##x,_p4##y,z,c), I[50] = (T)(img)(_p2##x,_p4##y,z,c), I[51] = (T)(img)(_p1##x,_p4##y,z,c), I[52] = (T)(img)(x,_p4##y,z,c), I[53] = (T)(img)(_n1##x,_p4##y,z,c), I[54] = (T)(img)(_n2##x,_p4##y,z,c), I[55] = (T)(img)(_n3##x,_p4##y,z,c), I[56] = (T)(img)(_n4##x,_p4##y,z,c), I[57] = (T)(img)(_n5##x,_p4##y,z,c), I[58] = (T)(img)(_n6##x,_p4##y,z,c), I[59] = (T)(img)(_n7##x,_p4##y,z,c), \
|
|
I[60] = (T)(img)(_p7##x,_p3##y,z,c), I[61] = (T)(img)(_p6##x,_p3##y,z,c), I[62] = (T)(img)(_p5##x,_p3##y,z,c), I[63] = (T)(img)(_p4##x,_p3##y,z,c), I[64] = (T)(img)(_p3##x,_p3##y,z,c), I[65] = (T)(img)(_p2##x,_p3##y,z,c), I[66] = (T)(img)(_p1##x,_p3##y,z,c), I[67] = (T)(img)(x,_p3##y,z,c), I[68] = (T)(img)(_n1##x,_p3##y,z,c), I[69] = (T)(img)(_n2##x,_p3##y,z,c), I[70] = (T)(img)(_n3##x,_p3##y,z,c), I[71] = (T)(img)(_n4##x,_p3##y,z,c), I[72] = (T)(img)(_n5##x,_p3##y,z,c), I[73] = (T)(img)(_n6##x,_p3##y,z,c), I[74] = (T)(img)(_n7##x,_p3##y,z,c), \
|
|
I[75] = (T)(img)(_p7##x,_p2##y,z,c), I[76] = (T)(img)(_p6##x,_p2##y,z,c), I[77] = (T)(img)(_p5##x,_p2##y,z,c), I[78] = (T)(img)(_p4##x,_p2##y,z,c), I[79] = (T)(img)(_p3##x,_p2##y,z,c), I[80] = (T)(img)(_p2##x,_p2##y,z,c), I[81] = (T)(img)(_p1##x,_p2##y,z,c), I[82] = (T)(img)(x,_p2##y,z,c), I[83] = (T)(img)(_n1##x,_p2##y,z,c), I[84] = (T)(img)(_n2##x,_p2##y,z,c), I[85] = (T)(img)(_n3##x,_p2##y,z,c), I[86] = (T)(img)(_n4##x,_p2##y,z,c), I[87] = (T)(img)(_n5##x,_p2##y,z,c), I[88] = (T)(img)(_n6##x,_p2##y,z,c), I[89] = (T)(img)(_n7##x,_p2##y,z,c), \
|
|
I[90] = (T)(img)(_p7##x,_p1##y,z,c), I[91] = (T)(img)(_p6##x,_p1##y,z,c), I[92] = (T)(img)(_p5##x,_p1##y,z,c), I[93] = (T)(img)(_p4##x,_p1##y,z,c), I[94] = (T)(img)(_p3##x,_p1##y,z,c), I[95] = (T)(img)(_p2##x,_p1##y,z,c), I[96] = (T)(img)(_p1##x,_p1##y,z,c), I[97] = (T)(img)(x,_p1##y,z,c), I[98] = (T)(img)(_n1##x,_p1##y,z,c), I[99] = (T)(img)(_n2##x,_p1##y,z,c), I[100] = (T)(img)(_n3##x,_p1##y,z,c), I[101] = (T)(img)(_n4##x,_p1##y,z,c), I[102] = (T)(img)(_n5##x,_p1##y,z,c), I[103] = (T)(img)(_n6##x,_p1##y,z,c), I[104] = (T)(img)(_n7##x,_p1##y,z,c), \
|
|
I[105] = (T)(img)(_p7##x,y,z,c), I[106] = (T)(img)(_p6##x,y,z,c), I[107] = (T)(img)(_p5##x,y,z,c), I[108] = (T)(img)(_p4##x,y,z,c), I[109] = (T)(img)(_p3##x,y,z,c), I[110] = (T)(img)(_p2##x,y,z,c), I[111] = (T)(img)(_p1##x,y,z,c), I[112] = (T)(img)(x,y,z,c), I[113] = (T)(img)(_n1##x,y,z,c), I[114] = (T)(img)(_n2##x,y,z,c), I[115] = (T)(img)(_n3##x,y,z,c), I[116] = (T)(img)(_n4##x,y,z,c), I[117] = (T)(img)(_n5##x,y,z,c), I[118] = (T)(img)(_n6##x,y,z,c), I[119] = (T)(img)(_n7##x,y,z,c), \
|
|
I[120] = (T)(img)(_p7##x,_n1##y,z,c), I[121] = (T)(img)(_p6##x,_n1##y,z,c), I[122] = (T)(img)(_p5##x,_n1##y,z,c), I[123] = (T)(img)(_p4##x,_n1##y,z,c), I[124] = (T)(img)(_p3##x,_n1##y,z,c), I[125] = (T)(img)(_p2##x,_n1##y,z,c), I[126] = (T)(img)(_p1##x,_n1##y,z,c), I[127] = (T)(img)(x,_n1##y,z,c), I[128] = (T)(img)(_n1##x,_n1##y,z,c), I[129] = (T)(img)(_n2##x,_n1##y,z,c), I[130] = (T)(img)(_n3##x,_n1##y,z,c), I[131] = (T)(img)(_n4##x,_n1##y,z,c), I[132] = (T)(img)(_n5##x,_n1##y,z,c), I[133] = (T)(img)(_n6##x,_n1##y,z,c), I[134] = (T)(img)(_n7##x,_n1##y,z,c), \
|
|
I[135] = (T)(img)(_p7##x,_n2##y,z,c), I[136] = (T)(img)(_p6##x,_n2##y,z,c), I[137] = (T)(img)(_p5##x,_n2##y,z,c), I[138] = (T)(img)(_p4##x,_n2##y,z,c), I[139] = (T)(img)(_p3##x,_n2##y,z,c), I[140] = (T)(img)(_p2##x,_n2##y,z,c), I[141] = (T)(img)(_p1##x,_n2##y,z,c), I[142] = (T)(img)(x,_n2##y,z,c), I[143] = (T)(img)(_n1##x,_n2##y,z,c), I[144] = (T)(img)(_n2##x,_n2##y,z,c), I[145] = (T)(img)(_n3##x,_n2##y,z,c), I[146] = (T)(img)(_n4##x,_n2##y,z,c), I[147] = (T)(img)(_n5##x,_n2##y,z,c), I[148] = (T)(img)(_n6##x,_n2##y,z,c), I[149] = (T)(img)(_n7##x,_n2##y,z,c), \
|
|
I[150] = (T)(img)(_p7##x,_n3##y,z,c), I[151] = (T)(img)(_p6##x,_n3##y,z,c), I[152] = (T)(img)(_p5##x,_n3##y,z,c), I[153] = (T)(img)(_p4##x,_n3##y,z,c), I[154] = (T)(img)(_p3##x,_n3##y,z,c), I[155] = (T)(img)(_p2##x,_n3##y,z,c), I[156] = (T)(img)(_p1##x,_n3##y,z,c), I[157] = (T)(img)(x,_n3##y,z,c), I[158] = (T)(img)(_n1##x,_n3##y,z,c), I[159] = (T)(img)(_n2##x,_n3##y,z,c), I[160] = (T)(img)(_n3##x,_n3##y,z,c), I[161] = (T)(img)(_n4##x,_n3##y,z,c), I[162] = (T)(img)(_n5##x,_n3##y,z,c), I[163] = (T)(img)(_n6##x,_n3##y,z,c), I[164] = (T)(img)(_n7##x,_n3##y,z,c), \
|
|
I[165] = (T)(img)(_p7##x,_n4##y,z,c), I[166] = (T)(img)(_p6##x,_n4##y,z,c), I[167] = (T)(img)(_p5##x,_n4##y,z,c), I[168] = (T)(img)(_p4##x,_n4##y,z,c), I[169] = (T)(img)(_p3##x,_n4##y,z,c), I[170] = (T)(img)(_p2##x,_n4##y,z,c), I[171] = (T)(img)(_p1##x,_n4##y,z,c), I[172] = (T)(img)(x,_n4##y,z,c), I[173] = (T)(img)(_n1##x,_n4##y,z,c), I[174] = (T)(img)(_n2##x,_n4##y,z,c), I[175] = (T)(img)(_n3##x,_n4##y,z,c), I[176] = (T)(img)(_n4##x,_n4##y,z,c), I[177] = (T)(img)(_n5##x,_n4##y,z,c), I[178] = (T)(img)(_n6##x,_n4##y,z,c), I[179] = (T)(img)(_n7##x,_n4##y,z,c), \
|
|
I[180] = (T)(img)(_p7##x,_n5##y,z,c), I[181] = (T)(img)(_p6##x,_n5##y,z,c), I[182] = (T)(img)(_p5##x,_n5##y,z,c), I[183] = (T)(img)(_p4##x,_n5##y,z,c), I[184] = (T)(img)(_p3##x,_n5##y,z,c), I[185] = (T)(img)(_p2##x,_n5##y,z,c), I[186] = (T)(img)(_p1##x,_n5##y,z,c), I[187] = (T)(img)(x,_n5##y,z,c), I[188] = (T)(img)(_n1##x,_n5##y,z,c), I[189] = (T)(img)(_n2##x,_n5##y,z,c), I[190] = (T)(img)(_n3##x,_n5##y,z,c), I[191] = (T)(img)(_n4##x,_n5##y,z,c), I[192] = (T)(img)(_n5##x,_n5##y,z,c), I[193] = (T)(img)(_n6##x,_n5##y,z,c), I[194] = (T)(img)(_n7##x,_n5##y,z,c), \
|
|
I[195] = (T)(img)(_p7##x,_n6##y,z,c), I[196] = (T)(img)(_p6##x,_n6##y,z,c), I[197] = (T)(img)(_p5##x,_n6##y,z,c), I[198] = (T)(img)(_p4##x,_n6##y,z,c), I[199] = (T)(img)(_p3##x,_n6##y,z,c), I[200] = (T)(img)(_p2##x,_n6##y,z,c), I[201] = (T)(img)(_p1##x,_n6##y,z,c), I[202] = (T)(img)(x,_n6##y,z,c), I[203] = (T)(img)(_n1##x,_n6##y,z,c), I[204] = (T)(img)(_n2##x,_n6##y,z,c), I[205] = (T)(img)(_n3##x,_n6##y,z,c), I[206] = (T)(img)(_n4##x,_n6##y,z,c), I[207] = (T)(img)(_n5##x,_n6##y,z,c), I[208] = (T)(img)(_n6##x,_n6##y,z,c), I[209] = (T)(img)(_n7##x,_n6##y,z,c), \
|
|
I[210] = (T)(img)(_p7##x,_n7##y,z,c), I[211] = (T)(img)(_p6##x,_n7##y,z,c), I[212] = (T)(img)(_p5##x,_n7##y,z,c), I[213] = (T)(img)(_p4##x,_n7##y,z,c), I[214] = (T)(img)(_p3##x,_n7##y,z,c), I[215] = (T)(img)(_p2##x,_n7##y,z,c), I[216] = (T)(img)(_p1##x,_n7##y,z,c), I[217] = (T)(img)(x,_n7##y,z,c), I[218] = (T)(img)(_n1##x,_n7##y,z,c), I[219] = (T)(img)(_n2##x,_n7##y,z,c), I[220] = (T)(img)(_n3##x,_n7##y,z,c), I[221] = (T)(img)(_n4##x,_n7##y,z,c), I[222] = (T)(img)(_n5##x,_n7##y,z,c), I[223] = (T)(img)(_n6##x,_n7##y,z,c), I[224] = (T)(img)(_n7##x,_n7##y,z,c);
|
|
|
|
// Define 16x16 loop macros
|
|
//-------------------------
|
|
#define cimg_for16(bound,i) for (int i = 0, \
|
|
_p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
|
|
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
|
|
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
|
|
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
|
|
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
|
|
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
|
|
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
|
|
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8; \
|
|
_n8##i<(int)(bound) || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
|
|
_p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i)
|
|
|
|
#define cimg_for16X(img,x) cimg_for16((img)._width,x)
|
|
#define cimg_for16Y(img,y) cimg_for16((img)._height,y)
|
|
#define cimg_for16Z(img,z) cimg_for16((img)._depth,z)
|
|
#define cimg_for16C(img,c) cimg_for16((img)._spectrum,c)
|
|
#define cimg_for16XY(img,x,y) cimg_for16Y(img,y) cimg_for16X(img,x)
|
|
#define cimg_for16XZ(img,x,z) cimg_for16Z(img,z) cimg_for16X(img,x)
|
|
#define cimg_for16XC(img,x,c) cimg_for16C(img,c) cimg_for16X(img,x)
|
|
#define cimg_for16YZ(img,y,z) cimg_for16Z(img,z) cimg_for16Y(img,y)
|
|
#define cimg_for16YC(img,y,c) cimg_for16C(img,c) cimg_for16Y(img,y)
|
|
#define cimg_for16ZC(img,z,c) cimg_for16C(img,c) cimg_for16Z(img,z)
|
|
#define cimg_for16XYZ(img,x,y,z) cimg_for16Z(img,z) cimg_for16XY(img,x,y)
|
|
#define cimg_for16XZC(img,x,z,c) cimg_for16C(img,c) cimg_for16XZ(img,x,z)
|
|
#define cimg_for16YZC(img,y,z,c) cimg_for16C(img,c) cimg_for16YZ(img,y,z)
|
|
#define cimg_for16XYZC(img,x,y,z,c) cimg_for16C(img,c) cimg_for16XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in16(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p7##i = i - 7<0?0:i - 7, \
|
|
_p6##i = i - 6<0?0:i - 6, \
|
|
_p5##i = i - 5<0?0:i - 5, \
|
|
_p4##i = i - 4<0?0:i - 4, \
|
|
_p3##i = i - 3<0?0:i - 3, \
|
|
_p2##i = i - 2<0?0:i - 2, \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
|
|
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
|
|
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
|
|
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
|
|
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
|
|
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
|
|
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
|
|
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8; \
|
|
i<=(int)(i1) && (_n8##i<(int)(bound) || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
|
|
_p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i)
|
|
|
|
#define cimg_for_in16X(img,x0,x1,x) cimg_for_in16((img)._width,x0,x1,x)
|
|
#define cimg_for_in16Y(img,y0,y1,y) cimg_for_in16((img)._height,y0,y1,y)
|
|
#define cimg_for_in16Z(img,z0,z1,z) cimg_for_in16((img)._depth,z0,z1,z)
|
|
#define cimg_for_in16C(img,c0,c1,c) cimg_for_in16((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in16XY(img,x0,y0,x1,y1,x,y) cimg_for_in16Y(img,y0,y1,y) cimg_for_in16X(img,x0,x1,x)
|
|
#define cimg_for_in16XZ(img,x0,z0,x1,z1,x,z) cimg_for_in16Z(img,z0,z1,z) cimg_for_in16X(img,x0,x1,x)
|
|
#define cimg_for_in16XC(img,x0,c0,x1,c1,x,c) cimg_for_in16C(img,c0,c1,c) cimg_for_in16X(img,x0,x1,x)
|
|
#define cimg_for_in16YZ(img,y0,z0,y1,z1,y,z) cimg_for_in16Z(img,z0,z1,z) cimg_for_in16Y(img,y0,y1,y)
|
|
#define cimg_for_in16YC(img,y0,c0,y1,c1,y,c) cimg_for_in16C(img,c0,c1,c) cimg_for_in16Y(img,y0,y1,y)
|
|
#define cimg_for_in16ZC(img,z0,c0,z1,c1,z,c) cimg_for_in16C(img,c0,c1,c) cimg_for_in16Z(img,z0,z1,z)
|
|
#define cimg_for_in16XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in16Z(img,z0,z1,z) cimg_for_in16XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in16XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in16C(img,c0,c1,c) cimg_for_in16XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in16YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in16C(img,c0,c1,c) cimg_for_in16YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in16XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in16C(img,c0,c1,c) cimg_for_in16XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for16x16(img,x,y,z,c,I,T) \
|
|
cimg_for16((img)._height,y) for (int x = 0, \
|
|
_p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
|
|
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
|
|
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
|
|
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
|
|
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
|
|
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
|
|
_n8##x = (int)( \
|
|
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = (T)(img)(0,_p7##y,z,c)), \
|
|
(I[16] = I[17] = I[18] = I[19] = I[20] = I[21] = I[22] = I[23] = (T)(img)(0,_p6##y,z,c)), \
|
|
(I[32] = I[33] = I[34] = I[35] = I[36] = I[37] = I[38] = I[39] = (T)(img)(0,_p5##y,z,c)), \
|
|
(I[48] = I[49] = I[50] = I[51] = I[52] = I[53] = I[54] = I[55] = (T)(img)(0,_p4##y,z,c)), \
|
|
(I[64] = I[65] = I[66] = I[67] = I[68] = I[69] = I[70] = I[71] = (T)(img)(0,_p3##y,z,c)), \
|
|
(I[80] = I[81] = I[82] = I[83] = I[84] = I[85] = I[86] = I[87] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[96] = I[97] = I[98] = I[99] = I[100] = I[101] = I[102] = I[103] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[112] = I[113] = I[114] = I[115] = I[116] = I[117] = I[118] = I[119] = (T)(img)(0,y,z,c)), \
|
|
(I[128] = I[129] = I[130] = I[131] = I[132] = I[133] = I[134] = I[135] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[144] = I[145] = I[146] = I[147] = I[148] = I[149] = I[150] = I[151] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[160] = I[161] = I[162] = I[163] = I[164] = I[165] = I[166] = I[167] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[176] = I[177] = I[178] = I[179] = I[180] = I[181] = I[182] = I[183] = (T)(img)(0,_n4##y,z,c)), \
|
|
(I[192] = I[193] = I[194] = I[195] = I[196] = I[197] = I[198] = I[199] = (T)(img)(0,_n5##y,z,c)), \
|
|
(I[208] = I[209] = I[210] = I[211] = I[212] = I[213] = I[214] = I[215] = (T)(img)(0,_n6##y,z,c)), \
|
|
(I[224] = I[225] = I[226] = I[227] = I[228] = I[229] = I[230] = I[231] = (T)(img)(0,_n7##y,z,c)), \
|
|
(I[240] = I[241] = I[242] = I[243] = I[244] = I[245] = I[246] = I[247] = (T)(img)(0,_n8##y,z,c)), \
|
|
(I[8] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[24] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[40] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[56] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[72] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[88] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[104] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[120] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[136] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[152] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[168] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[184] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[200] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[216] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[232] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[248] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[9] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[25] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[41] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[57] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[73] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[89] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[105] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[121] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[137] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[153] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[169] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[185] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[201] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[217] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[233] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[249] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[10] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[26] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[42] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[58] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[74] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[90] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[106] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[122] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[138] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[154] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[170] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[186] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[202] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[218] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[234] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[250] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[11] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[27] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[43] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[59] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[75] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[91] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[107] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[123] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[139] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[155] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[171] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[187] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[203] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[219] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[235] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[251] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[12] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[28] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[44] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[60] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[76] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[92] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[108] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[124] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[140] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[156] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[172] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[188] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[204] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[220] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[236] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[252] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[13] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[29] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[45] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[61] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[77] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[93] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[109] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[125] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[141] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[157] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[173] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[189] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[205] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[221] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[237] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[253] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[14] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[30] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[46] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[62] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[78] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[94] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[110] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[126] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[142] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[158] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[174] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[190] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[206] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[222] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[238] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[254] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
8>=((img)._width)?(img).width() - 1:8); \
|
|
(_n8##x<(img).width() && ( \
|
|
(I[15] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[31] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[47] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[63] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[79] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[95] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[111] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[127] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[143] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[159] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[175] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[191] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[207] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[223] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[239] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[255] = (T)(img)(_n8##x,_n8##y,z,c)),1)) || \
|
|
_n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], \
|
|
I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \
|
|
I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
|
|
I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], \
|
|
I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
|
|
I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
|
|
I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \
|
|
I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], \
|
|
I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
|
|
I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], \
|
|
I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], \
|
|
I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \
|
|
I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], \
|
|
I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \
|
|
I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \
|
|
I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], \
|
|
_p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x)
|
|
|
|
#define cimg_for_in16x16(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in16((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p7##x = x - 7<0?0:x - 7, \
|
|
_p6##x = x - 6<0?0:x - 6, \
|
|
_p5##x = x - 5<0?0:x - 5, \
|
|
_p4##x = x - 4<0?0:x - 4, \
|
|
_p3##x = x - 3<0?0:x - 3, \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
|
|
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
|
|
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
|
|
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
|
|
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
|
|
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
|
|
_n8##x = (int)( \
|
|
(I[0] = (T)(img)(_p7##x,_p7##y,z,c)), \
|
|
(I[16] = (T)(img)(_p7##x,_p6##y,z,c)), \
|
|
(I[32] = (T)(img)(_p7##x,_p5##y,z,c)), \
|
|
(I[48] = (T)(img)(_p7##x,_p4##y,z,c)), \
|
|
(I[64] = (T)(img)(_p7##x,_p3##y,z,c)), \
|
|
(I[80] = (T)(img)(_p7##x,_p2##y,z,c)), \
|
|
(I[96] = (T)(img)(_p7##x,_p1##y,z,c)), \
|
|
(I[112] = (T)(img)(_p7##x,y,z,c)), \
|
|
(I[128] = (T)(img)(_p7##x,_n1##y,z,c)), \
|
|
(I[144] = (T)(img)(_p7##x,_n2##y,z,c)), \
|
|
(I[160] = (T)(img)(_p7##x,_n3##y,z,c)), \
|
|
(I[176] = (T)(img)(_p7##x,_n4##y,z,c)), \
|
|
(I[192] = (T)(img)(_p7##x,_n5##y,z,c)), \
|
|
(I[208] = (T)(img)(_p7##x,_n6##y,z,c)), \
|
|
(I[224] = (T)(img)(_p7##x,_n7##y,z,c)), \
|
|
(I[240] = (T)(img)(_p7##x,_n8##y,z,c)), \
|
|
(I[1] = (T)(img)(_p6##x,_p7##y,z,c)), \
|
|
(I[17] = (T)(img)(_p6##x,_p6##y,z,c)), \
|
|
(I[33] = (T)(img)(_p6##x,_p5##y,z,c)), \
|
|
(I[49] = (T)(img)(_p6##x,_p4##y,z,c)), \
|
|
(I[65] = (T)(img)(_p6##x,_p3##y,z,c)), \
|
|
(I[81] = (T)(img)(_p6##x,_p2##y,z,c)), \
|
|
(I[97] = (T)(img)(_p6##x,_p1##y,z,c)), \
|
|
(I[113] = (T)(img)(_p6##x,y,z,c)), \
|
|
(I[129] = (T)(img)(_p6##x,_n1##y,z,c)), \
|
|
(I[145] = (T)(img)(_p6##x,_n2##y,z,c)), \
|
|
(I[161] = (T)(img)(_p6##x,_n3##y,z,c)), \
|
|
(I[177] = (T)(img)(_p6##x,_n4##y,z,c)), \
|
|
(I[193] = (T)(img)(_p6##x,_n5##y,z,c)), \
|
|
(I[209] = (T)(img)(_p6##x,_n6##y,z,c)), \
|
|
(I[225] = (T)(img)(_p6##x,_n7##y,z,c)), \
|
|
(I[241] = (T)(img)(_p6##x,_n8##y,z,c)), \
|
|
(I[2] = (T)(img)(_p5##x,_p7##y,z,c)), \
|
|
(I[18] = (T)(img)(_p5##x,_p6##y,z,c)), \
|
|
(I[34] = (T)(img)(_p5##x,_p5##y,z,c)), \
|
|
(I[50] = (T)(img)(_p5##x,_p4##y,z,c)), \
|
|
(I[66] = (T)(img)(_p5##x,_p3##y,z,c)), \
|
|
(I[82] = (T)(img)(_p5##x,_p2##y,z,c)), \
|
|
(I[98] = (T)(img)(_p5##x,_p1##y,z,c)), \
|
|
(I[114] = (T)(img)(_p5##x,y,z,c)), \
|
|
(I[130] = (T)(img)(_p5##x,_n1##y,z,c)), \
|
|
(I[146] = (T)(img)(_p5##x,_n2##y,z,c)), \
|
|
(I[162] = (T)(img)(_p5##x,_n3##y,z,c)), \
|
|
(I[178] = (T)(img)(_p5##x,_n4##y,z,c)), \
|
|
(I[194] = (T)(img)(_p5##x,_n5##y,z,c)), \
|
|
(I[210] = (T)(img)(_p5##x,_n6##y,z,c)), \
|
|
(I[226] = (T)(img)(_p5##x,_n7##y,z,c)), \
|
|
(I[242] = (T)(img)(_p5##x,_n8##y,z,c)), \
|
|
(I[3] = (T)(img)(_p4##x,_p7##y,z,c)), \
|
|
(I[19] = (T)(img)(_p4##x,_p6##y,z,c)), \
|
|
(I[35] = (T)(img)(_p4##x,_p5##y,z,c)), \
|
|
(I[51] = (T)(img)(_p4##x,_p4##y,z,c)), \
|
|
(I[67] = (T)(img)(_p4##x,_p3##y,z,c)), \
|
|
(I[83] = (T)(img)(_p4##x,_p2##y,z,c)), \
|
|
(I[99] = (T)(img)(_p4##x,_p1##y,z,c)), \
|
|
(I[115] = (T)(img)(_p4##x,y,z,c)), \
|
|
(I[131] = (T)(img)(_p4##x,_n1##y,z,c)), \
|
|
(I[147] = (T)(img)(_p4##x,_n2##y,z,c)), \
|
|
(I[163] = (T)(img)(_p4##x,_n3##y,z,c)), \
|
|
(I[179] = (T)(img)(_p4##x,_n4##y,z,c)), \
|
|
(I[195] = (T)(img)(_p4##x,_n5##y,z,c)), \
|
|
(I[211] = (T)(img)(_p4##x,_n6##y,z,c)), \
|
|
(I[227] = (T)(img)(_p4##x,_n7##y,z,c)), \
|
|
(I[243] = (T)(img)(_p4##x,_n8##y,z,c)), \
|
|
(I[4] = (T)(img)(_p3##x,_p7##y,z,c)), \
|
|
(I[20] = (T)(img)(_p3##x,_p6##y,z,c)), \
|
|
(I[36] = (T)(img)(_p3##x,_p5##y,z,c)), \
|
|
(I[52] = (T)(img)(_p3##x,_p4##y,z,c)), \
|
|
(I[68] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[84] = (T)(img)(_p3##x,_p2##y,z,c)), \
|
|
(I[100] = (T)(img)(_p3##x,_p1##y,z,c)), \
|
|
(I[116] = (T)(img)(_p3##x,y,z,c)), \
|
|
(I[132] = (T)(img)(_p3##x,_n1##y,z,c)), \
|
|
(I[148] = (T)(img)(_p3##x,_n2##y,z,c)), \
|
|
(I[164] = (T)(img)(_p3##x,_n3##y,z,c)), \
|
|
(I[180] = (T)(img)(_p3##x,_n4##y,z,c)), \
|
|
(I[196] = (T)(img)(_p3##x,_n5##y,z,c)), \
|
|
(I[212] = (T)(img)(_p3##x,_n6##y,z,c)), \
|
|
(I[228] = (T)(img)(_p3##x,_n7##y,z,c)), \
|
|
(I[244] = (T)(img)(_p3##x,_n8##y,z,c)), \
|
|
(I[5] = (T)(img)(_p2##x,_p7##y,z,c)), \
|
|
(I[21] = (T)(img)(_p2##x,_p6##y,z,c)), \
|
|
(I[37] = (T)(img)(_p2##x,_p5##y,z,c)), \
|
|
(I[53] = (T)(img)(_p2##x,_p4##y,z,c)), \
|
|
(I[69] = (T)(img)(_p2##x,_p3##y,z,c)), \
|
|
(I[85] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[101] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[117] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[133] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[149] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[165] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[181] = (T)(img)(_p2##x,_n4##y,z,c)), \
|
|
(I[197] = (T)(img)(_p2##x,_n5##y,z,c)), \
|
|
(I[213] = (T)(img)(_p2##x,_n6##y,z,c)), \
|
|
(I[229] = (T)(img)(_p2##x,_n7##y,z,c)), \
|
|
(I[245] = (T)(img)(_p2##x,_n8##y,z,c)), \
|
|
(I[6] = (T)(img)(_p1##x,_p7##y,z,c)), \
|
|
(I[22] = (T)(img)(_p1##x,_p6##y,z,c)), \
|
|
(I[38] = (T)(img)(_p1##x,_p5##y,z,c)), \
|
|
(I[54] = (T)(img)(_p1##x,_p4##y,z,c)), \
|
|
(I[70] = (T)(img)(_p1##x,_p3##y,z,c)), \
|
|
(I[86] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[102] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[118] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[134] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[150] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[166] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[182] = (T)(img)(_p1##x,_n4##y,z,c)), \
|
|
(I[198] = (T)(img)(_p1##x,_n5##y,z,c)), \
|
|
(I[214] = (T)(img)(_p1##x,_n6##y,z,c)), \
|
|
(I[230] = (T)(img)(_p1##x,_n7##y,z,c)), \
|
|
(I[246] = (T)(img)(_p1##x,_n8##y,z,c)), \
|
|
(I[7] = (T)(img)(x,_p7##y,z,c)), \
|
|
(I[23] = (T)(img)(x,_p6##y,z,c)), \
|
|
(I[39] = (T)(img)(x,_p5##y,z,c)), \
|
|
(I[55] = (T)(img)(x,_p4##y,z,c)), \
|
|
(I[71] = (T)(img)(x,_p3##y,z,c)), \
|
|
(I[87] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[103] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[119] = (T)(img)(x,y,z,c)), \
|
|
(I[135] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[151] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[167] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[183] = (T)(img)(x,_n4##y,z,c)), \
|
|
(I[199] = (T)(img)(x,_n5##y,z,c)), \
|
|
(I[215] = (T)(img)(x,_n6##y,z,c)), \
|
|
(I[231] = (T)(img)(x,_n7##y,z,c)), \
|
|
(I[247] = (T)(img)(x,_n8##y,z,c)), \
|
|
(I[8] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[24] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[40] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[56] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[72] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[88] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[104] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[120] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[136] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[152] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[168] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[184] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[200] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[216] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[232] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[248] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[9] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[25] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[41] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[57] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[73] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[89] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[105] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[121] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[137] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[153] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[169] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[185] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[201] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[217] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[233] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[249] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[10] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[26] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[42] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[58] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[74] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[90] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[106] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[122] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[138] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[154] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[170] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[186] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[202] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[218] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[234] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[250] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[11] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[27] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[43] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[59] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[75] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[91] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[107] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[123] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[139] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[155] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[171] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[187] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[203] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[219] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[235] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[251] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[12] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[28] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[44] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[60] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[76] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[92] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[108] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[124] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[140] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[156] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[172] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[188] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[204] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[220] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[236] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[252] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[13] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[29] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[45] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[61] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[77] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[93] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[109] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[125] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[141] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[157] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[173] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[189] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[205] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[221] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[237] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[253] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[14] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[30] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[46] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[62] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[78] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[94] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[110] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[126] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[142] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[158] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[174] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[190] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[206] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[222] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[238] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[254] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
x + 8>=(img).width()?(img).width() - 1:x + 8); \
|
|
x<=(int)(x1) && ((_n8##x<(img).width() && ( \
|
|
(I[15] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[31] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[47] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[63] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[79] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[95] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[111] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[127] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[143] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[159] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[175] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[191] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[207] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[223] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[239] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[255] = (T)(img)(_n8##x,_n8##y,z,c)),1)) || \
|
|
_n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], \
|
|
I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \
|
|
I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
|
|
I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], \
|
|
I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
|
|
I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
|
|
I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \
|
|
I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], \
|
|
I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
|
|
I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], \
|
|
I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], \
|
|
I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \
|
|
I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], \
|
|
I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \
|
|
I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \
|
|
I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], \
|
|
_p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x)
|
|
|
|
#define cimg_get16x16(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p7##x,_p7##y,z,c), I[1] = (T)(img)(_p6##x,_p7##y,z,c), I[2] = (T)(img)(_p5##x,_p7##y,z,c), I[3] = (T)(img)(_p4##x,_p7##y,z,c), I[4] = (T)(img)(_p3##x,_p7##y,z,c), I[5] = (T)(img)(_p2##x,_p7##y,z,c), I[6] = (T)(img)(_p1##x,_p7##y,z,c), I[7] = (T)(img)(x,_p7##y,z,c), I[8] = (T)(img)(_n1##x,_p7##y,z,c), I[9] = (T)(img)(_n2##x,_p7##y,z,c), I[10] = (T)(img)(_n3##x,_p7##y,z,c), I[11] = (T)(img)(_n4##x,_p7##y,z,c), I[12] = (T)(img)(_n5##x,_p7##y,z,c), I[13] = (T)(img)(_n6##x,_p7##y,z,c), I[14] = (T)(img)(_n7##x,_p7##y,z,c), I[15] = (T)(img)(_n8##x,_p7##y,z,c), \
|
|
I[16] = (T)(img)(_p7##x,_p6##y,z,c), I[17] = (T)(img)(_p6##x,_p6##y,z,c), I[18] = (T)(img)(_p5##x,_p6##y,z,c), I[19] = (T)(img)(_p4##x,_p6##y,z,c), I[20] = (T)(img)(_p3##x,_p6##y,z,c), I[21] = (T)(img)(_p2##x,_p6##y,z,c), I[22] = (T)(img)(_p1##x,_p6##y,z,c), I[23] = (T)(img)(x,_p6##y,z,c), I[24] = (T)(img)(_n1##x,_p6##y,z,c), I[25] = (T)(img)(_n2##x,_p6##y,z,c), I[26] = (T)(img)(_n3##x,_p6##y,z,c), I[27] = (T)(img)(_n4##x,_p6##y,z,c), I[28] = (T)(img)(_n5##x,_p6##y,z,c), I[29] = (T)(img)(_n6##x,_p6##y,z,c), I[30] = (T)(img)(_n7##x,_p6##y,z,c), I[31] = (T)(img)(_n8##x,_p6##y,z,c), \
|
|
I[32] = (T)(img)(_p7##x,_p5##y,z,c), I[33] = (T)(img)(_p6##x,_p5##y,z,c), I[34] = (T)(img)(_p5##x,_p5##y,z,c), I[35] = (T)(img)(_p4##x,_p5##y,z,c), I[36] = (T)(img)(_p3##x,_p5##y,z,c), I[37] = (T)(img)(_p2##x,_p5##y,z,c), I[38] = (T)(img)(_p1##x,_p5##y,z,c), I[39] = (T)(img)(x,_p5##y,z,c), I[40] = (T)(img)(_n1##x,_p5##y,z,c), I[41] = (T)(img)(_n2##x,_p5##y,z,c), I[42] = (T)(img)(_n3##x,_p5##y,z,c), I[43] = (T)(img)(_n4##x,_p5##y,z,c), I[44] = (T)(img)(_n5##x,_p5##y,z,c), I[45] = (T)(img)(_n6##x,_p5##y,z,c), I[46] = (T)(img)(_n7##x,_p5##y,z,c), I[47] = (T)(img)(_n8##x,_p5##y,z,c), \
|
|
I[48] = (T)(img)(_p7##x,_p4##y,z,c), I[49] = (T)(img)(_p6##x,_p4##y,z,c), I[50] = (T)(img)(_p5##x,_p4##y,z,c), I[51] = (T)(img)(_p4##x,_p4##y,z,c), I[52] = (T)(img)(_p3##x,_p4##y,z,c), I[53] = (T)(img)(_p2##x,_p4##y,z,c), I[54] = (T)(img)(_p1##x,_p4##y,z,c), I[55] = (T)(img)(x,_p4##y,z,c), I[56] = (T)(img)(_n1##x,_p4##y,z,c), I[57] = (T)(img)(_n2##x,_p4##y,z,c), I[58] = (T)(img)(_n3##x,_p4##y,z,c), I[59] = (T)(img)(_n4##x,_p4##y,z,c), I[60] = (T)(img)(_n5##x,_p4##y,z,c), I[61] = (T)(img)(_n6##x,_p4##y,z,c), I[62] = (T)(img)(_n7##x,_p4##y,z,c), I[63] = (T)(img)(_n8##x,_p4##y,z,c), \
|
|
I[64] = (T)(img)(_p7##x,_p3##y,z,c), I[65] = (T)(img)(_p6##x,_p3##y,z,c), I[66] = (T)(img)(_p5##x,_p3##y,z,c), I[67] = (T)(img)(_p4##x,_p3##y,z,c), I[68] = (T)(img)(_p3##x,_p3##y,z,c), I[69] = (T)(img)(_p2##x,_p3##y,z,c), I[70] = (T)(img)(_p1##x,_p3##y,z,c), I[71] = (T)(img)(x,_p3##y,z,c), I[72] = (T)(img)(_n1##x,_p3##y,z,c), I[73] = (T)(img)(_n2##x,_p3##y,z,c), I[74] = (T)(img)(_n3##x,_p3##y,z,c), I[75] = (T)(img)(_n4##x,_p3##y,z,c), I[76] = (T)(img)(_n5##x,_p3##y,z,c), I[77] = (T)(img)(_n6##x,_p3##y,z,c), I[78] = (T)(img)(_n7##x,_p3##y,z,c), I[79] = (T)(img)(_n8##x,_p3##y,z,c), \
|
|
I[80] = (T)(img)(_p7##x,_p2##y,z,c), I[81] = (T)(img)(_p6##x,_p2##y,z,c), I[82] = (T)(img)(_p5##x,_p2##y,z,c), I[83] = (T)(img)(_p4##x,_p2##y,z,c), I[84] = (T)(img)(_p3##x,_p2##y,z,c), I[85] = (T)(img)(_p2##x,_p2##y,z,c), I[86] = (T)(img)(_p1##x,_p2##y,z,c), I[87] = (T)(img)(x,_p2##y,z,c), I[88] = (T)(img)(_n1##x,_p2##y,z,c), I[89] = (T)(img)(_n2##x,_p2##y,z,c), I[90] = (T)(img)(_n3##x,_p2##y,z,c), I[91] = (T)(img)(_n4##x,_p2##y,z,c), I[92] = (T)(img)(_n5##x,_p2##y,z,c), I[93] = (T)(img)(_n6##x,_p2##y,z,c), I[94] = (T)(img)(_n7##x,_p2##y,z,c), I[95] = (T)(img)(_n8##x,_p2##y,z,c), \
|
|
I[96] = (T)(img)(_p7##x,_p1##y,z,c), I[97] = (T)(img)(_p6##x,_p1##y,z,c), I[98] = (T)(img)(_p5##x,_p1##y,z,c), I[99] = (T)(img)(_p4##x,_p1##y,z,c), I[100] = (T)(img)(_p3##x,_p1##y,z,c), I[101] = (T)(img)(_p2##x,_p1##y,z,c), I[102] = (T)(img)(_p1##x,_p1##y,z,c), I[103] = (T)(img)(x,_p1##y,z,c), I[104] = (T)(img)(_n1##x,_p1##y,z,c), I[105] = (T)(img)(_n2##x,_p1##y,z,c), I[106] = (T)(img)(_n3##x,_p1##y,z,c), I[107] = (T)(img)(_n4##x,_p1##y,z,c), I[108] = (T)(img)(_n5##x,_p1##y,z,c), I[109] = (T)(img)(_n6##x,_p1##y,z,c), I[110] = (T)(img)(_n7##x,_p1##y,z,c), I[111] = (T)(img)(_n8##x,_p1##y,z,c), \
|
|
I[112] = (T)(img)(_p7##x,y,z,c), I[113] = (T)(img)(_p6##x,y,z,c), I[114] = (T)(img)(_p5##x,y,z,c), I[115] = (T)(img)(_p4##x,y,z,c), I[116] = (T)(img)(_p3##x,y,z,c), I[117] = (T)(img)(_p2##x,y,z,c), I[118] = (T)(img)(_p1##x,y,z,c), I[119] = (T)(img)(x,y,z,c), I[120] = (T)(img)(_n1##x,y,z,c), I[121] = (T)(img)(_n2##x,y,z,c), I[122] = (T)(img)(_n3##x,y,z,c), I[123] = (T)(img)(_n4##x,y,z,c), I[124] = (T)(img)(_n5##x,y,z,c), I[125] = (T)(img)(_n6##x,y,z,c), I[126] = (T)(img)(_n7##x,y,z,c), I[127] = (T)(img)(_n8##x,y,z,c), \
|
|
I[128] = (T)(img)(_p7##x,_n1##y,z,c), I[129] = (T)(img)(_p6##x,_n1##y,z,c), I[130] = (T)(img)(_p5##x,_n1##y,z,c), I[131] = (T)(img)(_p4##x,_n1##y,z,c), I[132] = (T)(img)(_p3##x,_n1##y,z,c), I[133] = (T)(img)(_p2##x,_n1##y,z,c), I[134] = (T)(img)(_p1##x,_n1##y,z,c), I[135] = (T)(img)(x,_n1##y,z,c), I[136] = (T)(img)(_n1##x,_n1##y,z,c), I[137] = (T)(img)(_n2##x,_n1##y,z,c), I[138] = (T)(img)(_n3##x,_n1##y,z,c), I[139] = (T)(img)(_n4##x,_n1##y,z,c), I[140] = (T)(img)(_n5##x,_n1##y,z,c), I[141] = (T)(img)(_n6##x,_n1##y,z,c), I[142] = (T)(img)(_n7##x,_n1##y,z,c), I[143] = (T)(img)(_n8##x,_n1##y,z,c), \
|
|
I[144] = (T)(img)(_p7##x,_n2##y,z,c), I[145] = (T)(img)(_p6##x,_n2##y,z,c), I[146] = (T)(img)(_p5##x,_n2##y,z,c), I[147] = (T)(img)(_p4##x,_n2##y,z,c), I[148] = (T)(img)(_p3##x,_n2##y,z,c), I[149] = (T)(img)(_p2##x,_n2##y,z,c), I[150] = (T)(img)(_p1##x,_n2##y,z,c), I[151] = (T)(img)(x,_n2##y,z,c), I[152] = (T)(img)(_n1##x,_n2##y,z,c), I[153] = (T)(img)(_n2##x,_n2##y,z,c), I[154] = (T)(img)(_n3##x,_n2##y,z,c), I[155] = (T)(img)(_n4##x,_n2##y,z,c), I[156] = (T)(img)(_n5##x,_n2##y,z,c), I[157] = (T)(img)(_n6##x,_n2##y,z,c), I[158] = (T)(img)(_n7##x,_n2##y,z,c), I[159] = (T)(img)(_n8##x,_n2##y,z,c), \
|
|
I[160] = (T)(img)(_p7##x,_n3##y,z,c), I[161] = (T)(img)(_p6##x,_n3##y,z,c), I[162] = (T)(img)(_p5##x,_n3##y,z,c), I[163] = (T)(img)(_p4##x,_n3##y,z,c), I[164] = (T)(img)(_p3##x,_n3##y,z,c), I[165] = (T)(img)(_p2##x,_n3##y,z,c), I[166] = (T)(img)(_p1##x,_n3##y,z,c), I[167] = (T)(img)(x,_n3##y,z,c), I[168] = (T)(img)(_n1##x,_n3##y,z,c), I[169] = (T)(img)(_n2##x,_n3##y,z,c), I[170] = (T)(img)(_n3##x,_n3##y,z,c), I[171] = (T)(img)(_n4##x,_n3##y,z,c), I[172] = (T)(img)(_n5##x,_n3##y,z,c), I[173] = (T)(img)(_n6##x,_n3##y,z,c), I[174] = (T)(img)(_n7##x,_n3##y,z,c), I[175] = (T)(img)(_n8##x,_n3##y,z,c), \
|
|
I[176] = (T)(img)(_p7##x,_n4##y,z,c), I[177] = (T)(img)(_p6##x,_n4##y,z,c), I[178] = (T)(img)(_p5##x,_n4##y,z,c), I[179] = (T)(img)(_p4##x,_n4##y,z,c), I[180] = (T)(img)(_p3##x,_n4##y,z,c), I[181] = (T)(img)(_p2##x,_n4##y,z,c), I[182] = (T)(img)(_p1##x,_n4##y,z,c), I[183] = (T)(img)(x,_n4##y,z,c), I[184] = (T)(img)(_n1##x,_n4##y,z,c), I[185] = (T)(img)(_n2##x,_n4##y,z,c), I[186] = (T)(img)(_n3##x,_n4##y,z,c), I[187] = (T)(img)(_n4##x,_n4##y,z,c), I[188] = (T)(img)(_n5##x,_n4##y,z,c), I[189] = (T)(img)(_n6##x,_n4##y,z,c), I[190] = (T)(img)(_n7##x,_n4##y,z,c), I[191] = (T)(img)(_n8##x,_n4##y,z,c), \
|
|
I[192] = (T)(img)(_p7##x,_n5##y,z,c), I[193] = (T)(img)(_p6##x,_n5##y,z,c), I[194] = (T)(img)(_p5##x,_n5##y,z,c), I[195] = (T)(img)(_p4##x,_n5##y,z,c), I[196] = (T)(img)(_p3##x,_n5##y,z,c), I[197] = (T)(img)(_p2##x,_n5##y,z,c), I[198] = (T)(img)(_p1##x,_n5##y,z,c), I[199] = (T)(img)(x,_n5##y,z,c), I[200] = (T)(img)(_n1##x,_n5##y,z,c), I[201] = (T)(img)(_n2##x,_n5##y,z,c), I[202] = (T)(img)(_n3##x,_n5##y,z,c), I[203] = (T)(img)(_n4##x,_n5##y,z,c), I[204] = (T)(img)(_n5##x,_n5##y,z,c), I[205] = (T)(img)(_n6##x,_n5##y,z,c), I[206] = (T)(img)(_n7##x,_n5##y,z,c), I[207] = (T)(img)(_n8##x,_n5##y,z,c), \
|
|
I[208] = (T)(img)(_p7##x,_n6##y,z,c), I[209] = (T)(img)(_p6##x,_n6##y,z,c), I[210] = (T)(img)(_p5##x,_n6##y,z,c), I[211] = (T)(img)(_p4##x,_n6##y,z,c), I[212] = (T)(img)(_p3##x,_n6##y,z,c), I[213] = (T)(img)(_p2##x,_n6##y,z,c), I[214] = (T)(img)(_p1##x,_n6##y,z,c), I[215] = (T)(img)(x,_n6##y,z,c), I[216] = (T)(img)(_n1##x,_n6##y,z,c), I[217] = (T)(img)(_n2##x,_n6##y,z,c), I[218] = (T)(img)(_n3##x,_n6##y,z,c), I[219] = (T)(img)(_n4##x,_n6##y,z,c), I[220] = (T)(img)(_n5##x,_n6##y,z,c), I[221] = (T)(img)(_n6##x,_n6##y,z,c), I[222] = (T)(img)(_n7##x,_n6##y,z,c), I[223] = (T)(img)(_n8##x,_n6##y,z,c), \
|
|
I[224] = (T)(img)(_p7##x,_n7##y,z,c), I[225] = (T)(img)(_p6##x,_n7##y,z,c), I[226] = (T)(img)(_p5##x,_n7##y,z,c), I[227] = (T)(img)(_p4##x,_n7##y,z,c), I[228] = (T)(img)(_p3##x,_n7##y,z,c), I[229] = (T)(img)(_p2##x,_n7##y,z,c), I[230] = (T)(img)(_p1##x,_n7##y,z,c), I[231] = (T)(img)(x,_n7##y,z,c), I[232] = (T)(img)(_n1##x,_n7##y,z,c), I[233] = (T)(img)(_n2##x,_n7##y,z,c), I[234] = (T)(img)(_n3##x,_n7##y,z,c), I[235] = (T)(img)(_n4##x,_n7##y,z,c), I[236] = (T)(img)(_n5##x,_n7##y,z,c), I[237] = (T)(img)(_n6##x,_n7##y,z,c), I[238] = (T)(img)(_n7##x,_n7##y,z,c), I[239] = (T)(img)(_n8##x,_n7##y,z,c), \
|
|
I[240] = (T)(img)(_p7##x,_n8##y,z,c), I[241] = (T)(img)(_p6##x,_n8##y,z,c), I[242] = (T)(img)(_p5##x,_n8##y,z,c), I[243] = (T)(img)(_p4##x,_n8##y,z,c), I[244] = (T)(img)(_p3##x,_n8##y,z,c), I[245] = (T)(img)(_p2##x,_n8##y,z,c), I[246] = (T)(img)(_p1##x,_n8##y,z,c), I[247] = (T)(img)(x,_n8##y,z,c), I[248] = (T)(img)(_n1##x,_n8##y,z,c), I[249] = (T)(img)(_n2##x,_n8##y,z,c), I[250] = (T)(img)(_n3##x,_n8##y,z,c), I[251] = (T)(img)(_n4##x,_n8##y,z,c), I[252] = (T)(img)(_n5##x,_n8##y,z,c), I[253] = (T)(img)(_n6##x,_n8##y,z,c), I[254] = (T)(img)(_n7##x,_n8##y,z,c), I[255] = (T)(img)(_n8##x,_n8##y,z,c);
|
|
|
|
// Define 17x17 loop macros
|
|
//-------------------------
|
|
#define cimg_for17(bound,i) for (int i = 0, \
|
|
_p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
|
|
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
|
|
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
|
|
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
|
|
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
|
|
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
|
|
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
|
|
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8; \
|
|
_n8##i<(int)(bound) || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
|
|
_p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i)
|
|
|
|
#define cimg_for17X(img,x) cimg_for17((img)._width,x)
|
|
#define cimg_for17Y(img,y) cimg_for17((img)._height,y)
|
|
#define cimg_for17Z(img,z) cimg_for17((img)._depth,z)
|
|
#define cimg_for17C(img,c) cimg_for17((img)._spectrum,c)
|
|
#define cimg_for17XY(img,x,y) cimg_for17Y(img,y) cimg_for17X(img,x)
|
|
#define cimg_for17XZ(img,x,z) cimg_for17Z(img,z) cimg_for17X(img,x)
|
|
#define cimg_for17XC(img,x,c) cimg_for17C(img,c) cimg_for17X(img,x)
|
|
#define cimg_for17YZ(img,y,z) cimg_for17Z(img,z) cimg_for17Y(img,y)
|
|
#define cimg_for17YC(img,y,c) cimg_for17C(img,c) cimg_for17Y(img,y)
|
|
#define cimg_for17ZC(img,z,c) cimg_for17C(img,c) cimg_for17Z(img,z)
|
|
#define cimg_for17XYZ(img,x,y,z) cimg_for17Z(img,z) cimg_for17XY(img,x,y)
|
|
#define cimg_for17XZC(img,x,z,c) cimg_for17C(img,c) cimg_for17XZ(img,x,z)
|
|
#define cimg_for17YZC(img,y,z,c) cimg_for17C(img,c) cimg_for17YZ(img,y,z)
|
|
#define cimg_for17XYZC(img,x,y,z,c) cimg_for17C(img,c) cimg_for17XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in17(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p8##i = i - 8<0?0:i - 8, \
|
|
_p7##i = i - 7<0?0:i - 7, \
|
|
_p6##i = i - 6<0?0:i - 6, \
|
|
_p5##i = i - 5<0?0:i - 5, \
|
|
_p4##i = i - 4<0?0:i - 4, \
|
|
_p3##i = i - 3<0?0:i - 3, \
|
|
_p2##i = i - 2<0?0:i - 2, \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
|
|
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
|
|
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
|
|
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
|
|
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
|
|
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
|
|
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
|
|
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8; \
|
|
i<=(int)(i1) && (_n8##i<(int)(bound) || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
|
|
_p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i)
|
|
|
|
#define cimg_for_in17X(img,x0,x1,x) cimg_for_in17((img)._width,x0,x1,x)
|
|
#define cimg_for_in17Y(img,y0,y1,y) cimg_for_in17((img)._height,y0,y1,y)
|
|
#define cimg_for_in17Z(img,z0,z1,z) cimg_for_in17((img)._depth,z0,z1,z)
|
|
#define cimg_for_in17C(img,c0,c1,c) cimg_for_in17((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in17XY(img,x0,y0,x1,y1,x,y) cimg_for_in17Y(img,y0,y1,y) cimg_for_in17X(img,x0,x1,x)
|
|
#define cimg_for_in17XZ(img,x0,z0,x1,z1,x,z) cimg_for_in17Z(img,z0,z1,z) cimg_for_in17X(img,x0,x1,x)
|
|
#define cimg_for_in17XC(img,x0,c0,x1,c1,x,c) cimg_for_in17C(img,c0,c1,c) cimg_for_in17X(img,x0,x1,x)
|
|
#define cimg_for_in17YZ(img,y0,z0,y1,z1,y,z) cimg_for_in17Z(img,z0,z1,z) cimg_for_in17Y(img,y0,y1,y)
|
|
#define cimg_for_in17YC(img,y0,c0,y1,c1,y,c) cimg_for_in17C(img,c0,c1,c) cimg_for_in17Y(img,y0,y1,y)
|
|
#define cimg_for_in17ZC(img,z0,c0,z1,c1,z,c) cimg_for_in17C(img,c0,c1,c) cimg_for_in17Z(img,z0,z1,z)
|
|
#define cimg_for_in17XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in17Z(img,z0,z1,z) cimg_for_in17XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in17XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in17C(img,c0,c1,c) cimg_for_in17XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in17YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in17C(img,c0,c1,c) cimg_for_in17YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in17XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in17C(img,c0,c1,c) cimg_for_in17XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for17x17(img,x,y,z,c,I,T) \
|
|
cimg_for17((img)._height,y) for (int x = 0, \
|
|
_p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
|
|
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
|
|
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
|
|
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
|
|
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
|
|
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
|
|
_n8##x = (int)( \
|
|
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = (T)(img)(0,_p8##y,z,c)), \
|
|
(I[17] = I[18] = I[19] = I[20] = I[21] = I[22] = I[23] = I[24] = I[25] = (T)(img)(0,_p7##y,z,c)), \
|
|
(I[34] = I[35] = I[36] = I[37] = I[38] = I[39] = I[40] = I[41] = I[42] = (T)(img)(0,_p6##y,z,c)), \
|
|
(I[51] = I[52] = I[53] = I[54] = I[55] = I[56] = I[57] = I[58] = I[59] = (T)(img)(0,_p5##y,z,c)), \
|
|
(I[68] = I[69] = I[70] = I[71] = I[72] = I[73] = I[74] = I[75] = I[76] = (T)(img)(0,_p4##y,z,c)), \
|
|
(I[85] = I[86] = I[87] = I[88] = I[89] = I[90] = I[91] = I[92] = I[93] = (T)(img)(0,_p3##y,z,c)), \
|
|
(I[102] = I[103] = I[104] = I[105] = I[106] = I[107] = I[108] = I[109] = I[110] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[119] = I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = I[126] = I[127] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[136] = I[137] = I[138] = I[139] = I[140] = I[141] = I[142] = I[143] = I[144] = (T)(img)(0,y,z,c)), \
|
|
(I[153] = I[154] = I[155] = I[156] = I[157] = I[158] = I[159] = I[160] = I[161] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[170] = I[171] = I[172] = I[173] = I[174] = I[175] = I[176] = I[177] = I[178] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[187] = I[188] = I[189] = I[190] = I[191] = I[192] = I[193] = I[194] = I[195] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[204] = I[205] = I[206] = I[207] = I[208] = I[209] = I[210] = I[211] = I[212] = (T)(img)(0,_n4##y,z,c)), \
|
|
(I[221] = I[222] = I[223] = I[224] = I[225] = I[226] = I[227] = I[228] = I[229] = (T)(img)(0,_n5##y,z,c)), \
|
|
(I[238] = I[239] = I[240] = I[241] = I[242] = I[243] = I[244] = I[245] = I[246] = (T)(img)(0,_n6##y,z,c)), \
|
|
(I[255] = I[256] = I[257] = I[258] = I[259] = I[260] = I[261] = I[262] = I[263] = (T)(img)(0,_n7##y,z,c)), \
|
|
(I[272] = I[273] = I[274] = I[275] = I[276] = I[277] = I[278] = I[279] = I[280] = (T)(img)(0,_n8##y,z,c)), \
|
|
(I[9] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[26] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[43] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[60] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[77] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[94] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[111] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[128] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[145] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[162] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[179] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[196] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[213] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[230] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[247] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[264] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[281] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[10] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[27] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[44] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[61] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[78] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[95] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[112] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[129] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[146] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[163] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[180] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[197] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[214] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[231] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[248] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[265] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[282] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[11] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[28] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[45] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[62] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[79] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[96] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[113] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[130] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[147] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[164] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[181] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[198] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[215] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[232] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[249] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[266] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[283] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[12] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[29] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[46] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[63] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[80] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[97] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[114] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[131] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[148] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[165] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[182] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[199] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[216] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[233] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[250] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[267] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[284] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[13] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[30] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[47] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[64] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[81] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[98] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[115] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[132] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[149] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[166] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[183] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[200] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[217] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[234] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[251] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[268] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[285] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[14] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[31] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[48] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[65] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[82] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[99] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[116] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[133] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[150] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[167] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[184] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[201] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[218] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[235] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[252] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[269] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[286] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[15] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[32] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[49] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[66] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[83] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[100] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[117] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[134] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[151] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[168] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[185] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[202] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[219] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[236] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[253] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[270] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[287] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
8>=((img)._width)?(img).width() - 1:8); \
|
|
(_n8##x<(img).width() && ( \
|
|
(I[16] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[33] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[50] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[67] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[84] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[101] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[118] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[135] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[152] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[169] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[186] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[203] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[220] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[237] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[254] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[271] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[288] = (T)(img)(_n8##x,_n8##y,z,c)),1)) || \
|
|
_n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], \
|
|
I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], \
|
|
I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], \
|
|
I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], \
|
|
I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], \
|
|
I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], \
|
|
I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], \
|
|
I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], \
|
|
I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], \
|
|
I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], \
|
|
I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], \
|
|
I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], \
|
|
I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], \
|
|
I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], \
|
|
I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], \
|
|
I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], \
|
|
I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], \
|
|
_p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x)
|
|
|
|
#define cimg_for_in17x17(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in17((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p8##x = x - 8<0?0:x - 8, \
|
|
_p7##x = x - 7<0?0:x - 7, \
|
|
_p6##x = x - 6<0?0:x - 6, \
|
|
_p5##x = x - 5<0?0:x - 5, \
|
|
_p4##x = x - 4<0?0:x - 4, \
|
|
_p3##x = x - 3<0?0:x - 3, \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
|
|
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
|
|
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
|
|
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
|
|
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
|
|
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
|
|
_n8##x = (int)( \
|
|
(I[0] = (T)(img)(_p8##x,_p8##y,z,c)), \
|
|
(I[17] = (T)(img)(_p8##x,_p7##y,z,c)), \
|
|
(I[34] = (T)(img)(_p8##x,_p6##y,z,c)), \
|
|
(I[51] = (T)(img)(_p8##x,_p5##y,z,c)), \
|
|
(I[68] = (T)(img)(_p8##x,_p4##y,z,c)), \
|
|
(I[85] = (T)(img)(_p8##x,_p3##y,z,c)), \
|
|
(I[102] = (T)(img)(_p8##x,_p2##y,z,c)), \
|
|
(I[119] = (T)(img)(_p8##x,_p1##y,z,c)), \
|
|
(I[136] = (T)(img)(_p8##x,y,z,c)), \
|
|
(I[153] = (T)(img)(_p8##x,_n1##y,z,c)), \
|
|
(I[170] = (T)(img)(_p8##x,_n2##y,z,c)), \
|
|
(I[187] = (T)(img)(_p8##x,_n3##y,z,c)), \
|
|
(I[204] = (T)(img)(_p8##x,_n4##y,z,c)), \
|
|
(I[221] = (T)(img)(_p8##x,_n5##y,z,c)), \
|
|
(I[238] = (T)(img)(_p8##x,_n6##y,z,c)), \
|
|
(I[255] = (T)(img)(_p8##x,_n7##y,z,c)), \
|
|
(I[272] = (T)(img)(_p8##x,_n8##y,z,c)), \
|
|
(I[1] = (T)(img)(_p7##x,_p8##y,z,c)), \
|
|
(I[18] = (T)(img)(_p7##x,_p7##y,z,c)), \
|
|
(I[35] = (T)(img)(_p7##x,_p6##y,z,c)), \
|
|
(I[52] = (T)(img)(_p7##x,_p5##y,z,c)), \
|
|
(I[69] = (T)(img)(_p7##x,_p4##y,z,c)), \
|
|
(I[86] = (T)(img)(_p7##x,_p3##y,z,c)), \
|
|
(I[103] = (T)(img)(_p7##x,_p2##y,z,c)), \
|
|
(I[120] = (T)(img)(_p7##x,_p1##y,z,c)), \
|
|
(I[137] = (T)(img)(_p7##x,y,z,c)), \
|
|
(I[154] = (T)(img)(_p7##x,_n1##y,z,c)), \
|
|
(I[171] = (T)(img)(_p7##x,_n2##y,z,c)), \
|
|
(I[188] = (T)(img)(_p7##x,_n3##y,z,c)), \
|
|
(I[205] = (T)(img)(_p7##x,_n4##y,z,c)), \
|
|
(I[222] = (T)(img)(_p7##x,_n5##y,z,c)), \
|
|
(I[239] = (T)(img)(_p7##x,_n6##y,z,c)), \
|
|
(I[256] = (T)(img)(_p7##x,_n7##y,z,c)), \
|
|
(I[273] = (T)(img)(_p7##x,_n8##y,z,c)), \
|
|
(I[2] = (T)(img)(_p6##x,_p8##y,z,c)), \
|
|
(I[19] = (T)(img)(_p6##x,_p7##y,z,c)), \
|
|
(I[36] = (T)(img)(_p6##x,_p6##y,z,c)), \
|
|
(I[53] = (T)(img)(_p6##x,_p5##y,z,c)), \
|
|
(I[70] = (T)(img)(_p6##x,_p4##y,z,c)), \
|
|
(I[87] = (T)(img)(_p6##x,_p3##y,z,c)), \
|
|
(I[104] = (T)(img)(_p6##x,_p2##y,z,c)), \
|
|
(I[121] = (T)(img)(_p6##x,_p1##y,z,c)), \
|
|
(I[138] = (T)(img)(_p6##x,y,z,c)), \
|
|
(I[155] = (T)(img)(_p6##x,_n1##y,z,c)), \
|
|
(I[172] = (T)(img)(_p6##x,_n2##y,z,c)), \
|
|
(I[189] = (T)(img)(_p6##x,_n3##y,z,c)), \
|
|
(I[206] = (T)(img)(_p6##x,_n4##y,z,c)), \
|
|
(I[223] = (T)(img)(_p6##x,_n5##y,z,c)), \
|
|
(I[240] = (T)(img)(_p6##x,_n6##y,z,c)), \
|
|
(I[257] = (T)(img)(_p6##x,_n7##y,z,c)), \
|
|
(I[274] = (T)(img)(_p6##x,_n8##y,z,c)), \
|
|
(I[3] = (T)(img)(_p5##x,_p8##y,z,c)), \
|
|
(I[20] = (T)(img)(_p5##x,_p7##y,z,c)), \
|
|
(I[37] = (T)(img)(_p5##x,_p6##y,z,c)), \
|
|
(I[54] = (T)(img)(_p5##x,_p5##y,z,c)), \
|
|
(I[71] = (T)(img)(_p5##x,_p4##y,z,c)), \
|
|
(I[88] = (T)(img)(_p5##x,_p3##y,z,c)), \
|
|
(I[105] = (T)(img)(_p5##x,_p2##y,z,c)), \
|
|
(I[122] = (T)(img)(_p5##x,_p1##y,z,c)), \
|
|
(I[139] = (T)(img)(_p5##x,y,z,c)), \
|
|
(I[156] = (T)(img)(_p5##x,_n1##y,z,c)), \
|
|
(I[173] = (T)(img)(_p5##x,_n2##y,z,c)), \
|
|
(I[190] = (T)(img)(_p5##x,_n3##y,z,c)), \
|
|
(I[207] = (T)(img)(_p5##x,_n4##y,z,c)), \
|
|
(I[224] = (T)(img)(_p5##x,_n5##y,z,c)), \
|
|
(I[241] = (T)(img)(_p5##x,_n6##y,z,c)), \
|
|
(I[258] = (T)(img)(_p5##x,_n7##y,z,c)), \
|
|
(I[275] = (T)(img)(_p5##x,_n8##y,z,c)), \
|
|
(I[4] = (T)(img)(_p4##x,_p8##y,z,c)), \
|
|
(I[21] = (T)(img)(_p4##x,_p7##y,z,c)), \
|
|
(I[38] = (T)(img)(_p4##x,_p6##y,z,c)), \
|
|
(I[55] = (T)(img)(_p4##x,_p5##y,z,c)), \
|
|
(I[72] = (T)(img)(_p4##x,_p4##y,z,c)), \
|
|
(I[89] = (T)(img)(_p4##x,_p3##y,z,c)), \
|
|
(I[106] = (T)(img)(_p4##x,_p2##y,z,c)), \
|
|
(I[123] = (T)(img)(_p4##x,_p1##y,z,c)), \
|
|
(I[140] = (T)(img)(_p4##x,y,z,c)), \
|
|
(I[157] = (T)(img)(_p4##x,_n1##y,z,c)), \
|
|
(I[174] = (T)(img)(_p4##x,_n2##y,z,c)), \
|
|
(I[191] = (T)(img)(_p4##x,_n3##y,z,c)), \
|
|
(I[208] = (T)(img)(_p4##x,_n4##y,z,c)), \
|
|
(I[225] = (T)(img)(_p4##x,_n5##y,z,c)), \
|
|
(I[242] = (T)(img)(_p4##x,_n6##y,z,c)), \
|
|
(I[259] = (T)(img)(_p4##x,_n7##y,z,c)), \
|
|
(I[276] = (T)(img)(_p4##x,_n8##y,z,c)), \
|
|
(I[5] = (T)(img)(_p3##x,_p8##y,z,c)), \
|
|
(I[22] = (T)(img)(_p3##x,_p7##y,z,c)), \
|
|
(I[39] = (T)(img)(_p3##x,_p6##y,z,c)), \
|
|
(I[56] = (T)(img)(_p3##x,_p5##y,z,c)), \
|
|
(I[73] = (T)(img)(_p3##x,_p4##y,z,c)), \
|
|
(I[90] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[107] = (T)(img)(_p3##x,_p2##y,z,c)), \
|
|
(I[124] = (T)(img)(_p3##x,_p1##y,z,c)), \
|
|
(I[141] = (T)(img)(_p3##x,y,z,c)), \
|
|
(I[158] = (T)(img)(_p3##x,_n1##y,z,c)), \
|
|
(I[175] = (T)(img)(_p3##x,_n2##y,z,c)), \
|
|
(I[192] = (T)(img)(_p3##x,_n3##y,z,c)), \
|
|
(I[209] = (T)(img)(_p3##x,_n4##y,z,c)), \
|
|
(I[226] = (T)(img)(_p3##x,_n5##y,z,c)), \
|
|
(I[243] = (T)(img)(_p3##x,_n6##y,z,c)), \
|
|
(I[260] = (T)(img)(_p3##x,_n7##y,z,c)), \
|
|
(I[277] = (T)(img)(_p3##x,_n8##y,z,c)), \
|
|
(I[6] = (T)(img)(_p2##x,_p8##y,z,c)), \
|
|
(I[23] = (T)(img)(_p2##x,_p7##y,z,c)), \
|
|
(I[40] = (T)(img)(_p2##x,_p6##y,z,c)), \
|
|
(I[57] = (T)(img)(_p2##x,_p5##y,z,c)), \
|
|
(I[74] = (T)(img)(_p2##x,_p4##y,z,c)), \
|
|
(I[91] = (T)(img)(_p2##x,_p3##y,z,c)), \
|
|
(I[108] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[125] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[142] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[159] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[176] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[193] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[210] = (T)(img)(_p2##x,_n4##y,z,c)), \
|
|
(I[227] = (T)(img)(_p2##x,_n5##y,z,c)), \
|
|
(I[244] = (T)(img)(_p2##x,_n6##y,z,c)), \
|
|
(I[261] = (T)(img)(_p2##x,_n7##y,z,c)), \
|
|
(I[278] = (T)(img)(_p2##x,_n8##y,z,c)), \
|
|
(I[7] = (T)(img)(_p1##x,_p8##y,z,c)), \
|
|
(I[24] = (T)(img)(_p1##x,_p7##y,z,c)), \
|
|
(I[41] = (T)(img)(_p1##x,_p6##y,z,c)), \
|
|
(I[58] = (T)(img)(_p1##x,_p5##y,z,c)), \
|
|
(I[75] = (T)(img)(_p1##x,_p4##y,z,c)), \
|
|
(I[92] = (T)(img)(_p1##x,_p3##y,z,c)), \
|
|
(I[109] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[126] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[143] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[160] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[177] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[194] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[211] = (T)(img)(_p1##x,_n4##y,z,c)), \
|
|
(I[228] = (T)(img)(_p1##x,_n5##y,z,c)), \
|
|
(I[245] = (T)(img)(_p1##x,_n6##y,z,c)), \
|
|
(I[262] = (T)(img)(_p1##x,_n7##y,z,c)), \
|
|
(I[279] = (T)(img)(_p1##x,_n8##y,z,c)), \
|
|
(I[8] = (T)(img)(x,_p8##y,z,c)), \
|
|
(I[25] = (T)(img)(x,_p7##y,z,c)), \
|
|
(I[42] = (T)(img)(x,_p6##y,z,c)), \
|
|
(I[59] = (T)(img)(x,_p5##y,z,c)), \
|
|
(I[76] = (T)(img)(x,_p4##y,z,c)), \
|
|
(I[93] = (T)(img)(x,_p3##y,z,c)), \
|
|
(I[110] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[127] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[144] = (T)(img)(x,y,z,c)), \
|
|
(I[161] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[178] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[195] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[212] = (T)(img)(x,_n4##y,z,c)), \
|
|
(I[229] = (T)(img)(x,_n5##y,z,c)), \
|
|
(I[246] = (T)(img)(x,_n6##y,z,c)), \
|
|
(I[263] = (T)(img)(x,_n7##y,z,c)), \
|
|
(I[280] = (T)(img)(x,_n8##y,z,c)), \
|
|
(I[9] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[26] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[43] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[60] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[77] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[94] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[111] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[128] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[145] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[162] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[179] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[196] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[213] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[230] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[247] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[264] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[281] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[10] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[27] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[44] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[61] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[78] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[95] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[112] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[129] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[146] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[163] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[180] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[197] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[214] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[231] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[248] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[265] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[282] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[11] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[28] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[45] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[62] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[79] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[96] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[113] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[130] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[147] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[164] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[181] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[198] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[215] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[232] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[249] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[266] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[283] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[12] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[29] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[46] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[63] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[80] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[97] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[114] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[131] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[148] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[165] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[182] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[199] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[216] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[233] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[250] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[267] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[284] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[13] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[30] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[47] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[64] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[81] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[98] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[115] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[132] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[149] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[166] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[183] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[200] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[217] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[234] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[251] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[268] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[285] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[14] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[31] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[48] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[65] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[82] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[99] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[116] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[133] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[150] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[167] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[184] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[201] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[218] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[235] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[252] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[269] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[286] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[15] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[32] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[49] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[66] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[83] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[100] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[117] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[134] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[151] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[168] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[185] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[202] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[219] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[236] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[253] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[270] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[287] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
x + 8>=(img).width()?(img).width() - 1:x + 8); \
|
|
x<=(int)(x1) && ((_n8##x<(img).width() && ( \
|
|
(I[16] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[33] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[50] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[67] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[84] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[101] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[118] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[135] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[152] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[169] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[186] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[203] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[220] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[237] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[254] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[271] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[288] = (T)(img)(_n8##x,_n8##y,z,c)),1)) || \
|
|
_n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], \
|
|
I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], \
|
|
I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], \
|
|
I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], \
|
|
I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], \
|
|
I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], \
|
|
I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], \
|
|
I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], \
|
|
I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], \
|
|
I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], \
|
|
I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], \
|
|
I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], \
|
|
I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], \
|
|
I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], \
|
|
I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], \
|
|
I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], \
|
|
I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], \
|
|
_p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x)
|
|
|
|
#define cimg_get17x17(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p8##x,_p8##y,z,c), I[1] = (T)(img)(_p7##x,_p8##y,z,c), I[2] = (T)(img)(_p6##x,_p8##y,z,c), I[3] = (T)(img)(_p5##x,_p8##y,z,c), I[4] = (T)(img)(_p4##x,_p8##y,z,c), I[5] = (T)(img)(_p3##x,_p8##y,z,c), I[6] = (T)(img)(_p2##x,_p8##y,z,c), I[7] = (T)(img)(_p1##x,_p8##y,z,c), I[8] = (T)(img)(x,_p8##y,z,c), I[9] = (T)(img)(_n1##x,_p8##y,z,c), I[10] = (T)(img)(_n2##x,_p8##y,z,c), I[11] = (T)(img)(_n3##x,_p8##y,z,c), I[12] = (T)(img)(_n4##x,_p8##y,z,c), I[13] = (T)(img)(_n5##x,_p8##y,z,c), I[14] = (T)(img)(_n6##x,_p8##y,z,c), I[15] = (T)(img)(_n7##x,_p8##y,z,c), I[16] = (T)(img)(_n8##x,_p8##y,z,c), \
|
|
I[17] = (T)(img)(_p8##x,_p7##y,z,c), I[18] = (T)(img)(_p7##x,_p7##y,z,c), I[19] = (T)(img)(_p6##x,_p7##y,z,c), I[20] = (T)(img)(_p5##x,_p7##y,z,c), I[21] = (T)(img)(_p4##x,_p7##y,z,c), I[22] = (T)(img)(_p3##x,_p7##y,z,c), I[23] = (T)(img)(_p2##x,_p7##y,z,c), I[24] = (T)(img)(_p1##x,_p7##y,z,c), I[25] = (T)(img)(x,_p7##y,z,c), I[26] = (T)(img)(_n1##x,_p7##y,z,c), I[27] = (T)(img)(_n2##x,_p7##y,z,c), I[28] = (T)(img)(_n3##x,_p7##y,z,c), I[29] = (T)(img)(_n4##x,_p7##y,z,c), I[30] = (T)(img)(_n5##x,_p7##y,z,c), I[31] = (T)(img)(_n6##x,_p7##y,z,c), I[32] = (T)(img)(_n7##x,_p7##y,z,c), I[33] = (T)(img)(_n8##x,_p7##y,z,c), \
|
|
I[34] = (T)(img)(_p8##x,_p6##y,z,c), I[35] = (T)(img)(_p7##x,_p6##y,z,c), I[36] = (T)(img)(_p6##x,_p6##y,z,c), I[37] = (T)(img)(_p5##x,_p6##y,z,c), I[38] = (T)(img)(_p4##x,_p6##y,z,c), I[39] = (T)(img)(_p3##x,_p6##y,z,c), I[40] = (T)(img)(_p2##x,_p6##y,z,c), I[41] = (T)(img)(_p1##x,_p6##y,z,c), I[42] = (T)(img)(x,_p6##y,z,c), I[43] = (T)(img)(_n1##x,_p6##y,z,c), I[44] = (T)(img)(_n2##x,_p6##y,z,c), I[45] = (T)(img)(_n3##x,_p6##y,z,c), I[46] = (T)(img)(_n4##x,_p6##y,z,c), I[47] = (T)(img)(_n5##x,_p6##y,z,c), I[48] = (T)(img)(_n6##x,_p6##y,z,c), I[49] = (T)(img)(_n7##x,_p6##y,z,c), I[50] = (T)(img)(_n8##x,_p6##y,z,c), \
|
|
I[51] = (T)(img)(_p8##x,_p5##y,z,c), I[52] = (T)(img)(_p7##x,_p5##y,z,c), I[53] = (T)(img)(_p6##x,_p5##y,z,c), I[54] = (T)(img)(_p5##x,_p5##y,z,c), I[55] = (T)(img)(_p4##x,_p5##y,z,c), I[56] = (T)(img)(_p3##x,_p5##y,z,c), I[57] = (T)(img)(_p2##x,_p5##y,z,c), I[58] = (T)(img)(_p1##x,_p5##y,z,c), I[59] = (T)(img)(x,_p5##y,z,c), I[60] = (T)(img)(_n1##x,_p5##y,z,c), I[61] = (T)(img)(_n2##x,_p5##y,z,c), I[62] = (T)(img)(_n3##x,_p5##y,z,c), I[63] = (T)(img)(_n4##x,_p5##y,z,c), I[64] = (T)(img)(_n5##x,_p5##y,z,c), I[65] = (T)(img)(_n6##x,_p5##y,z,c), I[66] = (T)(img)(_n7##x,_p5##y,z,c), I[67] = (T)(img)(_n8##x,_p5##y,z,c), \
|
|
I[68] = (T)(img)(_p8##x,_p4##y,z,c), I[69] = (T)(img)(_p7##x,_p4##y,z,c), I[70] = (T)(img)(_p6##x,_p4##y,z,c), I[71] = (T)(img)(_p5##x,_p4##y,z,c), I[72] = (T)(img)(_p4##x,_p4##y,z,c), I[73] = (T)(img)(_p3##x,_p4##y,z,c), I[74] = (T)(img)(_p2##x,_p4##y,z,c), I[75] = (T)(img)(_p1##x,_p4##y,z,c), I[76] = (T)(img)(x,_p4##y,z,c), I[77] = (T)(img)(_n1##x,_p4##y,z,c), I[78] = (T)(img)(_n2##x,_p4##y,z,c), I[79] = (T)(img)(_n3##x,_p4##y,z,c), I[80] = (T)(img)(_n4##x,_p4##y,z,c), I[81] = (T)(img)(_n5##x,_p4##y,z,c), I[82] = (T)(img)(_n6##x,_p4##y,z,c), I[83] = (T)(img)(_n7##x,_p4##y,z,c), I[84] = (T)(img)(_n8##x,_p4##y,z,c), \
|
|
I[85] = (T)(img)(_p8##x,_p3##y,z,c), I[86] = (T)(img)(_p7##x,_p3##y,z,c), I[87] = (T)(img)(_p6##x,_p3##y,z,c), I[88] = (T)(img)(_p5##x,_p3##y,z,c), I[89] = (T)(img)(_p4##x,_p3##y,z,c), I[90] = (T)(img)(_p3##x,_p3##y,z,c), I[91] = (T)(img)(_p2##x,_p3##y,z,c), I[92] = (T)(img)(_p1##x,_p3##y,z,c), I[93] = (T)(img)(x,_p3##y,z,c), I[94] = (T)(img)(_n1##x,_p3##y,z,c), I[95] = (T)(img)(_n2##x,_p3##y,z,c), I[96] = (T)(img)(_n3##x,_p3##y,z,c), I[97] = (T)(img)(_n4##x,_p3##y,z,c), I[98] = (T)(img)(_n5##x,_p3##y,z,c), I[99] = (T)(img)(_n6##x,_p3##y,z,c), I[100] = (T)(img)(_n7##x,_p3##y,z,c), I[101] = (T)(img)(_n8##x,_p3##y,z,c), \
|
|
I[102] = (T)(img)(_p8##x,_p2##y,z,c), I[103] = (T)(img)(_p7##x,_p2##y,z,c), I[104] = (T)(img)(_p6##x,_p2##y,z,c), I[105] = (T)(img)(_p5##x,_p2##y,z,c), I[106] = (T)(img)(_p4##x,_p2##y,z,c), I[107] = (T)(img)(_p3##x,_p2##y,z,c), I[108] = (T)(img)(_p2##x,_p2##y,z,c), I[109] = (T)(img)(_p1##x,_p2##y,z,c), I[110] = (T)(img)(x,_p2##y,z,c), I[111] = (T)(img)(_n1##x,_p2##y,z,c), I[112] = (T)(img)(_n2##x,_p2##y,z,c), I[113] = (T)(img)(_n3##x,_p2##y,z,c), I[114] = (T)(img)(_n4##x,_p2##y,z,c), I[115] = (T)(img)(_n5##x,_p2##y,z,c), I[116] = (T)(img)(_n6##x,_p2##y,z,c), I[117] = (T)(img)(_n7##x,_p2##y,z,c), I[118] = (T)(img)(_n8##x,_p2##y,z,c), \
|
|
I[119] = (T)(img)(_p8##x,_p1##y,z,c), I[120] = (T)(img)(_p7##x,_p1##y,z,c), I[121] = (T)(img)(_p6##x,_p1##y,z,c), I[122] = (T)(img)(_p5##x,_p1##y,z,c), I[123] = (T)(img)(_p4##x,_p1##y,z,c), I[124] = (T)(img)(_p3##x,_p1##y,z,c), I[125] = (T)(img)(_p2##x,_p1##y,z,c), I[126] = (T)(img)(_p1##x,_p1##y,z,c), I[127] = (T)(img)(x,_p1##y,z,c), I[128] = (T)(img)(_n1##x,_p1##y,z,c), I[129] = (T)(img)(_n2##x,_p1##y,z,c), I[130] = (T)(img)(_n3##x,_p1##y,z,c), I[131] = (T)(img)(_n4##x,_p1##y,z,c), I[132] = (T)(img)(_n5##x,_p1##y,z,c), I[133] = (T)(img)(_n6##x,_p1##y,z,c), I[134] = (T)(img)(_n7##x,_p1##y,z,c), I[135] = (T)(img)(_n8##x,_p1##y,z,c), \
|
|
I[136] = (T)(img)(_p8##x,y,z,c), I[137] = (T)(img)(_p7##x,y,z,c), I[138] = (T)(img)(_p6##x,y,z,c), I[139] = (T)(img)(_p5##x,y,z,c), I[140] = (T)(img)(_p4##x,y,z,c), I[141] = (T)(img)(_p3##x,y,z,c), I[142] = (T)(img)(_p2##x,y,z,c), I[143] = (T)(img)(_p1##x,y,z,c), I[144] = (T)(img)(x,y,z,c), I[145] = (T)(img)(_n1##x,y,z,c), I[146] = (T)(img)(_n2##x,y,z,c), I[147] = (T)(img)(_n3##x,y,z,c), I[148] = (T)(img)(_n4##x,y,z,c), I[149] = (T)(img)(_n5##x,y,z,c), I[150] = (T)(img)(_n6##x,y,z,c), I[151] = (T)(img)(_n7##x,y,z,c), I[152] = (T)(img)(_n8##x,y,z,c), \
|
|
I[153] = (T)(img)(_p8##x,_n1##y,z,c), I[154] = (T)(img)(_p7##x,_n1##y,z,c), I[155] = (T)(img)(_p6##x,_n1##y,z,c), I[156] = (T)(img)(_p5##x,_n1##y,z,c), I[157] = (T)(img)(_p4##x,_n1##y,z,c), I[158] = (T)(img)(_p3##x,_n1##y,z,c), I[159] = (T)(img)(_p2##x,_n1##y,z,c), I[160] = (T)(img)(_p1##x,_n1##y,z,c), I[161] = (T)(img)(x,_n1##y,z,c), I[162] = (T)(img)(_n1##x,_n1##y,z,c), I[163] = (T)(img)(_n2##x,_n1##y,z,c), I[164] = (T)(img)(_n3##x,_n1##y,z,c), I[165] = (T)(img)(_n4##x,_n1##y,z,c), I[166] = (T)(img)(_n5##x,_n1##y,z,c), I[167] = (T)(img)(_n6##x,_n1##y,z,c), I[168] = (T)(img)(_n7##x,_n1##y,z,c), I[169] = (T)(img)(_n8##x,_n1##y,z,c), \
|
|
I[170] = (T)(img)(_p8##x,_n2##y,z,c), I[171] = (T)(img)(_p7##x,_n2##y,z,c), I[172] = (T)(img)(_p6##x,_n2##y,z,c), I[173] = (T)(img)(_p5##x,_n2##y,z,c), I[174] = (T)(img)(_p4##x,_n2##y,z,c), I[175] = (T)(img)(_p3##x,_n2##y,z,c), I[176] = (T)(img)(_p2##x,_n2##y,z,c), I[177] = (T)(img)(_p1##x,_n2##y,z,c), I[178] = (T)(img)(x,_n2##y,z,c), I[179] = (T)(img)(_n1##x,_n2##y,z,c), I[180] = (T)(img)(_n2##x,_n2##y,z,c), I[181] = (T)(img)(_n3##x,_n2##y,z,c), I[182] = (T)(img)(_n4##x,_n2##y,z,c), I[183] = (T)(img)(_n5##x,_n2##y,z,c), I[184] = (T)(img)(_n6##x,_n2##y,z,c), I[185] = (T)(img)(_n7##x,_n2##y,z,c), I[186] = (T)(img)(_n8##x,_n2##y,z,c), \
|
|
I[187] = (T)(img)(_p8##x,_n3##y,z,c), I[188] = (T)(img)(_p7##x,_n3##y,z,c), I[189] = (T)(img)(_p6##x,_n3##y,z,c), I[190] = (T)(img)(_p5##x,_n3##y,z,c), I[191] = (T)(img)(_p4##x,_n3##y,z,c), I[192] = (T)(img)(_p3##x,_n3##y,z,c), I[193] = (T)(img)(_p2##x,_n3##y,z,c), I[194] = (T)(img)(_p1##x,_n3##y,z,c), I[195] = (T)(img)(x,_n3##y,z,c), I[196] = (T)(img)(_n1##x,_n3##y,z,c), I[197] = (T)(img)(_n2##x,_n3##y,z,c), I[198] = (T)(img)(_n3##x,_n3##y,z,c), I[199] = (T)(img)(_n4##x,_n3##y,z,c), I[200] = (T)(img)(_n5##x,_n3##y,z,c), I[201] = (T)(img)(_n6##x,_n3##y,z,c), I[202] = (T)(img)(_n7##x,_n3##y,z,c), I[203] = (T)(img)(_n8##x,_n3##y,z,c), \
|
|
I[204] = (T)(img)(_p8##x,_n4##y,z,c), I[205] = (T)(img)(_p7##x,_n4##y,z,c), I[206] = (T)(img)(_p6##x,_n4##y,z,c), I[207] = (T)(img)(_p5##x,_n4##y,z,c), I[208] = (T)(img)(_p4##x,_n4##y,z,c), I[209] = (T)(img)(_p3##x,_n4##y,z,c), I[210] = (T)(img)(_p2##x,_n4##y,z,c), I[211] = (T)(img)(_p1##x,_n4##y,z,c), I[212] = (T)(img)(x,_n4##y,z,c), I[213] = (T)(img)(_n1##x,_n4##y,z,c), I[214] = (T)(img)(_n2##x,_n4##y,z,c), I[215] = (T)(img)(_n3##x,_n4##y,z,c), I[216] = (T)(img)(_n4##x,_n4##y,z,c), I[217] = (T)(img)(_n5##x,_n4##y,z,c), I[218] = (T)(img)(_n6##x,_n4##y,z,c), I[219] = (T)(img)(_n7##x,_n4##y,z,c), I[220] = (T)(img)(_n8##x,_n4##y,z,c), \
|
|
I[221] = (T)(img)(_p8##x,_n5##y,z,c), I[222] = (T)(img)(_p7##x,_n5##y,z,c), I[223] = (T)(img)(_p6##x,_n5##y,z,c), I[224] = (T)(img)(_p5##x,_n5##y,z,c), I[225] = (T)(img)(_p4##x,_n5##y,z,c), I[226] = (T)(img)(_p3##x,_n5##y,z,c), I[227] = (T)(img)(_p2##x,_n5##y,z,c), I[228] = (T)(img)(_p1##x,_n5##y,z,c), I[229] = (T)(img)(x,_n5##y,z,c), I[230] = (T)(img)(_n1##x,_n5##y,z,c), I[231] = (T)(img)(_n2##x,_n5##y,z,c), I[232] = (T)(img)(_n3##x,_n5##y,z,c), I[233] = (T)(img)(_n4##x,_n5##y,z,c), I[234] = (T)(img)(_n5##x,_n5##y,z,c), I[235] = (T)(img)(_n6##x,_n5##y,z,c), I[236] = (T)(img)(_n7##x,_n5##y,z,c), I[237] = (T)(img)(_n8##x,_n5##y,z,c), \
|
|
I[238] = (T)(img)(_p8##x,_n6##y,z,c), I[239] = (T)(img)(_p7##x,_n6##y,z,c), I[240] = (T)(img)(_p6##x,_n6##y,z,c), I[241] = (T)(img)(_p5##x,_n6##y,z,c), I[242] = (T)(img)(_p4##x,_n6##y,z,c), I[243] = (T)(img)(_p3##x,_n6##y,z,c), I[244] = (T)(img)(_p2##x,_n6##y,z,c), I[245] = (T)(img)(_p1##x,_n6##y,z,c), I[246] = (T)(img)(x,_n6##y,z,c), I[247] = (T)(img)(_n1##x,_n6##y,z,c), I[248] = (T)(img)(_n2##x,_n6##y,z,c), I[249] = (T)(img)(_n3##x,_n6##y,z,c), I[250] = (T)(img)(_n4##x,_n6##y,z,c), I[251] = (T)(img)(_n5##x,_n6##y,z,c), I[252] = (T)(img)(_n6##x,_n6##y,z,c), I[253] = (T)(img)(_n7##x,_n6##y,z,c), I[254] = (T)(img)(_n8##x,_n6##y,z,c), \
|
|
I[255] = (T)(img)(_p8##x,_n7##y,z,c), I[256] = (T)(img)(_p7##x,_n7##y,z,c), I[257] = (T)(img)(_p6##x,_n7##y,z,c), I[258] = (T)(img)(_p5##x,_n7##y,z,c), I[259] = (T)(img)(_p4##x,_n7##y,z,c), I[260] = (T)(img)(_p3##x,_n7##y,z,c), I[261] = (T)(img)(_p2##x,_n7##y,z,c), I[262] = (T)(img)(_p1##x,_n7##y,z,c), I[263] = (T)(img)(x,_n7##y,z,c), I[264] = (T)(img)(_n1##x,_n7##y,z,c), I[265] = (T)(img)(_n2##x,_n7##y,z,c), I[266] = (T)(img)(_n3##x,_n7##y,z,c), I[267] = (T)(img)(_n4##x,_n7##y,z,c), I[268] = (T)(img)(_n5##x,_n7##y,z,c), I[269] = (T)(img)(_n6##x,_n7##y,z,c), I[270] = (T)(img)(_n7##x,_n7##y,z,c), I[271] = (T)(img)(_n8##x,_n7##y,z,c), \
|
|
I[272] = (T)(img)(_p8##x,_n8##y,z,c), I[273] = (T)(img)(_p7##x,_n8##y,z,c), I[274] = (T)(img)(_p6##x,_n8##y,z,c), I[275] = (T)(img)(_p5##x,_n8##y,z,c), I[276] = (T)(img)(_p4##x,_n8##y,z,c), I[277] = (T)(img)(_p3##x,_n8##y,z,c), I[278] = (T)(img)(_p2##x,_n8##y,z,c), I[279] = (T)(img)(_p1##x,_n8##y,z,c), I[280] = (T)(img)(x,_n8##y,z,c), I[281] = (T)(img)(_n1##x,_n8##y,z,c), I[282] = (T)(img)(_n2##x,_n8##y,z,c), I[283] = (T)(img)(_n3##x,_n8##y,z,c), I[284] = (T)(img)(_n4##x,_n8##y,z,c), I[285] = (T)(img)(_n5##x,_n8##y,z,c), I[286] = (T)(img)(_n6##x,_n8##y,z,c), I[287] = (T)(img)(_n7##x,_n8##y,z,c), I[288] = (T)(img)(_n8##x,_n8##y,z,c);
|
|
|
|
// Define 18x18 loop macros
|
|
//-------------------------
|
|
#define cimg_for18(bound,i) for (int i = 0, \
|
|
_p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
|
|
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
|
|
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
|
|
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
|
|
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
|
|
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
|
|
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
|
|
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
|
|
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9; \
|
|
_n9##i<(int)(bound) || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
|
|
_p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i)
|
|
|
|
#define cimg_for18X(img,x) cimg_for18((img)._width,x)
|
|
#define cimg_for18Y(img,y) cimg_for18((img)._height,y)
|
|
#define cimg_for18Z(img,z) cimg_for18((img)._depth,z)
|
|
#define cimg_for18C(img,c) cimg_for18((img)._spectrum,c)
|
|
#define cimg_for18XY(img,x,y) cimg_for18Y(img,y) cimg_for18X(img,x)
|
|
#define cimg_for18XZ(img,x,z) cimg_for18Z(img,z) cimg_for18X(img,x)
|
|
#define cimg_for18XC(img,x,c) cimg_for18C(img,c) cimg_for18X(img,x)
|
|
#define cimg_for18YZ(img,y,z) cimg_for18Z(img,z) cimg_for18Y(img,y)
|
|
#define cimg_for18YC(img,y,c) cimg_for18C(img,c) cimg_for18Y(img,y)
|
|
#define cimg_for18ZC(img,z,c) cimg_for18C(img,c) cimg_for18Z(img,z)
|
|
#define cimg_for18XYZ(img,x,y,z) cimg_for18Z(img,z) cimg_for18XY(img,x,y)
|
|
#define cimg_for18XZC(img,x,z,c) cimg_for18C(img,c) cimg_for18XZ(img,x,z)
|
|
#define cimg_for18YZC(img,y,z,c) cimg_for18C(img,c) cimg_for18YZ(img,y,z)
|
|
#define cimg_for18XYZC(img,x,y,z,c) cimg_for18C(img,c) cimg_for18XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in18(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p8##i = i - 8<0?0:i - 8, \
|
|
_p7##i = i - 7<0?0:i - 7, \
|
|
_p6##i = i - 6<0?0:i - 6, \
|
|
_p5##i = i - 5<0?0:i - 5, \
|
|
_p4##i = i - 4<0?0:i - 4, \
|
|
_p3##i = i - 3<0?0:i - 3, \
|
|
_p2##i = i - 2<0?0:i - 2, \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
|
|
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
|
|
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
|
|
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
|
|
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
|
|
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
|
|
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
|
|
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
|
|
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9; \
|
|
i<=(int)(i1) && (_n9##i<(int)(bound) || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
|
|
_p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i)
|
|
|
|
#define cimg_for_in18X(img,x0,x1,x) cimg_for_in18((img)._width,x0,x1,x)
|
|
#define cimg_for_in18Y(img,y0,y1,y) cimg_for_in18((img)._height,y0,y1,y)
|
|
#define cimg_for_in18Z(img,z0,z1,z) cimg_for_in18((img)._depth,z0,z1,z)
|
|
#define cimg_for_in18C(img,c0,c1,c) cimg_for_in18((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in18XY(img,x0,y0,x1,y1,x,y) cimg_for_in18Y(img,y0,y1,y) cimg_for_in18X(img,x0,x1,x)
|
|
#define cimg_for_in18XZ(img,x0,z0,x1,z1,x,z) cimg_for_in18Z(img,z0,z1,z) cimg_for_in18X(img,x0,x1,x)
|
|
#define cimg_for_in18XC(img,x0,c0,x1,c1,x,c) cimg_for_in18C(img,c0,c1,c) cimg_for_in18X(img,x0,x1,x)
|
|
#define cimg_for_in18YZ(img,y0,z0,y1,z1,y,z) cimg_for_in18Z(img,z0,z1,z) cimg_for_in18Y(img,y0,y1,y)
|
|
#define cimg_for_in18YC(img,y0,c0,y1,c1,y,c) cimg_for_in18C(img,c0,c1,c) cimg_for_in18Y(img,y0,y1,y)
|
|
#define cimg_for_in18ZC(img,z0,c0,z1,c1,z,c) cimg_for_in18C(img,c0,c1,c) cimg_for_in18Z(img,z0,z1,z)
|
|
#define cimg_for_in18XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in18Z(img,z0,z1,z) cimg_for_in18XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in18XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in18C(img,c0,c1,c) cimg_for_in18XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in18YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in18C(img,c0,c1,c) cimg_for_in18YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in18XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in18C(img,c0,c1,c) cimg_for_in18XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for18x18(img,x,y,z,c,I,T) \
|
|
cimg_for18((img)._height,y) for (int x = 0, \
|
|
_p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
|
|
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
|
|
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
|
|
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
|
|
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
|
|
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
|
|
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
|
|
_n9##x = (int)( \
|
|
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = (T)(img)(0,_p8##y,z,c)), \
|
|
(I[18] = I[19] = I[20] = I[21] = I[22] = I[23] = I[24] = I[25] = I[26] = (T)(img)(0,_p7##y,z,c)), \
|
|
(I[36] = I[37] = I[38] = I[39] = I[40] = I[41] = I[42] = I[43] = I[44] = (T)(img)(0,_p6##y,z,c)), \
|
|
(I[54] = I[55] = I[56] = I[57] = I[58] = I[59] = I[60] = I[61] = I[62] = (T)(img)(0,_p5##y,z,c)), \
|
|
(I[72] = I[73] = I[74] = I[75] = I[76] = I[77] = I[78] = I[79] = I[80] = (T)(img)(0,_p4##y,z,c)), \
|
|
(I[90] = I[91] = I[92] = I[93] = I[94] = I[95] = I[96] = I[97] = I[98] = (T)(img)(0,_p3##y,z,c)), \
|
|
(I[108] = I[109] = I[110] = I[111] = I[112] = I[113] = I[114] = I[115] = I[116] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[126] = I[127] = I[128] = I[129] = I[130] = I[131] = I[132] = I[133] = I[134] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[144] = I[145] = I[146] = I[147] = I[148] = I[149] = I[150] = I[151] = I[152] = (T)(img)(0,y,z,c)), \
|
|
(I[162] = I[163] = I[164] = I[165] = I[166] = I[167] = I[168] = I[169] = I[170] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[180] = I[181] = I[182] = I[183] = I[184] = I[185] = I[186] = I[187] = I[188] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[198] = I[199] = I[200] = I[201] = I[202] = I[203] = I[204] = I[205] = I[206] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[216] = I[217] = I[218] = I[219] = I[220] = I[221] = I[222] = I[223] = I[224] = (T)(img)(0,_n4##y,z,c)), \
|
|
(I[234] = I[235] = I[236] = I[237] = I[238] = I[239] = I[240] = I[241] = I[242] = (T)(img)(0,_n5##y,z,c)), \
|
|
(I[252] = I[253] = I[254] = I[255] = I[256] = I[257] = I[258] = I[259] = I[260] = (T)(img)(0,_n6##y,z,c)), \
|
|
(I[270] = I[271] = I[272] = I[273] = I[274] = I[275] = I[276] = I[277] = I[278] = (T)(img)(0,_n7##y,z,c)), \
|
|
(I[288] = I[289] = I[290] = I[291] = I[292] = I[293] = I[294] = I[295] = I[296] = (T)(img)(0,_n8##y,z,c)), \
|
|
(I[306] = I[307] = I[308] = I[309] = I[310] = I[311] = I[312] = I[313] = I[314] = (T)(img)(0,_n9##y,z,c)), \
|
|
(I[9] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[27] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[45] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[63] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[81] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[99] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[117] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[135] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[153] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[171] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[189] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[207] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[225] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[243] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[261] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[279] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[297] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[315] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[10] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[28] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[46] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[64] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[82] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[100] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[118] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[136] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[154] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[172] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[190] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[208] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[226] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[244] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[262] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[280] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[298] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[316] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[11] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[29] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[47] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[65] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[83] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[101] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[119] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[137] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[155] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[173] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[191] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[209] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[227] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[245] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[263] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[281] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[299] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[317] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[12] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[30] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[48] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[66] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[84] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[102] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[120] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[138] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[156] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[174] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[192] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[210] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[228] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[246] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[264] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[282] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[300] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[318] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[13] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[31] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[49] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[67] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[85] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[103] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[121] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[139] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[157] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[175] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[193] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[211] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[229] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[247] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[265] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[283] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[301] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[319] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[14] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[32] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[50] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[68] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[86] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[104] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[122] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[140] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[158] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[176] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[194] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[212] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[230] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[248] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[266] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[284] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[302] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[320] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[15] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[33] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[51] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[69] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[87] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[105] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[123] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[141] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[159] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[177] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[195] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[213] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[231] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[249] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[267] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[285] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[303] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[321] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[16] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[34] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[52] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[70] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[88] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[106] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[124] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[142] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[160] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[178] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[196] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[214] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[232] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[250] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[268] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[286] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[304] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[322] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
9>=((img)._width)?(img).width() - 1:9); \
|
|
(_n9##x<(img).width() && ( \
|
|
(I[17] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[35] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[53] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[71] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[89] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[107] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[125] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[143] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[161] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[179] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[197] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[215] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[233] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[251] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[269] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[287] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[305] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[323] = (T)(img)(_n9##x,_n9##y,z,c)),1)) || \
|
|
_n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], \
|
|
I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \
|
|
I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], \
|
|
I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
|
|
I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
|
|
I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], \
|
|
I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
|
|
I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
|
|
I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], \
|
|
I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \
|
|
I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], \
|
|
I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \
|
|
I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], \
|
|
I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], \
|
|
I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], \
|
|
I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], \
|
|
I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], \
|
|
I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], \
|
|
_p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x)
|
|
|
|
#define cimg_for_in18x18(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in18((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p8##x = x - 8<0?0:x - 8, \
|
|
_p7##x = x - 7<0?0:x - 7, \
|
|
_p6##x = x - 6<0?0:x - 6, \
|
|
_p5##x = x - 5<0?0:x - 5, \
|
|
_p4##x = x - 4<0?0:x - 4, \
|
|
_p3##x = x - 3<0?0:x - 3, \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
|
|
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
|
|
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
|
|
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
|
|
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
|
|
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
|
|
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
|
|
_n9##x = (int)( \
|
|
(I[0] = (T)(img)(_p8##x,_p8##y,z,c)), \
|
|
(I[18] = (T)(img)(_p8##x,_p7##y,z,c)), \
|
|
(I[36] = (T)(img)(_p8##x,_p6##y,z,c)), \
|
|
(I[54] = (T)(img)(_p8##x,_p5##y,z,c)), \
|
|
(I[72] = (T)(img)(_p8##x,_p4##y,z,c)), \
|
|
(I[90] = (T)(img)(_p8##x,_p3##y,z,c)), \
|
|
(I[108] = (T)(img)(_p8##x,_p2##y,z,c)), \
|
|
(I[126] = (T)(img)(_p8##x,_p1##y,z,c)), \
|
|
(I[144] = (T)(img)(_p8##x,y,z,c)), \
|
|
(I[162] = (T)(img)(_p8##x,_n1##y,z,c)), \
|
|
(I[180] = (T)(img)(_p8##x,_n2##y,z,c)), \
|
|
(I[198] = (T)(img)(_p8##x,_n3##y,z,c)), \
|
|
(I[216] = (T)(img)(_p8##x,_n4##y,z,c)), \
|
|
(I[234] = (T)(img)(_p8##x,_n5##y,z,c)), \
|
|
(I[252] = (T)(img)(_p8##x,_n6##y,z,c)), \
|
|
(I[270] = (T)(img)(_p8##x,_n7##y,z,c)), \
|
|
(I[288] = (T)(img)(_p8##x,_n8##y,z,c)), \
|
|
(I[306] = (T)(img)(_p8##x,_n9##y,z,c)), \
|
|
(I[1] = (T)(img)(_p7##x,_p8##y,z,c)), \
|
|
(I[19] = (T)(img)(_p7##x,_p7##y,z,c)), \
|
|
(I[37] = (T)(img)(_p7##x,_p6##y,z,c)), \
|
|
(I[55] = (T)(img)(_p7##x,_p5##y,z,c)), \
|
|
(I[73] = (T)(img)(_p7##x,_p4##y,z,c)), \
|
|
(I[91] = (T)(img)(_p7##x,_p3##y,z,c)), \
|
|
(I[109] = (T)(img)(_p7##x,_p2##y,z,c)), \
|
|
(I[127] = (T)(img)(_p7##x,_p1##y,z,c)), \
|
|
(I[145] = (T)(img)(_p7##x,y,z,c)), \
|
|
(I[163] = (T)(img)(_p7##x,_n1##y,z,c)), \
|
|
(I[181] = (T)(img)(_p7##x,_n2##y,z,c)), \
|
|
(I[199] = (T)(img)(_p7##x,_n3##y,z,c)), \
|
|
(I[217] = (T)(img)(_p7##x,_n4##y,z,c)), \
|
|
(I[235] = (T)(img)(_p7##x,_n5##y,z,c)), \
|
|
(I[253] = (T)(img)(_p7##x,_n6##y,z,c)), \
|
|
(I[271] = (T)(img)(_p7##x,_n7##y,z,c)), \
|
|
(I[289] = (T)(img)(_p7##x,_n8##y,z,c)), \
|
|
(I[307] = (T)(img)(_p7##x,_n9##y,z,c)), \
|
|
(I[2] = (T)(img)(_p6##x,_p8##y,z,c)), \
|
|
(I[20] = (T)(img)(_p6##x,_p7##y,z,c)), \
|
|
(I[38] = (T)(img)(_p6##x,_p6##y,z,c)), \
|
|
(I[56] = (T)(img)(_p6##x,_p5##y,z,c)), \
|
|
(I[74] = (T)(img)(_p6##x,_p4##y,z,c)), \
|
|
(I[92] = (T)(img)(_p6##x,_p3##y,z,c)), \
|
|
(I[110] = (T)(img)(_p6##x,_p2##y,z,c)), \
|
|
(I[128] = (T)(img)(_p6##x,_p1##y,z,c)), \
|
|
(I[146] = (T)(img)(_p6##x,y,z,c)), \
|
|
(I[164] = (T)(img)(_p6##x,_n1##y,z,c)), \
|
|
(I[182] = (T)(img)(_p6##x,_n2##y,z,c)), \
|
|
(I[200] = (T)(img)(_p6##x,_n3##y,z,c)), \
|
|
(I[218] = (T)(img)(_p6##x,_n4##y,z,c)), \
|
|
(I[236] = (T)(img)(_p6##x,_n5##y,z,c)), \
|
|
(I[254] = (T)(img)(_p6##x,_n6##y,z,c)), \
|
|
(I[272] = (T)(img)(_p6##x,_n7##y,z,c)), \
|
|
(I[290] = (T)(img)(_p6##x,_n8##y,z,c)), \
|
|
(I[308] = (T)(img)(_p6##x,_n9##y,z,c)), \
|
|
(I[3] = (T)(img)(_p5##x,_p8##y,z,c)), \
|
|
(I[21] = (T)(img)(_p5##x,_p7##y,z,c)), \
|
|
(I[39] = (T)(img)(_p5##x,_p6##y,z,c)), \
|
|
(I[57] = (T)(img)(_p5##x,_p5##y,z,c)), \
|
|
(I[75] = (T)(img)(_p5##x,_p4##y,z,c)), \
|
|
(I[93] = (T)(img)(_p5##x,_p3##y,z,c)), \
|
|
(I[111] = (T)(img)(_p5##x,_p2##y,z,c)), \
|
|
(I[129] = (T)(img)(_p5##x,_p1##y,z,c)), \
|
|
(I[147] = (T)(img)(_p5##x,y,z,c)), \
|
|
(I[165] = (T)(img)(_p5##x,_n1##y,z,c)), \
|
|
(I[183] = (T)(img)(_p5##x,_n2##y,z,c)), \
|
|
(I[201] = (T)(img)(_p5##x,_n3##y,z,c)), \
|
|
(I[219] = (T)(img)(_p5##x,_n4##y,z,c)), \
|
|
(I[237] = (T)(img)(_p5##x,_n5##y,z,c)), \
|
|
(I[255] = (T)(img)(_p5##x,_n6##y,z,c)), \
|
|
(I[273] = (T)(img)(_p5##x,_n7##y,z,c)), \
|
|
(I[291] = (T)(img)(_p5##x,_n8##y,z,c)), \
|
|
(I[309] = (T)(img)(_p5##x,_n9##y,z,c)), \
|
|
(I[4] = (T)(img)(_p4##x,_p8##y,z,c)), \
|
|
(I[22] = (T)(img)(_p4##x,_p7##y,z,c)), \
|
|
(I[40] = (T)(img)(_p4##x,_p6##y,z,c)), \
|
|
(I[58] = (T)(img)(_p4##x,_p5##y,z,c)), \
|
|
(I[76] = (T)(img)(_p4##x,_p4##y,z,c)), \
|
|
(I[94] = (T)(img)(_p4##x,_p3##y,z,c)), \
|
|
(I[112] = (T)(img)(_p4##x,_p2##y,z,c)), \
|
|
(I[130] = (T)(img)(_p4##x,_p1##y,z,c)), \
|
|
(I[148] = (T)(img)(_p4##x,y,z,c)), \
|
|
(I[166] = (T)(img)(_p4##x,_n1##y,z,c)), \
|
|
(I[184] = (T)(img)(_p4##x,_n2##y,z,c)), \
|
|
(I[202] = (T)(img)(_p4##x,_n3##y,z,c)), \
|
|
(I[220] = (T)(img)(_p4##x,_n4##y,z,c)), \
|
|
(I[238] = (T)(img)(_p4##x,_n5##y,z,c)), \
|
|
(I[256] = (T)(img)(_p4##x,_n6##y,z,c)), \
|
|
(I[274] = (T)(img)(_p4##x,_n7##y,z,c)), \
|
|
(I[292] = (T)(img)(_p4##x,_n8##y,z,c)), \
|
|
(I[310] = (T)(img)(_p4##x,_n9##y,z,c)), \
|
|
(I[5] = (T)(img)(_p3##x,_p8##y,z,c)), \
|
|
(I[23] = (T)(img)(_p3##x,_p7##y,z,c)), \
|
|
(I[41] = (T)(img)(_p3##x,_p6##y,z,c)), \
|
|
(I[59] = (T)(img)(_p3##x,_p5##y,z,c)), \
|
|
(I[77] = (T)(img)(_p3##x,_p4##y,z,c)), \
|
|
(I[95] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[113] = (T)(img)(_p3##x,_p2##y,z,c)), \
|
|
(I[131] = (T)(img)(_p3##x,_p1##y,z,c)), \
|
|
(I[149] = (T)(img)(_p3##x,y,z,c)), \
|
|
(I[167] = (T)(img)(_p3##x,_n1##y,z,c)), \
|
|
(I[185] = (T)(img)(_p3##x,_n2##y,z,c)), \
|
|
(I[203] = (T)(img)(_p3##x,_n3##y,z,c)), \
|
|
(I[221] = (T)(img)(_p3##x,_n4##y,z,c)), \
|
|
(I[239] = (T)(img)(_p3##x,_n5##y,z,c)), \
|
|
(I[257] = (T)(img)(_p3##x,_n6##y,z,c)), \
|
|
(I[275] = (T)(img)(_p3##x,_n7##y,z,c)), \
|
|
(I[293] = (T)(img)(_p3##x,_n8##y,z,c)), \
|
|
(I[311] = (T)(img)(_p3##x,_n9##y,z,c)), \
|
|
(I[6] = (T)(img)(_p2##x,_p8##y,z,c)), \
|
|
(I[24] = (T)(img)(_p2##x,_p7##y,z,c)), \
|
|
(I[42] = (T)(img)(_p2##x,_p6##y,z,c)), \
|
|
(I[60] = (T)(img)(_p2##x,_p5##y,z,c)), \
|
|
(I[78] = (T)(img)(_p2##x,_p4##y,z,c)), \
|
|
(I[96] = (T)(img)(_p2##x,_p3##y,z,c)), \
|
|
(I[114] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[132] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[150] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[168] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[186] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[204] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[222] = (T)(img)(_p2##x,_n4##y,z,c)), \
|
|
(I[240] = (T)(img)(_p2##x,_n5##y,z,c)), \
|
|
(I[258] = (T)(img)(_p2##x,_n6##y,z,c)), \
|
|
(I[276] = (T)(img)(_p2##x,_n7##y,z,c)), \
|
|
(I[294] = (T)(img)(_p2##x,_n8##y,z,c)), \
|
|
(I[312] = (T)(img)(_p2##x,_n9##y,z,c)), \
|
|
(I[7] = (T)(img)(_p1##x,_p8##y,z,c)), \
|
|
(I[25] = (T)(img)(_p1##x,_p7##y,z,c)), \
|
|
(I[43] = (T)(img)(_p1##x,_p6##y,z,c)), \
|
|
(I[61] = (T)(img)(_p1##x,_p5##y,z,c)), \
|
|
(I[79] = (T)(img)(_p1##x,_p4##y,z,c)), \
|
|
(I[97] = (T)(img)(_p1##x,_p3##y,z,c)), \
|
|
(I[115] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[133] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[151] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[169] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[187] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[205] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[223] = (T)(img)(_p1##x,_n4##y,z,c)), \
|
|
(I[241] = (T)(img)(_p1##x,_n5##y,z,c)), \
|
|
(I[259] = (T)(img)(_p1##x,_n6##y,z,c)), \
|
|
(I[277] = (T)(img)(_p1##x,_n7##y,z,c)), \
|
|
(I[295] = (T)(img)(_p1##x,_n8##y,z,c)), \
|
|
(I[313] = (T)(img)(_p1##x,_n9##y,z,c)), \
|
|
(I[8] = (T)(img)(x,_p8##y,z,c)), \
|
|
(I[26] = (T)(img)(x,_p7##y,z,c)), \
|
|
(I[44] = (T)(img)(x,_p6##y,z,c)), \
|
|
(I[62] = (T)(img)(x,_p5##y,z,c)), \
|
|
(I[80] = (T)(img)(x,_p4##y,z,c)), \
|
|
(I[98] = (T)(img)(x,_p3##y,z,c)), \
|
|
(I[116] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[134] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[152] = (T)(img)(x,y,z,c)), \
|
|
(I[170] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[188] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[206] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[224] = (T)(img)(x,_n4##y,z,c)), \
|
|
(I[242] = (T)(img)(x,_n5##y,z,c)), \
|
|
(I[260] = (T)(img)(x,_n6##y,z,c)), \
|
|
(I[278] = (T)(img)(x,_n7##y,z,c)), \
|
|
(I[296] = (T)(img)(x,_n8##y,z,c)), \
|
|
(I[314] = (T)(img)(x,_n9##y,z,c)), \
|
|
(I[9] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[27] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[45] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[63] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[81] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[99] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[117] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[135] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[153] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[171] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[189] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[207] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[225] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[243] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[261] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[279] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[297] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[315] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[10] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[28] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[46] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[64] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[82] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[100] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[118] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[136] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[154] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[172] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[190] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[208] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[226] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[244] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[262] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[280] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[298] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[316] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[11] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[29] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[47] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[65] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[83] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[101] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[119] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[137] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[155] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[173] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[191] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[209] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[227] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[245] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[263] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[281] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[299] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[317] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[12] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[30] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[48] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[66] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[84] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[102] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[120] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[138] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[156] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[174] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[192] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[210] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[228] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[246] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[264] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[282] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[300] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[318] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[13] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[31] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[49] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[67] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[85] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[103] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[121] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[139] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[157] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[175] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[193] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[211] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[229] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[247] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[265] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[283] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[301] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[319] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[14] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[32] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[50] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[68] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[86] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[104] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[122] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[140] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[158] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[176] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[194] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[212] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[230] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[248] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[266] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[284] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[302] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[320] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[15] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[33] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[51] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[69] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[87] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[105] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[123] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[141] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[159] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[177] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[195] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[213] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[231] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[249] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[267] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[285] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[303] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[321] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[16] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[34] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[52] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[70] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[88] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[106] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[124] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[142] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[160] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[178] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[196] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[214] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[232] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[250] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[268] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[286] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[304] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[322] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
x + 9>=(img).width()?(img).width() - 1:x + 9); \
|
|
x<=(int)(x1) && ((_n9##x<(img).width() && ( \
|
|
(I[17] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[35] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[53] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[71] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[89] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[107] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[125] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[143] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[161] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[179] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[197] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[215] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[233] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[251] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[269] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[287] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[305] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[323] = (T)(img)(_n9##x,_n9##y,z,c)),1)) || \
|
|
_n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], \
|
|
I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \
|
|
I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], \
|
|
I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
|
|
I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
|
|
I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], \
|
|
I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
|
|
I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
|
|
I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], \
|
|
I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \
|
|
I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], \
|
|
I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \
|
|
I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], \
|
|
I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], \
|
|
I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], \
|
|
I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], \
|
|
I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], \
|
|
I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], \
|
|
_p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x)
|
|
|
|
#define cimg_get18x18(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p8##x,_p8##y,z,c), I[1] = (T)(img)(_p7##x,_p8##y,z,c), I[2] = (T)(img)(_p6##x,_p8##y,z,c), I[3] = (T)(img)(_p5##x,_p8##y,z,c), I[4] = (T)(img)(_p4##x,_p8##y,z,c), I[5] = (T)(img)(_p3##x,_p8##y,z,c), I[6] = (T)(img)(_p2##x,_p8##y,z,c), I[7] = (T)(img)(_p1##x,_p8##y,z,c), I[8] = (T)(img)(x,_p8##y,z,c), I[9] = (T)(img)(_n1##x,_p8##y,z,c), I[10] = (T)(img)(_n2##x,_p8##y,z,c), I[11] = (T)(img)(_n3##x,_p8##y,z,c), I[12] = (T)(img)(_n4##x,_p8##y,z,c), I[13] = (T)(img)(_n5##x,_p8##y,z,c), I[14] = (T)(img)(_n6##x,_p8##y,z,c), I[15] = (T)(img)(_n7##x,_p8##y,z,c), I[16] = (T)(img)(_n8##x,_p8##y,z,c), I[17] = (T)(img)(_n9##x,_p8##y,z,c), \
|
|
I[18] = (T)(img)(_p8##x,_p7##y,z,c), I[19] = (T)(img)(_p7##x,_p7##y,z,c), I[20] = (T)(img)(_p6##x,_p7##y,z,c), I[21] = (T)(img)(_p5##x,_p7##y,z,c), I[22] = (T)(img)(_p4##x,_p7##y,z,c), I[23] = (T)(img)(_p3##x,_p7##y,z,c), I[24] = (T)(img)(_p2##x,_p7##y,z,c), I[25] = (T)(img)(_p1##x,_p7##y,z,c), I[26] = (T)(img)(x,_p7##y,z,c), I[27] = (T)(img)(_n1##x,_p7##y,z,c), I[28] = (T)(img)(_n2##x,_p7##y,z,c), I[29] = (T)(img)(_n3##x,_p7##y,z,c), I[30] = (T)(img)(_n4##x,_p7##y,z,c), I[31] = (T)(img)(_n5##x,_p7##y,z,c), I[32] = (T)(img)(_n6##x,_p7##y,z,c), I[33] = (T)(img)(_n7##x,_p7##y,z,c), I[34] = (T)(img)(_n8##x,_p7##y,z,c), I[35] = (T)(img)(_n9##x,_p7##y,z,c), \
|
|
I[36] = (T)(img)(_p8##x,_p6##y,z,c), I[37] = (T)(img)(_p7##x,_p6##y,z,c), I[38] = (T)(img)(_p6##x,_p6##y,z,c), I[39] = (T)(img)(_p5##x,_p6##y,z,c), I[40] = (T)(img)(_p4##x,_p6##y,z,c), I[41] = (T)(img)(_p3##x,_p6##y,z,c), I[42] = (T)(img)(_p2##x,_p6##y,z,c), I[43] = (T)(img)(_p1##x,_p6##y,z,c), I[44] = (T)(img)(x,_p6##y,z,c), I[45] = (T)(img)(_n1##x,_p6##y,z,c), I[46] = (T)(img)(_n2##x,_p6##y,z,c), I[47] = (T)(img)(_n3##x,_p6##y,z,c), I[48] = (T)(img)(_n4##x,_p6##y,z,c), I[49] = (T)(img)(_n5##x,_p6##y,z,c), I[50] = (T)(img)(_n6##x,_p6##y,z,c), I[51] = (T)(img)(_n7##x,_p6##y,z,c), I[52] = (T)(img)(_n8##x,_p6##y,z,c), I[53] = (T)(img)(_n9##x,_p6##y,z,c), \
|
|
I[54] = (T)(img)(_p8##x,_p5##y,z,c), I[55] = (T)(img)(_p7##x,_p5##y,z,c), I[56] = (T)(img)(_p6##x,_p5##y,z,c), I[57] = (T)(img)(_p5##x,_p5##y,z,c), I[58] = (T)(img)(_p4##x,_p5##y,z,c), I[59] = (T)(img)(_p3##x,_p5##y,z,c), I[60] = (T)(img)(_p2##x,_p5##y,z,c), I[61] = (T)(img)(_p1##x,_p5##y,z,c), I[62] = (T)(img)(x,_p5##y,z,c), I[63] = (T)(img)(_n1##x,_p5##y,z,c), I[64] = (T)(img)(_n2##x,_p5##y,z,c), I[65] = (T)(img)(_n3##x,_p5##y,z,c), I[66] = (T)(img)(_n4##x,_p5##y,z,c), I[67] = (T)(img)(_n5##x,_p5##y,z,c), I[68] = (T)(img)(_n6##x,_p5##y,z,c), I[69] = (T)(img)(_n7##x,_p5##y,z,c), I[70] = (T)(img)(_n8##x,_p5##y,z,c), I[71] = (T)(img)(_n9##x,_p5##y,z,c), \
|
|
I[72] = (T)(img)(_p8##x,_p4##y,z,c), I[73] = (T)(img)(_p7##x,_p4##y,z,c), I[74] = (T)(img)(_p6##x,_p4##y,z,c), I[75] = (T)(img)(_p5##x,_p4##y,z,c), I[76] = (T)(img)(_p4##x,_p4##y,z,c), I[77] = (T)(img)(_p3##x,_p4##y,z,c), I[78] = (T)(img)(_p2##x,_p4##y,z,c), I[79] = (T)(img)(_p1##x,_p4##y,z,c), I[80] = (T)(img)(x,_p4##y,z,c), I[81] = (T)(img)(_n1##x,_p4##y,z,c), I[82] = (T)(img)(_n2##x,_p4##y,z,c), I[83] = (T)(img)(_n3##x,_p4##y,z,c), I[84] = (T)(img)(_n4##x,_p4##y,z,c), I[85] = (T)(img)(_n5##x,_p4##y,z,c), I[86] = (T)(img)(_n6##x,_p4##y,z,c), I[87] = (T)(img)(_n7##x,_p4##y,z,c), I[88] = (T)(img)(_n8##x,_p4##y,z,c), I[89] = (T)(img)(_n9##x,_p4##y,z,c), \
|
|
I[90] = (T)(img)(_p8##x,_p3##y,z,c), I[91] = (T)(img)(_p7##x,_p3##y,z,c), I[92] = (T)(img)(_p6##x,_p3##y,z,c), I[93] = (T)(img)(_p5##x,_p3##y,z,c), I[94] = (T)(img)(_p4##x,_p3##y,z,c), I[95] = (T)(img)(_p3##x,_p3##y,z,c), I[96] = (T)(img)(_p2##x,_p3##y,z,c), I[97] = (T)(img)(_p1##x,_p3##y,z,c), I[98] = (T)(img)(x,_p3##y,z,c), I[99] = (T)(img)(_n1##x,_p3##y,z,c), I[100] = (T)(img)(_n2##x,_p3##y,z,c), I[101] = (T)(img)(_n3##x,_p3##y,z,c), I[102] = (T)(img)(_n4##x,_p3##y,z,c), I[103] = (T)(img)(_n5##x,_p3##y,z,c), I[104] = (T)(img)(_n6##x,_p3##y,z,c), I[105] = (T)(img)(_n7##x,_p3##y,z,c), I[106] = (T)(img)(_n8##x,_p3##y,z,c), I[107] = (T)(img)(_n9##x,_p3##y,z,c), \
|
|
I[108] = (T)(img)(_p8##x,_p2##y,z,c), I[109] = (T)(img)(_p7##x,_p2##y,z,c), I[110] = (T)(img)(_p6##x,_p2##y,z,c), I[111] = (T)(img)(_p5##x,_p2##y,z,c), I[112] = (T)(img)(_p4##x,_p2##y,z,c), I[113] = (T)(img)(_p3##x,_p2##y,z,c), I[114] = (T)(img)(_p2##x,_p2##y,z,c), I[115] = (T)(img)(_p1##x,_p2##y,z,c), I[116] = (T)(img)(x,_p2##y,z,c), I[117] = (T)(img)(_n1##x,_p2##y,z,c), I[118] = (T)(img)(_n2##x,_p2##y,z,c), I[119] = (T)(img)(_n3##x,_p2##y,z,c), I[120] = (T)(img)(_n4##x,_p2##y,z,c), I[121] = (T)(img)(_n5##x,_p2##y,z,c), I[122] = (T)(img)(_n6##x,_p2##y,z,c), I[123] = (T)(img)(_n7##x,_p2##y,z,c), I[124] = (T)(img)(_n8##x,_p2##y,z,c), I[125] = (T)(img)(_n9##x,_p2##y,z,c), \
|
|
I[126] = (T)(img)(_p8##x,_p1##y,z,c), I[127] = (T)(img)(_p7##x,_p1##y,z,c), I[128] = (T)(img)(_p6##x,_p1##y,z,c), I[129] = (T)(img)(_p5##x,_p1##y,z,c), I[130] = (T)(img)(_p4##x,_p1##y,z,c), I[131] = (T)(img)(_p3##x,_p1##y,z,c), I[132] = (T)(img)(_p2##x,_p1##y,z,c), I[133] = (T)(img)(_p1##x,_p1##y,z,c), I[134] = (T)(img)(x,_p1##y,z,c), I[135] = (T)(img)(_n1##x,_p1##y,z,c), I[136] = (T)(img)(_n2##x,_p1##y,z,c), I[137] = (T)(img)(_n3##x,_p1##y,z,c), I[138] = (T)(img)(_n4##x,_p1##y,z,c), I[139] = (T)(img)(_n5##x,_p1##y,z,c), I[140] = (T)(img)(_n6##x,_p1##y,z,c), I[141] = (T)(img)(_n7##x,_p1##y,z,c), I[142] = (T)(img)(_n8##x,_p1##y,z,c), I[143] = (T)(img)(_n9##x,_p1##y,z,c), \
|
|
I[144] = (T)(img)(_p8##x,y,z,c), I[145] = (T)(img)(_p7##x,y,z,c), I[146] = (T)(img)(_p6##x,y,z,c), I[147] = (T)(img)(_p5##x,y,z,c), I[148] = (T)(img)(_p4##x,y,z,c), I[149] = (T)(img)(_p3##x,y,z,c), I[150] = (T)(img)(_p2##x,y,z,c), I[151] = (T)(img)(_p1##x,y,z,c), I[152] = (T)(img)(x,y,z,c), I[153] = (T)(img)(_n1##x,y,z,c), I[154] = (T)(img)(_n2##x,y,z,c), I[155] = (T)(img)(_n3##x,y,z,c), I[156] = (T)(img)(_n4##x,y,z,c), I[157] = (T)(img)(_n5##x,y,z,c), I[158] = (T)(img)(_n6##x,y,z,c), I[159] = (T)(img)(_n7##x,y,z,c), I[160] = (T)(img)(_n8##x,y,z,c), I[161] = (T)(img)(_n9##x,y,z,c), \
|
|
I[162] = (T)(img)(_p8##x,_n1##y,z,c), I[163] = (T)(img)(_p7##x,_n1##y,z,c), I[164] = (T)(img)(_p6##x,_n1##y,z,c), I[165] = (T)(img)(_p5##x,_n1##y,z,c), I[166] = (T)(img)(_p4##x,_n1##y,z,c), I[167] = (T)(img)(_p3##x,_n1##y,z,c), I[168] = (T)(img)(_p2##x,_n1##y,z,c), I[169] = (T)(img)(_p1##x,_n1##y,z,c), I[170] = (T)(img)(x,_n1##y,z,c), I[171] = (T)(img)(_n1##x,_n1##y,z,c), I[172] = (T)(img)(_n2##x,_n1##y,z,c), I[173] = (T)(img)(_n3##x,_n1##y,z,c), I[174] = (T)(img)(_n4##x,_n1##y,z,c), I[175] = (T)(img)(_n5##x,_n1##y,z,c), I[176] = (T)(img)(_n6##x,_n1##y,z,c), I[177] = (T)(img)(_n7##x,_n1##y,z,c), I[178] = (T)(img)(_n8##x,_n1##y,z,c), I[179] = (T)(img)(_n9##x,_n1##y,z,c), \
|
|
I[180] = (T)(img)(_p8##x,_n2##y,z,c), I[181] = (T)(img)(_p7##x,_n2##y,z,c), I[182] = (T)(img)(_p6##x,_n2##y,z,c), I[183] = (T)(img)(_p5##x,_n2##y,z,c), I[184] = (T)(img)(_p4##x,_n2##y,z,c), I[185] = (T)(img)(_p3##x,_n2##y,z,c), I[186] = (T)(img)(_p2##x,_n2##y,z,c), I[187] = (T)(img)(_p1##x,_n2##y,z,c), I[188] = (T)(img)(x,_n2##y,z,c), I[189] = (T)(img)(_n1##x,_n2##y,z,c), I[190] = (T)(img)(_n2##x,_n2##y,z,c), I[191] = (T)(img)(_n3##x,_n2##y,z,c), I[192] = (T)(img)(_n4##x,_n2##y,z,c), I[193] = (T)(img)(_n5##x,_n2##y,z,c), I[194] = (T)(img)(_n6##x,_n2##y,z,c), I[195] = (T)(img)(_n7##x,_n2##y,z,c), I[196] = (T)(img)(_n8##x,_n2##y,z,c), I[197] = (T)(img)(_n9##x,_n2##y,z,c), \
|
|
I[198] = (T)(img)(_p8##x,_n3##y,z,c), I[199] = (T)(img)(_p7##x,_n3##y,z,c), I[200] = (T)(img)(_p6##x,_n3##y,z,c), I[201] = (T)(img)(_p5##x,_n3##y,z,c), I[202] = (T)(img)(_p4##x,_n3##y,z,c), I[203] = (T)(img)(_p3##x,_n3##y,z,c), I[204] = (T)(img)(_p2##x,_n3##y,z,c), I[205] = (T)(img)(_p1##x,_n3##y,z,c), I[206] = (T)(img)(x,_n3##y,z,c), I[207] = (T)(img)(_n1##x,_n3##y,z,c), I[208] = (T)(img)(_n2##x,_n3##y,z,c), I[209] = (T)(img)(_n3##x,_n3##y,z,c), I[210] = (T)(img)(_n4##x,_n3##y,z,c), I[211] = (T)(img)(_n5##x,_n3##y,z,c), I[212] = (T)(img)(_n6##x,_n3##y,z,c), I[213] = (T)(img)(_n7##x,_n3##y,z,c), I[214] = (T)(img)(_n8##x,_n3##y,z,c), I[215] = (T)(img)(_n9##x,_n3##y,z,c), \
|
|
I[216] = (T)(img)(_p8##x,_n4##y,z,c), I[217] = (T)(img)(_p7##x,_n4##y,z,c), I[218] = (T)(img)(_p6##x,_n4##y,z,c), I[219] = (T)(img)(_p5##x,_n4##y,z,c), I[220] = (T)(img)(_p4##x,_n4##y,z,c), I[221] = (T)(img)(_p3##x,_n4##y,z,c), I[222] = (T)(img)(_p2##x,_n4##y,z,c), I[223] = (T)(img)(_p1##x,_n4##y,z,c), I[224] = (T)(img)(x,_n4##y,z,c), I[225] = (T)(img)(_n1##x,_n4##y,z,c), I[226] = (T)(img)(_n2##x,_n4##y,z,c), I[227] = (T)(img)(_n3##x,_n4##y,z,c), I[228] = (T)(img)(_n4##x,_n4##y,z,c), I[229] = (T)(img)(_n5##x,_n4##y,z,c), I[230] = (T)(img)(_n6##x,_n4##y,z,c), I[231] = (T)(img)(_n7##x,_n4##y,z,c), I[232] = (T)(img)(_n8##x,_n4##y,z,c), I[233] = (T)(img)(_n9##x,_n4##y,z,c), \
|
|
I[234] = (T)(img)(_p8##x,_n5##y,z,c), I[235] = (T)(img)(_p7##x,_n5##y,z,c), I[236] = (T)(img)(_p6##x,_n5##y,z,c), I[237] = (T)(img)(_p5##x,_n5##y,z,c), I[238] = (T)(img)(_p4##x,_n5##y,z,c), I[239] = (T)(img)(_p3##x,_n5##y,z,c), I[240] = (T)(img)(_p2##x,_n5##y,z,c), I[241] = (T)(img)(_p1##x,_n5##y,z,c), I[242] = (T)(img)(x,_n5##y,z,c), I[243] = (T)(img)(_n1##x,_n5##y,z,c), I[244] = (T)(img)(_n2##x,_n5##y,z,c), I[245] = (T)(img)(_n3##x,_n5##y,z,c), I[246] = (T)(img)(_n4##x,_n5##y,z,c), I[247] = (T)(img)(_n5##x,_n5##y,z,c), I[248] = (T)(img)(_n6##x,_n5##y,z,c), I[249] = (T)(img)(_n7##x,_n5##y,z,c), I[250] = (T)(img)(_n8##x,_n5##y,z,c), I[251] = (T)(img)(_n9##x,_n5##y,z,c), \
|
|
I[252] = (T)(img)(_p8##x,_n6##y,z,c), I[253] = (T)(img)(_p7##x,_n6##y,z,c), I[254] = (T)(img)(_p6##x,_n6##y,z,c), I[255] = (T)(img)(_p5##x,_n6##y,z,c), I[256] = (T)(img)(_p4##x,_n6##y,z,c), I[257] = (T)(img)(_p3##x,_n6##y,z,c), I[258] = (T)(img)(_p2##x,_n6##y,z,c), I[259] = (T)(img)(_p1##x,_n6##y,z,c), I[260] = (T)(img)(x,_n6##y,z,c), I[261] = (T)(img)(_n1##x,_n6##y,z,c), I[262] = (T)(img)(_n2##x,_n6##y,z,c), I[263] = (T)(img)(_n3##x,_n6##y,z,c), I[264] = (T)(img)(_n4##x,_n6##y,z,c), I[265] = (T)(img)(_n5##x,_n6##y,z,c), I[266] = (T)(img)(_n6##x,_n6##y,z,c), I[267] = (T)(img)(_n7##x,_n6##y,z,c), I[268] = (T)(img)(_n8##x,_n6##y,z,c), I[269] = (T)(img)(_n9##x,_n6##y,z,c), \
|
|
I[270] = (T)(img)(_p8##x,_n7##y,z,c), I[271] = (T)(img)(_p7##x,_n7##y,z,c), I[272] = (T)(img)(_p6##x,_n7##y,z,c), I[273] = (T)(img)(_p5##x,_n7##y,z,c), I[274] = (T)(img)(_p4##x,_n7##y,z,c), I[275] = (T)(img)(_p3##x,_n7##y,z,c), I[276] = (T)(img)(_p2##x,_n7##y,z,c), I[277] = (T)(img)(_p1##x,_n7##y,z,c), I[278] = (T)(img)(x,_n7##y,z,c), I[279] = (T)(img)(_n1##x,_n7##y,z,c), I[280] = (T)(img)(_n2##x,_n7##y,z,c), I[281] = (T)(img)(_n3##x,_n7##y,z,c), I[282] = (T)(img)(_n4##x,_n7##y,z,c), I[283] = (T)(img)(_n5##x,_n7##y,z,c), I[284] = (T)(img)(_n6##x,_n7##y,z,c), I[285] = (T)(img)(_n7##x,_n7##y,z,c), I[286] = (T)(img)(_n8##x,_n7##y,z,c), I[287] = (T)(img)(_n9##x,_n7##y,z,c), \
|
|
I[288] = (T)(img)(_p8##x,_n8##y,z,c), I[289] = (T)(img)(_p7##x,_n8##y,z,c), I[290] = (T)(img)(_p6##x,_n8##y,z,c), I[291] = (T)(img)(_p5##x,_n8##y,z,c), I[292] = (T)(img)(_p4##x,_n8##y,z,c), I[293] = (T)(img)(_p3##x,_n8##y,z,c), I[294] = (T)(img)(_p2##x,_n8##y,z,c), I[295] = (T)(img)(_p1##x,_n8##y,z,c), I[296] = (T)(img)(x,_n8##y,z,c), I[297] = (T)(img)(_n1##x,_n8##y,z,c), I[298] = (T)(img)(_n2##x,_n8##y,z,c), I[299] = (T)(img)(_n3##x,_n8##y,z,c), I[300] = (T)(img)(_n4##x,_n8##y,z,c), I[301] = (T)(img)(_n5##x,_n8##y,z,c), I[302] = (T)(img)(_n6##x,_n8##y,z,c), I[303] = (T)(img)(_n7##x,_n8##y,z,c), I[304] = (T)(img)(_n8##x,_n8##y,z,c), I[305] = (T)(img)(_n9##x,_n8##y,z,c), \
|
|
I[306] = (T)(img)(_p8##x,_n9##y,z,c), I[307] = (T)(img)(_p7##x,_n9##y,z,c), I[308] = (T)(img)(_p6##x,_n9##y,z,c), I[309] = (T)(img)(_p5##x,_n9##y,z,c), I[310] = (T)(img)(_p4##x,_n9##y,z,c), I[311] = (T)(img)(_p3##x,_n9##y,z,c), I[312] = (T)(img)(_p2##x,_n9##y,z,c), I[313] = (T)(img)(_p1##x,_n9##y,z,c), I[314] = (T)(img)(x,_n9##y,z,c), I[315] = (T)(img)(_n1##x,_n9##y,z,c), I[316] = (T)(img)(_n2##x,_n9##y,z,c), I[317] = (T)(img)(_n3##x,_n9##y,z,c), I[318] = (T)(img)(_n4##x,_n9##y,z,c), I[319] = (T)(img)(_n5##x,_n9##y,z,c), I[320] = (T)(img)(_n6##x,_n9##y,z,c), I[321] = (T)(img)(_n7##x,_n9##y,z,c), I[322] = (T)(img)(_n8##x,_n9##y,z,c), I[323] = (T)(img)(_n9##x,_n9##y,z,c);
|
|
|
|
// Define 19x19 loop macros
|
|
//-------------------------
|
|
#define cimg_for19(bound,i) for (int i = 0, \
|
|
_p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
|
|
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
|
|
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
|
|
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
|
|
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
|
|
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
|
|
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
|
|
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
|
|
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9; \
|
|
_n9##i<(int)(bound) || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
|
|
_p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i)
|
|
|
|
#define cimg_for19X(img,x) cimg_for19((img)._width,x)
|
|
#define cimg_for19Y(img,y) cimg_for19((img)._height,y)
|
|
#define cimg_for19Z(img,z) cimg_for19((img)._depth,z)
|
|
#define cimg_for19C(img,c) cimg_for19((img)._spectrum,c)
|
|
#define cimg_for19XY(img,x,y) cimg_for19Y(img,y) cimg_for19X(img,x)
|
|
#define cimg_for19XZ(img,x,z) cimg_for19Z(img,z) cimg_for19X(img,x)
|
|
#define cimg_for19XC(img,x,c) cimg_for19C(img,c) cimg_for19X(img,x)
|
|
#define cimg_for19YZ(img,y,z) cimg_for19Z(img,z) cimg_for19Y(img,y)
|
|
#define cimg_for19YC(img,y,c) cimg_for19C(img,c) cimg_for19Y(img,y)
|
|
#define cimg_for19ZC(img,z,c) cimg_for19C(img,c) cimg_for19Z(img,z)
|
|
#define cimg_for19XYZ(img,x,y,z) cimg_for19Z(img,z) cimg_for19XY(img,x,y)
|
|
#define cimg_for19XZC(img,x,z,c) cimg_for19C(img,c) cimg_for19XZ(img,x,z)
|
|
#define cimg_for19YZC(img,y,z,c) cimg_for19C(img,c) cimg_for19YZ(img,y,z)
|
|
#define cimg_for19XYZC(img,x,y,z,c) cimg_for19C(img,c) cimg_for19XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in19(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p9##i = i - 9<0?0:i - 9, \
|
|
_p8##i = i - 8<0?0:i - 8, \
|
|
_p7##i = i - 7<0?0:i - 7, \
|
|
_p6##i = i - 6<0?0:i - 6, \
|
|
_p5##i = i - 5<0?0:i - 5, \
|
|
_p4##i = i - 4<0?0:i - 4, \
|
|
_p3##i = i - 3<0?0:i - 3, \
|
|
_p2##i = i - 2<0?0:i - 2, \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
|
|
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
|
|
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
|
|
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
|
|
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
|
|
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
|
|
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
|
|
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
|
|
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9; \
|
|
i<=(int)(i1) && (_n9##i<(int)(bound) || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
|
|
_p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i)
|
|
|
|
#define cimg_for_in19X(img,x0,x1,x) cimg_for_in19((img)._width,x0,x1,x)
|
|
#define cimg_for_in19Y(img,y0,y1,y) cimg_for_in19((img)._height,y0,y1,y)
|
|
#define cimg_for_in19Z(img,z0,z1,z) cimg_for_in19((img)._depth,z0,z1,z)
|
|
#define cimg_for_in19C(img,c0,c1,c) cimg_for_in19((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in19XY(img,x0,y0,x1,y1,x,y) cimg_for_in19Y(img,y0,y1,y) cimg_for_in19X(img,x0,x1,x)
|
|
#define cimg_for_in19XZ(img,x0,z0,x1,z1,x,z) cimg_for_in19Z(img,z0,z1,z) cimg_for_in19X(img,x0,x1,x)
|
|
#define cimg_for_in19XC(img,x0,c0,x1,c1,x,c) cimg_for_in19C(img,c0,c1,c) cimg_for_in19X(img,x0,x1,x)
|
|
#define cimg_for_in19YZ(img,y0,z0,y1,z1,y,z) cimg_for_in19Z(img,z0,z1,z) cimg_for_in19Y(img,y0,y1,y)
|
|
#define cimg_for_in19YC(img,y0,c0,y1,c1,y,c) cimg_for_in19C(img,c0,c1,c) cimg_for_in19Y(img,y0,y1,y)
|
|
#define cimg_for_in19ZC(img,z0,c0,z1,c1,z,c) cimg_for_in19C(img,c0,c1,c) cimg_for_in19Z(img,z0,z1,z)
|
|
#define cimg_for_in19XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in19Z(img,z0,z1,z) cimg_for_in19XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in19XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in19C(img,c0,c1,c) cimg_for_in19XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in19YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in19C(img,c0,c1,c) cimg_for_in19YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in19XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in19C(img,c0,c1,c) cimg_for_in19XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for19x19(img,x,y,z,c,I,T) \
|
|
cimg_for19((img)._height,y) for (int x = 0, \
|
|
_p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
|
|
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
|
|
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
|
|
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
|
|
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
|
|
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
|
|
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
|
|
_n9##x = (int)( \
|
|
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = (T)(img)(0,_p9##y,z,c)), \
|
|
(I[19] = I[20] = I[21] = I[22] = I[23] = I[24] = I[25] = I[26] = I[27] = I[28] = (T)(img)(0,_p8##y,z,c)), \
|
|
(I[38] = I[39] = I[40] = I[41] = I[42] = I[43] = I[44] = I[45] = I[46] = I[47] = (T)(img)(0,_p7##y,z,c)), \
|
|
(I[57] = I[58] = I[59] = I[60] = I[61] = I[62] = I[63] = I[64] = I[65] = I[66] = (T)(img)(0,_p6##y,z,c)), \
|
|
(I[76] = I[77] = I[78] = I[79] = I[80] = I[81] = I[82] = I[83] = I[84] = I[85] = (T)(img)(0,_p5##y,z,c)), \
|
|
(I[95] = I[96] = I[97] = I[98] = I[99] = I[100] = I[101] = I[102] = I[103] = I[104] = (T)(img)(0,_p4##y,z,c)), \
|
|
(I[114] = I[115] = I[116] = I[117] = I[118] = I[119] = I[120] = I[121] = I[122] = I[123] = (T)(img)(0,_p3##y,z,c)), \
|
|
(I[133] = I[134] = I[135] = I[136] = I[137] = I[138] = I[139] = I[140] = I[141] = I[142] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[152] = I[153] = I[154] = I[155] = I[156] = I[157] = I[158] = I[159] = I[160] = I[161] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[171] = I[172] = I[173] = I[174] = I[175] = I[176] = I[177] = I[178] = I[179] = I[180] = (T)(img)(0,y,z,c)), \
|
|
(I[190] = I[191] = I[192] = I[193] = I[194] = I[195] = I[196] = I[197] = I[198] = I[199] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[209] = I[210] = I[211] = I[212] = I[213] = I[214] = I[215] = I[216] = I[217] = I[218] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[228] = I[229] = I[230] = I[231] = I[232] = I[233] = I[234] = I[235] = I[236] = I[237] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[247] = I[248] = I[249] = I[250] = I[251] = I[252] = I[253] = I[254] = I[255] = I[256] = (T)(img)(0,_n4##y,z,c)), \
|
|
(I[266] = I[267] = I[268] = I[269] = I[270] = I[271] = I[272] = I[273] = I[274] = I[275] = (T)(img)(0,_n5##y,z,c)), \
|
|
(I[285] = I[286] = I[287] = I[288] = I[289] = I[290] = I[291] = I[292] = I[293] = I[294] = (T)(img)(0,_n6##y,z,c)), \
|
|
(I[304] = I[305] = I[306] = I[307] = I[308] = I[309] = I[310] = I[311] = I[312] = I[313] = (T)(img)(0,_n7##y,z,c)), \
|
|
(I[323] = I[324] = I[325] = I[326] = I[327] = I[328] = I[329] = I[330] = I[331] = I[332] = (T)(img)(0,_n8##y,z,c)), \
|
|
(I[342] = I[343] = I[344] = I[345] = I[346] = I[347] = I[348] = I[349] = I[350] = I[351] = (T)(img)(0,_n9##y,z,c)), \
|
|
(I[10] = (T)(img)(_n1##x,_p9##y,z,c)), \
|
|
(I[29] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[48] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[67] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[86] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[105] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[124] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[143] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[162] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[181] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[200] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[219] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[238] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[257] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[276] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[295] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[314] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[333] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[352] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[11] = (T)(img)(_n2##x,_p9##y,z,c)), \
|
|
(I[30] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[49] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[68] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[87] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[106] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[125] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[144] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[163] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[182] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[201] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[220] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[239] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[258] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[277] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[296] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[315] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[334] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[353] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[12] = (T)(img)(_n3##x,_p9##y,z,c)), \
|
|
(I[31] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[50] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[69] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[88] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[107] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[126] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[145] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[164] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[183] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[202] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[221] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[240] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[259] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[278] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[297] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[316] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[335] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[354] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[13] = (T)(img)(_n4##x,_p9##y,z,c)), \
|
|
(I[32] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[51] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[70] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[89] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[108] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[127] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[146] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[165] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[184] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[203] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[222] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[241] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[260] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[279] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[298] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[317] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[336] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[355] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[14] = (T)(img)(_n5##x,_p9##y,z,c)), \
|
|
(I[33] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[52] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[71] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[90] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[109] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[128] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[147] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[166] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[185] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[204] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[223] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[242] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[261] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[280] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[299] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[318] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[337] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[356] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[15] = (T)(img)(_n6##x,_p9##y,z,c)), \
|
|
(I[34] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[53] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[72] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[91] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[110] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[129] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[148] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[167] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[186] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[205] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[224] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[243] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[262] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[281] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[300] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[319] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[338] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[357] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[16] = (T)(img)(_n7##x,_p9##y,z,c)), \
|
|
(I[35] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[54] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[73] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[92] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[111] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[130] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[149] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[168] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[187] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[206] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[225] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[244] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[263] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[282] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[301] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[320] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[339] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[358] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[17] = (T)(img)(_n8##x,_p9##y,z,c)), \
|
|
(I[36] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[55] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[74] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[93] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[112] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[131] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[150] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[169] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[188] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[207] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[226] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[245] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[264] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[283] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[302] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[321] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[340] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[359] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
9>=((img)._width)?(img).width() - 1:9); \
|
|
(_n9##x<(img).width() && ( \
|
|
(I[18] = (T)(img)(_n9##x,_p9##y,z,c)), \
|
|
(I[37] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[56] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[75] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[94] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[113] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[132] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[151] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[170] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[189] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[208] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[227] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[246] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[265] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[284] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[303] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[322] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[341] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[360] = (T)(img)(_n9##x,_n9##y,z,c)),1)) || \
|
|
_n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], \
|
|
I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], \
|
|
I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], \
|
|
I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], \
|
|
I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], \
|
|
I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], \
|
|
I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], \
|
|
I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], \
|
|
I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], \
|
|
I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], \
|
|
I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], \
|
|
I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], \
|
|
I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], \
|
|
I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], \
|
|
I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], \
|
|
I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], \
|
|
I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], \
|
|
I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], \
|
|
I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], \
|
|
_p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x)
|
|
|
|
#define cimg_for_in19x19(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in19((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p9##x = x - 9<0?0:x - 9, \
|
|
_p8##x = x - 8<0?0:x - 8, \
|
|
_p7##x = x - 7<0?0:x - 7, \
|
|
_p6##x = x - 6<0?0:x - 6, \
|
|
_p5##x = x - 5<0?0:x - 5, \
|
|
_p4##x = x - 4<0?0:x - 4, \
|
|
_p3##x = x - 3<0?0:x - 3, \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
|
|
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
|
|
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
|
|
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
|
|
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
|
|
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
|
|
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
|
|
_n9##x = (int)( \
|
|
(I[0] = (T)(img)(_p9##x,_p9##y,z,c)), \
|
|
(I[19] = (T)(img)(_p9##x,_p8##y,z,c)), \
|
|
(I[38] = (T)(img)(_p9##x,_p7##y,z,c)), \
|
|
(I[57] = (T)(img)(_p9##x,_p6##y,z,c)), \
|
|
(I[76] = (T)(img)(_p9##x,_p5##y,z,c)), \
|
|
(I[95] = (T)(img)(_p9##x,_p4##y,z,c)), \
|
|
(I[114] = (T)(img)(_p9##x,_p3##y,z,c)), \
|
|
(I[133] = (T)(img)(_p9##x,_p2##y,z,c)), \
|
|
(I[152] = (T)(img)(_p9##x,_p1##y,z,c)), \
|
|
(I[171] = (T)(img)(_p9##x,y,z,c)), \
|
|
(I[190] = (T)(img)(_p9##x,_n1##y,z,c)), \
|
|
(I[209] = (T)(img)(_p9##x,_n2##y,z,c)), \
|
|
(I[228] = (T)(img)(_p9##x,_n3##y,z,c)), \
|
|
(I[247] = (T)(img)(_p9##x,_n4##y,z,c)), \
|
|
(I[266] = (T)(img)(_p9##x,_n5##y,z,c)), \
|
|
(I[285] = (T)(img)(_p9##x,_n6##y,z,c)), \
|
|
(I[304] = (T)(img)(_p9##x,_n7##y,z,c)), \
|
|
(I[323] = (T)(img)(_p9##x,_n8##y,z,c)), \
|
|
(I[342] = (T)(img)(_p9##x,_n9##y,z,c)), \
|
|
(I[1] = (T)(img)(_p8##x,_p9##y,z,c)), \
|
|
(I[20] = (T)(img)(_p8##x,_p8##y,z,c)), \
|
|
(I[39] = (T)(img)(_p8##x,_p7##y,z,c)), \
|
|
(I[58] = (T)(img)(_p8##x,_p6##y,z,c)), \
|
|
(I[77] = (T)(img)(_p8##x,_p5##y,z,c)), \
|
|
(I[96] = (T)(img)(_p8##x,_p4##y,z,c)), \
|
|
(I[115] = (T)(img)(_p8##x,_p3##y,z,c)), \
|
|
(I[134] = (T)(img)(_p8##x,_p2##y,z,c)), \
|
|
(I[153] = (T)(img)(_p8##x,_p1##y,z,c)), \
|
|
(I[172] = (T)(img)(_p8##x,y,z,c)), \
|
|
(I[191] = (T)(img)(_p8##x,_n1##y,z,c)), \
|
|
(I[210] = (T)(img)(_p8##x,_n2##y,z,c)), \
|
|
(I[229] = (T)(img)(_p8##x,_n3##y,z,c)), \
|
|
(I[248] = (T)(img)(_p8##x,_n4##y,z,c)), \
|
|
(I[267] = (T)(img)(_p8##x,_n5##y,z,c)), \
|
|
(I[286] = (T)(img)(_p8##x,_n6##y,z,c)), \
|
|
(I[305] = (T)(img)(_p8##x,_n7##y,z,c)), \
|
|
(I[324] = (T)(img)(_p8##x,_n8##y,z,c)), \
|
|
(I[343] = (T)(img)(_p8##x,_n9##y,z,c)), \
|
|
(I[2] = (T)(img)(_p7##x,_p9##y,z,c)), \
|
|
(I[21] = (T)(img)(_p7##x,_p8##y,z,c)), \
|
|
(I[40] = (T)(img)(_p7##x,_p7##y,z,c)), \
|
|
(I[59] = (T)(img)(_p7##x,_p6##y,z,c)), \
|
|
(I[78] = (T)(img)(_p7##x,_p5##y,z,c)), \
|
|
(I[97] = (T)(img)(_p7##x,_p4##y,z,c)), \
|
|
(I[116] = (T)(img)(_p7##x,_p3##y,z,c)), \
|
|
(I[135] = (T)(img)(_p7##x,_p2##y,z,c)), \
|
|
(I[154] = (T)(img)(_p7##x,_p1##y,z,c)), \
|
|
(I[173] = (T)(img)(_p7##x,y,z,c)), \
|
|
(I[192] = (T)(img)(_p7##x,_n1##y,z,c)), \
|
|
(I[211] = (T)(img)(_p7##x,_n2##y,z,c)), \
|
|
(I[230] = (T)(img)(_p7##x,_n3##y,z,c)), \
|
|
(I[249] = (T)(img)(_p7##x,_n4##y,z,c)), \
|
|
(I[268] = (T)(img)(_p7##x,_n5##y,z,c)), \
|
|
(I[287] = (T)(img)(_p7##x,_n6##y,z,c)), \
|
|
(I[306] = (T)(img)(_p7##x,_n7##y,z,c)), \
|
|
(I[325] = (T)(img)(_p7##x,_n8##y,z,c)), \
|
|
(I[344] = (T)(img)(_p7##x,_n9##y,z,c)), \
|
|
(I[3] = (T)(img)(_p6##x,_p9##y,z,c)), \
|
|
(I[22] = (T)(img)(_p6##x,_p8##y,z,c)), \
|
|
(I[41] = (T)(img)(_p6##x,_p7##y,z,c)), \
|
|
(I[60] = (T)(img)(_p6##x,_p6##y,z,c)), \
|
|
(I[79] = (T)(img)(_p6##x,_p5##y,z,c)), \
|
|
(I[98] = (T)(img)(_p6##x,_p4##y,z,c)), \
|
|
(I[117] = (T)(img)(_p6##x,_p3##y,z,c)), \
|
|
(I[136] = (T)(img)(_p6##x,_p2##y,z,c)), \
|
|
(I[155] = (T)(img)(_p6##x,_p1##y,z,c)), \
|
|
(I[174] = (T)(img)(_p6##x,y,z,c)), \
|
|
(I[193] = (T)(img)(_p6##x,_n1##y,z,c)), \
|
|
(I[212] = (T)(img)(_p6##x,_n2##y,z,c)), \
|
|
(I[231] = (T)(img)(_p6##x,_n3##y,z,c)), \
|
|
(I[250] = (T)(img)(_p6##x,_n4##y,z,c)), \
|
|
(I[269] = (T)(img)(_p6##x,_n5##y,z,c)), \
|
|
(I[288] = (T)(img)(_p6##x,_n6##y,z,c)), \
|
|
(I[307] = (T)(img)(_p6##x,_n7##y,z,c)), \
|
|
(I[326] = (T)(img)(_p6##x,_n8##y,z,c)), \
|
|
(I[345] = (T)(img)(_p6##x,_n9##y,z,c)), \
|
|
(I[4] = (T)(img)(_p5##x,_p9##y,z,c)), \
|
|
(I[23] = (T)(img)(_p5##x,_p8##y,z,c)), \
|
|
(I[42] = (T)(img)(_p5##x,_p7##y,z,c)), \
|
|
(I[61] = (T)(img)(_p5##x,_p6##y,z,c)), \
|
|
(I[80] = (T)(img)(_p5##x,_p5##y,z,c)), \
|
|
(I[99] = (T)(img)(_p5##x,_p4##y,z,c)), \
|
|
(I[118] = (T)(img)(_p5##x,_p3##y,z,c)), \
|
|
(I[137] = (T)(img)(_p5##x,_p2##y,z,c)), \
|
|
(I[156] = (T)(img)(_p5##x,_p1##y,z,c)), \
|
|
(I[175] = (T)(img)(_p5##x,y,z,c)), \
|
|
(I[194] = (T)(img)(_p5##x,_n1##y,z,c)), \
|
|
(I[213] = (T)(img)(_p5##x,_n2##y,z,c)), \
|
|
(I[232] = (T)(img)(_p5##x,_n3##y,z,c)), \
|
|
(I[251] = (T)(img)(_p5##x,_n4##y,z,c)), \
|
|
(I[270] = (T)(img)(_p5##x,_n5##y,z,c)), \
|
|
(I[289] = (T)(img)(_p5##x,_n6##y,z,c)), \
|
|
(I[308] = (T)(img)(_p5##x,_n7##y,z,c)), \
|
|
(I[327] = (T)(img)(_p5##x,_n8##y,z,c)), \
|
|
(I[346] = (T)(img)(_p5##x,_n9##y,z,c)), \
|
|
(I[5] = (T)(img)(_p4##x,_p9##y,z,c)), \
|
|
(I[24] = (T)(img)(_p4##x,_p8##y,z,c)), \
|
|
(I[43] = (T)(img)(_p4##x,_p7##y,z,c)), \
|
|
(I[62] = (T)(img)(_p4##x,_p6##y,z,c)), \
|
|
(I[81] = (T)(img)(_p4##x,_p5##y,z,c)), \
|
|
(I[100] = (T)(img)(_p4##x,_p4##y,z,c)), \
|
|
(I[119] = (T)(img)(_p4##x,_p3##y,z,c)), \
|
|
(I[138] = (T)(img)(_p4##x,_p2##y,z,c)), \
|
|
(I[157] = (T)(img)(_p4##x,_p1##y,z,c)), \
|
|
(I[176] = (T)(img)(_p4##x,y,z,c)), \
|
|
(I[195] = (T)(img)(_p4##x,_n1##y,z,c)), \
|
|
(I[214] = (T)(img)(_p4##x,_n2##y,z,c)), \
|
|
(I[233] = (T)(img)(_p4##x,_n3##y,z,c)), \
|
|
(I[252] = (T)(img)(_p4##x,_n4##y,z,c)), \
|
|
(I[271] = (T)(img)(_p4##x,_n5##y,z,c)), \
|
|
(I[290] = (T)(img)(_p4##x,_n6##y,z,c)), \
|
|
(I[309] = (T)(img)(_p4##x,_n7##y,z,c)), \
|
|
(I[328] = (T)(img)(_p4##x,_n8##y,z,c)), \
|
|
(I[347] = (T)(img)(_p4##x,_n9##y,z,c)), \
|
|
(I[6] = (T)(img)(_p3##x,_p9##y,z,c)), \
|
|
(I[25] = (T)(img)(_p3##x,_p8##y,z,c)), \
|
|
(I[44] = (T)(img)(_p3##x,_p7##y,z,c)), \
|
|
(I[63] = (T)(img)(_p3##x,_p6##y,z,c)), \
|
|
(I[82] = (T)(img)(_p3##x,_p5##y,z,c)), \
|
|
(I[101] = (T)(img)(_p3##x,_p4##y,z,c)), \
|
|
(I[120] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[139] = (T)(img)(_p3##x,_p2##y,z,c)), \
|
|
(I[158] = (T)(img)(_p3##x,_p1##y,z,c)), \
|
|
(I[177] = (T)(img)(_p3##x,y,z,c)), \
|
|
(I[196] = (T)(img)(_p3##x,_n1##y,z,c)), \
|
|
(I[215] = (T)(img)(_p3##x,_n2##y,z,c)), \
|
|
(I[234] = (T)(img)(_p3##x,_n3##y,z,c)), \
|
|
(I[253] = (T)(img)(_p3##x,_n4##y,z,c)), \
|
|
(I[272] = (T)(img)(_p3##x,_n5##y,z,c)), \
|
|
(I[291] = (T)(img)(_p3##x,_n6##y,z,c)), \
|
|
(I[310] = (T)(img)(_p3##x,_n7##y,z,c)), \
|
|
(I[329] = (T)(img)(_p3##x,_n8##y,z,c)), \
|
|
(I[348] = (T)(img)(_p3##x,_n9##y,z,c)), \
|
|
(I[7] = (T)(img)(_p2##x,_p9##y,z,c)), \
|
|
(I[26] = (T)(img)(_p2##x,_p8##y,z,c)), \
|
|
(I[45] = (T)(img)(_p2##x,_p7##y,z,c)), \
|
|
(I[64] = (T)(img)(_p2##x,_p6##y,z,c)), \
|
|
(I[83] = (T)(img)(_p2##x,_p5##y,z,c)), \
|
|
(I[102] = (T)(img)(_p2##x,_p4##y,z,c)), \
|
|
(I[121] = (T)(img)(_p2##x,_p3##y,z,c)), \
|
|
(I[140] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[159] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[178] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[197] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[216] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[235] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[254] = (T)(img)(_p2##x,_n4##y,z,c)), \
|
|
(I[273] = (T)(img)(_p2##x,_n5##y,z,c)), \
|
|
(I[292] = (T)(img)(_p2##x,_n6##y,z,c)), \
|
|
(I[311] = (T)(img)(_p2##x,_n7##y,z,c)), \
|
|
(I[330] = (T)(img)(_p2##x,_n8##y,z,c)), \
|
|
(I[349] = (T)(img)(_p2##x,_n9##y,z,c)), \
|
|
(I[8] = (T)(img)(_p1##x,_p9##y,z,c)), \
|
|
(I[27] = (T)(img)(_p1##x,_p8##y,z,c)), \
|
|
(I[46] = (T)(img)(_p1##x,_p7##y,z,c)), \
|
|
(I[65] = (T)(img)(_p1##x,_p6##y,z,c)), \
|
|
(I[84] = (T)(img)(_p1##x,_p5##y,z,c)), \
|
|
(I[103] = (T)(img)(_p1##x,_p4##y,z,c)), \
|
|
(I[122] = (T)(img)(_p1##x,_p3##y,z,c)), \
|
|
(I[141] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[160] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[179] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[198] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[217] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[236] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[255] = (T)(img)(_p1##x,_n4##y,z,c)), \
|
|
(I[274] = (T)(img)(_p1##x,_n5##y,z,c)), \
|
|
(I[293] = (T)(img)(_p1##x,_n6##y,z,c)), \
|
|
(I[312] = (T)(img)(_p1##x,_n7##y,z,c)), \
|
|
(I[331] = (T)(img)(_p1##x,_n8##y,z,c)), \
|
|
(I[350] = (T)(img)(_p1##x,_n9##y,z,c)), \
|
|
(I[9] = (T)(img)(x,_p9##y,z,c)), \
|
|
(I[28] = (T)(img)(x,_p8##y,z,c)), \
|
|
(I[47] = (T)(img)(x,_p7##y,z,c)), \
|
|
(I[66] = (T)(img)(x,_p6##y,z,c)), \
|
|
(I[85] = (T)(img)(x,_p5##y,z,c)), \
|
|
(I[104] = (T)(img)(x,_p4##y,z,c)), \
|
|
(I[123] = (T)(img)(x,_p3##y,z,c)), \
|
|
(I[142] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[161] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[180] = (T)(img)(x,y,z,c)), \
|
|
(I[199] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[218] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[237] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[256] = (T)(img)(x,_n4##y,z,c)), \
|
|
(I[275] = (T)(img)(x,_n5##y,z,c)), \
|
|
(I[294] = (T)(img)(x,_n6##y,z,c)), \
|
|
(I[313] = (T)(img)(x,_n7##y,z,c)), \
|
|
(I[332] = (T)(img)(x,_n8##y,z,c)), \
|
|
(I[351] = (T)(img)(x,_n9##y,z,c)), \
|
|
(I[10] = (T)(img)(_n1##x,_p9##y,z,c)), \
|
|
(I[29] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[48] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[67] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[86] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[105] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[124] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[143] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[162] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[181] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[200] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[219] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[238] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[257] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[276] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[295] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[314] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[333] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[352] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[11] = (T)(img)(_n2##x,_p9##y,z,c)), \
|
|
(I[30] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[49] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[68] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[87] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[106] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[125] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[144] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[163] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[182] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[201] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[220] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[239] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[258] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[277] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[296] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[315] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[334] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[353] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[12] = (T)(img)(_n3##x,_p9##y,z,c)), \
|
|
(I[31] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[50] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[69] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[88] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[107] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[126] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[145] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[164] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[183] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[202] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[221] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[240] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[259] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[278] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[297] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[316] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[335] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[354] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[13] = (T)(img)(_n4##x,_p9##y,z,c)), \
|
|
(I[32] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[51] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[70] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[89] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[108] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[127] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[146] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[165] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[184] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[203] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[222] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[241] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[260] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[279] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[298] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[317] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[336] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[355] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[14] = (T)(img)(_n5##x,_p9##y,z,c)), \
|
|
(I[33] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[52] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[71] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[90] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[109] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[128] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[147] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[166] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[185] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[204] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[223] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[242] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[261] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[280] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[299] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[318] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[337] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[356] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[15] = (T)(img)(_n6##x,_p9##y,z,c)), \
|
|
(I[34] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[53] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[72] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[91] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[110] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[129] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[148] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[167] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[186] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[205] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[224] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[243] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[262] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[281] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[300] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[319] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[338] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[357] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[16] = (T)(img)(_n7##x,_p9##y,z,c)), \
|
|
(I[35] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[54] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[73] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[92] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[111] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[130] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[149] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[168] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[187] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[206] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[225] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[244] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[263] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[282] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[301] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[320] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[339] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[358] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[17] = (T)(img)(_n8##x,_p9##y,z,c)), \
|
|
(I[36] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[55] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[74] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[93] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[112] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[131] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[150] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[169] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[188] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[207] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[226] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[245] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[264] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[283] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[302] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[321] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[340] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[359] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
x + 9>=(img).width()?(img).width() - 1:x + 9); \
|
|
x<=(int)(x1) && ((_n9##x<(img).width() && ( \
|
|
(I[18] = (T)(img)(_n9##x,_p9##y,z,c)), \
|
|
(I[37] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[56] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[75] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[94] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[113] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[132] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[151] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[170] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[189] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[208] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[227] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[246] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[265] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[284] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[303] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[322] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[341] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[360] = (T)(img)(_n9##x,_n9##y,z,c)),1)) || \
|
|
_n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], \
|
|
I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], \
|
|
I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], \
|
|
I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], \
|
|
I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], \
|
|
I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], \
|
|
I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], \
|
|
I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], \
|
|
I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], \
|
|
I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], \
|
|
I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], \
|
|
I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], \
|
|
I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], \
|
|
I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], \
|
|
I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], \
|
|
I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], \
|
|
I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], \
|
|
I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], \
|
|
I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], \
|
|
_p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x)
|
|
|
|
#define cimg_get19x19(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p9##x,_p9##y,z,c), I[1] = (T)(img)(_p8##x,_p9##y,z,c), I[2] = (T)(img)(_p7##x,_p9##y,z,c), I[3] = (T)(img)(_p6##x,_p9##y,z,c), I[4] = (T)(img)(_p5##x,_p9##y,z,c), I[5] = (T)(img)(_p4##x,_p9##y,z,c), I[6] = (T)(img)(_p3##x,_p9##y,z,c), I[7] = (T)(img)(_p2##x,_p9##y,z,c), I[8] = (T)(img)(_p1##x,_p9##y,z,c), I[9] = (T)(img)(x,_p9##y,z,c), I[10] = (T)(img)(_n1##x,_p9##y,z,c), I[11] = (T)(img)(_n2##x,_p9##y,z,c), I[12] = (T)(img)(_n3##x,_p9##y,z,c), I[13] = (T)(img)(_n4##x,_p9##y,z,c), I[14] = (T)(img)(_n5##x,_p9##y,z,c), I[15] = (T)(img)(_n6##x,_p9##y,z,c), I[16] = (T)(img)(_n7##x,_p9##y,z,c), I[17] = (T)(img)(_n8##x,_p9##y,z,c), I[18] = (T)(img)(_n9##x,_p9##y,z,c), \
|
|
I[19] = (T)(img)(_p9##x,_p8##y,z,c), I[20] = (T)(img)(_p8##x,_p8##y,z,c), I[21] = (T)(img)(_p7##x,_p8##y,z,c), I[22] = (T)(img)(_p6##x,_p8##y,z,c), I[23] = (T)(img)(_p5##x,_p8##y,z,c), I[24] = (T)(img)(_p4##x,_p8##y,z,c), I[25] = (T)(img)(_p3##x,_p8##y,z,c), I[26] = (T)(img)(_p2##x,_p8##y,z,c), I[27] = (T)(img)(_p1##x,_p8##y,z,c), I[28] = (T)(img)(x,_p8##y,z,c), I[29] = (T)(img)(_n1##x,_p8##y,z,c), I[30] = (T)(img)(_n2##x,_p8##y,z,c), I[31] = (T)(img)(_n3##x,_p8##y,z,c), I[32] = (T)(img)(_n4##x,_p8##y,z,c), I[33] = (T)(img)(_n5##x,_p8##y,z,c), I[34] = (T)(img)(_n6##x,_p8##y,z,c), I[35] = (T)(img)(_n7##x,_p8##y,z,c), I[36] = (T)(img)(_n8##x,_p8##y,z,c), I[37] = (T)(img)(_n9##x,_p8##y,z,c), \
|
|
I[38] = (T)(img)(_p9##x,_p7##y,z,c), I[39] = (T)(img)(_p8##x,_p7##y,z,c), I[40] = (T)(img)(_p7##x,_p7##y,z,c), I[41] = (T)(img)(_p6##x,_p7##y,z,c), I[42] = (T)(img)(_p5##x,_p7##y,z,c), I[43] = (T)(img)(_p4##x,_p7##y,z,c), I[44] = (T)(img)(_p3##x,_p7##y,z,c), I[45] = (T)(img)(_p2##x,_p7##y,z,c), I[46] = (T)(img)(_p1##x,_p7##y,z,c), I[47] = (T)(img)(x,_p7##y,z,c), I[48] = (T)(img)(_n1##x,_p7##y,z,c), I[49] = (T)(img)(_n2##x,_p7##y,z,c), I[50] = (T)(img)(_n3##x,_p7##y,z,c), I[51] = (T)(img)(_n4##x,_p7##y,z,c), I[52] = (T)(img)(_n5##x,_p7##y,z,c), I[53] = (T)(img)(_n6##x,_p7##y,z,c), I[54] = (T)(img)(_n7##x,_p7##y,z,c), I[55] = (T)(img)(_n8##x,_p7##y,z,c), I[56] = (T)(img)(_n9##x,_p7##y,z,c), \
|
|
I[57] = (T)(img)(_p9##x,_p6##y,z,c), I[58] = (T)(img)(_p8##x,_p6##y,z,c), I[59] = (T)(img)(_p7##x,_p6##y,z,c), I[60] = (T)(img)(_p6##x,_p6##y,z,c), I[61] = (T)(img)(_p5##x,_p6##y,z,c), I[62] = (T)(img)(_p4##x,_p6##y,z,c), I[63] = (T)(img)(_p3##x,_p6##y,z,c), I[64] = (T)(img)(_p2##x,_p6##y,z,c), I[65] = (T)(img)(_p1##x,_p6##y,z,c), I[66] = (T)(img)(x,_p6##y,z,c), I[67] = (T)(img)(_n1##x,_p6##y,z,c), I[68] = (T)(img)(_n2##x,_p6##y,z,c), I[69] = (T)(img)(_n3##x,_p6##y,z,c), I[70] = (T)(img)(_n4##x,_p6##y,z,c), I[71] = (T)(img)(_n5##x,_p6##y,z,c), I[72] = (T)(img)(_n6##x,_p6##y,z,c), I[73] = (T)(img)(_n7##x,_p6##y,z,c), I[74] = (T)(img)(_n8##x,_p6##y,z,c), I[75] = (T)(img)(_n9##x,_p6##y,z,c), \
|
|
I[76] = (T)(img)(_p9##x,_p5##y,z,c), I[77] = (T)(img)(_p8##x,_p5##y,z,c), I[78] = (T)(img)(_p7##x,_p5##y,z,c), I[79] = (T)(img)(_p6##x,_p5##y,z,c), I[80] = (T)(img)(_p5##x,_p5##y,z,c), I[81] = (T)(img)(_p4##x,_p5##y,z,c), I[82] = (T)(img)(_p3##x,_p5##y,z,c), I[83] = (T)(img)(_p2##x,_p5##y,z,c), I[84] = (T)(img)(_p1##x,_p5##y,z,c), I[85] = (T)(img)(x,_p5##y,z,c), I[86] = (T)(img)(_n1##x,_p5##y,z,c), I[87] = (T)(img)(_n2##x,_p5##y,z,c), I[88] = (T)(img)(_n3##x,_p5##y,z,c), I[89] = (T)(img)(_n4##x,_p5##y,z,c), I[90] = (T)(img)(_n5##x,_p5##y,z,c), I[91] = (T)(img)(_n6##x,_p5##y,z,c), I[92] = (T)(img)(_n7##x,_p5##y,z,c), I[93] = (T)(img)(_n8##x,_p5##y,z,c), I[94] = (T)(img)(_n9##x,_p5##y,z,c), \
|
|
I[95] = (T)(img)(_p9##x,_p4##y,z,c), I[96] = (T)(img)(_p8##x,_p4##y,z,c), I[97] = (T)(img)(_p7##x,_p4##y,z,c), I[98] = (T)(img)(_p6##x,_p4##y,z,c), I[99] = (T)(img)(_p5##x,_p4##y,z,c), I[100] = (T)(img)(_p4##x,_p4##y,z,c), I[101] = (T)(img)(_p3##x,_p4##y,z,c), I[102] = (T)(img)(_p2##x,_p4##y,z,c), I[103] = (T)(img)(_p1##x,_p4##y,z,c), I[104] = (T)(img)(x,_p4##y,z,c), I[105] = (T)(img)(_n1##x,_p4##y,z,c), I[106] = (T)(img)(_n2##x,_p4##y,z,c), I[107] = (T)(img)(_n3##x,_p4##y,z,c), I[108] = (T)(img)(_n4##x,_p4##y,z,c), I[109] = (T)(img)(_n5##x,_p4##y,z,c), I[110] = (T)(img)(_n6##x,_p4##y,z,c), I[111] = (T)(img)(_n7##x,_p4##y,z,c), I[112] = (T)(img)(_n8##x,_p4##y,z,c), I[113] = (T)(img)(_n9##x,_p4##y,z,c), \
|
|
I[114] = (T)(img)(_p9##x,_p3##y,z,c), I[115] = (T)(img)(_p8##x,_p3##y,z,c), I[116] = (T)(img)(_p7##x,_p3##y,z,c), I[117] = (T)(img)(_p6##x,_p3##y,z,c), I[118] = (T)(img)(_p5##x,_p3##y,z,c), I[119] = (T)(img)(_p4##x,_p3##y,z,c), I[120] = (T)(img)(_p3##x,_p3##y,z,c), I[121] = (T)(img)(_p2##x,_p3##y,z,c), I[122] = (T)(img)(_p1##x,_p3##y,z,c), I[123] = (T)(img)(x,_p3##y,z,c), I[124] = (T)(img)(_n1##x,_p3##y,z,c), I[125] = (T)(img)(_n2##x,_p3##y,z,c), I[126] = (T)(img)(_n3##x,_p3##y,z,c), I[127] = (T)(img)(_n4##x,_p3##y,z,c), I[128] = (T)(img)(_n5##x,_p3##y,z,c), I[129] = (T)(img)(_n6##x,_p3##y,z,c), I[130] = (T)(img)(_n7##x,_p3##y,z,c), I[131] = (T)(img)(_n8##x,_p3##y,z,c), I[132] = (T)(img)(_n9##x,_p3##y,z,c), \
|
|
I[133] = (T)(img)(_p9##x,_p2##y,z,c), I[134] = (T)(img)(_p8##x,_p2##y,z,c), I[135] = (T)(img)(_p7##x,_p2##y,z,c), I[136] = (T)(img)(_p6##x,_p2##y,z,c), I[137] = (T)(img)(_p5##x,_p2##y,z,c), I[138] = (T)(img)(_p4##x,_p2##y,z,c), I[139] = (T)(img)(_p3##x,_p2##y,z,c), I[140] = (T)(img)(_p2##x,_p2##y,z,c), I[141] = (T)(img)(_p1##x,_p2##y,z,c), I[142] = (T)(img)(x,_p2##y,z,c), I[143] = (T)(img)(_n1##x,_p2##y,z,c), I[144] = (T)(img)(_n2##x,_p2##y,z,c), I[145] = (T)(img)(_n3##x,_p2##y,z,c), I[146] = (T)(img)(_n4##x,_p2##y,z,c), I[147] = (T)(img)(_n5##x,_p2##y,z,c), I[148] = (T)(img)(_n6##x,_p2##y,z,c), I[149] = (T)(img)(_n7##x,_p2##y,z,c), I[150] = (T)(img)(_n8##x,_p2##y,z,c), I[151] = (T)(img)(_n9##x,_p2##y,z,c), \
|
|
I[152] = (T)(img)(_p9##x,_p1##y,z,c), I[153] = (T)(img)(_p8##x,_p1##y,z,c), I[154] = (T)(img)(_p7##x,_p1##y,z,c), I[155] = (T)(img)(_p6##x,_p1##y,z,c), I[156] = (T)(img)(_p5##x,_p1##y,z,c), I[157] = (T)(img)(_p4##x,_p1##y,z,c), I[158] = (T)(img)(_p3##x,_p1##y,z,c), I[159] = (T)(img)(_p2##x,_p1##y,z,c), I[160] = (T)(img)(_p1##x,_p1##y,z,c), I[161] = (T)(img)(x,_p1##y,z,c), I[162] = (T)(img)(_n1##x,_p1##y,z,c), I[163] = (T)(img)(_n2##x,_p1##y,z,c), I[164] = (T)(img)(_n3##x,_p1##y,z,c), I[165] = (T)(img)(_n4##x,_p1##y,z,c), I[166] = (T)(img)(_n5##x,_p1##y,z,c), I[167] = (T)(img)(_n6##x,_p1##y,z,c), I[168] = (T)(img)(_n7##x,_p1##y,z,c), I[169] = (T)(img)(_n8##x,_p1##y,z,c), I[170] = (T)(img)(_n9##x,_p1##y,z,c), \
|
|
I[171] = (T)(img)(_p9##x,y,z,c), I[172] = (T)(img)(_p8##x,y,z,c), I[173] = (T)(img)(_p7##x,y,z,c), I[174] = (T)(img)(_p6##x,y,z,c), I[175] = (T)(img)(_p5##x,y,z,c), I[176] = (T)(img)(_p4##x,y,z,c), I[177] = (T)(img)(_p3##x,y,z,c), I[178] = (T)(img)(_p2##x,y,z,c), I[179] = (T)(img)(_p1##x,y,z,c), I[180] = (T)(img)(x,y,z,c), I[181] = (T)(img)(_n1##x,y,z,c), I[182] = (T)(img)(_n2##x,y,z,c), I[183] = (T)(img)(_n3##x,y,z,c), I[184] = (T)(img)(_n4##x,y,z,c), I[185] = (T)(img)(_n5##x,y,z,c), I[186] = (T)(img)(_n6##x,y,z,c), I[187] = (T)(img)(_n7##x,y,z,c), I[188] = (T)(img)(_n8##x,y,z,c), I[189] = (T)(img)(_n9##x,y,z,c), \
|
|
I[190] = (T)(img)(_p9##x,_n1##y,z,c), I[191] = (T)(img)(_p8##x,_n1##y,z,c), I[192] = (T)(img)(_p7##x,_n1##y,z,c), I[193] = (T)(img)(_p6##x,_n1##y,z,c), I[194] = (T)(img)(_p5##x,_n1##y,z,c), I[195] = (T)(img)(_p4##x,_n1##y,z,c), I[196] = (T)(img)(_p3##x,_n1##y,z,c), I[197] = (T)(img)(_p2##x,_n1##y,z,c), I[198] = (T)(img)(_p1##x,_n1##y,z,c), I[199] = (T)(img)(x,_n1##y,z,c), I[200] = (T)(img)(_n1##x,_n1##y,z,c), I[201] = (T)(img)(_n2##x,_n1##y,z,c), I[202] = (T)(img)(_n3##x,_n1##y,z,c), I[203] = (T)(img)(_n4##x,_n1##y,z,c), I[204] = (T)(img)(_n5##x,_n1##y,z,c), I[205] = (T)(img)(_n6##x,_n1##y,z,c), I[206] = (T)(img)(_n7##x,_n1##y,z,c), I[207] = (T)(img)(_n8##x,_n1##y,z,c), I[208] = (T)(img)(_n9##x,_n1##y,z,c), \
|
|
I[209] = (T)(img)(_p9##x,_n2##y,z,c), I[210] = (T)(img)(_p8##x,_n2##y,z,c), I[211] = (T)(img)(_p7##x,_n2##y,z,c), I[212] = (T)(img)(_p6##x,_n2##y,z,c), I[213] = (T)(img)(_p5##x,_n2##y,z,c), I[214] = (T)(img)(_p4##x,_n2##y,z,c), I[215] = (T)(img)(_p3##x,_n2##y,z,c), I[216] = (T)(img)(_p2##x,_n2##y,z,c), I[217] = (T)(img)(_p1##x,_n2##y,z,c), I[218] = (T)(img)(x,_n2##y,z,c), I[219] = (T)(img)(_n1##x,_n2##y,z,c), I[220] = (T)(img)(_n2##x,_n2##y,z,c), I[221] = (T)(img)(_n3##x,_n2##y,z,c), I[222] = (T)(img)(_n4##x,_n2##y,z,c), I[223] = (T)(img)(_n5##x,_n2##y,z,c), I[224] = (T)(img)(_n6##x,_n2##y,z,c), I[225] = (T)(img)(_n7##x,_n2##y,z,c), I[226] = (T)(img)(_n8##x,_n2##y,z,c), I[227] = (T)(img)(_n9##x,_n2##y,z,c), \
|
|
I[228] = (T)(img)(_p9##x,_n3##y,z,c), I[229] = (T)(img)(_p8##x,_n3##y,z,c), I[230] = (T)(img)(_p7##x,_n3##y,z,c), I[231] = (T)(img)(_p6##x,_n3##y,z,c), I[232] = (T)(img)(_p5##x,_n3##y,z,c), I[233] = (T)(img)(_p4##x,_n3##y,z,c), I[234] = (T)(img)(_p3##x,_n3##y,z,c), I[235] = (T)(img)(_p2##x,_n3##y,z,c), I[236] = (T)(img)(_p1##x,_n3##y,z,c), I[237] = (T)(img)(x,_n3##y,z,c), I[238] = (T)(img)(_n1##x,_n3##y,z,c), I[239] = (T)(img)(_n2##x,_n3##y,z,c), I[240] = (T)(img)(_n3##x,_n3##y,z,c), I[241] = (T)(img)(_n4##x,_n3##y,z,c), I[242] = (T)(img)(_n5##x,_n3##y,z,c), I[243] = (T)(img)(_n6##x,_n3##y,z,c), I[244] = (T)(img)(_n7##x,_n3##y,z,c), I[245] = (T)(img)(_n8##x,_n3##y,z,c), I[246] = (T)(img)(_n9##x,_n3##y,z,c), \
|
|
I[247] = (T)(img)(_p9##x,_n4##y,z,c), I[248] = (T)(img)(_p8##x,_n4##y,z,c), I[249] = (T)(img)(_p7##x,_n4##y,z,c), I[250] = (T)(img)(_p6##x,_n4##y,z,c), I[251] = (T)(img)(_p5##x,_n4##y,z,c), I[252] = (T)(img)(_p4##x,_n4##y,z,c), I[253] = (T)(img)(_p3##x,_n4##y,z,c), I[254] = (T)(img)(_p2##x,_n4##y,z,c), I[255] = (T)(img)(_p1##x,_n4##y,z,c), I[256] = (T)(img)(x,_n4##y,z,c), I[257] = (T)(img)(_n1##x,_n4##y,z,c), I[258] = (T)(img)(_n2##x,_n4##y,z,c), I[259] = (T)(img)(_n3##x,_n4##y,z,c), I[260] = (T)(img)(_n4##x,_n4##y,z,c), I[261] = (T)(img)(_n5##x,_n4##y,z,c), I[262] = (T)(img)(_n6##x,_n4##y,z,c), I[263] = (T)(img)(_n7##x,_n4##y,z,c), I[264] = (T)(img)(_n8##x,_n4##y,z,c), I[265] = (T)(img)(_n9##x,_n4##y,z,c), \
|
|
I[266] = (T)(img)(_p9##x,_n5##y,z,c), I[267] = (T)(img)(_p8##x,_n5##y,z,c), I[268] = (T)(img)(_p7##x,_n5##y,z,c), I[269] = (T)(img)(_p6##x,_n5##y,z,c), I[270] = (T)(img)(_p5##x,_n5##y,z,c), I[271] = (T)(img)(_p4##x,_n5##y,z,c), I[272] = (T)(img)(_p3##x,_n5##y,z,c), I[273] = (T)(img)(_p2##x,_n5##y,z,c), I[274] = (T)(img)(_p1##x,_n5##y,z,c), I[275] = (T)(img)(x,_n5##y,z,c), I[276] = (T)(img)(_n1##x,_n5##y,z,c), I[277] = (T)(img)(_n2##x,_n5##y,z,c), I[278] = (T)(img)(_n3##x,_n5##y,z,c), I[279] = (T)(img)(_n4##x,_n5##y,z,c), I[280] = (T)(img)(_n5##x,_n5##y,z,c), I[281] = (T)(img)(_n6##x,_n5##y,z,c), I[282] = (T)(img)(_n7##x,_n5##y,z,c), I[283] = (T)(img)(_n8##x,_n5##y,z,c), I[284] = (T)(img)(_n9##x,_n5##y,z,c), \
|
|
I[285] = (T)(img)(_p9##x,_n6##y,z,c), I[286] = (T)(img)(_p8##x,_n6##y,z,c), I[287] = (T)(img)(_p7##x,_n6##y,z,c), I[288] = (T)(img)(_p6##x,_n6##y,z,c), I[289] = (T)(img)(_p5##x,_n6##y,z,c), I[290] = (T)(img)(_p4##x,_n6##y,z,c), I[291] = (T)(img)(_p3##x,_n6##y,z,c), I[292] = (T)(img)(_p2##x,_n6##y,z,c), I[293] = (T)(img)(_p1##x,_n6##y,z,c), I[294] = (T)(img)(x,_n6##y,z,c), I[295] = (T)(img)(_n1##x,_n6##y,z,c), I[296] = (T)(img)(_n2##x,_n6##y,z,c), I[297] = (T)(img)(_n3##x,_n6##y,z,c), I[298] = (T)(img)(_n4##x,_n6##y,z,c), I[299] = (T)(img)(_n5##x,_n6##y,z,c), I[300] = (T)(img)(_n6##x,_n6##y,z,c), I[301] = (T)(img)(_n7##x,_n6##y,z,c), I[302] = (T)(img)(_n8##x,_n6##y,z,c), I[303] = (T)(img)(_n9##x,_n6##y,z,c), \
|
|
I[304] = (T)(img)(_p9##x,_n7##y,z,c), I[305] = (T)(img)(_p8##x,_n7##y,z,c), I[306] = (T)(img)(_p7##x,_n7##y,z,c), I[307] = (T)(img)(_p6##x,_n7##y,z,c), I[308] = (T)(img)(_p5##x,_n7##y,z,c), I[309] = (T)(img)(_p4##x,_n7##y,z,c), I[310] = (T)(img)(_p3##x,_n7##y,z,c), I[311] = (T)(img)(_p2##x,_n7##y,z,c), I[312] = (T)(img)(_p1##x,_n7##y,z,c), I[313] = (T)(img)(x,_n7##y,z,c), I[314] = (T)(img)(_n1##x,_n7##y,z,c), I[315] = (T)(img)(_n2##x,_n7##y,z,c), I[316] = (T)(img)(_n3##x,_n7##y,z,c), I[317] = (T)(img)(_n4##x,_n7##y,z,c), I[318] = (T)(img)(_n5##x,_n7##y,z,c), I[319] = (T)(img)(_n6##x,_n7##y,z,c), I[320] = (T)(img)(_n7##x,_n7##y,z,c), I[321] = (T)(img)(_n8##x,_n7##y,z,c), I[322] = (T)(img)(_n9##x,_n7##y,z,c), \
|
|
I[323] = (T)(img)(_p9##x,_n8##y,z,c), I[324] = (T)(img)(_p8##x,_n8##y,z,c), I[325] = (T)(img)(_p7##x,_n8##y,z,c), I[326] = (T)(img)(_p6##x,_n8##y,z,c), I[327] = (T)(img)(_p5##x,_n8##y,z,c), I[328] = (T)(img)(_p4##x,_n8##y,z,c), I[329] = (T)(img)(_p3##x,_n8##y,z,c), I[330] = (T)(img)(_p2##x,_n8##y,z,c), I[331] = (T)(img)(_p1##x,_n8##y,z,c), I[332] = (T)(img)(x,_n8##y,z,c), I[333] = (T)(img)(_n1##x,_n8##y,z,c), I[334] = (T)(img)(_n2##x,_n8##y,z,c), I[335] = (T)(img)(_n3##x,_n8##y,z,c), I[336] = (T)(img)(_n4##x,_n8##y,z,c), I[337] = (T)(img)(_n5##x,_n8##y,z,c), I[338] = (T)(img)(_n6##x,_n8##y,z,c), I[339] = (T)(img)(_n7##x,_n8##y,z,c), I[340] = (T)(img)(_n8##x,_n8##y,z,c), I[341] = (T)(img)(_n9##x,_n8##y,z,c), \
|
|
I[342] = (T)(img)(_p9##x,_n9##y,z,c), I[343] = (T)(img)(_p8##x,_n9##y,z,c), I[344] = (T)(img)(_p7##x,_n9##y,z,c), I[345] = (T)(img)(_p6##x,_n9##y,z,c), I[346] = (T)(img)(_p5##x,_n9##y,z,c), I[347] = (T)(img)(_p4##x,_n9##y,z,c), I[348] = (T)(img)(_p3##x,_n9##y,z,c), I[349] = (T)(img)(_p2##x,_n9##y,z,c), I[350] = (T)(img)(_p1##x,_n9##y,z,c), I[351] = (T)(img)(x,_n9##y,z,c), I[352] = (T)(img)(_n1##x,_n9##y,z,c), I[353] = (T)(img)(_n2##x,_n9##y,z,c), I[354] = (T)(img)(_n3##x,_n9##y,z,c), I[355] = (T)(img)(_n4##x,_n9##y,z,c), I[356] = (T)(img)(_n5##x,_n9##y,z,c), I[357] = (T)(img)(_n6##x,_n9##y,z,c), I[358] = (T)(img)(_n7##x,_n9##y,z,c), I[359] = (T)(img)(_n8##x,_n9##y,z,c), I[360] = (T)(img)(_n9##x,_n9##y,z,c);
|
|
|
|
// Define 20x20 loop macros
|
|
//-------------------------
|
|
#define cimg_for20(bound,i) for (int i = 0, \
|
|
_p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
|
|
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
|
|
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
|
|
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
|
|
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
|
|
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
|
|
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
|
|
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
|
|
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9, \
|
|
_n10##i = 10>=(int)(bound)?(int)(bound) - 1:10; \
|
|
_n10##i<(int)(bound) || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
|
|
_p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i)
|
|
|
|
#define cimg_for20X(img,x) cimg_for20((img)._width,x)
|
|
#define cimg_for20Y(img,y) cimg_for20((img)._height,y)
|
|
#define cimg_for20Z(img,z) cimg_for20((img)._depth,z)
|
|
#define cimg_for20C(img,c) cimg_for20((img)._spectrum,c)
|
|
#define cimg_for20XY(img,x,y) cimg_for20Y(img,y) cimg_for20X(img,x)
|
|
#define cimg_for20XZ(img,x,z) cimg_for20Z(img,z) cimg_for20X(img,x)
|
|
#define cimg_for20XC(img,x,c) cimg_for20C(img,c) cimg_for20X(img,x)
|
|
#define cimg_for20YZ(img,y,z) cimg_for20Z(img,z) cimg_for20Y(img,y)
|
|
#define cimg_for20YC(img,y,c) cimg_for20C(img,c) cimg_for20Y(img,y)
|
|
#define cimg_for20ZC(img,z,c) cimg_for20C(img,c) cimg_for20Z(img,z)
|
|
#define cimg_for20XYZ(img,x,y,z) cimg_for20Z(img,z) cimg_for20XY(img,x,y)
|
|
#define cimg_for20XZC(img,x,z,c) cimg_for20C(img,c) cimg_for20XZ(img,x,z)
|
|
#define cimg_for20YZC(img,y,z,c) cimg_for20C(img,c) cimg_for20YZ(img,y,z)
|
|
#define cimg_for20XYZC(img,x,y,z,c) cimg_for20C(img,c) cimg_for20XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in20(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p9##i = i - 9<0?0:i - 9, \
|
|
_p8##i = i - 8<0?0:i - 8, \
|
|
_p7##i = i - 7<0?0:i - 7, \
|
|
_p6##i = i - 6<0?0:i - 6, \
|
|
_p5##i = i - 5<0?0:i - 5, \
|
|
_p4##i = i - 4<0?0:i - 4, \
|
|
_p3##i = i - 3<0?0:i - 3, \
|
|
_p2##i = i - 2<0?0:i - 2, \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
|
|
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
|
|
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
|
|
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
|
|
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
|
|
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
|
|
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
|
|
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
|
|
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9, \
|
|
_n10##i = i + 10>=(int)(bound)?(int)(bound) - 1:i + 10; \
|
|
i<=(int)(i1) && (_n10##i<(int)(bound) || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
|
|
_p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i)
|
|
|
|
#define cimg_for_in20X(img,x0,x1,x) cimg_for_in20((img)._width,x0,x1,x)
|
|
#define cimg_for_in20Y(img,y0,y1,y) cimg_for_in20((img)._height,y0,y1,y)
|
|
#define cimg_for_in20Z(img,z0,z1,z) cimg_for_in20((img)._depth,z0,z1,z)
|
|
#define cimg_for_in20C(img,c0,c1,c) cimg_for_in20((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in20XY(img,x0,y0,x1,y1,x,y) cimg_for_in20Y(img,y0,y1,y) cimg_for_in20X(img,x0,x1,x)
|
|
#define cimg_for_in20XZ(img,x0,z0,x1,z1,x,z) cimg_for_in20Z(img,z0,z1,z) cimg_for_in20X(img,x0,x1,x)
|
|
#define cimg_for_in20XC(img,x0,c0,x1,c1,x,c) cimg_for_in20C(img,c0,c1,c) cimg_for_in20X(img,x0,x1,x)
|
|
#define cimg_for_in20YZ(img,y0,z0,y1,z1,y,z) cimg_for_in20Z(img,z0,z1,z) cimg_for_in20Y(img,y0,y1,y)
|
|
#define cimg_for_in20YC(img,y0,c0,y1,c1,y,c) cimg_for_in20C(img,c0,c1,c) cimg_for_in20Y(img,y0,y1,y)
|
|
#define cimg_for_in20ZC(img,z0,c0,z1,c1,z,c) cimg_for_in20C(img,c0,c1,c) cimg_for_in20Z(img,z0,z1,z)
|
|
#define cimg_for_in20XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in20Z(img,z0,z1,z) cimg_for_in20XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in20XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in20C(img,c0,c1,c) cimg_for_in20XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in20YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in20C(img,c0,c1,c) cimg_for_in20YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in20XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in20C(img,c0,c1,c) cimg_for_in20XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for20x20(img,x,y,z,c,I,T) \
|
|
cimg_for20((img)._height,y) for (int x = 0, \
|
|
_p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
|
|
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
|
|
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
|
|
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
|
|
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
|
|
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
|
|
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
|
|
_n9##x = 9>=((img)._width)?(img).width() - 1:9, \
|
|
_n10##x = (int)( \
|
|
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = (T)(img)(0,_p9##y,z,c)), \
|
|
(I[20] = I[21] = I[22] = I[23] = I[24] = I[25] = I[26] = I[27] = I[28] = I[29] = (T)(img)(0,_p8##y,z,c)), \
|
|
(I[40] = I[41] = I[42] = I[43] = I[44] = I[45] = I[46] = I[47] = I[48] = I[49] = (T)(img)(0,_p7##y,z,c)), \
|
|
(I[60] = I[61] = I[62] = I[63] = I[64] = I[65] = I[66] = I[67] = I[68] = I[69] = (T)(img)(0,_p6##y,z,c)), \
|
|
(I[80] = I[81] = I[82] = I[83] = I[84] = I[85] = I[86] = I[87] = I[88] = I[89] = (T)(img)(0,_p5##y,z,c)), \
|
|
(I[100] = I[101] = I[102] = I[103] = I[104] = I[105] = I[106] = I[107] = I[108] = I[109] = (T)(img)(0,_p4##y,z,c)), \
|
|
(I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = I[126] = I[127] = I[128] = I[129] = (T)(img)(0,_p3##y,z,c)), \
|
|
(I[140] = I[141] = I[142] = I[143] = I[144] = I[145] = I[146] = I[147] = I[148] = I[149] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[160] = I[161] = I[162] = I[163] = I[164] = I[165] = I[166] = I[167] = I[168] = I[169] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[180] = I[181] = I[182] = I[183] = I[184] = I[185] = I[186] = I[187] = I[188] = I[189] = (T)(img)(0,y,z,c)), \
|
|
(I[200] = I[201] = I[202] = I[203] = I[204] = I[205] = I[206] = I[207] = I[208] = I[209] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[220] = I[221] = I[222] = I[223] = I[224] = I[225] = I[226] = I[227] = I[228] = I[229] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[240] = I[241] = I[242] = I[243] = I[244] = I[245] = I[246] = I[247] = I[248] = I[249] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[260] = I[261] = I[262] = I[263] = I[264] = I[265] = I[266] = I[267] = I[268] = I[269] = (T)(img)(0,_n4##y,z,c)), \
|
|
(I[280] = I[281] = I[282] = I[283] = I[284] = I[285] = I[286] = I[287] = I[288] = I[289] = (T)(img)(0,_n5##y,z,c)), \
|
|
(I[300] = I[301] = I[302] = I[303] = I[304] = I[305] = I[306] = I[307] = I[308] = I[309] = (T)(img)(0,_n6##y,z,c)), \
|
|
(I[320] = I[321] = I[322] = I[323] = I[324] = I[325] = I[326] = I[327] = I[328] = I[329] = (T)(img)(0,_n7##y,z,c)), \
|
|
(I[340] = I[341] = I[342] = I[343] = I[344] = I[345] = I[346] = I[347] = I[348] = I[349] = (T)(img)(0,_n8##y,z,c)), \
|
|
(I[360] = I[361] = I[362] = I[363] = I[364] = I[365] = I[366] = I[367] = I[368] = I[369] = (T)(img)(0,_n9##y,z,c)), \
|
|
(I[380] = I[381] = I[382] = I[383] = I[384] = I[385] = I[386] = I[387] = I[388] = I[389] = (T)(img)(0,_n10##y,z,c)), \
|
|
(I[10] = (T)(img)(_n1##x,_p9##y,z,c)), \
|
|
(I[30] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[50] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[70] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[90] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[110] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[130] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[150] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[170] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[190] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[210] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[230] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[250] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[270] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[290] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[310] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[330] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[350] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[370] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[390] = (T)(img)(_n1##x,_n10##y,z,c)), \
|
|
(I[11] = (T)(img)(_n2##x,_p9##y,z,c)), \
|
|
(I[31] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[51] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[71] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[91] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[111] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[131] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[151] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[171] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[191] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[211] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[231] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[251] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[271] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[291] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[311] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[331] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[351] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[371] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[391] = (T)(img)(_n2##x,_n10##y,z,c)), \
|
|
(I[12] = (T)(img)(_n3##x,_p9##y,z,c)), \
|
|
(I[32] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[52] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[72] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[92] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[112] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[132] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[152] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[172] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[192] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[212] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[232] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[252] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[272] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[292] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[312] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[332] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[352] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[372] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[392] = (T)(img)(_n3##x,_n10##y,z,c)), \
|
|
(I[13] = (T)(img)(_n4##x,_p9##y,z,c)), \
|
|
(I[33] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[53] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[73] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[93] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[113] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[133] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[153] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[173] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[193] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[213] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[233] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[253] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[273] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[293] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[313] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[333] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[353] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[373] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[393] = (T)(img)(_n4##x,_n10##y,z,c)), \
|
|
(I[14] = (T)(img)(_n5##x,_p9##y,z,c)), \
|
|
(I[34] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[54] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[74] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[94] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[114] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[134] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[154] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[174] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[194] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[214] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[234] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[254] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[274] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[294] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[314] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[334] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[354] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[374] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[394] = (T)(img)(_n5##x,_n10##y,z,c)), \
|
|
(I[15] = (T)(img)(_n6##x,_p9##y,z,c)), \
|
|
(I[35] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[55] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[75] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[95] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[115] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[135] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[155] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[175] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[195] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[215] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[235] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[255] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[275] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[295] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[315] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[335] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[355] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[375] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[395] = (T)(img)(_n6##x,_n10##y,z,c)), \
|
|
(I[16] = (T)(img)(_n7##x,_p9##y,z,c)), \
|
|
(I[36] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[56] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[76] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[96] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[116] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[136] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[156] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[176] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[196] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[216] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[236] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[256] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[276] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[296] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[316] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[336] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[356] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[376] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[396] = (T)(img)(_n7##x,_n10##y,z,c)), \
|
|
(I[17] = (T)(img)(_n8##x,_p9##y,z,c)), \
|
|
(I[37] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[57] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[77] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[97] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[117] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[137] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[157] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[177] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[197] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[217] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[237] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[257] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[277] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[297] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[317] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[337] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[357] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[377] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
(I[397] = (T)(img)(_n8##x,_n10##y,z,c)), \
|
|
(I[18] = (T)(img)(_n9##x,_p9##y,z,c)), \
|
|
(I[38] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[58] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[78] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[98] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[118] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[138] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[158] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[178] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[198] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[218] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[238] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[258] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[278] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[298] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[318] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[338] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[358] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[378] = (T)(img)(_n9##x,_n9##y,z,c)), \
|
|
(I[398] = (T)(img)(_n9##x,_n10##y,z,c)), \
|
|
10>=((img)._width)?(img).width() - 1:10); \
|
|
(_n10##x<(img).width() && ( \
|
|
(I[19] = (T)(img)(_n10##x,_p9##y,z,c)), \
|
|
(I[39] = (T)(img)(_n10##x,_p8##y,z,c)), \
|
|
(I[59] = (T)(img)(_n10##x,_p7##y,z,c)), \
|
|
(I[79] = (T)(img)(_n10##x,_p6##y,z,c)), \
|
|
(I[99] = (T)(img)(_n10##x,_p5##y,z,c)), \
|
|
(I[119] = (T)(img)(_n10##x,_p4##y,z,c)), \
|
|
(I[139] = (T)(img)(_n10##x,_p3##y,z,c)), \
|
|
(I[159] = (T)(img)(_n10##x,_p2##y,z,c)), \
|
|
(I[179] = (T)(img)(_n10##x,_p1##y,z,c)), \
|
|
(I[199] = (T)(img)(_n10##x,y,z,c)), \
|
|
(I[219] = (T)(img)(_n10##x,_n1##y,z,c)), \
|
|
(I[239] = (T)(img)(_n10##x,_n2##y,z,c)), \
|
|
(I[259] = (T)(img)(_n10##x,_n3##y,z,c)), \
|
|
(I[279] = (T)(img)(_n10##x,_n4##y,z,c)), \
|
|
(I[299] = (T)(img)(_n10##x,_n5##y,z,c)), \
|
|
(I[319] = (T)(img)(_n10##x,_n6##y,z,c)), \
|
|
(I[339] = (T)(img)(_n10##x,_n7##y,z,c)), \
|
|
(I[359] = (T)(img)(_n10##x,_n8##y,z,c)), \
|
|
(I[379] = (T)(img)(_n10##x,_n9##y,z,c)), \
|
|
(I[399] = (T)(img)(_n10##x,_n10##y,z,c)),1)) || \
|
|
_n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \
|
|
I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \
|
|
I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
|
|
I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
|
|
I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], \
|
|
I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
|
|
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], \
|
|
I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], \
|
|
I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \
|
|
I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], \
|
|
I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], \
|
|
I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \
|
|
I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], \
|
|
I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], \
|
|
I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], \
|
|
I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], \
|
|
I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], \
|
|
I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], \
|
|
I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], \
|
|
I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], \
|
|
_p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x)
|
|
|
|
#define cimg_for_in20x20(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in20((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p9##x = x - 9<0?0:x - 9, \
|
|
_p8##x = x - 8<0?0:x - 8, \
|
|
_p7##x = x - 7<0?0:x - 7, \
|
|
_p6##x = x - 6<0?0:x - 6, \
|
|
_p5##x = x - 5<0?0:x - 5, \
|
|
_p4##x = x - 4<0?0:x - 4, \
|
|
_p3##x = x - 3<0?0:x - 3, \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
|
|
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
|
|
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
|
|
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
|
|
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
|
|
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
|
|
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
|
|
_n9##x = x + 9>=(img).width()?(img).width() - 1:x + 9, \
|
|
_n10##x = (int)( \
|
|
(I[0] = (T)(img)(_p9##x,_p9##y,z,c)), \
|
|
(I[20] = (T)(img)(_p9##x,_p8##y,z,c)), \
|
|
(I[40] = (T)(img)(_p9##x,_p7##y,z,c)), \
|
|
(I[60] = (T)(img)(_p9##x,_p6##y,z,c)), \
|
|
(I[80] = (T)(img)(_p9##x,_p5##y,z,c)), \
|
|
(I[100] = (T)(img)(_p9##x,_p4##y,z,c)), \
|
|
(I[120] = (T)(img)(_p9##x,_p3##y,z,c)), \
|
|
(I[140] = (T)(img)(_p9##x,_p2##y,z,c)), \
|
|
(I[160] = (T)(img)(_p9##x,_p1##y,z,c)), \
|
|
(I[180] = (T)(img)(_p9##x,y,z,c)), \
|
|
(I[200] = (T)(img)(_p9##x,_n1##y,z,c)), \
|
|
(I[220] = (T)(img)(_p9##x,_n2##y,z,c)), \
|
|
(I[240] = (T)(img)(_p9##x,_n3##y,z,c)), \
|
|
(I[260] = (T)(img)(_p9##x,_n4##y,z,c)), \
|
|
(I[280] = (T)(img)(_p9##x,_n5##y,z,c)), \
|
|
(I[300] = (T)(img)(_p9##x,_n6##y,z,c)), \
|
|
(I[320] = (T)(img)(_p9##x,_n7##y,z,c)), \
|
|
(I[340] = (T)(img)(_p9##x,_n8##y,z,c)), \
|
|
(I[360] = (T)(img)(_p9##x,_n9##y,z,c)), \
|
|
(I[380] = (T)(img)(_p9##x,_n10##y,z,c)), \
|
|
(I[1] = (T)(img)(_p8##x,_p9##y,z,c)), \
|
|
(I[21] = (T)(img)(_p8##x,_p8##y,z,c)), \
|
|
(I[41] = (T)(img)(_p8##x,_p7##y,z,c)), \
|
|
(I[61] = (T)(img)(_p8##x,_p6##y,z,c)), \
|
|
(I[81] = (T)(img)(_p8##x,_p5##y,z,c)), \
|
|
(I[101] = (T)(img)(_p8##x,_p4##y,z,c)), \
|
|
(I[121] = (T)(img)(_p8##x,_p3##y,z,c)), \
|
|
(I[141] = (T)(img)(_p8##x,_p2##y,z,c)), \
|
|
(I[161] = (T)(img)(_p8##x,_p1##y,z,c)), \
|
|
(I[181] = (T)(img)(_p8##x,y,z,c)), \
|
|
(I[201] = (T)(img)(_p8##x,_n1##y,z,c)), \
|
|
(I[221] = (T)(img)(_p8##x,_n2##y,z,c)), \
|
|
(I[241] = (T)(img)(_p8##x,_n3##y,z,c)), \
|
|
(I[261] = (T)(img)(_p8##x,_n4##y,z,c)), \
|
|
(I[281] = (T)(img)(_p8##x,_n5##y,z,c)), \
|
|
(I[301] = (T)(img)(_p8##x,_n6##y,z,c)), \
|
|
(I[321] = (T)(img)(_p8##x,_n7##y,z,c)), \
|
|
(I[341] = (T)(img)(_p8##x,_n8##y,z,c)), \
|
|
(I[361] = (T)(img)(_p8##x,_n9##y,z,c)), \
|
|
(I[381] = (T)(img)(_p8##x,_n10##y,z,c)), \
|
|
(I[2] = (T)(img)(_p7##x,_p9##y,z,c)), \
|
|
(I[22] = (T)(img)(_p7##x,_p8##y,z,c)), \
|
|
(I[42] = (T)(img)(_p7##x,_p7##y,z,c)), \
|
|
(I[62] = (T)(img)(_p7##x,_p6##y,z,c)), \
|
|
(I[82] = (T)(img)(_p7##x,_p5##y,z,c)), \
|
|
(I[102] = (T)(img)(_p7##x,_p4##y,z,c)), \
|
|
(I[122] = (T)(img)(_p7##x,_p3##y,z,c)), \
|
|
(I[142] = (T)(img)(_p7##x,_p2##y,z,c)), \
|
|
(I[162] = (T)(img)(_p7##x,_p1##y,z,c)), \
|
|
(I[182] = (T)(img)(_p7##x,y,z,c)), \
|
|
(I[202] = (T)(img)(_p7##x,_n1##y,z,c)), \
|
|
(I[222] = (T)(img)(_p7##x,_n2##y,z,c)), \
|
|
(I[242] = (T)(img)(_p7##x,_n3##y,z,c)), \
|
|
(I[262] = (T)(img)(_p7##x,_n4##y,z,c)), \
|
|
(I[282] = (T)(img)(_p7##x,_n5##y,z,c)), \
|
|
(I[302] = (T)(img)(_p7##x,_n6##y,z,c)), \
|
|
(I[322] = (T)(img)(_p7##x,_n7##y,z,c)), \
|
|
(I[342] = (T)(img)(_p7##x,_n8##y,z,c)), \
|
|
(I[362] = (T)(img)(_p7##x,_n9##y,z,c)), \
|
|
(I[382] = (T)(img)(_p7##x,_n10##y,z,c)), \
|
|
(I[3] = (T)(img)(_p6##x,_p9##y,z,c)), \
|
|
(I[23] = (T)(img)(_p6##x,_p8##y,z,c)), \
|
|
(I[43] = (T)(img)(_p6##x,_p7##y,z,c)), \
|
|
(I[63] = (T)(img)(_p6##x,_p6##y,z,c)), \
|
|
(I[83] = (T)(img)(_p6##x,_p5##y,z,c)), \
|
|
(I[103] = (T)(img)(_p6##x,_p4##y,z,c)), \
|
|
(I[123] = (T)(img)(_p6##x,_p3##y,z,c)), \
|
|
(I[143] = (T)(img)(_p6##x,_p2##y,z,c)), \
|
|
(I[163] = (T)(img)(_p6##x,_p1##y,z,c)), \
|
|
(I[183] = (T)(img)(_p6##x,y,z,c)), \
|
|
(I[203] = (T)(img)(_p6##x,_n1##y,z,c)), \
|
|
(I[223] = (T)(img)(_p6##x,_n2##y,z,c)), \
|
|
(I[243] = (T)(img)(_p6##x,_n3##y,z,c)), \
|
|
(I[263] = (T)(img)(_p6##x,_n4##y,z,c)), \
|
|
(I[283] = (T)(img)(_p6##x,_n5##y,z,c)), \
|
|
(I[303] = (T)(img)(_p6##x,_n6##y,z,c)), \
|
|
(I[323] = (T)(img)(_p6##x,_n7##y,z,c)), \
|
|
(I[343] = (T)(img)(_p6##x,_n8##y,z,c)), \
|
|
(I[363] = (T)(img)(_p6##x,_n9##y,z,c)), \
|
|
(I[383] = (T)(img)(_p6##x,_n10##y,z,c)), \
|
|
(I[4] = (T)(img)(_p5##x,_p9##y,z,c)), \
|
|
(I[24] = (T)(img)(_p5##x,_p8##y,z,c)), \
|
|
(I[44] = (T)(img)(_p5##x,_p7##y,z,c)), \
|
|
(I[64] = (T)(img)(_p5##x,_p6##y,z,c)), \
|
|
(I[84] = (T)(img)(_p5##x,_p5##y,z,c)), \
|
|
(I[104] = (T)(img)(_p5##x,_p4##y,z,c)), \
|
|
(I[124] = (T)(img)(_p5##x,_p3##y,z,c)), \
|
|
(I[144] = (T)(img)(_p5##x,_p2##y,z,c)), \
|
|
(I[164] = (T)(img)(_p5##x,_p1##y,z,c)), \
|
|
(I[184] = (T)(img)(_p5##x,y,z,c)), \
|
|
(I[204] = (T)(img)(_p5##x,_n1##y,z,c)), \
|
|
(I[224] = (T)(img)(_p5##x,_n2##y,z,c)), \
|
|
(I[244] = (T)(img)(_p5##x,_n3##y,z,c)), \
|
|
(I[264] = (T)(img)(_p5##x,_n4##y,z,c)), \
|
|
(I[284] = (T)(img)(_p5##x,_n5##y,z,c)), \
|
|
(I[304] = (T)(img)(_p5##x,_n6##y,z,c)), \
|
|
(I[324] = (T)(img)(_p5##x,_n7##y,z,c)), \
|
|
(I[344] = (T)(img)(_p5##x,_n8##y,z,c)), \
|
|
(I[364] = (T)(img)(_p5##x,_n9##y,z,c)), \
|
|
(I[384] = (T)(img)(_p5##x,_n10##y,z,c)), \
|
|
(I[5] = (T)(img)(_p4##x,_p9##y,z,c)), \
|
|
(I[25] = (T)(img)(_p4##x,_p8##y,z,c)), \
|
|
(I[45] = (T)(img)(_p4##x,_p7##y,z,c)), \
|
|
(I[65] = (T)(img)(_p4##x,_p6##y,z,c)), \
|
|
(I[85] = (T)(img)(_p4##x,_p5##y,z,c)), \
|
|
(I[105] = (T)(img)(_p4##x,_p4##y,z,c)), \
|
|
(I[125] = (T)(img)(_p4##x,_p3##y,z,c)), \
|
|
(I[145] = (T)(img)(_p4##x,_p2##y,z,c)), \
|
|
(I[165] = (T)(img)(_p4##x,_p1##y,z,c)), \
|
|
(I[185] = (T)(img)(_p4##x,y,z,c)), \
|
|
(I[205] = (T)(img)(_p4##x,_n1##y,z,c)), \
|
|
(I[225] = (T)(img)(_p4##x,_n2##y,z,c)), \
|
|
(I[245] = (T)(img)(_p4##x,_n3##y,z,c)), \
|
|
(I[265] = (T)(img)(_p4##x,_n4##y,z,c)), \
|
|
(I[285] = (T)(img)(_p4##x,_n5##y,z,c)), \
|
|
(I[305] = (T)(img)(_p4##x,_n6##y,z,c)), \
|
|
(I[325] = (T)(img)(_p4##x,_n7##y,z,c)), \
|
|
(I[345] = (T)(img)(_p4##x,_n8##y,z,c)), \
|
|
(I[365] = (T)(img)(_p4##x,_n9##y,z,c)), \
|
|
(I[385] = (T)(img)(_p4##x,_n10##y,z,c)), \
|
|
(I[6] = (T)(img)(_p3##x,_p9##y,z,c)), \
|
|
(I[26] = (T)(img)(_p3##x,_p8##y,z,c)), \
|
|
(I[46] = (T)(img)(_p3##x,_p7##y,z,c)), \
|
|
(I[66] = (T)(img)(_p3##x,_p6##y,z,c)), \
|
|
(I[86] = (T)(img)(_p3##x,_p5##y,z,c)), \
|
|
(I[106] = (T)(img)(_p3##x,_p4##y,z,c)), \
|
|
(I[126] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[146] = (T)(img)(_p3##x,_p2##y,z,c)), \
|
|
(I[166] = (T)(img)(_p3##x,_p1##y,z,c)), \
|
|
(I[186] = (T)(img)(_p3##x,y,z,c)), \
|
|
(I[206] = (T)(img)(_p3##x,_n1##y,z,c)), \
|
|
(I[226] = (T)(img)(_p3##x,_n2##y,z,c)), \
|
|
(I[246] = (T)(img)(_p3##x,_n3##y,z,c)), \
|
|
(I[266] = (T)(img)(_p3##x,_n4##y,z,c)), \
|
|
(I[286] = (T)(img)(_p3##x,_n5##y,z,c)), \
|
|
(I[306] = (T)(img)(_p3##x,_n6##y,z,c)), \
|
|
(I[326] = (T)(img)(_p3##x,_n7##y,z,c)), \
|
|
(I[346] = (T)(img)(_p3##x,_n8##y,z,c)), \
|
|
(I[366] = (T)(img)(_p3##x,_n9##y,z,c)), \
|
|
(I[386] = (T)(img)(_p3##x,_n10##y,z,c)), \
|
|
(I[7] = (T)(img)(_p2##x,_p9##y,z,c)), \
|
|
(I[27] = (T)(img)(_p2##x,_p8##y,z,c)), \
|
|
(I[47] = (T)(img)(_p2##x,_p7##y,z,c)), \
|
|
(I[67] = (T)(img)(_p2##x,_p6##y,z,c)), \
|
|
(I[87] = (T)(img)(_p2##x,_p5##y,z,c)), \
|
|
(I[107] = (T)(img)(_p2##x,_p4##y,z,c)), \
|
|
(I[127] = (T)(img)(_p2##x,_p3##y,z,c)), \
|
|
(I[147] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[167] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[187] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[207] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[227] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[247] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[267] = (T)(img)(_p2##x,_n4##y,z,c)), \
|
|
(I[287] = (T)(img)(_p2##x,_n5##y,z,c)), \
|
|
(I[307] = (T)(img)(_p2##x,_n6##y,z,c)), \
|
|
(I[327] = (T)(img)(_p2##x,_n7##y,z,c)), \
|
|
(I[347] = (T)(img)(_p2##x,_n8##y,z,c)), \
|
|
(I[367] = (T)(img)(_p2##x,_n9##y,z,c)), \
|
|
(I[387] = (T)(img)(_p2##x,_n10##y,z,c)), \
|
|
(I[8] = (T)(img)(_p1##x,_p9##y,z,c)), \
|
|
(I[28] = (T)(img)(_p1##x,_p8##y,z,c)), \
|
|
(I[48] = (T)(img)(_p1##x,_p7##y,z,c)), \
|
|
(I[68] = (T)(img)(_p1##x,_p6##y,z,c)), \
|
|
(I[88] = (T)(img)(_p1##x,_p5##y,z,c)), \
|
|
(I[108] = (T)(img)(_p1##x,_p4##y,z,c)), \
|
|
(I[128] = (T)(img)(_p1##x,_p3##y,z,c)), \
|
|
(I[148] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[168] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[188] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[208] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[228] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[248] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[268] = (T)(img)(_p1##x,_n4##y,z,c)), \
|
|
(I[288] = (T)(img)(_p1##x,_n5##y,z,c)), \
|
|
(I[308] = (T)(img)(_p1##x,_n6##y,z,c)), \
|
|
(I[328] = (T)(img)(_p1##x,_n7##y,z,c)), \
|
|
(I[348] = (T)(img)(_p1##x,_n8##y,z,c)), \
|
|
(I[368] = (T)(img)(_p1##x,_n9##y,z,c)), \
|
|
(I[388] = (T)(img)(_p1##x,_n10##y,z,c)), \
|
|
(I[9] = (T)(img)(x,_p9##y,z,c)), \
|
|
(I[29] = (T)(img)(x,_p8##y,z,c)), \
|
|
(I[49] = (T)(img)(x,_p7##y,z,c)), \
|
|
(I[69] = (T)(img)(x,_p6##y,z,c)), \
|
|
(I[89] = (T)(img)(x,_p5##y,z,c)), \
|
|
(I[109] = (T)(img)(x,_p4##y,z,c)), \
|
|
(I[129] = (T)(img)(x,_p3##y,z,c)), \
|
|
(I[149] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[169] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[189] = (T)(img)(x,y,z,c)), \
|
|
(I[209] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[229] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[249] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[269] = (T)(img)(x,_n4##y,z,c)), \
|
|
(I[289] = (T)(img)(x,_n5##y,z,c)), \
|
|
(I[309] = (T)(img)(x,_n6##y,z,c)), \
|
|
(I[329] = (T)(img)(x,_n7##y,z,c)), \
|
|
(I[349] = (T)(img)(x,_n8##y,z,c)), \
|
|
(I[369] = (T)(img)(x,_n9##y,z,c)), \
|
|
(I[389] = (T)(img)(x,_n10##y,z,c)), \
|
|
(I[10] = (T)(img)(_n1##x,_p9##y,z,c)), \
|
|
(I[30] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[50] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[70] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[90] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[110] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[130] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[150] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[170] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[190] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[210] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[230] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[250] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[270] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[290] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[310] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[330] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[350] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[370] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[390] = (T)(img)(_n1##x,_n10##y,z,c)), \
|
|
(I[11] = (T)(img)(_n2##x,_p9##y,z,c)), \
|
|
(I[31] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[51] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[71] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[91] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[111] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[131] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[151] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[171] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[191] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[211] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[231] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[251] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[271] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[291] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[311] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[331] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[351] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[371] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[391] = (T)(img)(_n2##x,_n10##y,z,c)), \
|
|
(I[12] = (T)(img)(_n3##x,_p9##y,z,c)), \
|
|
(I[32] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[52] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[72] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[92] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[112] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[132] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[152] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[172] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[192] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[212] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[232] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[252] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[272] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[292] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[312] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[332] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[352] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[372] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[392] = (T)(img)(_n3##x,_n10##y,z,c)), \
|
|
(I[13] = (T)(img)(_n4##x,_p9##y,z,c)), \
|
|
(I[33] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[53] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[73] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[93] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[113] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[133] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[153] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[173] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[193] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[213] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[233] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[253] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[273] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[293] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[313] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[333] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[353] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[373] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[393] = (T)(img)(_n4##x,_n10##y,z,c)), \
|
|
(I[14] = (T)(img)(_n5##x,_p9##y,z,c)), \
|
|
(I[34] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[54] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[74] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[94] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[114] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[134] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[154] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[174] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[194] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[214] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[234] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[254] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[274] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[294] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[314] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[334] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[354] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[374] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[394] = (T)(img)(_n5##x,_n10##y,z,c)), \
|
|
(I[15] = (T)(img)(_n6##x,_p9##y,z,c)), \
|
|
(I[35] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[55] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[75] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[95] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[115] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[135] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[155] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[175] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[195] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[215] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[235] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[255] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[275] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[295] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[315] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[335] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[355] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[375] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[395] = (T)(img)(_n6##x,_n10##y,z,c)), \
|
|
(I[16] = (T)(img)(_n7##x,_p9##y,z,c)), \
|
|
(I[36] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[56] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[76] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[96] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[116] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[136] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[156] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[176] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[196] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[216] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[236] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[256] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[276] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[296] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[316] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[336] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[356] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[376] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[396] = (T)(img)(_n7##x,_n10##y,z,c)), \
|
|
(I[17] = (T)(img)(_n8##x,_p9##y,z,c)), \
|
|
(I[37] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[57] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[77] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[97] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[117] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[137] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[157] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[177] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[197] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[217] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[237] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[257] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[277] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[297] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[317] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[337] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[357] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[377] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
(I[397] = (T)(img)(_n8##x,_n10##y,z,c)), \
|
|
(I[18] = (T)(img)(_n9##x,_p9##y,z,c)), \
|
|
(I[38] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[58] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[78] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[98] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[118] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[138] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[158] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[178] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[198] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[218] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[238] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[258] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[278] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[298] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[318] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[338] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[358] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[378] = (T)(img)(_n9##x,_n9##y,z,c)), \
|
|
(I[398] = (T)(img)(_n9##x,_n10##y,z,c)), \
|
|
x + 10>=(img).width()?(img).width() - 1:x + 10); \
|
|
x<=(int)(x1) && ((_n10##x<(img).width() && ( \
|
|
(I[19] = (T)(img)(_n10##x,_p9##y,z,c)), \
|
|
(I[39] = (T)(img)(_n10##x,_p8##y,z,c)), \
|
|
(I[59] = (T)(img)(_n10##x,_p7##y,z,c)), \
|
|
(I[79] = (T)(img)(_n10##x,_p6##y,z,c)), \
|
|
(I[99] = (T)(img)(_n10##x,_p5##y,z,c)), \
|
|
(I[119] = (T)(img)(_n10##x,_p4##y,z,c)), \
|
|
(I[139] = (T)(img)(_n10##x,_p3##y,z,c)), \
|
|
(I[159] = (T)(img)(_n10##x,_p2##y,z,c)), \
|
|
(I[179] = (T)(img)(_n10##x,_p1##y,z,c)), \
|
|
(I[199] = (T)(img)(_n10##x,y,z,c)), \
|
|
(I[219] = (T)(img)(_n10##x,_n1##y,z,c)), \
|
|
(I[239] = (T)(img)(_n10##x,_n2##y,z,c)), \
|
|
(I[259] = (T)(img)(_n10##x,_n3##y,z,c)), \
|
|
(I[279] = (T)(img)(_n10##x,_n4##y,z,c)), \
|
|
(I[299] = (T)(img)(_n10##x,_n5##y,z,c)), \
|
|
(I[319] = (T)(img)(_n10##x,_n6##y,z,c)), \
|
|
(I[339] = (T)(img)(_n10##x,_n7##y,z,c)), \
|
|
(I[359] = (T)(img)(_n10##x,_n8##y,z,c)), \
|
|
(I[379] = (T)(img)(_n10##x,_n9##y,z,c)), \
|
|
(I[399] = (T)(img)(_n10##x,_n10##y,z,c)),1)) || \
|
|
_n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \
|
|
I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \
|
|
I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
|
|
I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
|
|
I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], \
|
|
I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
|
|
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], \
|
|
I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], \
|
|
I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \
|
|
I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], \
|
|
I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], \
|
|
I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \
|
|
I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], \
|
|
I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], \
|
|
I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], \
|
|
I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], \
|
|
I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], \
|
|
I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], \
|
|
I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], \
|
|
I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], \
|
|
_p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x)
|
|
|
|
#define cimg_get20x20(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p9##x,_p9##y,z,c), I[1] = (T)(img)(_p8##x,_p9##y,z,c), I[2] = (T)(img)(_p7##x,_p9##y,z,c), I[3] = (T)(img)(_p6##x,_p9##y,z,c), I[4] = (T)(img)(_p5##x,_p9##y,z,c), I[5] = (T)(img)(_p4##x,_p9##y,z,c), I[6] = (T)(img)(_p3##x,_p9##y,z,c), I[7] = (T)(img)(_p2##x,_p9##y,z,c), I[8] = (T)(img)(_p1##x,_p9##y,z,c), I[9] = (T)(img)(x,_p9##y,z,c), I[10] = (T)(img)(_n1##x,_p9##y,z,c), I[11] = (T)(img)(_n2##x,_p9##y,z,c), I[12] = (T)(img)(_n3##x,_p9##y,z,c), I[13] = (T)(img)(_n4##x,_p9##y,z,c), I[14] = (T)(img)(_n5##x,_p9##y,z,c), I[15] = (T)(img)(_n6##x,_p9##y,z,c), I[16] = (T)(img)(_n7##x,_p9##y,z,c), I[17] = (T)(img)(_n8##x,_p9##y,z,c), I[18] = (T)(img)(_n9##x,_p9##y,z,c), I[19] = (T)(img)(_n10##x,_p9##y,z,c), \
|
|
I[20] = (T)(img)(_p9##x,_p8##y,z,c), I[21] = (T)(img)(_p8##x,_p8##y,z,c), I[22] = (T)(img)(_p7##x,_p8##y,z,c), I[23] = (T)(img)(_p6##x,_p8##y,z,c), I[24] = (T)(img)(_p5##x,_p8##y,z,c), I[25] = (T)(img)(_p4##x,_p8##y,z,c), I[26] = (T)(img)(_p3##x,_p8##y,z,c), I[27] = (T)(img)(_p2##x,_p8##y,z,c), I[28] = (T)(img)(_p1##x,_p8##y,z,c), I[29] = (T)(img)(x,_p8##y,z,c), I[30] = (T)(img)(_n1##x,_p8##y,z,c), I[31] = (T)(img)(_n2##x,_p8##y,z,c), I[32] = (T)(img)(_n3##x,_p8##y,z,c), I[33] = (T)(img)(_n4##x,_p8##y,z,c), I[34] = (T)(img)(_n5##x,_p8##y,z,c), I[35] = (T)(img)(_n6##x,_p8##y,z,c), I[36] = (T)(img)(_n7##x,_p8##y,z,c), I[37] = (T)(img)(_n8##x,_p8##y,z,c), I[38] = (T)(img)(_n9##x,_p8##y,z,c), I[39] = (T)(img)(_n10##x,_p8##y,z,c), \
|
|
I[40] = (T)(img)(_p9##x,_p7##y,z,c), I[41] = (T)(img)(_p8##x,_p7##y,z,c), I[42] = (T)(img)(_p7##x,_p7##y,z,c), I[43] = (T)(img)(_p6##x,_p7##y,z,c), I[44] = (T)(img)(_p5##x,_p7##y,z,c), I[45] = (T)(img)(_p4##x,_p7##y,z,c), I[46] = (T)(img)(_p3##x,_p7##y,z,c), I[47] = (T)(img)(_p2##x,_p7##y,z,c), I[48] = (T)(img)(_p1##x,_p7##y,z,c), I[49] = (T)(img)(x,_p7##y,z,c), I[50] = (T)(img)(_n1##x,_p7##y,z,c), I[51] = (T)(img)(_n2##x,_p7##y,z,c), I[52] = (T)(img)(_n3##x,_p7##y,z,c), I[53] = (T)(img)(_n4##x,_p7##y,z,c), I[54] = (T)(img)(_n5##x,_p7##y,z,c), I[55] = (T)(img)(_n6##x,_p7##y,z,c), I[56] = (T)(img)(_n7##x,_p7##y,z,c), I[57] = (T)(img)(_n8##x,_p7##y,z,c), I[58] = (T)(img)(_n9##x,_p7##y,z,c), I[59] = (T)(img)(_n10##x,_p7##y,z,c), \
|
|
I[60] = (T)(img)(_p9##x,_p6##y,z,c), I[61] = (T)(img)(_p8##x,_p6##y,z,c), I[62] = (T)(img)(_p7##x,_p6##y,z,c), I[63] = (T)(img)(_p6##x,_p6##y,z,c), I[64] = (T)(img)(_p5##x,_p6##y,z,c), I[65] = (T)(img)(_p4##x,_p6##y,z,c), I[66] = (T)(img)(_p3##x,_p6##y,z,c), I[67] = (T)(img)(_p2##x,_p6##y,z,c), I[68] = (T)(img)(_p1##x,_p6##y,z,c), I[69] = (T)(img)(x,_p6##y,z,c), I[70] = (T)(img)(_n1##x,_p6##y,z,c), I[71] = (T)(img)(_n2##x,_p6##y,z,c), I[72] = (T)(img)(_n3##x,_p6##y,z,c), I[73] = (T)(img)(_n4##x,_p6##y,z,c), I[74] = (T)(img)(_n5##x,_p6##y,z,c), I[75] = (T)(img)(_n6##x,_p6##y,z,c), I[76] = (T)(img)(_n7##x,_p6##y,z,c), I[77] = (T)(img)(_n8##x,_p6##y,z,c), I[78] = (T)(img)(_n9##x,_p6##y,z,c), I[79] = (T)(img)(_n10##x,_p6##y,z,c), \
|
|
I[80] = (T)(img)(_p9##x,_p5##y,z,c), I[81] = (T)(img)(_p8##x,_p5##y,z,c), I[82] = (T)(img)(_p7##x,_p5##y,z,c), I[83] = (T)(img)(_p6##x,_p5##y,z,c), I[84] = (T)(img)(_p5##x,_p5##y,z,c), I[85] = (T)(img)(_p4##x,_p5##y,z,c), I[86] = (T)(img)(_p3##x,_p5##y,z,c), I[87] = (T)(img)(_p2##x,_p5##y,z,c), I[88] = (T)(img)(_p1##x,_p5##y,z,c), I[89] = (T)(img)(x,_p5##y,z,c), I[90] = (T)(img)(_n1##x,_p5##y,z,c), I[91] = (T)(img)(_n2##x,_p5##y,z,c), I[92] = (T)(img)(_n3##x,_p5##y,z,c), I[93] = (T)(img)(_n4##x,_p5##y,z,c), I[94] = (T)(img)(_n5##x,_p5##y,z,c), I[95] = (T)(img)(_n6##x,_p5##y,z,c), I[96] = (T)(img)(_n7##x,_p5##y,z,c), I[97] = (T)(img)(_n8##x,_p5##y,z,c), I[98] = (T)(img)(_n9##x,_p5##y,z,c), I[99] = (T)(img)(_n10##x,_p5##y,z,c), \
|
|
I[100] = (T)(img)(_p9##x,_p4##y,z,c), I[101] = (T)(img)(_p8##x,_p4##y,z,c), I[102] = (T)(img)(_p7##x,_p4##y,z,c), I[103] = (T)(img)(_p6##x,_p4##y,z,c), I[104] = (T)(img)(_p5##x,_p4##y,z,c), I[105] = (T)(img)(_p4##x,_p4##y,z,c), I[106] = (T)(img)(_p3##x,_p4##y,z,c), I[107] = (T)(img)(_p2##x,_p4##y,z,c), I[108] = (T)(img)(_p1##x,_p4##y,z,c), I[109] = (T)(img)(x,_p4##y,z,c), I[110] = (T)(img)(_n1##x,_p4##y,z,c), I[111] = (T)(img)(_n2##x,_p4##y,z,c), I[112] = (T)(img)(_n3##x,_p4##y,z,c), I[113] = (T)(img)(_n4##x,_p4##y,z,c), I[114] = (T)(img)(_n5##x,_p4##y,z,c), I[115] = (T)(img)(_n6##x,_p4##y,z,c), I[116] = (T)(img)(_n7##x,_p4##y,z,c), I[117] = (T)(img)(_n8##x,_p4##y,z,c), I[118] = (T)(img)(_n9##x,_p4##y,z,c), I[119] = (T)(img)(_n10##x,_p4##y,z,c), \
|
|
I[120] = (T)(img)(_p9##x,_p3##y,z,c), I[121] = (T)(img)(_p8##x,_p3##y,z,c), I[122] = (T)(img)(_p7##x,_p3##y,z,c), I[123] = (T)(img)(_p6##x,_p3##y,z,c), I[124] = (T)(img)(_p5##x,_p3##y,z,c), I[125] = (T)(img)(_p4##x,_p3##y,z,c), I[126] = (T)(img)(_p3##x,_p3##y,z,c), I[127] = (T)(img)(_p2##x,_p3##y,z,c), I[128] = (T)(img)(_p1##x,_p3##y,z,c), I[129] = (T)(img)(x,_p3##y,z,c), I[130] = (T)(img)(_n1##x,_p3##y,z,c), I[131] = (T)(img)(_n2##x,_p3##y,z,c), I[132] = (T)(img)(_n3##x,_p3##y,z,c), I[133] = (T)(img)(_n4##x,_p3##y,z,c), I[134] = (T)(img)(_n5##x,_p3##y,z,c), I[135] = (T)(img)(_n6##x,_p3##y,z,c), I[136] = (T)(img)(_n7##x,_p3##y,z,c), I[137] = (T)(img)(_n8##x,_p3##y,z,c), I[138] = (T)(img)(_n9##x,_p3##y,z,c), I[139] = (T)(img)(_n10##x,_p3##y,z,c), \
|
|
I[140] = (T)(img)(_p9##x,_p2##y,z,c), I[141] = (T)(img)(_p8##x,_p2##y,z,c), I[142] = (T)(img)(_p7##x,_p2##y,z,c), I[143] = (T)(img)(_p6##x,_p2##y,z,c), I[144] = (T)(img)(_p5##x,_p2##y,z,c), I[145] = (T)(img)(_p4##x,_p2##y,z,c), I[146] = (T)(img)(_p3##x,_p2##y,z,c), I[147] = (T)(img)(_p2##x,_p2##y,z,c), I[148] = (T)(img)(_p1##x,_p2##y,z,c), I[149] = (T)(img)(x,_p2##y,z,c), I[150] = (T)(img)(_n1##x,_p2##y,z,c), I[151] = (T)(img)(_n2##x,_p2##y,z,c), I[152] = (T)(img)(_n3##x,_p2##y,z,c), I[153] = (T)(img)(_n4##x,_p2##y,z,c), I[154] = (T)(img)(_n5##x,_p2##y,z,c), I[155] = (T)(img)(_n6##x,_p2##y,z,c), I[156] = (T)(img)(_n7##x,_p2##y,z,c), I[157] = (T)(img)(_n8##x,_p2##y,z,c), I[158] = (T)(img)(_n9##x,_p2##y,z,c), I[159] = (T)(img)(_n10##x,_p2##y,z,c), \
|
|
I[160] = (T)(img)(_p9##x,_p1##y,z,c), I[161] = (T)(img)(_p8##x,_p1##y,z,c), I[162] = (T)(img)(_p7##x,_p1##y,z,c), I[163] = (T)(img)(_p6##x,_p1##y,z,c), I[164] = (T)(img)(_p5##x,_p1##y,z,c), I[165] = (T)(img)(_p4##x,_p1##y,z,c), I[166] = (T)(img)(_p3##x,_p1##y,z,c), I[167] = (T)(img)(_p2##x,_p1##y,z,c), I[168] = (T)(img)(_p1##x,_p1##y,z,c), I[169] = (T)(img)(x,_p1##y,z,c), I[170] = (T)(img)(_n1##x,_p1##y,z,c), I[171] = (T)(img)(_n2##x,_p1##y,z,c), I[172] = (T)(img)(_n3##x,_p1##y,z,c), I[173] = (T)(img)(_n4##x,_p1##y,z,c), I[174] = (T)(img)(_n5##x,_p1##y,z,c), I[175] = (T)(img)(_n6##x,_p1##y,z,c), I[176] = (T)(img)(_n7##x,_p1##y,z,c), I[177] = (T)(img)(_n8##x,_p1##y,z,c), I[178] = (T)(img)(_n9##x,_p1##y,z,c), I[179] = (T)(img)(_n10##x,_p1##y,z,c), \
|
|
I[180] = (T)(img)(_p9##x,y,z,c), I[181] = (T)(img)(_p8##x,y,z,c), I[182] = (T)(img)(_p7##x,y,z,c), I[183] = (T)(img)(_p6##x,y,z,c), I[184] = (T)(img)(_p5##x,y,z,c), I[185] = (T)(img)(_p4##x,y,z,c), I[186] = (T)(img)(_p3##x,y,z,c), I[187] = (T)(img)(_p2##x,y,z,c), I[188] = (T)(img)(_p1##x,y,z,c), I[189] = (T)(img)(x,y,z,c), I[190] = (T)(img)(_n1##x,y,z,c), I[191] = (T)(img)(_n2##x,y,z,c), I[192] = (T)(img)(_n3##x,y,z,c), I[193] = (T)(img)(_n4##x,y,z,c), I[194] = (T)(img)(_n5##x,y,z,c), I[195] = (T)(img)(_n6##x,y,z,c), I[196] = (T)(img)(_n7##x,y,z,c), I[197] = (T)(img)(_n8##x,y,z,c), I[198] = (T)(img)(_n9##x,y,z,c), I[199] = (T)(img)(_n10##x,y,z,c), \
|
|
I[200] = (T)(img)(_p9##x,_n1##y,z,c), I[201] = (T)(img)(_p8##x,_n1##y,z,c), I[202] = (T)(img)(_p7##x,_n1##y,z,c), I[203] = (T)(img)(_p6##x,_n1##y,z,c), I[204] = (T)(img)(_p5##x,_n1##y,z,c), I[205] = (T)(img)(_p4##x,_n1##y,z,c), I[206] = (T)(img)(_p3##x,_n1##y,z,c), I[207] = (T)(img)(_p2##x,_n1##y,z,c), I[208] = (T)(img)(_p1##x,_n1##y,z,c), I[209] = (T)(img)(x,_n1##y,z,c), I[210] = (T)(img)(_n1##x,_n1##y,z,c), I[211] = (T)(img)(_n2##x,_n1##y,z,c), I[212] = (T)(img)(_n3##x,_n1##y,z,c), I[213] = (T)(img)(_n4##x,_n1##y,z,c), I[214] = (T)(img)(_n5##x,_n1##y,z,c), I[215] = (T)(img)(_n6##x,_n1##y,z,c), I[216] = (T)(img)(_n7##x,_n1##y,z,c), I[217] = (T)(img)(_n8##x,_n1##y,z,c), I[218] = (T)(img)(_n9##x,_n1##y,z,c), I[219] = (T)(img)(_n10##x,_n1##y,z,c), \
|
|
I[220] = (T)(img)(_p9##x,_n2##y,z,c), I[221] = (T)(img)(_p8##x,_n2##y,z,c), I[222] = (T)(img)(_p7##x,_n2##y,z,c), I[223] = (T)(img)(_p6##x,_n2##y,z,c), I[224] = (T)(img)(_p5##x,_n2##y,z,c), I[225] = (T)(img)(_p4##x,_n2##y,z,c), I[226] = (T)(img)(_p3##x,_n2##y,z,c), I[227] = (T)(img)(_p2##x,_n2##y,z,c), I[228] = (T)(img)(_p1##x,_n2##y,z,c), I[229] = (T)(img)(x,_n2##y,z,c), I[230] = (T)(img)(_n1##x,_n2##y,z,c), I[231] = (T)(img)(_n2##x,_n2##y,z,c), I[232] = (T)(img)(_n3##x,_n2##y,z,c), I[233] = (T)(img)(_n4##x,_n2##y,z,c), I[234] = (T)(img)(_n5##x,_n2##y,z,c), I[235] = (T)(img)(_n6##x,_n2##y,z,c), I[236] = (T)(img)(_n7##x,_n2##y,z,c), I[237] = (T)(img)(_n8##x,_n2##y,z,c), I[238] = (T)(img)(_n9##x,_n2##y,z,c), I[239] = (T)(img)(_n10##x,_n2##y,z,c), \
|
|
I[240] = (T)(img)(_p9##x,_n3##y,z,c), I[241] = (T)(img)(_p8##x,_n3##y,z,c), I[242] = (T)(img)(_p7##x,_n3##y,z,c), I[243] = (T)(img)(_p6##x,_n3##y,z,c), I[244] = (T)(img)(_p5##x,_n3##y,z,c), I[245] = (T)(img)(_p4##x,_n3##y,z,c), I[246] = (T)(img)(_p3##x,_n3##y,z,c), I[247] = (T)(img)(_p2##x,_n3##y,z,c), I[248] = (T)(img)(_p1##x,_n3##y,z,c), I[249] = (T)(img)(x,_n3##y,z,c), I[250] = (T)(img)(_n1##x,_n3##y,z,c), I[251] = (T)(img)(_n2##x,_n3##y,z,c), I[252] = (T)(img)(_n3##x,_n3##y,z,c), I[253] = (T)(img)(_n4##x,_n3##y,z,c), I[254] = (T)(img)(_n5##x,_n3##y,z,c), I[255] = (T)(img)(_n6##x,_n3##y,z,c), I[256] = (T)(img)(_n7##x,_n3##y,z,c), I[257] = (T)(img)(_n8##x,_n3##y,z,c), I[258] = (T)(img)(_n9##x,_n3##y,z,c), I[259] = (T)(img)(_n10##x,_n3##y,z,c), \
|
|
I[260] = (T)(img)(_p9##x,_n4##y,z,c), I[261] = (T)(img)(_p8##x,_n4##y,z,c), I[262] = (T)(img)(_p7##x,_n4##y,z,c), I[263] = (T)(img)(_p6##x,_n4##y,z,c), I[264] = (T)(img)(_p5##x,_n4##y,z,c), I[265] = (T)(img)(_p4##x,_n4##y,z,c), I[266] = (T)(img)(_p3##x,_n4##y,z,c), I[267] = (T)(img)(_p2##x,_n4##y,z,c), I[268] = (T)(img)(_p1##x,_n4##y,z,c), I[269] = (T)(img)(x,_n4##y,z,c), I[270] = (T)(img)(_n1##x,_n4##y,z,c), I[271] = (T)(img)(_n2##x,_n4##y,z,c), I[272] = (T)(img)(_n3##x,_n4##y,z,c), I[273] = (T)(img)(_n4##x,_n4##y,z,c), I[274] = (T)(img)(_n5##x,_n4##y,z,c), I[275] = (T)(img)(_n6##x,_n4##y,z,c), I[276] = (T)(img)(_n7##x,_n4##y,z,c), I[277] = (T)(img)(_n8##x,_n4##y,z,c), I[278] = (T)(img)(_n9##x,_n4##y,z,c), I[279] = (T)(img)(_n10##x,_n4##y,z,c), \
|
|
I[280] = (T)(img)(_p9##x,_n5##y,z,c), I[281] = (T)(img)(_p8##x,_n5##y,z,c), I[282] = (T)(img)(_p7##x,_n5##y,z,c), I[283] = (T)(img)(_p6##x,_n5##y,z,c), I[284] = (T)(img)(_p5##x,_n5##y,z,c), I[285] = (T)(img)(_p4##x,_n5##y,z,c), I[286] = (T)(img)(_p3##x,_n5##y,z,c), I[287] = (T)(img)(_p2##x,_n5##y,z,c), I[288] = (T)(img)(_p1##x,_n5##y,z,c), I[289] = (T)(img)(x,_n5##y,z,c), I[290] = (T)(img)(_n1##x,_n5##y,z,c), I[291] = (T)(img)(_n2##x,_n5##y,z,c), I[292] = (T)(img)(_n3##x,_n5##y,z,c), I[293] = (T)(img)(_n4##x,_n5##y,z,c), I[294] = (T)(img)(_n5##x,_n5##y,z,c), I[295] = (T)(img)(_n6##x,_n5##y,z,c), I[296] = (T)(img)(_n7##x,_n5##y,z,c), I[297] = (T)(img)(_n8##x,_n5##y,z,c), I[298] = (T)(img)(_n9##x,_n5##y,z,c), I[299] = (T)(img)(_n10##x,_n5##y,z,c), \
|
|
I[300] = (T)(img)(_p9##x,_n6##y,z,c), I[301] = (T)(img)(_p8##x,_n6##y,z,c), I[302] = (T)(img)(_p7##x,_n6##y,z,c), I[303] = (T)(img)(_p6##x,_n6##y,z,c), I[304] = (T)(img)(_p5##x,_n6##y,z,c), I[305] = (T)(img)(_p4##x,_n6##y,z,c), I[306] = (T)(img)(_p3##x,_n6##y,z,c), I[307] = (T)(img)(_p2##x,_n6##y,z,c), I[308] = (T)(img)(_p1##x,_n6##y,z,c), I[309] = (T)(img)(x,_n6##y,z,c), I[310] = (T)(img)(_n1##x,_n6##y,z,c), I[311] = (T)(img)(_n2##x,_n6##y,z,c), I[312] = (T)(img)(_n3##x,_n6##y,z,c), I[313] = (T)(img)(_n4##x,_n6##y,z,c), I[314] = (T)(img)(_n5##x,_n6##y,z,c), I[315] = (T)(img)(_n6##x,_n6##y,z,c), I[316] = (T)(img)(_n7##x,_n6##y,z,c), I[317] = (T)(img)(_n8##x,_n6##y,z,c), I[318] = (T)(img)(_n9##x,_n6##y,z,c), I[319] = (T)(img)(_n10##x,_n6##y,z,c), \
|
|
I[320] = (T)(img)(_p9##x,_n7##y,z,c), I[321] = (T)(img)(_p8##x,_n7##y,z,c), I[322] = (T)(img)(_p7##x,_n7##y,z,c), I[323] = (T)(img)(_p6##x,_n7##y,z,c), I[324] = (T)(img)(_p5##x,_n7##y,z,c), I[325] = (T)(img)(_p4##x,_n7##y,z,c), I[326] = (T)(img)(_p3##x,_n7##y,z,c), I[327] = (T)(img)(_p2##x,_n7##y,z,c), I[328] = (T)(img)(_p1##x,_n7##y,z,c), I[329] = (T)(img)(x,_n7##y,z,c), I[330] = (T)(img)(_n1##x,_n7##y,z,c), I[331] = (T)(img)(_n2##x,_n7##y,z,c), I[332] = (T)(img)(_n3##x,_n7##y,z,c), I[333] = (T)(img)(_n4##x,_n7##y,z,c), I[334] = (T)(img)(_n5##x,_n7##y,z,c), I[335] = (T)(img)(_n6##x,_n7##y,z,c), I[336] = (T)(img)(_n7##x,_n7##y,z,c), I[337] = (T)(img)(_n8##x,_n7##y,z,c), I[338] = (T)(img)(_n9##x,_n7##y,z,c), I[339] = (T)(img)(_n10##x,_n7##y,z,c), \
|
|
I[340] = (T)(img)(_p9##x,_n8##y,z,c), I[341] = (T)(img)(_p8##x,_n8##y,z,c), I[342] = (T)(img)(_p7##x,_n8##y,z,c), I[343] = (T)(img)(_p6##x,_n8##y,z,c), I[344] = (T)(img)(_p5##x,_n8##y,z,c), I[345] = (T)(img)(_p4##x,_n8##y,z,c), I[346] = (T)(img)(_p3##x,_n8##y,z,c), I[347] = (T)(img)(_p2##x,_n8##y,z,c), I[348] = (T)(img)(_p1##x,_n8##y,z,c), I[349] = (T)(img)(x,_n8##y,z,c), I[350] = (T)(img)(_n1##x,_n8##y,z,c), I[351] = (T)(img)(_n2##x,_n8##y,z,c), I[352] = (T)(img)(_n3##x,_n8##y,z,c), I[353] = (T)(img)(_n4##x,_n8##y,z,c), I[354] = (T)(img)(_n5##x,_n8##y,z,c), I[355] = (T)(img)(_n6##x,_n8##y,z,c), I[356] = (T)(img)(_n7##x,_n8##y,z,c), I[357] = (T)(img)(_n8##x,_n8##y,z,c), I[358] = (T)(img)(_n9##x,_n8##y,z,c), I[359] = (T)(img)(_n10##x,_n8##y,z,c), \
|
|
I[360] = (T)(img)(_p9##x,_n9##y,z,c), I[361] = (T)(img)(_p8##x,_n9##y,z,c), I[362] = (T)(img)(_p7##x,_n9##y,z,c), I[363] = (T)(img)(_p6##x,_n9##y,z,c), I[364] = (T)(img)(_p5##x,_n9##y,z,c), I[365] = (T)(img)(_p4##x,_n9##y,z,c), I[366] = (T)(img)(_p3##x,_n9##y,z,c), I[367] = (T)(img)(_p2##x,_n9##y,z,c), I[368] = (T)(img)(_p1##x,_n9##y,z,c), I[369] = (T)(img)(x,_n9##y,z,c), I[370] = (T)(img)(_n1##x,_n9##y,z,c), I[371] = (T)(img)(_n2##x,_n9##y,z,c), I[372] = (T)(img)(_n3##x,_n9##y,z,c), I[373] = (T)(img)(_n4##x,_n9##y,z,c), I[374] = (T)(img)(_n5##x,_n9##y,z,c), I[375] = (T)(img)(_n6##x,_n9##y,z,c), I[376] = (T)(img)(_n7##x,_n9##y,z,c), I[377] = (T)(img)(_n8##x,_n9##y,z,c), I[378] = (T)(img)(_n9##x,_n9##y,z,c), I[379] = (T)(img)(_n10##x,_n9##y,z,c), \
|
|
I[380] = (T)(img)(_p9##x,_n10##y,z,c), I[381] = (T)(img)(_p8##x,_n10##y,z,c), I[382] = (T)(img)(_p7##x,_n10##y,z,c), I[383] = (T)(img)(_p6##x,_n10##y,z,c), I[384] = (T)(img)(_p5##x,_n10##y,z,c), I[385] = (T)(img)(_p4##x,_n10##y,z,c), I[386] = (T)(img)(_p3##x,_n10##y,z,c), I[387] = (T)(img)(_p2##x,_n10##y,z,c), I[388] = (T)(img)(_p1##x,_n10##y,z,c), I[389] = (T)(img)(x,_n10##y,z,c), I[390] = (T)(img)(_n1##x,_n10##y,z,c), I[391] = (T)(img)(_n2##x,_n10##y,z,c), I[392] = (T)(img)(_n3##x,_n10##y,z,c), I[393] = (T)(img)(_n4##x,_n10##y,z,c), I[394] = (T)(img)(_n5##x,_n10##y,z,c), I[395] = (T)(img)(_n6##x,_n10##y,z,c), I[396] = (T)(img)(_n7##x,_n10##y,z,c), I[397] = (T)(img)(_n8##x,_n10##y,z,c), I[398] = (T)(img)(_n9##x,_n10##y,z,c), I[399] = (T)(img)(_n10##x,_n10##y,z,c);
|
|
|
|
// Define 21x21 loop macros
|
|
//-------------------------
|
|
#define cimg_for21(bound,i) for (int i = 0, \
|
|
_p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
|
|
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
|
|
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
|
|
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
|
|
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
|
|
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
|
|
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
|
|
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
|
|
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9, \
|
|
_n10##i = 10>=(int)(bound)?(int)(bound) - 1:10; \
|
|
_n10##i<(int)(bound) || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
|
|
_p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i)
|
|
|
|
#define cimg_for21X(img,x) cimg_for21((img)._width,x)
|
|
#define cimg_for21Y(img,y) cimg_for21((img)._height,y)
|
|
#define cimg_for21Z(img,z) cimg_for21((img)._depth,z)
|
|
#define cimg_for21C(img,c) cimg_for21((img)._spectrum,c)
|
|
#define cimg_for21XY(img,x,y) cimg_for21Y(img,y) cimg_for21X(img,x)
|
|
#define cimg_for21XZ(img,x,z) cimg_for21Z(img,z) cimg_for21X(img,x)
|
|
#define cimg_for21XC(img,x,c) cimg_for21C(img,c) cimg_for21X(img,x)
|
|
#define cimg_for21YZ(img,y,z) cimg_for21Z(img,z) cimg_for21Y(img,y)
|
|
#define cimg_for21YC(img,y,c) cimg_for21C(img,c) cimg_for21Y(img,y)
|
|
#define cimg_for21ZC(img,z,c) cimg_for21C(img,c) cimg_for21Z(img,z)
|
|
#define cimg_for21XYZ(img,x,y,z) cimg_for21Z(img,z) cimg_for21XY(img,x,y)
|
|
#define cimg_for21XZC(img,x,z,c) cimg_for21C(img,c) cimg_for21XZ(img,x,z)
|
|
#define cimg_for21YZC(img,y,z,c) cimg_for21C(img,c) cimg_for21YZ(img,y,z)
|
|
#define cimg_for21XYZC(img,x,y,z,c) cimg_for21C(img,c) cimg_for21XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in21(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p10##i = i - 10<0?0:i - 10, \
|
|
_p9##i = i - 9<0?0:i - 9, \
|
|
_p8##i = i - 8<0?0:i - 8, \
|
|
_p7##i = i - 7<0?0:i - 7, \
|
|
_p6##i = i - 6<0?0:i - 6, \
|
|
_p5##i = i - 5<0?0:i - 5, \
|
|
_p4##i = i - 4<0?0:i - 4, \
|
|
_p3##i = i - 3<0?0:i - 3, \
|
|
_p2##i = i - 2<0?0:i - 2, \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
|
|
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
|
|
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
|
|
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
|
|
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
|
|
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
|
|
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
|
|
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
|
|
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9, \
|
|
_n10##i = i + 10>=(int)(bound)?(int)(bound) - 1:i + 10; \
|
|
i<=(int)(i1) && (_n10##i<(int)(bound) || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
|
|
_p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i)
|
|
|
|
#define cimg_for_in21X(img,x0,x1,x) cimg_for_in21((img)._width,x0,x1,x)
|
|
#define cimg_for_in21Y(img,y0,y1,y) cimg_for_in21((img)._height,y0,y1,y)
|
|
#define cimg_for_in21Z(img,z0,z1,z) cimg_for_in21((img)._depth,z0,z1,z)
|
|
#define cimg_for_in21C(img,c0,c1,c) cimg_for_in21((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in21XY(img,x0,y0,x1,y1,x,y) cimg_for_in21Y(img,y0,y1,y) cimg_for_in21X(img,x0,x1,x)
|
|
#define cimg_for_in21XZ(img,x0,z0,x1,z1,x,z) cimg_for_in21Z(img,z0,z1,z) cimg_for_in21X(img,x0,x1,x)
|
|
#define cimg_for_in21XC(img,x0,c0,x1,c1,x,c) cimg_for_in21C(img,c0,c1,c) cimg_for_in21X(img,x0,x1,x)
|
|
#define cimg_for_in21YZ(img,y0,z0,y1,z1,y,z) cimg_for_in21Z(img,z0,z1,z) cimg_for_in21Y(img,y0,y1,y)
|
|
#define cimg_for_in21YC(img,y0,c0,y1,c1,y,c) cimg_for_in21C(img,c0,c1,c) cimg_for_in21Y(img,y0,y1,y)
|
|
#define cimg_for_in21ZC(img,z0,c0,z1,c1,z,c) cimg_for_in21C(img,c0,c1,c) cimg_for_in21Z(img,z0,z1,z)
|
|
#define cimg_for_in21XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in21Z(img,z0,z1,z) cimg_for_in21XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in21XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in21C(img,c0,c1,c) cimg_for_in21XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in21YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in21C(img,c0,c1,c) cimg_for_in21YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in21XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in21C(img,c0,c1,c) cimg_for_in21XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for21x21(img,x,y,z,c,I,T) \
|
|
cimg_for21((img)._height,y) for (int x = 0, \
|
|
_p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
|
|
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
|
|
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
|
|
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
|
|
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
|
|
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
|
|
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
|
|
_n9##x = 9>=((img)._width)?(img).width() - 1:9, \
|
|
_n10##x = (int)( \
|
|
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = (T)(img)(0,_p10##y,z,c)), \
|
|
(I[21] = I[22] = I[23] = I[24] = I[25] = I[26] = I[27] = I[28] = I[29] = I[30] = I[31] = (T)(img)(0,_p9##y,z,c)), \
|
|
(I[42] = I[43] = I[44] = I[45] = I[46] = I[47] = I[48] = I[49] = I[50] = I[51] = I[52] = (T)(img)(0,_p8##y,z,c)), \
|
|
(I[63] = I[64] = I[65] = I[66] = I[67] = I[68] = I[69] = I[70] = I[71] = I[72] = I[73] = (T)(img)(0,_p7##y,z,c)), \
|
|
(I[84] = I[85] = I[86] = I[87] = I[88] = I[89] = I[90] = I[91] = I[92] = I[93] = I[94] = (T)(img)(0,_p6##y,z,c)), \
|
|
(I[105] = I[106] = I[107] = I[108] = I[109] = I[110] = I[111] = I[112] = I[113] = I[114] = I[115] = (T)(img)(0,_p5##y,z,c)), \
|
|
(I[126] = I[127] = I[128] = I[129] = I[130] = I[131] = I[132] = I[133] = I[134] = I[135] = I[136] = (T)(img)(0,_p4##y,z,c)), \
|
|
(I[147] = I[148] = I[149] = I[150] = I[151] = I[152] = I[153] = I[154] = I[155] = I[156] = I[157] = (T)(img)(0,_p3##y,z,c)), \
|
|
(I[168] = I[169] = I[170] = I[171] = I[172] = I[173] = I[174] = I[175] = I[176] = I[177] = I[178] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[189] = I[190] = I[191] = I[192] = I[193] = I[194] = I[195] = I[196] = I[197] = I[198] = I[199] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[210] = I[211] = I[212] = I[213] = I[214] = I[215] = I[216] = I[217] = I[218] = I[219] = I[220] = (T)(img)(0,y,z,c)), \
|
|
(I[231] = I[232] = I[233] = I[234] = I[235] = I[236] = I[237] = I[238] = I[239] = I[240] = I[241] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[252] = I[253] = I[254] = I[255] = I[256] = I[257] = I[258] = I[259] = I[260] = I[261] = I[262] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[273] = I[274] = I[275] = I[276] = I[277] = I[278] = I[279] = I[280] = I[281] = I[282] = I[283] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[294] = I[295] = I[296] = I[297] = I[298] = I[299] = I[300] = I[301] = I[302] = I[303] = I[304] = (T)(img)(0,_n4##y,z,c)), \
|
|
(I[315] = I[316] = I[317] = I[318] = I[319] = I[320] = I[321] = I[322] = I[323] = I[324] = I[325] = (T)(img)(0,_n5##y,z,c)), \
|
|
(I[336] = I[337] = I[338] = I[339] = I[340] = I[341] = I[342] = I[343] = I[344] = I[345] = I[346] = (T)(img)(0,_n6##y,z,c)), \
|
|
(I[357] = I[358] = I[359] = I[360] = I[361] = I[362] = I[363] = I[364] = I[365] = I[366] = I[367] = (T)(img)(0,_n7##y,z,c)), \
|
|
(I[378] = I[379] = I[380] = I[381] = I[382] = I[383] = I[384] = I[385] = I[386] = I[387] = I[388] = (T)(img)(0,_n8##y,z,c)), \
|
|
(I[399] = I[400] = I[401] = I[402] = I[403] = I[404] = I[405] = I[406] = I[407] = I[408] = I[409] = (T)(img)(0,_n9##y,z,c)), \
|
|
(I[420] = I[421] = I[422] = I[423] = I[424] = I[425] = I[426] = I[427] = I[428] = I[429] = I[430] = (T)(img)(0,_n10##y,z,c)), \
|
|
(I[11] = (T)(img)(_n1##x,_p10##y,z,c)), \
|
|
(I[32] = (T)(img)(_n1##x,_p9##y,z,c)), \
|
|
(I[53] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[74] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[95] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[116] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[137] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[158] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[179] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[200] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[221] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[242] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[263] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[284] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[305] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[326] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[347] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[368] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[389] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[410] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[431] = (T)(img)(_n1##x,_n10##y,z,c)), \
|
|
(I[12] = (T)(img)(_n2##x,_p10##y,z,c)), \
|
|
(I[33] = (T)(img)(_n2##x,_p9##y,z,c)), \
|
|
(I[54] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[75] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[96] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[117] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[138] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[159] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[180] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[201] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[222] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[243] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[264] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[285] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[306] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[327] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[348] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[369] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[390] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[411] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[432] = (T)(img)(_n2##x,_n10##y,z,c)), \
|
|
(I[13] = (T)(img)(_n3##x,_p10##y,z,c)), \
|
|
(I[34] = (T)(img)(_n3##x,_p9##y,z,c)), \
|
|
(I[55] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[76] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[97] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[118] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[139] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[160] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[181] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[202] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[223] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[244] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[265] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[286] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[307] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[328] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[349] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[370] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[391] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[412] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[433] = (T)(img)(_n3##x,_n10##y,z,c)), \
|
|
(I[14] = (T)(img)(_n4##x,_p10##y,z,c)), \
|
|
(I[35] = (T)(img)(_n4##x,_p9##y,z,c)), \
|
|
(I[56] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[77] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[98] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[119] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[140] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[161] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[182] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[203] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[224] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[245] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[266] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[287] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[308] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[329] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[350] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[371] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[392] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[413] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[434] = (T)(img)(_n4##x,_n10##y,z,c)), \
|
|
(I[15] = (T)(img)(_n5##x,_p10##y,z,c)), \
|
|
(I[36] = (T)(img)(_n5##x,_p9##y,z,c)), \
|
|
(I[57] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[78] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[99] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[120] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[141] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[162] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[183] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[204] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[225] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[246] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[267] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[288] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[309] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[330] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[351] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[372] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[393] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[414] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[435] = (T)(img)(_n5##x,_n10##y,z,c)), \
|
|
(I[16] = (T)(img)(_n6##x,_p10##y,z,c)), \
|
|
(I[37] = (T)(img)(_n6##x,_p9##y,z,c)), \
|
|
(I[58] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[79] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[100] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[121] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[142] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[163] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[184] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[205] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[226] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[247] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[268] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[289] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[310] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[331] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[352] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[373] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[394] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[415] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[436] = (T)(img)(_n6##x,_n10##y,z,c)), \
|
|
(I[17] = (T)(img)(_n7##x,_p10##y,z,c)), \
|
|
(I[38] = (T)(img)(_n7##x,_p9##y,z,c)), \
|
|
(I[59] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[80] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[101] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[122] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[143] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[164] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[185] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[206] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[227] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[248] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[269] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[290] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[311] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[332] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[353] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[374] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[395] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[416] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[437] = (T)(img)(_n7##x,_n10##y,z,c)), \
|
|
(I[18] = (T)(img)(_n8##x,_p10##y,z,c)), \
|
|
(I[39] = (T)(img)(_n8##x,_p9##y,z,c)), \
|
|
(I[60] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[81] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[102] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[123] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[144] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[165] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[186] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[207] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[228] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[249] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[270] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[291] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[312] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[333] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[354] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[375] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[396] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[417] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
(I[438] = (T)(img)(_n8##x,_n10##y,z,c)), \
|
|
(I[19] = (T)(img)(_n9##x,_p10##y,z,c)), \
|
|
(I[40] = (T)(img)(_n9##x,_p9##y,z,c)), \
|
|
(I[61] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[82] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[103] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[124] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[145] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[166] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[187] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[208] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[229] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[250] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[271] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[292] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[313] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[334] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[355] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[376] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[397] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[418] = (T)(img)(_n9##x,_n9##y,z,c)), \
|
|
(I[439] = (T)(img)(_n9##x,_n10##y,z,c)), \
|
|
10>=((img)._width)?(img).width() - 1:10); \
|
|
(_n10##x<(img).width() && ( \
|
|
(I[20] = (T)(img)(_n10##x,_p10##y,z,c)), \
|
|
(I[41] = (T)(img)(_n10##x,_p9##y,z,c)), \
|
|
(I[62] = (T)(img)(_n10##x,_p8##y,z,c)), \
|
|
(I[83] = (T)(img)(_n10##x,_p7##y,z,c)), \
|
|
(I[104] = (T)(img)(_n10##x,_p6##y,z,c)), \
|
|
(I[125] = (T)(img)(_n10##x,_p5##y,z,c)), \
|
|
(I[146] = (T)(img)(_n10##x,_p4##y,z,c)), \
|
|
(I[167] = (T)(img)(_n10##x,_p3##y,z,c)), \
|
|
(I[188] = (T)(img)(_n10##x,_p2##y,z,c)), \
|
|
(I[209] = (T)(img)(_n10##x,_p1##y,z,c)), \
|
|
(I[230] = (T)(img)(_n10##x,y,z,c)), \
|
|
(I[251] = (T)(img)(_n10##x,_n1##y,z,c)), \
|
|
(I[272] = (T)(img)(_n10##x,_n2##y,z,c)), \
|
|
(I[293] = (T)(img)(_n10##x,_n3##y,z,c)), \
|
|
(I[314] = (T)(img)(_n10##x,_n4##y,z,c)), \
|
|
(I[335] = (T)(img)(_n10##x,_n5##y,z,c)), \
|
|
(I[356] = (T)(img)(_n10##x,_n6##y,z,c)), \
|
|
(I[377] = (T)(img)(_n10##x,_n7##y,z,c)), \
|
|
(I[398] = (T)(img)(_n10##x,_n8##y,z,c)), \
|
|
(I[419] = (T)(img)(_n10##x,_n9##y,z,c)), \
|
|
(I[440] = (T)(img)(_n10##x,_n10##y,z,c)),1)) || \
|
|
_n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], \
|
|
I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \
|
|
I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], \
|
|
I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
|
|
I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \
|
|
I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
|
|
I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], \
|
|
I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
|
|
I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], \
|
|
I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \
|
|
I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], \
|
|
I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], \
|
|
I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], \
|
|
I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], \
|
|
I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], \
|
|
I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \
|
|
I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], \
|
|
I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], \
|
|
I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], \
|
|
I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], \
|
|
I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], \
|
|
_p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x)
|
|
|
|
#define cimg_for_in21x21(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in21((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p10##x = x - 10<0?0:x - 10, \
|
|
_p9##x = x - 9<0?0:x - 9, \
|
|
_p8##x = x - 8<0?0:x - 8, \
|
|
_p7##x = x - 7<0?0:x - 7, \
|
|
_p6##x = x - 6<0?0:x - 6, \
|
|
_p5##x = x - 5<0?0:x - 5, \
|
|
_p4##x = x - 4<0?0:x - 4, \
|
|
_p3##x = x - 3<0?0:x - 3, \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
|
|
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
|
|
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
|
|
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
|
|
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
|
|
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
|
|
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
|
|
_n9##x = x + 9>=(img).width()?(img).width() - 1:x + 9, \
|
|
_n10##x = (int)( \
|
|
(I[0] = (T)(img)(_p10##x,_p10##y,z,c)), \
|
|
(I[21] = (T)(img)(_p10##x,_p9##y,z,c)), \
|
|
(I[42] = (T)(img)(_p10##x,_p8##y,z,c)), \
|
|
(I[63] = (T)(img)(_p10##x,_p7##y,z,c)), \
|
|
(I[84] = (T)(img)(_p10##x,_p6##y,z,c)), \
|
|
(I[105] = (T)(img)(_p10##x,_p5##y,z,c)), \
|
|
(I[126] = (T)(img)(_p10##x,_p4##y,z,c)), \
|
|
(I[147] = (T)(img)(_p10##x,_p3##y,z,c)), \
|
|
(I[168] = (T)(img)(_p10##x,_p2##y,z,c)), \
|
|
(I[189] = (T)(img)(_p10##x,_p1##y,z,c)), \
|
|
(I[210] = (T)(img)(_p10##x,y,z,c)), \
|
|
(I[231] = (T)(img)(_p10##x,_n1##y,z,c)), \
|
|
(I[252] = (T)(img)(_p10##x,_n2##y,z,c)), \
|
|
(I[273] = (T)(img)(_p10##x,_n3##y,z,c)), \
|
|
(I[294] = (T)(img)(_p10##x,_n4##y,z,c)), \
|
|
(I[315] = (T)(img)(_p10##x,_n5##y,z,c)), \
|
|
(I[336] = (T)(img)(_p10##x,_n6##y,z,c)), \
|
|
(I[357] = (T)(img)(_p10##x,_n7##y,z,c)), \
|
|
(I[378] = (T)(img)(_p10##x,_n8##y,z,c)), \
|
|
(I[399] = (T)(img)(_p10##x,_n9##y,z,c)), \
|
|
(I[420] = (T)(img)(_p10##x,_n10##y,z,c)), \
|
|
(I[1] = (T)(img)(_p9##x,_p10##y,z,c)), \
|
|
(I[22] = (T)(img)(_p9##x,_p9##y,z,c)), \
|
|
(I[43] = (T)(img)(_p9##x,_p8##y,z,c)), \
|
|
(I[64] = (T)(img)(_p9##x,_p7##y,z,c)), \
|
|
(I[85] = (T)(img)(_p9##x,_p6##y,z,c)), \
|
|
(I[106] = (T)(img)(_p9##x,_p5##y,z,c)), \
|
|
(I[127] = (T)(img)(_p9##x,_p4##y,z,c)), \
|
|
(I[148] = (T)(img)(_p9##x,_p3##y,z,c)), \
|
|
(I[169] = (T)(img)(_p9##x,_p2##y,z,c)), \
|
|
(I[190] = (T)(img)(_p9##x,_p1##y,z,c)), \
|
|
(I[211] = (T)(img)(_p9##x,y,z,c)), \
|
|
(I[232] = (T)(img)(_p9##x,_n1##y,z,c)), \
|
|
(I[253] = (T)(img)(_p9##x,_n2##y,z,c)), \
|
|
(I[274] = (T)(img)(_p9##x,_n3##y,z,c)), \
|
|
(I[295] = (T)(img)(_p9##x,_n4##y,z,c)), \
|
|
(I[316] = (T)(img)(_p9##x,_n5##y,z,c)), \
|
|
(I[337] = (T)(img)(_p9##x,_n6##y,z,c)), \
|
|
(I[358] = (T)(img)(_p9##x,_n7##y,z,c)), \
|
|
(I[379] = (T)(img)(_p9##x,_n8##y,z,c)), \
|
|
(I[400] = (T)(img)(_p9##x,_n9##y,z,c)), \
|
|
(I[421] = (T)(img)(_p9##x,_n10##y,z,c)), \
|
|
(I[2] = (T)(img)(_p8##x,_p10##y,z,c)), \
|
|
(I[23] = (T)(img)(_p8##x,_p9##y,z,c)), \
|
|
(I[44] = (T)(img)(_p8##x,_p8##y,z,c)), \
|
|
(I[65] = (T)(img)(_p8##x,_p7##y,z,c)), \
|
|
(I[86] = (T)(img)(_p8##x,_p6##y,z,c)), \
|
|
(I[107] = (T)(img)(_p8##x,_p5##y,z,c)), \
|
|
(I[128] = (T)(img)(_p8##x,_p4##y,z,c)), \
|
|
(I[149] = (T)(img)(_p8##x,_p3##y,z,c)), \
|
|
(I[170] = (T)(img)(_p8##x,_p2##y,z,c)), \
|
|
(I[191] = (T)(img)(_p8##x,_p1##y,z,c)), \
|
|
(I[212] = (T)(img)(_p8##x,y,z,c)), \
|
|
(I[233] = (T)(img)(_p8##x,_n1##y,z,c)), \
|
|
(I[254] = (T)(img)(_p8##x,_n2##y,z,c)), \
|
|
(I[275] = (T)(img)(_p8##x,_n3##y,z,c)), \
|
|
(I[296] = (T)(img)(_p8##x,_n4##y,z,c)), \
|
|
(I[317] = (T)(img)(_p8##x,_n5##y,z,c)), \
|
|
(I[338] = (T)(img)(_p8##x,_n6##y,z,c)), \
|
|
(I[359] = (T)(img)(_p8##x,_n7##y,z,c)), \
|
|
(I[380] = (T)(img)(_p8##x,_n8##y,z,c)), \
|
|
(I[401] = (T)(img)(_p8##x,_n9##y,z,c)), \
|
|
(I[422] = (T)(img)(_p8##x,_n10##y,z,c)), \
|
|
(I[3] = (T)(img)(_p7##x,_p10##y,z,c)), \
|
|
(I[24] = (T)(img)(_p7##x,_p9##y,z,c)), \
|
|
(I[45] = (T)(img)(_p7##x,_p8##y,z,c)), \
|
|
(I[66] = (T)(img)(_p7##x,_p7##y,z,c)), \
|
|
(I[87] = (T)(img)(_p7##x,_p6##y,z,c)), \
|
|
(I[108] = (T)(img)(_p7##x,_p5##y,z,c)), \
|
|
(I[129] = (T)(img)(_p7##x,_p4##y,z,c)), \
|
|
(I[150] = (T)(img)(_p7##x,_p3##y,z,c)), \
|
|
(I[171] = (T)(img)(_p7##x,_p2##y,z,c)), \
|
|
(I[192] = (T)(img)(_p7##x,_p1##y,z,c)), \
|
|
(I[213] = (T)(img)(_p7##x,y,z,c)), \
|
|
(I[234] = (T)(img)(_p7##x,_n1##y,z,c)), \
|
|
(I[255] = (T)(img)(_p7##x,_n2##y,z,c)), \
|
|
(I[276] = (T)(img)(_p7##x,_n3##y,z,c)), \
|
|
(I[297] = (T)(img)(_p7##x,_n4##y,z,c)), \
|
|
(I[318] = (T)(img)(_p7##x,_n5##y,z,c)), \
|
|
(I[339] = (T)(img)(_p7##x,_n6##y,z,c)), \
|
|
(I[360] = (T)(img)(_p7##x,_n7##y,z,c)), \
|
|
(I[381] = (T)(img)(_p7##x,_n8##y,z,c)), \
|
|
(I[402] = (T)(img)(_p7##x,_n9##y,z,c)), \
|
|
(I[423] = (T)(img)(_p7##x,_n10##y,z,c)), \
|
|
(I[4] = (T)(img)(_p6##x,_p10##y,z,c)), \
|
|
(I[25] = (T)(img)(_p6##x,_p9##y,z,c)), \
|
|
(I[46] = (T)(img)(_p6##x,_p8##y,z,c)), \
|
|
(I[67] = (T)(img)(_p6##x,_p7##y,z,c)), \
|
|
(I[88] = (T)(img)(_p6##x,_p6##y,z,c)), \
|
|
(I[109] = (T)(img)(_p6##x,_p5##y,z,c)), \
|
|
(I[130] = (T)(img)(_p6##x,_p4##y,z,c)), \
|
|
(I[151] = (T)(img)(_p6##x,_p3##y,z,c)), \
|
|
(I[172] = (T)(img)(_p6##x,_p2##y,z,c)), \
|
|
(I[193] = (T)(img)(_p6##x,_p1##y,z,c)), \
|
|
(I[214] = (T)(img)(_p6##x,y,z,c)), \
|
|
(I[235] = (T)(img)(_p6##x,_n1##y,z,c)), \
|
|
(I[256] = (T)(img)(_p6##x,_n2##y,z,c)), \
|
|
(I[277] = (T)(img)(_p6##x,_n3##y,z,c)), \
|
|
(I[298] = (T)(img)(_p6##x,_n4##y,z,c)), \
|
|
(I[319] = (T)(img)(_p6##x,_n5##y,z,c)), \
|
|
(I[340] = (T)(img)(_p6##x,_n6##y,z,c)), \
|
|
(I[361] = (T)(img)(_p6##x,_n7##y,z,c)), \
|
|
(I[382] = (T)(img)(_p6##x,_n8##y,z,c)), \
|
|
(I[403] = (T)(img)(_p6##x,_n9##y,z,c)), \
|
|
(I[424] = (T)(img)(_p6##x,_n10##y,z,c)), \
|
|
(I[5] = (T)(img)(_p5##x,_p10##y,z,c)), \
|
|
(I[26] = (T)(img)(_p5##x,_p9##y,z,c)), \
|
|
(I[47] = (T)(img)(_p5##x,_p8##y,z,c)), \
|
|
(I[68] = (T)(img)(_p5##x,_p7##y,z,c)), \
|
|
(I[89] = (T)(img)(_p5##x,_p6##y,z,c)), \
|
|
(I[110] = (T)(img)(_p5##x,_p5##y,z,c)), \
|
|
(I[131] = (T)(img)(_p5##x,_p4##y,z,c)), \
|
|
(I[152] = (T)(img)(_p5##x,_p3##y,z,c)), \
|
|
(I[173] = (T)(img)(_p5##x,_p2##y,z,c)), \
|
|
(I[194] = (T)(img)(_p5##x,_p1##y,z,c)), \
|
|
(I[215] = (T)(img)(_p5##x,y,z,c)), \
|
|
(I[236] = (T)(img)(_p5##x,_n1##y,z,c)), \
|
|
(I[257] = (T)(img)(_p5##x,_n2##y,z,c)), \
|
|
(I[278] = (T)(img)(_p5##x,_n3##y,z,c)), \
|
|
(I[299] = (T)(img)(_p5##x,_n4##y,z,c)), \
|
|
(I[320] = (T)(img)(_p5##x,_n5##y,z,c)), \
|
|
(I[341] = (T)(img)(_p5##x,_n6##y,z,c)), \
|
|
(I[362] = (T)(img)(_p5##x,_n7##y,z,c)), \
|
|
(I[383] = (T)(img)(_p5##x,_n8##y,z,c)), \
|
|
(I[404] = (T)(img)(_p5##x,_n9##y,z,c)), \
|
|
(I[425] = (T)(img)(_p5##x,_n10##y,z,c)), \
|
|
(I[6] = (T)(img)(_p4##x,_p10##y,z,c)), \
|
|
(I[27] = (T)(img)(_p4##x,_p9##y,z,c)), \
|
|
(I[48] = (T)(img)(_p4##x,_p8##y,z,c)), \
|
|
(I[69] = (T)(img)(_p4##x,_p7##y,z,c)), \
|
|
(I[90] = (T)(img)(_p4##x,_p6##y,z,c)), \
|
|
(I[111] = (T)(img)(_p4##x,_p5##y,z,c)), \
|
|
(I[132] = (T)(img)(_p4##x,_p4##y,z,c)), \
|
|
(I[153] = (T)(img)(_p4##x,_p3##y,z,c)), \
|
|
(I[174] = (T)(img)(_p4##x,_p2##y,z,c)), \
|
|
(I[195] = (T)(img)(_p4##x,_p1##y,z,c)), \
|
|
(I[216] = (T)(img)(_p4##x,y,z,c)), \
|
|
(I[237] = (T)(img)(_p4##x,_n1##y,z,c)), \
|
|
(I[258] = (T)(img)(_p4##x,_n2##y,z,c)), \
|
|
(I[279] = (T)(img)(_p4##x,_n3##y,z,c)), \
|
|
(I[300] = (T)(img)(_p4##x,_n4##y,z,c)), \
|
|
(I[321] = (T)(img)(_p4##x,_n5##y,z,c)), \
|
|
(I[342] = (T)(img)(_p4##x,_n6##y,z,c)), \
|
|
(I[363] = (T)(img)(_p4##x,_n7##y,z,c)), \
|
|
(I[384] = (T)(img)(_p4##x,_n8##y,z,c)), \
|
|
(I[405] = (T)(img)(_p4##x,_n9##y,z,c)), \
|
|
(I[426] = (T)(img)(_p4##x,_n10##y,z,c)), \
|
|
(I[7] = (T)(img)(_p3##x,_p10##y,z,c)), \
|
|
(I[28] = (T)(img)(_p3##x,_p9##y,z,c)), \
|
|
(I[49] = (T)(img)(_p3##x,_p8##y,z,c)), \
|
|
(I[70] = (T)(img)(_p3##x,_p7##y,z,c)), \
|
|
(I[91] = (T)(img)(_p3##x,_p6##y,z,c)), \
|
|
(I[112] = (T)(img)(_p3##x,_p5##y,z,c)), \
|
|
(I[133] = (T)(img)(_p3##x,_p4##y,z,c)), \
|
|
(I[154] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[175] = (T)(img)(_p3##x,_p2##y,z,c)), \
|
|
(I[196] = (T)(img)(_p3##x,_p1##y,z,c)), \
|
|
(I[217] = (T)(img)(_p3##x,y,z,c)), \
|
|
(I[238] = (T)(img)(_p3##x,_n1##y,z,c)), \
|
|
(I[259] = (T)(img)(_p3##x,_n2##y,z,c)), \
|
|
(I[280] = (T)(img)(_p3##x,_n3##y,z,c)), \
|
|
(I[301] = (T)(img)(_p3##x,_n4##y,z,c)), \
|
|
(I[322] = (T)(img)(_p3##x,_n5##y,z,c)), \
|
|
(I[343] = (T)(img)(_p3##x,_n6##y,z,c)), \
|
|
(I[364] = (T)(img)(_p3##x,_n7##y,z,c)), \
|
|
(I[385] = (T)(img)(_p3##x,_n8##y,z,c)), \
|
|
(I[406] = (T)(img)(_p3##x,_n9##y,z,c)), \
|
|
(I[427] = (T)(img)(_p3##x,_n10##y,z,c)), \
|
|
(I[8] = (T)(img)(_p2##x,_p10##y,z,c)), \
|
|
(I[29] = (T)(img)(_p2##x,_p9##y,z,c)), \
|
|
(I[50] = (T)(img)(_p2##x,_p8##y,z,c)), \
|
|
(I[71] = (T)(img)(_p2##x,_p7##y,z,c)), \
|
|
(I[92] = (T)(img)(_p2##x,_p6##y,z,c)), \
|
|
(I[113] = (T)(img)(_p2##x,_p5##y,z,c)), \
|
|
(I[134] = (T)(img)(_p2##x,_p4##y,z,c)), \
|
|
(I[155] = (T)(img)(_p2##x,_p3##y,z,c)), \
|
|
(I[176] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[197] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[218] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[239] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[260] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[281] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[302] = (T)(img)(_p2##x,_n4##y,z,c)), \
|
|
(I[323] = (T)(img)(_p2##x,_n5##y,z,c)), \
|
|
(I[344] = (T)(img)(_p2##x,_n6##y,z,c)), \
|
|
(I[365] = (T)(img)(_p2##x,_n7##y,z,c)), \
|
|
(I[386] = (T)(img)(_p2##x,_n8##y,z,c)), \
|
|
(I[407] = (T)(img)(_p2##x,_n9##y,z,c)), \
|
|
(I[428] = (T)(img)(_p2##x,_n10##y,z,c)), \
|
|
(I[9] = (T)(img)(_p1##x,_p10##y,z,c)), \
|
|
(I[30] = (T)(img)(_p1##x,_p9##y,z,c)), \
|
|
(I[51] = (T)(img)(_p1##x,_p8##y,z,c)), \
|
|
(I[72] = (T)(img)(_p1##x,_p7##y,z,c)), \
|
|
(I[93] = (T)(img)(_p1##x,_p6##y,z,c)), \
|
|
(I[114] = (T)(img)(_p1##x,_p5##y,z,c)), \
|
|
(I[135] = (T)(img)(_p1##x,_p4##y,z,c)), \
|
|
(I[156] = (T)(img)(_p1##x,_p3##y,z,c)), \
|
|
(I[177] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[198] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[219] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[240] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[261] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[282] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[303] = (T)(img)(_p1##x,_n4##y,z,c)), \
|
|
(I[324] = (T)(img)(_p1##x,_n5##y,z,c)), \
|
|
(I[345] = (T)(img)(_p1##x,_n6##y,z,c)), \
|
|
(I[366] = (T)(img)(_p1##x,_n7##y,z,c)), \
|
|
(I[387] = (T)(img)(_p1##x,_n8##y,z,c)), \
|
|
(I[408] = (T)(img)(_p1##x,_n9##y,z,c)), \
|
|
(I[429] = (T)(img)(_p1##x,_n10##y,z,c)), \
|
|
(I[10] = (T)(img)(x,_p10##y,z,c)), \
|
|
(I[31] = (T)(img)(x,_p9##y,z,c)), \
|
|
(I[52] = (T)(img)(x,_p8##y,z,c)), \
|
|
(I[73] = (T)(img)(x,_p7##y,z,c)), \
|
|
(I[94] = (T)(img)(x,_p6##y,z,c)), \
|
|
(I[115] = (T)(img)(x,_p5##y,z,c)), \
|
|
(I[136] = (T)(img)(x,_p4##y,z,c)), \
|
|
(I[157] = (T)(img)(x,_p3##y,z,c)), \
|
|
(I[178] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[199] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[220] = (T)(img)(x,y,z,c)), \
|
|
(I[241] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[262] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[283] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[304] = (T)(img)(x,_n4##y,z,c)), \
|
|
(I[325] = (T)(img)(x,_n5##y,z,c)), \
|
|
(I[346] = (T)(img)(x,_n6##y,z,c)), \
|
|
(I[367] = (T)(img)(x,_n7##y,z,c)), \
|
|
(I[388] = (T)(img)(x,_n8##y,z,c)), \
|
|
(I[409] = (T)(img)(x,_n9##y,z,c)), \
|
|
(I[430] = (T)(img)(x,_n10##y,z,c)), \
|
|
(I[11] = (T)(img)(_n1##x,_p10##y,z,c)), \
|
|
(I[32] = (T)(img)(_n1##x,_p9##y,z,c)), \
|
|
(I[53] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[74] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[95] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[116] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[137] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[158] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[179] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[200] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[221] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[242] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[263] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[284] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[305] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[326] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[347] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[368] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[389] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[410] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[431] = (T)(img)(_n1##x,_n10##y,z,c)), \
|
|
(I[12] = (T)(img)(_n2##x,_p10##y,z,c)), \
|
|
(I[33] = (T)(img)(_n2##x,_p9##y,z,c)), \
|
|
(I[54] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[75] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[96] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[117] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[138] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[159] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[180] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[201] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[222] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[243] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[264] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[285] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[306] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[327] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[348] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[369] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[390] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[411] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[432] = (T)(img)(_n2##x,_n10##y,z,c)), \
|
|
(I[13] = (T)(img)(_n3##x,_p10##y,z,c)), \
|
|
(I[34] = (T)(img)(_n3##x,_p9##y,z,c)), \
|
|
(I[55] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[76] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[97] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[118] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[139] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[160] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[181] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[202] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[223] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[244] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[265] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[286] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[307] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[328] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[349] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[370] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[391] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[412] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[433] = (T)(img)(_n3##x,_n10##y,z,c)), \
|
|
(I[14] = (T)(img)(_n4##x,_p10##y,z,c)), \
|
|
(I[35] = (T)(img)(_n4##x,_p9##y,z,c)), \
|
|
(I[56] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[77] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[98] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[119] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[140] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[161] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[182] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[203] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[224] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[245] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[266] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[287] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[308] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[329] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[350] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[371] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[392] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[413] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[434] = (T)(img)(_n4##x,_n10##y,z,c)), \
|
|
(I[15] = (T)(img)(_n5##x,_p10##y,z,c)), \
|
|
(I[36] = (T)(img)(_n5##x,_p9##y,z,c)), \
|
|
(I[57] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[78] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[99] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[120] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[141] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[162] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[183] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[204] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[225] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[246] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[267] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[288] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[309] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[330] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[351] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[372] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[393] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[414] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[435] = (T)(img)(_n5##x,_n10##y,z,c)), \
|
|
(I[16] = (T)(img)(_n6##x,_p10##y,z,c)), \
|
|
(I[37] = (T)(img)(_n6##x,_p9##y,z,c)), \
|
|
(I[58] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[79] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[100] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[121] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[142] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[163] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[184] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[205] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[226] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[247] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[268] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[289] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[310] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[331] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[352] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[373] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[394] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[415] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[436] = (T)(img)(_n6##x,_n10##y,z,c)), \
|
|
(I[17] = (T)(img)(_n7##x,_p10##y,z,c)), \
|
|
(I[38] = (T)(img)(_n7##x,_p9##y,z,c)), \
|
|
(I[59] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[80] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[101] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[122] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[143] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[164] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[185] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[206] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[227] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[248] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[269] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[290] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[311] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[332] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[353] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[374] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[395] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[416] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[437] = (T)(img)(_n7##x,_n10##y,z,c)), \
|
|
(I[18] = (T)(img)(_n8##x,_p10##y,z,c)), \
|
|
(I[39] = (T)(img)(_n8##x,_p9##y,z,c)), \
|
|
(I[60] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[81] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[102] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[123] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[144] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[165] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[186] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[207] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[228] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[249] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[270] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[291] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[312] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[333] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[354] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[375] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[396] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[417] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
(I[438] = (T)(img)(_n8##x,_n10##y,z,c)), \
|
|
(I[19] = (T)(img)(_n9##x,_p10##y,z,c)), \
|
|
(I[40] = (T)(img)(_n9##x,_p9##y,z,c)), \
|
|
(I[61] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[82] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[103] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[124] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[145] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[166] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[187] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[208] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[229] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[250] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[271] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[292] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[313] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[334] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[355] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[376] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[397] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[418] = (T)(img)(_n9##x,_n9##y,z,c)), \
|
|
(I[439] = (T)(img)(_n9##x,_n10##y,z,c)), \
|
|
x + 10>=(img).width()?(img).width() - 1:x + 10); \
|
|
x<=(int)(x1) && ((_n10##x<(img).width() && ( \
|
|
(I[20] = (T)(img)(_n10##x,_p10##y,z,c)), \
|
|
(I[41] = (T)(img)(_n10##x,_p9##y,z,c)), \
|
|
(I[62] = (T)(img)(_n10##x,_p8##y,z,c)), \
|
|
(I[83] = (T)(img)(_n10##x,_p7##y,z,c)), \
|
|
(I[104] = (T)(img)(_n10##x,_p6##y,z,c)), \
|
|
(I[125] = (T)(img)(_n10##x,_p5##y,z,c)), \
|
|
(I[146] = (T)(img)(_n10##x,_p4##y,z,c)), \
|
|
(I[167] = (T)(img)(_n10##x,_p3##y,z,c)), \
|
|
(I[188] = (T)(img)(_n10##x,_p2##y,z,c)), \
|
|
(I[209] = (T)(img)(_n10##x,_p1##y,z,c)), \
|
|
(I[230] = (T)(img)(_n10##x,y,z,c)), \
|
|
(I[251] = (T)(img)(_n10##x,_n1##y,z,c)), \
|
|
(I[272] = (T)(img)(_n10##x,_n2##y,z,c)), \
|
|
(I[293] = (T)(img)(_n10##x,_n3##y,z,c)), \
|
|
(I[314] = (T)(img)(_n10##x,_n4##y,z,c)), \
|
|
(I[335] = (T)(img)(_n10##x,_n5##y,z,c)), \
|
|
(I[356] = (T)(img)(_n10##x,_n6##y,z,c)), \
|
|
(I[377] = (T)(img)(_n10##x,_n7##y,z,c)), \
|
|
(I[398] = (T)(img)(_n10##x,_n8##y,z,c)), \
|
|
(I[419] = (T)(img)(_n10##x,_n9##y,z,c)), \
|
|
(I[440] = (T)(img)(_n10##x,_n10##y,z,c)),1)) || \
|
|
_n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], \
|
|
I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \
|
|
I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], \
|
|
I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
|
|
I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \
|
|
I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
|
|
I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], \
|
|
I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
|
|
I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], \
|
|
I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \
|
|
I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], \
|
|
I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], \
|
|
I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], \
|
|
I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], \
|
|
I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], \
|
|
I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \
|
|
I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], \
|
|
I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], \
|
|
I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], \
|
|
I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], \
|
|
I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], \
|
|
_p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x)
|
|
|
|
#define cimg_get21x21(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p10##x,_p10##y,z,c), I[1] = (T)(img)(_p9##x,_p10##y,z,c), I[2] = (T)(img)(_p8##x,_p10##y,z,c), I[3] = (T)(img)(_p7##x,_p10##y,z,c), I[4] = (T)(img)(_p6##x,_p10##y,z,c), I[5] = (T)(img)(_p5##x,_p10##y,z,c), I[6] = (T)(img)(_p4##x,_p10##y,z,c), I[7] = (T)(img)(_p3##x,_p10##y,z,c), I[8] = (T)(img)(_p2##x,_p10##y,z,c), I[9] = (T)(img)(_p1##x,_p10##y,z,c), I[10] = (T)(img)(x,_p10##y,z,c), I[11] = (T)(img)(_n1##x,_p10##y,z,c), I[12] = (T)(img)(_n2##x,_p10##y,z,c), I[13] = (T)(img)(_n3##x,_p10##y,z,c), I[14] = (T)(img)(_n4##x,_p10##y,z,c), I[15] = (T)(img)(_n5##x,_p10##y,z,c), I[16] = (T)(img)(_n6##x,_p10##y,z,c), I[17] = (T)(img)(_n7##x,_p10##y,z,c), I[18] = (T)(img)(_n8##x,_p10##y,z,c), I[19] = (T)(img)(_n9##x,_p10##y,z,c), I[20] = (T)(img)(_n10##x,_p10##y,z,c), \
|
|
I[21] = (T)(img)(_p10##x,_p9##y,z,c), I[22] = (T)(img)(_p9##x,_p9##y,z,c), I[23] = (T)(img)(_p8##x,_p9##y,z,c), I[24] = (T)(img)(_p7##x,_p9##y,z,c), I[25] = (T)(img)(_p6##x,_p9##y,z,c), I[26] = (T)(img)(_p5##x,_p9##y,z,c), I[27] = (T)(img)(_p4##x,_p9##y,z,c), I[28] = (T)(img)(_p3##x,_p9##y,z,c), I[29] = (T)(img)(_p2##x,_p9##y,z,c), I[30] = (T)(img)(_p1##x,_p9##y,z,c), I[31] = (T)(img)(x,_p9##y,z,c), I[32] = (T)(img)(_n1##x,_p9##y,z,c), I[33] = (T)(img)(_n2##x,_p9##y,z,c), I[34] = (T)(img)(_n3##x,_p9##y,z,c), I[35] = (T)(img)(_n4##x,_p9##y,z,c), I[36] = (T)(img)(_n5##x,_p9##y,z,c), I[37] = (T)(img)(_n6##x,_p9##y,z,c), I[38] = (T)(img)(_n7##x,_p9##y,z,c), I[39] = (T)(img)(_n8##x,_p9##y,z,c), I[40] = (T)(img)(_n9##x,_p9##y,z,c), I[41] = (T)(img)(_n10##x,_p9##y,z,c), \
|
|
I[42] = (T)(img)(_p10##x,_p8##y,z,c), I[43] = (T)(img)(_p9##x,_p8##y,z,c), I[44] = (T)(img)(_p8##x,_p8##y,z,c), I[45] = (T)(img)(_p7##x,_p8##y,z,c), I[46] = (T)(img)(_p6##x,_p8##y,z,c), I[47] = (T)(img)(_p5##x,_p8##y,z,c), I[48] = (T)(img)(_p4##x,_p8##y,z,c), I[49] = (T)(img)(_p3##x,_p8##y,z,c), I[50] = (T)(img)(_p2##x,_p8##y,z,c), I[51] = (T)(img)(_p1##x,_p8##y,z,c), I[52] = (T)(img)(x,_p8##y,z,c), I[53] = (T)(img)(_n1##x,_p8##y,z,c), I[54] = (T)(img)(_n2##x,_p8##y,z,c), I[55] = (T)(img)(_n3##x,_p8##y,z,c), I[56] = (T)(img)(_n4##x,_p8##y,z,c), I[57] = (T)(img)(_n5##x,_p8##y,z,c), I[58] = (T)(img)(_n6##x,_p8##y,z,c), I[59] = (T)(img)(_n7##x,_p8##y,z,c), I[60] = (T)(img)(_n8##x,_p8##y,z,c), I[61] = (T)(img)(_n9##x,_p8##y,z,c), I[62] = (T)(img)(_n10##x,_p8##y,z,c), \
|
|
I[63] = (T)(img)(_p10##x,_p7##y,z,c), I[64] = (T)(img)(_p9##x,_p7##y,z,c), I[65] = (T)(img)(_p8##x,_p7##y,z,c), I[66] = (T)(img)(_p7##x,_p7##y,z,c), I[67] = (T)(img)(_p6##x,_p7##y,z,c), I[68] = (T)(img)(_p5##x,_p7##y,z,c), I[69] = (T)(img)(_p4##x,_p7##y,z,c), I[70] = (T)(img)(_p3##x,_p7##y,z,c), I[71] = (T)(img)(_p2##x,_p7##y,z,c), I[72] = (T)(img)(_p1##x,_p7##y,z,c), I[73] = (T)(img)(x,_p7##y,z,c), I[74] = (T)(img)(_n1##x,_p7##y,z,c), I[75] = (T)(img)(_n2##x,_p7##y,z,c), I[76] = (T)(img)(_n3##x,_p7##y,z,c), I[77] = (T)(img)(_n4##x,_p7##y,z,c), I[78] = (T)(img)(_n5##x,_p7##y,z,c), I[79] = (T)(img)(_n6##x,_p7##y,z,c), I[80] = (T)(img)(_n7##x,_p7##y,z,c), I[81] = (T)(img)(_n8##x,_p7##y,z,c), I[82] = (T)(img)(_n9##x,_p7##y,z,c), I[83] = (T)(img)(_n10##x,_p7##y,z,c), \
|
|
I[84] = (T)(img)(_p10##x,_p6##y,z,c), I[85] = (T)(img)(_p9##x,_p6##y,z,c), I[86] = (T)(img)(_p8##x,_p6##y,z,c), I[87] = (T)(img)(_p7##x,_p6##y,z,c), I[88] = (T)(img)(_p6##x,_p6##y,z,c), I[89] = (T)(img)(_p5##x,_p6##y,z,c), I[90] = (T)(img)(_p4##x,_p6##y,z,c), I[91] = (T)(img)(_p3##x,_p6##y,z,c), I[92] = (T)(img)(_p2##x,_p6##y,z,c), I[93] = (T)(img)(_p1##x,_p6##y,z,c), I[94] = (T)(img)(x,_p6##y,z,c), I[95] = (T)(img)(_n1##x,_p6##y,z,c), I[96] = (T)(img)(_n2##x,_p6##y,z,c), I[97] = (T)(img)(_n3##x,_p6##y,z,c), I[98] = (T)(img)(_n4##x,_p6##y,z,c), I[99] = (T)(img)(_n5##x,_p6##y,z,c), I[100] = (T)(img)(_n6##x,_p6##y,z,c), I[101] = (T)(img)(_n7##x,_p6##y,z,c), I[102] = (T)(img)(_n8##x,_p6##y,z,c), I[103] = (T)(img)(_n9##x,_p6##y,z,c), I[104] = (T)(img)(_n10##x,_p6##y,z,c), \
|
|
I[105] = (T)(img)(_p10##x,_p5##y,z,c), I[106] = (T)(img)(_p9##x,_p5##y,z,c), I[107] = (T)(img)(_p8##x,_p5##y,z,c), I[108] = (T)(img)(_p7##x,_p5##y,z,c), I[109] = (T)(img)(_p6##x,_p5##y,z,c), I[110] = (T)(img)(_p5##x,_p5##y,z,c), I[111] = (T)(img)(_p4##x,_p5##y,z,c), I[112] = (T)(img)(_p3##x,_p5##y,z,c), I[113] = (T)(img)(_p2##x,_p5##y,z,c), I[114] = (T)(img)(_p1##x,_p5##y,z,c), I[115] = (T)(img)(x,_p5##y,z,c), I[116] = (T)(img)(_n1##x,_p5##y,z,c), I[117] = (T)(img)(_n2##x,_p5##y,z,c), I[118] = (T)(img)(_n3##x,_p5##y,z,c), I[119] = (T)(img)(_n4##x,_p5##y,z,c), I[120] = (T)(img)(_n5##x,_p5##y,z,c), I[121] = (T)(img)(_n6##x,_p5##y,z,c), I[122] = (T)(img)(_n7##x,_p5##y,z,c), I[123] = (T)(img)(_n8##x,_p5##y,z,c), I[124] = (T)(img)(_n9##x,_p5##y,z,c), I[125] = (T)(img)(_n10##x,_p5##y,z,c), \
|
|
I[126] = (T)(img)(_p10##x,_p4##y,z,c), I[127] = (T)(img)(_p9##x,_p4##y,z,c), I[128] = (T)(img)(_p8##x,_p4##y,z,c), I[129] = (T)(img)(_p7##x,_p4##y,z,c), I[130] = (T)(img)(_p6##x,_p4##y,z,c), I[131] = (T)(img)(_p5##x,_p4##y,z,c), I[132] = (T)(img)(_p4##x,_p4##y,z,c), I[133] = (T)(img)(_p3##x,_p4##y,z,c), I[134] = (T)(img)(_p2##x,_p4##y,z,c), I[135] = (T)(img)(_p1##x,_p4##y,z,c), I[136] = (T)(img)(x,_p4##y,z,c), I[137] = (T)(img)(_n1##x,_p4##y,z,c), I[138] = (T)(img)(_n2##x,_p4##y,z,c), I[139] = (T)(img)(_n3##x,_p4##y,z,c), I[140] = (T)(img)(_n4##x,_p4##y,z,c), I[141] = (T)(img)(_n5##x,_p4##y,z,c), I[142] = (T)(img)(_n6##x,_p4##y,z,c), I[143] = (T)(img)(_n7##x,_p4##y,z,c), I[144] = (T)(img)(_n8##x,_p4##y,z,c), I[145] = (T)(img)(_n9##x,_p4##y,z,c), I[146] = (T)(img)(_n10##x,_p4##y,z,c), \
|
|
I[147] = (T)(img)(_p10##x,_p3##y,z,c), I[148] = (T)(img)(_p9##x,_p3##y,z,c), I[149] = (T)(img)(_p8##x,_p3##y,z,c), I[150] = (T)(img)(_p7##x,_p3##y,z,c), I[151] = (T)(img)(_p6##x,_p3##y,z,c), I[152] = (T)(img)(_p5##x,_p3##y,z,c), I[153] = (T)(img)(_p4##x,_p3##y,z,c), I[154] = (T)(img)(_p3##x,_p3##y,z,c), I[155] = (T)(img)(_p2##x,_p3##y,z,c), I[156] = (T)(img)(_p1##x,_p3##y,z,c), I[157] = (T)(img)(x,_p3##y,z,c), I[158] = (T)(img)(_n1##x,_p3##y,z,c), I[159] = (T)(img)(_n2##x,_p3##y,z,c), I[160] = (T)(img)(_n3##x,_p3##y,z,c), I[161] = (T)(img)(_n4##x,_p3##y,z,c), I[162] = (T)(img)(_n5##x,_p3##y,z,c), I[163] = (T)(img)(_n6##x,_p3##y,z,c), I[164] = (T)(img)(_n7##x,_p3##y,z,c), I[165] = (T)(img)(_n8##x,_p3##y,z,c), I[166] = (T)(img)(_n9##x,_p3##y,z,c), I[167] = (T)(img)(_n10##x,_p3##y,z,c), \
|
|
I[168] = (T)(img)(_p10##x,_p2##y,z,c), I[169] = (T)(img)(_p9##x,_p2##y,z,c), I[170] = (T)(img)(_p8##x,_p2##y,z,c), I[171] = (T)(img)(_p7##x,_p2##y,z,c), I[172] = (T)(img)(_p6##x,_p2##y,z,c), I[173] = (T)(img)(_p5##x,_p2##y,z,c), I[174] = (T)(img)(_p4##x,_p2##y,z,c), I[175] = (T)(img)(_p3##x,_p2##y,z,c), I[176] = (T)(img)(_p2##x,_p2##y,z,c), I[177] = (T)(img)(_p1##x,_p2##y,z,c), I[178] = (T)(img)(x,_p2##y,z,c), I[179] = (T)(img)(_n1##x,_p2##y,z,c), I[180] = (T)(img)(_n2##x,_p2##y,z,c), I[181] = (T)(img)(_n3##x,_p2##y,z,c), I[182] = (T)(img)(_n4##x,_p2##y,z,c), I[183] = (T)(img)(_n5##x,_p2##y,z,c), I[184] = (T)(img)(_n6##x,_p2##y,z,c), I[185] = (T)(img)(_n7##x,_p2##y,z,c), I[186] = (T)(img)(_n8##x,_p2##y,z,c), I[187] = (T)(img)(_n9##x,_p2##y,z,c), I[188] = (T)(img)(_n10##x,_p2##y,z,c), \
|
|
I[189] = (T)(img)(_p10##x,_p1##y,z,c), I[190] = (T)(img)(_p9##x,_p1##y,z,c), I[191] = (T)(img)(_p8##x,_p1##y,z,c), I[192] = (T)(img)(_p7##x,_p1##y,z,c), I[193] = (T)(img)(_p6##x,_p1##y,z,c), I[194] = (T)(img)(_p5##x,_p1##y,z,c), I[195] = (T)(img)(_p4##x,_p1##y,z,c), I[196] = (T)(img)(_p3##x,_p1##y,z,c), I[197] = (T)(img)(_p2##x,_p1##y,z,c), I[198] = (T)(img)(_p1##x,_p1##y,z,c), I[199] = (T)(img)(x,_p1##y,z,c), I[200] = (T)(img)(_n1##x,_p1##y,z,c), I[201] = (T)(img)(_n2##x,_p1##y,z,c), I[202] = (T)(img)(_n3##x,_p1##y,z,c), I[203] = (T)(img)(_n4##x,_p1##y,z,c), I[204] = (T)(img)(_n5##x,_p1##y,z,c), I[205] = (T)(img)(_n6##x,_p1##y,z,c), I[206] = (T)(img)(_n7##x,_p1##y,z,c), I[207] = (T)(img)(_n8##x,_p1##y,z,c), I[208] = (T)(img)(_n9##x,_p1##y,z,c), I[209] = (T)(img)(_n10##x,_p1##y,z,c), \
|
|
I[210] = (T)(img)(_p10##x,y,z,c), I[211] = (T)(img)(_p9##x,y,z,c), I[212] = (T)(img)(_p8##x,y,z,c), I[213] = (T)(img)(_p7##x,y,z,c), I[214] = (T)(img)(_p6##x,y,z,c), I[215] = (T)(img)(_p5##x,y,z,c), I[216] = (T)(img)(_p4##x,y,z,c), I[217] = (T)(img)(_p3##x,y,z,c), I[218] = (T)(img)(_p2##x,y,z,c), I[219] = (T)(img)(_p1##x,y,z,c), I[220] = (T)(img)(x,y,z,c), I[221] = (T)(img)(_n1##x,y,z,c), I[222] = (T)(img)(_n2##x,y,z,c), I[223] = (T)(img)(_n3##x,y,z,c), I[224] = (T)(img)(_n4##x,y,z,c), I[225] = (T)(img)(_n5##x,y,z,c), I[226] = (T)(img)(_n6##x,y,z,c), I[227] = (T)(img)(_n7##x,y,z,c), I[228] = (T)(img)(_n8##x,y,z,c), I[229] = (T)(img)(_n9##x,y,z,c), I[230] = (T)(img)(_n10##x,y,z,c), \
|
|
I[231] = (T)(img)(_p10##x,_n1##y,z,c), I[232] = (T)(img)(_p9##x,_n1##y,z,c), I[233] = (T)(img)(_p8##x,_n1##y,z,c), I[234] = (T)(img)(_p7##x,_n1##y,z,c), I[235] = (T)(img)(_p6##x,_n1##y,z,c), I[236] = (T)(img)(_p5##x,_n1##y,z,c), I[237] = (T)(img)(_p4##x,_n1##y,z,c), I[238] = (T)(img)(_p3##x,_n1##y,z,c), I[239] = (T)(img)(_p2##x,_n1##y,z,c), I[240] = (T)(img)(_p1##x,_n1##y,z,c), I[241] = (T)(img)(x,_n1##y,z,c), I[242] = (T)(img)(_n1##x,_n1##y,z,c), I[243] = (T)(img)(_n2##x,_n1##y,z,c), I[244] = (T)(img)(_n3##x,_n1##y,z,c), I[245] = (T)(img)(_n4##x,_n1##y,z,c), I[246] = (T)(img)(_n5##x,_n1##y,z,c), I[247] = (T)(img)(_n6##x,_n1##y,z,c), I[248] = (T)(img)(_n7##x,_n1##y,z,c), I[249] = (T)(img)(_n8##x,_n1##y,z,c), I[250] = (T)(img)(_n9##x,_n1##y,z,c), I[251] = (T)(img)(_n10##x,_n1##y,z,c), \
|
|
I[252] = (T)(img)(_p10##x,_n2##y,z,c), I[253] = (T)(img)(_p9##x,_n2##y,z,c), I[254] = (T)(img)(_p8##x,_n2##y,z,c), I[255] = (T)(img)(_p7##x,_n2##y,z,c), I[256] = (T)(img)(_p6##x,_n2##y,z,c), I[257] = (T)(img)(_p5##x,_n2##y,z,c), I[258] = (T)(img)(_p4##x,_n2##y,z,c), I[259] = (T)(img)(_p3##x,_n2##y,z,c), I[260] = (T)(img)(_p2##x,_n2##y,z,c), I[261] = (T)(img)(_p1##x,_n2##y,z,c), I[262] = (T)(img)(x,_n2##y,z,c), I[263] = (T)(img)(_n1##x,_n2##y,z,c), I[264] = (T)(img)(_n2##x,_n2##y,z,c), I[265] = (T)(img)(_n3##x,_n2##y,z,c), I[266] = (T)(img)(_n4##x,_n2##y,z,c), I[267] = (T)(img)(_n5##x,_n2##y,z,c), I[268] = (T)(img)(_n6##x,_n2##y,z,c), I[269] = (T)(img)(_n7##x,_n2##y,z,c), I[270] = (T)(img)(_n8##x,_n2##y,z,c), I[271] = (T)(img)(_n9##x,_n2##y,z,c), I[272] = (T)(img)(_n10##x,_n2##y,z,c), \
|
|
I[273] = (T)(img)(_p10##x,_n3##y,z,c), I[274] = (T)(img)(_p9##x,_n3##y,z,c), I[275] = (T)(img)(_p8##x,_n3##y,z,c), I[276] = (T)(img)(_p7##x,_n3##y,z,c), I[277] = (T)(img)(_p6##x,_n3##y,z,c), I[278] = (T)(img)(_p5##x,_n3##y,z,c), I[279] = (T)(img)(_p4##x,_n3##y,z,c), I[280] = (T)(img)(_p3##x,_n3##y,z,c), I[281] = (T)(img)(_p2##x,_n3##y,z,c), I[282] = (T)(img)(_p1##x,_n3##y,z,c), I[283] = (T)(img)(x,_n3##y,z,c), I[284] = (T)(img)(_n1##x,_n3##y,z,c), I[285] = (T)(img)(_n2##x,_n3##y,z,c), I[286] = (T)(img)(_n3##x,_n3##y,z,c), I[287] = (T)(img)(_n4##x,_n3##y,z,c), I[288] = (T)(img)(_n5##x,_n3##y,z,c), I[289] = (T)(img)(_n6##x,_n3##y,z,c), I[290] = (T)(img)(_n7##x,_n3##y,z,c), I[291] = (T)(img)(_n8##x,_n3##y,z,c), I[292] = (T)(img)(_n9##x,_n3##y,z,c), I[293] = (T)(img)(_n10##x,_n3##y,z,c), \
|
|
I[294] = (T)(img)(_p10##x,_n4##y,z,c), I[295] = (T)(img)(_p9##x,_n4##y,z,c), I[296] = (T)(img)(_p8##x,_n4##y,z,c), I[297] = (T)(img)(_p7##x,_n4##y,z,c), I[298] = (T)(img)(_p6##x,_n4##y,z,c), I[299] = (T)(img)(_p5##x,_n4##y,z,c), I[300] = (T)(img)(_p4##x,_n4##y,z,c), I[301] = (T)(img)(_p3##x,_n4##y,z,c), I[302] = (T)(img)(_p2##x,_n4##y,z,c), I[303] = (T)(img)(_p1##x,_n4##y,z,c), I[304] = (T)(img)(x,_n4##y,z,c), I[305] = (T)(img)(_n1##x,_n4##y,z,c), I[306] = (T)(img)(_n2##x,_n4##y,z,c), I[307] = (T)(img)(_n3##x,_n4##y,z,c), I[308] = (T)(img)(_n4##x,_n4##y,z,c), I[309] = (T)(img)(_n5##x,_n4##y,z,c), I[310] = (T)(img)(_n6##x,_n4##y,z,c), I[311] = (T)(img)(_n7##x,_n4##y,z,c), I[312] = (T)(img)(_n8##x,_n4##y,z,c), I[313] = (T)(img)(_n9##x,_n4##y,z,c), I[314] = (T)(img)(_n10##x,_n4##y,z,c), \
|
|
I[315] = (T)(img)(_p10##x,_n5##y,z,c), I[316] = (T)(img)(_p9##x,_n5##y,z,c), I[317] = (T)(img)(_p8##x,_n5##y,z,c), I[318] = (T)(img)(_p7##x,_n5##y,z,c), I[319] = (T)(img)(_p6##x,_n5##y,z,c), I[320] = (T)(img)(_p5##x,_n5##y,z,c), I[321] = (T)(img)(_p4##x,_n5##y,z,c), I[322] = (T)(img)(_p3##x,_n5##y,z,c), I[323] = (T)(img)(_p2##x,_n5##y,z,c), I[324] = (T)(img)(_p1##x,_n5##y,z,c), I[325] = (T)(img)(x,_n5##y,z,c), I[326] = (T)(img)(_n1##x,_n5##y,z,c), I[327] = (T)(img)(_n2##x,_n5##y,z,c), I[328] = (T)(img)(_n3##x,_n5##y,z,c), I[329] = (T)(img)(_n4##x,_n5##y,z,c), I[330] = (T)(img)(_n5##x,_n5##y,z,c), I[331] = (T)(img)(_n6##x,_n5##y,z,c), I[332] = (T)(img)(_n7##x,_n5##y,z,c), I[333] = (T)(img)(_n8##x,_n5##y,z,c), I[334] = (T)(img)(_n9##x,_n5##y,z,c), I[335] = (T)(img)(_n10##x,_n5##y,z,c), \
|
|
I[336] = (T)(img)(_p10##x,_n6##y,z,c), I[337] = (T)(img)(_p9##x,_n6##y,z,c), I[338] = (T)(img)(_p8##x,_n6##y,z,c), I[339] = (T)(img)(_p7##x,_n6##y,z,c), I[340] = (T)(img)(_p6##x,_n6##y,z,c), I[341] = (T)(img)(_p5##x,_n6##y,z,c), I[342] = (T)(img)(_p4##x,_n6##y,z,c), I[343] = (T)(img)(_p3##x,_n6##y,z,c), I[344] = (T)(img)(_p2##x,_n6##y,z,c), I[345] = (T)(img)(_p1##x,_n6##y,z,c), I[346] = (T)(img)(x,_n6##y,z,c), I[347] = (T)(img)(_n1##x,_n6##y,z,c), I[348] = (T)(img)(_n2##x,_n6##y,z,c), I[349] = (T)(img)(_n3##x,_n6##y,z,c), I[350] = (T)(img)(_n4##x,_n6##y,z,c), I[351] = (T)(img)(_n5##x,_n6##y,z,c), I[352] = (T)(img)(_n6##x,_n6##y,z,c), I[353] = (T)(img)(_n7##x,_n6##y,z,c), I[354] = (T)(img)(_n8##x,_n6##y,z,c), I[355] = (T)(img)(_n9##x,_n6##y,z,c), I[356] = (T)(img)(_n10##x,_n6##y,z,c), \
|
|
I[357] = (T)(img)(_p10##x,_n7##y,z,c), I[358] = (T)(img)(_p9##x,_n7##y,z,c), I[359] = (T)(img)(_p8##x,_n7##y,z,c), I[360] = (T)(img)(_p7##x,_n7##y,z,c), I[361] = (T)(img)(_p6##x,_n7##y,z,c), I[362] = (T)(img)(_p5##x,_n7##y,z,c), I[363] = (T)(img)(_p4##x,_n7##y,z,c), I[364] = (T)(img)(_p3##x,_n7##y,z,c), I[365] = (T)(img)(_p2##x,_n7##y,z,c), I[366] = (T)(img)(_p1##x,_n7##y,z,c), I[367] = (T)(img)(x,_n7##y,z,c), I[368] = (T)(img)(_n1##x,_n7##y,z,c), I[369] = (T)(img)(_n2##x,_n7##y,z,c), I[370] = (T)(img)(_n3##x,_n7##y,z,c), I[371] = (T)(img)(_n4##x,_n7##y,z,c), I[372] = (T)(img)(_n5##x,_n7##y,z,c), I[373] = (T)(img)(_n6##x,_n7##y,z,c), I[374] = (T)(img)(_n7##x,_n7##y,z,c), I[375] = (T)(img)(_n8##x,_n7##y,z,c), I[376] = (T)(img)(_n9##x,_n7##y,z,c), I[377] = (T)(img)(_n10##x,_n7##y,z,c), \
|
|
I[378] = (T)(img)(_p10##x,_n8##y,z,c), I[379] = (T)(img)(_p9##x,_n8##y,z,c), I[380] = (T)(img)(_p8##x,_n8##y,z,c), I[381] = (T)(img)(_p7##x,_n8##y,z,c), I[382] = (T)(img)(_p6##x,_n8##y,z,c), I[383] = (T)(img)(_p5##x,_n8##y,z,c), I[384] = (T)(img)(_p4##x,_n8##y,z,c), I[385] = (T)(img)(_p3##x,_n8##y,z,c), I[386] = (T)(img)(_p2##x,_n8##y,z,c), I[387] = (T)(img)(_p1##x,_n8##y,z,c), I[388] = (T)(img)(x,_n8##y,z,c), I[389] = (T)(img)(_n1##x,_n8##y,z,c), I[390] = (T)(img)(_n2##x,_n8##y,z,c), I[391] = (T)(img)(_n3##x,_n8##y,z,c), I[392] = (T)(img)(_n4##x,_n8##y,z,c), I[393] = (T)(img)(_n5##x,_n8##y,z,c), I[394] = (T)(img)(_n6##x,_n8##y,z,c), I[395] = (T)(img)(_n7##x,_n8##y,z,c), I[396] = (T)(img)(_n8##x,_n8##y,z,c), I[397] = (T)(img)(_n9##x,_n8##y,z,c), I[398] = (T)(img)(_n10##x,_n8##y,z,c), \
|
|
I[399] = (T)(img)(_p10##x,_n9##y,z,c), I[400] = (T)(img)(_p9##x,_n9##y,z,c), I[401] = (T)(img)(_p8##x,_n9##y,z,c), I[402] = (T)(img)(_p7##x,_n9##y,z,c), I[403] = (T)(img)(_p6##x,_n9##y,z,c), I[404] = (T)(img)(_p5##x,_n9##y,z,c), I[405] = (T)(img)(_p4##x,_n9##y,z,c), I[406] = (T)(img)(_p3##x,_n9##y,z,c), I[407] = (T)(img)(_p2##x,_n9##y,z,c), I[408] = (T)(img)(_p1##x,_n9##y,z,c), I[409] = (T)(img)(x,_n9##y,z,c), I[410] = (T)(img)(_n1##x,_n9##y,z,c), I[411] = (T)(img)(_n2##x,_n9##y,z,c), I[412] = (T)(img)(_n3##x,_n9##y,z,c), I[413] = (T)(img)(_n4##x,_n9##y,z,c), I[414] = (T)(img)(_n5##x,_n9##y,z,c), I[415] = (T)(img)(_n6##x,_n9##y,z,c), I[416] = (T)(img)(_n7##x,_n9##y,z,c), I[417] = (T)(img)(_n8##x,_n9##y,z,c), I[418] = (T)(img)(_n9##x,_n9##y,z,c), I[419] = (T)(img)(_n10##x,_n9##y,z,c), \
|
|
I[420] = (T)(img)(_p10##x,_n10##y,z,c), I[421] = (T)(img)(_p9##x,_n10##y,z,c), I[422] = (T)(img)(_p8##x,_n10##y,z,c), I[423] = (T)(img)(_p7##x,_n10##y,z,c), I[424] = (T)(img)(_p6##x,_n10##y,z,c), I[425] = (T)(img)(_p5##x,_n10##y,z,c), I[426] = (T)(img)(_p4##x,_n10##y,z,c), I[427] = (T)(img)(_p3##x,_n10##y,z,c), I[428] = (T)(img)(_p2##x,_n10##y,z,c), I[429] = (T)(img)(_p1##x,_n10##y,z,c), I[430] = (T)(img)(x,_n10##y,z,c), I[431] = (T)(img)(_n1##x,_n10##y,z,c), I[432] = (T)(img)(_n2##x,_n10##y,z,c), I[433] = (T)(img)(_n3##x,_n10##y,z,c), I[434] = (T)(img)(_n4##x,_n10##y,z,c), I[435] = (T)(img)(_n5##x,_n10##y,z,c), I[436] = (T)(img)(_n6##x,_n10##y,z,c), I[437] = (T)(img)(_n7##x,_n10##y,z,c), I[438] = (T)(img)(_n8##x,_n10##y,z,c), I[439] = (T)(img)(_n9##x,_n10##y,z,c), I[440] = (T)(img)(_n10##x,_n10##y,z,c);
|
|
|
|
// Define 22x22 loop macros
|
|
//-------------------------
|
|
#define cimg_for22(bound,i) for (int i = 0, \
|
|
_p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
|
|
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
|
|
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
|
|
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
|
|
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
|
|
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
|
|
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
|
|
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
|
|
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9, \
|
|
_n10##i = 10>=(int)(bound)?(int)(bound) - 1:10, \
|
|
_n11##i = 11>=(int)(bound)?(int)(bound) - 1:11; \
|
|
_n11##i<(int)(bound) || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
|
|
_p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i)
|
|
|
|
#define cimg_for22X(img,x) cimg_for22((img)._width,x)
|
|
#define cimg_for22Y(img,y) cimg_for22((img)._height,y)
|
|
#define cimg_for22Z(img,z) cimg_for22((img)._depth,z)
|
|
#define cimg_for22C(img,c) cimg_for22((img)._spectrum,c)
|
|
#define cimg_for22XY(img,x,y) cimg_for22Y(img,y) cimg_for22X(img,x)
|
|
#define cimg_for22XZ(img,x,z) cimg_for22Z(img,z) cimg_for22X(img,x)
|
|
#define cimg_for22XC(img,x,c) cimg_for22C(img,c) cimg_for22X(img,x)
|
|
#define cimg_for22YZ(img,y,z) cimg_for22Z(img,z) cimg_for22Y(img,y)
|
|
#define cimg_for22YC(img,y,c) cimg_for22C(img,c) cimg_for22Y(img,y)
|
|
#define cimg_for22ZC(img,z,c) cimg_for22C(img,c) cimg_for22Z(img,z)
|
|
#define cimg_for22XYZ(img,x,y,z) cimg_for22Z(img,z) cimg_for22XY(img,x,y)
|
|
#define cimg_for22XZC(img,x,z,c) cimg_for22C(img,c) cimg_for22XZ(img,x,z)
|
|
#define cimg_for22YZC(img,y,z,c) cimg_for22C(img,c) cimg_for22YZ(img,y,z)
|
|
#define cimg_for22XYZC(img,x,y,z,c) cimg_for22C(img,c) cimg_for22XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in22(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p10##i = i - 10<0?0:i - 10, \
|
|
_p9##i = i - 9<0?0:i - 9, \
|
|
_p8##i = i - 8<0?0:i - 8, \
|
|
_p7##i = i - 7<0?0:i - 7, \
|
|
_p6##i = i - 6<0?0:i - 6, \
|
|
_p5##i = i - 5<0?0:i - 5, \
|
|
_p4##i = i - 4<0?0:i - 4, \
|
|
_p3##i = i - 3<0?0:i - 3, \
|
|
_p2##i = i - 2<0?0:i - 2, \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
|
|
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
|
|
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
|
|
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
|
|
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
|
|
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
|
|
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
|
|
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
|
|
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9, \
|
|
_n10##i = i + 10>=(int)(bound)?(int)(bound) - 1:i + 10, \
|
|
_n11##i = i + 11>=(int)(bound)?(int)(bound) - 1:i + 11; \
|
|
i<=(int)(i1) && (_n11##i<(int)(bound) || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
|
|
_p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i)
|
|
|
|
#define cimg_for_in22X(img,x0,x1,x) cimg_for_in22((img)._width,x0,x1,x)
|
|
#define cimg_for_in22Y(img,y0,y1,y) cimg_for_in22((img)._height,y0,y1,y)
|
|
#define cimg_for_in22Z(img,z0,z1,z) cimg_for_in22((img)._depth,z0,z1,z)
|
|
#define cimg_for_in22C(img,c0,c1,c) cimg_for_in22((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in22XY(img,x0,y0,x1,y1,x,y) cimg_for_in22Y(img,y0,y1,y) cimg_for_in22X(img,x0,x1,x)
|
|
#define cimg_for_in22XZ(img,x0,z0,x1,z1,x,z) cimg_for_in22Z(img,z0,z1,z) cimg_for_in22X(img,x0,x1,x)
|
|
#define cimg_for_in22XC(img,x0,c0,x1,c1,x,c) cimg_for_in22C(img,c0,c1,c) cimg_for_in22X(img,x0,x1,x)
|
|
#define cimg_for_in22YZ(img,y0,z0,y1,z1,y,z) cimg_for_in22Z(img,z0,z1,z) cimg_for_in22Y(img,y0,y1,y)
|
|
#define cimg_for_in22YC(img,y0,c0,y1,c1,y,c) cimg_for_in22C(img,c0,c1,c) cimg_for_in22Y(img,y0,y1,y)
|
|
#define cimg_for_in22ZC(img,z0,c0,z1,c1,z,c) cimg_for_in22C(img,c0,c1,c) cimg_for_in22Z(img,z0,z1,z)
|
|
#define cimg_for_in22XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in22Z(img,z0,z1,z) cimg_for_in22XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in22XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in22C(img,c0,c1,c) cimg_for_in22XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in22YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in22C(img,c0,c1,c) cimg_for_in22YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in22XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in22C(img,c0,c1,c) cimg_for_in22XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for22x22(img,x,y,z,c,I,T) \
|
|
cimg_for22((img)._height,y) for (int x = 0, \
|
|
_p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
|
|
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
|
|
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
|
|
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
|
|
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
|
|
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
|
|
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
|
|
_n9##x = 9>=((img)._width)?(img).width() - 1:9, \
|
|
_n10##x = 10>=((img)._width)?(img).width() - 1:10, \
|
|
_n11##x = (int)( \
|
|
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = (T)(img)(0,_p10##y,z,c)), \
|
|
(I[22] = I[23] = I[24] = I[25] = I[26] = I[27] = I[28] = I[29] = I[30] = I[31] = I[32] = (T)(img)(0,_p9##y,z,c)), \
|
|
(I[44] = I[45] = I[46] = I[47] = I[48] = I[49] = I[50] = I[51] = I[52] = I[53] = I[54] = (T)(img)(0,_p8##y,z,c)), \
|
|
(I[66] = I[67] = I[68] = I[69] = I[70] = I[71] = I[72] = I[73] = I[74] = I[75] = I[76] = (T)(img)(0,_p7##y,z,c)), \
|
|
(I[88] = I[89] = I[90] = I[91] = I[92] = I[93] = I[94] = I[95] = I[96] = I[97] = I[98] = (T)(img)(0,_p6##y,z,c)), \
|
|
(I[110] = I[111] = I[112] = I[113] = I[114] = I[115] = I[116] = I[117] = I[118] = I[119] = I[120] = (T)(img)(0,_p5##y,z,c)), \
|
|
(I[132] = I[133] = I[134] = I[135] = I[136] = I[137] = I[138] = I[139] = I[140] = I[141] = I[142] = (T)(img)(0,_p4##y,z,c)), \
|
|
(I[154] = I[155] = I[156] = I[157] = I[158] = I[159] = I[160] = I[161] = I[162] = I[163] = I[164] = (T)(img)(0,_p3##y,z,c)), \
|
|
(I[176] = I[177] = I[178] = I[179] = I[180] = I[181] = I[182] = I[183] = I[184] = I[185] = I[186] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[198] = I[199] = I[200] = I[201] = I[202] = I[203] = I[204] = I[205] = I[206] = I[207] = I[208] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[220] = I[221] = I[222] = I[223] = I[224] = I[225] = I[226] = I[227] = I[228] = I[229] = I[230] = (T)(img)(0,y,z,c)), \
|
|
(I[242] = I[243] = I[244] = I[245] = I[246] = I[247] = I[248] = I[249] = I[250] = I[251] = I[252] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[264] = I[265] = I[266] = I[267] = I[268] = I[269] = I[270] = I[271] = I[272] = I[273] = I[274] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[286] = I[287] = I[288] = I[289] = I[290] = I[291] = I[292] = I[293] = I[294] = I[295] = I[296] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[308] = I[309] = I[310] = I[311] = I[312] = I[313] = I[314] = I[315] = I[316] = I[317] = I[318] = (T)(img)(0,_n4##y,z,c)), \
|
|
(I[330] = I[331] = I[332] = I[333] = I[334] = I[335] = I[336] = I[337] = I[338] = I[339] = I[340] = (T)(img)(0,_n5##y,z,c)), \
|
|
(I[352] = I[353] = I[354] = I[355] = I[356] = I[357] = I[358] = I[359] = I[360] = I[361] = I[362] = (T)(img)(0,_n6##y,z,c)), \
|
|
(I[374] = I[375] = I[376] = I[377] = I[378] = I[379] = I[380] = I[381] = I[382] = I[383] = I[384] = (T)(img)(0,_n7##y,z,c)), \
|
|
(I[396] = I[397] = I[398] = I[399] = I[400] = I[401] = I[402] = I[403] = I[404] = I[405] = I[406] = (T)(img)(0,_n8##y,z,c)), \
|
|
(I[418] = I[419] = I[420] = I[421] = I[422] = I[423] = I[424] = I[425] = I[426] = I[427] = I[428] = (T)(img)(0,_n9##y,z,c)), \
|
|
(I[440] = I[441] = I[442] = I[443] = I[444] = I[445] = I[446] = I[447] = I[448] = I[449] = I[450] = (T)(img)(0,_n10##y,z,c)), \
|
|
(I[462] = I[463] = I[464] = I[465] = I[466] = I[467] = I[468] = I[469] = I[470] = I[471] = I[472] = (T)(img)(0,_n11##y,z,c)), \
|
|
(I[11] = (T)(img)(_n1##x,_p10##y,z,c)), \
|
|
(I[33] = (T)(img)(_n1##x,_p9##y,z,c)), \
|
|
(I[55] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[77] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[99] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[121] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[143] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[165] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[187] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[209] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[231] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[253] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[275] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[297] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[319] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[341] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[363] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[385] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[407] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[429] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[451] = (T)(img)(_n1##x,_n10##y,z,c)), \
|
|
(I[473] = (T)(img)(_n1##x,_n11##y,z,c)), \
|
|
(I[12] = (T)(img)(_n2##x,_p10##y,z,c)), \
|
|
(I[34] = (T)(img)(_n2##x,_p9##y,z,c)), \
|
|
(I[56] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[78] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[100] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[122] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[144] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[166] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[188] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[210] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[232] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[254] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[276] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[298] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[320] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[342] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[364] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[386] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[408] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[430] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[452] = (T)(img)(_n2##x,_n10##y,z,c)), \
|
|
(I[474] = (T)(img)(_n2##x,_n11##y,z,c)), \
|
|
(I[13] = (T)(img)(_n3##x,_p10##y,z,c)), \
|
|
(I[35] = (T)(img)(_n3##x,_p9##y,z,c)), \
|
|
(I[57] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[79] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[101] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[123] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[145] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[167] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[189] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[211] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[233] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[255] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[277] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[299] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[321] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[343] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[365] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[387] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[409] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[431] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[453] = (T)(img)(_n3##x,_n10##y,z,c)), \
|
|
(I[475] = (T)(img)(_n3##x,_n11##y,z,c)), \
|
|
(I[14] = (T)(img)(_n4##x,_p10##y,z,c)), \
|
|
(I[36] = (T)(img)(_n4##x,_p9##y,z,c)), \
|
|
(I[58] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[80] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[102] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[124] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[146] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[168] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[190] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[212] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[234] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[256] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[278] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[300] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[322] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[344] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[366] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[388] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[410] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[432] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[454] = (T)(img)(_n4##x,_n10##y,z,c)), \
|
|
(I[476] = (T)(img)(_n4##x,_n11##y,z,c)), \
|
|
(I[15] = (T)(img)(_n5##x,_p10##y,z,c)), \
|
|
(I[37] = (T)(img)(_n5##x,_p9##y,z,c)), \
|
|
(I[59] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[81] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[103] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[125] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[147] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[169] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[191] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[213] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[235] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[257] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[279] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[301] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[323] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[345] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[367] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[389] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[411] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[433] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[455] = (T)(img)(_n5##x,_n10##y,z,c)), \
|
|
(I[477] = (T)(img)(_n5##x,_n11##y,z,c)), \
|
|
(I[16] = (T)(img)(_n6##x,_p10##y,z,c)), \
|
|
(I[38] = (T)(img)(_n6##x,_p9##y,z,c)), \
|
|
(I[60] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[82] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[104] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[126] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[148] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[170] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[192] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[214] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[236] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[258] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[280] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[302] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[324] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[346] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[368] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[390] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[412] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[434] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[456] = (T)(img)(_n6##x,_n10##y,z,c)), \
|
|
(I[478] = (T)(img)(_n6##x,_n11##y,z,c)), \
|
|
(I[17] = (T)(img)(_n7##x,_p10##y,z,c)), \
|
|
(I[39] = (T)(img)(_n7##x,_p9##y,z,c)), \
|
|
(I[61] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[83] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[105] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[127] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[149] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[171] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[193] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[215] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[237] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[259] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[281] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[303] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[325] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[347] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[369] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[391] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[413] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[435] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[457] = (T)(img)(_n7##x,_n10##y,z,c)), \
|
|
(I[479] = (T)(img)(_n7##x,_n11##y,z,c)), \
|
|
(I[18] = (T)(img)(_n8##x,_p10##y,z,c)), \
|
|
(I[40] = (T)(img)(_n8##x,_p9##y,z,c)), \
|
|
(I[62] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[84] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[106] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[128] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[150] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[172] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[194] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[216] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[238] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[260] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[282] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[304] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[326] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[348] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[370] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[392] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[414] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[436] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
(I[458] = (T)(img)(_n8##x,_n10##y,z,c)), \
|
|
(I[480] = (T)(img)(_n8##x,_n11##y,z,c)), \
|
|
(I[19] = (T)(img)(_n9##x,_p10##y,z,c)), \
|
|
(I[41] = (T)(img)(_n9##x,_p9##y,z,c)), \
|
|
(I[63] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[85] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[107] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[129] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[151] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[173] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[195] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[217] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[239] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[261] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[283] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[305] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[327] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[349] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[371] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[393] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[415] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[437] = (T)(img)(_n9##x,_n9##y,z,c)), \
|
|
(I[459] = (T)(img)(_n9##x,_n10##y,z,c)), \
|
|
(I[481] = (T)(img)(_n9##x,_n11##y,z,c)), \
|
|
(I[20] = (T)(img)(_n10##x,_p10##y,z,c)), \
|
|
(I[42] = (T)(img)(_n10##x,_p9##y,z,c)), \
|
|
(I[64] = (T)(img)(_n10##x,_p8##y,z,c)), \
|
|
(I[86] = (T)(img)(_n10##x,_p7##y,z,c)), \
|
|
(I[108] = (T)(img)(_n10##x,_p6##y,z,c)), \
|
|
(I[130] = (T)(img)(_n10##x,_p5##y,z,c)), \
|
|
(I[152] = (T)(img)(_n10##x,_p4##y,z,c)), \
|
|
(I[174] = (T)(img)(_n10##x,_p3##y,z,c)), \
|
|
(I[196] = (T)(img)(_n10##x,_p2##y,z,c)), \
|
|
(I[218] = (T)(img)(_n10##x,_p1##y,z,c)), \
|
|
(I[240] = (T)(img)(_n10##x,y,z,c)), \
|
|
(I[262] = (T)(img)(_n10##x,_n1##y,z,c)), \
|
|
(I[284] = (T)(img)(_n10##x,_n2##y,z,c)), \
|
|
(I[306] = (T)(img)(_n10##x,_n3##y,z,c)), \
|
|
(I[328] = (T)(img)(_n10##x,_n4##y,z,c)), \
|
|
(I[350] = (T)(img)(_n10##x,_n5##y,z,c)), \
|
|
(I[372] = (T)(img)(_n10##x,_n6##y,z,c)), \
|
|
(I[394] = (T)(img)(_n10##x,_n7##y,z,c)), \
|
|
(I[416] = (T)(img)(_n10##x,_n8##y,z,c)), \
|
|
(I[438] = (T)(img)(_n10##x,_n9##y,z,c)), \
|
|
(I[460] = (T)(img)(_n10##x,_n10##y,z,c)), \
|
|
(I[482] = (T)(img)(_n10##x,_n11##y,z,c)), \
|
|
11>=((img)._width)?(img).width() - 1:11); \
|
|
(_n11##x<(img).width() && ( \
|
|
(I[21] = (T)(img)(_n11##x,_p10##y,z,c)), \
|
|
(I[43] = (T)(img)(_n11##x,_p9##y,z,c)), \
|
|
(I[65] = (T)(img)(_n11##x,_p8##y,z,c)), \
|
|
(I[87] = (T)(img)(_n11##x,_p7##y,z,c)), \
|
|
(I[109] = (T)(img)(_n11##x,_p6##y,z,c)), \
|
|
(I[131] = (T)(img)(_n11##x,_p5##y,z,c)), \
|
|
(I[153] = (T)(img)(_n11##x,_p4##y,z,c)), \
|
|
(I[175] = (T)(img)(_n11##x,_p3##y,z,c)), \
|
|
(I[197] = (T)(img)(_n11##x,_p2##y,z,c)), \
|
|
(I[219] = (T)(img)(_n11##x,_p1##y,z,c)), \
|
|
(I[241] = (T)(img)(_n11##x,y,z,c)), \
|
|
(I[263] = (T)(img)(_n11##x,_n1##y,z,c)), \
|
|
(I[285] = (T)(img)(_n11##x,_n2##y,z,c)), \
|
|
(I[307] = (T)(img)(_n11##x,_n3##y,z,c)), \
|
|
(I[329] = (T)(img)(_n11##x,_n4##y,z,c)), \
|
|
(I[351] = (T)(img)(_n11##x,_n5##y,z,c)), \
|
|
(I[373] = (T)(img)(_n11##x,_n6##y,z,c)), \
|
|
(I[395] = (T)(img)(_n11##x,_n7##y,z,c)), \
|
|
(I[417] = (T)(img)(_n11##x,_n8##y,z,c)), \
|
|
(I[439] = (T)(img)(_n11##x,_n9##y,z,c)), \
|
|
(I[461] = (T)(img)(_n11##x,_n10##y,z,c)), \
|
|
(I[483] = (T)(img)(_n11##x,_n11##y,z,c)),1)) || \
|
|
_n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], \
|
|
I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], \
|
|
I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], \
|
|
I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], \
|
|
I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], \
|
|
I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], \
|
|
I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], \
|
|
I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], \
|
|
I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], \
|
|
I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], \
|
|
I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], \
|
|
I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], \
|
|
I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], \
|
|
I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], \
|
|
I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], \
|
|
I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], \
|
|
I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], \
|
|
I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], \
|
|
I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], \
|
|
I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], \
|
|
I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], \
|
|
I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], \
|
|
_p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x)
|
|
|
|
#define cimg_for_in22x22(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in22((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p10##x = x - 10<0?0:x - 10, \
|
|
_p9##x = x - 9<0?0:x - 9, \
|
|
_p8##x = x - 8<0?0:x - 8, \
|
|
_p7##x = x - 7<0?0:x - 7, \
|
|
_p6##x = x - 6<0?0:x - 6, \
|
|
_p5##x = x - 5<0?0:x - 5, \
|
|
_p4##x = x - 4<0?0:x - 4, \
|
|
_p3##x = x - 3<0?0:x - 3, \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
|
|
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
|
|
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
|
|
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
|
|
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
|
|
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
|
|
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
|
|
_n9##x = x + 9>=(img).width()?(img).width() - 1:x + 9, \
|
|
_n10##x = x + 10>=(img).width()?(img).width() - 1:x + 10, \
|
|
_n11##x = (int)( \
|
|
(I[0] = (T)(img)(_p10##x,_p10##y,z,c)), \
|
|
(I[22] = (T)(img)(_p10##x,_p9##y,z,c)), \
|
|
(I[44] = (T)(img)(_p10##x,_p8##y,z,c)), \
|
|
(I[66] = (T)(img)(_p10##x,_p7##y,z,c)), \
|
|
(I[88] = (T)(img)(_p10##x,_p6##y,z,c)), \
|
|
(I[110] = (T)(img)(_p10##x,_p5##y,z,c)), \
|
|
(I[132] = (T)(img)(_p10##x,_p4##y,z,c)), \
|
|
(I[154] = (T)(img)(_p10##x,_p3##y,z,c)), \
|
|
(I[176] = (T)(img)(_p10##x,_p2##y,z,c)), \
|
|
(I[198] = (T)(img)(_p10##x,_p1##y,z,c)), \
|
|
(I[220] = (T)(img)(_p10##x,y,z,c)), \
|
|
(I[242] = (T)(img)(_p10##x,_n1##y,z,c)), \
|
|
(I[264] = (T)(img)(_p10##x,_n2##y,z,c)), \
|
|
(I[286] = (T)(img)(_p10##x,_n3##y,z,c)), \
|
|
(I[308] = (T)(img)(_p10##x,_n4##y,z,c)), \
|
|
(I[330] = (T)(img)(_p10##x,_n5##y,z,c)), \
|
|
(I[352] = (T)(img)(_p10##x,_n6##y,z,c)), \
|
|
(I[374] = (T)(img)(_p10##x,_n7##y,z,c)), \
|
|
(I[396] = (T)(img)(_p10##x,_n8##y,z,c)), \
|
|
(I[418] = (T)(img)(_p10##x,_n9##y,z,c)), \
|
|
(I[440] = (T)(img)(_p10##x,_n10##y,z,c)), \
|
|
(I[462] = (T)(img)(_p10##x,_n11##y,z,c)), \
|
|
(I[1] = (T)(img)(_p9##x,_p10##y,z,c)), \
|
|
(I[23] = (T)(img)(_p9##x,_p9##y,z,c)), \
|
|
(I[45] = (T)(img)(_p9##x,_p8##y,z,c)), \
|
|
(I[67] = (T)(img)(_p9##x,_p7##y,z,c)), \
|
|
(I[89] = (T)(img)(_p9##x,_p6##y,z,c)), \
|
|
(I[111] = (T)(img)(_p9##x,_p5##y,z,c)), \
|
|
(I[133] = (T)(img)(_p9##x,_p4##y,z,c)), \
|
|
(I[155] = (T)(img)(_p9##x,_p3##y,z,c)), \
|
|
(I[177] = (T)(img)(_p9##x,_p2##y,z,c)), \
|
|
(I[199] = (T)(img)(_p9##x,_p1##y,z,c)), \
|
|
(I[221] = (T)(img)(_p9##x,y,z,c)), \
|
|
(I[243] = (T)(img)(_p9##x,_n1##y,z,c)), \
|
|
(I[265] = (T)(img)(_p9##x,_n2##y,z,c)), \
|
|
(I[287] = (T)(img)(_p9##x,_n3##y,z,c)), \
|
|
(I[309] = (T)(img)(_p9##x,_n4##y,z,c)), \
|
|
(I[331] = (T)(img)(_p9##x,_n5##y,z,c)), \
|
|
(I[353] = (T)(img)(_p9##x,_n6##y,z,c)), \
|
|
(I[375] = (T)(img)(_p9##x,_n7##y,z,c)), \
|
|
(I[397] = (T)(img)(_p9##x,_n8##y,z,c)), \
|
|
(I[419] = (T)(img)(_p9##x,_n9##y,z,c)), \
|
|
(I[441] = (T)(img)(_p9##x,_n10##y,z,c)), \
|
|
(I[463] = (T)(img)(_p9##x,_n11##y,z,c)), \
|
|
(I[2] = (T)(img)(_p8##x,_p10##y,z,c)), \
|
|
(I[24] = (T)(img)(_p8##x,_p9##y,z,c)), \
|
|
(I[46] = (T)(img)(_p8##x,_p8##y,z,c)), \
|
|
(I[68] = (T)(img)(_p8##x,_p7##y,z,c)), \
|
|
(I[90] = (T)(img)(_p8##x,_p6##y,z,c)), \
|
|
(I[112] = (T)(img)(_p8##x,_p5##y,z,c)), \
|
|
(I[134] = (T)(img)(_p8##x,_p4##y,z,c)), \
|
|
(I[156] = (T)(img)(_p8##x,_p3##y,z,c)), \
|
|
(I[178] = (T)(img)(_p8##x,_p2##y,z,c)), \
|
|
(I[200] = (T)(img)(_p8##x,_p1##y,z,c)), \
|
|
(I[222] = (T)(img)(_p8##x,y,z,c)), \
|
|
(I[244] = (T)(img)(_p8##x,_n1##y,z,c)), \
|
|
(I[266] = (T)(img)(_p8##x,_n2##y,z,c)), \
|
|
(I[288] = (T)(img)(_p8##x,_n3##y,z,c)), \
|
|
(I[310] = (T)(img)(_p8##x,_n4##y,z,c)), \
|
|
(I[332] = (T)(img)(_p8##x,_n5##y,z,c)), \
|
|
(I[354] = (T)(img)(_p8##x,_n6##y,z,c)), \
|
|
(I[376] = (T)(img)(_p8##x,_n7##y,z,c)), \
|
|
(I[398] = (T)(img)(_p8##x,_n8##y,z,c)), \
|
|
(I[420] = (T)(img)(_p8##x,_n9##y,z,c)), \
|
|
(I[442] = (T)(img)(_p8##x,_n10##y,z,c)), \
|
|
(I[464] = (T)(img)(_p8##x,_n11##y,z,c)), \
|
|
(I[3] = (T)(img)(_p7##x,_p10##y,z,c)), \
|
|
(I[25] = (T)(img)(_p7##x,_p9##y,z,c)), \
|
|
(I[47] = (T)(img)(_p7##x,_p8##y,z,c)), \
|
|
(I[69] = (T)(img)(_p7##x,_p7##y,z,c)), \
|
|
(I[91] = (T)(img)(_p7##x,_p6##y,z,c)), \
|
|
(I[113] = (T)(img)(_p7##x,_p5##y,z,c)), \
|
|
(I[135] = (T)(img)(_p7##x,_p4##y,z,c)), \
|
|
(I[157] = (T)(img)(_p7##x,_p3##y,z,c)), \
|
|
(I[179] = (T)(img)(_p7##x,_p2##y,z,c)), \
|
|
(I[201] = (T)(img)(_p7##x,_p1##y,z,c)), \
|
|
(I[223] = (T)(img)(_p7##x,y,z,c)), \
|
|
(I[245] = (T)(img)(_p7##x,_n1##y,z,c)), \
|
|
(I[267] = (T)(img)(_p7##x,_n2##y,z,c)), \
|
|
(I[289] = (T)(img)(_p7##x,_n3##y,z,c)), \
|
|
(I[311] = (T)(img)(_p7##x,_n4##y,z,c)), \
|
|
(I[333] = (T)(img)(_p7##x,_n5##y,z,c)), \
|
|
(I[355] = (T)(img)(_p7##x,_n6##y,z,c)), \
|
|
(I[377] = (T)(img)(_p7##x,_n7##y,z,c)), \
|
|
(I[399] = (T)(img)(_p7##x,_n8##y,z,c)), \
|
|
(I[421] = (T)(img)(_p7##x,_n9##y,z,c)), \
|
|
(I[443] = (T)(img)(_p7##x,_n10##y,z,c)), \
|
|
(I[465] = (T)(img)(_p7##x,_n11##y,z,c)), \
|
|
(I[4] = (T)(img)(_p6##x,_p10##y,z,c)), \
|
|
(I[26] = (T)(img)(_p6##x,_p9##y,z,c)), \
|
|
(I[48] = (T)(img)(_p6##x,_p8##y,z,c)), \
|
|
(I[70] = (T)(img)(_p6##x,_p7##y,z,c)), \
|
|
(I[92] = (T)(img)(_p6##x,_p6##y,z,c)), \
|
|
(I[114] = (T)(img)(_p6##x,_p5##y,z,c)), \
|
|
(I[136] = (T)(img)(_p6##x,_p4##y,z,c)), \
|
|
(I[158] = (T)(img)(_p6##x,_p3##y,z,c)), \
|
|
(I[180] = (T)(img)(_p6##x,_p2##y,z,c)), \
|
|
(I[202] = (T)(img)(_p6##x,_p1##y,z,c)), \
|
|
(I[224] = (T)(img)(_p6##x,y,z,c)), \
|
|
(I[246] = (T)(img)(_p6##x,_n1##y,z,c)), \
|
|
(I[268] = (T)(img)(_p6##x,_n2##y,z,c)), \
|
|
(I[290] = (T)(img)(_p6##x,_n3##y,z,c)), \
|
|
(I[312] = (T)(img)(_p6##x,_n4##y,z,c)), \
|
|
(I[334] = (T)(img)(_p6##x,_n5##y,z,c)), \
|
|
(I[356] = (T)(img)(_p6##x,_n6##y,z,c)), \
|
|
(I[378] = (T)(img)(_p6##x,_n7##y,z,c)), \
|
|
(I[400] = (T)(img)(_p6##x,_n8##y,z,c)), \
|
|
(I[422] = (T)(img)(_p6##x,_n9##y,z,c)), \
|
|
(I[444] = (T)(img)(_p6##x,_n10##y,z,c)), \
|
|
(I[466] = (T)(img)(_p6##x,_n11##y,z,c)), \
|
|
(I[5] = (T)(img)(_p5##x,_p10##y,z,c)), \
|
|
(I[27] = (T)(img)(_p5##x,_p9##y,z,c)), \
|
|
(I[49] = (T)(img)(_p5##x,_p8##y,z,c)), \
|
|
(I[71] = (T)(img)(_p5##x,_p7##y,z,c)), \
|
|
(I[93] = (T)(img)(_p5##x,_p6##y,z,c)), \
|
|
(I[115] = (T)(img)(_p5##x,_p5##y,z,c)), \
|
|
(I[137] = (T)(img)(_p5##x,_p4##y,z,c)), \
|
|
(I[159] = (T)(img)(_p5##x,_p3##y,z,c)), \
|
|
(I[181] = (T)(img)(_p5##x,_p2##y,z,c)), \
|
|
(I[203] = (T)(img)(_p5##x,_p1##y,z,c)), \
|
|
(I[225] = (T)(img)(_p5##x,y,z,c)), \
|
|
(I[247] = (T)(img)(_p5##x,_n1##y,z,c)), \
|
|
(I[269] = (T)(img)(_p5##x,_n2##y,z,c)), \
|
|
(I[291] = (T)(img)(_p5##x,_n3##y,z,c)), \
|
|
(I[313] = (T)(img)(_p5##x,_n4##y,z,c)), \
|
|
(I[335] = (T)(img)(_p5##x,_n5##y,z,c)), \
|
|
(I[357] = (T)(img)(_p5##x,_n6##y,z,c)), \
|
|
(I[379] = (T)(img)(_p5##x,_n7##y,z,c)), \
|
|
(I[401] = (T)(img)(_p5##x,_n8##y,z,c)), \
|
|
(I[423] = (T)(img)(_p5##x,_n9##y,z,c)), \
|
|
(I[445] = (T)(img)(_p5##x,_n10##y,z,c)), \
|
|
(I[467] = (T)(img)(_p5##x,_n11##y,z,c)), \
|
|
(I[6] = (T)(img)(_p4##x,_p10##y,z,c)), \
|
|
(I[28] = (T)(img)(_p4##x,_p9##y,z,c)), \
|
|
(I[50] = (T)(img)(_p4##x,_p8##y,z,c)), \
|
|
(I[72] = (T)(img)(_p4##x,_p7##y,z,c)), \
|
|
(I[94] = (T)(img)(_p4##x,_p6##y,z,c)), \
|
|
(I[116] = (T)(img)(_p4##x,_p5##y,z,c)), \
|
|
(I[138] = (T)(img)(_p4##x,_p4##y,z,c)), \
|
|
(I[160] = (T)(img)(_p4##x,_p3##y,z,c)), \
|
|
(I[182] = (T)(img)(_p4##x,_p2##y,z,c)), \
|
|
(I[204] = (T)(img)(_p4##x,_p1##y,z,c)), \
|
|
(I[226] = (T)(img)(_p4##x,y,z,c)), \
|
|
(I[248] = (T)(img)(_p4##x,_n1##y,z,c)), \
|
|
(I[270] = (T)(img)(_p4##x,_n2##y,z,c)), \
|
|
(I[292] = (T)(img)(_p4##x,_n3##y,z,c)), \
|
|
(I[314] = (T)(img)(_p4##x,_n4##y,z,c)), \
|
|
(I[336] = (T)(img)(_p4##x,_n5##y,z,c)), \
|
|
(I[358] = (T)(img)(_p4##x,_n6##y,z,c)), \
|
|
(I[380] = (T)(img)(_p4##x,_n7##y,z,c)), \
|
|
(I[402] = (T)(img)(_p4##x,_n8##y,z,c)), \
|
|
(I[424] = (T)(img)(_p4##x,_n9##y,z,c)), \
|
|
(I[446] = (T)(img)(_p4##x,_n10##y,z,c)), \
|
|
(I[468] = (T)(img)(_p4##x,_n11##y,z,c)), \
|
|
(I[7] = (T)(img)(_p3##x,_p10##y,z,c)), \
|
|
(I[29] = (T)(img)(_p3##x,_p9##y,z,c)), \
|
|
(I[51] = (T)(img)(_p3##x,_p8##y,z,c)), \
|
|
(I[73] = (T)(img)(_p3##x,_p7##y,z,c)), \
|
|
(I[95] = (T)(img)(_p3##x,_p6##y,z,c)), \
|
|
(I[117] = (T)(img)(_p3##x,_p5##y,z,c)), \
|
|
(I[139] = (T)(img)(_p3##x,_p4##y,z,c)), \
|
|
(I[161] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[183] = (T)(img)(_p3##x,_p2##y,z,c)), \
|
|
(I[205] = (T)(img)(_p3##x,_p1##y,z,c)), \
|
|
(I[227] = (T)(img)(_p3##x,y,z,c)), \
|
|
(I[249] = (T)(img)(_p3##x,_n1##y,z,c)), \
|
|
(I[271] = (T)(img)(_p3##x,_n2##y,z,c)), \
|
|
(I[293] = (T)(img)(_p3##x,_n3##y,z,c)), \
|
|
(I[315] = (T)(img)(_p3##x,_n4##y,z,c)), \
|
|
(I[337] = (T)(img)(_p3##x,_n5##y,z,c)), \
|
|
(I[359] = (T)(img)(_p3##x,_n6##y,z,c)), \
|
|
(I[381] = (T)(img)(_p3##x,_n7##y,z,c)), \
|
|
(I[403] = (T)(img)(_p3##x,_n8##y,z,c)), \
|
|
(I[425] = (T)(img)(_p3##x,_n9##y,z,c)), \
|
|
(I[447] = (T)(img)(_p3##x,_n10##y,z,c)), \
|
|
(I[469] = (T)(img)(_p3##x,_n11##y,z,c)), \
|
|
(I[8] = (T)(img)(_p2##x,_p10##y,z,c)), \
|
|
(I[30] = (T)(img)(_p2##x,_p9##y,z,c)), \
|
|
(I[52] = (T)(img)(_p2##x,_p8##y,z,c)), \
|
|
(I[74] = (T)(img)(_p2##x,_p7##y,z,c)), \
|
|
(I[96] = (T)(img)(_p2##x,_p6##y,z,c)), \
|
|
(I[118] = (T)(img)(_p2##x,_p5##y,z,c)), \
|
|
(I[140] = (T)(img)(_p2##x,_p4##y,z,c)), \
|
|
(I[162] = (T)(img)(_p2##x,_p3##y,z,c)), \
|
|
(I[184] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[206] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[228] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[250] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[272] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[294] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[316] = (T)(img)(_p2##x,_n4##y,z,c)), \
|
|
(I[338] = (T)(img)(_p2##x,_n5##y,z,c)), \
|
|
(I[360] = (T)(img)(_p2##x,_n6##y,z,c)), \
|
|
(I[382] = (T)(img)(_p2##x,_n7##y,z,c)), \
|
|
(I[404] = (T)(img)(_p2##x,_n8##y,z,c)), \
|
|
(I[426] = (T)(img)(_p2##x,_n9##y,z,c)), \
|
|
(I[448] = (T)(img)(_p2##x,_n10##y,z,c)), \
|
|
(I[470] = (T)(img)(_p2##x,_n11##y,z,c)), \
|
|
(I[9] = (T)(img)(_p1##x,_p10##y,z,c)), \
|
|
(I[31] = (T)(img)(_p1##x,_p9##y,z,c)), \
|
|
(I[53] = (T)(img)(_p1##x,_p8##y,z,c)), \
|
|
(I[75] = (T)(img)(_p1##x,_p7##y,z,c)), \
|
|
(I[97] = (T)(img)(_p1##x,_p6##y,z,c)), \
|
|
(I[119] = (T)(img)(_p1##x,_p5##y,z,c)), \
|
|
(I[141] = (T)(img)(_p1##x,_p4##y,z,c)), \
|
|
(I[163] = (T)(img)(_p1##x,_p3##y,z,c)), \
|
|
(I[185] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[207] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[229] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[251] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[273] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[295] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[317] = (T)(img)(_p1##x,_n4##y,z,c)), \
|
|
(I[339] = (T)(img)(_p1##x,_n5##y,z,c)), \
|
|
(I[361] = (T)(img)(_p1##x,_n6##y,z,c)), \
|
|
(I[383] = (T)(img)(_p1##x,_n7##y,z,c)), \
|
|
(I[405] = (T)(img)(_p1##x,_n8##y,z,c)), \
|
|
(I[427] = (T)(img)(_p1##x,_n9##y,z,c)), \
|
|
(I[449] = (T)(img)(_p1##x,_n10##y,z,c)), \
|
|
(I[471] = (T)(img)(_p1##x,_n11##y,z,c)), \
|
|
(I[10] = (T)(img)(x,_p10##y,z,c)), \
|
|
(I[32] = (T)(img)(x,_p9##y,z,c)), \
|
|
(I[54] = (T)(img)(x,_p8##y,z,c)), \
|
|
(I[76] = (T)(img)(x,_p7##y,z,c)), \
|
|
(I[98] = (T)(img)(x,_p6##y,z,c)), \
|
|
(I[120] = (T)(img)(x,_p5##y,z,c)), \
|
|
(I[142] = (T)(img)(x,_p4##y,z,c)), \
|
|
(I[164] = (T)(img)(x,_p3##y,z,c)), \
|
|
(I[186] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[208] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[230] = (T)(img)(x,y,z,c)), \
|
|
(I[252] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[274] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[296] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[318] = (T)(img)(x,_n4##y,z,c)), \
|
|
(I[340] = (T)(img)(x,_n5##y,z,c)), \
|
|
(I[362] = (T)(img)(x,_n6##y,z,c)), \
|
|
(I[384] = (T)(img)(x,_n7##y,z,c)), \
|
|
(I[406] = (T)(img)(x,_n8##y,z,c)), \
|
|
(I[428] = (T)(img)(x,_n9##y,z,c)), \
|
|
(I[450] = (T)(img)(x,_n10##y,z,c)), \
|
|
(I[472] = (T)(img)(x,_n11##y,z,c)), \
|
|
(I[11] = (T)(img)(_n1##x,_p10##y,z,c)), \
|
|
(I[33] = (T)(img)(_n1##x,_p9##y,z,c)), \
|
|
(I[55] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[77] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[99] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[121] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[143] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[165] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[187] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[209] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[231] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[253] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[275] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[297] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[319] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[341] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[363] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[385] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[407] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[429] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[451] = (T)(img)(_n1##x,_n10##y,z,c)), \
|
|
(I[473] = (T)(img)(_n1##x,_n11##y,z,c)), \
|
|
(I[12] = (T)(img)(_n2##x,_p10##y,z,c)), \
|
|
(I[34] = (T)(img)(_n2##x,_p9##y,z,c)), \
|
|
(I[56] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[78] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[100] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[122] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[144] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[166] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[188] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[210] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[232] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[254] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[276] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[298] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[320] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[342] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[364] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[386] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[408] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[430] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[452] = (T)(img)(_n2##x,_n10##y,z,c)), \
|
|
(I[474] = (T)(img)(_n2##x,_n11##y,z,c)), \
|
|
(I[13] = (T)(img)(_n3##x,_p10##y,z,c)), \
|
|
(I[35] = (T)(img)(_n3##x,_p9##y,z,c)), \
|
|
(I[57] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[79] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[101] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[123] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[145] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[167] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[189] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[211] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[233] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[255] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[277] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[299] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[321] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[343] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[365] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[387] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[409] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[431] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[453] = (T)(img)(_n3##x,_n10##y,z,c)), \
|
|
(I[475] = (T)(img)(_n3##x,_n11##y,z,c)), \
|
|
(I[14] = (T)(img)(_n4##x,_p10##y,z,c)), \
|
|
(I[36] = (T)(img)(_n4##x,_p9##y,z,c)), \
|
|
(I[58] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[80] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[102] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[124] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[146] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[168] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[190] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[212] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[234] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[256] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[278] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[300] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[322] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[344] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[366] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[388] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[410] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[432] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[454] = (T)(img)(_n4##x,_n10##y,z,c)), \
|
|
(I[476] = (T)(img)(_n4##x,_n11##y,z,c)), \
|
|
(I[15] = (T)(img)(_n5##x,_p10##y,z,c)), \
|
|
(I[37] = (T)(img)(_n5##x,_p9##y,z,c)), \
|
|
(I[59] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[81] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[103] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[125] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[147] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[169] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[191] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[213] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[235] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[257] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[279] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[301] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[323] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[345] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[367] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[389] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[411] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[433] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[455] = (T)(img)(_n5##x,_n10##y,z,c)), \
|
|
(I[477] = (T)(img)(_n5##x,_n11##y,z,c)), \
|
|
(I[16] = (T)(img)(_n6##x,_p10##y,z,c)), \
|
|
(I[38] = (T)(img)(_n6##x,_p9##y,z,c)), \
|
|
(I[60] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[82] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[104] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[126] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[148] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[170] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[192] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[214] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[236] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[258] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[280] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[302] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[324] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[346] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[368] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[390] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[412] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[434] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[456] = (T)(img)(_n6##x,_n10##y,z,c)), \
|
|
(I[478] = (T)(img)(_n6##x,_n11##y,z,c)), \
|
|
(I[17] = (T)(img)(_n7##x,_p10##y,z,c)), \
|
|
(I[39] = (T)(img)(_n7##x,_p9##y,z,c)), \
|
|
(I[61] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[83] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[105] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[127] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[149] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[171] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[193] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[215] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[237] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[259] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[281] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[303] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[325] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[347] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[369] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[391] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[413] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[435] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[457] = (T)(img)(_n7##x,_n10##y,z,c)), \
|
|
(I[479] = (T)(img)(_n7##x,_n11##y,z,c)), \
|
|
(I[18] = (T)(img)(_n8##x,_p10##y,z,c)), \
|
|
(I[40] = (T)(img)(_n8##x,_p9##y,z,c)), \
|
|
(I[62] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[84] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[106] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[128] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[150] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[172] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[194] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[216] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[238] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[260] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[282] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[304] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[326] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[348] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[370] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[392] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[414] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[436] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
(I[458] = (T)(img)(_n8##x,_n10##y,z,c)), \
|
|
(I[480] = (T)(img)(_n8##x,_n11##y,z,c)), \
|
|
(I[19] = (T)(img)(_n9##x,_p10##y,z,c)), \
|
|
(I[41] = (T)(img)(_n9##x,_p9##y,z,c)), \
|
|
(I[63] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[85] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[107] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[129] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[151] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[173] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[195] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[217] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[239] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[261] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[283] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[305] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[327] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[349] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[371] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[393] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[415] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[437] = (T)(img)(_n9##x,_n9##y,z,c)), \
|
|
(I[459] = (T)(img)(_n9##x,_n10##y,z,c)), \
|
|
(I[481] = (T)(img)(_n9##x,_n11##y,z,c)), \
|
|
(I[20] = (T)(img)(_n10##x,_p10##y,z,c)), \
|
|
(I[42] = (T)(img)(_n10##x,_p9##y,z,c)), \
|
|
(I[64] = (T)(img)(_n10##x,_p8##y,z,c)), \
|
|
(I[86] = (T)(img)(_n10##x,_p7##y,z,c)), \
|
|
(I[108] = (T)(img)(_n10##x,_p6##y,z,c)), \
|
|
(I[130] = (T)(img)(_n10##x,_p5##y,z,c)), \
|
|
(I[152] = (T)(img)(_n10##x,_p4##y,z,c)), \
|
|
(I[174] = (T)(img)(_n10##x,_p3##y,z,c)), \
|
|
(I[196] = (T)(img)(_n10##x,_p2##y,z,c)), \
|
|
(I[218] = (T)(img)(_n10##x,_p1##y,z,c)), \
|
|
(I[240] = (T)(img)(_n10##x,y,z,c)), \
|
|
(I[262] = (T)(img)(_n10##x,_n1##y,z,c)), \
|
|
(I[284] = (T)(img)(_n10##x,_n2##y,z,c)), \
|
|
(I[306] = (T)(img)(_n10##x,_n3##y,z,c)), \
|
|
(I[328] = (T)(img)(_n10##x,_n4##y,z,c)), \
|
|
(I[350] = (T)(img)(_n10##x,_n5##y,z,c)), \
|
|
(I[372] = (T)(img)(_n10##x,_n6##y,z,c)), \
|
|
(I[394] = (T)(img)(_n10##x,_n7##y,z,c)), \
|
|
(I[416] = (T)(img)(_n10##x,_n8##y,z,c)), \
|
|
(I[438] = (T)(img)(_n10##x,_n9##y,z,c)), \
|
|
(I[460] = (T)(img)(_n10##x,_n10##y,z,c)), \
|
|
(I[482] = (T)(img)(_n10##x,_n11##y,z,c)), \
|
|
x + 11>=(img).width()?(img).width() - 1:x + 11); \
|
|
x<=(int)(x1) && ((_n11##x<(img).width() && ( \
|
|
(I[21] = (T)(img)(_n11##x,_p10##y,z,c)), \
|
|
(I[43] = (T)(img)(_n11##x,_p9##y,z,c)), \
|
|
(I[65] = (T)(img)(_n11##x,_p8##y,z,c)), \
|
|
(I[87] = (T)(img)(_n11##x,_p7##y,z,c)), \
|
|
(I[109] = (T)(img)(_n11##x,_p6##y,z,c)), \
|
|
(I[131] = (T)(img)(_n11##x,_p5##y,z,c)), \
|
|
(I[153] = (T)(img)(_n11##x,_p4##y,z,c)), \
|
|
(I[175] = (T)(img)(_n11##x,_p3##y,z,c)), \
|
|
(I[197] = (T)(img)(_n11##x,_p2##y,z,c)), \
|
|
(I[219] = (T)(img)(_n11##x,_p1##y,z,c)), \
|
|
(I[241] = (T)(img)(_n11##x,y,z,c)), \
|
|
(I[263] = (T)(img)(_n11##x,_n1##y,z,c)), \
|
|
(I[285] = (T)(img)(_n11##x,_n2##y,z,c)), \
|
|
(I[307] = (T)(img)(_n11##x,_n3##y,z,c)), \
|
|
(I[329] = (T)(img)(_n11##x,_n4##y,z,c)), \
|
|
(I[351] = (T)(img)(_n11##x,_n5##y,z,c)), \
|
|
(I[373] = (T)(img)(_n11##x,_n6##y,z,c)), \
|
|
(I[395] = (T)(img)(_n11##x,_n7##y,z,c)), \
|
|
(I[417] = (T)(img)(_n11##x,_n8##y,z,c)), \
|
|
(I[439] = (T)(img)(_n11##x,_n9##y,z,c)), \
|
|
(I[461] = (T)(img)(_n11##x,_n10##y,z,c)), \
|
|
(I[483] = (T)(img)(_n11##x,_n11##y,z,c)),1)) || \
|
|
_n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], \
|
|
I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], \
|
|
I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], \
|
|
I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], \
|
|
I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], \
|
|
I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], \
|
|
I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], \
|
|
I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], \
|
|
I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], \
|
|
I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], \
|
|
I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], \
|
|
I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], \
|
|
I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], \
|
|
I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], \
|
|
I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], \
|
|
I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], \
|
|
I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], \
|
|
I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], \
|
|
I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], \
|
|
I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], \
|
|
I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], \
|
|
I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], \
|
|
_p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x)
|
|
|
|
#define cimg_get22x22(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p10##x,_p10##y,z,c), I[1] = (T)(img)(_p9##x,_p10##y,z,c), I[2] = (T)(img)(_p8##x,_p10##y,z,c), I[3] = (T)(img)(_p7##x,_p10##y,z,c), I[4] = (T)(img)(_p6##x,_p10##y,z,c), I[5] = (T)(img)(_p5##x,_p10##y,z,c), I[6] = (T)(img)(_p4##x,_p10##y,z,c), I[7] = (T)(img)(_p3##x,_p10##y,z,c), I[8] = (T)(img)(_p2##x,_p10##y,z,c), I[9] = (T)(img)(_p1##x,_p10##y,z,c), I[10] = (T)(img)(x,_p10##y,z,c), I[11] = (T)(img)(_n1##x,_p10##y,z,c), I[12] = (T)(img)(_n2##x,_p10##y,z,c), I[13] = (T)(img)(_n3##x,_p10##y,z,c), I[14] = (T)(img)(_n4##x,_p10##y,z,c), I[15] = (T)(img)(_n5##x,_p10##y,z,c), I[16] = (T)(img)(_n6##x,_p10##y,z,c), I[17] = (T)(img)(_n7##x,_p10##y,z,c), I[18] = (T)(img)(_n8##x,_p10##y,z,c), I[19] = (T)(img)(_n9##x,_p10##y,z,c), I[20] = (T)(img)(_n10##x,_p10##y,z,c), I[21] = (T)(img)(_n11##x,_p10##y,z,c), \
|
|
I[22] = (T)(img)(_p10##x,_p9##y,z,c), I[23] = (T)(img)(_p9##x,_p9##y,z,c), I[24] = (T)(img)(_p8##x,_p9##y,z,c), I[25] = (T)(img)(_p7##x,_p9##y,z,c), I[26] = (T)(img)(_p6##x,_p9##y,z,c), I[27] = (T)(img)(_p5##x,_p9##y,z,c), I[28] = (T)(img)(_p4##x,_p9##y,z,c), I[29] = (T)(img)(_p3##x,_p9##y,z,c), I[30] = (T)(img)(_p2##x,_p9##y,z,c), I[31] = (T)(img)(_p1##x,_p9##y,z,c), I[32] = (T)(img)(x,_p9##y,z,c), I[33] = (T)(img)(_n1##x,_p9##y,z,c), I[34] = (T)(img)(_n2##x,_p9##y,z,c), I[35] = (T)(img)(_n3##x,_p9##y,z,c), I[36] = (T)(img)(_n4##x,_p9##y,z,c), I[37] = (T)(img)(_n5##x,_p9##y,z,c), I[38] = (T)(img)(_n6##x,_p9##y,z,c), I[39] = (T)(img)(_n7##x,_p9##y,z,c), I[40] = (T)(img)(_n8##x,_p9##y,z,c), I[41] = (T)(img)(_n9##x,_p9##y,z,c), I[42] = (T)(img)(_n10##x,_p9##y,z,c), I[43] = (T)(img)(_n11##x,_p9##y,z,c), \
|
|
I[44] = (T)(img)(_p10##x,_p8##y,z,c), I[45] = (T)(img)(_p9##x,_p8##y,z,c), I[46] = (T)(img)(_p8##x,_p8##y,z,c), I[47] = (T)(img)(_p7##x,_p8##y,z,c), I[48] = (T)(img)(_p6##x,_p8##y,z,c), I[49] = (T)(img)(_p5##x,_p8##y,z,c), I[50] = (T)(img)(_p4##x,_p8##y,z,c), I[51] = (T)(img)(_p3##x,_p8##y,z,c), I[52] = (T)(img)(_p2##x,_p8##y,z,c), I[53] = (T)(img)(_p1##x,_p8##y,z,c), I[54] = (T)(img)(x,_p8##y,z,c), I[55] = (T)(img)(_n1##x,_p8##y,z,c), I[56] = (T)(img)(_n2##x,_p8##y,z,c), I[57] = (T)(img)(_n3##x,_p8##y,z,c), I[58] = (T)(img)(_n4##x,_p8##y,z,c), I[59] = (T)(img)(_n5##x,_p8##y,z,c), I[60] = (T)(img)(_n6##x,_p8##y,z,c), I[61] = (T)(img)(_n7##x,_p8##y,z,c), I[62] = (T)(img)(_n8##x,_p8##y,z,c), I[63] = (T)(img)(_n9##x,_p8##y,z,c), I[64] = (T)(img)(_n10##x,_p8##y,z,c), I[65] = (T)(img)(_n11##x,_p8##y,z,c), \
|
|
I[66] = (T)(img)(_p10##x,_p7##y,z,c), I[67] = (T)(img)(_p9##x,_p7##y,z,c), I[68] = (T)(img)(_p8##x,_p7##y,z,c), I[69] = (T)(img)(_p7##x,_p7##y,z,c), I[70] = (T)(img)(_p6##x,_p7##y,z,c), I[71] = (T)(img)(_p5##x,_p7##y,z,c), I[72] = (T)(img)(_p4##x,_p7##y,z,c), I[73] = (T)(img)(_p3##x,_p7##y,z,c), I[74] = (T)(img)(_p2##x,_p7##y,z,c), I[75] = (T)(img)(_p1##x,_p7##y,z,c), I[76] = (T)(img)(x,_p7##y,z,c), I[77] = (T)(img)(_n1##x,_p7##y,z,c), I[78] = (T)(img)(_n2##x,_p7##y,z,c), I[79] = (T)(img)(_n3##x,_p7##y,z,c), I[80] = (T)(img)(_n4##x,_p7##y,z,c), I[81] = (T)(img)(_n5##x,_p7##y,z,c), I[82] = (T)(img)(_n6##x,_p7##y,z,c), I[83] = (T)(img)(_n7##x,_p7##y,z,c), I[84] = (T)(img)(_n8##x,_p7##y,z,c), I[85] = (T)(img)(_n9##x,_p7##y,z,c), I[86] = (T)(img)(_n10##x,_p7##y,z,c), I[87] = (T)(img)(_n11##x,_p7##y,z,c), \
|
|
I[88] = (T)(img)(_p10##x,_p6##y,z,c), I[89] = (T)(img)(_p9##x,_p6##y,z,c), I[90] = (T)(img)(_p8##x,_p6##y,z,c), I[91] = (T)(img)(_p7##x,_p6##y,z,c), I[92] = (T)(img)(_p6##x,_p6##y,z,c), I[93] = (T)(img)(_p5##x,_p6##y,z,c), I[94] = (T)(img)(_p4##x,_p6##y,z,c), I[95] = (T)(img)(_p3##x,_p6##y,z,c), I[96] = (T)(img)(_p2##x,_p6##y,z,c), I[97] = (T)(img)(_p1##x,_p6##y,z,c), I[98] = (T)(img)(x,_p6##y,z,c), I[99] = (T)(img)(_n1##x,_p6##y,z,c), I[100] = (T)(img)(_n2##x,_p6##y,z,c), I[101] = (T)(img)(_n3##x,_p6##y,z,c), I[102] = (T)(img)(_n4##x,_p6##y,z,c), I[103] = (T)(img)(_n5##x,_p6##y,z,c), I[104] = (T)(img)(_n6##x,_p6##y,z,c), I[105] = (T)(img)(_n7##x,_p6##y,z,c), I[106] = (T)(img)(_n8##x,_p6##y,z,c), I[107] = (T)(img)(_n9##x,_p6##y,z,c), I[108] = (T)(img)(_n10##x,_p6##y,z,c), I[109] = (T)(img)(_n11##x,_p6##y,z,c), \
|
|
I[110] = (T)(img)(_p10##x,_p5##y,z,c), I[111] = (T)(img)(_p9##x,_p5##y,z,c), I[112] = (T)(img)(_p8##x,_p5##y,z,c), I[113] = (T)(img)(_p7##x,_p5##y,z,c), I[114] = (T)(img)(_p6##x,_p5##y,z,c), I[115] = (T)(img)(_p5##x,_p5##y,z,c), I[116] = (T)(img)(_p4##x,_p5##y,z,c), I[117] = (T)(img)(_p3##x,_p5##y,z,c), I[118] = (T)(img)(_p2##x,_p5##y,z,c), I[119] = (T)(img)(_p1##x,_p5##y,z,c), I[120] = (T)(img)(x,_p5##y,z,c), I[121] = (T)(img)(_n1##x,_p5##y,z,c), I[122] = (T)(img)(_n2##x,_p5##y,z,c), I[123] = (T)(img)(_n3##x,_p5##y,z,c), I[124] = (T)(img)(_n4##x,_p5##y,z,c), I[125] = (T)(img)(_n5##x,_p5##y,z,c), I[126] = (T)(img)(_n6##x,_p5##y,z,c), I[127] = (T)(img)(_n7##x,_p5##y,z,c), I[128] = (T)(img)(_n8##x,_p5##y,z,c), I[129] = (T)(img)(_n9##x,_p5##y,z,c), I[130] = (T)(img)(_n10##x,_p5##y,z,c), I[131] = (T)(img)(_n11##x,_p5##y,z,c), \
|
|
I[132] = (T)(img)(_p10##x,_p4##y,z,c), I[133] = (T)(img)(_p9##x,_p4##y,z,c), I[134] = (T)(img)(_p8##x,_p4##y,z,c), I[135] = (T)(img)(_p7##x,_p4##y,z,c), I[136] = (T)(img)(_p6##x,_p4##y,z,c), I[137] = (T)(img)(_p5##x,_p4##y,z,c), I[138] = (T)(img)(_p4##x,_p4##y,z,c), I[139] = (T)(img)(_p3##x,_p4##y,z,c), I[140] = (T)(img)(_p2##x,_p4##y,z,c), I[141] = (T)(img)(_p1##x,_p4##y,z,c), I[142] = (T)(img)(x,_p4##y,z,c), I[143] = (T)(img)(_n1##x,_p4##y,z,c), I[144] = (T)(img)(_n2##x,_p4##y,z,c), I[145] = (T)(img)(_n3##x,_p4##y,z,c), I[146] = (T)(img)(_n4##x,_p4##y,z,c), I[147] = (T)(img)(_n5##x,_p4##y,z,c), I[148] = (T)(img)(_n6##x,_p4##y,z,c), I[149] = (T)(img)(_n7##x,_p4##y,z,c), I[150] = (T)(img)(_n8##x,_p4##y,z,c), I[151] = (T)(img)(_n9##x,_p4##y,z,c), I[152] = (T)(img)(_n10##x,_p4##y,z,c), I[153] = (T)(img)(_n11##x,_p4##y,z,c), \
|
|
I[154] = (T)(img)(_p10##x,_p3##y,z,c), I[155] = (T)(img)(_p9##x,_p3##y,z,c), I[156] = (T)(img)(_p8##x,_p3##y,z,c), I[157] = (T)(img)(_p7##x,_p3##y,z,c), I[158] = (T)(img)(_p6##x,_p3##y,z,c), I[159] = (T)(img)(_p5##x,_p3##y,z,c), I[160] = (T)(img)(_p4##x,_p3##y,z,c), I[161] = (T)(img)(_p3##x,_p3##y,z,c), I[162] = (T)(img)(_p2##x,_p3##y,z,c), I[163] = (T)(img)(_p1##x,_p3##y,z,c), I[164] = (T)(img)(x,_p3##y,z,c), I[165] = (T)(img)(_n1##x,_p3##y,z,c), I[166] = (T)(img)(_n2##x,_p3##y,z,c), I[167] = (T)(img)(_n3##x,_p3##y,z,c), I[168] = (T)(img)(_n4##x,_p3##y,z,c), I[169] = (T)(img)(_n5##x,_p3##y,z,c), I[170] = (T)(img)(_n6##x,_p3##y,z,c), I[171] = (T)(img)(_n7##x,_p3##y,z,c), I[172] = (T)(img)(_n8##x,_p3##y,z,c), I[173] = (T)(img)(_n9##x,_p3##y,z,c), I[174] = (T)(img)(_n10##x,_p3##y,z,c), I[175] = (T)(img)(_n11##x,_p3##y,z,c), \
|
|
I[176] = (T)(img)(_p10##x,_p2##y,z,c), I[177] = (T)(img)(_p9##x,_p2##y,z,c), I[178] = (T)(img)(_p8##x,_p2##y,z,c), I[179] = (T)(img)(_p7##x,_p2##y,z,c), I[180] = (T)(img)(_p6##x,_p2##y,z,c), I[181] = (T)(img)(_p5##x,_p2##y,z,c), I[182] = (T)(img)(_p4##x,_p2##y,z,c), I[183] = (T)(img)(_p3##x,_p2##y,z,c), I[184] = (T)(img)(_p2##x,_p2##y,z,c), I[185] = (T)(img)(_p1##x,_p2##y,z,c), I[186] = (T)(img)(x,_p2##y,z,c), I[187] = (T)(img)(_n1##x,_p2##y,z,c), I[188] = (T)(img)(_n2##x,_p2##y,z,c), I[189] = (T)(img)(_n3##x,_p2##y,z,c), I[190] = (T)(img)(_n4##x,_p2##y,z,c), I[191] = (T)(img)(_n5##x,_p2##y,z,c), I[192] = (T)(img)(_n6##x,_p2##y,z,c), I[193] = (T)(img)(_n7##x,_p2##y,z,c), I[194] = (T)(img)(_n8##x,_p2##y,z,c), I[195] = (T)(img)(_n9##x,_p2##y,z,c), I[196] = (T)(img)(_n10##x,_p2##y,z,c), I[197] = (T)(img)(_n11##x,_p2##y,z,c), \
|
|
I[198] = (T)(img)(_p10##x,_p1##y,z,c), I[199] = (T)(img)(_p9##x,_p1##y,z,c), I[200] = (T)(img)(_p8##x,_p1##y,z,c), I[201] = (T)(img)(_p7##x,_p1##y,z,c), I[202] = (T)(img)(_p6##x,_p1##y,z,c), I[203] = (T)(img)(_p5##x,_p1##y,z,c), I[204] = (T)(img)(_p4##x,_p1##y,z,c), I[205] = (T)(img)(_p3##x,_p1##y,z,c), I[206] = (T)(img)(_p2##x,_p1##y,z,c), I[207] = (T)(img)(_p1##x,_p1##y,z,c), I[208] = (T)(img)(x,_p1##y,z,c), I[209] = (T)(img)(_n1##x,_p1##y,z,c), I[210] = (T)(img)(_n2##x,_p1##y,z,c), I[211] = (T)(img)(_n3##x,_p1##y,z,c), I[212] = (T)(img)(_n4##x,_p1##y,z,c), I[213] = (T)(img)(_n5##x,_p1##y,z,c), I[214] = (T)(img)(_n6##x,_p1##y,z,c), I[215] = (T)(img)(_n7##x,_p1##y,z,c), I[216] = (T)(img)(_n8##x,_p1##y,z,c), I[217] = (T)(img)(_n9##x,_p1##y,z,c), I[218] = (T)(img)(_n10##x,_p1##y,z,c), I[219] = (T)(img)(_n11##x,_p1##y,z,c), \
|
|
I[220] = (T)(img)(_p10##x,y,z,c), I[221] = (T)(img)(_p9##x,y,z,c), I[222] = (T)(img)(_p8##x,y,z,c), I[223] = (T)(img)(_p7##x,y,z,c), I[224] = (T)(img)(_p6##x,y,z,c), I[225] = (T)(img)(_p5##x,y,z,c), I[226] = (T)(img)(_p4##x,y,z,c), I[227] = (T)(img)(_p3##x,y,z,c), I[228] = (T)(img)(_p2##x,y,z,c), I[229] = (T)(img)(_p1##x,y,z,c), I[230] = (T)(img)(x,y,z,c), I[231] = (T)(img)(_n1##x,y,z,c), I[232] = (T)(img)(_n2##x,y,z,c), I[233] = (T)(img)(_n3##x,y,z,c), I[234] = (T)(img)(_n4##x,y,z,c), I[235] = (T)(img)(_n5##x,y,z,c), I[236] = (T)(img)(_n6##x,y,z,c), I[237] = (T)(img)(_n7##x,y,z,c), I[238] = (T)(img)(_n8##x,y,z,c), I[239] = (T)(img)(_n9##x,y,z,c), I[240] = (T)(img)(_n10##x,y,z,c), I[241] = (T)(img)(_n11##x,y,z,c), \
|
|
I[242] = (T)(img)(_p10##x,_n1##y,z,c), I[243] = (T)(img)(_p9##x,_n1##y,z,c), I[244] = (T)(img)(_p8##x,_n1##y,z,c), I[245] = (T)(img)(_p7##x,_n1##y,z,c), I[246] = (T)(img)(_p6##x,_n1##y,z,c), I[247] = (T)(img)(_p5##x,_n1##y,z,c), I[248] = (T)(img)(_p4##x,_n1##y,z,c), I[249] = (T)(img)(_p3##x,_n1##y,z,c), I[250] = (T)(img)(_p2##x,_n1##y,z,c), I[251] = (T)(img)(_p1##x,_n1##y,z,c), I[252] = (T)(img)(x,_n1##y,z,c), I[253] = (T)(img)(_n1##x,_n1##y,z,c), I[254] = (T)(img)(_n2##x,_n1##y,z,c), I[255] = (T)(img)(_n3##x,_n1##y,z,c), I[256] = (T)(img)(_n4##x,_n1##y,z,c), I[257] = (T)(img)(_n5##x,_n1##y,z,c), I[258] = (T)(img)(_n6##x,_n1##y,z,c), I[259] = (T)(img)(_n7##x,_n1##y,z,c), I[260] = (T)(img)(_n8##x,_n1##y,z,c), I[261] = (T)(img)(_n9##x,_n1##y,z,c), I[262] = (T)(img)(_n10##x,_n1##y,z,c), I[263] = (T)(img)(_n11##x,_n1##y,z,c), \
|
|
I[264] = (T)(img)(_p10##x,_n2##y,z,c), I[265] = (T)(img)(_p9##x,_n2##y,z,c), I[266] = (T)(img)(_p8##x,_n2##y,z,c), I[267] = (T)(img)(_p7##x,_n2##y,z,c), I[268] = (T)(img)(_p6##x,_n2##y,z,c), I[269] = (T)(img)(_p5##x,_n2##y,z,c), I[270] = (T)(img)(_p4##x,_n2##y,z,c), I[271] = (T)(img)(_p3##x,_n2##y,z,c), I[272] = (T)(img)(_p2##x,_n2##y,z,c), I[273] = (T)(img)(_p1##x,_n2##y,z,c), I[274] = (T)(img)(x,_n2##y,z,c), I[275] = (T)(img)(_n1##x,_n2##y,z,c), I[276] = (T)(img)(_n2##x,_n2##y,z,c), I[277] = (T)(img)(_n3##x,_n2##y,z,c), I[278] = (T)(img)(_n4##x,_n2##y,z,c), I[279] = (T)(img)(_n5##x,_n2##y,z,c), I[280] = (T)(img)(_n6##x,_n2##y,z,c), I[281] = (T)(img)(_n7##x,_n2##y,z,c), I[282] = (T)(img)(_n8##x,_n2##y,z,c), I[283] = (T)(img)(_n9##x,_n2##y,z,c), I[284] = (T)(img)(_n10##x,_n2##y,z,c), I[285] = (T)(img)(_n11##x,_n2##y,z,c), \
|
|
I[286] = (T)(img)(_p10##x,_n3##y,z,c), I[287] = (T)(img)(_p9##x,_n3##y,z,c), I[288] = (T)(img)(_p8##x,_n3##y,z,c), I[289] = (T)(img)(_p7##x,_n3##y,z,c), I[290] = (T)(img)(_p6##x,_n3##y,z,c), I[291] = (T)(img)(_p5##x,_n3##y,z,c), I[292] = (T)(img)(_p4##x,_n3##y,z,c), I[293] = (T)(img)(_p3##x,_n3##y,z,c), I[294] = (T)(img)(_p2##x,_n3##y,z,c), I[295] = (T)(img)(_p1##x,_n3##y,z,c), I[296] = (T)(img)(x,_n3##y,z,c), I[297] = (T)(img)(_n1##x,_n3##y,z,c), I[298] = (T)(img)(_n2##x,_n3##y,z,c), I[299] = (T)(img)(_n3##x,_n3##y,z,c), I[300] = (T)(img)(_n4##x,_n3##y,z,c), I[301] = (T)(img)(_n5##x,_n3##y,z,c), I[302] = (T)(img)(_n6##x,_n3##y,z,c), I[303] = (T)(img)(_n7##x,_n3##y,z,c), I[304] = (T)(img)(_n8##x,_n3##y,z,c), I[305] = (T)(img)(_n9##x,_n3##y,z,c), I[306] = (T)(img)(_n10##x,_n3##y,z,c), I[307] = (T)(img)(_n11##x,_n3##y,z,c), \
|
|
I[308] = (T)(img)(_p10##x,_n4##y,z,c), I[309] = (T)(img)(_p9##x,_n4##y,z,c), I[310] = (T)(img)(_p8##x,_n4##y,z,c), I[311] = (T)(img)(_p7##x,_n4##y,z,c), I[312] = (T)(img)(_p6##x,_n4##y,z,c), I[313] = (T)(img)(_p5##x,_n4##y,z,c), I[314] = (T)(img)(_p4##x,_n4##y,z,c), I[315] = (T)(img)(_p3##x,_n4##y,z,c), I[316] = (T)(img)(_p2##x,_n4##y,z,c), I[317] = (T)(img)(_p1##x,_n4##y,z,c), I[318] = (T)(img)(x,_n4##y,z,c), I[319] = (T)(img)(_n1##x,_n4##y,z,c), I[320] = (T)(img)(_n2##x,_n4##y,z,c), I[321] = (T)(img)(_n3##x,_n4##y,z,c), I[322] = (T)(img)(_n4##x,_n4##y,z,c), I[323] = (T)(img)(_n5##x,_n4##y,z,c), I[324] = (T)(img)(_n6##x,_n4##y,z,c), I[325] = (T)(img)(_n7##x,_n4##y,z,c), I[326] = (T)(img)(_n8##x,_n4##y,z,c), I[327] = (T)(img)(_n9##x,_n4##y,z,c), I[328] = (T)(img)(_n10##x,_n4##y,z,c), I[329] = (T)(img)(_n11##x,_n4##y,z,c), \
|
|
I[330] = (T)(img)(_p10##x,_n5##y,z,c), I[331] = (T)(img)(_p9##x,_n5##y,z,c), I[332] = (T)(img)(_p8##x,_n5##y,z,c), I[333] = (T)(img)(_p7##x,_n5##y,z,c), I[334] = (T)(img)(_p6##x,_n5##y,z,c), I[335] = (T)(img)(_p5##x,_n5##y,z,c), I[336] = (T)(img)(_p4##x,_n5##y,z,c), I[337] = (T)(img)(_p3##x,_n5##y,z,c), I[338] = (T)(img)(_p2##x,_n5##y,z,c), I[339] = (T)(img)(_p1##x,_n5##y,z,c), I[340] = (T)(img)(x,_n5##y,z,c), I[341] = (T)(img)(_n1##x,_n5##y,z,c), I[342] = (T)(img)(_n2##x,_n5##y,z,c), I[343] = (T)(img)(_n3##x,_n5##y,z,c), I[344] = (T)(img)(_n4##x,_n5##y,z,c), I[345] = (T)(img)(_n5##x,_n5##y,z,c), I[346] = (T)(img)(_n6##x,_n5##y,z,c), I[347] = (T)(img)(_n7##x,_n5##y,z,c), I[348] = (T)(img)(_n8##x,_n5##y,z,c), I[349] = (T)(img)(_n9##x,_n5##y,z,c), I[350] = (T)(img)(_n10##x,_n5##y,z,c), I[351] = (T)(img)(_n11##x,_n5##y,z,c), \
|
|
I[352] = (T)(img)(_p10##x,_n6##y,z,c), I[353] = (T)(img)(_p9##x,_n6##y,z,c), I[354] = (T)(img)(_p8##x,_n6##y,z,c), I[355] = (T)(img)(_p7##x,_n6##y,z,c), I[356] = (T)(img)(_p6##x,_n6##y,z,c), I[357] = (T)(img)(_p5##x,_n6##y,z,c), I[358] = (T)(img)(_p4##x,_n6##y,z,c), I[359] = (T)(img)(_p3##x,_n6##y,z,c), I[360] = (T)(img)(_p2##x,_n6##y,z,c), I[361] = (T)(img)(_p1##x,_n6##y,z,c), I[362] = (T)(img)(x,_n6##y,z,c), I[363] = (T)(img)(_n1##x,_n6##y,z,c), I[364] = (T)(img)(_n2##x,_n6##y,z,c), I[365] = (T)(img)(_n3##x,_n6##y,z,c), I[366] = (T)(img)(_n4##x,_n6##y,z,c), I[367] = (T)(img)(_n5##x,_n6##y,z,c), I[368] = (T)(img)(_n6##x,_n6##y,z,c), I[369] = (T)(img)(_n7##x,_n6##y,z,c), I[370] = (T)(img)(_n8##x,_n6##y,z,c), I[371] = (T)(img)(_n9##x,_n6##y,z,c), I[372] = (T)(img)(_n10##x,_n6##y,z,c), I[373] = (T)(img)(_n11##x,_n6##y,z,c), \
|
|
I[374] = (T)(img)(_p10##x,_n7##y,z,c), I[375] = (T)(img)(_p9##x,_n7##y,z,c), I[376] = (T)(img)(_p8##x,_n7##y,z,c), I[377] = (T)(img)(_p7##x,_n7##y,z,c), I[378] = (T)(img)(_p6##x,_n7##y,z,c), I[379] = (T)(img)(_p5##x,_n7##y,z,c), I[380] = (T)(img)(_p4##x,_n7##y,z,c), I[381] = (T)(img)(_p3##x,_n7##y,z,c), I[382] = (T)(img)(_p2##x,_n7##y,z,c), I[383] = (T)(img)(_p1##x,_n7##y,z,c), I[384] = (T)(img)(x,_n7##y,z,c), I[385] = (T)(img)(_n1##x,_n7##y,z,c), I[386] = (T)(img)(_n2##x,_n7##y,z,c), I[387] = (T)(img)(_n3##x,_n7##y,z,c), I[388] = (T)(img)(_n4##x,_n7##y,z,c), I[389] = (T)(img)(_n5##x,_n7##y,z,c), I[390] = (T)(img)(_n6##x,_n7##y,z,c), I[391] = (T)(img)(_n7##x,_n7##y,z,c), I[392] = (T)(img)(_n8##x,_n7##y,z,c), I[393] = (T)(img)(_n9##x,_n7##y,z,c), I[394] = (T)(img)(_n10##x,_n7##y,z,c), I[395] = (T)(img)(_n11##x,_n7##y,z,c), \
|
|
I[396] = (T)(img)(_p10##x,_n8##y,z,c), I[397] = (T)(img)(_p9##x,_n8##y,z,c), I[398] = (T)(img)(_p8##x,_n8##y,z,c), I[399] = (T)(img)(_p7##x,_n8##y,z,c), I[400] = (T)(img)(_p6##x,_n8##y,z,c), I[401] = (T)(img)(_p5##x,_n8##y,z,c), I[402] = (T)(img)(_p4##x,_n8##y,z,c), I[403] = (T)(img)(_p3##x,_n8##y,z,c), I[404] = (T)(img)(_p2##x,_n8##y,z,c), I[405] = (T)(img)(_p1##x,_n8##y,z,c), I[406] = (T)(img)(x,_n8##y,z,c), I[407] = (T)(img)(_n1##x,_n8##y,z,c), I[408] = (T)(img)(_n2##x,_n8##y,z,c), I[409] = (T)(img)(_n3##x,_n8##y,z,c), I[410] = (T)(img)(_n4##x,_n8##y,z,c), I[411] = (T)(img)(_n5##x,_n8##y,z,c), I[412] = (T)(img)(_n6##x,_n8##y,z,c), I[413] = (T)(img)(_n7##x,_n8##y,z,c), I[414] = (T)(img)(_n8##x,_n8##y,z,c), I[415] = (T)(img)(_n9##x,_n8##y,z,c), I[416] = (T)(img)(_n10##x,_n8##y,z,c), I[417] = (T)(img)(_n11##x,_n8##y,z,c), \
|
|
I[418] = (T)(img)(_p10##x,_n9##y,z,c), I[419] = (T)(img)(_p9##x,_n9##y,z,c), I[420] = (T)(img)(_p8##x,_n9##y,z,c), I[421] = (T)(img)(_p7##x,_n9##y,z,c), I[422] = (T)(img)(_p6##x,_n9##y,z,c), I[423] = (T)(img)(_p5##x,_n9##y,z,c), I[424] = (T)(img)(_p4##x,_n9##y,z,c), I[425] = (T)(img)(_p3##x,_n9##y,z,c), I[426] = (T)(img)(_p2##x,_n9##y,z,c), I[427] = (T)(img)(_p1##x,_n9##y,z,c), I[428] = (T)(img)(x,_n9##y,z,c), I[429] = (T)(img)(_n1##x,_n9##y,z,c), I[430] = (T)(img)(_n2##x,_n9##y,z,c), I[431] = (T)(img)(_n3##x,_n9##y,z,c), I[432] = (T)(img)(_n4##x,_n9##y,z,c), I[433] = (T)(img)(_n5##x,_n9##y,z,c), I[434] = (T)(img)(_n6##x,_n9##y,z,c), I[435] = (T)(img)(_n7##x,_n9##y,z,c), I[436] = (T)(img)(_n8##x,_n9##y,z,c), I[437] = (T)(img)(_n9##x,_n9##y,z,c), I[438] = (T)(img)(_n10##x,_n9##y,z,c), I[439] = (T)(img)(_n11##x,_n9##y,z,c), \
|
|
I[440] = (T)(img)(_p10##x,_n10##y,z,c), I[441] = (T)(img)(_p9##x,_n10##y,z,c), I[442] = (T)(img)(_p8##x,_n10##y,z,c), I[443] = (T)(img)(_p7##x,_n10##y,z,c), I[444] = (T)(img)(_p6##x,_n10##y,z,c), I[445] = (T)(img)(_p5##x,_n10##y,z,c), I[446] = (T)(img)(_p4##x,_n10##y,z,c), I[447] = (T)(img)(_p3##x,_n10##y,z,c), I[448] = (T)(img)(_p2##x,_n10##y,z,c), I[449] = (T)(img)(_p1##x,_n10##y,z,c), I[450] = (T)(img)(x,_n10##y,z,c), I[451] = (T)(img)(_n1##x,_n10##y,z,c), I[452] = (T)(img)(_n2##x,_n10##y,z,c), I[453] = (T)(img)(_n3##x,_n10##y,z,c), I[454] = (T)(img)(_n4##x,_n10##y,z,c), I[455] = (T)(img)(_n5##x,_n10##y,z,c), I[456] = (T)(img)(_n6##x,_n10##y,z,c), I[457] = (T)(img)(_n7##x,_n10##y,z,c), I[458] = (T)(img)(_n8##x,_n10##y,z,c), I[459] = (T)(img)(_n9##x,_n10##y,z,c), I[460] = (T)(img)(_n10##x,_n10##y,z,c), I[461] = (T)(img)(_n11##x,_n10##y,z,c), \
|
|
I[462] = (T)(img)(_p10##x,_n11##y,z,c), I[463] = (T)(img)(_p9##x,_n11##y,z,c), I[464] = (T)(img)(_p8##x,_n11##y,z,c), I[465] = (T)(img)(_p7##x,_n11##y,z,c), I[466] = (T)(img)(_p6##x,_n11##y,z,c), I[467] = (T)(img)(_p5##x,_n11##y,z,c), I[468] = (T)(img)(_p4##x,_n11##y,z,c), I[469] = (T)(img)(_p3##x,_n11##y,z,c), I[470] = (T)(img)(_p2##x,_n11##y,z,c), I[471] = (T)(img)(_p1##x,_n11##y,z,c), I[472] = (T)(img)(x,_n11##y,z,c), I[473] = (T)(img)(_n1##x,_n11##y,z,c), I[474] = (T)(img)(_n2##x,_n11##y,z,c), I[475] = (T)(img)(_n3##x,_n11##y,z,c), I[476] = (T)(img)(_n4##x,_n11##y,z,c), I[477] = (T)(img)(_n5##x,_n11##y,z,c), I[478] = (T)(img)(_n6##x,_n11##y,z,c), I[479] = (T)(img)(_n7##x,_n11##y,z,c), I[480] = (T)(img)(_n8##x,_n11##y,z,c), I[481] = (T)(img)(_n9##x,_n11##y,z,c), I[482] = (T)(img)(_n10##x,_n11##y,z,c), I[483] = (T)(img)(_n11##x,_n11##y,z,c);
|
|
|
|
// Define 23x23 loop macros
|
|
//-------------------------
|
|
#define cimg_for23(bound,i) for (int i = 0, \
|
|
_p11##i = 0, _p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
|
|
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
|
|
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
|
|
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
|
|
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
|
|
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
|
|
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
|
|
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
|
|
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9, \
|
|
_n10##i = 10>=(int)(bound)?(int)(bound) - 1:10, \
|
|
_n11##i = 11>=(int)(bound)?(int)(bound) - 1:11; \
|
|
_n11##i<(int)(bound) || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
|
|
_p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i)
|
|
|
|
#define cimg_for23X(img,x) cimg_for23((img)._width,x)
|
|
#define cimg_for23Y(img,y) cimg_for23((img)._height,y)
|
|
#define cimg_for23Z(img,z) cimg_for23((img)._depth,z)
|
|
#define cimg_for23C(img,c) cimg_for23((img)._spectrum,c)
|
|
#define cimg_for23XY(img,x,y) cimg_for23Y(img,y) cimg_for23X(img,x)
|
|
#define cimg_for23XZ(img,x,z) cimg_for23Z(img,z) cimg_for23X(img,x)
|
|
#define cimg_for23XC(img,x,c) cimg_for23C(img,c) cimg_for23X(img,x)
|
|
#define cimg_for23YZ(img,y,z) cimg_for23Z(img,z) cimg_for23Y(img,y)
|
|
#define cimg_for23YC(img,y,c) cimg_for23C(img,c) cimg_for23Y(img,y)
|
|
#define cimg_for23ZC(img,z,c) cimg_for23C(img,c) cimg_for23Z(img,z)
|
|
#define cimg_for23XYZ(img,x,y,z) cimg_for23Z(img,z) cimg_for23XY(img,x,y)
|
|
#define cimg_for23XZC(img,x,z,c) cimg_for23C(img,c) cimg_for23XZ(img,x,z)
|
|
#define cimg_for23YZC(img,y,z,c) cimg_for23C(img,c) cimg_for23YZ(img,y,z)
|
|
#define cimg_for23XYZC(img,x,y,z,c) cimg_for23C(img,c) cimg_for23XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in23(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p11##i = i - 11<0?0:i - 11, \
|
|
_p10##i = i - 10<0?0:i - 10, \
|
|
_p9##i = i - 9<0?0:i - 9, \
|
|
_p8##i = i - 8<0?0:i - 8, \
|
|
_p7##i = i - 7<0?0:i - 7, \
|
|
_p6##i = i - 6<0?0:i - 6, \
|
|
_p5##i = i - 5<0?0:i - 5, \
|
|
_p4##i = i - 4<0?0:i - 4, \
|
|
_p3##i = i - 3<0?0:i - 3, \
|
|
_p2##i = i - 2<0?0:i - 2, \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
|
|
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
|
|
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
|
|
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
|
|
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
|
|
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
|
|
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
|
|
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
|
|
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9, \
|
|
_n10##i = i + 10>=(int)(bound)?(int)(bound) - 1:i + 10, \
|
|
_n11##i = i + 11>=(int)(bound)?(int)(bound) - 1:i + 11; \
|
|
i<=(int)(i1) && (_n11##i<(int)(bound) || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
|
|
_p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i)
|
|
|
|
#define cimg_for_in23X(img,x0,x1,x) cimg_for_in23((img)._width,x0,x1,x)
|
|
#define cimg_for_in23Y(img,y0,y1,y) cimg_for_in23((img)._height,y0,y1,y)
|
|
#define cimg_for_in23Z(img,z0,z1,z) cimg_for_in23((img)._depth,z0,z1,z)
|
|
#define cimg_for_in23C(img,c0,c1,c) cimg_for_in23((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in23XY(img,x0,y0,x1,y1,x,y) cimg_for_in23Y(img,y0,y1,y) cimg_for_in23X(img,x0,x1,x)
|
|
#define cimg_for_in23XZ(img,x0,z0,x1,z1,x,z) cimg_for_in23Z(img,z0,z1,z) cimg_for_in23X(img,x0,x1,x)
|
|
#define cimg_for_in23XC(img,x0,c0,x1,c1,x,c) cimg_for_in23C(img,c0,c1,c) cimg_for_in23X(img,x0,x1,x)
|
|
#define cimg_for_in23YZ(img,y0,z0,y1,z1,y,z) cimg_for_in23Z(img,z0,z1,z) cimg_for_in23Y(img,y0,y1,y)
|
|
#define cimg_for_in23YC(img,y0,c0,y1,c1,y,c) cimg_for_in23C(img,c0,c1,c) cimg_for_in23Y(img,y0,y1,y)
|
|
#define cimg_for_in23ZC(img,z0,c0,z1,c1,z,c) cimg_for_in23C(img,c0,c1,c) cimg_for_in23Z(img,z0,z1,z)
|
|
#define cimg_for_in23XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in23Z(img,z0,z1,z) cimg_for_in23XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in23XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in23C(img,c0,c1,c) cimg_for_in23XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in23YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in23C(img,c0,c1,c) cimg_for_in23YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in23XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in23C(img,c0,c1,c) cimg_for_in23XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for23x23(img,x,y,z,c,I,T) \
|
|
cimg_for23((img)._height,y) for (int x = 0, \
|
|
_p11##x = 0, _p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
|
|
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
|
|
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
|
|
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
|
|
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
|
|
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
|
|
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
|
|
_n9##x = 9>=((img)._width)?(img).width() - 1:9, \
|
|
_n10##x = 10>=((img)._width)?(img).width() - 1:10, \
|
|
_n11##x = (int)( \
|
|
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = I[11] = (T)(img)(0,_p11##y,z,c)), \
|
|
(I[23] = I[24] = I[25] = I[26] = I[27] = I[28] = I[29] = I[30] = I[31] = I[32] = I[33] = I[34] = (T)(img)(0,_p10##y,z,c)), \
|
|
(I[46] = I[47] = I[48] = I[49] = I[50] = I[51] = I[52] = I[53] = I[54] = I[55] = I[56] = I[57] = (T)(img)(0,_p9##y,z,c)), \
|
|
(I[69] = I[70] = I[71] = I[72] = I[73] = I[74] = I[75] = I[76] = I[77] = I[78] = I[79] = I[80] = (T)(img)(0,_p8##y,z,c)), \
|
|
(I[92] = I[93] = I[94] = I[95] = I[96] = I[97] = I[98] = I[99] = I[100] = I[101] = I[102] = I[103] = (T)(img)(0,_p7##y,z,c)), \
|
|
(I[115] = I[116] = I[117] = I[118] = I[119] = I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = I[126] = (T)(img)(0,_p6##y,z,c)), \
|
|
(I[138] = I[139] = I[140] = I[141] = I[142] = I[143] = I[144] = I[145] = I[146] = I[147] = I[148] = I[149] = (T)(img)(0,_p5##y,z,c)), \
|
|
(I[161] = I[162] = I[163] = I[164] = I[165] = I[166] = I[167] = I[168] = I[169] = I[170] = I[171] = I[172] = (T)(img)(0,_p4##y,z,c)), \
|
|
(I[184] = I[185] = I[186] = I[187] = I[188] = I[189] = I[190] = I[191] = I[192] = I[193] = I[194] = I[195] = (T)(img)(0,_p3##y,z,c)), \
|
|
(I[207] = I[208] = I[209] = I[210] = I[211] = I[212] = I[213] = I[214] = I[215] = I[216] = I[217] = I[218] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[230] = I[231] = I[232] = I[233] = I[234] = I[235] = I[236] = I[237] = I[238] = I[239] = I[240] = I[241] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[253] = I[254] = I[255] = I[256] = I[257] = I[258] = I[259] = I[260] = I[261] = I[262] = I[263] = I[264] = (T)(img)(0,y,z,c)), \
|
|
(I[276] = I[277] = I[278] = I[279] = I[280] = I[281] = I[282] = I[283] = I[284] = I[285] = I[286] = I[287] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[299] = I[300] = I[301] = I[302] = I[303] = I[304] = I[305] = I[306] = I[307] = I[308] = I[309] = I[310] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[322] = I[323] = I[324] = I[325] = I[326] = I[327] = I[328] = I[329] = I[330] = I[331] = I[332] = I[333] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[345] = I[346] = I[347] = I[348] = I[349] = I[350] = I[351] = I[352] = I[353] = I[354] = I[355] = I[356] = (T)(img)(0,_n4##y,z,c)), \
|
|
(I[368] = I[369] = I[370] = I[371] = I[372] = I[373] = I[374] = I[375] = I[376] = I[377] = I[378] = I[379] = (T)(img)(0,_n5##y,z,c)), \
|
|
(I[391] = I[392] = I[393] = I[394] = I[395] = I[396] = I[397] = I[398] = I[399] = I[400] = I[401] = I[402] = (T)(img)(0,_n6##y,z,c)), \
|
|
(I[414] = I[415] = I[416] = I[417] = I[418] = I[419] = I[420] = I[421] = I[422] = I[423] = I[424] = I[425] = (T)(img)(0,_n7##y,z,c)), \
|
|
(I[437] = I[438] = I[439] = I[440] = I[441] = I[442] = I[443] = I[444] = I[445] = I[446] = I[447] = I[448] = (T)(img)(0,_n8##y,z,c)), \
|
|
(I[460] = I[461] = I[462] = I[463] = I[464] = I[465] = I[466] = I[467] = I[468] = I[469] = I[470] = I[471] = (T)(img)(0,_n9##y,z,c)), \
|
|
(I[483] = I[484] = I[485] = I[486] = I[487] = I[488] = I[489] = I[490] = I[491] = I[492] = I[493] = I[494] = (T)(img)(0,_n10##y,z,c)), \
|
|
(I[506] = I[507] = I[508] = I[509] = I[510] = I[511] = I[512] = I[513] = I[514] = I[515] = I[516] = I[517] = (T)(img)(0,_n11##y,z,c)), \
|
|
(I[12] = (T)(img)(_n1##x,_p11##y,z,c)), \
|
|
(I[35] = (T)(img)(_n1##x,_p10##y,z,c)), \
|
|
(I[58] = (T)(img)(_n1##x,_p9##y,z,c)), \
|
|
(I[81] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[104] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[127] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[150] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[173] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[196] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[219] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[242] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[265] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[288] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[311] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[334] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[357] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[380] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[403] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[426] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[449] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[472] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[495] = (T)(img)(_n1##x,_n10##y,z,c)), \
|
|
(I[518] = (T)(img)(_n1##x,_n11##y,z,c)), \
|
|
(I[13] = (T)(img)(_n2##x,_p11##y,z,c)), \
|
|
(I[36] = (T)(img)(_n2##x,_p10##y,z,c)), \
|
|
(I[59] = (T)(img)(_n2##x,_p9##y,z,c)), \
|
|
(I[82] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[105] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[128] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[151] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[174] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[197] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[220] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[243] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[266] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[289] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[312] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[335] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[358] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[381] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[404] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[427] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[450] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[473] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[496] = (T)(img)(_n2##x,_n10##y,z,c)), \
|
|
(I[519] = (T)(img)(_n2##x,_n11##y,z,c)), \
|
|
(I[14] = (T)(img)(_n3##x,_p11##y,z,c)), \
|
|
(I[37] = (T)(img)(_n3##x,_p10##y,z,c)), \
|
|
(I[60] = (T)(img)(_n3##x,_p9##y,z,c)), \
|
|
(I[83] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[106] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[129] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[152] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[175] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[198] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[221] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[244] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[267] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[290] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[313] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[336] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[359] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[382] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[405] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[428] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[451] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[474] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[497] = (T)(img)(_n3##x,_n10##y,z,c)), \
|
|
(I[520] = (T)(img)(_n3##x,_n11##y,z,c)), \
|
|
(I[15] = (T)(img)(_n4##x,_p11##y,z,c)), \
|
|
(I[38] = (T)(img)(_n4##x,_p10##y,z,c)), \
|
|
(I[61] = (T)(img)(_n4##x,_p9##y,z,c)), \
|
|
(I[84] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[107] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[130] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[153] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[176] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[199] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[222] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[245] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[268] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[291] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[314] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[337] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[360] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[383] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[406] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[429] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[452] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[475] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[498] = (T)(img)(_n4##x,_n10##y,z,c)), \
|
|
(I[521] = (T)(img)(_n4##x,_n11##y,z,c)), \
|
|
(I[16] = (T)(img)(_n5##x,_p11##y,z,c)), \
|
|
(I[39] = (T)(img)(_n5##x,_p10##y,z,c)), \
|
|
(I[62] = (T)(img)(_n5##x,_p9##y,z,c)), \
|
|
(I[85] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[108] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[131] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[154] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[177] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[200] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[223] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[246] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[269] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[292] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[315] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[338] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[361] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[384] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[407] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[430] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[453] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[476] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[499] = (T)(img)(_n5##x,_n10##y,z,c)), \
|
|
(I[522] = (T)(img)(_n5##x,_n11##y,z,c)), \
|
|
(I[17] = (T)(img)(_n6##x,_p11##y,z,c)), \
|
|
(I[40] = (T)(img)(_n6##x,_p10##y,z,c)), \
|
|
(I[63] = (T)(img)(_n6##x,_p9##y,z,c)), \
|
|
(I[86] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[109] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[132] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[155] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[178] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[201] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[224] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[247] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[270] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[293] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[316] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[339] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[362] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[385] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[408] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[431] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[454] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[477] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[500] = (T)(img)(_n6##x,_n10##y,z,c)), \
|
|
(I[523] = (T)(img)(_n6##x,_n11##y,z,c)), \
|
|
(I[18] = (T)(img)(_n7##x,_p11##y,z,c)), \
|
|
(I[41] = (T)(img)(_n7##x,_p10##y,z,c)), \
|
|
(I[64] = (T)(img)(_n7##x,_p9##y,z,c)), \
|
|
(I[87] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[110] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[133] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[156] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[179] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[202] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[225] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[248] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[271] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[294] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[317] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[340] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[363] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[386] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[409] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[432] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[455] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[478] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[501] = (T)(img)(_n7##x,_n10##y,z,c)), \
|
|
(I[524] = (T)(img)(_n7##x,_n11##y,z,c)), \
|
|
(I[19] = (T)(img)(_n8##x,_p11##y,z,c)), \
|
|
(I[42] = (T)(img)(_n8##x,_p10##y,z,c)), \
|
|
(I[65] = (T)(img)(_n8##x,_p9##y,z,c)), \
|
|
(I[88] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[111] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[134] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[157] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[180] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[203] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[226] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[249] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[272] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[295] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[318] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[341] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[364] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[387] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[410] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[433] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[456] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[479] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
(I[502] = (T)(img)(_n8##x,_n10##y,z,c)), \
|
|
(I[525] = (T)(img)(_n8##x,_n11##y,z,c)), \
|
|
(I[20] = (T)(img)(_n9##x,_p11##y,z,c)), \
|
|
(I[43] = (T)(img)(_n9##x,_p10##y,z,c)), \
|
|
(I[66] = (T)(img)(_n9##x,_p9##y,z,c)), \
|
|
(I[89] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[112] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[135] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[158] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[181] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[204] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[227] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[250] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[273] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[296] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[319] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[342] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[365] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[388] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[411] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[434] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[457] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[480] = (T)(img)(_n9##x,_n9##y,z,c)), \
|
|
(I[503] = (T)(img)(_n9##x,_n10##y,z,c)), \
|
|
(I[526] = (T)(img)(_n9##x,_n11##y,z,c)), \
|
|
(I[21] = (T)(img)(_n10##x,_p11##y,z,c)), \
|
|
(I[44] = (T)(img)(_n10##x,_p10##y,z,c)), \
|
|
(I[67] = (T)(img)(_n10##x,_p9##y,z,c)), \
|
|
(I[90] = (T)(img)(_n10##x,_p8##y,z,c)), \
|
|
(I[113] = (T)(img)(_n10##x,_p7##y,z,c)), \
|
|
(I[136] = (T)(img)(_n10##x,_p6##y,z,c)), \
|
|
(I[159] = (T)(img)(_n10##x,_p5##y,z,c)), \
|
|
(I[182] = (T)(img)(_n10##x,_p4##y,z,c)), \
|
|
(I[205] = (T)(img)(_n10##x,_p3##y,z,c)), \
|
|
(I[228] = (T)(img)(_n10##x,_p2##y,z,c)), \
|
|
(I[251] = (T)(img)(_n10##x,_p1##y,z,c)), \
|
|
(I[274] = (T)(img)(_n10##x,y,z,c)), \
|
|
(I[297] = (T)(img)(_n10##x,_n1##y,z,c)), \
|
|
(I[320] = (T)(img)(_n10##x,_n2##y,z,c)), \
|
|
(I[343] = (T)(img)(_n10##x,_n3##y,z,c)), \
|
|
(I[366] = (T)(img)(_n10##x,_n4##y,z,c)), \
|
|
(I[389] = (T)(img)(_n10##x,_n5##y,z,c)), \
|
|
(I[412] = (T)(img)(_n10##x,_n6##y,z,c)), \
|
|
(I[435] = (T)(img)(_n10##x,_n7##y,z,c)), \
|
|
(I[458] = (T)(img)(_n10##x,_n8##y,z,c)), \
|
|
(I[481] = (T)(img)(_n10##x,_n9##y,z,c)), \
|
|
(I[504] = (T)(img)(_n10##x,_n10##y,z,c)), \
|
|
(I[527] = (T)(img)(_n10##x,_n11##y,z,c)), \
|
|
11>=((img)._width)?(img).width() - 1:11); \
|
|
(_n11##x<(img).width() && ( \
|
|
(I[22] = (T)(img)(_n11##x,_p11##y,z,c)), \
|
|
(I[45] = (T)(img)(_n11##x,_p10##y,z,c)), \
|
|
(I[68] = (T)(img)(_n11##x,_p9##y,z,c)), \
|
|
(I[91] = (T)(img)(_n11##x,_p8##y,z,c)), \
|
|
(I[114] = (T)(img)(_n11##x,_p7##y,z,c)), \
|
|
(I[137] = (T)(img)(_n11##x,_p6##y,z,c)), \
|
|
(I[160] = (T)(img)(_n11##x,_p5##y,z,c)), \
|
|
(I[183] = (T)(img)(_n11##x,_p4##y,z,c)), \
|
|
(I[206] = (T)(img)(_n11##x,_p3##y,z,c)), \
|
|
(I[229] = (T)(img)(_n11##x,_p2##y,z,c)), \
|
|
(I[252] = (T)(img)(_n11##x,_p1##y,z,c)), \
|
|
(I[275] = (T)(img)(_n11##x,y,z,c)), \
|
|
(I[298] = (T)(img)(_n11##x,_n1##y,z,c)), \
|
|
(I[321] = (T)(img)(_n11##x,_n2##y,z,c)), \
|
|
(I[344] = (T)(img)(_n11##x,_n3##y,z,c)), \
|
|
(I[367] = (T)(img)(_n11##x,_n4##y,z,c)), \
|
|
(I[390] = (T)(img)(_n11##x,_n5##y,z,c)), \
|
|
(I[413] = (T)(img)(_n11##x,_n6##y,z,c)), \
|
|
(I[436] = (T)(img)(_n11##x,_n7##y,z,c)), \
|
|
(I[459] = (T)(img)(_n11##x,_n8##y,z,c)), \
|
|
(I[482] = (T)(img)(_n11##x,_n9##y,z,c)), \
|
|
(I[505] = (T)(img)(_n11##x,_n10##y,z,c)), \
|
|
(I[528] = (T)(img)(_n11##x,_n11##y,z,c)),1)) || \
|
|
_n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], \
|
|
I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], \
|
|
I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], \
|
|
I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], \
|
|
I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], \
|
|
I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], \
|
|
I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], \
|
|
I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], \
|
|
I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], \
|
|
I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], \
|
|
I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], \
|
|
I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], \
|
|
I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], \
|
|
I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], \
|
|
I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], \
|
|
I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], \
|
|
I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], \
|
|
I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], \
|
|
I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], \
|
|
I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], \
|
|
I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], \
|
|
I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], \
|
|
I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], \
|
|
_p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x)
|
|
|
|
#define cimg_for_in23x23(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in23((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p11##x = x - 11<0?0:x - 11, \
|
|
_p10##x = x - 10<0?0:x - 10, \
|
|
_p9##x = x - 9<0?0:x - 9, \
|
|
_p8##x = x - 8<0?0:x - 8, \
|
|
_p7##x = x - 7<0?0:x - 7, \
|
|
_p6##x = x - 6<0?0:x - 6, \
|
|
_p5##x = x - 5<0?0:x - 5, \
|
|
_p4##x = x - 4<0?0:x - 4, \
|
|
_p3##x = x - 3<0?0:x - 3, \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
|
|
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
|
|
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
|
|
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
|
|
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
|
|
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
|
|
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
|
|
_n9##x = x + 9>=(img).width()?(img).width() - 1:x + 9, \
|
|
_n10##x = x + 10>=(img).width()?(img).width() - 1:x + 10, \
|
|
_n11##x = (int)( \
|
|
(I[0] = (T)(img)(_p11##x,_p11##y,z,c)), \
|
|
(I[23] = (T)(img)(_p11##x,_p10##y,z,c)), \
|
|
(I[46] = (T)(img)(_p11##x,_p9##y,z,c)), \
|
|
(I[69] = (T)(img)(_p11##x,_p8##y,z,c)), \
|
|
(I[92] = (T)(img)(_p11##x,_p7##y,z,c)), \
|
|
(I[115] = (T)(img)(_p11##x,_p6##y,z,c)), \
|
|
(I[138] = (T)(img)(_p11##x,_p5##y,z,c)), \
|
|
(I[161] = (T)(img)(_p11##x,_p4##y,z,c)), \
|
|
(I[184] = (T)(img)(_p11##x,_p3##y,z,c)), \
|
|
(I[207] = (T)(img)(_p11##x,_p2##y,z,c)), \
|
|
(I[230] = (T)(img)(_p11##x,_p1##y,z,c)), \
|
|
(I[253] = (T)(img)(_p11##x,y,z,c)), \
|
|
(I[276] = (T)(img)(_p11##x,_n1##y,z,c)), \
|
|
(I[299] = (T)(img)(_p11##x,_n2##y,z,c)), \
|
|
(I[322] = (T)(img)(_p11##x,_n3##y,z,c)), \
|
|
(I[345] = (T)(img)(_p11##x,_n4##y,z,c)), \
|
|
(I[368] = (T)(img)(_p11##x,_n5##y,z,c)), \
|
|
(I[391] = (T)(img)(_p11##x,_n6##y,z,c)), \
|
|
(I[414] = (T)(img)(_p11##x,_n7##y,z,c)), \
|
|
(I[437] = (T)(img)(_p11##x,_n8##y,z,c)), \
|
|
(I[460] = (T)(img)(_p11##x,_n9##y,z,c)), \
|
|
(I[483] = (T)(img)(_p11##x,_n10##y,z,c)), \
|
|
(I[506] = (T)(img)(_p11##x,_n11##y,z,c)), \
|
|
(I[1] = (T)(img)(_p10##x,_p11##y,z,c)), \
|
|
(I[24] = (T)(img)(_p10##x,_p10##y,z,c)), \
|
|
(I[47] = (T)(img)(_p10##x,_p9##y,z,c)), \
|
|
(I[70] = (T)(img)(_p10##x,_p8##y,z,c)), \
|
|
(I[93] = (T)(img)(_p10##x,_p7##y,z,c)), \
|
|
(I[116] = (T)(img)(_p10##x,_p6##y,z,c)), \
|
|
(I[139] = (T)(img)(_p10##x,_p5##y,z,c)), \
|
|
(I[162] = (T)(img)(_p10##x,_p4##y,z,c)), \
|
|
(I[185] = (T)(img)(_p10##x,_p3##y,z,c)), \
|
|
(I[208] = (T)(img)(_p10##x,_p2##y,z,c)), \
|
|
(I[231] = (T)(img)(_p10##x,_p1##y,z,c)), \
|
|
(I[254] = (T)(img)(_p10##x,y,z,c)), \
|
|
(I[277] = (T)(img)(_p10##x,_n1##y,z,c)), \
|
|
(I[300] = (T)(img)(_p10##x,_n2##y,z,c)), \
|
|
(I[323] = (T)(img)(_p10##x,_n3##y,z,c)), \
|
|
(I[346] = (T)(img)(_p10##x,_n4##y,z,c)), \
|
|
(I[369] = (T)(img)(_p10##x,_n5##y,z,c)), \
|
|
(I[392] = (T)(img)(_p10##x,_n6##y,z,c)), \
|
|
(I[415] = (T)(img)(_p10##x,_n7##y,z,c)), \
|
|
(I[438] = (T)(img)(_p10##x,_n8##y,z,c)), \
|
|
(I[461] = (T)(img)(_p10##x,_n9##y,z,c)), \
|
|
(I[484] = (T)(img)(_p10##x,_n10##y,z,c)), \
|
|
(I[507] = (T)(img)(_p10##x,_n11##y,z,c)), \
|
|
(I[2] = (T)(img)(_p9##x,_p11##y,z,c)), \
|
|
(I[25] = (T)(img)(_p9##x,_p10##y,z,c)), \
|
|
(I[48] = (T)(img)(_p9##x,_p9##y,z,c)), \
|
|
(I[71] = (T)(img)(_p9##x,_p8##y,z,c)), \
|
|
(I[94] = (T)(img)(_p9##x,_p7##y,z,c)), \
|
|
(I[117] = (T)(img)(_p9##x,_p6##y,z,c)), \
|
|
(I[140] = (T)(img)(_p9##x,_p5##y,z,c)), \
|
|
(I[163] = (T)(img)(_p9##x,_p4##y,z,c)), \
|
|
(I[186] = (T)(img)(_p9##x,_p3##y,z,c)), \
|
|
(I[209] = (T)(img)(_p9##x,_p2##y,z,c)), \
|
|
(I[232] = (T)(img)(_p9##x,_p1##y,z,c)), \
|
|
(I[255] = (T)(img)(_p9##x,y,z,c)), \
|
|
(I[278] = (T)(img)(_p9##x,_n1##y,z,c)), \
|
|
(I[301] = (T)(img)(_p9##x,_n2##y,z,c)), \
|
|
(I[324] = (T)(img)(_p9##x,_n3##y,z,c)), \
|
|
(I[347] = (T)(img)(_p9##x,_n4##y,z,c)), \
|
|
(I[370] = (T)(img)(_p9##x,_n5##y,z,c)), \
|
|
(I[393] = (T)(img)(_p9##x,_n6##y,z,c)), \
|
|
(I[416] = (T)(img)(_p9##x,_n7##y,z,c)), \
|
|
(I[439] = (T)(img)(_p9##x,_n8##y,z,c)), \
|
|
(I[462] = (T)(img)(_p9##x,_n9##y,z,c)), \
|
|
(I[485] = (T)(img)(_p9##x,_n10##y,z,c)), \
|
|
(I[508] = (T)(img)(_p9##x,_n11##y,z,c)), \
|
|
(I[3] = (T)(img)(_p8##x,_p11##y,z,c)), \
|
|
(I[26] = (T)(img)(_p8##x,_p10##y,z,c)), \
|
|
(I[49] = (T)(img)(_p8##x,_p9##y,z,c)), \
|
|
(I[72] = (T)(img)(_p8##x,_p8##y,z,c)), \
|
|
(I[95] = (T)(img)(_p8##x,_p7##y,z,c)), \
|
|
(I[118] = (T)(img)(_p8##x,_p6##y,z,c)), \
|
|
(I[141] = (T)(img)(_p8##x,_p5##y,z,c)), \
|
|
(I[164] = (T)(img)(_p8##x,_p4##y,z,c)), \
|
|
(I[187] = (T)(img)(_p8##x,_p3##y,z,c)), \
|
|
(I[210] = (T)(img)(_p8##x,_p2##y,z,c)), \
|
|
(I[233] = (T)(img)(_p8##x,_p1##y,z,c)), \
|
|
(I[256] = (T)(img)(_p8##x,y,z,c)), \
|
|
(I[279] = (T)(img)(_p8##x,_n1##y,z,c)), \
|
|
(I[302] = (T)(img)(_p8##x,_n2##y,z,c)), \
|
|
(I[325] = (T)(img)(_p8##x,_n3##y,z,c)), \
|
|
(I[348] = (T)(img)(_p8##x,_n4##y,z,c)), \
|
|
(I[371] = (T)(img)(_p8##x,_n5##y,z,c)), \
|
|
(I[394] = (T)(img)(_p8##x,_n6##y,z,c)), \
|
|
(I[417] = (T)(img)(_p8##x,_n7##y,z,c)), \
|
|
(I[440] = (T)(img)(_p8##x,_n8##y,z,c)), \
|
|
(I[463] = (T)(img)(_p8##x,_n9##y,z,c)), \
|
|
(I[486] = (T)(img)(_p8##x,_n10##y,z,c)), \
|
|
(I[509] = (T)(img)(_p8##x,_n11##y,z,c)), \
|
|
(I[4] = (T)(img)(_p7##x,_p11##y,z,c)), \
|
|
(I[27] = (T)(img)(_p7##x,_p10##y,z,c)), \
|
|
(I[50] = (T)(img)(_p7##x,_p9##y,z,c)), \
|
|
(I[73] = (T)(img)(_p7##x,_p8##y,z,c)), \
|
|
(I[96] = (T)(img)(_p7##x,_p7##y,z,c)), \
|
|
(I[119] = (T)(img)(_p7##x,_p6##y,z,c)), \
|
|
(I[142] = (T)(img)(_p7##x,_p5##y,z,c)), \
|
|
(I[165] = (T)(img)(_p7##x,_p4##y,z,c)), \
|
|
(I[188] = (T)(img)(_p7##x,_p3##y,z,c)), \
|
|
(I[211] = (T)(img)(_p7##x,_p2##y,z,c)), \
|
|
(I[234] = (T)(img)(_p7##x,_p1##y,z,c)), \
|
|
(I[257] = (T)(img)(_p7##x,y,z,c)), \
|
|
(I[280] = (T)(img)(_p7##x,_n1##y,z,c)), \
|
|
(I[303] = (T)(img)(_p7##x,_n2##y,z,c)), \
|
|
(I[326] = (T)(img)(_p7##x,_n3##y,z,c)), \
|
|
(I[349] = (T)(img)(_p7##x,_n4##y,z,c)), \
|
|
(I[372] = (T)(img)(_p7##x,_n5##y,z,c)), \
|
|
(I[395] = (T)(img)(_p7##x,_n6##y,z,c)), \
|
|
(I[418] = (T)(img)(_p7##x,_n7##y,z,c)), \
|
|
(I[441] = (T)(img)(_p7##x,_n8##y,z,c)), \
|
|
(I[464] = (T)(img)(_p7##x,_n9##y,z,c)), \
|
|
(I[487] = (T)(img)(_p7##x,_n10##y,z,c)), \
|
|
(I[510] = (T)(img)(_p7##x,_n11##y,z,c)), \
|
|
(I[5] = (T)(img)(_p6##x,_p11##y,z,c)), \
|
|
(I[28] = (T)(img)(_p6##x,_p10##y,z,c)), \
|
|
(I[51] = (T)(img)(_p6##x,_p9##y,z,c)), \
|
|
(I[74] = (T)(img)(_p6##x,_p8##y,z,c)), \
|
|
(I[97] = (T)(img)(_p6##x,_p7##y,z,c)), \
|
|
(I[120] = (T)(img)(_p6##x,_p6##y,z,c)), \
|
|
(I[143] = (T)(img)(_p6##x,_p5##y,z,c)), \
|
|
(I[166] = (T)(img)(_p6##x,_p4##y,z,c)), \
|
|
(I[189] = (T)(img)(_p6##x,_p3##y,z,c)), \
|
|
(I[212] = (T)(img)(_p6##x,_p2##y,z,c)), \
|
|
(I[235] = (T)(img)(_p6##x,_p1##y,z,c)), \
|
|
(I[258] = (T)(img)(_p6##x,y,z,c)), \
|
|
(I[281] = (T)(img)(_p6##x,_n1##y,z,c)), \
|
|
(I[304] = (T)(img)(_p6##x,_n2##y,z,c)), \
|
|
(I[327] = (T)(img)(_p6##x,_n3##y,z,c)), \
|
|
(I[350] = (T)(img)(_p6##x,_n4##y,z,c)), \
|
|
(I[373] = (T)(img)(_p6##x,_n5##y,z,c)), \
|
|
(I[396] = (T)(img)(_p6##x,_n6##y,z,c)), \
|
|
(I[419] = (T)(img)(_p6##x,_n7##y,z,c)), \
|
|
(I[442] = (T)(img)(_p6##x,_n8##y,z,c)), \
|
|
(I[465] = (T)(img)(_p6##x,_n9##y,z,c)), \
|
|
(I[488] = (T)(img)(_p6##x,_n10##y,z,c)), \
|
|
(I[511] = (T)(img)(_p6##x,_n11##y,z,c)), \
|
|
(I[6] = (T)(img)(_p5##x,_p11##y,z,c)), \
|
|
(I[29] = (T)(img)(_p5##x,_p10##y,z,c)), \
|
|
(I[52] = (T)(img)(_p5##x,_p9##y,z,c)), \
|
|
(I[75] = (T)(img)(_p5##x,_p8##y,z,c)), \
|
|
(I[98] = (T)(img)(_p5##x,_p7##y,z,c)), \
|
|
(I[121] = (T)(img)(_p5##x,_p6##y,z,c)), \
|
|
(I[144] = (T)(img)(_p5##x,_p5##y,z,c)), \
|
|
(I[167] = (T)(img)(_p5##x,_p4##y,z,c)), \
|
|
(I[190] = (T)(img)(_p5##x,_p3##y,z,c)), \
|
|
(I[213] = (T)(img)(_p5##x,_p2##y,z,c)), \
|
|
(I[236] = (T)(img)(_p5##x,_p1##y,z,c)), \
|
|
(I[259] = (T)(img)(_p5##x,y,z,c)), \
|
|
(I[282] = (T)(img)(_p5##x,_n1##y,z,c)), \
|
|
(I[305] = (T)(img)(_p5##x,_n2##y,z,c)), \
|
|
(I[328] = (T)(img)(_p5##x,_n3##y,z,c)), \
|
|
(I[351] = (T)(img)(_p5##x,_n4##y,z,c)), \
|
|
(I[374] = (T)(img)(_p5##x,_n5##y,z,c)), \
|
|
(I[397] = (T)(img)(_p5##x,_n6##y,z,c)), \
|
|
(I[420] = (T)(img)(_p5##x,_n7##y,z,c)), \
|
|
(I[443] = (T)(img)(_p5##x,_n8##y,z,c)), \
|
|
(I[466] = (T)(img)(_p5##x,_n9##y,z,c)), \
|
|
(I[489] = (T)(img)(_p5##x,_n10##y,z,c)), \
|
|
(I[512] = (T)(img)(_p5##x,_n11##y,z,c)), \
|
|
(I[7] = (T)(img)(_p4##x,_p11##y,z,c)), \
|
|
(I[30] = (T)(img)(_p4##x,_p10##y,z,c)), \
|
|
(I[53] = (T)(img)(_p4##x,_p9##y,z,c)), \
|
|
(I[76] = (T)(img)(_p4##x,_p8##y,z,c)), \
|
|
(I[99] = (T)(img)(_p4##x,_p7##y,z,c)), \
|
|
(I[122] = (T)(img)(_p4##x,_p6##y,z,c)), \
|
|
(I[145] = (T)(img)(_p4##x,_p5##y,z,c)), \
|
|
(I[168] = (T)(img)(_p4##x,_p4##y,z,c)), \
|
|
(I[191] = (T)(img)(_p4##x,_p3##y,z,c)), \
|
|
(I[214] = (T)(img)(_p4##x,_p2##y,z,c)), \
|
|
(I[237] = (T)(img)(_p4##x,_p1##y,z,c)), \
|
|
(I[260] = (T)(img)(_p4##x,y,z,c)), \
|
|
(I[283] = (T)(img)(_p4##x,_n1##y,z,c)), \
|
|
(I[306] = (T)(img)(_p4##x,_n2##y,z,c)), \
|
|
(I[329] = (T)(img)(_p4##x,_n3##y,z,c)), \
|
|
(I[352] = (T)(img)(_p4##x,_n4##y,z,c)), \
|
|
(I[375] = (T)(img)(_p4##x,_n5##y,z,c)), \
|
|
(I[398] = (T)(img)(_p4##x,_n6##y,z,c)), \
|
|
(I[421] = (T)(img)(_p4##x,_n7##y,z,c)), \
|
|
(I[444] = (T)(img)(_p4##x,_n8##y,z,c)), \
|
|
(I[467] = (T)(img)(_p4##x,_n9##y,z,c)), \
|
|
(I[490] = (T)(img)(_p4##x,_n10##y,z,c)), \
|
|
(I[513] = (T)(img)(_p4##x,_n11##y,z,c)), \
|
|
(I[8] = (T)(img)(_p3##x,_p11##y,z,c)), \
|
|
(I[31] = (T)(img)(_p3##x,_p10##y,z,c)), \
|
|
(I[54] = (T)(img)(_p3##x,_p9##y,z,c)), \
|
|
(I[77] = (T)(img)(_p3##x,_p8##y,z,c)), \
|
|
(I[100] = (T)(img)(_p3##x,_p7##y,z,c)), \
|
|
(I[123] = (T)(img)(_p3##x,_p6##y,z,c)), \
|
|
(I[146] = (T)(img)(_p3##x,_p5##y,z,c)), \
|
|
(I[169] = (T)(img)(_p3##x,_p4##y,z,c)), \
|
|
(I[192] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[215] = (T)(img)(_p3##x,_p2##y,z,c)), \
|
|
(I[238] = (T)(img)(_p3##x,_p1##y,z,c)), \
|
|
(I[261] = (T)(img)(_p3##x,y,z,c)), \
|
|
(I[284] = (T)(img)(_p3##x,_n1##y,z,c)), \
|
|
(I[307] = (T)(img)(_p3##x,_n2##y,z,c)), \
|
|
(I[330] = (T)(img)(_p3##x,_n3##y,z,c)), \
|
|
(I[353] = (T)(img)(_p3##x,_n4##y,z,c)), \
|
|
(I[376] = (T)(img)(_p3##x,_n5##y,z,c)), \
|
|
(I[399] = (T)(img)(_p3##x,_n6##y,z,c)), \
|
|
(I[422] = (T)(img)(_p3##x,_n7##y,z,c)), \
|
|
(I[445] = (T)(img)(_p3##x,_n8##y,z,c)), \
|
|
(I[468] = (T)(img)(_p3##x,_n9##y,z,c)), \
|
|
(I[491] = (T)(img)(_p3##x,_n10##y,z,c)), \
|
|
(I[514] = (T)(img)(_p3##x,_n11##y,z,c)), \
|
|
(I[9] = (T)(img)(_p2##x,_p11##y,z,c)), \
|
|
(I[32] = (T)(img)(_p2##x,_p10##y,z,c)), \
|
|
(I[55] = (T)(img)(_p2##x,_p9##y,z,c)), \
|
|
(I[78] = (T)(img)(_p2##x,_p8##y,z,c)), \
|
|
(I[101] = (T)(img)(_p2##x,_p7##y,z,c)), \
|
|
(I[124] = (T)(img)(_p2##x,_p6##y,z,c)), \
|
|
(I[147] = (T)(img)(_p2##x,_p5##y,z,c)), \
|
|
(I[170] = (T)(img)(_p2##x,_p4##y,z,c)), \
|
|
(I[193] = (T)(img)(_p2##x,_p3##y,z,c)), \
|
|
(I[216] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[239] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[262] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[285] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[308] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[331] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[354] = (T)(img)(_p2##x,_n4##y,z,c)), \
|
|
(I[377] = (T)(img)(_p2##x,_n5##y,z,c)), \
|
|
(I[400] = (T)(img)(_p2##x,_n6##y,z,c)), \
|
|
(I[423] = (T)(img)(_p2##x,_n7##y,z,c)), \
|
|
(I[446] = (T)(img)(_p2##x,_n8##y,z,c)), \
|
|
(I[469] = (T)(img)(_p2##x,_n9##y,z,c)), \
|
|
(I[492] = (T)(img)(_p2##x,_n10##y,z,c)), \
|
|
(I[515] = (T)(img)(_p2##x,_n11##y,z,c)), \
|
|
(I[10] = (T)(img)(_p1##x,_p11##y,z,c)), \
|
|
(I[33] = (T)(img)(_p1##x,_p10##y,z,c)), \
|
|
(I[56] = (T)(img)(_p1##x,_p9##y,z,c)), \
|
|
(I[79] = (T)(img)(_p1##x,_p8##y,z,c)), \
|
|
(I[102] = (T)(img)(_p1##x,_p7##y,z,c)), \
|
|
(I[125] = (T)(img)(_p1##x,_p6##y,z,c)), \
|
|
(I[148] = (T)(img)(_p1##x,_p5##y,z,c)), \
|
|
(I[171] = (T)(img)(_p1##x,_p4##y,z,c)), \
|
|
(I[194] = (T)(img)(_p1##x,_p3##y,z,c)), \
|
|
(I[217] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[240] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[263] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[286] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[309] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[332] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[355] = (T)(img)(_p1##x,_n4##y,z,c)), \
|
|
(I[378] = (T)(img)(_p1##x,_n5##y,z,c)), \
|
|
(I[401] = (T)(img)(_p1##x,_n6##y,z,c)), \
|
|
(I[424] = (T)(img)(_p1##x,_n7##y,z,c)), \
|
|
(I[447] = (T)(img)(_p1##x,_n8##y,z,c)), \
|
|
(I[470] = (T)(img)(_p1##x,_n9##y,z,c)), \
|
|
(I[493] = (T)(img)(_p1##x,_n10##y,z,c)), \
|
|
(I[516] = (T)(img)(_p1##x,_n11##y,z,c)), \
|
|
(I[11] = (T)(img)(x,_p11##y,z,c)), \
|
|
(I[34] = (T)(img)(x,_p10##y,z,c)), \
|
|
(I[57] = (T)(img)(x,_p9##y,z,c)), \
|
|
(I[80] = (T)(img)(x,_p8##y,z,c)), \
|
|
(I[103] = (T)(img)(x,_p7##y,z,c)), \
|
|
(I[126] = (T)(img)(x,_p6##y,z,c)), \
|
|
(I[149] = (T)(img)(x,_p5##y,z,c)), \
|
|
(I[172] = (T)(img)(x,_p4##y,z,c)), \
|
|
(I[195] = (T)(img)(x,_p3##y,z,c)), \
|
|
(I[218] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[241] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[264] = (T)(img)(x,y,z,c)), \
|
|
(I[287] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[310] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[333] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[356] = (T)(img)(x,_n4##y,z,c)), \
|
|
(I[379] = (T)(img)(x,_n5##y,z,c)), \
|
|
(I[402] = (T)(img)(x,_n6##y,z,c)), \
|
|
(I[425] = (T)(img)(x,_n7##y,z,c)), \
|
|
(I[448] = (T)(img)(x,_n8##y,z,c)), \
|
|
(I[471] = (T)(img)(x,_n9##y,z,c)), \
|
|
(I[494] = (T)(img)(x,_n10##y,z,c)), \
|
|
(I[517] = (T)(img)(x,_n11##y,z,c)), \
|
|
(I[12] = (T)(img)(_n1##x,_p11##y,z,c)), \
|
|
(I[35] = (T)(img)(_n1##x,_p10##y,z,c)), \
|
|
(I[58] = (T)(img)(_n1##x,_p9##y,z,c)), \
|
|
(I[81] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[104] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[127] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[150] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[173] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[196] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[219] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[242] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[265] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[288] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[311] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[334] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[357] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[380] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[403] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[426] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[449] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[472] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[495] = (T)(img)(_n1##x,_n10##y,z,c)), \
|
|
(I[518] = (T)(img)(_n1##x,_n11##y,z,c)), \
|
|
(I[13] = (T)(img)(_n2##x,_p11##y,z,c)), \
|
|
(I[36] = (T)(img)(_n2##x,_p10##y,z,c)), \
|
|
(I[59] = (T)(img)(_n2##x,_p9##y,z,c)), \
|
|
(I[82] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[105] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[128] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[151] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[174] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[197] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[220] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[243] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[266] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[289] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[312] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[335] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[358] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[381] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[404] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[427] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[450] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[473] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[496] = (T)(img)(_n2##x,_n10##y,z,c)), \
|
|
(I[519] = (T)(img)(_n2##x,_n11##y,z,c)), \
|
|
(I[14] = (T)(img)(_n3##x,_p11##y,z,c)), \
|
|
(I[37] = (T)(img)(_n3##x,_p10##y,z,c)), \
|
|
(I[60] = (T)(img)(_n3##x,_p9##y,z,c)), \
|
|
(I[83] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[106] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[129] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[152] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[175] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[198] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[221] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[244] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[267] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[290] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[313] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[336] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[359] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[382] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[405] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[428] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[451] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[474] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[497] = (T)(img)(_n3##x,_n10##y,z,c)), \
|
|
(I[520] = (T)(img)(_n3##x,_n11##y,z,c)), \
|
|
(I[15] = (T)(img)(_n4##x,_p11##y,z,c)), \
|
|
(I[38] = (T)(img)(_n4##x,_p10##y,z,c)), \
|
|
(I[61] = (T)(img)(_n4##x,_p9##y,z,c)), \
|
|
(I[84] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[107] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[130] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[153] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[176] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[199] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[222] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[245] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[268] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[291] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[314] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[337] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[360] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[383] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[406] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[429] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[452] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[475] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[498] = (T)(img)(_n4##x,_n10##y,z,c)), \
|
|
(I[521] = (T)(img)(_n4##x,_n11##y,z,c)), \
|
|
(I[16] = (T)(img)(_n5##x,_p11##y,z,c)), \
|
|
(I[39] = (T)(img)(_n5##x,_p10##y,z,c)), \
|
|
(I[62] = (T)(img)(_n5##x,_p9##y,z,c)), \
|
|
(I[85] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[108] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[131] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[154] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[177] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[200] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[223] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[246] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[269] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[292] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[315] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[338] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[361] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[384] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[407] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[430] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[453] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[476] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[499] = (T)(img)(_n5##x,_n10##y,z,c)), \
|
|
(I[522] = (T)(img)(_n5##x,_n11##y,z,c)), \
|
|
(I[17] = (T)(img)(_n6##x,_p11##y,z,c)), \
|
|
(I[40] = (T)(img)(_n6##x,_p10##y,z,c)), \
|
|
(I[63] = (T)(img)(_n6##x,_p9##y,z,c)), \
|
|
(I[86] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[109] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[132] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[155] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[178] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[201] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[224] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[247] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[270] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[293] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[316] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[339] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[362] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[385] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[408] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[431] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[454] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[477] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[500] = (T)(img)(_n6##x,_n10##y,z,c)), \
|
|
(I[523] = (T)(img)(_n6##x,_n11##y,z,c)), \
|
|
(I[18] = (T)(img)(_n7##x,_p11##y,z,c)), \
|
|
(I[41] = (T)(img)(_n7##x,_p10##y,z,c)), \
|
|
(I[64] = (T)(img)(_n7##x,_p9##y,z,c)), \
|
|
(I[87] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[110] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[133] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[156] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[179] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[202] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[225] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[248] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[271] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[294] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[317] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[340] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[363] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[386] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[409] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[432] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[455] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[478] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[501] = (T)(img)(_n7##x,_n10##y,z,c)), \
|
|
(I[524] = (T)(img)(_n7##x,_n11##y,z,c)), \
|
|
(I[19] = (T)(img)(_n8##x,_p11##y,z,c)), \
|
|
(I[42] = (T)(img)(_n8##x,_p10##y,z,c)), \
|
|
(I[65] = (T)(img)(_n8##x,_p9##y,z,c)), \
|
|
(I[88] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[111] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[134] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[157] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[180] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[203] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[226] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[249] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[272] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[295] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[318] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[341] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[364] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[387] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[410] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[433] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[456] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[479] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
(I[502] = (T)(img)(_n8##x,_n10##y,z,c)), \
|
|
(I[525] = (T)(img)(_n8##x,_n11##y,z,c)), \
|
|
(I[20] = (T)(img)(_n9##x,_p11##y,z,c)), \
|
|
(I[43] = (T)(img)(_n9##x,_p10##y,z,c)), \
|
|
(I[66] = (T)(img)(_n9##x,_p9##y,z,c)), \
|
|
(I[89] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[112] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[135] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[158] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[181] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[204] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[227] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[250] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[273] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[296] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[319] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[342] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[365] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[388] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[411] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[434] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[457] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[480] = (T)(img)(_n9##x,_n9##y,z,c)), \
|
|
(I[503] = (T)(img)(_n9##x,_n10##y,z,c)), \
|
|
(I[526] = (T)(img)(_n9##x,_n11##y,z,c)), \
|
|
(I[21] = (T)(img)(_n10##x,_p11##y,z,c)), \
|
|
(I[44] = (T)(img)(_n10##x,_p10##y,z,c)), \
|
|
(I[67] = (T)(img)(_n10##x,_p9##y,z,c)), \
|
|
(I[90] = (T)(img)(_n10##x,_p8##y,z,c)), \
|
|
(I[113] = (T)(img)(_n10##x,_p7##y,z,c)), \
|
|
(I[136] = (T)(img)(_n10##x,_p6##y,z,c)), \
|
|
(I[159] = (T)(img)(_n10##x,_p5##y,z,c)), \
|
|
(I[182] = (T)(img)(_n10##x,_p4##y,z,c)), \
|
|
(I[205] = (T)(img)(_n10##x,_p3##y,z,c)), \
|
|
(I[228] = (T)(img)(_n10##x,_p2##y,z,c)), \
|
|
(I[251] = (T)(img)(_n10##x,_p1##y,z,c)), \
|
|
(I[274] = (T)(img)(_n10##x,y,z,c)), \
|
|
(I[297] = (T)(img)(_n10##x,_n1##y,z,c)), \
|
|
(I[320] = (T)(img)(_n10##x,_n2##y,z,c)), \
|
|
(I[343] = (T)(img)(_n10##x,_n3##y,z,c)), \
|
|
(I[366] = (T)(img)(_n10##x,_n4##y,z,c)), \
|
|
(I[389] = (T)(img)(_n10##x,_n5##y,z,c)), \
|
|
(I[412] = (T)(img)(_n10##x,_n6##y,z,c)), \
|
|
(I[435] = (T)(img)(_n10##x,_n7##y,z,c)), \
|
|
(I[458] = (T)(img)(_n10##x,_n8##y,z,c)), \
|
|
(I[481] = (T)(img)(_n10##x,_n9##y,z,c)), \
|
|
(I[504] = (T)(img)(_n10##x,_n10##y,z,c)), \
|
|
(I[527] = (T)(img)(_n10##x,_n11##y,z,c)), \
|
|
x + 11>=(img).width()?(img).width() - 1:x + 11); \
|
|
x<=(int)(x1) && ((_n11##x<(img).width() && ( \
|
|
(I[22] = (T)(img)(_n11##x,_p11##y,z,c)), \
|
|
(I[45] = (T)(img)(_n11##x,_p10##y,z,c)), \
|
|
(I[68] = (T)(img)(_n11##x,_p9##y,z,c)), \
|
|
(I[91] = (T)(img)(_n11##x,_p8##y,z,c)), \
|
|
(I[114] = (T)(img)(_n11##x,_p7##y,z,c)), \
|
|
(I[137] = (T)(img)(_n11##x,_p6##y,z,c)), \
|
|
(I[160] = (T)(img)(_n11##x,_p5##y,z,c)), \
|
|
(I[183] = (T)(img)(_n11##x,_p4##y,z,c)), \
|
|
(I[206] = (T)(img)(_n11##x,_p3##y,z,c)), \
|
|
(I[229] = (T)(img)(_n11##x,_p2##y,z,c)), \
|
|
(I[252] = (T)(img)(_n11##x,_p1##y,z,c)), \
|
|
(I[275] = (T)(img)(_n11##x,y,z,c)), \
|
|
(I[298] = (T)(img)(_n11##x,_n1##y,z,c)), \
|
|
(I[321] = (T)(img)(_n11##x,_n2##y,z,c)), \
|
|
(I[344] = (T)(img)(_n11##x,_n3##y,z,c)), \
|
|
(I[367] = (T)(img)(_n11##x,_n4##y,z,c)), \
|
|
(I[390] = (T)(img)(_n11##x,_n5##y,z,c)), \
|
|
(I[413] = (T)(img)(_n11##x,_n6##y,z,c)), \
|
|
(I[436] = (T)(img)(_n11##x,_n7##y,z,c)), \
|
|
(I[459] = (T)(img)(_n11##x,_n8##y,z,c)), \
|
|
(I[482] = (T)(img)(_n11##x,_n9##y,z,c)), \
|
|
(I[505] = (T)(img)(_n11##x,_n10##y,z,c)), \
|
|
(I[528] = (T)(img)(_n11##x,_n11##y,z,c)),1)) || \
|
|
_n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], \
|
|
I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], \
|
|
I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], \
|
|
I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], \
|
|
I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], \
|
|
I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], \
|
|
I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], \
|
|
I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], \
|
|
I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], \
|
|
I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], \
|
|
I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], \
|
|
I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], \
|
|
I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], \
|
|
I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], \
|
|
I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], \
|
|
I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], \
|
|
I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], \
|
|
I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], \
|
|
I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], \
|
|
I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], \
|
|
I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], \
|
|
I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], \
|
|
I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], \
|
|
_p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x)
|
|
|
|
#define cimg_get23x23(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p11##x,_p11##y,z,c), I[1] = (T)(img)(_p10##x,_p11##y,z,c), I[2] = (T)(img)(_p9##x,_p11##y,z,c), I[3] = (T)(img)(_p8##x,_p11##y,z,c), I[4] = (T)(img)(_p7##x,_p11##y,z,c), I[5] = (T)(img)(_p6##x,_p11##y,z,c), I[6] = (T)(img)(_p5##x,_p11##y,z,c), I[7] = (T)(img)(_p4##x,_p11##y,z,c), I[8] = (T)(img)(_p3##x,_p11##y,z,c), I[9] = (T)(img)(_p2##x,_p11##y,z,c), I[10] = (T)(img)(_p1##x,_p11##y,z,c), I[11] = (T)(img)(x,_p11##y,z,c), I[12] = (T)(img)(_n1##x,_p11##y,z,c), I[13] = (T)(img)(_n2##x,_p11##y,z,c), I[14] = (T)(img)(_n3##x,_p11##y,z,c), I[15] = (T)(img)(_n4##x,_p11##y,z,c), I[16] = (T)(img)(_n5##x,_p11##y,z,c), I[17] = (T)(img)(_n6##x,_p11##y,z,c), I[18] = (T)(img)(_n7##x,_p11##y,z,c), I[19] = (T)(img)(_n8##x,_p11##y,z,c), I[20] = (T)(img)(_n9##x,_p11##y,z,c), I[21] = (T)(img)(_n10##x,_p11##y,z,c), I[22] = (T)(img)(_n11##x,_p11##y,z,c), \
|
|
I[23] = (T)(img)(_p11##x,_p10##y,z,c), I[24] = (T)(img)(_p10##x,_p10##y,z,c), I[25] = (T)(img)(_p9##x,_p10##y,z,c), I[26] = (T)(img)(_p8##x,_p10##y,z,c), I[27] = (T)(img)(_p7##x,_p10##y,z,c), I[28] = (T)(img)(_p6##x,_p10##y,z,c), I[29] = (T)(img)(_p5##x,_p10##y,z,c), I[30] = (T)(img)(_p4##x,_p10##y,z,c), I[31] = (T)(img)(_p3##x,_p10##y,z,c), I[32] = (T)(img)(_p2##x,_p10##y,z,c), I[33] = (T)(img)(_p1##x,_p10##y,z,c), I[34] = (T)(img)(x,_p10##y,z,c), I[35] = (T)(img)(_n1##x,_p10##y,z,c), I[36] = (T)(img)(_n2##x,_p10##y,z,c), I[37] = (T)(img)(_n3##x,_p10##y,z,c), I[38] = (T)(img)(_n4##x,_p10##y,z,c), I[39] = (T)(img)(_n5##x,_p10##y,z,c), I[40] = (T)(img)(_n6##x,_p10##y,z,c), I[41] = (T)(img)(_n7##x,_p10##y,z,c), I[42] = (T)(img)(_n8##x,_p10##y,z,c), I[43] = (T)(img)(_n9##x,_p10##y,z,c), I[44] = (T)(img)(_n10##x,_p10##y,z,c), I[45] = (T)(img)(_n11##x,_p10##y,z,c), \
|
|
I[46] = (T)(img)(_p11##x,_p9##y,z,c), I[47] = (T)(img)(_p10##x,_p9##y,z,c), I[48] = (T)(img)(_p9##x,_p9##y,z,c), I[49] = (T)(img)(_p8##x,_p9##y,z,c), I[50] = (T)(img)(_p7##x,_p9##y,z,c), I[51] = (T)(img)(_p6##x,_p9##y,z,c), I[52] = (T)(img)(_p5##x,_p9##y,z,c), I[53] = (T)(img)(_p4##x,_p9##y,z,c), I[54] = (T)(img)(_p3##x,_p9##y,z,c), I[55] = (T)(img)(_p2##x,_p9##y,z,c), I[56] = (T)(img)(_p1##x,_p9##y,z,c), I[57] = (T)(img)(x,_p9##y,z,c), I[58] = (T)(img)(_n1##x,_p9##y,z,c), I[59] = (T)(img)(_n2##x,_p9##y,z,c), I[60] = (T)(img)(_n3##x,_p9##y,z,c), I[61] = (T)(img)(_n4##x,_p9##y,z,c), I[62] = (T)(img)(_n5##x,_p9##y,z,c), I[63] = (T)(img)(_n6##x,_p9##y,z,c), I[64] = (T)(img)(_n7##x,_p9##y,z,c), I[65] = (T)(img)(_n8##x,_p9##y,z,c), I[66] = (T)(img)(_n9##x,_p9##y,z,c), I[67] = (T)(img)(_n10##x,_p9##y,z,c), I[68] = (T)(img)(_n11##x,_p9##y,z,c), \
|
|
I[69] = (T)(img)(_p11##x,_p8##y,z,c), I[70] = (T)(img)(_p10##x,_p8##y,z,c), I[71] = (T)(img)(_p9##x,_p8##y,z,c), I[72] = (T)(img)(_p8##x,_p8##y,z,c), I[73] = (T)(img)(_p7##x,_p8##y,z,c), I[74] = (T)(img)(_p6##x,_p8##y,z,c), I[75] = (T)(img)(_p5##x,_p8##y,z,c), I[76] = (T)(img)(_p4##x,_p8##y,z,c), I[77] = (T)(img)(_p3##x,_p8##y,z,c), I[78] = (T)(img)(_p2##x,_p8##y,z,c), I[79] = (T)(img)(_p1##x,_p8##y,z,c), I[80] = (T)(img)(x,_p8##y,z,c), I[81] = (T)(img)(_n1##x,_p8##y,z,c), I[82] = (T)(img)(_n2##x,_p8##y,z,c), I[83] = (T)(img)(_n3##x,_p8##y,z,c), I[84] = (T)(img)(_n4##x,_p8##y,z,c), I[85] = (T)(img)(_n5##x,_p8##y,z,c), I[86] = (T)(img)(_n6##x,_p8##y,z,c), I[87] = (T)(img)(_n7##x,_p8##y,z,c), I[88] = (T)(img)(_n8##x,_p8##y,z,c), I[89] = (T)(img)(_n9##x,_p8##y,z,c), I[90] = (T)(img)(_n10##x,_p8##y,z,c), I[91] = (T)(img)(_n11##x,_p8##y,z,c), \
|
|
I[92] = (T)(img)(_p11##x,_p7##y,z,c), I[93] = (T)(img)(_p10##x,_p7##y,z,c), I[94] = (T)(img)(_p9##x,_p7##y,z,c), I[95] = (T)(img)(_p8##x,_p7##y,z,c), I[96] = (T)(img)(_p7##x,_p7##y,z,c), I[97] = (T)(img)(_p6##x,_p7##y,z,c), I[98] = (T)(img)(_p5##x,_p7##y,z,c), I[99] = (T)(img)(_p4##x,_p7##y,z,c), I[100] = (T)(img)(_p3##x,_p7##y,z,c), I[101] = (T)(img)(_p2##x,_p7##y,z,c), I[102] = (T)(img)(_p1##x,_p7##y,z,c), I[103] = (T)(img)(x,_p7##y,z,c), I[104] = (T)(img)(_n1##x,_p7##y,z,c), I[105] = (T)(img)(_n2##x,_p7##y,z,c), I[106] = (T)(img)(_n3##x,_p7##y,z,c), I[107] = (T)(img)(_n4##x,_p7##y,z,c), I[108] = (T)(img)(_n5##x,_p7##y,z,c), I[109] = (T)(img)(_n6##x,_p7##y,z,c), I[110] = (T)(img)(_n7##x,_p7##y,z,c), I[111] = (T)(img)(_n8##x,_p7##y,z,c), I[112] = (T)(img)(_n9##x,_p7##y,z,c), I[113] = (T)(img)(_n10##x,_p7##y,z,c), I[114] = (T)(img)(_n11##x,_p7##y,z,c), \
|
|
I[115] = (T)(img)(_p11##x,_p6##y,z,c), I[116] = (T)(img)(_p10##x,_p6##y,z,c), I[117] = (T)(img)(_p9##x,_p6##y,z,c), I[118] = (T)(img)(_p8##x,_p6##y,z,c), I[119] = (T)(img)(_p7##x,_p6##y,z,c), I[120] = (T)(img)(_p6##x,_p6##y,z,c), I[121] = (T)(img)(_p5##x,_p6##y,z,c), I[122] = (T)(img)(_p4##x,_p6##y,z,c), I[123] = (T)(img)(_p3##x,_p6##y,z,c), I[124] = (T)(img)(_p2##x,_p6##y,z,c), I[125] = (T)(img)(_p1##x,_p6##y,z,c), I[126] = (T)(img)(x,_p6##y,z,c), I[127] = (T)(img)(_n1##x,_p6##y,z,c), I[128] = (T)(img)(_n2##x,_p6##y,z,c), I[129] = (T)(img)(_n3##x,_p6##y,z,c), I[130] = (T)(img)(_n4##x,_p6##y,z,c), I[131] = (T)(img)(_n5##x,_p6##y,z,c), I[132] = (T)(img)(_n6##x,_p6##y,z,c), I[133] = (T)(img)(_n7##x,_p6##y,z,c), I[134] = (T)(img)(_n8##x,_p6##y,z,c), I[135] = (T)(img)(_n9##x,_p6##y,z,c), I[136] = (T)(img)(_n10##x,_p6##y,z,c), I[137] = (T)(img)(_n11##x,_p6##y,z,c), \
|
|
I[138] = (T)(img)(_p11##x,_p5##y,z,c), I[139] = (T)(img)(_p10##x,_p5##y,z,c), I[140] = (T)(img)(_p9##x,_p5##y,z,c), I[141] = (T)(img)(_p8##x,_p5##y,z,c), I[142] = (T)(img)(_p7##x,_p5##y,z,c), I[143] = (T)(img)(_p6##x,_p5##y,z,c), I[144] = (T)(img)(_p5##x,_p5##y,z,c), I[145] = (T)(img)(_p4##x,_p5##y,z,c), I[146] = (T)(img)(_p3##x,_p5##y,z,c), I[147] = (T)(img)(_p2##x,_p5##y,z,c), I[148] = (T)(img)(_p1##x,_p5##y,z,c), I[149] = (T)(img)(x,_p5##y,z,c), I[150] = (T)(img)(_n1##x,_p5##y,z,c), I[151] = (T)(img)(_n2##x,_p5##y,z,c), I[152] = (T)(img)(_n3##x,_p5##y,z,c), I[153] = (T)(img)(_n4##x,_p5##y,z,c), I[154] = (T)(img)(_n5##x,_p5##y,z,c), I[155] = (T)(img)(_n6##x,_p5##y,z,c), I[156] = (T)(img)(_n7##x,_p5##y,z,c), I[157] = (T)(img)(_n8##x,_p5##y,z,c), I[158] = (T)(img)(_n9##x,_p5##y,z,c), I[159] = (T)(img)(_n10##x,_p5##y,z,c), I[160] = (T)(img)(_n11##x,_p5##y,z,c), \
|
|
I[161] = (T)(img)(_p11##x,_p4##y,z,c), I[162] = (T)(img)(_p10##x,_p4##y,z,c), I[163] = (T)(img)(_p9##x,_p4##y,z,c), I[164] = (T)(img)(_p8##x,_p4##y,z,c), I[165] = (T)(img)(_p7##x,_p4##y,z,c), I[166] = (T)(img)(_p6##x,_p4##y,z,c), I[167] = (T)(img)(_p5##x,_p4##y,z,c), I[168] = (T)(img)(_p4##x,_p4##y,z,c), I[169] = (T)(img)(_p3##x,_p4##y,z,c), I[170] = (T)(img)(_p2##x,_p4##y,z,c), I[171] = (T)(img)(_p1##x,_p4##y,z,c), I[172] = (T)(img)(x,_p4##y,z,c), I[173] = (T)(img)(_n1##x,_p4##y,z,c), I[174] = (T)(img)(_n2##x,_p4##y,z,c), I[175] = (T)(img)(_n3##x,_p4##y,z,c), I[176] = (T)(img)(_n4##x,_p4##y,z,c), I[177] = (T)(img)(_n5##x,_p4##y,z,c), I[178] = (T)(img)(_n6##x,_p4##y,z,c), I[179] = (T)(img)(_n7##x,_p4##y,z,c), I[180] = (T)(img)(_n8##x,_p4##y,z,c), I[181] = (T)(img)(_n9##x,_p4##y,z,c), I[182] = (T)(img)(_n10##x,_p4##y,z,c), I[183] = (T)(img)(_n11##x,_p4##y,z,c), \
|
|
I[184] = (T)(img)(_p11##x,_p3##y,z,c), I[185] = (T)(img)(_p10##x,_p3##y,z,c), I[186] = (T)(img)(_p9##x,_p3##y,z,c), I[187] = (T)(img)(_p8##x,_p3##y,z,c), I[188] = (T)(img)(_p7##x,_p3##y,z,c), I[189] = (T)(img)(_p6##x,_p3##y,z,c), I[190] = (T)(img)(_p5##x,_p3##y,z,c), I[191] = (T)(img)(_p4##x,_p3##y,z,c), I[192] = (T)(img)(_p3##x,_p3##y,z,c), I[193] = (T)(img)(_p2##x,_p3##y,z,c), I[194] = (T)(img)(_p1##x,_p3##y,z,c), I[195] = (T)(img)(x,_p3##y,z,c), I[196] = (T)(img)(_n1##x,_p3##y,z,c), I[197] = (T)(img)(_n2##x,_p3##y,z,c), I[198] = (T)(img)(_n3##x,_p3##y,z,c), I[199] = (T)(img)(_n4##x,_p3##y,z,c), I[200] = (T)(img)(_n5##x,_p3##y,z,c), I[201] = (T)(img)(_n6##x,_p3##y,z,c), I[202] = (T)(img)(_n7##x,_p3##y,z,c), I[203] = (T)(img)(_n8##x,_p3##y,z,c), I[204] = (T)(img)(_n9##x,_p3##y,z,c), I[205] = (T)(img)(_n10##x,_p3##y,z,c), I[206] = (T)(img)(_n11##x,_p3##y,z,c), \
|
|
I[207] = (T)(img)(_p11##x,_p2##y,z,c), I[208] = (T)(img)(_p10##x,_p2##y,z,c), I[209] = (T)(img)(_p9##x,_p2##y,z,c), I[210] = (T)(img)(_p8##x,_p2##y,z,c), I[211] = (T)(img)(_p7##x,_p2##y,z,c), I[212] = (T)(img)(_p6##x,_p2##y,z,c), I[213] = (T)(img)(_p5##x,_p2##y,z,c), I[214] = (T)(img)(_p4##x,_p2##y,z,c), I[215] = (T)(img)(_p3##x,_p2##y,z,c), I[216] = (T)(img)(_p2##x,_p2##y,z,c), I[217] = (T)(img)(_p1##x,_p2##y,z,c), I[218] = (T)(img)(x,_p2##y,z,c), I[219] = (T)(img)(_n1##x,_p2##y,z,c), I[220] = (T)(img)(_n2##x,_p2##y,z,c), I[221] = (T)(img)(_n3##x,_p2##y,z,c), I[222] = (T)(img)(_n4##x,_p2##y,z,c), I[223] = (T)(img)(_n5##x,_p2##y,z,c), I[224] = (T)(img)(_n6##x,_p2##y,z,c), I[225] = (T)(img)(_n7##x,_p2##y,z,c), I[226] = (T)(img)(_n8##x,_p2##y,z,c), I[227] = (T)(img)(_n9##x,_p2##y,z,c), I[228] = (T)(img)(_n10##x,_p2##y,z,c), I[229] = (T)(img)(_n11##x,_p2##y,z,c), \
|
|
I[230] = (T)(img)(_p11##x,_p1##y,z,c), I[231] = (T)(img)(_p10##x,_p1##y,z,c), I[232] = (T)(img)(_p9##x,_p1##y,z,c), I[233] = (T)(img)(_p8##x,_p1##y,z,c), I[234] = (T)(img)(_p7##x,_p1##y,z,c), I[235] = (T)(img)(_p6##x,_p1##y,z,c), I[236] = (T)(img)(_p5##x,_p1##y,z,c), I[237] = (T)(img)(_p4##x,_p1##y,z,c), I[238] = (T)(img)(_p3##x,_p1##y,z,c), I[239] = (T)(img)(_p2##x,_p1##y,z,c), I[240] = (T)(img)(_p1##x,_p1##y,z,c), I[241] = (T)(img)(x,_p1##y,z,c), I[242] = (T)(img)(_n1##x,_p1##y,z,c), I[243] = (T)(img)(_n2##x,_p1##y,z,c), I[244] = (T)(img)(_n3##x,_p1##y,z,c), I[245] = (T)(img)(_n4##x,_p1##y,z,c), I[246] = (T)(img)(_n5##x,_p1##y,z,c), I[247] = (T)(img)(_n6##x,_p1##y,z,c), I[248] = (T)(img)(_n7##x,_p1##y,z,c), I[249] = (T)(img)(_n8##x,_p1##y,z,c), I[250] = (T)(img)(_n9##x,_p1##y,z,c), I[251] = (T)(img)(_n10##x,_p1##y,z,c), I[252] = (T)(img)(_n11##x,_p1##y,z,c), \
|
|
I[253] = (T)(img)(_p11##x,y,z,c), I[254] = (T)(img)(_p10##x,y,z,c), I[255] = (T)(img)(_p9##x,y,z,c), I[256] = (T)(img)(_p8##x,y,z,c), I[257] = (T)(img)(_p7##x,y,z,c), I[258] = (T)(img)(_p6##x,y,z,c), I[259] = (T)(img)(_p5##x,y,z,c), I[260] = (T)(img)(_p4##x,y,z,c), I[261] = (T)(img)(_p3##x,y,z,c), I[262] = (T)(img)(_p2##x,y,z,c), I[263] = (T)(img)(_p1##x,y,z,c), I[264] = (T)(img)(x,y,z,c), I[265] = (T)(img)(_n1##x,y,z,c), I[266] = (T)(img)(_n2##x,y,z,c), I[267] = (T)(img)(_n3##x,y,z,c), I[268] = (T)(img)(_n4##x,y,z,c), I[269] = (T)(img)(_n5##x,y,z,c), I[270] = (T)(img)(_n6##x,y,z,c), I[271] = (T)(img)(_n7##x,y,z,c), I[272] = (T)(img)(_n8##x,y,z,c), I[273] = (T)(img)(_n9##x,y,z,c), I[274] = (T)(img)(_n10##x,y,z,c), I[275] = (T)(img)(_n11##x,y,z,c), \
|
|
I[276] = (T)(img)(_p11##x,_n1##y,z,c), I[277] = (T)(img)(_p10##x,_n1##y,z,c), I[278] = (T)(img)(_p9##x,_n1##y,z,c), I[279] = (T)(img)(_p8##x,_n1##y,z,c), I[280] = (T)(img)(_p7##x,_n1##y,z,c), I[281] = (T)(img)(_p6##x,_n1##y,z,c), I[282] = (T)(img)(_p5##x,_n1##y,z,c), I[283] = (T)(img)(_p4##x,_n1##y,z,c), I[284] = (T)(img)(_p3##x,_n1##y,z,c), I[285] = (T)(img)(_p2##x,_n1##y,z,c), I[286] = (T)(img)(_p1##x,_n1##y,z,c), I[287] = (T)(img)(x,_n1##y,z,c), I[288] = (T)(img)(_n1##x,_n1##y,z,c), I[289] = (T)(img)(_n2##x,_n1##y,z,c), I[290] = (T)(img)(_n3##x,_n1##y,z,c), I[291] = (T)(img)(_n4##x,_n1##y,z,c), I[292] = (T)(img)(_n5##x,_n1##y,z,c), I[293] = (T)(img)(_n6##x,_n1##y,z,c), I[294] = (T)(img)(_n7##x,_n1##y,z,c), I[295] = (T)(img)(_n8##x,_n1##y,z,c), I[296] = (T)(img)(_n9##x,_n1##y,z,c), I[297] = (T)(img)(_n10##x,_n1##y,z,c), I[298] = (T)(img)(_n11##x,_n1##y,z,c), \
|
|
I[299] = (T)(img)(_p11##x,_n2##y,z,c), I[300] = (T)(img)(_p10##x,_n2##y,z,c), I[301] = (T)(img)(_p9##x,_n2##y,z,c), I[302] = (T)(img)(_p8##x,_n2##y,z,c), I[303] = (T)(img)(_p7##x,_n2##y,z,c), I[304] = (T)(img)(_p6##x,_n2##y,z,c), I[305] = (T)(img)(_p5##x,_n2##y,z,c), I[306] = (T)(img)(_p4##x,_n2##y,z,c), I[307] = (T)(img)(_p3##x,_n2##y,z,c), I[308] = (T)(img)(_p2##x,_n2##y,z,c), I[309] = (T)(img)(_p1##x,_n2##y,z,c), I[310] = (T)(img)(x,_n2##y,z,c), I[311] = (T)(img)(_n1##x,_n2##y,z,c), I[312] = (T)(img)(_n2##x,_n2##y,z,c), I[313] = (T)(img)(_n3##x,_n2##y,z,c), I[314] = (T)(img)(_n4##x,_n2##y,z,c), I[315] = (T)(img)(_n5##x,_n2##y,z,c), I[316] = (T)(img)(_n6##x,_n2##y,z,c), I[317] = (T)(img)(_n7##x,_n2##y,z,c), I[318] = (T)(img)(_n8##x,_n2##y,z,c), I[319] = (T)(img)(_n9##x,_n2##y,z,c), I[320] = (T)(img)(_n10##x,_n2##y,z,c), I[321] = (T)(img)(_n11##x,_n2##y,z,c), \
|
|
I[322] = (T)(img)(_p11##x,_n3##y,z,c), I[323] = (T)(img)(_p10##x,_n3##y,z,c), I[324] = (T)(img)(_p9##x,_n3##y,z,c), I[325] = (T)(img)(_p8##x,_n3##y,z,c), I[326] = (T)(img)(_p7##x,_n3##y,z,c), I[327] = (T)(img)(_p6##x,_n3##y,z,c), I[328] = (T)(img)(_p5##x,_n3##y,z,c), I[329] = (T)(img)(_p4##x,_n3##y,z,c), I[330] = (T)(img)(_p3##x,_n3##y,z,c), I[331] = (T)(img)(_p2##x,_n3##y,z,c), I[332] = (T)(img)(_p1##x,_n3##y,z,c), I[333] = (T)(img)(x,_n3##y,z,c), I[334] = (T)(img)(_n1##x,_n3##y,z,c), I[335] = (T)(img)(_n2##x,_n3##y,z,c), I[336] = (T)(img)(_n3##x,_n3##y,z,c), I[337] = (T)(img)(_n4##x,_n3##y,z,c), I[338] = (T)(img)(_n5##x,_n3##y,z,c), I[339] = (T)(img)(_n6##x,_n3##y,z,c), I[340] = (T)(img)(_n7##x,_n3##y,z,c), I[341] = (T)(img)(_n8##x,_n3##y,z,c), I[342] = (T)(img)(_n9##x,_n3##y,z,c), I[343] = (T)(img)(_n10##x,_n3##y,z,c), I[344] = (T)(img)(_n11##x,_n3##y,z,c), \
|
|
I[345] = (T)(img)(_p11##x,_n4##y,z,c), I[346] = (T)(img)(_p10##x,_n4##y,z,c), I[347] = (T)(img)(_p9##x,_n4##y,z,c), I[348] = (T)(img)(_p8##x,_n4##y,z,c), I[349] = (T)(img)(_p7##x,_n4##y,z,c), I[350] = (T)(img)(_p6##x,_n4##y,z,c), I[351] = (T)(img)(_p5##x,_n4##y,z,c), I[352] = (T)(img)(_p4##x,_n4##y,z,c), I[353] = (T)(img)(_p3##x,_n4##y,z,c), I[354] = (T)(img)(_p2##x,_n4##y,z,c), I[355] = (T)(img)(_p1##x,_n4##y,z,c), I[356] = (T)(img)(x,_n4##y,z,c), I[357] = (T)(img)(_n1##x,_n4##y,z,c), I[358] = (T)(img)(_n2##x,_n4##y,z,c), I[359] = (T)(img)(_n3##x,_n4##y,z,c), I[360] = (T)(img)(_n4##x,_n4##y,z,c), I[361] = (T)(img)(_n5##x,_n4##y,z,c), I[362] = (T)(img)(_n6##x,_n4##y,z,c), I[363] = (T)(img)(_n7##x,_n4##y,z,c), I[364] = (T)(img)(_n8##x,_n4##y,z,c), I[365] = (T)(img)(_n9##x,_n4##y,z,c), I[366] = (T)(img)(_n10##x,_n4##y,z,c), I[367] = (T)(img)(_n11##x,_n4##y,z,c), \
|
|
I[368] = (T)(img)(_p11##x,_n5##y,z,c), I[369] = (T)(img)(_p10##x,_n5##y,z,c), I[370] = (T)(img)(_p9##x,_n5##y,z,c), I[371] = (T)(img)(_p8##x,_n5##y,z,c), I[372] = (T)(img)(_p7##x,_n5##y,z,c), I[373] = (T)(img)(_p6##x,_n5##y,z,c), I[374] = (T)(img)(_p5##x,_n5##y,z,c), I[375] = (T)(img)(_p4##x,_n5##y,z,c), I[376] = (T)(img)(_p3##x,_n5##y,z,c), I[377] = (T)(img)(_p2##x,_n5##y,z,c), I[378] = (T)(img)(_p1##x,_n5##y,z,c), I[379] = (T)(img)(x,_n5##y,z,c), I[380] = (T)(img)(_n1##x,_n5##y,z,c), I[381] = (T)(img)(_n2##x,_n5##y,z,c), I[382] = (T)(img)(_n3##x,_n5##y,z,c), I[383] = (T)(img)(_n4##x,_n5##y,z,c), I[384] = (T)(img)(_n5##x,_n5##y,z,c), I[385] = (T)(img)(_n6##x,_n5##y,z,c), I[386] = (T)(img)(_n7##x,_n5##y,z,c), I[387] = (T)(img)(_n8##x,_n5##y,z,c), I[388] = (T)(img)(_n9##x,_n5##y,z,c), I[389] = (T)(img)(_n10##x,_n5##y,z,c), I[390] = (T)(img)(_n11##x,_n5##y,z,c), \
|
|
I[391] = (T)(img)(_p11##x,_n6##y,z,c), I[392] = (T)(img)(_p10##x,_n6##y,z,c), I[393] = (T)(img)(_p9##x,_n6##y,z,c), I[394] = (T)(img)(_p8##x,_n6##y,z,c), I[395] = (T)(img)(_p7##x,_n6##y,z,c), I[396] = (T)(img)(_p6##x,_n6##y,z,c), I[397] = (T)(img)(_p5##x,_n6##y,z,c), I[398] = (T)(img)(_p4##x,_n6##y,z,c), I[399] = (T)(img)(_p3##x,_n6##y,z,c), I[400] = (T)(img)(_p2##x,_n6##y,z,c), I[401] = (T)(img)(_p1##x,_n6##y,z,c), I[402] = (T)(img)(x,_n6##y,z,c), I[403] = (T)(img)(_n1##x,_n6##y,z,c), I[404] = (T)(img)(_n2##x,_n6##y,z,c), I[405] = (T)(img)(_n3##x,_n6##y,z,c), I[406] = (T)(img)(_n4##x,_n6##y,z,c), I[407] = (T)(img)(_n5##x,_n6##y,z,c), I[408] = (T)(img)(_n6##x,_n6##y,z,c), I[409] = (T)(img)(_n7##x,_n6##y,z,c), I[410] = (T)(img)(_n8##x,_n6##y,z,c), I[411] = (T)(img)(_n9##x,_n6##y,z,c), I[412] = (T)(img)(_n10##x,_n6##y,z,c), I[413] = (T)(img)(_n11##x,_n6##y,z,c), \
|
|
I[414] = (T)(img)(_p11##x,_n7##y,z,c), I[415] = (T)(img)(_p10##x,_n7##y,z,c), I[416] = (T)(img)(_p9##x,_n7##y,z,c), I[417] = (T)(img)(_p8##x,_n7##y,z,c), I[418] = (T)(img)(_p7##x,_n7##y,z,c), I[419] = (T)(img)(_p6##x,_n7##y,z,c), I[420] = (T)(img)(_p5##x,_n7##y,z,c), I[421] = (T)(img)(_p4##x,_n7##y,z,c), I[422] = (T)(img)(_p3##x,_n7##y,z,c), I[423] = (T)(img)(_p2##x,_n7##y,z,c), I[424] = (T)(img)(_p1##x,_n7##y,z,c), I[425] = (T)(img)(x,_n7##y,z,c), I[426] = (T)(img)(_n1##x,_n7##y,z,c), I[427] = (T)(img)(_n2##x,_n7##y,z,c), I[428] = (T)(img)(_n3##x,_n7##y,z,c), I[429] = (T)(img)(_n4##x,_n7##y,z,c), I[430] = (T)(img)(_n5##x,_n7##y,z,c), I[431] = (T)(img)(_n6##x,_n7##y,z,c), I[432] = (T)(img)(_n7##x,_n7##y,z,c), I[433] = (T)(img)(_n8##x,_n7##y,z,c), I[434] = (T)(img)(_n9##x,_n7##y,z,c), I[435] = (T)(img)(_n10##x,_n7##y,z,c), I[436] = (T)(img)(_n11##x,_n7##y,z,c), \
|
|
I[437] = (T)(img)(_p11##x,_n8##y,z,c), I[438] = (T)(img)(_p10##x,_n8##y,z,c), I[439] = (T)(img)(_p9##x,_n8##y,z,c), I[440] = (T)(img)(_p8##x,_n8##y,z,c), I[441] = (T)(img)(_p7##x,_n8##y,z,c), I[442] = (T)(img)(_p6##x,_n8##y,z,c), I[443] = (T)(img)(_p5##x,_n8##y,z,c), I[444] = (T)(img)(_p4##x,_n8##y,z,c), I[445] = (T)(img)(_p3##x,_n8##y,z,c), I[446] = (T)(img)(_p2##x,_n8##y,z,c), I[447] = (T)(img)(_p1##x,_n8##y,z,c), I[448] = (T)(img)(x,_n8##y,z,c), I[449] = (T)(img)(_n1##x,_n8##y,z,c), I[450] = (T)(img)(_n2##x,_n8##y,z,c), I[451] = (T)(img)(_n3##x,_n8##y,z,c), I[452] = (T)(img)(_n4##x,_n8##y,z,c), I[453] = (T)(img)(_n5##x,_n8##y,z,c), I[454] = (T)(img)(_n6##x,_n8##y,z,c), I[455] = (T)(img)(_n7##x,_n8##y,z,c), I[456] = (T)(img)(_n8##x,_n8##y,z,c), I[457] = (T)(img)(_n9##x,_n8##y,z,c), I[458] = (T)(img)(_n10##x,_n8##y,z,c), I[459] = (T)(img)(_n11##x,_n8##y,z,c), \
|
|
I[460] = (T)(img)(_p11##x,_n9##y,z,c), I[461] = (T)(img)(_p10##x,_n9##y,z,c), I[462] = (T)(img)(_p9##x,_n9##y,z,c), I[463] = (T)(img)(_p8##x,_n9##y,z,c), I[464] = (T)(img)(_p7##x,_n9##y,z,c), I[465] = (T)(img)(_p6##x,_n9##y,z,c), I[466] = (T)(img)(_p5##x,_n9##y,z,c), I[467] = (T)(img)(_p4##x,_n9##y,z,c), I[468] = (T)(img)(_p3##x,_n9##y,z,c), I[469] = (T)(img)(_p2##x,_n9##y,z,c), I[470] = (T)(img)(_p1##x,_n9##y,z,c), I[471] = (T)(img)(x,_n9##y,z,c), I[472] = (T)(img)(_n1##x,_n9##y,z,c), I[473] = (T)(img)(_n2##x,_n9##y,z,c), I[474] = (T)(img)(_n3##x,_n9##y,z,c), I[475] = (T)(img)(_n4##x,_n9##y,z,c), I[476] = (T)(img)(_n5##x,_n9##y,z,c), I[477] = (T)(img)(_n6##x,_n9##y,z,c), I[478] = (T)(img)(_n7##x,_n9##y,z,c), I[479] = (T)(img)(_n8##x,_n9##y,z,c), I[480] = (T)(img)(_n9##x,_n9##y,z,c), I[481] = (T)(img)(_n10##x,_n9##y,z,c), I[482] = (T)(img)(_n11##x,_n9##y,z,c), \
|
|
I[483] = (T)(img)(_p11##x,_n10##y,z,c), I[484] = (T)(img)(_p10##x,_n10##y,z,c), I[485] = (T)(img)(_p9##x,_n10##y,z,c), I[486] = (T)(img)(_p8##x,_n10##y,z,c), I[487] = (T)(img)(_p7##x,_n10##y,z,c), I[488] = (T)(img)(_p6##x,_n10##y,z,c), I[489] = (T)(img)(_p5##x,_n10##y,z,c), I[490] = (T)(img)(_p4##x,_n10##y,z,c), I[491] = (T)(img)(_p3##x,_n10##y,z,c), I[492] = (T)(img)(_p2##x,_n10##y,z,c), I[493] = (T)(img)(_p1##x,_n10##y,z,c), I[494] = (T)(img)(x,_n10##y,z,c), I[495] = (T)(img)(_n1##x,_n10##y,z,c), I[496] = (T)(img)(_n2##x,_n10##y,z,c), I[497] = (T)(img)(_n3##x,_n10##y,z,c), I[498] = (T)(img)(_n4##x,_n10##y,z,c), I[499] = (T)(img)(_n5##x,_n10##y,z,c), I[500] = (T)(img)(_n6##x,_n10##y,z,c), I[501] = (T)(img)(_n7##x,_n10##y,z,c), I[502] = (T)(img)(_n8##x,_n10##y,z,c), I[503] = (T)(img)(_n9##x,_n10##y,z,c), I[504] = (T)(img)(_n10##x,_n10##y,z,c), I[505] = (T)(img)(_n11##x,_n10##y,z,c), \
|
|
I[506] = (T)(img)(_p11##x,_n11##y,z,c), I[507] = (T)(img)(_p10##x,_n11##y,z,c), I[508] = (T)(img)(_p9##x,_n11##y,z,c), I[509] = (T)(img)(_p8##x,_n11##y,z,c), I[510] = (T)(img)(_p7##x,_n11##y,z,c), I[511] = (T)(img)(_p6##x,_n11##y,z,c), I[512] = (T)(img)(_p5##x,_n11##y,z,c), I[513] = (T)(img)(_p4##x,_n11##y,z,c), I[514] = (T)(img)(_p3##x,_n11##y,z,c), I[515] = (T)(img)(_p2##x,_n11##y,z,c), I[516] = (T)(img)(_p1##x,_n11##y,z,c), I[517] = (T)(img)(x,_n11##y,z,c), I[518] = (T)(img)(_n1##x,_n11##y,z,c), I[519] = (T)(img)(_n2##x,_n11##y,z,c), I[520] = (T)(img)(_n3##x,_n11##y,z,c), I[521] = (T)(img)(_n4##x,_n11##y,z,c), I[522] = (T)(img)(_n5##x,_n11##y,z,c), I[523] = (T)(img)(_n6##x,_n11##y,z,c), I[524] = (T)(img)(_n7##x,_n11##y,z,c), I[525] = (T)(img)(_n8##x,_n11##y,z,c), I[526] = (T)(img)(_n9##x,_n11##y,z,c), I[527] = (T)(img)(_n10##x,_n11##y,z,c), I[528] = (T)(img)(_n11##x,_n11##y,z,c);
|
|
|
|
// Define 24x24 loop macros
|
|
//-------------------------
|
|
#define cimg_for24(bound,i) for (int i = 0, \
|
|
_p11##i = 0, _p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
|
|
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
|
|
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
|
|
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
|
|
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
|
|
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
|
|
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
|
|
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
|
|
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9, \
|
|
_n10##i = 10>=(int)(bound)?(int)(bound) - 1:10, \
|
|
_n11##i = 11>=(int)(bound)?(int)(bound) - 1:11, \
|
|
_n12##i = 12>=(int)(bound)?(int)(bound) - 1:12; \
|
|
_n12##i<(int)(bound) || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
|
|
_p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i)
|
|
|
|
#define cimg_for24X(img,x) cimg_for24((img)._width,x)
|
|
#define cimg_for24Y(img,y) cimg_for24((img)._height,y)
|
|
#define cimg_for24Z(img,z) cimg_for24((img)._depth,z)
|
|
#define cimg_for24C(img,c) cimg_for24((img)._spectrum,c)
|
|
#define cimg_for24XY(img,x,y) cimg_for24Y(img,y) cimg_for24X(img,x)
|
|
#define cimg_for24XZ(img,x,z) cimg_for24Z(img,z) cimg_for24X(img,x)
|
|
#define cimg_for24XC(img,x,c) cimg_for24C(img,c) cimg_for24X(img,x)
|
|
#define cimg_for24YZ(img,y,z) cimg_for24Z(img,z) cimg_for24Y(img,y)
|
|
#define cimg_for24YC(img,y,c) cimg_for24C(img,c) cimg_for24Y(img,y)
|
|
#define cimg_for24ZC(img,z,c) cimg_for24C(img,c) cimg_for24Z(img,z)
|
|
#define cimg_for24XYZ(img,x,y,z) cimg_for24Z(img,z) cimg_for24XY(img,x,y)
|
|
#define cimg_for24XZC(img,x,z,c) cimg_for24C(img,c) cimg_for24XZ(img,x,z)
|
|
#define cimg_for24YZC(img,y,z,c) cimg_for24C(img,c) cimg_for24YZ(img,y,z)
|
|
#define cimg_for24XYZC(img,x,y,z,c) cimg_for24C(img,c) cimg_for24XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in24(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p11##i = i - 11<0?0:i - 11, \
|
|
_p10##i = i - 10<0?0:i - 10, \
|
|
_p9##i = i - 9<0?0:i - 9, \
|
|
_p8##i = i - 8<0?0:i - 8, \
|
|
_p7##i = i - 7<0?0:i - 7, \
|
|
_p6##i = i - 6<0?0:i - 6, \
|
|
_p5##i = i - 5<0?0:i - 5, \
|
|
_p4##i = i - 4<0?0:i - 4, \
|
|
_p3##i = i - 3<0?0:i - 3, \
|
|
_p2##i = i - 2<0?0:i - 2, \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
|
|
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
|
|
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
|
|
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
|
|
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
|
|
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
|
|
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
|
|
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
|
|
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9, \
|
|
_n10##i = i + 10>=(int)(bound)?(int)(bound) - 1:i + 10, \
|
|
_n11##i = i + 11>=(int)(bound)?(int)(bound) - 1:i + 11, \
|
|
_n12##i = i + 12>=(int)(bound)?(int)(bound) - 1:i + 12; \
|
|
i<=(int)(i1) && (_n12##i<(int)(bound) || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
|
|
_p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i)
|
|
|
|
#define cimg_for_in24X(img,x0,x1,x) cimg_for_in24((img)._width,x0,x1,x)
|
|
#define cimg_for_in24Y(img,y0,y1,y) cimg_for_in24((img)._height,y0,y1,y)
|
|
#define cimg_for_in24Z(img,z0,z1,z) cimg_for_in24((img)._depth,z0,z1,z)
|
|
#define cimg_for_in24C(img,c0,c1,c) cimg_for_in24((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in24XY(img,x0,y0,x1,y1,x,y) cimg_for_in24Y(img,y0,y1,y) cimg_for_in24X(img,x0,x1,x)
|
|
#define cimg_for_in24XZ(img,x0,z0,x1,z1,x,z) cimg_for_in24Z(img,z0,z1,z) cimg_for_in24X(img,x0,x1,x)
|
|
#define cimg_for_in24XC(img,x0,c0,x1,c1,x,c) cimg_for_in24C(img,c0,c1,c) cimg_for_in24X(img,x0,x1,x)
|
|
#define cimg_for_in24YZ(img,y0,z0,y1,z1,y,z) cimg_for_in24Z(img,z0,z1,z) cimg_for_in24Y(img,y0,y1,y)
|
|
#define cimg_for_in24YC(img,y0,c0,y1,c1,y,c) cimg_for_in24C(img,c0,c1,c) cimg_for_in24Y(img,y0,y1,y)
|
|
#define cimg_for_in24ZC(img,z0,c0,z1,c1,z,c) cimg_for_in24C(img,c0,c1,c) cimg_for_in24Z(img,z0,z1,z)
|
|
#define cimg_for_in24XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in24Z(img,z0,z1,z) cimg_for_in24XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in24XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in24C(img,c0,c1,c) cimg_for_in24XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in24YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in24C(img,c0,c1,c) cimg_for_in24YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in24XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in24C(img,c0,c1,c) cimg_for_in24XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for24x24(img,x,y,z,c,I,T) \
|
|
cimg_for24((img)._height,y) for (int x = 0, \
|
|
_p11##x = 0, _p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
|
|
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
|
|
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
|
|
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
|
|
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
|
|
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
|
|
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
|
|
_n9##x = 9>=((img)._width)?(img).width() - 1:9, \
|
|
_n10##x = 10>=((img)._width)?(img).width() - 1:10, \
|
|
_n11##x = 11>=((img)._width)?(img).width() - 1:11, \
|
|
_n12##x = (int)( \
|
|
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = I[11] = (T)(img)(0,_p11##y,z,c)), \
|
|
(I[24] = I[25] = I[26] = I[27] = I[28] = I[29] = I[30] = I[31] = I[32] = I[33] = I[34] = I[35] = (T)(img)(0,_p10##y,z,c)), \
|
|
(I[48] = I[49] = I[50] = I[51] = I[52] = I[53] = I[54] = I[55] = I[56] = I[57] = I[58] = I[59] = (T)(img)(0,_p9##y,z,c)), \
|
|
(I[72] = I[73] = I[74] = I[75] = I[76] = I[77] = I[78] = I[79] = I[80] = I[81] = I[82] = I[83] = (T)(img)(0,_p8##y,z,c)), \
|
|
(I[96] = I[97] = I[98] = I[99] = I[100] = I[101] = I[102] = I[103] = I[104] = I[105] = I[106] = I[107] = (T)(img)(0,_p7##y,z,c)), \
|
|
(I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = I[126] = I[127] = I[128] = I[129] = I[130] = I[131] = (T)(img)(0,_p6##y,z,c)), \
|
|
(I[144] = I[145] = I[146] = I[147] = I[148] = I[149] = I[150] = I[151] = I[152] = I[153] = I[154] = I[155] = (T)(img)(0,_p5##y,z,c)), \
|
|
(I[168] = I[169] = I[170] = I[171] = I[172] = I[173] = I[174] = I[175] = I[176] = I[177] = I[178] = I[179] = (T)(img)(0,_p4##y,z,c)), \
|
|
(I[192] = I[193] = I[194] = I[195] = I[196] = I[197] = I[198] = I[199] = I[200] = I[201] = I[202] = I[203] = (T)(img)(0,_p3##y,z,c)), \
|
|
(I[216] = I[217] = I[218] = I[219] = I[220] = I[221] = I[222] = I[223] = I[224] = I[225] = I[226] = I[227] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[240] = I[241] = I[242] = I[243] = I[244] = I[245] = I[246] = I[247] = I[248] = I[249] = I[250] = I[251] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[264] = I[265] = I[266] = I[267] = I[268] = I[269] = I[270] = I[271] = I[272] = I[273] = I[274] = I[275] = (T)(img)(0,y,z,c)), \
|
|
(I[288] = I[289] = I[290] = I[291] = I[292] = I[293] = I[294] = I[295] = I[296] = I[297] = I[298] = I[299] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[312] = I[313] = I[314] = I[315] = I[316] = I[317] = I[318] = I[319] = I[320] = I[321] = I[322] = I[323] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[336] = I[337] = I[338] = I[339] = I[340] = I[341] = I[342] = I[343] = I[344] = I[345] = I[346] = I[347] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[360] = I[361] = I[362] = I[363] = I[364] = I[365] = I[366] = I[367] = I[368] = I[369] = I[370] = I[371] = (T)(img)(0,_n4##y,z,c)), \
|
|
(I[384] = I[385] = I[386] = I[387] = I[388] = I[389] = I[390] = I[391] = I[392] = I[393] = I[394] = I[395] = (T)(img)(0,_n5##y,z,c)), \
|
|
(I[408] = I[409] = I[410] = I[411] = I[412] = I[413] = I[414] = I[415] = I[416] = I[417] = I[418] = I[419] = (T)(img)(0,_n6##y,z,c)), \
|
|
(I[432] = I[433] = I[434] = I[435] = I[436] = I[437] = I[438] = I[439] = I[440] = I[441] = I[442] = I[443] = (T)(img)(0,_n7##y,z,c)), \
|
|
(I[456] = I[457] = I[458] = I[459] = I[460] = I[461] = I[462] = I[463] = I[464] = I[465] = I[466] = I[467] = (T)(img)(0,_n8##y,z,c)), \
|
|
(I[480] = I[481] = I[482] = I[483] = I[484] = I[485] = I[486] = I[487] = I[488] = I[489] = I[490] = I[491] = (T)(img)(0,_n9##y,z,c)), \
|
|
(I[504] = I[505] = I[506] = I[507] = I[508] = I[509] = I[510] = I[511] = I[512] = I[513] = I[514] = I[515] = (T)(img)(0,_n10##y,z,c)), \
|
|
(I[528] = I[529] = I[530] = I[531] = I[532] = I[533] = I[534] = I[535] = I[536] = I[537] = I[538] = I[539] = (T)(img)(0,_n11##y,z,c)), \
|
|
(I[552] = I[553] = I[554] = I[555] = I[556] = I[557] = I[558] = I[559] = I[560] = I[561] = I[562] = I[563] = (T)(img)(0,_n12##y,z,c)), \
|
|
(I[12] = (T)(img)(_n1##x,_p11##y,z,c)), \
|
|
(I[36] = (T)(img)(_n1##x,_p10##y,z,c)), \
|
|
(I[60] = (T)(img)(_n1##x,_p9##y,z,c)), \
|
|
(I[84] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[108] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[132] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[156] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[180] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[204] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[228] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[252] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[276] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[300] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[324] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[348] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[372] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[396] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[420] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[444] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[468] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[492] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[516] = (T)(img)(_n1##x,_n10##y,z,c)), \
|
|
(I[540] = (T)(img)(_n1##x,_n11##y,z,c)), \
|
|
(I[564] = (T)(img)(_n1##x,_n12##y,z,c)), \
|
|
(I[13] = (T)(img)(_n2##x,_p11##y,z,c)), \
|
|
(I[37] = (T)(img)(_n2##x,_p10##y,z,c)), \
|
|
(I[61] = (T)(img)(_n2##x,_p9##y,z,c)), \
|
|
(I[85] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[109] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[133] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[157] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[181] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[205] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[229] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[253] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[277] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[301] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[325] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[349] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[373] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[397] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[421] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[445] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[469] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[493] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[517] = (T)(img)(_n2##x,_n10##y,z,c)), \
|
|
(I[541] = (T)(img)(_n2##x,_n11##y,z,c)), \
|
|
(I[565] = (T)(img)(_n2##x,_n12##y,z,c)), \
|
|
(I[14] = (T)(img)(_n3##x,_p11##y,z,c)), \
|
|
(I[38] = (T)(img)(_n3##x,_p10##y,z,c)), \
|
|
(I[62] = (T)(img)(_n3##x,_p9##y,z,c)), \
|
|
(I[86] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[110] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[134] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[158] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[182] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[206] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[230] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[254] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[278] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[302] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[326] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[350] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[374] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[398] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[422] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[446] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[470] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[494] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[518] = (T)(img)(_n3##x,_n10##y,z,c)), \
|
|
(I[542] = (T)(img)(_n3##x,_n11##y,z,c)), \
|
|
(I[566] = (T)(img)(_n3##x,_n12##y,z,c)), \
|
|
(I[15] = (T)(img)(_n4##x,_p11##y,z,c)), \
|
|
(I[39] = (T)(img)(_n4##x,_p10##y,z,c)), \
|
|
(I[63] = (T)(img)(_n4##x,_p9##y,z,c)), \
|
|
(I[87] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[111] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[135] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[159] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[183] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[207] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[231] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[255] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[279] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[303] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[327] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[351] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[375] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[399] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[423] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[447] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[471] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[495] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[519] = (T)(img)(_n4##x,_n10##y,z,c)), \
|
|
(I[543] = (T)(img)(_n4##x,_n11##y,z,c)), \
|
|
(I[567] = (T)(img)(_n4##x,_n12##y,z,c)), \
|
|
(I[16] = (T)(img)(_n5##x,_p11##y,z,c)), \
|
|
(I[40] = (T)(img)(_n5##x,_p10##y,z,c)), \
|
|
(I[64] = (T)(img)(_n5##x,_p9##y,z,c)), \
|
|
(I[88] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[112] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[136] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[160] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[184] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[208] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[232] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[256] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[280] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[304] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[328] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[352] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[376] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[400] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[424] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[448] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[472] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[496] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[520] = (T)(img)(_n5##x,_n10##y,z,c)), \
|
|
(I[544] = (T)(img)(_n5##x,_n11##y,z,c)), \
|
|
(I[568] = (T)(img)(_n5##x,_n12##y,z,c)), \
|
|
(I[17] = (T)(img)(_n6##x,_p11##y,z,c)), \
|
|
(I[41] = (T)(img)(_n6##x,_p10##y,z,c)), \
|
|
(I[65] = (T)(img)(_n6##x,_p9##y,z,c)), \
|
|
(I[89] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[113] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[137] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[161] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[185] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[209] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[233] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[257] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[281] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[305] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[329] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[353] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[377] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[401] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[425] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[449] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[473] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[497] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[521] = (T)(img)(_n6##x,_n10##y,z,c)), \
|
|
(I[545] = (T)(img)(_n6##x,_n11##y,z,c)), \
|
|
(I[569] = (T)(img)(_n6##x,_n12##y,z,c)), \
|
|
(I[18] = (T)(img)(_n7##x,_p11##y,z,c)), \
|
|
(I[42] = (T)(img)(_n7##x,_p10##y,z,c)), \
|
|
(I[66] = (T)(img)(_n7##x,_p9##y,z,c)), \
|
|
(I[90] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[114] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[138] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[162] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[186] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[210] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[234] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[258] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[282] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[306] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[330] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[354] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[378] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[402] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[426] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[450] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[474] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[498] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[522] = (T)(img)(_n7##x,_n10##y,z,c)), \
|
|
(I[546] = (T)(img)(_n7##x,_n11##y,z,c)), \
|
|
(I[570] = (T)(img)(_n7##x,_n12##y,z,c)), \
|
|
(I[19] = (T)(img)(_n8##x,_p11##y,z,c)), \
|
|
(I[43] = (T)(img)(_n8##x,_p10##y,z,c)), \
|
|
(I[67] = (T)(img)(_n8##x,_p9##y,z,c)), \
|
|
(I[91] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[115] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[139] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[163] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[187] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[211] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[235] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[259] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[283] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[307] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[331] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[355] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[379] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[403] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[427] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[451] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[475] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[499] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
(I[523] = (T)(img)(_n8##x,_n10##y,z,c)), \
|
|
(I[547] = (T)(img)(_n8##x,_n11##y,z,c)), \
|
|
(I[571] = (T)(img)(_n8##x,_n12##y,z,c)), \
|
|
(I[20] = (T)(img)(_n9##x,_p11##y,z,c)), \
|
|
(I[44] = (T)(img)(_n9##x,_p10##y,z,c)), \
|
|
(I[68] = (T)(img)(_n9##x,_p9##y,z,c)), \
|
|
(I[92] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[116] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[140] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[164] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[188] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[212] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[236] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[260] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[284] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[308] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[332] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[356] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[380] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[404] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[428] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[452] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[476] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[500] = (T)(img)(_n9##x,_n9##y,z,c)), \
|
|
(I[524] = (T)(img)(_n9##x,_n10##y,z,c)), \
|
|
(I[548] = (T)(img)(_n9##x,_n11##y,z,c)), \
|
|
(I[572] = (T)(img)(_n9##x,_n12##y,z,c)), \
|
|
(I[21] = (T)(img)(_n10##x,_p11##y,z,c)), \
|
|
(I[45] = (T)(img)(_n10##x,_p10##y,z,c)), \
|
|
(I[69] = (T)(img)(_n10##x,_p9##y,z,c)), \
|
|
(I[93] = (T)(img)(_n10##x,_p8##y,z,c)), \
|
|
(I[117] = (T)(img)(_n10##x,_p7##y,z,c)), \
|
|
(I[141] = (T)(img)(_n10##x,_p6##y,z,c)), \
|
|
(I[165] = (T)(img)(_n10##x,_p5##y,z,c)), \
|
|
(I[189] = (T)(img)(_n10##x,_p4##y,z,c)), \
|
|
(I[213] = (T)(img)(_n10##x,_p3##y,z,c)), \
|
|
(I[237] = (T)(img)(_n10##x,_p2##y,z,c)), \
|
|
(I[261] = (T)(img)(_n10##x,_p1##y,z,c)), \
|
|
(I[285] = (T)(img)(_n10##x,y,z,c)), \
|
|
(I[309] = (T)(img)(_n10##x,_n1##y,z,c)), \
|
|
(I[333] = (T)(img)(_n10##x,_n2##y,z,c)), \
|
|
(I[357] = (T)(img)(_n10##x,_n3##y,z,c)), \
|
|
(I[381] = (T)(img)(_n10##x,_n4##y,z,c)), \
|
|
(I[405] = (T)(img)(_n10##x,_n5##y,z,c)), \
|
|
(I[429] = (T)(img)(_n10##x,_n6##y,z,c)), \
|
|
(I[453] = (T)(img)(_n10##x,_n7##y,z,c)), \
|
|
(I[477] = (T)(img)(_n10##x,_n8##y,z,c)), \
|
|
(I[501] = (T)(img)(_n10##x,_n9##y,z,c)), \
|
|
(I[525] = (T)(img)(_n10##x,_n10##y,z,c)), \
|
|
(I[549] = (T)(img)(_n10##x,_n11##y,z,c)), \
|
|
(I[573] = (T)(img)(_n10##x,_n12##y,z,c)), \
|
|
(I[22] = (T)(img)(_n11##x,_p11##y,z,c)), \
|
|
(I[46] = (T)(img)(_n11##x,_p10##y,z,c)), \
|
|
(I[70] = (T)(img)(_n11##x,_p9##y,z,c)), \
|
|
(I[94] = (T)(img)(_n11##x,_p8##y,z,c)), \
|
|
(I[118] = (T)(img)(_n11##x,_p7##y,z,c)), \
|
|
(I[142] = (T)(img)(_n11##x,_p6##y,z,c)), \
|
|
(I[166] = (T)(img)(_n11##x,_p5##y,z,c)), \
|
|
(I[190] = (T)(img)(_n11##x,_p4##y,z,c)), \
|
|
(I[214] = (T)(img)(_n11##x,_p3##y,z,c)), \
|
|
(I[238] = (T)(img)(_n11##x,_p2##y,z,c)), \
|
|
(I[262] = (T)(img)(_n11##x,_p1##y,z,c)), \
|
|
(I[286] = (T)(img)(_n11##x,y,z,c)), \
|
|
(I[310] = (T)(img)(_n11##x,_n1##y,z,c)), \
|
|
(I[334] = (T)(img)(_n11##x,_n2##y,z,c)), \
|
|
(I[358] = (T)(img)(_n11##x,_n3##y,z,c)), \
|
|
(I[382] = (T)(img)(_n11##x,_n4##y,z,c)), \
|
|
(I[406] = (T)(img)(_n11##x,_n5##y,z,c)), \
|
|
(I[430] = (T)(img)(_n11##x,_n6##y,z,c)), \
|
|
(I[454] = (T)(img)(_n11##x,_n7##y,z,c)), \
|
|
(I[478] = (T)(img)(_n11##x,_n8##y,z,c)), \
|
|
(I[502] = (T)(img)(_n11##x,_n9##y,z,c)), \
|
|
(I[526] = (T)(img)(_n11##x,_n10##y,z,c)), \
|
|
(I[550] = (T)(img)(_n11##x,_n11##y,z,c)), \
|
|
(I[574] = (T)(img)(_n11##x,_n12##y,z,c)), \
|
|
12>=((img)._width)?(img).width() - 1:12); \
|
|
(_n12##x<(img).width() && ( \
|
|
(I[23] = (T)(img)(_n12##x,_p11##y,z,c)), \
|
|
(I[47] = (T)(img)(_n12##x,_p10##y,z,c)), \
|
|
(I[71] = (T)(img)(_n12##x,_p9##y,z,c)), \
|
|
(I[95] = (T)(img)(_n12##x,_p8##y,z,c)), \
|
|
(I[119] = (T)(img)(_n12##x,_p7##y,z,c)), \
|
|
(I[143] = (T)(img)(_n12##x,_p6##y,z,c)), \
|
|
(I[167] = (T)(img)(_n12##x,_p5##y,z,c)), \
|
|
(I[191] = (T)(img)(_n12##x,_p4##y,z,c)), \
|
|
(I[215] = (T)(img)(_n12##x,_p3##y,z,c)), \
|
|
(I[239] = (T)(img)(_n12##x,_p2##y,z,c)), \
|
|
(I[263] = (T)(img)(_n12##x,_p1##y,z,c)), \
|
|
(I[287] = (T)(img)(_n12##x,y,z,c)), \
|
|
(I[311] = (T)(img)(_n12##x,_n1##y,z,c)), \
|
|
(I[335] = (T)(img)(_n12##x,_n2##y,z,c)), \
|
|
(I[359] = (T)(img)(_n12##x,_n3##y,z,c)), \
|
|
(I[383] = (T)(img)(_n12##x,_n4##y,z,c)), \
|
|
(I[407] = (T)(img)(_n12##x,_n5##y,z,c)), \
|
|
(I[431] = (T)(img)(_n12##x,_n6##y,z,c)), \
|
|
(I[455] = (T)(img)(_n12##x,_n7##y,z,c)), \
|
|
(I[479] = (T)(img)(_n12##x,_n8##y,z,c)), \
|
|
(I[503] = (T)(img)(_n12##x,_n9##y,z,c)), \
|
|
(I[527] = (T)(img)(_n12##x,_n10##y,z,c)), \
|
|
(I[551] = (T)(img)(_n12##x,_n11##y,z,c)), \
|
|
(I[575] = (T)(img)(_n12##x,_n12##y,z,c)),1)) || \
|
|
_n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \
|
|
I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
|
|
I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
|
|
I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
|
|
I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
|
|
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
|
|
I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
|
|
I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \
|
|
I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \
|
|
I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \
|
|
I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], \
|
|
I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], \
|
|
I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], \
|
|
I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \
|
|
I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], \
|
|
I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], \
|
|
I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], \
|
|
I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], \
|
|
I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], \
|
|
I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], \
|
|
I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], \
|
|
I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], \
|
|
I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], \
|
|
I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], \
|
|
_p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x)
|
|
|
|
#define cimg_for_in24x24(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in24((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p11##x = x - 11<0?0:x - 11, \
|
|
_p10##x = x - 10<0?0:x - 10, \
|
|
_p9##x = x - 9<0?0:x - 9, \
|
|
_p8##x = x - 8<0?0:x - 8, \
|
|
_p7##x = x - 7<0?0:x - 7, \
|
|
_p6##x = x - 6<0?0:x - 6, \
|
|
_p5##x = x - 5<0?0:x - 5, \
|
|
_p4##x = x - 4<0?0:x - 4, \
|
|
_p3##x = x - 3<0?0:x - 3, \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
|
|
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
|
|
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
|
|
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
|
|
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
|
|
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
|
|
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
|
|
_n9##x = x + 9>=(img).width()?(img).width() - 1:x + 9, \
|
|
_n10##x = x + 10>=(img).width()?(img).width() - 1:x + 10, \
|
|
_n11##x = x + 11>=(img).width()?(img).width() - 1:x + 11, \
|
|
_n12##x = (int)( \
|
|
(I[0] = (T)(img)(_p11##x,_p11##y,z,c)), \
|
|
(I[24] = (T)(img)(_p11##x,_p10##y,z,c)), \
|
|
(I[48] = (T)(img)(_p11##x,_p9##y,z,c)), \
|
|
(I[72] = (T)(img)(_p11##x,_p8##y,z,c)), \
|
|
(I[96] = (T)(img)(_p11##x,_p7##y,z,c)), \
|
|
(I[120] = (T)(img)(_p11##x,_p6##y,z,c)), \
|
|
(I[144] = (T)(img)(_p11##x,_p5##y,z,c)), \
|
|
(I[168] = (T)(img)(_p11##x,_p4##y,z,c)), \
|
|
(I[192] = (T)(img)(_p11##x,_p3##y,z,c)), \
|
|
(I[216] = (T)(img)(_p11##x,_p2##y,z,c)), \
|
|
(I[240] = (T)(img)(_p11##x,_p1##y,z,c)), \
|
|
(I[264] = (T)(img)(_p11##x,y,z,c)), \
|
|
(I[288] = (T)(img)(_p11##x,_n1##y,z,c)), \
|
|
(I[312] = (T)(img)(_p11##x,_n2##y,z,c)), \
|
|
(I[336] = (T)(img)(_p11##x,_n3##y,z,c)), \
|
|
(I[360] = (T)(img)(_p11##x,_n4##y,z,c)), \
|
|
(I[384] = (T)(img)(_p11##x,_n5##y,z,c)), \
|
|
(I[408] = (T)(img)(_p11##x,_n6##y,z,c)), \
|
|
(I[432] = (T)(img)(_p11##x,_n7##y,z,c)), \
|
|
(I[456] = (T)(img)(_p11##x,_n8##y,z,c)), \
|
|
(I[480] = (T)(img)(_p11##x,_n9##y,z,c)), \
|
|
(I[504] = (T)(img)(_p11##x,_n10##y,z,c)), \
|
|
(I[528] = (T)(img)(_p11##x,_n11##y,z,c)), \
|
|
(I[552] = (T)(img)(_p11##x,_n12##y,z,c)), \
|
|
(I[1] = (T)(img)(_p10##x,_p11##y,z,c)), \
|
|
(I[25] = (T)(img)(_p10##x,_p10##y,z,c)), \
|
|
(I[49] = (T)(img)(_p10##x,_p9##y,z,c)), \
|
|
(I[73] = (T)(img)(_p10##x,_p8##y,z,c)), \
|
|
(I[97] = (T)(img)(_p10##x,_p7##y,z,c)), \
|
|
(I[121] = (T)(img)(_p10##x,_p6##y,z,c)), \
|
|
(I[145] = (T)(img)(_p10##x,_p5##y,z,c)), \
|
|
(I[169] = (T)(img)(_p10##x,_p4##y,z,c)), \
|
|
(I[193] = (T)(img)(_p10##x,_p3##y,z,c)), \
|
|
(I[217] = (T)(img)(_p10##x,_p2##y,z,c)), \
|
|
(I[241] = (T)(img)(_p10##x,_p1##y,z,c)), \
|
|
(I[265] = (T)(img)(_p10##x,y,z,c)), \
|
|
(I[289] = (T)(img)(_p10##x,_n1##y,z,c)), \
|
|
(I[313] = (T)(img)(_p10##x,_n2##y,z,c)), \
|
|
(I[337] = (T)(img)(_p10##x,_n3##y,z,c)), \
|
|
(I[361] = (T)(img)(_p10##x,_n4##y,z,c)), \
|
|
(I[385] = (T)(img)(_p10##x,_n5##y,z,c)), \
|
|
(I[409] = (T)(img)(_p10##x,_n6##y,z,c)), \
|
|
(I[433] = (T)(img)(_p10##x,_n7##y,z,c)), \
|
|
(I[457] = (T)(img)(_p10##x,_n8##y,z,c)), \
|
|
(I[481] = (T)(img)(_p10##x,_n9##y,z,c)), \
|
|
(I[505] = (T)(img)(_p10##x,_n10##y,z,c)), \
|
|
(I[529] = (T)(img)(_p10##x,_n11##y,z,c)), \
|
|
(I[553] = (T)(img)(_p10##x,_n12##y,z,c)), \
|
|
(I[2] = (T)(img)(_p9##x,_p11##y,z,c)), \
|
|
(I[26] = (T)(img)(_p9##x,_p10##y,z,c)), \
|
|
(I[50] = (T)(img)(_p9##x,_p9##y,z,c)), \
|
|
(I[74] = (T)(img)(_p9##x,_p8##y,z,c)), \
|
|
(I[98] = (T)(img)(_p9##x,_p7##y,z,c)), \
|
|
(I[122] = (T)(img)(_p9##x,_p6##y,z,c)), \
|
|
(I[146] = (T)(img)(_p9##x,_p5##y,z,c)), \
|
|
(I[170] = (T)(img)(_p9##x,_p4##y,z,c)), \
|
|
(I[194] = (T)(img)(_p9##x,_p3##y,z,c)), \
|
|
(I[218] = (T)(img)(_p9##x,_p2##y,z,c)), \
|
|
(I[242] = (T)(img)(_p9##x,_p1##y,z,c)), \
|
|
(I[266] = (T)(img)(_p9##x,y,z,c)), \
|
|
(I[290] = (T)(img)(_p9##x,_n1##y,z,c)), \
|
|
(I[314] = (T)(img)(_p9##x,_n2##y,z,c)), \
|
|
(I[338] = (T)(img)(_p9##x,_n3##y,z,c)), \
|
|
(I[362] = (T)(img)(_p9##x,_n4##y,z,c)), \
|
|
(I[386] = (T)(img)(_p9##x,_n5##y,z,c)), \
|
|
(I[410] = (T)(img)(_p9##x,_n6##y,z,c)), \
|
|
(I[434] = (T)(img)(_p9##x,_n7##y,z,c)), \
|
|
(I[458] = (T)(img)(_p9##x,_n8##y,z,c)), \
|
|
(I[482] = (T)(img)(_p9##x,_n9##y,z,c)), \
|
|
(I[506] = (T)(img)(_p9##x,_n10##y,z,c)), \
|
|
(I[530] = (T)(img)(_p9##x,_n11##y,z,c)), \
|
|
(I[554] = (T)(img)(_p9##x,_n12##y,z,c)), \
|
|
(I[3] = (T)(img)(_p8##x,_p11##y,z,c)), \
|
|
(I[27] = (T)(img)(_p8##x,_p10##y,z,c)), \
|
|
(I[51] = (T)(img)(_p8##x,_p9##y,z,c)), \
|
|
(I[75] = (T)(img)(_p8##x,_p8##y,z,c)), \
|
|
(I[99] = (T)(img)(_p8##x,_p7##y,z,c)), \
|
|
(I[123] = (T)(img)(_p8##x,_p6##y,z,c)), \
|
|
(I[147] = (T)(img)(_p8##x,_p5##y,z,c)), \
|
|
(I[171] = (T)(img)(_p8##x,_p4##y,z,c)), \
|
|
(I[195] = (T)(img)(_p8##x,_p3##y,z,c)), \
|
|
(I[219] = (T)(img)(_p8##x,_p2##y,z,c)), \
|
|
(I[243] = (T)(img)(_p8##x,_p1##y,z,c)), \
|
|
(I[267] = (T)(img)(_p8##x,y,z,c)), \
|
|
(I[291] = (T)(img)(_p8##x,_n1##y,z,c)), \
|
|
(I[315] = (T)(img)(_p8##x,_n2##y,z,c)), \
|
|
(I[339] = (T)(img)(_p8##x,_n3##y,z,c)), \
|
|
(I[363] = (T)(img)(_p8##x,_n4##y,z,c)), \
|
|
(I[387] = (T)(img)(_p8##x,_n5##y,z,c)), \
|
|
(I[411] = (T)(img)(_p8##x,_n6##y,z,c)), \
|
|
(I[435] = (T)(img)(_p8##x,_n7##y,z,c)), \
|
|
(I[459] = (T)(img)(_p8##x,_n8##y,z,c)), \
|
|
(I[483] = (T)(img)(_p8##x,_n9##y,z,c)), \
|
|
(I[507] = (T)(img)(_p8##x,_n10##y,z,c)), \
|
|
(I[531] = (T)(img)(_p8##x,_n11##y,z,c)), \
|
|
(I[555] = (T)(img)(_p8##x,_n12##y,z,c)), \
|
|
(I[4] = (T)(img)(_p7##x,_p11##y,z,c)), \
|
|
(I[28] = (T)(img)(_p7##x,_p10##y,z,c)), \
|
|
(I[52] = (T)(img)(_p7##x,_p9##y,z,c)), \
|
|
(I[76] = (T)(img)(_p7##x,_p8##y,z,c)), \
|
|
(I[100] = (T)(img)(_p7##x,_p7##y,z,c)), \
|
|
(I[124] = (T)(img)(_p7##x,_p6##y,z,c)), \
|
|
(I[148] = (T)(img)(_p7##x,_p5##y,z,c)), \
|
|
(I[172] = (T)(img)(_p7##x,_p4##y,z,c)), \
|
|
(I[196] = (T)(img)(_p7##x,_p3##y,z,c)), \
|
|
(I[220] = (T)(img)(_p7##x,_p2##y,z,c)), \
|
|
(I[244] = (T)(img)(_p7##x,_p1##y,z,c)), \
|
|
(I[268] = (T)(img)(_p7##x,y,z,c)), \
|
|
(I[292] = (T)(img)(_p7##x,_n1##y,z,c)), \
|
|
(I[316] = (T)(img)(_p7##x,_n2##y,z,c)), \
|
|
(I[340] = (T)(img)(_p7##x,_n3##y,z,c)), \
|
|
(I[364] = (T)(img)(_p7##x,_n4##y,z,c)), \
|
|
(I[388] = (T)(img)(_p7##x,_n5##y,z,c)), \
|
|
(I[412] = (T)(img)(_p7##x,_n6##y,z,c)), \
|
|
(I[436] = (T)(img)(_p7##x,_n7##y,z,c)), \
|
|
(I[460] = (T)(img)(_p7##x,_n8##y,z,c)), \
|
|
(I[484] = (T)(img)(_p7##x,_n9##y,z,c)), \
|
|
(I[508] = (T)(img)(_p7##x,_n10##y,z,c)), \
|
|
(I[532] = (T)(img)(_p7##x,_n11##y,z,c)), \
|
|
(I[556] = (T)(img)(_p7##x,_n12##y,z,c)), \
|
|
(I[5] = (T)(img)(_p6##x,_p11##y,z,c)), \
|
|
(I[29] = (T)(img)(_p6##x,_p10##y,z,c)), \
|
|
(I[53] = (T)(img)(_p6##x,_p9##y,z,c)), \
|
|
(I[77] = (T)(img)(_p6##x,_p8##y,z,c)), \
|
|
(I[101] = (T)(img)(_p6##x,_p7##y,z,c)), \
|
|
(I[125] = (T)(img)(_p6##x,_p6##y,z,c)), \
|
|
(I[149] = (T)(img)(_p6##x,_p5##y,z,c)), \
|
|
(I[173] = (T)(img)(_p6##x,_p4##y,z,c)), \
|
|
(I[197] = (T)(img)(_p6##x,_p3##y,z,c)), \
|
|
(I[221] = (T)(img)(_p6##x,_p2##y,z,c)), \
|
|
(I[245] = (T)(img)(_p6##x,_p1##y,z,c)), \
|
|
(I[269] = (T)(img)(_p6##x,y,z,c)), \
|
|
(I[293] = (T)(img)(_p6##x,_n1##y,z,c)), \
|
|
(I[317] = (T)(img)(_p6##x,_n2##y,z,c)), \
|
|
(I[341] = (T)(img)(_p6##x,_n3##y,z,c)), \
|
|
(I[365] = (T)(img)(_p6##x,_n4##y,z,c)), \
|
|
(I[389] = (T)(img)(_p6##x,_n5##y,z,c)), \
|
|
(I[413] = (T)(img)(_p6##x,_n6##y,z,c)), \
|
|
(I[437] = (T)(img)(_p6##x,_n7##y,z,c)), \
|
|
(I[461] = (T)(img)(_p6##x,_n8##y,z,c)), \
|
|
(I[485] = (T)(img)(_p6##x,_n9##y,z,c)), \
|
|
(I[509] = (T)(img)(_p6##x,_n10##y,z,c)), \
|
|
(I[533] = (T)(img)(_p6##x,_n11##y,z,c)), \
|
|
(I[557] = (T)(img)(_p6##x,_n12##y,z,c)), \
|
|
(I[6] = (T)(img)(_p5##x,_p11##y,z,c)), \
|
|
(I[30] = (T)(img)(_p5##x,_p10##y,z,c)), \
|
|
(I[54] = (T)(img)(_p5##x,_p9##y,z,c)), \
|
|
(I[78] = (T)(img)(_p5##x,_p8##y,z,c)), \
|
|
(I[102] = (T)(img)(_p5##x,_p7##y,z,c)), \
|
|
(I[126] = (T)(img)(_p5##x,_p6##y,z,c)), \
|
|
(I[150] = (T)(img)(_p5##x,_p5##y,z,c)), \
|
|
(I[174] = (T)(img)(_p5##x,_p4##y,z,c)), \
|
|
(I[198] = (T)(img)(_p5##x,_p3##y,z,c)), \
|
|
(I[222] = (T)(img)(_p5##x,_p2##y,z,c)), \
|
|
(I[246] = (T)(img)(_p5##x,_p1##y,z,c)), \
|
|
(I[270] = (T)(img)(_p5##x,y,z,c)), \
|
|
(I[294] = (T)(img)(_p5##x,_n1##y,z,c)), \
|
|
(I[318] = (T)(img)(_p5##x,_n2##y,z,c)), \
|
|
(I[342] = (T)(img)(_p5##x,_n3##y,z,c)), \
|
|
(I[366] = (T)(img)(_p5##x,_n4##y,z,c)), \
|
|
(I[390] = (T)(img)(_p5##x,_n5##y,z,c)), \
|
|
(I[414] = (T)(img)(_p5##x,_n6##y,z,c)), \
|
|
(I[438] = (T)(img)(_p5##x,_n7##y,z,c)), \
|
|
(I[462] = (T)(img)(_p5##x,_n8##y,z,c)), \
|
|
(I[486] = (T)(img)(_p5##x,_n9##y,z,c)), \
|
|
(I[510] = (T)(img)(_p5##x,_n10##y,z,c)), \
|
|
(I[534] = (T)(img)(_p5##x,_n11##y,z,c)), \
|
|
(I[558] = (T)(img)(_p5##x,_n12##y,z,c)), \
|
|
(I[7] = (T)(img)(_p4##x,_p11##y,z,c)), \
|
|
(I[31] = (T)(img)(_p4##x,_p10##y,z,c)), \
|
|
(I[55] = (T)(img)(_p4##x,_p9##y,z,c)), \
|
|
(I[79] = (T)(img)(_p4##x,_p8##y,z,c)), \
|
|
(I[103] = (T)(img)(_p4##x,_p7##y,z,c)), \
|
|
(I[127] = (T)(img)(_p4##x,_p6##y,z,c)), \
|
|
(I[151] = (T)(img)(_p4##x,_p5##y,z,c)), \
|
|
(I[175] = (T)(img)(_p4##x,_p4##y,z,c)), \
|
|
(I[199] = (T)(img)(_p4##x,_p3##y,z,c)), \
|
|
(I[223] = (T)(img)(_p4##x,_p2##y,z,c)), \
|
|
(I[247] = (T)(img)(_p4##x,_p1##y,z,c)), \
|
|
(I[271] = (T)(img)(_p4##x,y,z,c)), \
|
|
(I[295] = (T)(img)(_p4##x,_n1##y,z,c)), \
|
|
(I[319] = (T)(img)(_p4##x,_n2##y,z,c)), \
|
|
(I[343] = (T)(img)(_p4##x,_n3##y,z,c)), \
|
|
(I[367] = (T)(img)(_p4##x,_n4##y,z,c)), \
|
|
(I[391] = (T)(img)(_p4##x,_n5##y,z,c)), \
|
|
(I[415] = (T)(img)(_p4##x,_n6##y,z,c)), \
|
|
(I[439] = (T)(img)(_p4##x,_n7##y,z,c)), \
|
|
(I[463] = (T)(img)(_p4##x,_n8##y,z,c)), \
|
|
(I[487] = (T)(img)(_p4##x,_n9##y,z,c)), \
|
|
(I[511] = (T)(img)(_p4##x,_n10##y,z,c)), \
|
|
(I[535] = (T)(img)(_p4##x,_n11##y,z,c)), \
|
|
(I[559] = (T)(img)(_p4##x,_n12##y,z,c)), \
|
|
(I[8] = (T)(img)(_p3##x,_p11##y,z,c)), \
|
|
(I[32] = (T)(img)(_p3##x,_p10##y,z,c)), \
|
|
(I[56] = (T)(img)(_p3##x,_p9##y,z,c)), \
|
|
(I[80] = (T)(img)(_p3##x,_p8##y,z,c)), \
|
|
(I[104] = (T)(img)(_p3##x,_p7##y,z,c)), \
|
|
(I[128] = (T)(img)(_p3##x,_p6##y,z,c)), \
|
|
(I[152] = (T)(img)(_p3##x,_p5##y,z,c)), \
|
|
(I[176] = (T)(img)(_p3##x,_p4##y,z,c)), \
|
|
(I[200] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[224] = (T)(img)(_p3##x,_p2##y,z,c)), \
|
|
(I[248] = (T)(img)(_p3##x,_p1##y,z,c)), \
|
|
(I[272] = (T)(img)(_p3##x,y,z,c)), \
|
|
(I[296] = (T)(img)(_p3##x,_n1##y,z,c)), \
|
|
(I[320] = (T)(img)(_p3##x,_n2##y,z,c)), \
|
|
(I[344] = (T)(img)(_p3##x,_n3##y,z,c)), \
|
|
(I[368] = (T)(img)(_p3##x,_n4##y,z,c)), \
|
|
(I[392] = (T)(img)(_p3##x,_n5##y,z,c)), \
|
|
(I[416] = (T)(img)(_p3##x,_n6##y,z,c)), \
|
|
(I[440] = (T)(img)(_p3##x,_n7##y,z,c)), \
|
|
(I[464] = (T)(img)(_p3##x,_n8##y,z,c)), \
|
|
(I[488] = (T)(img)(_p3##x,_n9##y,z,c)), \
|
|
(I[512] = (T)(img)(_p3##x,_n10##y,z,c)), \
|
|
(I[536] = (T)(img)(_p3##x,_n11##y,z,c)), \
|
|
(I[560] = (T)(img)(_p3##x,_n12##y,z,c)), \
|
|
(I[9] = (T)(img)(_p2##x,_p11##y,z,c)), \
|
|
(I[33] = (T)(img)(_p2##x,_p10##y,z,c)), \
|
|
(I[57] = (T)(img)(_p2##x,_p9##y,z,c)), \
|
|
(I[81] = (T)(img)(_p2##x,_p8##y,z,c)), \
|
|
(I[105] = (T)(img)(_p2##x,_p7##y,z,c)), \
|
|
(I[129] = (T)(img)(_p2##x,_p6##y,z,c)), \
|
|
(I[153] = (T)(img)(_p2##x,_p5##y,z,c)), \
|
|
(I[177] = (T)(img)(_p2##x,_p4##y,z,c)), \
|
|
(I[201] = (T)(img)(_p2##x,_p3##y,z,c)), \
|
|
(I[225] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[249] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[273] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[297] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[321] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[345] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[369] = (T)(img)(_p2##x,_n4##y,z,c)), \
|
|
(I[393] = (T)(img)(_p2##x,_n5##y,z,c)), \
|
|
(I[417] = (T)(img)(_p2##x,_n6##y,z,c)), \
|
|
(I[441] = (T)(img)(_p2##x,_n7##y,z,c)), \
|
|
(I[465] = (T)(img)(_p2##x,_n8##y,z,c)), \
|
|
(I[489] = (T)(img)(_p2##x,_n9##y,z,c)), \
|
|
(I[513] = (T)(img)(_p2##x,_n10##y,z,c)), \
|
|
(I[537] = (T)(img)(_p2##x,_n11##y,z,c)), \
|
|
(I[561] = (T)(img)(_p2##x,_n12##y,z,c)), \
|
|
(I[10] = (T)(img)(_p1##x,_p11##y,z,c)), \
|
|
(I[34] = (T)(img)(_p1##x,_p10##y,z,c)), \
|
|
(I[58] = (T)(img)(_p1##x,_p9##y,z,c)), \
|
|
(I[82] = (T)(img)(_p1##x,_p8##y,z,c)), \
|
|
(I[106] = (T)(img)(_p1##x,_p7##y,z,c)), \
|
|
(I[130] = (T)(img)(_p1##x,_p6##y,z,c)), \
|
|
(I[154] = (T)(img)(_p1##x,_p5##y,z,c)), \
|
|
(I[178] = (T)(img)(_p1##x,_p4##y,z,c)), \
|
|
(I[202] = (T)(img)(_p1##x,_p3##y,z,c)), \
|
|
(I[226] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[250] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[274] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[298] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[322] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[346] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[370] = (T)(img)(_p1##x,_n4##y,z,c)), \
|
|
(I[394] = (T)(img)(_p1##x,_n5##y,z,c)), \
|
|
(I[418] = (T)(img)(_p1##x,_n6##y,z,c)), \
|
|
(I[442] = (T)(img)(_p1##x,_n7##y,z,c)), \
|
|
(I[466] = (T)(img)(_p1##x,_n8##y,z,c)), \
|
|
(I[490] = (T)(img)(_p1##x,_n9##y,z,c)), \
|
|
(I[514] = (T)(img)(_p1##x,_n10##y,z,c)), \
|
|
(I[538] = (T)(img)(_p1##x,_n11##y,z,c)), \
|
|
(I[562] = (T)(img)(_p1##x,_n12##y,z,c)), \
|
|
(I[11] = (T)(img)(x,_p11##y,z,c)), \
|
|
(I[35] = (T)(img)(x,_p10##y,z,c)), \
|
|
(I[59] = (T)(img)(x,_p9##y,z,c)), \
|
|
(I[83] = (T)(img)(x,_p8##y,z,c)), \
|
|
(I[107] = (T)(img)(x,_p7##y,z,c)), \
|
|
(I[131] = (T)(img)(x,_p6##y,z,c)), \
|
|
(I[155] = (T)(img)(x,_p5##y,z,c)), \
|
|
(I[179] = (T)(img)(x,_p4##y,z,c)), \
|
|
(I[203] = (T)(img)(x,_p3##y,z,c)), \
|
|
(I[227] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[251] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[275] = (T)(img)(x,y,z,c)), \
|
|
(I[299] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[323] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[347] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[371] = (T)(img)(x,_n4##y,z,c)), \
|
|
(I[395] = (T)(img)(x,_n5##y,z,c)), \
|
|
(I[419] = (T)(img)(x,_n6##y,z,c)), \
|
|
(I[443] = (T)(img)(x,_n7##y,z,c)), \
|
|
(I[467] = (T)(img)(x,_n8##y,z,c)), \
|
|
(I[491] = (T)(img)(x,_n9##y,z,c)), \
|
|
(I[515] = (T)(img)(x,_n10##y,z,c)), \
|
|
(I[539] = (T)(img)(x,_n11##y,z,c)), \
|
|
(I[563] = (T)(img)(x,_n12##y,z,c)), \
|
|
(I[12] = (T)(img)(_n1##x,_p11##y,z,c)), \
|
|
(I[36] = (T)(img)(_n1##x,_p10##y,z,c)), \
|
|
(I[60] = (T)(img)(_n1##x,_p9##y,z,c)), \
|
|
(I[84] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[108] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[132] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[156] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[180] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[204] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[228] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[252] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[276] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[300] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[324] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[348] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[372] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[396] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[420] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[444] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[468] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[492] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[516] = (T)(img)(_n1##x,_n10##y,z,c)), \
|
|
(I[540] = (T)(img)(_n1##x,_n11##y,z,c)), \
|
|
(I[564] = (T)(img)(_n1##x,_n12##y,z,c)), \
|
|
(I[13] = (T)(img)(_n2##x,_p11##y,z,c)), \
|
|
(I[37] = (T)(img)(_n2##x,_p10##y,z,c)), \
|
|
(I[61] = (T)(img)(_n2##x,_p9##y,z,c)), \
|
|
(I[85] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[109] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[133] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[157] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[181] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[205] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[229] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[253] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[277] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[301] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[325] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[349] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[373] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[397] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[421] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[445] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[469] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[493] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[517] = (T)(img)(_n2##x,_n10##y,z,c)), \
|
|
(I[541] = (T)(img)(_n2##x,_n11##y,z,c)), \
|
|
(I[565] = (T)(img)(_n2##x,_n12##y,z,c)), \
|
|
(I[14] = (T)(img)(_n3##x,_p11##y,z,c)), \
|
|
(I[38] = (T)(img)(_n3##x,_p10##y,z,c)), \
|
|
(I[62] = (T)(img)(_n3##x,_p9##y,z,c)), \
|
|
(I[86] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[110] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[134] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[158] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[182] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[206] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[230] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[254] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[278] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[302] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[326] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[350] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[374] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[398] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[422] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[446] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[470] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[494] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[518] = (T)(img)(_n3##x,_n10##y,z,c)), \
|
|
(I[542] = (T)(img)(_n3##x,_n11##y,z,c)), \
|
|
(I[566] = (T)(img)(_n3##x,_n12##y,z,c)), \
|
|
(I[15] = (T)(img)(_n4##x,_p11##y,z,c)), \
|
|
(I[39] = (T)(img)(_n4##x,_p10##y,z,c)), \
|
|
(I[63] = (T)(img)(_n4##x,_p9##y,z,c)), \
|
|
(I[87] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[111] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[135] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[159] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[183] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[207] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[231] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[255] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[279] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[303] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[327] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[351] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[375] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[399] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[423] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[447] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[471] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[495] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[519] = (T)(img)(_n4##x,_n10##y,z,c)), \
|
|
(I[543] = (T)(img)(_n4##x,_n11##y,z,c)), \
|
|
(I[567] = (T)(img)(_n4##x,_n12##y,z,c)), \
|
|
(I[16] = (T)(img)(_n5##x,_p11##y,z,c)), \
|
|
(I[40] = (T)(img)(_n5##x,_p10##y,z,c)), \
|
|
(I[64] = (T)(img)(_n5##x,_p9##y,z,c)), \
|
|
(I[88] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[112] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[136] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[160] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[184] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[208] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[232] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[256] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[280] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[304] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[328] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[352] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[376] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[400] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[424] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[448] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[472] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[496] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[520] = (T)(img)(_n5##x,_n10##y,z,c)), \
|
|
(I[544] = (T)(img)(_n5##x,_n11##y,z,c)), \
|
|
(I[568] = (T)(img)(_n5##x,_n12##y,z,c)), \
|
|
(I[17] = (T)(img)(_n6##x,_p11##y,z,c)), \
|
|
(I[41] = (T)(img)(_n6##x,_p10##y,z,c)), \
|
|
(I[65] = (T)(img)(_n6##x,_p9##y,z,c)), \
|
|
(I[89] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[113] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[137] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[161] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[185] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[209] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[233] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[257] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[281] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[305] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[329] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[353] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[377] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[401] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[425] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[449] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[473] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[497] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[521] = (T)(img)(_n6##x,_n10##y,z,c)), \
|
|
(I[545] = (T)(img)(_n6##x,_n11##y,z,c)), \
|
|
(I[569] = (T)(img)(_n6##x,_n12##y,z,c)), \
|
|
(I[18] = (T)(img)(_n7##x,_p11##y,z,c)), \
|
|
(I[42] = (T)(img)(_n7##x,_p10##y,z,c)), \
|
|
(I[66] = (T)(img)(_n7##x,_p9##y,z,c)), \
|
|
(I[90] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[114] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[138] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[162] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[186] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[210] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[234] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[258] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[282] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[306] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[330] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[354] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[378] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[402] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[426] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[450] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[474] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[498] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[522] = (T)(img)(_n7##x,_n10##y,z,c)), \
|
|
(I[546] = (T)(img)(_n7##x,_n11##y,z,c)), \
|
|
(I[570] = (T)(img)(_n7##x,_n12##y,z,c)), \
|
|
(I[19] = (T)(img)(_n8##x,_p11##y,z,c)), \
|
|
(I[43] = (T)(img)(_n8##x,_p10##y,z,c)), \
|
|
(I[67] = (T)(img)(_n8##x,_p9##y,z,c)), \
|
|
(I[91] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[115] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[139] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[163] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[187] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[211] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[235] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[259] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[283] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[307] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[331] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[355] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[379] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[403] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[427] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[451] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[475] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[499] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
(I[523] = (T)(img)(_n8##x,_n10##y,z,c)), \
|
|
(I[547] = (T)(img)(_n8##x,_n11##y,z,c)), \
|
|
(I[571] = (T)(img)(_n8##x,_n12##y,z,c)), \
|
|
(I[20] = (T)(img)(_n9##x,_p11##y,z,c)), \
|
|
(I[44] = (T)(img)(_n9##x,_p10##y,z,c)), \
|
|
(I[68] = (T)(img)(_n9##x,_p9##y,z,c)), \
|
|
(I[92] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[116] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[140] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[164] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[188] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[212] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[236] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[260] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[284] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[308] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[332] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[356] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[380] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[404] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[428] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[452] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[476] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[500] = (T)(img)(_n9##x,_n9##y,z,c)), \
|
|
(I[524] = (T)(img)(_n9##x,_n10##y,z,c)), \
|
|
(I[548] = (T)(img)(_n9##x,_n11##y,z,c)), \
|
|
(I[572] = (T)(img)(_n9##x,_n12##y,z,c)), \
|
|
(I[21] = (T)(img)(_n10##x,_p11##y,z,c)), \
|
|
(I[45] = (T)(img)(_n10##x,_p10##y,z,c)), \
|
|
(I[69] = (T)(img)(_n10##x,_p9##y,z,c)), \
|
|
(I[93] = (T)(img)(_n10##x,_p8##y,z,c)), \
|
|
(I[117] = (T)(img)(_n10##x,_p7##y,z,c)), \
|
|
(I[141] = (T)(img)(_n10##x,_p6##y,z,c)), \
|
|
(I[165] = (T)(img)(_n10##x,_p5##y,z,c)), \
|
|
(I[189] = (T)(img)(_n10##x,_p4##y,z,c)), \
|
|
(I[213] = (T)(img)(_n10##x,_p3##y,z,c)), \
|
|
(I[237] = (T)(img)(_n10##x,_p2##y,z,c)), \
|
|
(I[261] = (T)(img)(_n10##x,_p1##y,z,c)), \
|
|
(I[285] = (T)(img)(_n10##x,y,z,c)), \
|
|
(I[309] = (T)(img)(_n10##x,_n1##y,z,c)), \
|
|
(I[333] = (T)(img)(_n10##x,_n2##y,z,c)), \
|
|
(I[357] = (T)(img)(_n10##x,_n3##y,z,c)), \
|
|
(I[381] = (T)(img)(_n10##x,_n4##y,z,c)), \
|
|
(I[405] = (T)(img)(_n10##x,_n5##y,z,c)), \
|
|
(I[429] = (T)(img)(_n10##x,_n6##y,z,c)), \
|
|
(I[453] = (T)(img)(_n10##x,_n7##y,z,c)), \
|
|
(I[477] = (T)(img)(_n10##x,_n8##y,z,c)), \
|
|
(I[501] = (T)(img)(_n10##x,_n9##y,z,c)), \
|
|
(I[525] = (T)(img)(_n10##x,_n10##y,z,c)), \
|
|
(I[549] = (T)(img)(_n10##x,_n11##y,z,c)), \
|
|
(I[573] = (T)(img)(_n10##x,_n12##y,z,c)), \
|
|
(I[22] = (T)(img)(_n11##x,_p11##y,z,c)), \
|
|
(I[46] = (T)(img)(_n11##x,_p10##y,z,c)), \
|
|
(I[70] = (T)(img)(_n11##x,_p9##y,z,c)), \
|
|
(I[94] = (T)(img)(_n11##x,_p8##y,z,c)), \
|
|
(I[118] = (T)(img)(_n11##x,_p7##y,z,c)), \
|
|
(I[142] = (T)(img)(_n11##x,_p6##y,z,c)), \
|
|
(I[166] = (T)(img)(_n11##x,_p5##y,z,c)), \
|
|
(I[190] = (T)(img)(_n11##x,_p4##y,z,c)), \
|
|
(I[214] = (T)(img)(_n11##x,_p3##y,z,c)), \
|
|
(I[238] = (T)(img)(_n11##x,_p2##y,z,c)), \
|
|
(I[262] = (T)(img)(_n11##x,_p1##y,z,c)), \
|
|
(I[286] = (T)(img)(_n11##x,y,z,c)), \
|
|
(I[310] = (T)(img)(_n11##x,_n1##y,z,c)), \
|
|
(I[334] = (T)(img)(_n11##x,_n2##y,z,c)), \
|
|
(I[358] = (T)(img)(_n11##x,_n3##y,z,c)), \
|
|
(I[382] = (T)(img)(_n11##x,_n4##y,z,c)), \
|
|
(I[406] = (T)(img)(_n11##x,_n5##y,z,c)), \
|
|
(I[430] = (T)(img)(_n11##x,_n6##y,z,c)), \
|
|
(I[454] = (T)(img)(_n11##x,_n7##y,z,c)), \
|
|
(I[478] = (T)(img)(_n11##x,_n8##y,z,c)), \
|
|
(I[502] = (T)(img)(_n11##x,_n9##y,z,c)), \
|
|
(I[526] = (T)(img)(_n11##x,_n10##y,z,c)), \
|
|
(I[550] = (T)(img)(_n11##x,_n11##y,z,c)), \
|
|
(I[574] = (T)(img)(_n11##x,_n12##y,z,c)), \
|
|
x + 12>=(img).width()?(img).width() - 1:x + 12); \
|
|
x<=(int)(x1) && ((_n12##x<(img).width() && ( \
|
|
(I[23] = (T)(img)(_n12##x,_p11##y,z,c)), \
|
|
(I[47] = (T)(img)(_n12##x,_p10##y,z,c)), \
|
|
(I[71] = (T)(img)(_n12##x,_p9##y,z,c)), \
|
|
(I[95] = (T)(img)(_n12##x,_p8##y,z,c)), \
|
|
(I[119] = (T)(img)(_n12##x,_p7##y,z,c)), \
|
|
(I[143] = (T)(img)(_n12##x,_p6##y,z,c)), \
|
|
(I[167] = (T)(img)(_n12##x,_p5##y,z,c)), \
|
|
(I[191] = (T)(img)(_n12##x,_p4##y,z,c)), \
|
|
(I[215] = (T)(img)(_n12##x,_p3##y,z,c)), \
|
|
(I[239] = (T)(img)(_n12##x,_p2##y,z,c)), \
|
|
(I[263] = (T)(img)(_n12##x,_p1##y,z,c)), \
|
|
(I[287] = (T)(img)(_n12##x,y,z,c)), \
|
|
(I[311] = (T)(img)(_n12##x,_n1##y,z,c)), \
|
|
(I[335] = (T)(img)(_n12##x,_n2##y,z,c)), \
|
|
(I[359] = (T)(img)(_n12##x,_n3##y,z,c)), \
|
|
(I[383] = (T)(img)(_n12##x,_n4##y,z,c)), \
|
|
(I[407] = (T)(img)(_n12##x,_n5##y,z,c)), \
|
|
(I[431] = (T)(img)(_n12##x,_n6##y,z,c)), \
|
|
(I[455] = (T)(img)(_n12##x,_n7##y,z,c)), \
|
|
(I[479] = (T)(img)(_n12##x,_n8##y,z,c)), \
|
|
(I[503] = (T)(img)(_n12##x,_n9##y,z,c)), \
|
|
(I[527] = (T)(img)(_n12##x,_n10##y,z,c)), \
|
|
(I[551] = (T)(img)(_n12##x,_n11##y,z,c)), \
|
|
(I[575] = (T)(img)(_n12##x,_n12##y,z,c)),1)) || \
|
|
_n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \
|
|
I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
|
|
I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
|
|
I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
|
|
I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
|
|
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
|
|
I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
|
|
I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \
|
|
I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \
|
|
I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \
|
|
I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], \
|
|
I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], \
|
|
I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], \
|
|
I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \
|
|
I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], \
|
|
I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], \
|
|
I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], \
|
|
I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], \
|
|
I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], \
|
|
I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], \
|
|
I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], \
|
|
I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], \
|
|
I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], \
|
|
I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], \
|
|
_p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x)
|
|
|
|
#define cimg_get24x24(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p11##x,_p11##y,z,c), I[1] = (T)(img)(_p10##x,_p11##y,z,c), I[2] = (T)(img)(_p9##x,_p11##y,z,c), I[3] = (T)(img)(_p8##x,_p11##y,z,c), I[4] = (T)(img)(_p7##x,_p11##y,z,c), I[5] = (T)(img)(_p6##x,_p11##y,z,c), I[6] = (T)(img)(_p5##x,_p11##y,z,c), I[7] = (T)(img)(_p4##x,_p11##y,z,c), I[8] = (T)(img)(_p3##x,_p11##y,z,c), I[9] = (T)(img)(_p2##x,_p11##y,z,c), I[10] = (T)(img)(_p1##x,_p11##y,z,c), I[11] = (T)(img)(x,_p11##y,z,c), I[12] = (T)(img)(_n1##x,_p11##y,z,c), I[13] = (T)(img)(_n2##x,_p11##y,z,c), I[14] = (T)(img)(_n3##x,_p11##y,z,c), I[15] = (T)(img)(_n4##x,_p11##y,z,c), I[16] = (T)(img)(_n5##x,_p11##y,z,c), I[17] = (T)(img)(_n6##x,_p11##y,z,c), I[18] = (T)(img)(_n7##x,_p11##y,z,c), I[19] = (T)(img)(_n8##x,_p11##y,z,c), I[20] = (T)(img)(_n9##x,_p11##y,z,c), I[21] = (T)(img)(_n10##x,_p11##y,z,c), I[22] = (T)(img)(_n11##x,_p11##y,z,c), I[23] = (T)(img)(_n12##x,_p11##y,z,c), \
|
|
I[24] = (T)(img)(_p11##x,_p10##y,z,c), I[25] = (T)(img)(_p10##x,_p10##y,z,c), I[26] = (T)(img)(_p9##x,_p10##y,z,c), I[27] = (T)(img)(_p8##x,_p10##y,z,c), I[28] = (T)(img)(_p7##x,_p10##y,z,c), I[29] = (T)(img)(_p6##x,_p10##y,z,c), I[30] = (T)(img)(_p5##x,_p10##y,z,c), I[31] = (T)(img)(_p4##x,_p10##y,z,c), I[32] = (T)(img)(_p3##x,_p10##y,z,c), I[33] = (T)(img)(_p2##x,_p10##y,z,c), I[34] = (T)(img)(_p1##x,_p10##y,z,c), I[35] = (T)(img)(x,_p10##y,z,c), I[36] = (T)(img)(_n1##x,_p10##y,z,c), I[37] = (T)(img)(_n2##x,_p10##y,z,c), I[38] = (T)(img)(_n3##x,_p10##y,z,c), I[39] = (T)(img)(_n4##x,_p10##y,z,c), I[40] = (T)(img)(_n5##x,_p10##y,z,c), I[41] = (T)(img)(_n6##x,_p10##y,z,c), I[42] = (T)(img)(_n7##x,_p10##y,z,c), I[43] = (T)(img)(_n8##x,_p10##y,z,c), I[44] = (T)(img)(_n9##x,_p10##y,z,c), I[45] = (T)(img)(_n10##x,_p10##y,z,c), I[46] = (T)(img)(_n11##x,_p10##y,z,c), I[47] = (T)(img)(_n12##x,_p10##y,z,c), \
|
|
I[48] = (T)(img)(_p11##x,_p9##y,z,c), I[49] = (T)(img)(_p10##x,_p9##y,z,c), I[50] = (T)(img)(_p9##x,_p9##y,z,c), I[51] = (T)(img)(_p8##x,_p9##y,z,c), I[52] = (T)(img)(_p7##x,_p9##y,z,c), I[53] = (T)(img)(_p6##x,_p9##y,z,c), I[54] = (T)(img)(_p5##x,_p9##y,z,c), I[55] = (T)(img)(_p4##x,_p9##y,z,c), I[56] = (T)(img)(_p3##x,_p9##y,z,c), I[57] = (T)(img)(_p2##x,_p9##y,z,c), I[58] = (T)(img)(_p1##x,_p9##y,z,c), I[59] = (T)(img)(x,_p9##y,z,c), I[60] = (T)(img)(_n1##x,_p9##y,z,c), I[61] = (T)(img)(_n2##x,_p9##y,z,c), I[62] = (T)(img)(_n3##x,_p9##y,z,c), I[63] = (T)(img)(_n4##x,_p9##y,z,c), I[64] = (T)(img)(_n5##x,_p9##y,z,c), I[65] = (T)(img)(_n6##x,_p9##y,z,c), I[66] = (T)(img)(_n7##x,_p9##y,z,c), I[67] = (T)(img)(_n8##x,_p9##y,z,c), I[68] = (T)(img)(_n9##x,_p9##y,z,c), I[69] = (T)(img)(_n10##x,_p9##y,z,c), I[70] = (T)(img)(_n11##x,_p9##y,z,c), I[71] = (T)(img)(_n12##x,_p9##y,z,c), \
|
|
I[72] = (T)(img)(_p11##x,_p8##y,z,c), I[73] = (T)(img)(_p10##x,_p8##y,z,c), I[74] = (T)(img)(_p9##x,_p8##y,z,c), I[75] = (T)(img)(_p8##x,_p8##y,z,c), I[76] = (T)(img)(_p7##x,_p8##y,z,c), I[77] = (T)(img)(_p6##x,_p8##y,z,c), I[78] = (T)(img)(_p5##x,_p8##y,z,c), I[79] = (T)(img)(_p4##x,_p8##y,z,c), I[80] = (T)(img)(_p3##x,_p8##y,z,c), I[81] = (T)(img)(_p2##x,_p8##y,z,c), I[82] = (T)(img)(_p1##x,_p8##y,z,c), I[83] = (T)(img)(x,_p8##y,z,c), I[84] = (T)(img)(_n1##x,_p8##y,z,c), I[85] = (T)(img)(_n2##x,_p8##y,z,c), I[86] = (T)(img)(_n3##x,_p8##y,z,c), I[87] = (T)(img)(_n4##x,_p8##y,z,c), I[88] = (T)(img)(_n5##x,_p8##y,z,c), I[89] = (T)(img)(_n6##x,_p8##y,z,c), I[90] = (T)(img)(_n7##x,_p8##y,z,c), I[91] = (T)(img)(_n8##x,_p8##y,z,c), I[92] = (T)(img)(_n9##x,_p8##y,z,c), I[93] = (T)(img)(_n10##x,_p8##y,z,c), I[94] = (T)(img)(_n11##x,_p8##y,z,c), I[95] = (T)(img)(_n12##x,_p8##y,z,c), \
|
|
I[96] = (T)(img)(_p11##x,_p7##y,z,c), I[97] = (T)(img)(_p10##x,_p7##y,z,c), I[98] = (T)(img)(_p9##x,_p7##y,z,c), I[99] = (T)(img)(_p8##x,_p7##y,z,c), I[100] = (T)(img)(_p7##x,_p7##y,z,c), I[101] = (T)(img)(_p6##x,_p7##y,z,c), I[102] = (T)(img)(_p5##x,_p7##y,z,c), I[103] = (T)(img)(_p4##x,_p7##y,z,c), I[104] = (T)(img)(_p3##x,_p7##y,z,c), I[105] = (T)(img)(_p2##x,_p7##y,z,c), I[106] = (T)(img)(_p1##x,_p7##y,z,c), I[107] = (T)(img)(x,_p7##y,z,c), I[108] = (T)(img)(_n1##x,_p7##y,z,c), I[109] = (T)(img)(_n2##x,_p7##y,z,c), I[110] = (T)(img)(_n3##x,_p7##y,z,c), I[111] = (T)(img)(_n4##x,_p7##y,z,c), I[112] = (T)(img)(_n5##x,_p7##y,z,c), I[113] = (T)(img)(_n6##x,_p7##y,z,c), I[114] = (T)(img)(_n7##x,_p7##y,z,c), I[115] = (T)(img)(_n8##x,_p7##y,z,c), I[116] = (T)(img)(_n9##x,_p7##y,z,c), I[117] = (T)(img)(_n10##x,_p7##y,z,c), I[118] = (T)(img)(_n11##x,_p7##y,z,c), I[119] = (T)(img)(_n12##x,_p7##y,z,c), \
|
|
I[120] = (T)(img)(_p11##x,_p6##y,z,c), I[121] = (T)(img)(_p10##x,_p6##y,z,c), I[122] = (T)(img)(_p9##x,_p6##y,z,c), I[123] = (T)(img)(_p8##x,_p6##y,z,c), I[124] = (T)(img)(_p7##x,_p6##y,z,c), I[125] = (T)(img)(_p6##x,_p6##y,z,c), I[126] = (T)(img)(_p5##x,_p6##y,z,c), I[127] = (T)(img)(_p4##x,_p6##y,z,c), I[128] = (T)(img)(_p3##x,_p6##y,z,c), I[129] = (T)(img)(_p2##x,_p6##y,z,c), I[130] = (T)(img)(_p1##x,_p6##y,z,c), I[131] = (T)(img)(x,_p6##y,z,c), I[132] = (T)(img)(_n1##x,_p6##y,z,c), I[133] = (T)(img)(_n2##x,_p6##y,z,c), I[134] = (T)(img)(_n3##x,_p6##y,z,c), I[135] = (T)(img)(_n4##x,_p6##y,z,c), I[136] = (T)(img)(_n5##x,_p6##y,z,c), I[137] = (T)(img)(_n6##x,_p6##y,z,c), I[138] = (T)(img)(_n7##x,_p6##y,z,c), I[139] = (T)(img)(_n8##x,_p6##y,z,c), I[140] = (T)(img)(_n9##x,_p6##y,z,c), I[141] = (T)(img)(_n10##x,_p6##y,z,c), I[142] = (T)(img)(_n11##x,_p6##y,z,c), I[143] = (T)(img)(_n12##x,_p6##y,z,c), \
|
|
I[144] = (T)(img)(_p11##x,_p5##y,z,c), I[145] = (T)(img)(_p10##x,_p5##y,z,c), I[146] = (T)(img)(_p9##x,_p5##y,z,c), I[147] = (T)(img)(_p8##x,_p5##y,z,c), I[148] = (T)(img)(_p7##x,_p5##y,z,c), I[149] = (T)(img)(_p6##x,_p5##y,z,c), I[150] = (T)(img)(_p5##x,_p5##y,z,c), I[151] = (T)(img)(_p4##x,_p5##y,z,c), I[152] = (T)(img)(_p3##x,_p5##y,z,c), I[153] = (T)(img)(_p2##x,_p5##y,z,c), I[154] = (T)(img)(_p1##x,_p5##y,z,c), I[155] = (T)(img)(x,_p5##y,z,c), I[156] = (T)(img)(_n1##x,_p5##y,z,c), I[157] = (T)(img)(_n2##x,_p5##y,z,c), I[158] = (T)(img)(_n3##x,_p5##y,z,c), I[159] = (T)(img)(_n4##x,_p5##y,z,c), I[160] = (T)(img)(_n5##x,_p5##y,z,c), I[161] = (T)(img)(_n6##x,_p5##y,z,c), I[162] = (T)(img)(_n7##x,_p5##y,z,c), I[163] = (T)(img)(_n8##x,_p5##y,z,c), I[164] = (T)(img)(_n9##x,_p5##y,z,c), I[165] = (T)(img)(_n10##x,_p5##y,z,c), I[166] = (T)(img)(_n11##x,_p5##y,z,c), I[167] = (T)(img)(_n12##x,_p5##y,z,c), \
|
|
I[168] = (T)(img)(_p11##x,_p4##y,z,c), I[169] = (T)(img)(_p10##x,_p4##y,z,c), I[170] = (T)(img)(_p9##x,_p4##y,z,c), I[171] = (T)(img)(_p8##x,_p4##y,z,c), I[172] = (T)(img)(_p7##x,_p4##y,z,c), I[173] = (T)(img)(_p6##x,_p4##y,z,c), I[174] = (T)(img)(_p5##x,_p4##y,z,c), I[175] = (T)(img)(_p4##x,_p4##y,z,c), I[176] = (T)(img)(_p3##x,_p4##y,z,c), I[177] = (T)(img)(_p2##x,_p4##y,z,c), I[178] = (T)(img)(_p1##x,_p4##y,z,c), I[179] = (T)(img)(x,_p4##y,z,c), I[180] = (T)(img)(_n1##x,_p4##y,z,c), I[181] = (T)(img)(_n2##x,_p4##y,z,c), I[182] = (T)(img)(_n3##x,_p4##y,z,c), I[183] = (T)(img)(_n4##x,_p4##y,z,c), I[184] = (T)(img)(_n5##x,_p4##y,z,c), I[185] = (T)(img)(_n6##x,_p4##y,z,c), I[186] = (T)(img)(_n7##x,_p4##y,z,c), I[187] = (T)(img)(_n8##x,_p4##y,z,c), I[188] = (T)(img)(_n9##x,_p4##y,z,c), I[189] = (T)(img)(_n10##x,_p4##y,z,c), I[190] = (T)(img)(_n11##x,_p4##y,z,c), I[191] = (T)(img)(_n12##x,_p4##y,z,c), \
|
|
I[192] = (T)(img)(_p11##x,_p3##y,z,c), I[193] = (T)(img)(_p10##x,_p3##y,z,c), I[194] = (T)(img)(_p9##x,_p3##y,z,c), I[195] = (T)(img)(_p8##x,_p3##y,z,c), I[196] = (T)(img)(_p7##x,_p3##y,z,c), I[197] = (T)(img)(_p6##x,_p3##y,z,c), I[198] = (T)(img)(_p5##x,_p3##y,z,c), I[199] = (T)(img)(_p4##x,_p3##y,z,c), I[200] = (T)(img)(_p3##x,_p3##y,z,c), I[201] = (T)(img)(_p2##x,_p3##y,z,c), I[202] = (T)(img)(_p1##x,_p3##y,z,c), I[203] = (T)(img)(x,_p3##y,z,c), I[204] = (T)(img)(_n1##x,_p3##y,z,c), I[205] = (T)(img)(_n2##x,_p3##y,z,c), I[206] = (T)(img)(_n3##x,_p3##y,z,c), I[207] = (T)(img)(_n4##x,_p3##y,z,c), I[208] = (T)(img)(_n5##x,_p3##y,z,c), I[209] = (T)(img)(_n6##x,_p3##y,z,c), I[210] = (T)(img)(_n7##x,_p3##y,z,c), I[211] = (T)(img)(_n8##x,_p3##y,z,c), I[212] = (T)(img)(_n9##x,_p3##y,z,c), I[213] = (T)(img)(_n10##x,_p3##y,z,c), I[214] = (T)(img)(_n11##x,_p3##y,z,c), I[215] = (T)(img)(_n12##x,_p3##y,z,c), \
|
|
I[216] = (T)(img)(_p11##x,_p2##y,z,c), I[217] = (T)(img)(_p10##x,_p2##y,z,c), I[218] = (T)(img)(_p9##x,_p2##y,z,c), I[219] = (T)(img)(_p8##x,_p2##y,z,c), I[220] = (T)(img)(_p7##x,_p2##y,z,c), I[221] = (T)(img)(_p6##x,_p2##y,z,c), I[222] = (T)(img)(_p5##x,_p2##y,z,c), I[223] = (T)(img)(_p4##x,_p2##y,z,c), I[224] = (T)(img)(_p3##x,_p2##y,z,c), I[225] = (T)(img)(_p2##x,_p2##y,z,c), I[226] = (T)(img)(_p1##x,_p2##y,z,c), I[227] = (T)(img)(x,_p2##y,z,c), I[228] = (T)(img)(_n1##x,_p2##y,z,c), I[229] = (T)(img)(_n2##x,_p2##y,z,c), I[230] = (T)(img)(_n3##x,_p2##y,z,c), I[231] = (T)(img)(_n4##x,_p2##y,z,c), I[232] = (T)(img)(_n5##x,_p2##y,z,c), I[233] = (T)(img)(_n6##x,_p2##y,z,c), I[234] = (T)(img)(_n7##x,_p2##y,z,c), I[235] = (T)(img)(_n8##x,_p2##y,z,c), I[236] = (T)(img)(_n9##x,_p2##y,z,c), I[237] = (T)(img)(_n10##x,_p2##y,z,c), I[238] = (T)(img)(_n11##x,_p2##y,z,c), I[239] = (T)(img)(_n12##x,_p2##y,z,c), \
|
|
I[240] = (T)(img)(_p11##x,_p1##y,z,c), I[241] = (T)(img)(_p10##x,_p1##y,z,c), I[242] = (T)(img)(_p9##x,_p1##y,z,c), I[243] = (T)(img)(_p8##x,_p1##y,z,c), I[244] = (T)(img)(_p7##x,_p1##y,z,c), I[245] = (T)(img)(_p6##x,_p1##y,z,c), I[246] = (T)(img)(_p5##x,_p1##y,z,c), I[247] = (T)(img)(_p4##x,_p1##y,z,c), I[248] = (T)(img)(_p3##x,_p1##y,z,c), I[249] = (T)(img)(_p2##x,_p1##y,z,c), I[250] = (T)(img)(_p1##x,_p1##y,z,c), I[251] = (T)(img)(x,_p1##y,z,c), I[252] = (T)(img)(_n1##x,_p1##y,z,c), I[253] = (T)(img)(_n2##x,_p1##y,z,c), I[254] = (T)(img)(_n3##x,_p1##y,z,c), I[255] = (T)(img)(_n4##x,_p1##y,z,c), I[256] = (T)(img)(_n5##x,_p1##y,z,c), I[257] = (T)(img)(_n6##x,_p1##y,z,c), I[258] = (T)(img)(_n7##x,_p1##y,z,c), I[259] = (T)(img)(_n8##x,_p1##y,z,c), I[260] = (T)(img)(_n9##x,_p1##y,z,c), I[261] = (T)(img)(_n10##x,_p1##y,z,c), I[262] = (T)(img)(_n11##x,_p1##y,z,c), I[263] = (T)(img)(_n12##x,_p1##y,z,c), \
|
|
I[264] = (T)(img)(_p11##x,y,z,c), I[265] = (T)(img)(_p10##x,y,z,c), I[266] = (T)(img)(_p9##x,y,z,c), I[267] = (T)(img)(_p8##x,y,z,c), I[268] = (T)(img)(_p7##x,y,z,c), I[269] = (T)(img)(_p6##x,y,z,c), I[270] = (T)(img)(_p5##x,y,z,c), I[271] = (T)(img)(_p4##x,y,z,c), I[272] = (T)(img)(_p3##x,y,z,c), I[273] = (T)(img)(_p2##x,y,z,c), I[274] = (T)(img)(_p1##x,y,z,c), I[275] = (T)(img)(x,y,z,c), I[276] = (T)(img)(_n1##x,y,z,c), I[277] = (T)(img)(_n2##x,y,z,c), I[278] = (T)(img)(_n3##x,y,z,c), I[279] = (T)(img)(_n4##x,y,z,c), I[280] = (T)(img)(_n5##x,y,z,c), I[281] = (T)(img)(_n6##x,y,z,c), I[282] = (T)(img)(_n7##x,y,z,c), I[283] = (T)(img)(_n8##x,y,z,c), I[284] = (T)(img)(_n9##x,y,z,c), I[285] = (T)(img)(_n10##x,y,z,c), I[286] = (T)(img)(_n11##x,y,z,c), I[287] = (T)(img)(_n12##x,y,z,c), \
|
|
I[288] = (T)(img)(_p11##x,_n1##y,z,c), I[289] = (T)(img)(_p10##x,_n1##y,z,c), I[290] = (T)(img)(_p9##x,_n1##y,z,c), I[291] = (T)(img)(_p8##x,_n1##y,z,c), I[292] = (T)(img)(_p7##x,_n1##y,z,c), I[293] = (T)(img)(_p6##x,_n1##y,z,c), I[294] = (T)(img)(_p5##x,_n1##y,z,c), I[295] = (T)(img)(_p4##x,_n1##y,z,c), I[296] = (T)(img)(_p3##x,_n1##y,z,c), I[297] = (T)(img)(_p2##x,_n1##y,z,c), I[298] = (T)(img)(_p1##x,_n1##y,z,c), I[299] = (T)(img)(x,_n1##y,z,c), I[300] = (T)(img)(_n1##x,_n1##y,z,c), I[301] = (T)(img)(_n2##x,_n1##y,z,c), I[302] = (T)(img)(_n3##x,_n1##y,z,c), I[303] = (T)(img)(_n4##x,_n1##y,z,c), I[304] = (T)(img)(_n5##x,_n1##y,z,c), I[305] = (T)(img)(_n6##x,_n1##y,z,c), I[306] = (T)(img)(_n7##x,_n1##y,z,c), I[307] = (T)(img)(_n8##x,_n1##y,z,c), I[308] = (T)(img)(_n9##x,_n1##y,z,c), I[309] = (T)(img)(_n10##x,_n1##y,z,c), I[310] = (T)(img)(_n11##x,_n1##y,z,c), I[311] = (T)(img)(_n12##x,_n1##y,z,c), \
|
|
I[312] = (T)(img)(_p11##x,_n2##y,z,c), I[313] = (T)(img)(_p10##x,_n2##y,z,c), I[314] = (T)(img)(_p9##x,_n2##y,z,c), I[315] = (T)(img)(_p8##x,_n2##y,z,c), I[316] = (T)(img)(_p7##x,_n2##y,z,c), I[317] = (T)(img)(_p6##x,_n2##y,z,c), I[318] = (T)(img)(_p5##x,_n2##y,z,c), I[319] = (T)(img)(_p4##x,_n2##y,z,c), I[320] = (T)(img)(_p3##x,_n2##y,z,c), I[321] = (T)(img)(_p2##x,_n2##y,z,c), I[322] = (T)(img)(_p1##x,_n2##y,z,c), I[323] = (T)(img)(x,_n2##y,z,c), I[324] = (T)(img)(_n1##x,_n2##y,z,c), I[325] = (T)(img)(_n2##x,_n2##y,z,c), I[326] = (T)(img)(_n3##x,_n2##y,z,c), I[327] = (T)(img)(_n4##x,_n2##y,z,c), I[328] = (T)(img)(_n5##x,_n2##y,z,c), I[329] = (T)(img)(_n6##x,_n2##y,z,c), I[330] = (T)(img)(_n7##x,_n2##y,z,c), I[331] = (T)(img)(_n8##x,_n2##y,z,c), I[332] = (T)(img)(_n9##x,_n2##y,z,c), I[333] = (T)(img)(_n10##x,_n2##y,z,c), I[334] = (T)(img)(_n11##x,_n2##y,z,c), I[335] = (T)(img)(_n12##x,_n2##y,z,c), \
|
|
I[336] = (T)(img)(_p11##x,_n3##y,z,c), I[337] = (T)(img)(_p10##x,_n3##y,z,c), I[338] = (T)(img)(_p9##x,_n3##y,z,c), I[339] = (T)(img)(_p8##x,_n3##y,z,c), I[340] = (T)(img)(_p7##x,_n3##y,z,c), I[341] = (T)(img)(_p6##x,_n3##y,z,c), I[342] = (T)(img)(_p5##x,_n3##y,z,c), I[343] = (T)(img)(_p4##x,_n3##y,z,c), I[344] = (T)(img)(_p3##x,_n3##y,z,c), I[345] = (T)(img)(_p2##x,_n3##y,z,c), I[346] = (T)(img)(_p1##x,_n3##y,z,c), I[347] = (T)(img)(x,_n3##y,z,c), I[348] = (T)(img)(_n1##x,_n3##y,z,c), I[349] = (T)(img)(_n2##x,_n3##y,z,c), I[350] = (T)(img)(_n3##x,_n3##y,z,c), I[351] = (T)(img)(_n4##x,_n3##y,z,c), I[352] = (T)(img)(_n5##x,_n3##y,z,c), I[353] = (T)(img)(_n6##x,_n3##y,z,c), I[354] = (T)(img)(_n7##x,_n3##y,z,c), I[355] = (T)(img)(_n8##x,_n3##y,z,c), I[356] = (T)(img)(_n9##x,_n3##y,z,c), I[357] = (T)(img)(_n10##x,_n3##y,z,c), I[358] = (T)(img)(_n11##x,_n3##y,z,c), I[359] = (T)(img)(_n12##x,_n3##y,z,c), \
|
|
I[360] = (T)(img)(_p11##x,_n4##y,z,c), I[361] = (T)(img)(_p10##x,_n4##y,z,c), I[362] = (T)(img)(_p9##x,_n4##y,z,c), I[363] = (T)(img)(_p8##x,_n4##y,z,c), I[364] = (T)(img)(_p7##x,_n4##y,z,c), I[365] = (T)(img)(_p6##x,_n4##y,z,c), I[366] = (T)(img)(_p5##x,_n4##y,z,c), I[367] = (T)(img)(_p4##x,_n4##y,z,c), I[368] = (T)(img)(_p3##x,_n4##y,z,c), I[369] = (T)(img)(_p2##x,_n4##y,z,c), I[370] = (T)(img)(_p1##x,_n4##y,z,c), I[371] = (T)(img)(x,_n4##y,z,c), I[372] = (T)(img)(_n1##x,_n4##y,z,c), I[373] = (T)(img)(_n2##x,_n4##y,z,c), I[374] = (T)(img)(_n3##x,_n4##y,z,c), I[375] = (T)(img)(_n4##x,_n4##y,z,c), I[376] = (T)(img)(_n5##x,_n4##y,z,c), I[377] = (T)(img)(_n6##x,_n4##y,z,c), I[378] = (T)(img)(_n7##x,_n4##y,z,c), I[379] = (T)(img)(_n8##x,_n4##y,z,c), I[380] = (T)(img)(_n9##x,_n4##y,z,c), I[381] = (T)(img)(_n10##x,_n4##y,z,c), I[382] = (T)(img)(_n11##x,_n4##y,z,c), I[383] = (T)(img)(_n12##x,_n4##y,z,c), \
|
|
I[384] = (T)(img)(_p11##x,_n5##y,z,c), I[385] = (T)(img)(_p10##x,_n5##y,z,c), I[386] = (T)(img)(_p9##x,_n5##y,z,c), I[387] = (T)(img)(_p8##x,_n5##y,z,c), I[388] = (T)(img)(_p7##x,_n5##y,z,c), I[389] = (T)(img)(_p6##x,_n5##y,z,c), I[390] = (T)(img)(_p5##x,_n5##y,z,c), I[391] = (T)(img)(_p4##x,_n5##y,z,c), I[392] = (T)(img)(_p3##x,_n5##y,z,c), I[393] = (T)(img)(_p2##x,_n5##y,z,c), I[394] = (T)(img)(_p1##x,_n5##y,z,c), I[395] = (T)(img)(x,_n5##y,z,c), I[396] = (T)(img)(_n1##x,_n5##y,z,c), I[397] = (T)(img)(_n2##x,_n5##y,z,c), I[398] = (T)(img)(_n3##x,_n5##y,z,c), I[399] = (T)(img)(_n4##x,_n5##y,z,c), I[400] = (T)(img)(_n5##x,_n5##y,z,c), I[401] = (T)(img)(_n6##x,_n5##y,z,c), I[402] = (T)(img)(_n7##x,_n5##y,z,c), I[403] = (T)(img)(_n8##x,_n5##y,z,c), I[404] = (T)(img)(_n9##x,_n5##y,z,c), I[405] = (T)(img)(_n10##x,_n5##y,z,c), I[406] = (T)(img)(_n11##x,_n5##y,z,c), I[407] = (T)(img)(_n12##x,_n5##y,z,c), \
|
|
I[408] = (T)(img)(_p11##x,_n6##y,z,c), I[409] = (T)(img)(_p10##x,_n6##y,z,c), I[410] = (T)(img)(_p9##x,_n6##y,z,c), I[411] = (T)(img)(_p8##x,_n6##y,z,c), I[412] = (T)(img)(_p7##x,_n6##y,z,c), I[413] = (T)(img)(_p6##x,_n6##y,z,c), I[414] = (T)(img)(_p5##x,_n6##y,z,c), I[415] = (T)(img)(_p4##x,_n6##y,z,c), I[416] = (T)(img)(_p3##x,_n6##y,z,c), I[417] = (T)(img)(_p2##x,_n6##y,z,c), I[418] = (T)(img)(_p1##x,_n6##y,z,c), I[419] = (T)(img)(x,_n6##y,z,c), I[420] = (T)(img)(_n1##x,_n6##y,z,c), I[421] = (T)(img)(_n2##x,_n6##y,z,c), I[422] = (T)(img)(_n3##x,_n6##y,z,c), I[423] = (T)(img)(_n4##x,_n6##y,z,c), I[424] = (T)(img)(_n5##x,_n6##y,z,c), I[425] = (T)(img)(_n6##x,_n6##y,z,c), I[426] = (T)(img)(_n7##x,_n6##y,z,c), I[427] = (T)(img)(_n8##x,_n6##y,z,c), I[428] = (T)(img)(_n9##x,_n6##y,z,c), I[429] = (T)(img)(_n10##x,_n6##y,z,c), I[430] = (T)(img)(_n11##x,_n6##y,z,c), I[431] = (T)(img)(_n12##x,_n6##y,z,c), \
|
|
I[432] = (T)(img)(_p11##x,_n7##y,z,c), I[433] = (T)(img)(_p10##x,_n7##y,z,c), I[434] = (T)(img)(_p9##x,_n7##y,z,c), I[435] = (T)(img)(_p8##x,_n7##y,z,c), I[436] = (T)(img)(_p7##x,_n7##y,z,c), I[437] = (T)(img)(_p6##x,_n7##y,z,c), I[438] = (T)(img)(_p5##x,_n7##y,z,c), I[439] = (T)(img)(_p4##x,_n7##y,z,c), I[440] = (T)(img)(_p3##x,_n7##y,z,c), I[441] = (T)(img)(_p2##x,_n7##y,z,c), I[442] = (T)(img)(_p1##x,_n7##y,z,c), I[443] = (T)(img)(x,_n7##y,z,c), I[444] = (T)(img)(_n1##x,_n7##y,z,c), I[445] = (T)(img)(_n2##x,_n7##y,z,c), I[446] = (T)(img)(_n3##x,_n7##y,z,c), I[447] = (T)(img)(_n4##x,_n7##y,z,c), I[448] = (T)(img)(_n5##x,_n7##y,z,c), I[449] = (T)(img)(_n6##x,_n7##y,z,c), I[450] = (T)(img)(_n7##x,_n7##y,z,c), I[451] = (T)(img)(_n8##x,_n7##y,z,c), I[452] = (T)(img)(_n9##x,_n7##y,z,c), I[453] = (T)(img)(_n10##x,_n7##y,z,c), I[454] = (T)(img)(_n11##x,_n7##y,z,c), I[455] = (T)(img)(_n12##x,_n7##y,z,c), \
|
|
I[456] = (T)(img)(_p11##x,_n8##y,z,c), I[457] = (T)(img)(_p10##x,_n8##y,z,c), I[458] = (T)(img)(_p9##x,_n8##y,z,c), I[459] = (T)(img)(_p8##x,_n8##y,z,c), I[460] = (T)(img)(_p7##x,_n8##y,z,c), I[461] = (T)(img)(_p6##x,_n8##y,z,c), I[462] = (T)(img)(_p5##x,_n8##y,z,c), I[463] = (T)(img)(_p4##x,_n8##y,z,c), I[464] = (T)(img)(_p3##x,_n8##y,z,c), I[465] = (T)(img)(_p2##x,_n8##y,z,c), I[466] = (T)(img)(_p1##x,_n8##y,z,c), I[467] = (T)(img)(x,_n8##y,z,c), I[468] = (T)(img)(_n1##x,_n8##y,z,c), I[469] = (T)(img)(_n2##x,_n8##y,z,c), I[470] = (T)(img)(_n3##x,_n8##y,z,c), I[471] = (T)(img)(_n4##x,_n8##y,z,c), I[472] = (T)(img)(_n5##x,_n8##y,z,c), I[473] = (T)(img)(_n6##x,_n8##y,z,c), I[474] = (T)(img)(_n7##x,_n8##y,z,c), I[475] = (T)(img)(_n8##x,_n8##y,z,c), I[476] = (T)(img)(_n9##x,_n8##y,z,c), I[477] = (T)(img)(_n10##x,_n8##y,z,c), I[478] = (T)(img)(_n11##x,_n8##y,z,c), I[479] = (T)(img)(_n12##x,_n8##y,z,c), \
|
|
I[480] = (T)(img)(_p11##x,_n9##y,z,c), I[481] = (T)(img)(_p10##x,_n9##y,z,c), I[482] = (T)(img)(_p9##x,_n9##y,z,c), I[483] = (T)(img)(_p8##x,_n9##y,z,c), I[484] = (T)(img)(_p7##x,_n9##y,z,c), I[485] = (T)(img)(_p6##x,_n9##y,z,c), I[486] = (T)(img)(_p5##x,_n9##y,z,c), I[487] = (T)(img)(_p4##x,_n9##y,z,c), I[488] = (T)(img)(_p3##x,_n9##y,z,c), I[489] = (T)(img)(_p2##x,_n9##y,z,c), I[490] = (T)(img)(_p1##x,_n9##y,z,c), I[491] = (T)(img)(x,_n9##y,z,c), I[492] = (T)(img)(_n1##x,_n9##y,z,c), I[493] = (T)(img)(_n2##x,_n9##y,z,c), I[494] = (T)(img)(_n3##x,_n9##y,z,c), I[495] = (T)(img)(_n4##x,_n9##y,z,c), I[496] = (T)(img)(_n5##x,_n9##y,z,c), I[497] = (T)(img)(_n6##x,_n9##y,z,c), I[498] = (T)(img)(_n7##x,_n9##y,z,c), I[499] = (T)(img)(_n8##x,_n9##y,z,c), I[500] = (T)(img)(_n9##x,_n9##y,z,c), I[501] = (T)(img)(_n10##x,_n9##y,z,c), I[502] = (T)(img)(_n11##x,_n9##y,z,c), I[503] = (T)(img)(_n12##x,_n9##y,z,c), \
|
|
I[504] = (T)(img)(_p11##x,_n10##y,z,c), I[505] = (T)(img)(_p10##x,_n10##y,z,c), I[506] = (T)(img)(_p9##x,_n10##y,z,c), I[507] = (T)(img)(_p8##x,_n10##y,z,c), I[508] = (T)(img)(_p7##x,_n10##y,z,c), I[509] = (T)(img)(_p6##x,_n10##y,z,c), I[510] = (T)(img)(_p5##x,_n10##y,z,c), I[511] = (T)(img)(_p4##x,_n10##y,z,c), I[512] = (T)(img)(_p3##x,_n10##y,z,c), I[513] = (T)(img)(_p2##x,_n10##y,z,c), I[514] = (T)(img)(_p1##x,_n10##y,z,c), I[515] = (T)(img)(x,_n10##y,z,c), I[516] = (T)(img)(_n1##x,_n10##y,z,c), I[517] = (T)(img)(_n2##x,_n10##y,z,c), I[518] = (T)(img)(_n3##x,_n10##y,z,c), I[519] = (T)(img)(_n4##x,_n10##y,z,c), I[520] = (T)(img)(_n5##x,_n10##y,z,c), I[521] = (T)(img)(_n6##x,_n10##y,z,c), I[522] = (T)(img)(_n7##x,_n10##y,z,c), I[523] = (T)(img)(_n8##x,_n10##y,z,c), I[524] = (T)(img)(_n9##x,_n10##y,z,c), I[525] = (T)(img)(_n10##x,_n10##y,z,c), I[526] = (T)(img)(_n11##x,_n10##y,z,c), I[527] = (T)(img)(_n12##x,_n10##y,z,c), \
|
|
I[528] = (T)(img)(_p11##x,_n11##y,z,c), I[529] = (T)(img)(_p10##x,_n11##y,z,c), I[530] = (T)(img)(_p9##x,_n11##y,z,c), I[531] = (T)(img)(_p8##x,_n11##y,z,c), I[532] = (T)(img)(_p7##x,_n11##y,z,c), I[533] = (T)(img)(_p6##x,_n11##y,z,c), I[534] = (T)(img)(_p5##x,_n11##y,z,c), I[535] = (T)(img)(_p4##x,_n11##y,z,c), I[536] = (T)(img)(_p3##x,_n11##y,z,c), I[537] = (T)(img)(_p2##x,_n11##y,z,c), I[538] = (T)(img)(_p1##x,_n11##y,z,c), I[539] = (T)(img)(x,_n11##y,z,c), I[540] = (T)(img)(_n1##x,_n11##y,z,c), I[541] = (T)(img)(_n2##x,_n11##y,z,c), I[542] = (T)(img)(_n3##x,_n11##y,z,c), I[543] = (T)(img)(_n4##x,_n11##y,z,c), I[544] = (T)(img)(_n5##x,_n11##y,z,c), I[545] = (T)(img)(_n6##x,_n11##y,z,c), I[546] = (T)(img)(_n7##x,_n11##y,z,c), I[547] = (T)(img)(_n8##x,_n11##y,z,c), I[548] = (T)(img)(_n9##x,_n11##y,z,c), I[549] = (T)(img)(_n10##x,_n11##y,z,c), I[550] = (T)(img)(_n11##x,_n11##y,z,c), I[551] = (T)(img)(_n12##x,_n11##y,z,c), \
|
|
I[552] = (T)(img)(_p11##x,_n12##y,z,c), I[553] = (T)(img)(_p10##x,_n12##y,z,c), I[554] = (T)(img)(_p9##x,_n12##y,z,c), I[555] = (T)(img)(_p8##x,_n12##y,z,c), I[556] = (T)(img)(_p7##x,_n12##y,z,c), I[557] = (T)(img)(_p6##x,_n12##y,z,c), I[558] = (T)(img)(_p5##x,_n12##y,z,c), I[559] = (T)(img)(_p4##x,_n12##y,z,c), I[560] = (T)(img)(_p3##x,_n12##y,z,c), I[561] = (T)(img)(_p2##x,_n12##y,z,c), I[562] = (T)(img)(_p1##x,_n12##y,z,c), I[563] = (T)(img)(x,_n12##y,z,c), I[564] = (T)(img)(_n1##x,_n12##y,z,c), I[565] = (T)(img)(_n2##x,_n12##y,z,c), I[566] = (T)(img)(_n3##x,_n12##y,z,c), I[567] = (T)(img)(_n4##x,_n12##y,z,c), I[568] = (T)(img)(_n5##x,_n12##y,z,c), I[569] = (T)(img)(_n6##x,_n12##y,z,c), I[570] = (T)(img)(_n7##x,_n12##y,z,c), I[571] = (T)(img)(_n8##x,_n12##y,z,c), I[572] = (T)(img)(_n9##x,_n12##y,z,c), I[573] = (T)(img)(_n10##x,_n12##y,z,c), I[574] = (T)(img)(_n11##x,_n12##y,z,c), I[575] = (T)(img)(_n12##x,_n12##y,z,c);
|
|
|
|
// Define 25x25 loop macros
|
|
//-------------------------
|
|
#define cimg_for25(bound,i) for (int i = 0, \
|
|
_p12##i = 0, _p11##i = 0, _p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
|
|
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
|
|
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
|
|
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
|
|
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
|
|
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
|
|
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
|
|
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
|
|
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9, \
|
|
_n10##i = 10>=(int)(bound)?(int)(bound) - 1:10, \
|
|
_n11##i = 11>=(int)(bound)?(int)(bound) - 1:11, \
|
|
_n12##i = 12>=(int)(bound)?(int)(bound) - 1:12; \
|
|
_n12##i<(int)(bound) || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
|
|
_p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i)
|
|
|
|
#define cimg_for25X(img,x) cimg_for25((img)._width,x)
|
|
#define cimg_for25Y(img,y) cimg_for25((img)._height,y)
|
|
#define cimg_for25Z(img,z) cimg_for25((img)._depth,z)
|
|
#define cimg_for25C(img,c) cimg_for25((img)._spectrum,c)
|
|
#define cimg_for25XY(img,x,y) cimg_for25Y(img,y) cimg_for25X(img,x)
|
|
#define cimg_for25XZ(img,x,z) cimg_for25Z(img,z) cimg_for25X(img,x)
|
|
#define cimg_for25XC(img,x,c) cimg_for25C(img,c) cimg_for25X(img,x)
|
|
#define cimg_for25YZ(img,y,z) cimg_for25Z(img,z) cimg_for25Y(img,y)
|
|
#define cimg_for25YC(img,y,c) cimg_for25C(img,c) cimg_for25Y(img,y)
|
|
#define cimg_for25ZC(img,z,c) cimg_for25C(img,c) cimg_for25Z(img,z)
|
|
#define cimg_for25XYZ(img,x,y,z) cimg_for25Z(img,z) cimg_for25XY(img,x,y)
|
|
#define cimg_for25XZC(img,x,z,c) cimg_for25C(img,c) cimg_for25XZ(img,x,z)
|
|
#define cimg_for25YZC(img,y,z,c) cimg_for25C(img,c) cimg_for25YZ(img,y,z)
|
|
#define cimg_for25XYZC(img,x,y,z,c) cimg_for25C(img,c) cimg_for25XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in25(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p12##i = i - 12<0?0:i - 12, \
|
|
_p11##i = i - 11<0?0:i - 11, \
|
|
_p10##i = i - 10<0?0:i - 10, \
|
|
_p9##i = i - 9<0?0:i - 9, \
|
|
_p8##i = i - 8<0?0:i - 8, \
|
|
_p7##i = i - 7<0?0:i - 7, \
|
|
_p6##i = i - 6<0?0:i - 6, \
|
|
_p5##i = i - 5<0?0:i - 5, \
|
|
_p4##i = i - 4<0?0:i - 4, \
|
|
_p3##i = i - 3<0?0:i - 3, \
|
|
_p2##i = i - 2<0?0:i - 2, \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
|
|
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
|
|
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
|
|
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
|
|
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
|
|
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
|
|
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
|
|
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
|
|
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9, \
|
|
_n10##i = i + 10>=(int)(bound)?(int)(bound) - 1:i + 10, \
|
|
_n11##i = i + 11>=(int)(bound)?(int)(bound) - 1:i + 11, \
|
|
_n12##i = i + 12>=(int)(bound)?(int)(bound) - 1:i + 12; \
|
|
i<=(int)(i1) && (_n12##i<(int)(bound) || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
|
|
_p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i)
|
|
|
|
#define cimg_for_in25X(img,x0,x1,x) cimg_for_in25((img)._width,x0,x1,x)
|
|
#define cimg_for_in25Y(img,y0,y1,y) cimg_for_in25((img)._height,y0,y1,y)
|
|
#define cimg_for_in25Z(img,z0,z1,z) cimg_for_in25((img)._depth,z0,z1,z)
|
|
#define cimg_for_in25C(img,c0,c1,c) cimg_for_in25((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in25XY(img,x0,y0,x1,y1,x,y) cimg_for_in25Y(img,y0,y1,y) cimg_for_in25X(img,x0,x1,x)
|
|
#define cimg_for_in25XZ(img,x0,z0,x1,z1,x,z) cimg_for_in25Z(img,z0,z1,z) cimg_for_in25X(img,x0,x1,x)
|
|
#define cimg_for_in25XC(img,x0,c0,x1,c1,x,c) cimg_for_in25C(img,c0,c1,c) cimg_for_in25X(img,x0,x1,x)
|
|
#define cimg_for_in25YZ(img,y0,z0,y1,z1,y,z) cimg_for_in25Z(img,z0,z1,z) cimg_for_in25Y(img,y0,y1,y)
|
|
#define cimg_for_in25YC(img,y0,c0,y1,c1,y,c) cimg_for_in25C(img,c0,c1,c) cimg_for_in25Y(img,y0,y1,y)
|
|
#define cimg_for_in25ZC(img,z0,c0,z1,c1,z,c) cimg_for_in25C(img,c0,c1,c) cimg_for_in25Z(img,z0,z1,z)
|
|
#define cimg_for_in25XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in25Z(img,z0,z1,z) cimg_for_in25XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in25XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in25C(img,c0,c1,c) cimg_for_in25XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in25YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in25C(img,c0,c1,c) cimg_for_in25YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in25XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in25C(img,c0,c1,c) cimg_for_in25XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for25x25(img,x,y,z,c,I,T) \
|
|
cimg_for25((img)._height,y) for (int x = 0, \
|
|
_p12##x = 0, _p11##x = 0, _p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
|
|
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
|
|
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
|
|
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
|
|
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
|
|
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
|
|
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
|
|
_n9##x = 9>=((img)._width)?(img).width() - 1:9, \
|
|
_n10##x = 10>=((img)._width)?(img).width() - 1:10, \
|
|
_n11##x = 11>=((img)._width)?(img).width() - 1:11, \
|
|
_n12##x = (int)( \
|
|
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = I[11] = I[12] = (T)(img)(0,_p12##y,z,c)), \
|
|
(I[25] = I[26] = I[27] = I[28] = I[29] = I[30] = I[31] = I[32] = I[33] = I[34] = I[35] = I[36] = I[37] = (T)(img)(0,_p11##y,z,c)), \
|
|
(I[50] = I[51] = I[52] = I[53] = I[54] = I[55] = I[56] = I[57] = I[58] = I[59] = I[60] = I[61] = I[62] = (T)(img)(0,_p10##y,z,c)), \
|
|
(I[75] = I[76] = I[77] = I[78] = I[79] = I[80] = I[81] = I[82] = I[83] = I[84] = I[85] = I[86] = I[87] = (T)(img)(0,_p9##y,z,c)), \
|
|
(I[100] = I[101] = I[102] = I[103] = I[104] = I[105] = I[106] = I[107] = I[108] = I[109] = I[110] = I[111] = I[112] = (T)(img)(0,_p8##y,z,c)), \
|
|
(I[125] = I[126] = I[127] = I[128] = I[129] = I[130] = I[131] = I[132] = I[133] = I[134] = I[135] = I[136] = I[137] = (T)(img)(0,_p7##y,z,c)), \
|
|
(I[150] = I[151] = I[152] = I[153] = I[154] = I[155] = I[156] = I[157] = I[158] = I[159] = I[160] = I[161] = I[162] = (T)(img)(0,_p6##y,z,c)), \
|
|
(I[175] = I[176] = I[177] = I[178] = I[179] = I[180] = I[181] = I[182] = I[183] = I[184] = I[185] = I[186] = I[187] = (T)(img)(0,_p5##y,z,c)), \
|
|
(I[200] = I[201] = I[202] = I[203] = I[204] = I[205] = I[206] = I[207] = I[208] = I[209] = I[210] = I[211] = I[212] = (T)(img)(0,_p4##y,z,c)), \
|
|
(I[225] = I[226] = I[227] = I[228] = I[229] = I[230] = I[231] = I[232] = I[233] = I[234] = I[235] = I[236] = I[237] = (T)(img)(0,_p3##y,z,c)), \
|
|
(I[250] = I[251] = I[252] = I[253] = I[254] = I[255] = I[256] = I[257] = I[258] = I[259] = I[260] = I[261] = I[262] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[275] = I[276] = I[277] = I[278] = I[279] = I[280] = I[281] = I[282] = I[283] = I[284] = I[285] = I[286] = I[287] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[300] = I[301] = I[302] = I[303] = I[304] = I[305] = I[306] = I[307] = I[308] = I[309] = I[310] = I[311] = I[312] = (T)(img)(0,y,z,c)), \
|
|
(I[325] = I[326] = I[327] = I[328] = I[329] = I[330] = I[331] = I[332] = I[333] = I[334] = I[335] = I[336] = I[337] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[350] = I[351] = I[352] = I[353] = I[354] = I[355] = I[356] = I[357] = I[358] = I[359] = I[360] = I[361] = I[362] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[375] = I[376] = I[377] = I[378] = I[379] = I[380] = I[381] = I[382] = I[383] = I[384] = I[385] = I[386] = I[387] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[400] = I[401] = I[402] = I[403] = I[404] = I[405] = I[406] = I[407] = I[408] = I[409] = I[410] = I[411] = I[412] = (T)(img)(0,_n4##y,z,c)), \
|
|
(I[425] = I[426] = I[427] = I[428] = I[429] = I[430] = I[431] = I[432] = I[433] = I[434] = I[435] = I[436] = I[437] = (T)(img)(0,_n5##y,z,c)), \
|
|
(I[450] = I[451] = I[452] = I[453] = I[454] = I[455] = I[456] = I[457] = I[458] = I[459] = I[460] = I[461] = I[462] = (T)(img)(0,_n6##y,z,c)), \
|
|
(I[475] = I[476] = I[477] = I[478] = I[479] = I[480] = I[481] = I[482] = I[483] = I[484] = I[485] = I[486] = I[487] = (T)(img)(0,_n7##y,z,c)), \
|
|
(I[500] = I[501] = I[502] = I[503] = I[504] = I[505] = I[506] = I[507] = I[508] = I[509] = I[510] = I[511] = I[512] = (T)(img)(0,_n8##y,z,c)), \
|
|
(I[525] = I[526] = I[527] = I[528] = I[529] = I[530] = I[531] = I[532] = I[533] = I[534] = I[535] = I[536] = I[537] = (T)(img)(0,_n9##y,z,c)), \
|
|
(I[550] = I[551] = I[552] = I[553] = I[554] = I[555] = I[556] = I[557] = I[558] = I[559] = I[560] = I[561] = I[562] = (T)(img)(0,_n10##y,z,c)), \
|
|
(I[575] = I[576] = I[577] = I[578] = I[579] = I[580] = I[581] = I[582] = I[583] = I[584] = I[585] = I[586] = I[587] = (T)(img)(0,_n11##y,z,c)), \
|
|
(I[600] = I[601] = I[602] = I[603] = I[604] = I[605] = I[606] = I[607] = I[608] = I[609] = I[610] = I[611] = I[612] = (T)(img)(0,_n12##y,z,c)), \
|
|
(I[13] = (T)(img)(_n1##x,_p12##y,z,c)), \
|
|
(I[38] = (T)(img)(_n1##x,_p11##y,z,c)), \
|
|
(I[63] = (T)(img)(_n1##x,_p10##y,z,c)), \
|
|
(I[88] = (T)(img)(_n1##x,_p9##y,z,c)), \
|
|
(I[113] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[138] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[163] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[188] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[213] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[238] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[263] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[288] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[313] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[338] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[363] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[388] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[413] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[438] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[463] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[488] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[513] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[538] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[563] = (T)(img)(_n1##x,_n10##y,z,c)), \
|
|
(I[588] = (T)(img)(_n1##x,_n11##y,z,c)), \
|
|
(I[613] = (T)(img)(_n1##x,_n12##y,z,c)), \
|
|
(I[14] = (T)(img)(_n2##x,_p12##y,z,c)), \
|
|
(I[39] = (T)(img)(_n2##x,_p11##y,z,c)), \
|
|
(I[64] = (T)(img)(_n2##x,_p10##y,z,c)), \
|
|
(I[89] = (T)(img)(_n2##x,_p9##y,z,c)), \
|
|
(I[114] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[139] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[164] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[189] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[214] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[239] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[264] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[289] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[314] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[339] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[364] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[389] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[414] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[439] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[464] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[489] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[514] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[539] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[564] = (T)(img)(_n2##x,_n10##y,z,c)), \
|
|
(I[589] = (T)(img)(_n2##x,_n11##y,z,c)), \
|
|
(I[614] = (T)(img)(_n2##x,_n12##y,z,c)), \
|
|
(I[15] = (T)(img)(_n3##x,_p12##y,z,c)), \
|
|
(I[40] = (T)(img)(_n3##x,_p11##y,z,c)), \
|
|
(I[65] = (T)(img)(_n3##x,_p10##y,z,c)), \
|
|
(I[90] = (T)(img)(_n3##x,_p9##y,z,c)), \
|
|
(I[115] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[140] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[165] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[190] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[215] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[240] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[265] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[290] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[315] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[340] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[365] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[390] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[415] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[440] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[465] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[490] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[515] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[540] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[565] = (T)(img)(_n3##x,_n10##y,z,c)), \
|
|
(I[590] = (T)(img)(_n3##x,_n11##y,z,c)), \
|
|
(I[615] = (T)(img)(_n3##x,_n12##y,z,c)), \
|
|
(I[16] = (T)(img)(_n4##x,_p12##y,z,c)), \
|
|
(I[41] = (T)(img)(_n4##x,_p11##y,z,c)), \
|
|
(I[66] = (T)(img)(_n4##x,_p10##y,z,c)), \
|
|
(I[91] = (T)(img)(_n4##x,_p9##y,z,c)), \
|
|
(I[116] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[141] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[166] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[191] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[216] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[241] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[266] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[291] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[316] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[341] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[366] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[391] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[416] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[441] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[466] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[491] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[516] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[541] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[566] = (T)(img)(_n4##x,_n10##y,z,c)), \
|
|
(I[591] = (T)(img)(_n4##x,_n11##y,z,c)), \
|
|
(I[616] = (T)(img)(_n4##x,_n12##y,z,c)), \
|
|
(I[17] = (T)(img)(_n5##x,_p12##y,z,c)), \
|
|
(I[42] = (T)(img)(_n5##x,_p11##y,z,c)), \
|
|
(I[67] = (T)(img)(_n5##x,_p10##y,z,c)), \
|
|
(I[92] = (T)(img)(_n5##x,_p9##y,z,c)), \
|
|
(I[117] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[142] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[167] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[192] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[217] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[242] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[267] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[292] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[317] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[342] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[367] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[392] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[417] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[442] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[467] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[492] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[517] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[542] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[567] = (T)(img)(_n5##x,_n10##y,z,c)), \
|
|
(I[592] = (T)(img)(_n5##x,_n11##y,z,c)), \
|
|
(I[617] = (T)(img)(_n5##x,_n12##y,z,c)), \
|
|
(I[18] = (T)(img)(_n6##x,_p12##y,z,c)), \
|
|
(I[43] = (T)(img)(_n6##x,_p11##y,z,c)), \
|
|
(I[68] = (T)(img)(_n6##x,_p10##y,z,c)), \
|
|
(I[93] = (T)(img)(_n6##x,_p9##y,z,c)), \
|
|
(I[118] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[143] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[168] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[193] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[218] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[243] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[268] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[293] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[318] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[343] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[368] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[393] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[418] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[443] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[468] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[493] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[518] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[543] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[568] = (T)(img)(_n6##x,_n10##y,z,c)), \
|
|
(I[593] = (T)(img)(_n6##x,_n11##y,z,c)), \
|
|
(I[618] = (T)(img)(_n6##x,_n12##y,z,c)), \
|
|
(I[19] = (T)(img)(_n7##x,_p12##y,z,c)), \
|
|
(I[44] = (T)(img)(_n7##x,_p11##y,z,c)), \
|
|
(I[69] = (T)(img)(_n7##x,_p10##y,z,c)), \
|
|
(I[94] = (T)(img)(_n7##x,_p9##y,z,c)), \
|
|
(I[119] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[144] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[169] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[194] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[219] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[244] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[269] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[294] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[319] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[344] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[369] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[394] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[419] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[444] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[469] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[494] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[519] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[544] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[569] = (T)(img)(_n7##x,_n10##y,z,c)), \
|
|
(I[594] = (T)(img)(_n7##x,_n11##y,z,c)), \
|
|
(I[619] = (T)(img)(_n7##x,_n12##y,z,c)), \
|
|
(I[20] = (T)(img)(_n8##x,_p12##y,z,c)), \
|
|
(I[45] = (T)(img)(_n8##x,_p11##y,z,c)), \
|
|
(I[70] = (T)(img)(_n8##x,_p10##y,z,c)), \
|
|
(I[95] = (T)(img)(_n8##x,_p9##y,z,c)), \
|
|
(I[120] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[145] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[170] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[195] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[220] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[245] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[270] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[295] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[320] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[345] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[370] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[395] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[420] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[445] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[470] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[495] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[520] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[545] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
(I[570] = (T)(img)(_n8##x,_n10##y,z,c)), \
|
|
(I[595] = (T)(img)(_n8##x,_n11##y,z,c)), \
|
|
(I[620] = (T)(img)(_n8##x,_n12##y,z,c)), \
|
|
(I[21] = (T)(img)(_n9##x,_p12##y,z,c)), \
|
|
(I[46] = (T)(img)(_n9##x,_p11##y,z,c)), \
|
|
(I[71] = (T)(img)(_n9##x,_p10##y,z,c)), \
|
|
(I[96] = (T)(img)(_n9##x,_p9##y,z,c)), \
|
|
(I[121] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[146] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[171] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[196] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[221] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[246] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[271] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[296] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[321] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[346] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[371] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[396] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[421] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[446] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[471] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[496] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[521] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[546] = (T)(img)(_n9##x,_n9##y,z,c)), \
|
|
(I[571] = (T)(img)(_n9##x,_n10##y,z,c)), \
|
|
(I[596] = (T)(img)(_n9##x,_n11##y,z,c)), \
|
|
(I[621] = (T)(img)(_n9##x,_n12##y,z,c)), \
|
|
(I[22] = (T)(img)(_n10##x,_p12##y,z,c)), \
|
|
(I[47] = (T)(img)(_n10##x,_p11##y,z,c)), \
|
|
(I[72] = (T)(img)(_n10##x,_p10##y,z,c)), \
|
|
(I[97] = (T)(img)(_n10##x,_p9##y,z,c)), \
|
|
(I[122] = (T)(img)(_n10##x,_p8##y,z,c)), \
|
|
(I[147] = (T)(img)(_n10##x,_p7##y,z,c)), \
|
|
(I[172] = (T)(img)(_n10##x,_p6##y,z,c)), \
|
|
(I[197] = (T)(img)(_n10##x,_p5##y,z,c)), \
|
|
(I[222] = (T)(img)(_n10##x,_p4##y,z,c)), \
|
|
(I[247] = (T)(img)(_n10##x,_p3##y,z,c)), \
|
|
(I[272] = (T)(img)(_n10##x,_p2##y,z,c)), \
|
|
(I[297] = (T)(img)(_n10##x,_p1##y,z,c)), \
|
|
(I[322] = (T)(img)(_n10##x,y,z,c)), \
|
|
(I[347] = (T)(img)(_n10##x,_n1##y,z,c)), \
|
|
(I[372] = (T)(img)(_n10##x,_n2##y,z,c)), \
|
|
(I[397] = (T)(img)(_n10##x,_n3##y,z,c)), \
|
|
(I[422] = (T)(img)(_n10##x,_n4##y,z,c)), \
|
|
(I[447] = (T)(img)(_n10##x,_n5##y,z,c)), \
|
|
(I[472] = (T)(img)(_n10##x,_n6##y,z,c)), \
|
|
(I[497] = (T)(img)(_n10##x,_n7##y,z,c)), \
|
|
(I[522] = (T)(img)(_n10##x,_n8##y,z,c)), \
|
|
(I[547] = (T)(img)(_n10##x,_n9##y,z,c)), \
|
|
(I[572] = (T)(img)(_n10##x,_n10##y,z,c)), \
|
|
(I[597] = (T)(img)(_n10##x,_n11##y,z,c)), \
|
|
(I[622] = (T)(img)(_n10##x,_n12##y,z,c)), \
|
|
(I[23] = (T)(img)(_n11##x,_p12##y,z,c)), \
|
|
(I[48] = (T)(img)(_n11##x,_p11##y,z,c)), \
|
|
(I[73] = (T)(img)(_n11##x,_p10##y,z,c)), \
|
|
(I[98] = (T)(img)(_n11##x,_p9##y,z,c)), \
|
|
(I[123] = (T)(img)(_n11##x,_p8##y,z,c)), \
|
|
(I[148] = (T)(img)(_n11##x,_p7##y,z,c)), \
|
|
(I[173] = (T)(img)(_n11##x,_p6##y,z,c)), \
|
|
(I[198] = (T)(img)(_n11##x,_p5##y,z,c)), \
|
|
(I[223] = (T)(img)(_n11##x,_p4##y,z,c)), \
|
|
(I[248] = (T)(img)(_n11##x,_p3##y,z,c)), \
|
|
(I[273] = (T)(img)(_n11##x,_p2##y,z,c)), \
|
|
(I[298] = (T)(img)(_n11##x,_p1##y,z,c)), \
|
|
(I[323] = (T)(img)(_n11##x,y,z,c)), \
|
|
(I[348] = (T)(img)(_n11##x,_n1##y,z,c)), \
|
|
(I[373] = (T)(img)(_n11##x,_n2##y,z,c)), \
|
|
(I[398] = (T)(img)(_n11##x,_n3##y,z,c)), \
|
|
(I[423] = (T)(img)(_n11##x,_n4##y,z,c)), \
|
|
(I[448] = (T)(img)(_n11##x,_n5##y,z,c)), \
|
|
(I[473] = (T)(img)(_n11##x,_n6##y,z,c)), \
|
|
(I[498] = (T)(img)(_n11##x,_n7##y,z,c)), \
|
|
(I[523] = (T)(img)(_n11##x,_n8##y,z,c)), \
|
|
(I[548] = (T)(img)(_n11##x,_n9##y,z,c)), \
|
|
(I[573] = (T)(img)(_n11##x,_n10##y,z,c)), \
|
|
(I[598] = (T)(img)(_n11##x,_n11##y,z,c)), \
|
|
(I[623] = (T)(img)(_n11##x,_n12##y,z,c)), \
|
|
12>=((img)._width)?(img).width() - 1:12); \
|
|
(_n12##x<(img).width() && ( \
|
|
(I[24] = (T)(img)(_n12##x,_p12##y,z,c)), \
|
|
(I[49] = (T)(img)(_n12##x,_p11##y,z,c)), \
|
|
(I[74] = (T)(img)(_n12##x,_p10##y,z,c)), \
|
|
(I[99] = (T)(img)(_n12##x,_p9##y,z,c)), \
|
|
(I[124] = (T)(img)(_n12##x,_p8##y,z,c)), \
|
|
(I[149] = (T)(img)(_n12##x,_p7##y,z,c)), \
|
|
(I[174] = (T)(img)(_n12##x,_p6##y,z,c)), \
|
|
(I[199] = (T)(img)(_n12##x,_p5##y,z,c)), \
|
|
(I[224] = (T)(img)(_n12##x,_p4##y,z,c)), \
|
|
(I[249] = (T)(img)(_n12##x,_p3##y,z,c)), \
|
|
(I[274] = (T)(img)(_n12##x,_p2##y,z,c)), \
|
|
(I[299] = (T)(img)(_n12##x,_p1##y,z,c)), \
|
|
(I[324] = (T)(img)(_n12##x,y,z,c)), \
|
|
(I[349] = (T)(img)(_n12##x,_n1##y,z,c)), \
|
|
(I[374] = (T)(img)(_n12##x,_n2##y,z,c)), \
|
|
(I[399] = (T)(img)(_n12##x,_n3##y,z,c)), \
|
|
(I[424] = (T)(img)(_n12##x,_n4##y,z,c)), \
|
|
(I[449] = (T)(img)(_n12##x,_n5##y,z,c)), \
|
|
(I[474] = (T)(img)(_n12##x,_n6##y,z,c)), \
|
|
(I[499] = (T)(img)(_n12##x,_n7##y,z,c)), \
|
|
(I[524] = (T)(img)(_n12##x,_n8##y,z,c)), \
|
|
(I[549] = (T)(img)(_n12##x,_n9##y,z,c)), \
|
|
(I[574] = (T)(img)(_n12##x,_n10##y,z,c)), \
|
|
(I[599] = (T)(img)(_n12##x,_n11##y,z,c)), \
|
|
(I[624] = (T)(img)(_n12##x,_n12##y,z,c)),1)) || \
|
|
_n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], \
|
|
I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], \
|
|
I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], \
|
|
I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], \
|
|
I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], \
|
|
I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], \
|
|
I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], \
|
|
I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], \
|
|
I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], \
|
|
I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], \
|
|
I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], \
|
|
I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], \
|
|
I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], \
|
|
I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], \
|
|
I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], \
|
|
I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], \
|
|
I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], \
|
|
I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], \
|
|
I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], \
|
|
I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], \
|
|
I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], \
|
|
I[525] = I[526], I[526] = I[527], I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], \
|
|
I[550] = I[551], I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], \
|
|
I[575] = I[576], I[576] = I[577], I[577] = I[578], I[578] = I[579], I[579] = I[580], I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], I[587] = I[588], I[588] = I[589], I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], I[593] = I[594], I[594] = I[595], I[595] = I[596], I[596] = I[597], I[597] = I[598], I[598] = I[599], \
|
|
I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], I[607] = I[608], I[608] = I[609], I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], I[615] = I[616], I[616] = I[617], I[617] = I[618], I[618] = I[619], I[619] = I[620], I[620] = I[621], I[621] = I[622], I[622] = I[623], I[623] = I[624], \
|
|
_p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x)
|
|
|
|
#define cimg_for_in25x25(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in25((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p12##x = x - 12<0?0:x - 12, \
|
|
_p11##x = x - 11<0?0:x - 11, \
|
|
_p10##x = x - 10<0?0:x - 10, \
|
|
_p9##x = x - 9<0?0:x - 9, \
|
|
_p8##x = x - 8<0?0:x - 8, \
|
|
_p7##x = x - 7<0?0:x - 7, \
|
|
_p6##x = x - 6<0?0:x - 6, \
|
|
_p5##x = x - 5<0?0:x - 5, \
|
|
_p4##x = x - 4<0?0:x - 4, \
|
|
_p3##x = x - 3<0?0:x - 3, \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
|
|
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
|
|
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
|
|
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
|
|
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
|
|
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
|
|
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
|
|
_n9##x = x + 9>=(img).width()?(img).width() - 1:x + 9, \
|
|
_n10##x = x + 10>=(img).width()?(img).width() - 1:x + 10, \
|
|
_n11##x = x + 11>=(img).width()?(img).width() - 1:x + 11, \
|
|
_n12##x = (int)( \
|
|
(I[0] = (T)(img)(_p12##x,_p12##y,z,c)), \
|
|
(I[25] = (T)(img)(_p12##x,_p11##y,z,c)), \
|
|
(I[50] = (T)(img)(_p12##x,_p10##y,z,c)), \
|
|
(I[75] = (T)(img)(_p12##x,_p9##y,z,c)), \
|
|
(I[100] = (T)(img)(_p12##x,_p8##y,z,c)), \
|
|
(I[125] = (T)(img)(_p12##x,_p7##y,z,c)), \
|
|
(I[150] = (T)(img)(_p12##x,_p6##y,z,c)), \
|
|
(I[175] = (T)(img)(_p12##x,_p5##y,z,c)), \
|
|
(I[200] = (T)(img)(_p12##x,_p4##y,z,c)), \
|
|
(I[225] = (T)(img)(_p12##x,_p3##y,z,c)), \
|
|
(I[250] = (T)(img)(_p12##x,_p2##y,z,c)), \
|
|
(I[275] = (T)(img)(_p12##x,_p1##y,z,c)), \
|
|
(I[300] = (T)(img)(_p12##x,y,z,c)), \
|
|
(I[325] = (T)(img)(_p12##x,_n1##y,z,c)), \
|
|
(I[350] = (T)(img)(_p12##x,_n2##y,z,c)), \
|
|
(I[375] = (T)(img)(_p12##x,_n3##y,z,c)), \
|
|
(I[400] = (T)(img)(_p12##x,_n4##y,z,c)), \
|
|
(I[425] = (T)(img)(_p12##x,_n5##y,z,c)), \
|
|
(I[450] = (T)(img)(_p12##x,_n6##y,z,c)), \
|
|
(I[475] = (T)(img)(_p12##x,_n7##y,z,c)), \
|
|
(I[500] = (T)(img)(_p12##x,_n8##y,z,c)), \
|
|
(I[525] = (T)(img)(_p12##x,_n9##y,z,c)), \
|
|
(I[550] = (T)(img)(_p12##x,_n10##y,z,c)), \
|
|
(I[575] = (T)(img)(_p12##x,_n11##y,z,c)), \
|
|
(I[600] = (T)(img)(_p12##x,_n12##y,z,c)), \
|
|
(I[1] = (T)(img)(_p11##x,_p12##y,z,c)), \
|
|
(I[26] = (T)(img)(_p11##x,_p11##y,z,c)), \
|
|
(I[51] = (T)(img)(_p11##x,_p10##y,z,c)), \
|
|
(I[76] = (T)(img)(_p11##x,_p9##y,z,c)), \
|
|
(I[101] = (T)(img)(_p11##x,_p8##y,z,c)), \
|
|
(I[126] = (T)(img)(_p11##x,_p7##y,z,c)), \
|
|
(I[151] = (T)(img)(_p11##x,_p6##y,z,c)), \
|
|
(I[176] = (T)(img)(_p11##x,_p5##y,z,c)), \
|
|
(I[201] = (T)(img)(_p11##x,_p4##y,z,c)), \
|
|
(I[226] = (T)(img)(_p11##x,_p3##y,z,c)), \
|
|
(I[251] = (T)(img)(_p11##x,_p2##y,z,c)), \
|
|
(I[276] = (T)(img)(_p11##x,_p1##y,z,c)), \
|
|
(I[301] = (T)(img)(_p11##x,y,z,c)), \
|
|
(I[326] = (T)(img)(_p11##x,_n1##y,z,c)), \
|
|
(I[351] = (T)(img)(_p11##x,_n2##y,z,c)), \
|
|
(I[376] = (T)(img)(_p11##x,_n3##y,z,c)), \
|
|
(I[401] = (T)(img)(_p11##x,_n4##y,z,c)), \
|
|
(I[426] = (T)(img)(_p11##x,_n5##y,z,c)), \
|
|
(I[451] = (T)(img)(_p11##x,_n6##y,z,c)), \
|
|
(I[476] = (T)(img)(_p11##x,_n7##y,z,c)), \
|
|
(I[501] = (T)(img)(_p11##x,_n8##y,z,c)), \
|
|
(I[526] = (T)(img)(_p11##x,_n9##y,z,c)), \
|
|
(I[551] = (T)(img)(_p11##x,_n10##y,z,c)), \
|
|
(I[576] = (T)(img)(_p11##x,_n11##y,z,c)), \
|
|
(I[601] = (T)(img)(_p11##x,_n12##y,z,c)), \
|
|
(I[2] = (T)(img)(_p10##x,_p12##y,z,c)), \
|
|
(I[27] = (T)(img)(_p10##x,_p11##y,z,c)), \
|
|
(I[52] = (T)(img)(_p10##x,_p10##y,z,c)), \
|
|
(I[77] = (T)(img)(_p10##x,_p9##y,z,c)), \
|
|
(I[102] = (T)(img)(_p10##x,_p8##y,z,c)), \
|
|
(I[127] = (T)(img)(_p10##x,_p7##y,z,c)), \
|
|
(I[152] = (T)(img)(_p10##x,_p6##y,z,c)), \
|
|
(I[177] = (T)(img)(_p10##x,_p5##y,z,c)), \
|
|
(I[202] = (T)(img)(_p10##x,_p4##y,z,c)), \
|
|
(I[227] = (T)(img)(_p10##x,_p3##y,z,c)), \
|
|
(I[252] = (T)(img)(_p10##x,_p2##y,z,c)), \
|
|
(I[277] = (T)(img)(_p10##x,_p1##y,z,c)), \
|
|
(I[302] = (T)(img)(_p10##x,y,z,c)), \
|
|
(I[327] = (T)(img)(_p10##x,_n1##y,z,c)), \
|
|
(I[352] = (T)(img)(_p10##x,_n2##y,z,c)), \
|
|
(I[377] = (T)(img)(_p10##x,_n3##y,z,c)), \
|
|
(I[402] = (T)(img)(_p10##x,_n4##y,z,c)), \
|
|
(I[427] = (T)(img)(_p10##x,_n5##y,z,c)), \
|
|
(I[452] = (T)(img)(_p10##x,_n6##y,z,c)), \
|
|
(I[477] = (T)(img)(_p10##x,_n7##y,z,c)), \
|
|
(I[502] = (T)(img)(_p10##x,_n8##y,z,c)), \
|
|
(I[527] = (T)(img)(_p10##x,_n9##y,z,c)), \
|
|
(I[552] = (T)(img)(_p10##x,_n10##y,z,c)), \
|
|
(I[577] = (T)(img)(_p10##x,_n11##y,z,c)), \
|
|
(I[602] = (T)(img)(_p10##x,_n12##y,z,c)), \
|
|
(I[3] = (T)(img)(_p9##x,_p12##y,z,c)), \
|
|
(I[28] = (T)(img)(_p9##x,_p11##y,z,c)), \
|
|
(I[53] = (T)(img)(_p9##x,_p10##y,z,c)), \
|
|
(I[78] = (T)(img)(_p9##x,_p9##y,z,c)), \
|
|
(I[103] = (T)(img)(_p9##x,_p8##y,z,c)), \
|
|
(I[128] = (T)(img)(_p9##x,_p7##y,z,c)), \
|
|
(I[153] = (T)(img)(_p9##x,_p6##y,z,c)), \
|
|
(I[178] = (T)(img)(_p9##x,_p5##y,z,c)), \
|
|
(I[203] = (T)(img)(_p9##x,_p4##y,z,c)), \
|
|
(I[228] = (T)(img)(_p9##x,_p3##y,z,c)), \
|
|
(I[253] = (T)(img)(_p9##x,_p2##y,z,c)), \
|
|
(I[278] = (T)(img)(_p9##x,_p1##y,z,c)), \
|
|
(I[303] = (T)(img)(_p9##x,y,z,c)), \
|
|
(I[328] = (T)(img)(_p9##x,_n1##y,z,c)), \
|
|
(I[353] = (T)(img)(_p9##x,_n2##y,z,c)), \
|
|
(I[378] = (T)(img)(_p9##x,_n3##y,z,c)), \
|
|
(I[403] = (T)(img)(_p9##x,_n4##y,z,c)), \
|
|
(I[428] = (T)(img)(_p9##x,_n5##y,z,c)), \
|
|
(I[453] = (T)(img)(_p9##x,_n6##y,z,c)), \
|
|
(I[478] = (T)(img)(_p9##x,_n7##y,z,c)), \
|
|
(I[503] = (T)(img)(_p9##x,_n8##y,z,c)), \
|
|
(I[528] = (T)(img)(_p9##x,_n9##y,z,c)), \
|
|
(I[553] = (T)(img)(_p9##x,_n10##y,z,c)), \
|
|
(I[578] = (T)(img)(_p9##x,_n11##y,z,c)), \
|
|
(I[603] = (T)(img)(_p9##x,_n12##y,z,c)), \
|
|
(I[4] = (T)(img)(_p8##x,_p12##y,z,c)), \
|
|
(I[29] = (T)(img)(_p8##x,_p11##y,z,c)), \
|
|
(I[54] = (T)(img)(_p8##x,_p10##y,z,c)), \
|
|
(I[79] = (T)(img)(_p8##x,_p9##y,z,c)), \
|
|
(I[104] = (T)(img)(_p8##x,_p8##y,z,c)), \
|
|
(I[129] = (T)(img)(_p8##x,_p7##y,z,c)), \
|
|
(I[154] = (T)(img)(_p8##x,_p6##y,z,c)), \
|
|
(I[179] = (T)(img)(_p8##x,_p5##y,z,c)), \
|
|
(I[204] = (T)(img)(_p8##x,_p4##y,z,c)), \
|
|
(I[229] = (T)(img)(_p8##x,_p3##y,z,c)), \
|
|
(I[254] = (T)(img)(_p8##x,_p2##y,z,c)), \
|
|
(I[279] = (T)(img)(_p8##x,_p1##y,z,c)), \
|
|
(I[304] = (T)(img)(_p8##x,y,z,c)), \
|
|
(I[329] = (T)(img)(_p8##x,_n1##y,z,c)), \
|
|
(I[354] = (T)(img)(_p8##x,_n2##y,z,c)), \
|
|
(I[379] = (T)(img)(_p8##x,_n3##y,z,c)), \
|
|
(I[404] = (T)(img)(_p8##x,_n4##y,z,c)), \
|
|
(I[429] = (T)(img)(_p8##x,_n5##y,z,c)), \
|
|
(I[454] = (T)(img)(_p8##x,_n6##y,z,c)), \
|
|
(I[479] = (T)(img)(_p8##x,_n7##y,z,c)), \
|
|
(I[504] = (T)(img)(_p8##x,_n8##y,z,c)), \
|
|
(I[529] = (T)(img)(_p8##x,_n9##y,z,c)), \
|
|
(I[554] = (T)(img)(_p8##x,_n10##y,z,c)), \
|
|
(I[579] = (T)(img)(_p8##x,_n11##y,z,c)), \
|
|
(I[604] = (T)(img)(_p8##x,_n12##y,z,c)), \
|
|
(I[5] = (T)(img)(_p7##x,_p12##y,z,c)), \
|
|
(I[30] = (T)(img)(_p7##x,_p11##y,z,c)), \
|
|
(I[55] = (T)(img)(_p7##x,_p10##y,z,c)), \
|
|
(I[80] = (T)(img)(_p7##x,_p9##y,z,c)), \
|
|
(I[105] = (T)(img)(_p7##x,_p8##y,z,c)), \
|
|
(I[130] = (T)(img)(_p7##x,_p7##y,z,c)), \
|
|
(I[155] = (T)(img)(_p7##x,_p6##y,z,c)), \
|
|
(I[180] = (T)(img)(_p7##x,_p5##y,z,c)), \
|
|
(I[205] = (T)(img)(_p7##x,_p4##y,z,c)), \
|
|
(I[230] = (T)(img)(_p7##x,_p3##y,z,c)), \
|
|
(I[255] = (T)(img)(_p7##x,_p2##y,z,c)), \
|
|
(I[280] = (T)(img)(_p7##x,_p1##y,z,c)), \
|
|
(I[305] = (T)(img)(_p7##x,y,z,c)), \
|
|
(I[330] = (T)(img)(_p7##x,_n1##y,z,c)), \
|
|
(I[355] = (T)(img)(_p7##x,_n2##y,z,c)), \
|
|
(I[380] = (T)(img)(_p7##x,_n3##y,z,c)), \
|
|
(I[405] = (T)(img)(_p7##x,_n4##y,z,c)), \
|
|
(I[430] = (T)(img)(_p7##x,_n5##y,z,c)), \
|
|
(I[455] = (T)(img)(_p7##x,_n6##y,z,c)), \
|
|
(I[480] = (T)(img)(_p7##x,_n7##y,z,c)), \
|
|
(I[505] = (T)(img)(_p7##x,_n8##y,z,c)), \
|
|
(I[530] = (T)(img)(_p7##x,_n9##y,z,c)), \
|
|
(I[555] = (T)(img)(_p7##x,_n10##y,z,c)), \
|
|
(I[580] = (T)(img)(_p7##x,_n11##y,z,c)), \
|
|
(I[605] = (T)(img)(_p7##x,_n12##y,z,c)), \
|
|
(I[6] = (T)(img)(_p6##x,_p12##y,z,c)), \
|
|
(I[31] = (T)(img)(_p6##x,_p11##y,z,c)), \
|
|
(I[56] = (T)(img)(_p6##x,_p10##y,z,c)), \
|
|
(I[81] = (T)(img)(_p6##x,_p9##y,z,c)), \
|
|
(I[106] = (T)(img)(_p6##x,_p8##y,z,c)), \
|
|
(I[131] = (T)(img)(_p6##x,_p7##y,z,c)), \
|
|
(I[156] = (T)(img)(_p6##x,_p6##y,z,c)), \
|
|
(I[181] = (T)(img)(_p6##x,_p5##y,z,c)), \
|
|
(I[206] = (T)(img)(_p6##x,_p4##y,z,c)), \
|
|
(I[231] = (T)(img)(_p6##x,_p3##y,z,c)), \
|
|
(I[256] = (T)(img)(_p6##x,_p2##y,z,c)), \
|
|
(I[281] = (T)(img)(_p6##x,_p1##y,z,c)), \
|
|
(I[306] = (T)(img)(_p6##x,y,z,c)), \
|
|
(I[331] = (T)(img)(_p6##x,_n1##y,z,c)), \
|
|
(I[356] = (T)(img)(_p6##x,_n2##y,z,c)), \
|
|
(I[381] = (T)(img)(_p6##x,_n3##y,z,c)), \
|
|
(I[406] = (T)(img)(_p6##x,_n4##y,z,c)), \
|
|
(I[431] = (T)(img)(_p6##x,_n5##y,z,c)), \
|
|
(I[456] = (T)(img)(_p6##x,_n6##y,z,c)), \
|
|
(I[481] = (T)(img)(_p6##x,_n7##y,z,c)), \
|
|
(I[506] = (T)(img)(_p6##x,_n8##y,z,c)), \
|
|
(I[531] = (T)(img)(_p6##x,_n9##y,z,c)), \
|
|
(I[556] = (T)(img)(_p6##x,_n10##y,z,c)), \
|
|
(I[581] = (T)(img)(_p6##x,_n11##y,z,c)), \
|
|
(I[606] = (T)(img)(_p6##x,_n12##y,z,c)), \
|
|
(I[7] = (T)(img)(_p5##x,_p12##y,z,c)), \
|
|
(I[32] = (T)(img)(_p5##x,_p11##y,z,c)), \
|
|
(I[57] = (T)(img)(_p5##x,_p10##y,z,c)), \
|
|
(I[82] = (T)(img)(_p5##x,_p9##y,z,c)), \
|
|
(I[107] = (T)(img)(_p5##x,_p8##y,z,c)), \
|
|
(I[132] = (T)(img)(_p5##x,_p7##y,z,c)), \
|
|
(I[157] = (T)(img)(_p5##x,_p6##y,z,c)), \
|
|
(I[182] = (T)(img)(_p5##x,_p5##y,z,c)), \
|
|
(I[207] = (T)(img)(_p5##x,_p4##y,z,c)), \
|
|
(I[232] = (T)(img)(_p5##x,_p3##y,z,c)), \
|
|
(I[257] = (T)(img)(_p5##x,_p2##y,z,c)), \
|
|
(I[282] = (T)(img)(_p5##x,_p1##y,z,c)), \
|
|
(I[307] = (T)(img)(_p5##x,y,z,c)), \
|
|
(I[332] = (T)(img)(_p5##x,_n1##y,z,c)), \
|
|
(I[357] = (T)(img)(_p5##x,_n2##y,z,c)), \
|
|
(I[382] = (T)(img)(_p5##x,_n3##y,z,c)), \
|
|
(I[407] = (T)(img)(_p5##x,_n4##y,z,c)), \
|
|
(I[432] = (T)(img)(_p5##x,_n5##y,z,c)), \
|
|
(I[457] = (T)(img)(_p5##x,_n6##y,z,c)), \
|
|
(I[482] = (T)(img)(_p5##x,_n7##y,z,c)), \
|
|
(I[507] = (T)(img)(_p5##x,_n8##y,z,c)), \
|
|
(I[532] = (T)(img)(_p5##x,_n9##y,z,c)), \
|
|
(I[557] = (T)(img)(_p5##x,_n10##y,z,c)), \
|
|
(I[582] = (T)(img)(_p5##x,_n11##y,z,c)), \
|
|
(I[607] = (T)(img)(_p5##x,_n12##y,z,c)), \
|
|
(I[8] = (T)(img)(_p4##x,_p12##y,z,c)), \
|
|
(I[33] = (T)(img)(_p4##x,_p11##y,z,c)), \
|
|
(I[58] = (T)(img)(_p4##x,_p10##y,z,c)), \
|
|
(I[83] = (T)(img)(_p4##x,_p9##y,z,c)), \
|
|
(I[108] = (T)(img)(_p4##x,_p8##y,z,c)), \
|
|
(I[133] = (T)(img)(_p4##x,_p7##y,z,c)), \
|
|
(I[158] = (T)(img)(_p4##x,_p6##y,z,c)), \
|
|
(I[183] = (T)(img)(_p4##x,_p5##y,z,c)), \
|
|
(I[208] = (T)(img)(_p4##x,_p4##y,z,c)), \
|
|
(I[233] = (T)(img)(_p4##x,_p3##y,z,c)), \
|
|
(I[258] = (T)(img)(_p4##x,_p2##y,z,c)), \
|
|
(I[283] = (T)(img)(_p4##x,_p1##y,z,c)), \
|
|
(I[308] = (T)(img)(_p4##x,y,z,c)), \
|
|
(I[333] = (T)(img)(_p4##x,_n1##y,z,c)), \
|
|
(I[358] = (T)(img)(_p4##x,_n2##y,z,c)), \
|
|
(I[383] = (T)(img)(_p4##x,_n3##y,z,c)), \
|
|
(I[408] = (T)(img)(_p4##x,_n4##y,z,c)), \
|
|
(I[433] = (T)(img)(_p4##x,_n5##y,z,c)), \
|
|
(I[458] = (T)(img)(_p4##x,_n6##y,z,c)), \
|
|
(I[483] = (T)(img)(_p4##x,_n7##y,z,c)), \
|
|
(I[508] = (T)(img)(_p4##x,_n8##y,z,c)), \
|
|
(I[533] = (T)(img)(_p4##x,_n9##y,z,c)), \
|
|
(I[558] = (T)(img)(_p4##x,_n10##y,z,c)), \
|
|
(I[583] = (T)(img)(_p4##x,_n11##y,z,c)), \
|
|
(I[608] = (T)(img)(_p4##x,_n12##y,z,c)), \
|
|
(I[9] = (T)(img)(_p3##x,_p12##y,z,c)), \
|
|
(I[34] = (T)(img)(_p3##x,_p11##y,z,c)), \
|
|
(I[59] = (T)(img)(_p3##x,_p10##y,z,c)), \
|
|
(I[84] = (T)(img)(_p3##x,_p9##y,z,c)), \
|
|
(I[109] = (T)(img)(_p3##x,_p8##y,z,c)), \
|
|
(I[134] = (T)(img)(_p3##x,_p7##y,z,c)), \
|
|
(I[159] = (T)(img)(_p3##x,_p6##y,z,c)), \
|
|
(I[184] = (T)(img)(_p3##x,_p5##y,z,c)), \
|
|
(I[209] = (T)(img)(_p3##x,_p4##y,z,c)), \
|
|
(I[234] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[259] = (T)(img)(_p3##x,_p2##y,z,c)), \
|
|
(I[284] = (T)(img)(_p3##x,_p1##y,z,c)), \
|
|
(I[309] = (T)(img)(_p3##x,y,z,c)), \
|
|
(I[334] = (T)(img)(_p3##x,_n1##y,z,c)), \
|
|
(I[359] = (T)(img)(_p3##x,_n2##y,z,c)), \
|
|
(I[384] = (T)(img)(_p3##x,_n3##y,z,c)), \
|
|
(I[409] = (T)(img)(_p3##x,_n4##y,z,c)), \
|
|
(I[434] = (T)(img)(_p3##x,_n5##y,z,c)), \
|
|
(I[459] = (T)(img)(_p3##x,_n6##y,z,c)), \
|
|
(I[484] = (T)(img)(_p3##x,_n7##y,z,c)), \
|
|
(I[509] = (T)(img)(_p3##x,_n8##y,z,c)), \
|
|
(I[534] = (T)(img)(_p3##x,_n9##y,z,c)), \
|
|
(I[559] = (T)(img)(_p3##x,_n10##y,z,c)), \
|
|
(I[584] = (T)(img)(_p3##x,_n11##y,z,c)), \
|
|
(I[609] = (T)(img)(_p3##x,_n12##y,z,c)), \
|
|
(I[10] = (T)(img)(_p2##x,_p12##y,z,c)), \
|
|
(I[35] = (T)(img)(_p2##x,_p11##y,z,c)), \
|
|
(I[60] = (T)(img)(_p2##x,_p10##y,z,c)), \
|
|
(I[85] = (T)(img)(_p2##x,_p9##y,z,c)), \
|
|
(I[110] = (T)(img)(_p2##x,_p8##y,z,c)), \
|
|
(I[135] = (T)(img)(_p2##x,_p7##y,z,c)), \
|
|
(I[160] = (T)(img)(_p2##x,_p6##y,z,c)), \
|
|
(I[185] = (T)(img)(_p2##x,_p5##y,z,c)), \
|
|
(I[210] = (T)(img)(_p2##x,_p4##y,z,c)), \
|
|
(I[235] = (T)(img)(_p2##x,_p3##y,z,c)), \
|
|
(I[260] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[285] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[310] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[335] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[360] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[385] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[410] = (T)(img)(_p2##x,_n4##y,z,c)), \
|
|
(I[435] = (T)(img)(_p2##x,_n5##y,z,c)), \
|
|
(I[460] = (T)(img)(_p2##x,_n6##y,z,c)), \
|
|
(I[485] = (T)(img)(_p2##x,_n7##y,z,c)), \
|
|
(I[510] = (T)(img)(_p2##x,_n8##y,z,c)), \
|
|
(I[535] = (T)(img)(_p2##x,_n9##y,z,c)), \
|
|
(I[560] = (T)(img)(_p2##x,_n10##y,z,c)), \
|
|
(I[585] = (T)(img)(_p2##x,_n11##y,z,c)), \
|
|
(I[610] = (T)(img)(_p2##x,_n12##y,z,c)), \
|
|
(I[11] = (T)(img)(_p1##x,_p12##y,z,c)), \
|
|
(I[36] = (T)(img)(_p1##x,_p11##y,z,c)), \
|
|
(I[61] = (T)(img)(_p1##x,_p10##y,z,c)), \
|
|
(I[86] = (T)(img)(_p1##x,_p9##y,z,c)), \
|
|
(I[111] = (T)(img)(_p1##x,_p8##y,z,c)), \
|
|
(I[136] = (T)(img)(_p1##x,_p7##y,z,c)), \
|
|
(I[161] = (T)(img)(_p1##x,_p6##y,z,c)), \
|
|
(I[186] = (T)(img)(_p1##x,_p5##y,z,c)), \
|
|
(I[211] = (T)(img)(_p1##x,_p4##y,z,c)), \
|
|
(I[236] = (T)(img)(_p1##x,_p3##y,z,c)), \
|
|
(I[261] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[286] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[311] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[336] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[361] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[386] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[411] = (T)(img)(_p1##x,_n4##y,z,c)), \
|
|
(I[436] = (T)(img)(_p1##x,_n5##y,z,c)), \
|
|
(I[461] = (T)(img)(_p1##x,_n6##y,z,c)), \
|
|
(I[486] = (T)(img)(_p1##x,_n7##y,z,c)), \
|
|
(I[511] = (T)(img)(_p1##x,_n8##y,z,c)), \
|
|
(I[536] = (T)(img)(_p1##x,_n9##y,z,c)), \
|
|
(I[561] = (T)(img)(_p1##x,_n10##y,z,c)), \
|
|
(I[586] = (T)(img)(_p1##x,_n11##y,z,c)), \
|
|
(I[611] = (T)(img)(_p1##x,_n12##y,z,c)), \
|
|
(I[12] = (T)(img)(x,_p12##y,z,c)), \
|
|
(I[37] = (T)(img)(x,_p11##y,z,c)), \
|
|
(I[62] = (T)(img)(x,_p10##y,z,c)), \
|
|
(I[87] = (T)(img)(x,_p9##y,z,c)), \
|
|
(I[112] = (T)(img)(x,_p8##y,z,c)), \
|
|
(I[137] = (T)(img)(x,_p7##y,z,c)), \
|
|
(I[162] = (T)(img)(x,_p6##y,z,c)), \
|
|
(I[187] = (T)(img)(x,_p5##y,z,c)), \
|
|
(I[212] = (T)(img)(x,_p4##y,z,c)), \
|
|
(I[237] = (T)(img)(x,_p3##y,z,c)), \
|
|
(I[262] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[287] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[312] = (T)(img)(x,y,z,c)), \
|
|
(I[337] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[362] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[387] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[412] = (T)(img)(x,_n4##y,z,c)), \
|
|
(I[437] = (T)(img)(x,_n5##y,z,c)), \
|
|
(I[462] = (T)(img)(x,_n6##y,z,c)), \
|
|
(I[487] = (T)(img)(x,_n7##y,z,c)), \
|
|
(I[512] = (T)(img)(x,_n8##y,z,c)), \
|
|
(I[537] = (T)(img)(x,_n9##y,z,c)), \
|
|
(I[562] = (T)(img)(x,_n10##y,z,c)), \
|
|
(I[587] = (T)(img)(x,_n11##y,z,c)), \
|
|
(I[612] = (T)(img)(x,_n12##y,z,c)), \
|
|
(I[13] = (T)(img)(_n1##x,_p12##y,z,c)), \
|
|
(I[38] = (T)(img)(_n1##x,_p11##y,z,c)), \
|
|
(I[63] = (T)(img)(_n1##x,_p10##y,z,c)), \
|
|
(I[88] = (T)(img)(_n1##x,_p9##y,z,c)), \
|
|
(I[113] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[138] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[163] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[188] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[213] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[238] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[263] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[288] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[313] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[338] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[363] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[388] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[413] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[438] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[463] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[488] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[513] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[538] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[563] = (T)(img)(_n1##x,_n10##y,z,c)), \
|
|
(I[588] = (T)(img)(_n1##x,_n11##y,z,c)), \
|
|
(I[613] = (T)(img)(_n1##x,_n12##y,z,c)), \
|
|
(I[14] = (T)(img)(_n2##x,_p12##y,z,c)), \
|
|
(I[39] = (T)(img)(_n2##x,_p11##y,z,c)), \
|
|
(I[64] = (T)(img)(_n2##x,_p10##y,z,c)), \
|
|
(I[89] = (T)(img)(_n2##x,_p9##y,z,c)), \
|
|
(I[114] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[139] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[164] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[189] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[214] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[239] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[264] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[289] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[314] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[339] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[364] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[389] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[414] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[439] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[464] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[489] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[514] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[539] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[564] = (T)(img)(_n2##x,_n10##y,z,c)), \
|
|
(I[589] = (T)(img)(_n2##x,_n11##y,z,c)), \
|
|
(I[614] = (T)(img)(_n2##x,_n12##y,z,c)), \
|
|
(I[15] = (T)(img)(_n3##x,_p12##y,z,c)), \
|
|
(I[40] = (T)(img)(_n3##x,_p11##y,z,c)), \
|
|
(I[65] = (T)(img)(_n3##x,_p10##y,z,c)), \
|
|
(I[90] = (T)(img)(_n3##x,_p9##y,z,c)), \
|
|
(I[115] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[140] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[165] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[190] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[215] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[240] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[265] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[290] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[315] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[340] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[365] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[390] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[415] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[440] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[465] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[490] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[515] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[540] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[565] = (T)(img)(_n3##x,_n10##y,z,c)), \
|
|
(I[590] = (T)(img)(_n3##x,_n11##y,z,c)), \
|
|
(I[615] = (T)(img)(_n3##x,_n12##y,z,c)), \
|
|
(I[16] = (T)(img)(_n4##x,_p12##y,z,c)), \
|
|
(I[41] = (T)(img)(_n4##x,_p11##y,z,c)), \
|
|
(I[66] = (T)(img)(_n4##x,_p10##y,z,c)), \
|
|
(I[91] = (T)(img)(_n4##x,_p9##y,z,c)), \
|
|
(I[116] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[141] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[166] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[191] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[216] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[241] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[266] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[291] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[316] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[341] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[366] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[391] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[416] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[441] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[466] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[491] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[516] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[541] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[566] = (T)(img)(_n4##x,_n10##y,z,c)), \
|
|
(I[591] = (T)(img)(_n4##x,_n11##y,z,c)), \
|
|
(I[616] = (T)(img)(_n4##x,_n12##y,z,c)), \
|
|
(I[17] = (T)(img)(_n5##x,_p12##y,z,c)), \
|
|
(I[42] = (T)(img)(_n5##x,_p11##y,z,c)), \
|
|
(I[67] = (T)(img)(_n5##x,_p10##y,z,c)), \
|
|
(I[92] = (T)(img)(_n5##x,_p9##y,z,c)), \
|
|
(I[117] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[142] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[167] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[192] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[217] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[242] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[267] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[292] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[317] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[342] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[367] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[392] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[417] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[442] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[467] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[492] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[517] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[542] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[567] = (T)(img)(_n5##x,_n10##y,z,c)), \
|
|
(I[592] = (T)(img)(_n5##x,_n11##y,z,c)), \
|
|
(I[617] = (T)(img)(_n5##x,_n12##y,z,c)), \
|
|
(I[18] = (T)(img)(_n6##x,_p12##y,z,c)), \
|
|
(I[43] = (T)(img)(_n6##x,_p11##y,z,c)), \
|
|
(I[68] = (T)(img)(_n6##x,_p10##y,z,c)), \
|
|
(I[93] = (T)(img)(_n6##x,_p9##y,z,c)), \
|
|
(I[118] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[143] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[168] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[193] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[218] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[243] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[268] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[293] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[318] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[343] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[368] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[393] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[418] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[443] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[468] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[493] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[518] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[543] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[568] = (T)(img)(_n6##x,_n10##y,z,c)), \
|
|
(I[593] = (T)(img)(_n6##x,_n11##y,z,c)), \
|
|
(I[618] = (T)(img)(_n6##x,_n12##y,z,c)), \
|
|
(I[19] = (T)(img)(_n7##x,_p12##y,z,c)), \
|
|
(I[44] = (T)(img)(_n7##x,_p11##y,z,c)), \
|
|
(I[69] = (T)(img)(_n7##x,_p10##y,z,c)), \
|
|
(I[94] = (T)(img)(_n7##x,_p9##y,z,c)), \
|
|
(I[119] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[144] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[169] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[194] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[219] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[244] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[269] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[294] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[319] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[344] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[369] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[394] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[419] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[444] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[469] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[494] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[519] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[544] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[569] = (T)(img)(_n7##x,_n10##y,z,c)), \
|
|
(I[594] = (T)(img)(_n7##x,_n11##y,z,c)), \
|
|
(I[619] = (T)(img)(_n7##x,_n12##y,z,c)), \
|
|
(I[20] = (T)(img)(_n8##x,_p12##y,z,c)), \
|
|
(I[45] = (T)(img)(_n8##x,_p11##y,z,c)), \
|
|
(I[70] = (T)(img)(_n8##x,_p10##y,z,c)), \
|
|
(I[95] = (T)(img)(_n8##x,_p9##y,z,c)), \
|
|
(I[120] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[145] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[170] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[195] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[220] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[245] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[270] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[295] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[320] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[345] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[370] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[395] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[420] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[445] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[470] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[495] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[520] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[545] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
(I[570] = (T)(img)(_n8##x,_n10##y,z,c)), \
|
|
(I[595] = (T)(img)(_n8##x,_n11##y,z,c)), \
|
|
(I[620] = (T)(img)(_n8##x,_n12##y,z,c)), \
|
|
(I[21] = (T)(img)(_n9##x,_p12##y,z,c)), \
|
|
(I[46] = (T)(img)(_n9##x,_p11##y,z,c)), \
|
|
(I[71] = (T)(img)(_n9##x,_p10##y,z,c)), \
|
|
(I[96] = (T)(img)(_n9##x,_p9##y,z,c)), \
|
|
(I[121] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[146] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[171] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[196] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[221] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[246] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[271] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[296] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[321] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[346] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[371] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[396] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[421] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[446] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[471] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[496] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[521] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[546] = (T)(img)(_n9##x,_n9##y,z,c)), \
|
|
(I[571] = (T)(img)(_n9##x,_n10##y,z,c)), \
|
|
(I[596] = (T)(img)(_n9##x,_n11##y,z,c)), \
|
|
(I[621] = (T)(img)(_n9##x,_n12##y,z,c)), \
|
|
(I[22] = (T)(img)(_n10##x,_p12##y,z,c)), \
|
|
(I[47] = (T)(img)(_n10##x,_p11##y,z,c)), \
|
|
(I[72] = (T)(img)(_n10##x,_p10##y,z,c)), \
|
|
(I[97] = (T)(img)(_n10##x,_p9##y,z,c)), \
|
|
(I[122] = (T)(img)(_n10##x,_p8##y,z,c)), \
|
|
(I[147] = (T)(img)(_n10##x,_p7##y,z,c)), \
|
|
(I[172] = (T)(img)(_n10##x,_p6##y,z,c)), \
|
|
(I[197] = (T)(img)(_n10##x,_p5##y,z,c)), \
|
|
(I[222] = (T)(img)(_n10##x,_p4##y,z,c)), \
|
|
(I[247] = (T)(img)(_n10##x,_p3##y,z,c)), \
|
|
(I[272] = (T)(img)(_n10##x,_p2##y,z,c)), \
|
|
(I[297] = (T)(img)(_n10##x,_p1##y,z,c)), \
|
|
(I[322] = (T)(img)(_n10##x,y,z,c)), \
|
|
(I[347] = (T)(img)(_n10##x,_n1##y,z,c)), \
|
|
(I[372] = (T)(img)(_n10##x,_n2##y,z,c)), \
|
|
(I[397] = (T)(img)(_n10##x,_n3##y,z,c)), \
|
|
(I[422] = (T)(img)(_n10##x,_n4##y,z,c)), \
|
|
(I[447] = (T)(img)(_n10##x,_n5##y,z,c)), \
|
|
(I[472] = (T)(img)(_n10##x,_n6##y,z,c)), \
|
|
(I[497] = (T)(img)(_n10##x,_n7##y,z,c)), \
|
|
(I[522] = (T)(img)(_n10##x,_n8##y,z,c)), \
|
|
(I[547] = (T)(img)(_n10##x,_n9##y,z,c)), \
|
|
(I[572] = (T)(img)(_n10##x,_n10##y,z,c)), \
|
|
(I[597] = (T)(img)(_n10##x,_n11##y,z,c)), \
|
|
(I[622] = (T)(img)(_n10##x,_n12##y,z,c)), \
|
|
(I[23] = (T)(img)(_n11##x,_p12##y,z,c)), \
|
|
(I[48] = (T)(img)(_n11##x,_p11##y,z,c)), \
|
|
(I[73] = (T)(img)(_n11##x,_p10##y,z,c)), \
|
|
(I[98] = (T)(img)(_n11##x,_p9##y,z,c)), \
|
|
(I[123] = (T)(img)(_n11##x,_p8##y,z,c)), \
|
|
(I[148] = (T)(img)(_n11##x,_p7##y,z,c)), \
|
|
(I[173] = (T)(img)(_n11##x,_p6##y,z,c)), \
|
|
(I[198] = (T)(img)(_n11##x,_p5##y,z,c)), \
|
|
(I[223] = (T)(img)(_n11##x,_p4##y,z,c)), \
|
|
(I[248] = (T)(img)(_n11##x,_p3##y,z,c)), \
|
|
(I[273] = (T)(img)(_n11##x,_p2##y,z,c)), \
|
|
(I[298] = (T)(img)(_n11##x,_p1##y,z,c)), \
|
|
(I[323] = (T)(img)(_n11##x,y,z,c)), \
|
|
(I[348] = (T)(img)(_n11##x,_n1##y,z,c)), \
|
|
(I[373] = (T)(img)(_n11##x,_n2##y,z,c)), \
|
|
(I[398] = (T)(img)(_n11##x,_n3##y,z,c)), \
|
|
(I[423] = (T)(img)(_n11##x,_n4##y,z,c)), \
|
|
(I[448] = (T)(img)(_n11##x,_n5##y,z,c)), \
|
|
(I[473] = (T)(img)(_n11##x,_n6##y,z,c)), \
|
|
(I[498] = (T)(img)(_n11##x,_n7##y,z,c)), \
|
|
(I[523] = (T)(img)(_n11##x,_n8##y,z,c)), \
|
|
(I[548] = (T)(img)(_n11##x,_n9##y,z,c)), \
|
|
(I[573] = (T)(img)(_n11##x,_n10##y,z,c)), \
|
|
(I[598] = (T)(img)(_n11##x,_n11##y,z,c)), \
|
|
(I[623] = (T)(img)(_n11##x,_n12##y,z,c)), \
|
|
x + 12>=(img).width()?(img).width() - 1:x + 12); \
|
|
x<=(int)(x1) && ((_n12##x<(img).width() && ( \
|
|
(I[24] = (T)(img)(_n12##x,_p12##y,z,c)), \
|
|
(I[49] = (T)(img)(_n12##x,_p11##y,z,c)), \
|
|
(I[74] = (T)(img)(_n12##x,_p10##y,z,c)), \
|
|
(I[99] = (T)(img)(_n12##x,_p9##y,z,c)), \
|
|
(I[124] = (T)(img)(_n12##x,_p8##y,z,c)), \
|
|
(I[149] = (T)(img)(_n12##x,_p7##y,z,c)), \
|
|
(I[174] = (T)(img)(_n12##x,_p6##y,z,c)), \
|
|
(I[199] = (T)(img)(_n12##x,_p5##y,z,c)), \
|
|
(I[224] = (T)(img)(_n12##x,_p4##y,z,c)), \
|
|
(I[249] = (T)(img)(_n12##x,_p3##y,z,c)), \
|
|
(I[274] = (T)(img)(_n12##x,_p2##y,z,c)), \
|
|
(I[299] = (T)(img)(_n12##x,_p1##y,z,c)), \
|
|
(I[324] = (T)(img)(_n12##x,y,z,c)), \
|
|
(I[349] = (T)(img)(_n12##x,_n1##y,z,c)), \
|
|
(I[374] = (T)(img)(_n12##x,_n2##y,z,c)), \
|
|
(I[399] = (T)(img)(_n12##x,_n3##y,z,c)), \
|
|
(I[424] = (T)(img)(_n12##x,_n4##y,z,c)), \
|
|
(I[449] = (T)(img)(_n12##x,_n5##y,z,c)), \
|
|
(I[474] = (T)(img)(_n12##x,_n6##y,z,c)), \
|
|
(I[499] = (T)(img)(_n12##x,_n7##y,z,c)), \
|
|
(I[524] = (T)(img)(_n12##x,_n8##y,z,c)), \
|
|
(I[549] = (T)(img)(_n12##x,_n9##y,z,c)), \
|
|
(I[574] = (T)(img)(_n12##x,_n10##y,z,c)), \
|
|
(I[599] = (T)(img)(_n12##x,_n11##y,z,c)), \
|
|
(I[624] = (T)(img)(_n12##x,_n12##y,z,c)),1)) || \
|
|
_n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], \
|
|
I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], \
|
|
I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], \
|
|
I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], \
|
|
I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], \
|
|
I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], \
|
|
I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], \
|
|
I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], \
|
|
I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], \
|
|
I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], \
|
|
I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], \
|
|
I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], \
|
|
I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], \
|
|
I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], \
|
|
I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], \
|
|
I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], \
|
|
I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], \
|
|
I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], \
|
|
I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], \
|
|
I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], \
|
|
I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], \
|
|
I[525] = I[526], I[526] = I[527], I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], \
|
|
I[550] = I[551], I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], \
|
|
I[575] = I[576], I[576] = I[577], I[577] = I[578], I[578] = I[579], I[579] = I[580], I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], I[587] = I[588], I[588] = I[589], I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], I[593] = I[594], I[594] = I[595], I[595] = I[596], I[596] = I[597], I[597] = I[598], I[598] = I[599], \
|
|
I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], I[607] = I[608], I[608] = I[609], I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], I[615] = I[616], I[616] = I[617], I[617] = I[618], I[618] = I[619], I[619] = I[620], I[620] = I[621], I[621] = I[622], I[622] = I[623], I[623] = I[624], \
|
|
_p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x)
|
|
|
|
#define cimg_get25x25(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p12##x,_p12##y,z,c), I[1] = (T)(img)(_p11##x,_p12##y,z,c), I[2] = (T)(img)(_p10##x,_p12##y,z,c), I[3] = (T)(img)(_p9##x,_p12##y,z,c), I[4] = (T)(img)(_p8##x,_p12##y,z,c), I[5] = (T)(img)(_p7##x,_p12##y,z,c), I[6] = (T)(img)(_p6##x,_p12##y,z,c), I[7] = (T)(img)(_p5##x,_p12##y,z,c), I[8] = (T)(img)(_p4##x,_p12##y,z,c), I[9] = (T)(img)(_p3##x,_p12##y,z,c), I[10] = (T)(img)(_p2##x,_p12##y,z,c), I[11] = (T)(img)(_p1##x,_p12##y,z,c), I[12] = (T)(img)(x,_p12##y,z,c), I[13] = (T)(img)(_n1##x,_p12##y,z,c), I[14] = (T)(img)(_n2##x,_p12##y,z,c), I[15] = (T)(img)(_n3##x,_p12##y,z,c), I[16] = (T)(img)(_n4##x,_p12##y,z,c), I[17] = (T)(img)(_n5##x,_p12##y,z,c), I[18] = (T)(img)(_n6##x,_p12##y,z,c), I[19] = (T)(img)(_n7##x,_p12##y,z,c), I[20] = (T)(img)(_n8##x,_p12##y,z,c), I[21] = (T)(img)(_n9##x,_p12##y,z,c), I[22] = (T)(img)(_n10##x,_p12##y,z,c), I[23] = (T)(img)(_n11##x,_p12##y,z,c), I[24] = (T)(img)(_n12##x,_p12##y,z,c), \
|
|
I[25] = (T)(img)(_p12##x,_p11##y,z,c), I[26] = (T)(img)(_p11##x,_p11##y,z,c), I[27] = (T)(img)(_p10##x,_p11##y,z,c), I[28] = (T)(img)(_p9##x,_p11##y,z,c), I[29] = (T)(img)(_p8##x,_p11##y,z,c), I[30] = (T)(img)(_p7##x,_p11##y,z,c), I[31] = (T)(img)(_p6##x,_p11##y,z,c), I[32] = (T)(img)(_p5##x,_p11##y,z,c), I[33] = (T)(img)(_p4##x,_p11##y,z,c), I[34] = (T)(img)(_p3##x,_p11##y,z,c), I[35] = (T)(img)(_p2##x,_p11##y,z,c), I[36] = (T)(img)(_p1##x,_p11##y,z,c), I[37] = (T)(img)(x,_p11##y,z,c), I[38] = (T)(img)(_n1##x,_p11##y,z,c), I[39] = (T)(img)(_n2##x,_p11##y,z,c), I[40] = (T)(img)(_n3##x,_p11##y,z,c), I[41] = (T)(img)(_n4##x,_p11##y,z,c), I[42] = (T)(img)(_n5##x,_p11##y,z,c), I[43] = (T)(img)(_n6##x,_p11##y,z,c), I[44] = (T)(img)(_n7##x,_p11##y,z,c), I[45] = (T)(img)(_n8##x,_p11##y,z,c), I[46] = (T)(img)(_n9##x,_p11##y,z,c), I[47] = (T)(img)(_n10##x,_p11##y,z,c), I[48] = (T)(img)(_n11##x,_p11##y,z,c), I[49] = (T)(img)(_n12##x,_p11##y,z,c), \
|
|
I[50] = (T)(img)(_p12##x,_p10##y,z,c), I[51] = (T)(img)(_p11##x,_p10##y,z,c), I[52] = (T)(img)(_p10##x,_p10##y,z,c), I[53] = (T)(img)(_p9##x,_p10##y,z,c), I[54] = (T)(img)(_p8##x,_p10##y,z,c), I[55] = (T)(img)(_p7##x,_p10##y,z,c), I[56] = (T)(img)(_p6##x,_p10##y,z,c), I[57] = (T)(img)(_p5##x,_p10##y,z,c), I[58] = (T)(img)(_p4##x,_p10##y,z,c), I[59] = (T)(img)(_p3##x,_p10##y,z,c), I[60] = (T)(img)(_p2##x,_p10##y,z,c), I[61] = (T)(img)(_p1##x,_p10##y,z,c), I[62] = (T)(img)(x,_p10##y,z,c), I[63] = (T)(img)(_n1##x,_p10##y,z,c), I[64] = (T)(img)(_n2##x,_p10##y,z,c), I[65] = (T)(img)(_n3##x,_p10##y,z,c), I[66] = (T)(img)(_n4##x,_p10##y,z,c), I[67] = (T)(img)(_n5##x,_p10##y,z,c), I[68] = (T)(img)(_n6##x,_p10##y,z,c), I[69] = (T)(img)(_n7##x,_p10##y,z,c), I[70] = (T)(img)(_n8##x,_p10##y,z,c), I[71] = (T)(img)(_n9##x,_p10##y,z,c), I[72] = (T)(img)(_n10##x,_p10##y,z,c), I[73] = (T)(img)(_n11##x,_p10##y,z,c), I[74] = (T)(img)(_n12##x,_p10##y,z,c), \
|
|
I[75] = (T)(img)(_p12##x,_p9##y,z,c), I[76] = (T)(img)(_p11##x,_p9##y,z,c), I[77] = (T)(img)(_p10##x,_p9##y,z,c), I[78] = (T)(img)(_p9##x,_p9##y,z,c), I[79] = (T)(img)(_p8##x,_p9##y,z,c), I[80] = (T)(img)(_p7##x,_p9##y,z,c), I[81] = (T)(img)(_p6##x,_p9##y,z,c), I[82] = (T)(img)(_p5##x,_p9##y,z,c), I[83] = (T)(img)(_p4##x,_p9##y,z,c), I[84] = (T)(img)(_p3##x,_p9##y,z,c), I[85] = (T)(img)(_p2##x,_p9##y,z,c), I[86] = (T)(img)(_p1##x,_p9##y,z,c), I[87] = (T)(img)(x,_p9##y,z,c), I[88] = (T)(img)(_n1##x,_p9##y,z,c), I[89] = (T)(img)(_n2##x,_p9##y,z,c), I[90] = (T)(img)(_n3##x,_p9##y,z,c), I[91] = (T)(img)(_n4##x,_p9##y,z,c), I[92] = (T)(img)(_n5##x,_p9##y,z,c), I[93] = (T)(img)(_n6##x,_p9##y,z,c), I[94] = (T)(img)(_n7##x,_p9##y,z,c), I[95] = (T)(img)(_n8##x,_p9##y,z,c), I[96] = (T)(img)(_n9##x,_p9##y,z,c), I[97] = (T)(img)(_n10##x,_p9##y,z,c), I[98] = (T)(img)(_n11##x,_p9##y,z,c), I[99] = (T)(img)(_n12##x,_p9##y,z,c), \
|
|
I[100] = (T)(img)(_p12##x,_p8##y,z,c), I[101] = (T)(img)(_p11##x,_p8##y,z,c), I[102] = (T)(img)(_p10##x,_p8##y,z,c), I[103] = (T)(img)(_p9##x,_p8##y,z,c), I[104] = (T)(img)(_p8##x,_p8##y,z,c), I[105] = (T)(img)(_p7##x,_p8##y,z,c), I[106] = (T)(img)(_p6##x,_p8##y,z,c), I[107] = (T)(img)(_p5##x,_p8##y,z,c), I[108] = (T)(img)(_p4##x,_p8##y,z,c), I[109] = (T)(img)(_p3##x,_p8##y,z,c), I[110] = (T)(img)(_p2##x,_p8##y,z,c), I[111] = (T)(img)(_p1##x,_p8##y,z,c), I[112] = (T)(img)(x,_p8##y,z,c), I[113] = (T)(img)(_n1##x,_p8##y,z,c), I[114] = (T)(img)(_n2##x,_p8##y,z,c), I[115] = (T)(img)(_n3##x,_p8##y,z,c), I[116] = (T)(img)(_n4##x,_p8##y,z,c), I[117] = (T)(img)(_n5##x,_p8##y,z,c), I[118] = (T)(img)(_n6##x,_p8##y,z,c), I[119] = (T)(img)(_n7##x,_p8##y,z,c), I[120] = (T)(img)(_n8##x,_p8##y,z,c), I[121] = (T)(img)(_n9##x,_p8##y,z,c), I[122] = (T)(img)(_n10##x,_p8##y,z,c), I[123] = (T)(img)(_n11##x,_p8##y,z,c), I[124] = (T)(img)(_n12##x,_p8##y,z,c), \
|
|
I[125] = (T)(img)(_p12##x,_p7##y,z,c), I[126] = (T)(img)(_p11##x,_p7##y,z,c), I[127] = (T)(img)(_p10##x,_p7##y,z,c), I[128] = (T)(img)(_p9##x,_p7##y,z,c), I[129] = (T)(img)(_p8##x,_p7##y,z,c), I[130] = (T)(img)(_p7##x,_p7##y,z,c), I[131] = (T)(img)(_p6##x,_p7##y,z,c), I[132] = (T)(img)(_p5##x,_p7##y,z,c), I[133] = (T)(img)(_p4##x,_p7##y,z,c), I[134] = (T)(img)(_p3##x,_p7##y,z,c), I[135] = (T)(img)(_p2##x,_p7##y,z,c), I[136] = (T)(img)(_p1##x,_p7##y,z,c), I[137] = (T)(img)(x,_p7##y,z,c), I[138] = (T)(img)(_n1##x,_p7##y,z,c), I[139] = (T)(img)(_n2##x,_p7##y,z,c), I[140] = (T)(img)(_n3##x,_p7##y,z,c), I[141] = (T)(img)(_n4##x,_p7##y,z,c), I[142] = (T)(img)(_n5##x,_p7##y,z,c), I[143] = (T)(img)(_n6##x,_p7##y,z,c), I[144] = (T)(img)(_n7##x,_p7##y,z,c), I[145] = (T)(img)(_n8##x,_p7##y,z,c), I[146] = (T)(img)(_n9##x,_p7##y,z,c), I[147] = (T)(img)(_n10##x,_p7##y,z,c), I[148] = (T)(img)(_n11##x,_p7##y,z,c), I[149] = (T)(img)(_n12##x,_p7##y,z,c), \
|
|
I[150] = (T)(img)(_p12##x,_p6##y,z,c), I[151] = (T)(img)(_p11##x,_p6##y,z,c), I[152] = (T)(img)(_p10##x,_p6##y,z,c), I[153] = (T)(img)(_p9##x,_p6##y,z,c), I[154] = (T)(img)(_p8##x,_p6##y,z,c), I[155] = (T)(img)(_p7##x,_p6##y,z,c), I[156] = (T)(img)(_p6##x,_p6##y,z,c), I[157] = (T)(img)(_p5##x,_p6##y,z,c), I[158] = (T)(img)(_p4##x,_p6##y,z,c), I[159] = (T)(img)(_p3##x,_p6##y,z,c), I[160] = (T)(img)(_p2##x,_p6##y,z,c), I[161] = (T)(img)(_p1##x,_p6##y,z,c), I[162] = (T)(img)(x,_p6##y,z,c), I[163] = (T)(img)(_n1##x,_p6##y,z,c), I[164] = (T)(img)(_n2##x,_p6##y,z,c), I[165] = (T)(img)(_n3##x,_p6##y,z,c), I[166] = (T)(img)(_n4##x,_p6##y,z,c), I[167] = (T)(img)(_n5##x,_p6##y,z,c), I[168] = (T)(img)(_n6##x,_p6##y,z,c), I[169] = (T)(img)(_n7##x,_p6##y,z,c), I[170] = (T)(img)(_n8##x,_p6##y,z,c), I[171] = (T)(img)(_n9##x,_p6##y,z,c), I[172] = (T)(img)(_n10##x,_p6##y,z,c), I[173] = (T)(img)(_n11##x,_p6##y,z,c), I[174] = (T)(img)(_n12##x,_p6##y,z,c), \
|
|
I[175] = (T)(img)(_p12##x,_p5##y,z,c), I[176] = (T)(img)(_p11##x,_p5##y,z,c), I[177] = (T)(img)(_p10##x,_p5##y,z,c), I[178] = (T)(img)(_p9##x,_p5##y,z,c), I[179] = (T)(img)(_p8##x,_p5##y,z,c), I[180] = (T)(img)(_p7##x,_p5##y,z,c), I[181] = (T)(img)(_p6##x,_p5##y,z,c), I[182] = (T)(img)(_p5##x,_p5##y,z,c), I[183] = (T)(img)(_p4##x,_p5##y,z,c), I[184] = (T)(img)(_p3##x,_p5##y,z,c), I[185] = (T)(img)(_p2##x,_p5##y,z,c), I[186] = (T)(img)(_p1##x,_p5##y,z,c), I[187] = (T)(img)(x,_p5##y,z,c), I[188] = (T)(img)(_n1##x,_p5##y,z,c), I[189] = (T)(img)(_n2##x,_p5##y,z,c), I[190] = (T)(img)(_n3##x,_p5##y,z,c), I[191] = (T)(img)(_n4##x,_p5##y,z,c), I[192] = (T)(img)(_n5##x,_p5##y,z,c), I[193] = (T)(img)(_n6##x,_p5##y,z,c), I[194] = (T)(img)(_n7##x,_p5##y,z,c), I[195] = (T)(img)(_n8##x,_p5##y,z,c), I[196] = (T)(img)(_n9##x,_p5##y,z,c), I[197] = (T)(img)(_n10##x,_p5##y,z,c), I[198] = (T)(img)(_n11##x,_p5##y,z,c), I[199] = (T)(img)(_n12##x,_p5##y,z,c), \
|
|
I[200] = (T)(img)(_p12##x,_p4##y,z,c), I[201] = (T)(img)(_p11##x,_p4##y,z,c), I[202] = (T)(img)(_p10##x,_p4##y,z,c), I[203] = (T)(img)(_p9##x,_p4##y,z,c), I[204] = (T)(img)(_p8##x,_p4##y,z,c), I[205] = (T)(img)(_p7##x,_p4##y,z,c), I[206] = (T)(img)(_p6##x,_p4##y,z,c), I[207] = (T)(img)(_p5##x,_p4##y,z,c), I[208] = (T)(img)(_p4##x,_p4##y,z,c), I[209] = (T)(img)(_p3##x,_p4##y,z,c), I[210] = (T)(img)(_p2##x,_p4##y,z,c), I[211] = (T)(img)(_p1##x,_p4##y,z,c), I[212] = (T)(img)(x,_p4##y,z,c), I[213] = (T)(img)(_n1##x,_p4##y,z,c), I[214] = (T)(img)(_n2##x,_p4##y,z,c), I[215] = (T)(img)(_n3##x,_p4##y,z,c), I[216] = (T)(img)(_n4##x,_p4##y,z,c), I[217] = (T)(img)(_n5##x,_p4##y,z,c), I[218] = (T)(img)(_n6##x,_p4##y,z,c), I[219] = (T)(img)(_n7##x,_p4##y,z,c), I[220] = (T)(img)(_n8##x,_p4##y,z,c), I[221] = (T)(img)(_n9##x,_p4##y,z,c), I[222] = (T)(img)(_n10##x,_p4##y,z,c), I[223] = (T)(img)(_n11##x,_p4##y,z,c), I[224] = (T)(img)(_n12##x,_p4##y,z,c), \
|
|
I[225] = (T)(img)(_p12##x,_p3##y,z,c), I[226] = (T)(img)(_p11##x,_p3##y,z,c), I[227] = (T)(img)(_p10##x,_p3##y,z,c), I[228] = (T)(img)(_p9##x,_p3##y,z,c), I[229] = (T)(img)(_p8##x,_p3##y,z,c), I[230] = (T)(img)(_p7##x,_p3##y,z,c), I[231] = (T)(img)(_p6##x,_p3##y,z,c), I[232] = (T)(img)(_p5##x,_p3##y,z,c), I[233] = (T)(img)(_p4##x,_p3##y,z,c), I[234] = (T)(img)(_p3##x,_p3##y,z,c), I[235] = (T)(img)(_p2##x,_p3##y,z,c), I[236] = (T)(img)(_p1##x,_p3##y,z,c), I[237] = (T)(img)(x,_p3##y,z,c), I[238] = (T)(img)(_n1##x,_p3##y,z,c), I[239] = (T)(img)(_n2##x,_p3##y,z,c), I[240] = (T)(img)(_n3##x,_p3##y,z,c), I[241] = (T)(img)(_n4##x,_p3##y,z,c), I[242] = (T)(img)(_n5##x,_p3##y,z,c), I[243] = (T)(img)(_n6##x,_p3##y,z,c), I[244] = (T)(img)(_n7##x,_p3##y,z,c), I[245] = (T)(img)(_n8##x,_p3##y,z,c), I[246] = (T)(img)(_n9##x,_p3##y,z,c), I[247] = (T)(img)(_n10##x,_p3##y,z,c), I[248] = (T)(img)(_n11##x,_p3##y,z,c), I[249] = (T)(img)(_n12##x,_p3##y,z,c), \
|
|
I[250] = (T)(img)(_p12##x,_p2##y,z,c), I[251] = (T)(img)(_p11##x,_p2##y,z,c), I[252] = (T)(img)(_p10##x,_p2##y,z,c), I[253] = (T)(img)(_p9##x,_p2##y,z,c), I[254] = (T)(img)(_p8##x,_p2##y,z,c), I[255] = (T)(img)(_p7##x,_p2##y,z,c), I[256] = (T)(img)(_p6##x,_p2##y,z,c), I[257] = (T)(img)(_p5##x,_p2##y,z,c), I[258] = (T)(img)(_p4##x,_p2##y,z,c), I[259] = (T)(img)(_p3##x,_p2##y,z,c), I[260] = (T)(img)(_p2##x,_p2##y,z,c), I[261] = (T)(img)(_p1##x,_p2##y,z,c), I[262] = (T)(img)(x,_p2##y,z,c), I[263] = (T)(img)(_n1##x,_p2##y,z,c), I[264] = (T)(img)(_n2##x,_p2##y,z,c), I[265] = (T)(img)(_n3##x,_p2##y,z,c), I[266] = (T)(img)(_n4##x,_p2##y,z,c), I[267] = (T)(img)(_n5##x,_p2##y,z,c), I[268] = (T)(img)(_n6##x,_p2##y,z,c), I[269] = (T)(img)(_n7##x,_p2##y,z,c), I[270] = (T)(img)(_n8##x,_p2##y,z,c), I[271] = (T)(img)(_n9##x,_p2##y,z,c), I[272] = (T)(img)(_n10##x,_p2##y,z,c), I[273] = (T)(img)(_n11##x,_p2##y,z,c), I[274] = (T)(img)(_n12##x,_p2##y,z,c), \
|
|
I[275] = (T)(img)(_p12##x,_p1##y,z,c), I[276] = (T)(img)(_p11##x,_p1##y,z,c), I[277] = (T)(img)(_p10##x,_p1##y,z,c), I[278] = (T)(img)(_p9##x,_p1##y,z,c), I[279] = (T)(img)(_p8##x,_p1##y,z,c), I[280] = (T)(img)(_p7##x,_p1##y,z,c), I[281] = (T)(img)(_p6##x,_p1##y,z,c), I[282] = (T)(img)(_p5##x,_p1##y,z,c), I[283] = (T)(img)(_p4##x,_p1##y,z,c), I[284] = (T)(img)(_p3##x,_p1##y,z,c), I[285] = (T)(img)(_p2##x,_p1##y,z,c), I[286] = (T)(img)(_p1##x,_p1##y,z,c), I[287] = (T)(img)(x,_p1##y,z,c), I[288] = (T)(img)(_n1##x,_p1##y,z,c), I[289] = (T)(img)(_n2##x,_p1##y,z,c), I[290] = (T)(img)(_n3##x,_p1##y,z,c), I[291] = (T)(img)(_n4##x,_p1##y,z,c), I[292] = (T)(img)(_n5##x,_p1##y,z,c), I[293] = (T)(img)(_n6##x,_p1##y,z,c), I[294] = (T)(img)(_n7##x,_p1##y,z,c), I[295] = (T)(img)(_n8##x,_p1##y,z,c), I[296] = (T)(img)(_n9##x,_p1##y,z,c), I[297] = (T)(img)(_n10##x,_p1##y,z,c), I[298] = (T)(img)(_n11##x,_p1##y,z,c), I[299] = (T)(img)(_n12##x,_p1##y,z,c), \
|
|
I[300] = (T)(img)(_p12##x,y,z,c), I[301] = (T)(img)(_p11##x,y,z,c), I[302] = (T)(img)(_p10##x,y,z,c), I[303] = (T)(img)(_p9##x,y,z,c), I[304] = (T)(img)(_p8##x,y,z,c), I[305] = (T)(img)(_p7##x,y,z,c), I[306] = (T)(img)(_p6##x,y,z,c), I[307] = (T)(img)(_p5##x,y,z,c), I[308] = (T)(img)(_p4##x,y,z,c), I[309] = (T)(img)(_p3##x,y,z,c), I[310] = (T)(img)(_p2##x,y,z,c), I[311] = (T)(img)(_p1##x,y,z,c), I[312] = (T)(img)(x,y,z,c), I[313] = (T)(img)(_n1##x,y,z,c), I[314] = (T)(img)(_n2##x,y,z,c), I[315] = (T)(img)(_n3##x,y,z,c), I[316] = (T)(img)(_n4##x,y,z,c), I[317] = (T)(img)(_n5##x,y,z,c), I[318] = (T)(img)(_n6##x,y,z,c), I[319] = (T)(img)(_n7##x,y,z,c), I[320] = (T)(img)(_n8##x,y,z,c), I[321] = (T)(img)(_n9##x,y,z,c), I[322] = (T)(img)(_n10##x,y,z,c), I[323] = (T)(img)(_n11##x,y,z,c), I[324] = (T)(img)(_n12##x,y,z,c), \
|
|
I[325] = (T)(img)(_p12##x,_n1##y,z,c), I[326] = (T)(img)(_p11##x,_n1##y,z,c), I[327] = (T)(img)(_p10##x,_n1##y,z,c), I[328] = (T)(img)(_p9##x,_n1##y,z,c), I[329] = (T)(img)(_p8##x,_n1##y,z,c), I[330] = (T)(img)(_p7##x,_n1##y,z,c), I[331] = (T)(img)(_p6##x,_n1##y,z,c), I[332] = (T)(img)(_p5##x,_n1##y,z,c), I[333] = (T)(img)(_p4##x,_n1##y,z,c), I[334] = (T)(img)(_p3##x,_n1##y,z,c), I[335] = (T)(img)(_p2##x,_n1##y,z,c), I[336] = (T)(img)(_p1##x,_n1##y,z,c), I[337] = (T)(img)(x,_n1##y,z,c), I[338] = (T)(img)(_n1##x,_n1##y,z,c), I[339] = (T)(img)(_n2##x,_n1##y,z,c), I[340] = (T)(img)(_n3##x,_n1##y,z,c), I[341] = (T)(img)(_n4##x,_n1##y,z,c), I[342] = (T)(img)(_n5##x,_n1##y,z,c), I[343] = (T)(img)(_n6##x,_n1##y,z,c), I[344] = (T)(img)(_n7##x,_n1##y,z,c), I[345] = (T)(img)(_n8##x,_n1##y,z,c), I[346] = (T)(img)(_n9##x,_n1##y,z,c), I[347] = (T)(img)(_n10##x,_n1##y,z,c), I[348] = (T)(img)(_n11##x,_n1##y,z,c), I[349] = (T)(img)(_n12##x,_n1##y,z,c), \
|
|
I[350] = (T)(img)(_p12##x,_n2##y,z,c), I[351] = (T)(img)(_p11##x,_n2##y,z,c), I[352] = (T)(img)(_p10##x,_n2##y,z,c), I[353] = (T)(img)(_p9##x,_n2##y,z,c), I[354] = (T)(img)(_p8##x,_n2##y,z,c), I[355] = (T)(img)(_p7##x,_n2##y,z,c), I[356] = (T)(img)(_p6##x,_n2##y,z,c), I[357] = (T)(img)(_p5##x,_n2##y,z,c), I[358] = (T)(img)(_p4##x,_n2##y,z,c), I[359] = (T)(img)(_p3##x,_n2##y,z,c), I[360] = (T)(img)(_p2##x,_n2##y,z,c), I[361] = (T)(img)(_p1##x,_n2##y,z,c), I[362] = (T)(img)(x,_n2##y,z,c), I[363] = (T)(img)(_n1##x,_n2##y,z,c), I[364] = (T)(img)(_n2##x,_n2##y,z,c), I[365] = (T)(img)(_n3##x,_n2##y,z,c), I[366] = (T)(img)(_n4##x,_n2##y,z,c), I[367] = (T)(img)(_n5##x,_n2##y,z,c), I[368] = (T)(img)(_n6##x,_n2##y,z,c), I[369] = (T)(img)(_n7##x,_n2##y,z,c), I[370] = (T)(img)(_n8##x,_n2##y,z,c), I[371] = (T)(img)(_n9##x,_n2##y,z,c), I[372] = (T)(img)(_n10##x,_n2##y,z,c), I[373] = (T)(img)(_n11##x,_n2##y,z,c), I[374] = (T)(img)(_n12##x,_n2##y,z,c), \
|
|
I[375] = (T)(img)(_p12##x,_n3##y,z,c), I[376] = (T)(img)(_p11##x,_n3##y,z,c), I[377] = (T)(img)(_p10##x,_n3##y,z,c), I[378] = (T)(img)(_p9##x,_n3##y,z,c), I[379] = (T)(img)(_p8##x,_n3##y,z,c), I[380] = (T)(img)(_p7##x,_n3##y,z,c), I[381] = (T)(img)(_p6##x,_n3##y,z,c), I[382] = (T)(img)(_p5##x,_n3##y,z,c), I[383] = (T)(img)(_p4##x,_n3##y,z,c), I[384] = (T)(img)(_p3##x,_n3##y,z,c), I[385] = (T)(img)(_p2##x,_n3##y,z,c), I[386] = (T)(img)(_p1##x,_n3##y,z,c), I[387] = (T)(img)(x,_n3##y,z,c), I[388] = (T)(img)(_n1##x,_n3##y,z,c), I[389] = (T)(img)(_n2##x,_n3##y,z,c), I[390] = (T)(img)(_n3##x,_n3##y,z,c), I[391] = (T)(img)(_n4##x,_n3##y,z,c), I[392] = (T)(img)(_n5##x,_n3##y,z,c), I[393] = (T)(img)(_n6##x,_n3##y,z,c), I[394] = (T)(img)(_n7##x,_n3##y,z,c), I[395] = (T)(img)(_n8##x,_n3##y,z,c), I[396] = (T)(img)(_n9##x,_n3##y,z,c), I[397] = (T)(img)(_n10##x,_n3##y,z,c), I[398] = (T)(img)(_n11##x,_n3##y,z,c), I[399] = (T)(img)(_n12##x,_n3##y,z,c), \
|
|
I[400] = (T)(img)(_p12##x,_n4##y,z,c), I[401] = (T)(img)(_p11##x,_n4##y,z,c), I[402] = (T)(img)(_p10##x,_n4##y,z,c), I[403] = (T)(img)(_p9##x,_n4##y,z,c), I[404] = (T)(img)(_p8##x,_n4##y,z,c), I[405] = (T)(img)(_p7##x,_n4##y,z,c), I[406] = (T)(img)(_p6##x,_n4##y,z,c), I[407] = (T)(img)(_p5##x,_n4##y,z,c), I[408] = (T)(img)(_p4##x,_n4##y,z,c), I[409] = (T)(img)(_p3##x,_n4##y,z,c), I[410] = (T)(img)(_p2##x,_n4##y,z,c), I[411] = (T)(img)(_p1##x,_n4##y,z,c), I[412] = (T)(img)(x,_n4##y,z,c), I[413] = (T)(img)(_n1##x,_n4##y,z,c), I[414] = (T)(img)(_n2##x,_n4##y,z,c), I[415] = (T)(img)(_n3##x,_n4##y,z,c), I[416] = (T)(img)(_n4##x,_n4##y,z,c), I[417] = (T)(img)(_n5##x,_n4##y,z,c), I[418] = (T)(img)(_n6##x,_n4##y,z,c), I[419] = (T)(img)(_n7##x,_n4##y,z,c), I[420] = (T)(img)(_n8##x,_n4##y,z,c), I[421] = (T)(img)(_n9##x,_n4##y,z,c), I[422] = (T)(img)(_n10##x,_n4##y,z,c), I[423] = (T)(img)(_n11##x,_n4##y,z,c), I[424] = (T)(img)(_n12##x,_n4##y,z,c), \
|
|
I[425] = (T)(img)(_p12##x,_n5##y,z,c), I[426] = (T)(img)(_p11##x,_n5##y,z,c), I[427] = (T)(img)(_p10##x,_n5##y,z,c), I[428] = (T)(img)(_p9##x,_n5##y,z,c), I[429] = (T)(img)(_p8##x,_n5##y,z,c), I[430] = (T)(img)(_p7##x,_n5##y,z,c), I[431] = (T)(img)(_p6##x,_n5##y,z,c), I[432] = (T)(img)(_p5##x,_n5##y,z,c), I[433] = (T)(img)(_p4##x,_n5##y,z,c), I[434] = (T)(img)(_p3##x,_n5##y,z,c), I[435] = (T)(img)(_p2##x,_n5##y,z,c), I[436] = (T)(img)(_p1##x,_n5##y,z,c), I[437] = (T)(img)(x,_n5##y,z,c), I[438] = (T)(img)(_n1##x,_n5##y,z,c), I[439] = (T)(img)(_n2##x,_n5##y,z,c), I[440] = (T)(img)(_n3##x,_n5##y,z,c), I[441] = (T)(img)(_n4##x,_n5##y,z,c), I[442] = (T)(img)(_n5##x,_n5##y,z,c), I[443] = (T)(img)(_n6##x,_n5##y,z,c), I[444] = (T)(img)(_n7##x,_n5##y,z,c), I[445] = (T)(img)(_n8##x,_n5##y,z,c), I[446] = (T)(img)(_n9##x,_n5##y,z,c), I[447] = (T)(img)(_n10##x,_n5##y,z,c), I[448] = (T)(img)(_n11##x,_n5##y,z,c), I[449] = (T)(img)(_n12##x,_n5##y,z,c), \
|
|
I[450] = (T)(img)(_p12##x,_n6##y,z,c), I[451] = (T)(img)(_p11##x,_n6##y,z,c), I[452] = (T)(img)(_p10##x,_n6##y,z,c), I[453] = (T)(img)(_p9##x,_n6##y,z,c), I[454] = (T)(img)(_p8##x,_n6##y,z,c), I[455] = (T)(img)(_p7##x,_n6##y,z,c), I[456] = (T)(img)(_p6##x,_n6##y,z,c), I[457] = (T)(img)(_p5##x,_n6##y,z,c), I[458] = (T)(img)(_p4##x,_n6##y,z,c), I[459] = (T)(img)(_p3##x,_n6##y,z,c), I[460] = (T)(img)(_p2##x,_n6##y,z,c), I[461] = (T)(img)(_p1##x,_n6##y,z,c), I[462] = (T)(img)(x,_n6##y,z,c), I[463] = (T)(img)(_n1##x,_n6##y,z,c), I[464] = (T)(img)(_n2##x,_n6##y,z,c), I[465] = (T)(img)(_n3##x,_n6##y,z,c), I[466] = (T)(img)(_n4##x,_n6##y,z,c), I[467] = (T)(img)(_n5##x,_n6##y,z,c), I[468] = (T)(img)(_n6##x,_n6##y,z,c), I[469] = (T)(img)(_n7##x,_n6##y,z,c), I[470] = (T)(img)(_n8##x,_n6##y,z,c), I[471] = (T)(img)(_n9##x,_n6##y,z,c), I[472] = (T)(img)(_n10##x,_n6##y,z,c), I[473] = (T)(img)(_n11##x,_n6##y,z,c), I[474] = (T)(img)(_n12##x,_n6##y,z,c), \
|
|
I[475] = (T)(img)(_p12##x,_n7##y,z,c), I[476] = (T)(img)(_p11##x,_n7##y,z,c), I[477] = (T)(img)(_p10##x,_n7##y,z,c), I[478] = (T)(img)(_p9##x,_n7##y,z,c), I[479] = (T)(img)(_p8##x,_n7##y,z,c), I[480] = (T)(img)(_p7##x,_n7##y,z,c), I[481] = (T)(img)(_p6##x,_n7##y,z,c), I[482] = (T)(img)(_p5##x,_n7##y,z,c), I[483] = (T)(img)(_p4##x,_n7##y,z,c), I[484] = (T)(img)(_p3##x,_n7##y,z,c), I[485] = (T)(img)(_p2##x,_n7##y,z,c), I[486] = (T)(img)(_p1##x,_n7##y,z,c), I[487] = (T)(img)(x,_n7##y,z,c), I[488] = (T)(img)(_n1##x,_n7##y,z,c), I[489] = (T)(img)(_n2##x,_n7##y,z,c), I[490] = (T)(img)(_n3##x,_n7##y,z,c), I[491] = (T)(img)(_n4##x,_n7##y,z,c), I[492] = (T)(img)(_n5##x,_n7##y,z,c), I[493] = (T)(img)(_n6##x,_n7##y,z,c), I[494] = (T)(img)(_n7##x,_n7##y,z,c), I[495] = (T)(img)(_n8##x,_n7##y,z,c), I[496] = (T)(img)(_n9##x,_n7##y,z,c), I[497] = (T)(img)(_n10##x,_n7##y,z,c), I[498] = (T)(img)(_n11##x,_n7##y,z,c), I[499] = (T)(img)(_n12##x,_n7##y,z,c), \
|
|
I[500] = (T)(img)(_p12##x,_n8##y,z,c), I[501] = (T)(img)(_p11##x,_n8##y,z,c), I[502] = (T)(img)(_p10##x,_n8##y,z,c), I[503] = (T)(img)(_p9##x,_n8##y,z,c), I[504] = (T)(img)(_p8##x,_n8##y,z,c), I[505] = (T)(img)(_p7##x,_n8##y,z,c), I[506] = (T)(img)(_p6##x,_n8##y,z,c), I[507] = (T)(img)(_p5##x,_n8##y,z,c), I[508] = (T)(img)(_p4##x,_n8##y,z,c), I[509] = (T)(img)(_p3##x,_n8##y,z,c), I[510] = (T)(img)(_p2##x,_n8##y,z,c), I[511] = (T)(img)(_p1##x,_n8##y,z,c), I[512] = (T)(img)(x,_n8##y,z,c), I[513] = (T)(img)(_n1##x,_n8##y,z,c), I[514] = (T)(img)(_n2##x,_n8##y,z,c), I[515] = (T)(img)(_n3##x,_n8##y,z,c), I[516] = (T)(img)(_n4##x,_n8##y,z,c), I[517] = (T)(img)(_n5##x,_n8##y,z,c), I[518] = (T)(img)(_n6##x,_n8##y,z,c), I[519] = (T)(img)(_n7##x,_n8##y,z,c), I[520] = (T)(img)(_n8##x,_n8##y,z,c), I[521] = (T)(img)(_n9##x,_n8##y,z,c), I[522] = (T)(img)(_n10##x,_n8##y,z,c), I[523] = (T)(img)(_n11##x,_n8##y,z,c), I[524] = (T)(img)(_n12##x,_n8##y,z,c), \
|
|
I[525] = (T)(img)(_p12##x,_n9##y,z,c), I[526] = (T)(img)(_p11##x,_n9##y,z,c), I[527] = (T)(img)(_p10##x,_n9##y,z,c), I[528] = (T)(img)(_p9##x,_n9##y,z,c), I[529] = (T)(img)(_p8##x,_n9##y,z,c), I[530] = (T)(img)(_p7##x,_n9##y,z,c), I[531] = (T)(img)(_p6##x,_n9##y,z,c), I[532] = (T)(img)(_p5##x,_n9##y,z,c), I[533] = (T)(img)(_p4##x,_n9##y,z,c), I[534] = (T)(img)(_p3##x,_n9##y,z,c), I[535] = (T)(img)(_p2##x,_n9##y,z,c), I[536] = (T)(img)(_p1##x,_n9##y,z,c), I[537] = (T)(img)(x,_n9##y,z,c), I[538] = (T)(img)(_n1##x,_n9##y,z,c), I[539] = (T)(img)(_n2##x,_n9##y,z,c), I[540] = (T)(img)(_n3##x,_n9##y,z,c), I[541] = (T)(img)(_n4##x,_n9##y,z,c), I[542] = (T)(img)(_n5##x,_n9##y,z,c), I[543] = (T)(img)(_n6##x,_n9##y,z,c), I[544] = (T)(img)(_n7##x,_n9##y,z,c), I[545] = (T)(img)(_n8##x,_n9##y,z,c), I[546] = (T)(img)(_n9##x,_n9##y,z,c), I[547] = (T)(img)(_n10##x,_n9##y,z,c), I[548] = (T)(img)(_n11##x,_n9##y,z,c), I[549] = (T)(img)(_n12##x,_n9##y,z,c), \
|
|
I[550] = (T)(img)(_p12##x,_n10##y,z,c), I[551] = (T)(img)(_p11##x,_n10##y,z,c), I[552] = (T)(img)(_p10##x,_n10##y,z,c), I[553] = (T)(img)(_p9##x,_n10##y,z,c), I[554] = (T)(img)(_p8##x,_n10##y,z,c), I[555] = (T)(img)(_p7##x,_n10##y,z,c), I[556] = (T)(img)(_p6##x,_n10##y,z,c), I[557] = (T)(img)(_p5##x,_n10##y,z,c), I[558] = (T)(img)(_p4##x,_n10##y,z,c), I[559] = (T)(img)(_p3##x,_n10##y,z,c), I[560] = (T)(img)(_p2##x,_n10##y,z,c), I[561] = (T)(img)(_p1##x,_n10##y,z,c), I[562] = (T)(img)(x,_n10##y,z,c), I[563] = (T)(img)(_n1##x,_n10##y,z,c), I[564] = (T)(img)(_n2##x,_n10##y,z,c), I[565] = (T)(img)(_n3##x,_n10##y,z,c), I[566] = (T)(img)(_n4##x,_n10##y,z,c), I[567] = (T)(img)(_n5##x,_n10##y,z,c), I[568] = (T)(img)(_n6##x,_n10##y,z,c), I[569] = (T)(img)(_n7##x,_n10##y,z,c), I[570] = (T)(img)(_n8##x,_n10##y,z,c), I[571] = (T)(img)(_n9##x,_n10##y,z,c), I[572] = (T)(img)(_n10##x,_n10##y,z,c), I[573] = (T)(img)(_n11##x,_n10##y,z,c), I[574] = (T)(img)(_n12##x,_n10##y,z,c), \
|
|
I[575] = (T)(img)(_p12##x,_n11##y,z,c), I[576] = (T)(img)(_p11##x,_n11##y,z,c), I[577] = (T)(img)(_p10##x,_n11##y,z,c), I[578] = (T)(img)(_p9##x,_n11##y,z,c), I[579] = (T)(img)(_p8##x,_n11##y,z,c), I[580] = (T)(img)(_p7##x,_n11##y,z,c), I[581] = (T)(img)(_p6##x,_n11##y,z,c), I[582] = (T)(img)(_p5##x,_n11##y,z,c), I[583] = (T)(img)(_p4##x,_n11##y,z,c), I[584] = (T)(img)(_p3##x,_n11##y,z,c), I[585] = (T)(img)(_p2##x,_n11##y,z,c), I[586] = (T)(img)(_p1##x,_n11##y,z,c), I[587] = (T)(img)(x,_n11##y,z,c), I[588] = (T)(img)(_n1##x,_n11##y,z,c), I[589] = (T)(img)(_n2##x,_n11##y,z,c), I[590] = (T)(img)(_n3##x,_n11##y,z,c), I[591] = (T)(img)(_n4##x,_n11##y,z,c), I[592] = (T)(img)(_n5##x,_n11##y,z,c), I[593] = (T)(img)(_n6##x,_n11##y,z,c), I[594] = (T)(img)(_n7##x,_n11##y,z,c), I[595] = (T)(img)(_n8##x,_n11##y,z,c), I[596] = (T)(img)(_n9##x,_n11##y,z,c), I[597] = (T)(img)(_n10##x,_n11##y,z,c), I[598] = (T)(img)(_n11##x,_n11##y,z,c), I[599] = (T)(img)(_n12##x,_n11##y,z,c), \
|
|
I[600] = (T)(img)(_p12##x,_n12##y,z,c), I[601] = (T)(img)(_p11##x,_n12##y,z,c), I[602] = (T)(img)(_p10##x,_n12##y,z,c), I[603] = (T)(img)(_p9##x,_n12##y,z,c), I[604] = (T)(img)(_p8##x,_n12##y,z,c), I[605] = (T)(img)(_p7##x,_n12##y,z,c), I[606] = (T)(img)(_p6##x,_n12##y,z,c), I[607] = (T)(img)(_p5##x,_n12##y,z,c), I[608] = (T)(img)(_p4##x,_n12##y,z,c), I[609] = (T)(img)(_p3##x,_n12##y,z,c), I[610] = (T)(img)(_p2##x,_n12##y,z,c), I[611] = (T)(img)(_p1##x,_n12##y,z,c), I[612] = (T)(img)(x,_n12##y,z,c), I[613] = (T)(img)(_n1##x,_n12##y,z,c), I[614] = (T)(img)(_n2##x,_n12##y,z,c), I[615] = (T)(img)(_n3##x,_n12##y,z,c), I[616] = (T)(img)(_n4##x,_n12##y,z,c), I[617] = (T)(img)(_n5##x,_n12##y,z,c), I[618] = (T)(img)(_n6##x,_n12##y,z,c), I[619] = (T)(img)(_n7##x,_n12##y,z,c), I[620] = (T)(img)(_n8##x,_n12##y,z,c), I[621] = (T)(img)(_n9##x,_n12##y,z,c), I[622] = (T)(img)(_n10##x,_n12##y,z,c), I[623] = (T)(img)(_n11##x,_n12##y,z,c), I[624] = (T)(img)(_n12##x,_n12##y,z,c);
|
|
|
|
// Define 26x26 loop macros
|
|
//-------------------------
|
|
#define cimg_for26(bound,i) for (int i = 0, \
|
|
_p12##i = 0, _p11##i = 0, _p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
|
|
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
|
|
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
|
|
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
|
|
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
|
|
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
|
|
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
|
|
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
|
|
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9, \
|
|
_n10##i = 10>=(int)(bound)?(int)(bound) - 1:10, \
|
|
_n11##i = 11>=(int)(bound)?(int)(bound) - 1:11, \
|
|
_n12##i = 12>=(int)(bound)?(int)(bound) - 1:12, \
|
|
_n13##i = 13>=(int)(bound)?(int)(bound) - 1:13; \
|
|
_n13##i<(int)(bound) || _n12##i==--_n13##i || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n13##i = _n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
|
|
_p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i, ++_n13##i)
|
|
|
|
#define cimg_for26X(img,x) cimg_for26((img)._width,x)
|
|
#define cimg_for26Y(img,y) cimg_for26((img)._height,y)
|
|
#define cimg_for26Z(img,z) cimg_for26((img)._depth,z)
|
|
#define cimg_for26C(img,c) cimg_for26((img)._spectrum,c)
|
|
#define cimg_for26XY(img,x,y) cimg_for26Y(img,y) cimg_for26X(img,x)
|
|
#define cimg_for26XZ(img,x,z) cimg_for26Z(img,z) cimg_for26X(img,x)
|
|
#define cimg_for26XC(img,x,c) cimg_for26C(img,c) cimg_for26X(img,x)
|
|
#define cimg_for26YZ(img,y,z) cimg_for26Z(img,z) cimg_for26Y(img,y)
|
|
#define cimg_for26YC(img,y,c) cimg_for26C(img,c) cimg_for26Y(img,y)
|
|
#define cimg_for26ZC(img,z,c) cimg_for26C(img,c) cimg_for26Z(img,z)
|
|
#define cimg_for26XYZ(img,x,y,z) cimg_for26Z(img,z) cimg_for26XY(img,x,y)
|
|
#define cimg_for26XZC(img,x,z,c) cimg_for26C(img,c) cimg_for26XZ(img,x,z)
|
|
#define cimg_for26YZC(img,y,z,c) cimg_for26C(img,c) cimg_for26YZ(img,y,z)
|
|
#define cimg_for26XYZC(img,x,y,z,c) cimg_for26C(img,c) cimg_for26XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in26(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p12##i = i - 12<0?0:i - 12, \
|
|
_p11##i = i - 11<0?0:i - 11, \
|
|
_p10##i = i - 10<0?0:i - 10, \
|
|
_p9##i = i - 9<0?0:i - 9, \
|
|
_p8##i = i - 8<0?0:i - 8, \
|
|
_p7##i = i - 7<0?0:i - 7, \
|
|
_p6##i = i - 6<0?0:i - 6, \
|
|
_p5##i = i - 5<0?0:i - 5, \
|
|
_p4##i = i - 4<0?0:i - 4, \
|
|
_p3##i = i - 3<0?0:i - 3, \
|
|
_p2##i = i - 2<0?0:i - 2, \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
|
|
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
|
|
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
|
|
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
|
|
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
|
|
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
|
|
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
|
|
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
|
|
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9, \
|
|
_n10##i = i + 10>=(int)(bound)?(int)(bound) - 1:i + 10, \
|
|
_n11##i = i + 11>=(int)(bound)?(int)(bound) - 1:i + 11, \
|
|
_n12##i = i + 12>=(int)(bound)?(int)(bound) - 1:i + 12, \
|
|
_n13##i = i + 13>=(int)(bound)?(int)(bound) - 1:i + 13; \
|
|
i<=(int)(i1) && (_n13##i<(int)(bound) || _n12##i==--_n13##i || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n13##i = _n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
|
|
_p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i, ++_n13##i)
|
|
|
|
#define cimg_for_in26X(img,x0,x1,x) cimg_for_in26((img)._width,x0,x1,x)
|
|
#define cimg_for_in26Y(img,y0,y1,y) cimg_for_in26((img)._height,y0,y1,y)
|
|
#define cimg_for_in26Z(img,z0,z1,z) cimg_for_in26((img)._depth,z0,z1,z)
|
|
#define cimg_for_in26C(img,c0,c1,c) cimg_for_in26((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in26XY(img,x0,y0,x1,y1,x,y) cimg_for_in26Y(img,y0,y1,y) cimg_for_in26X(img,x0,x1,x)
|
|
#define cimg_for_in26XZ(img,x0,z0,x1,z1,x,z) cimg_for_in26Z(img,z0,z1,z) cimg_for_in26X(img,x0,x1,x)
|
|
#define cimg_for_in26XC(img,x0,c0,x1,c1,x,c) cimg_for_in26C(img,c0,c1,c) cimg_for_in26X(img,x0,x1,x)
|
|
#define cimg_for_in26YZ(img,y0,z0,y1,z1,y,z) cimg_for_in26Z(img,z0,z1,z) cimg_for_in26Y(img,y0,y1,y)
|
|
#define cimg_for_in26YC(img,y0,c0,y1,c1,y,c) cimg_for_in26C(img,c0,c1,c) cimg_for_in26Y(img,y0,y1,y)
|
|
#define cimg_for_in26ZC(img,z0,c0,z1,c1,z,c) cimg_for_in26C(img,c0,c1,c) cimg_for_in26Z(img,z0,z1,z)
|
|
#define cimg_for_in26XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in26Z(img,z0,z1,z) cimg_for_in26XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in26XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in26C(img,c0,c1,c) cimg_for_in26XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in26YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in26C(img,c0,c1,c) cimg_for_in26YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in26XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in26C(img,c0,c1,c) cimg_for_in26XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for26x26(img,x,y,z,c,I,T) \
|
|
cimg_for26((img)._height,y) for (int x = 0, \
|
|
_p12##x = 0, _p11##x = 0, _p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
|
|
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
|
|
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
|
|
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
|
|
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
|
|
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
|
|
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
|
|
_n9##x = 9>=((img)._width)?(img).width() - 1:9, \
|
|
_n10##x = 10>=((img)._width)?(img).width() - 1:10, \
|
|
_n11##x = 11>=((img)._width)?(img).width() - 1:11, \
|
|
_n12##x = 12>=((img)._width)?(img).width() - 1:12, \
|
|
_n13##x = (int)( \
|
|
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = I[11] = I[12] = (T)(img)(0,_p12##y,z,c)), \
|
|
(I[26] = I[27] = I[28] = I[29] = I[30] = I[31] = I[32] = I[33] = I[34] = I[35] = I[36] = I[37] = I[38] = (T)(img)(0,_p11##y,z,c)), \
|
|
(I[52] = I[53] = I[54] = I[55] = I[56] = I[57] = I[58] = I[59] = I[60] = I[61] = I[62] = I[63] = I[64] = (T)(img)(0,_p10##y,z,c)), \
|
|
(I[78] = I[79] = I[80] = I[81] = I[82] = I[83] = I[84] = I[85] = I[86] = I[87] = I[88] = I[89] = I[90] = (T)(img)(0,_p9##y,z,c)), \
|
|
(I[104] = I[105] = I[106] = I[107] = I[108] = I[109] = I[110] = I[111] = I[112] = I[113] = I[114] = I[115] = I[116] = (T)(img)(0,_p8##y,z,c)), \
|
|
(I[130] = I[131] = I[132] = I[133] = I[134] = I[135] = I[136] = I[137] = I[138] = I[139] = I[140] = I[141] = I[142] = (T)(img)(0,_p7##y,z,c)), \
|
|
(I[156] = I[157] = I[158] = I[159] = I[160] = I[161] = I[162] = I[163] = I[164] = I[165] = I[166] = I[167] = I[168] = (T)(img)(0,_p6##y,z,c)), \
|
|
(I[182] = I[183] = I[184] = I[185] = I[186] = I[187] = I[188] = I[189] = I[190] = I[191] = I[192] = I[193] = I[194] = (T)(img)(0,_p5##y,z,c)), \
|
|
(I[208] = I[209] = I[210] = I[211] = I[212] = I[213] = I[214] = I[215] = I[216] = I[217] = I[218] = I[219] = I[220] = (T)(img)(0,_p4##y,z,c)), \
|
|
(I[234] = I[235] = I[236] = I[237] = I[238] = I[239] = I[240] = I[241] = I[242] = I[243] = I[244] = I[245] = I[246] = (T)(img)(0,_p3##y,z,c)), \
|
|
(I[260] = I[261] = I[262] = I[263] = I[264] = I[265] = I[266] = I[267] = I[268] = I[269] = I[270] = I[271] = I[272] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[286] = I[287] = I[288] = I[289] = I[290] = I[291] = I[292] = I[293] = I[294] = I[295] = I[296] = I[297] = I[298] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[312] = I[313] = I[314] = I[315] = I[316] = I[317] = I[318] = I[319] = I[320] = I[321] = I[322] = I[323] = I[324] = (T)(img)(0,y,z,c)), \
|
|
(I[338] = I[339] = I[340] = I[341] = I[342] = I[343] = I[344] = I[345] = I[346] = I[347] = I[348] = I[349] = I[350] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[364] = I[365] = I[366] = I[367] = I[368] = I[369] = I[370] = I[371] = I[372] = I[373] = I[374] = I[375] = I[376] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[390] = I[391] = I[392] = I[393] = I[394] = I[395] = I[396] = I[397] = I[398] = I[399] = I[400] = I[401] = I[402] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[416] = I[417] = I[418] = I[419] = I[420] = I[421] = I[422] = I[423] = I[424] = I[425] = I[426] = I[427] = I[428] = (T)(img)(0,_n4##y,z,c)), \
|
|
(I[442] = I[443] = I[444] = I[445] = I[446] = I[447] = I[448] = I[449] = I[450] = I[451] = I[452] = I[453] = I[454] = (T)(img)(0,_n5##y,z,c)), \
|
|
(I[468] = I[469] = I[470] = I[471] = I[472] = I[473] = I[474] = I[475] = I[476] = I[477] = I[478] = I[479] = I[480] = (T)(img)(0,_n6##y,z,c)), \
|
|
(I[494] = I[495] = I[496] = I[497] = I[498] = I[499] = I[500] = I[501] = I[502] = I[503] = I[504] = I[505] = I[506] = (T)(img)(0,_n7##y,z,c)), \
|
|
(I[520] = I[521] = I[522] = I[523] = I[524] = I[525] = I[526] = I[527] = I[528] = I[529] = I[530] = I[531] = I[532] = (T)(img)(0,_n8##y,z,c)), \
|
|
(I[546] = I[547] = I[548] = I[549] = I[550] = I[551] = I[552] = I[553] = I[554] = I[555] = I[556] = I[557] = I[558] = (T)(img)(0,_n9##y,z,c)), \
|
|
(I[572] = I[573] = I[574] = I[575] = I[576] = I[577] = I[578] = I[579] = I[580] = I[581] = I[582] = I[583] = I[584] = (T)(img)(0,_n10##y,z,c)), \
|
|
(I[598] = I[599] = I[600] = I[601] = I[602] = I[603] = I[604] = I[605] = I[606] = I[607] = I[608] = I[609] = I[610] = (T)(img)(0,_n11##y,z,c)), \
|
|
(I[624] = I[625] = I[626] = I[627] = I[628] = I[629] = I[630] = I[631] = I[632] = I[633] = I[634] = I[635] = I[636] = (T)(img)(0,_n12##y,z,c)), \
|
|
(I[650] = I[651] = I[652] = I[653] = I[654] = I[655] = I[656] = I[657] = I[658] = I[659] = I[660] = I[661] = I[662] = (T)(img)(0,_n13##y,z,c)), \
|
|
(I[13] = (T)(img)(_n1##x,_p12##y,z,c)), \
|
|
(I[39] = (T)(img)(_n1##x,_p11##y,z,c)), \
|
|
(I[65] = (T)(img)(_n1##x,_p10##y,z,c)), \
|
|
(I[91] = (T)(img)(_n1##x,_p9##y,z,c)), \
|
|
(I[117] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[143] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[169] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[195] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[221] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[247] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[273] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[299] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[325] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[351] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[377] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[403] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[429] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[455] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[481] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[507] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[533] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[559] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[585] = (T)(img)(_n1##x,_n10##y,z,c)), \
|
|
(I[611] = (T)(img)(_n1##x,_n11##y,z,c)), \
|
|
(I[637] = (T)(img)(_n1##x,_n12##y,z,c)), \
|
|
(I[663] = (T)(img)(_n1##x,_n13##y,z,c)), \
|
|
(I[14] = (T)(img)(_n2##x,_p12##y,z,c)), \
|
|
(I[40] = (T)(img)(_n2##x,_p11##y,z,c)), \
|
|
(I[66] = (T)(img)(_n2##x,_p10##y,z,c)), \
|
|
(I[92] = (T)(img)(_n2##x,_p9##y,z,c)), \
|
|
(I[118] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[144] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[170] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[196] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[222] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[248] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[274] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[300] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[326] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[352] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[378] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[404] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[430] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[456] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[482] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[508] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[534] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[560] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[586] = (T)(img)(_n2##x,_n10##y,z,c)), \
|
|
(I[612] = (T)(img)(_n2##x,_n11##y,z,c)), \
|
|
(I[638] = (T)(img)(_n2##x,_n12##y,z,c)), \
|
|
(I[664] = (T)(img)(_n2##x,_n13##y,z,c)), \
|
|
(I[15] = (T)(img)(_n3##x,_p12##y,z,c)), \
|
|
(I[41] = (T)(img)(_n3##x,_p11##y,z,c)), \
|
|
(I[67] = (T)(img)(_n3##x,_p10##y,z,c)), \
|
|
(I[93] = (T)(img)(_n3##x,_p9##y,z,c)), \
|
|
(I[119] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[145] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[171] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[197] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[223] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[249] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[275] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[301] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[327] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[353] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[379] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[405] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[431] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[457] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[483] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[509] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[535] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[561] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[587] = (T)(img)(_n3##x,_n10##y,z,c)), \
|
|
(I[613] = (T)(img)(_n3##x,_n11##y,z,c)), \
|
|
(I[639] = (T)(img)(_n3##x,_n12##y,z,c)), \
|
|
(I[665] = (T)(img)(_n3##x,_n13##y,z,c)), \
|
|
(I[16] = (T)(img)(_n4##x,_p12##y,z,c)), \
|
|
(I[42] = (T)(img)(_n4##x,_p11##y,z,c)), \
|
|
(I[68] = (T)(img)(_n4##x,_p10##y,z,c)), \
|
|
(I[94] = (T)(img)(_n4##x,_p9##y,z,c)), \
|
|
(I[120] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[146] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[172] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[198] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[224] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[250] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[276] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[302] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[328] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[354] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[380] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[406] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[432] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[458] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[484] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[510] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[536] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[562] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[588] = (T)(img)(_n4##x,_n10##y,z,c)), \
|
|
(I[614] = (T)(img)(_n4##x,_n11##y,z,c)), \
|
|
(I[640] = (T)(img)(_n4##x,_n12##y,z,c)), \
|
|
(I[666] = (T)(img)(_n4##x,_n13##y,z,c)), \
|
|
(I[17] = (T)(img)(_n5##x,_p12##y,z,c)), \
|
|
(I[43] = (T)(img)(_n5##x,_p11##y,z,c)), \
|
|
(I[69] = (T)(img)(_n5##x,_p10##y,z,c)), \
|
|
(I[95] = (T)(img)(_n5##x,_p9##y,z,c)), \
|
|
(I[121] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[147] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[173] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[199] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[225] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[251] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[277] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[303] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[329] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[355] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[381] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[407] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[433] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[459] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[485] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[511] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[537] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[563] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[589] = (T)(img)(_n5##x,_n10##y,z,c)), \
|
|
(I[615] = (T)(img)(_n5##x,_n11##y,z,c)), \
|
|
(I[641] = (T)(img)(_n5##x,_n12##y,z,c)), \
|
|
(I[667] = (T)(img)(_n5##x,_n13##y,z,c)), \
|
|
(I[18] = (T)(img)(_n6##x,_p12##y,z,c)), \
|
|
(I[44] = (T)(img)(_n6##x,_p11##y,z,c)), \
|
|
(I[70] = (T)(img)(_n6##x,_p10##y,z,c)), \
|
|
(I[96] = (T)(img)(_n6##x,_p9##y,z,c)), \
|
|
(I[122] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[148] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[174] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[200] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[226] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[252] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[278] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[304] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[330] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[356] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[382] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[408] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[434] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[460] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[486] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[512] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[538] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[564] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[590] = (T)(img)(_n6##x,_n10##y,z,c)), \
|
|
(I[616] = (T)(img)(_n6##x,_n11##y,z,c)), \
|
|
(I[642] = (T)(img)(_n6##x,_n12##y,z,c)), \
|
|
(I[668] = (T)(img)(_n6##x,_n13##y,z,c)), \
|
|
(I[19] = (T)(img)(_n7##x,_p12##y,z,c)), \
|
|
(I[45] = (T)(img)(_n7##x,_p11##y,z,c)), \
|
|
(I[71] = (T)(img)(_n7##x,_p10##y,z,c)), \
|
|
(I[97] = (T)(img)(_n7##x,_p9##y,z,c)), \
|
|
(I[123] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[149] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[175] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[201] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[227] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[253] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[279] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[305] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[331] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[357] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[383] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[409] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[435] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[461] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[487] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[513] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[539] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[565] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[591] = (T)(img)(_n7##x,_n10##y,z,c)), \
|
|
(I[617] = (T)(img)(_n7##x,_n11##y,z,c)), \
|
|
(I[643] = (T)(img)(_n7##x,_n12##y,z,c)), \
|
|
(I[669] = (T)(img)(_n7##x,_n13##y,z,c)), \
|
|
(I[20] = (T)(img)(_n8##x,_p12##y,z,c)), \
|
|
(I[46] = (T)(img)(_n8##x,_p11##y,z,c)), \
|
|
(I[72] = (T)(img)(_n8##x,_p10##y,z,c)), \
|
|
(I[98] = (T)(img)(_n8##x,_p9##y,z,c)), \
|
|
(I[124] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[150] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[176] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[202] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[228] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[254] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[280] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[306] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[332] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[358] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[384] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[410] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[436] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[462] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[488] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[514] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[540] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[566] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
(I[592] = (T)(img)(_n8##x,_n10##y,z,c)), \
|
|
(I[618] = (T)(img)(_n8##x,_n11##y,z,c)), \
|
|
(I[644] = (T)(img)(_n8##x,_n12##y,z,c)), \
|
|
(I[670] = (T)(img)(_n8##x,_n13##y,z,c)), \
|
|
(I[21] = (T)(img)(_n9##x,_p12##y,z,c)), \
|
|
(I[47] = (T)(img)(_n9##x,_p11##y,z,c)), \
|
|
(I[73] = (T)(img)(_n9##x,_p10##y,z,c)), \
|
|
(I[99] = (T)(img)(_n9##x,_p9##y,z,c)), \
|
|
(I[125] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[151] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[177] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[203] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[229] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[255] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[281] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[307] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[333] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[359] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[385] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[411] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[437] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[463] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[489] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[515] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[541] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[567] = (T)(img)(_n9##x,_n9##y,z,c)), \
|
|
(I[593] = (T)(img)(_n9##x,_n10##y,z,c)), \
|
|
(I[619] = (T)(img)(_n9##x,_n11##y,z,c)), \
|
|
(I[645] = (T)(img)(_n9##x,_n12##y,z,c)), \
|
|
(I[671] = (T)(img)(_n9##x,_n13##y,z,c)), \
|
|
(I[22] = (T)(img)(_n10##x,_p12##y,z,c)), \
|
|
(I[48] = (T)(img)(_n10##x,_p11##y,z,c)), \
|
|
(I[74] = (T)(img)(_n10##x,_p10##y,z,c)), \
|
|
(I[100] = (T)(img)(_n10##x,_p9##y,z,c)), \
|
|
(I[126] = (T)(img)(_n10##x,_p8##y,z,c)), \
|
|
(I[152] = (T)(img)(_n10##x,_p7##y,z,c)), \
|
|
(I[178] = (T)(img)(_n10##x,_p6##y,z,c)), \
|
|
(I[204] = (T)(img)(_n10##x,_p5##y,z,c)), \
|
|
(I[230] = (T)(img)(_n10##x,_p4##y,z,c)), \
|
|
(I[256] = (T)(img)(_n10##x,_p3##y,z,c)), \
|
|
(I[282] = (T)(img)(_n10##x,_p2##y,z,c)), \
|
|
(I[308] = (T)(img)(_n10##x,_p1##y,z,c)), \
|
|
(I[334] = (T)(img)(_n10##x,y,z,c)), \
|
|
(I[360] = (T)(img)(_n10##x,_n1##y,z,c)), \
|
|
(I[386] = (T)(img)(_n10##x,_n2##y,z,c)), \
|
|
(I[412] = (T)(img)(_n10##x,_n3##y,z,c)), \
|
|
(I[438] = (T)(img)(_n10##x,_n4##y,z,c)), \
|
|
(I[464] = (T)(img)(_n10##x,_n5##y,z,c)), \
|
|
(I[490] = (T)(img)(_n10##x,_n6##y,z,c)), \
|
|
(I[516] = (T)(img)(_n10##x,_n7##y,z,c)), \
|
|
(I[542] = (T)(img)(_n10##x,_n8##y,z,c)), \
|
|
(I[568] = (T)(img)(_n10##x,_n9##y,z,c)), \
|
|
(I[594] = (T)(img)(_n10##x,_n10##y,z,c)), \
|
|
(I[620] = (T)(img)(_n10##x,_n11##y,z,c)), \
|
|
(I[646] = (T)(img)(_n10##x,_n12##y,z,c)), \
|
|
(I[672] = (T)(img)(_n10##x,_n13##y,z,c)), \
|
|
(I[23] = (T)(img)(_n11##x,_p12##y,z,c)), \
|
|
(I[49] = (T)(img)(_n11##x,_p11##y,z,c)), \
|
|
(I[75] = (T)(img)(_n11##x,_p10##y,z,c)), \
|
|
(I[101] = (T)(img)(_n11##x,_p9##y,z,c)), \
|
|
(I[127] = (T)(img)(_n11##x,_p8##y,z,c)), \
|
|
(I[153] = (T)(img)(_n11##x,_p7##y,z,c)), \
|
|
(I[179] = (T)(img)(_n11##x,_p6##y,z,c)), \
|
|
(I[205] = (T)(img)(_n11##x,_p5##y,z,c)), \
|
|
(I[231] = (T)(img)(_n11##x,_p4##y,z,c)), \
|
|
(I[257] = (T)(img)(_n11##x,_p3##y,z,c)), \
|
|
(I[283] = (T)(img)(_n11##x,_p2##y,z,c)), \
|
|
(I[309] = (T)(img)(_n11##x,_p1##y,z,c)), \
|
|
(I[335] = (T)(img)(_n11##x,y,z,c)), \
|
|
(I[361] = (T)(img)(_n11##x,_n1##y,z,c)), \
|
|
(I[387] = (T)(img)(_n11##x,_n2##y,z,c)), \
|
|
(I[413] = (T)(img)(_n11##x,_n3##y,z,c)), \
|
|
(I[439] = (T)(img)(_n11##x,_n4##y,z,c)), \
|
|
(I[465] = (T)(img)(_n11##x,_n5##y,z,c)), \
|
|
(I[491] = (T)(img)(_n11##x,_n6##y,z,c)), \
|
|
(I[517] = (T)(img)(_n11##x,_n7##y,z,c)), \
|
|
(I[543] = (T)(img)(_n11##x,_n8##y,z,c)), \
|
|
(I[569] = (T)(img)(_n11##x,_n9##y,z,c)), \
|
|
(I[595] = (T)(img)(_n11##x,_n10##y,z,c)), \
|
|
(I[621] = (T)(img)(_n11##x,_n11##y,z,c)), \
|
|
(I[647] = (T)(img)(_n11##x,_n12##y,z,c)), \
|
|
(I[673] = (T)(img)(_n11##x,_n13##y,z,c)), \
|
|
(I[24] = (T)(img)(_n12##x,_p12##y,z,c)), \
|
|
(I[50] = (T)(img)(_n12##x,_p11##y,z,c)), \
|
|
(I[76] = (T)(img)(_n12##x,_p10##y,z,c)), \
|
|
(I[102] = (T)(img)(_n12##x,_p9##y,z,c)), \
|
|
(I[128] = (T)(img)(_n12##x,_p8##y,z,c)), \
|
|
(I[154] = (T)(img)(_n12##x,_p7##y,z,c)), \
|
|
(I[180] = (T)(img)(_n12##x,_p6##y,z,c)), \
|
|
(I[206] = (T)(img)(_n12##x,_p5##y,z,c)), \
|
|
(I[232] = (T)(img)(_n12##x,_p4##y,z,c)), \
|
|
(I[258] = (T)(img)(_n12##x,_p3##y,z,c)), \
|
|
(I[284] = (T)(img)(_n12##x,_p2##y,z,c)), \
|
|
(I[310] = (T)(img)(_n12##x,_p1##y,z,c)), \
|
|
(I[336] = (T)(img)(_n12##x,y,z,c)), \
|
|
(I[362] = (T)(img)(_n12##x,_n1##y,z,c)), \
|
|
(I[388] = (T)(img)(_n12##x,_n2##y,z,c)), \
|
|
(I[414] = (T)(img)(_n12##x,_n3##y,z,c)), \
|
|
(I[440] = (T)(img)(_n12##x,_n4##y,z,c)), \
|
|
(I[466] = (T)(img)(_n12##x,_n5##y,z,c)), \
|
|
(I[492] = (T)(img)(_n12##x,_n6##y,z,c)), \
|
|
(I[518] = (T)(img)(_n12##x,_n7##y,z,c)), \
|
|
(I[544] = (T)(img)(_n12##x,_n8##y,z,c)), \
|
|
(I[570] = (T)(img)(_n12##x,_n9##y,z,c)), \
|
|
(I[596] = (T)(img)(_n12##x,_n10##y,z,c)), \
|
|
(I[622] = (T)(img)(_n12##x,_n11##y,z,c)), \
|
|
(I[648] = (T)(img)(_n12##x,_n12##y,z,c)), \
|
|
(I[674] = (T)(img)(_n12##x,_n13##y,z,c)), \
|
|
13>=((img)._width)?(img).width() - 1:13); \
|
|
(_n13##x<(img).width() && ( \
|
|
(I[25] = (T)(img)(_n13##x,_p12##y,z,c)), \
|
|
(I[51] = (T)(img)(_n13##x,_p11##y,z,c)), \
|
|
(I[77] = (T)(img)(_n13##x,_p10##y,z,c)), \
|
|
(I[103] = (T)(img)(_n13##x,_p9##y,z,c)), \
|
|
(I[129] = (T)(img)(_n13##x,_p8##y,z,c)), \
|
|
(I[155] = (T)(img)(_n13##x,_p7##y,z,c)), \
|
|
(I[181] = (T)(img)(_n13##x,_p6##y,z,c)), \
|
|
(I[207] = (T)(img)(_n13##x,_p5##y,z,c)), \
|
|
(I[233] = (T)(img)(_n13##x,_p4##y,z,c)), \
|
|
(I[259] = (T)(img)(_n13##x,_p3##y,z,c)), \
|
|
(I[285] = (T)(img)(_n13##x,_p2##y,z,c)), \
|
|
(I[311] = (T)(img)(_n13##x,_p1##y,z,c)), \
|
|
(I[337] = (T)(img)(_n13##x,y,z,c)), \
|
|
(I[363] = (T)(img)(_n13##x,_n1##y,z,c)), \
|
|
(I[389] = (T)(img)(_n13##x,_n2##y,z,c)), \
|
|
(I[415] = (T)(img)(_n13##x,_n3##y,z,c)), \
|
|
(I[441] = (T)(img)(_n13##x,_n4##y,z,c)), \
|
|
(I[467] = (T)(img)(_n13##x,_n5##y,z,c)), \
|
|
(I[493] = (T)(img)(_n13##x,_n6##y,z,c)), \
|
|
(I[519] = (T)(img)(_n13##x,_n7##y,z,c)), \
|
|
(I[545] = (T)(img)(_n13##x,_n8##y,z,c)), \
|
|
(I[571] = (T)(img)(_n13##x,_n9##y,z,c)), \
|
|
(I[597] = (T)(img)(_n13##x,_n10##y,z,c)), \
|
|
(I[623] = (T)(img)(_n13##x,_n11##y,z,c)), \
|
|
(I[649] = (T)(img)(_n13##x,_n12##y,z,c)), \
|
|
(I[675] = (T)(img)(_n13##x,_n13##y,z,c)),1)) || \
|
|
_n12##x==--_n13##x || _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n13##x = _n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], \
|
|
I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], \
|
|
I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], \
|
|
I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], \
|
|
I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], \
|
|
I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], \
|
|
I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], \
|
|
I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], \
|
|
I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], \
|
|
I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], \
|
|
I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], \
|
|
I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], \
|
|
I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], \
|
|
I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], \
|
|
I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], \
|
|
I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], \
|
|
I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], \
|
|
I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], \
|
|
I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], \
|
|
I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], \
|
|
I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], \
|
|
I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], \
|
|
I[572] = I[573], I[573] = I[574], I[574] = I[575], I[575] = I[576], I[576] = I[577], I[577] = I[578], I[578] = I[579], I[579] = I[580], I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], I[587] = I[588], I[588] = I[589], I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], I[593] = I[594], I[594] = I[595], I[595] = I[596], I[596] = I[597], \
|
|
I[598] = I[599], I[599] = I[600], I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], I[607] = I[608], I[608] = I[609], I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], I[615] = I[616], I[616] = I[617], I[617] = I[618], I[618] = I[619], I[619] = I[620], I[620] = I[621], I[621] = I[622], I[622] = I[623], \
|
|
I[624] = I[625], I[625] = I[626], I[626] = I[627], I[627] = I[628], I[628] = I[629], I[629] = I[630], I[630] = I[631], I[631] = I[632], I[632] = I[633], I[633] = I[634], I[634] = I[635], I[635] = I[636], I[636] = I[637], I[637] = I[638], I[638] = I[639], I[639] = I[640], I[640] = I[641], I[641] = I[642], I[642] = I[643], I[643] = I[644], I[644] = I[645], I[645] = I[646], I[646] = I[647], I[647] = I[648], I[648] = I[649], \
|
|
I[650] = I[651], I[651] = I[652], I[652] = I[653], I[653] = I[654], I[654] = I[655], I[655] = I[656], I[656] = I[657], I[657] = I[658], I[658] = I[659], I[659] = I[660], I[660] = I[661], I[661] = I[662], I[662] = I[663], I[663] = I[664], I[664] = I[665], I[665] = I[666], I[666] = I[667], I[667] = I[668], I[668] = I[669], I[669] = I[670], I[670] = I[671], I[671] = I[672], I[672] = I[673], I[673] = I[674], I[674] = I[675], \
|
|
_p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x, ++_n13##x)
|
|
|
|
#define cimg_for_in26x26(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in26((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p12##x = x - 12<0?0:x - 12, \
|
|
_p11##x = x - 11<0?0:x - 11, \
|
|
_p10##x = x - 10<0?0:x - 10, \
|
|
_p9##x = x - 9<0?0:x - 9, \
|
|
_p8##x = x - 8<0?0:x - 8, \
|
|
_p7##x = x - 7<0?0:x - 7, \
|
|
_p6##x = x - 6<0?0:x - 6, \
|
|
_p5##x = x - 5<0?0:x - 5, \
|
|
_p4##x = x - 4<0?0:x - 4, \
|
|
_p3##x = x - 3<0?0:x - 3, \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
|
|
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
|
|
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
|
|
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
|
|
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
|
|
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
|
|
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
|
|
_n9##x = x + 9>=(img).width()?(img).width() - 1:x + 9, \
|
|
_n10##x = x + 10>=(img).width()?(img).width() - 1:x + 10, \
|
|
_n11##x = x + 11>=(img).width()?(img).width() - 1:x + 11, \
|
|
_n12##x = x + 12>=(img).width()?(img).width() - 1:x + 12, \
|
|
_n13##x = (int)( \
|
|
(I[0] = (T)(img)(_p12##x,_p12##y,z,c)), \
|
|
(I[26] = (T)(img)(_p12##x,_p11##y,z,c)), \
|
|
(I[52] = (T)(img)(_p12##x,_p10##y,z,c)), \
|
|
(I[78] = (T)(img)(_p12##x,_p9##y,z,c)), \
|
|
(I[104] = (T)(img)(_p12##x,_p8##y,z,c)), \
|
|
(I[130] = (T)(img)(_p12##x,_p7##y,z,c)), \
|
|
(I[156] = (T)(img)(_p12##x,_p6##y,z,c)), \
|
|
(I[182] = (T)(img)(_p12##x,_p5##y,z,c)), \
|
|
(I[208] = (T)(img)(_p12##x,_p4##y,z,c)), \
|
|
(I[234] = (T)(img)(_p12##x,_p3##y,z,c)), \
|
|
(I[260] = (T)(img)(_p12##x,_p2##y,z,c)), \
|
|
(I[286] = (T)(img)(_p12##x,_p1##y,z,c)), \
|
|
(I[312] = (T)(img)(_p12##x,y,z,c)), \
|
|
(I[338] = (T)(img)(_p12##x,_n1##y,z,c)), \
|
|
(I[364] = (T)(img)(_p12##x,_n2##y,z,c)), \
|
|
(I[390] = (T)(img)(_p12##x,_n3##y,z,c)), \
|
|
(I[416] = (T)(img)(_p12##x,_n4##y,z,c)), \
|
|
(I[442] = (T)(img)(_p12##x,_n5##y,z,c)), \
|
|
(I[468] = (T)(img)(_p12##x,_n6##y,z,c)), \
|
|
(I[494] = (T)(img)(_p12##x,_n7##y,z,c)), \
|
|
(I[520] = (T)(img)(_p12##x,_n8##y,z,c)), \
|
|
(I[546] = (T)(img)(_p12##x,_n9##y,z,c)), \
|
|
(I[572] = (T)(img)(_p12##x,_n10##y,z,c)), \
|
|
(I[598] = (T)(img)(_p12##x,_n11##y,z,c)), \
|
|
(I[624] = (T)(img)(_p12##x,_n12##y,z,c)), \
|
|
(I[650] = (T)(img)(_p12##x,_n13##y,z,c)), \
|
|
(I[1] = (T)(img)(_p11##x,_p12##y,z,c)), \
|
|
(I[27] = (T)(img)(_p11##x,_p11##y,z,c)), \
|
|
(I[53] = (T)(img)(_p11##x,_p10##y,z,c)), \
|
|
(I[79] = (T)(img)(_p11##x,_p9##y,z,c)), \
|
|
(I[105] = (T)(img)(_p11##x,_p8##y,z,c)), \
|
|
(I[131] = (T)(img)(_p11##x,_p7##y,z,c)), \
|
|
(I[157] = (T)(img)(_p11##x,_p6##y,z,c)), \
|
|
(I[183] = (T)(img)(_p11##x,_p5##y,z,c)), \
|
|
(I[209] = (T)(img)(_p11##x,_p4##y,z,c)), \
|
|
(I[235] = (T)(img)(_p11##x,_p3##y,z,c)), \
|
|
(I[261] = (T)(img)(_p11##x,_p2##y,z,c)), \
|
|
(I[287] = (T)(img)(_p11##x,_p1##y,z,c)), \
|
|
(I[313] = (T)(img)(_p11##x,y,z,c)), \
|
|
(I[339] = (T)(img)(_p11##x,_n1##y,z,c)), \
|
|
(I[365] = (T)(img)(_p11##x,_n2##y,z,c)), \
|
|
(I[391] = (T)(img)(_p11##x,_n3##y,z,c)), \
|
|
(I[417] = (T)(img)(_p11##x,_n4##y,z,c)), \
|
|
(I[443] = (T)(img)(_p11##x,_n5##y,z,c)), \
|
|
(I[469] = (T)(img)(_p11##x,_n6##y,z,c)), \
|
|
(I[495] = (T)(img)(_p11##x,_n7##y,z,c)), \
|
|
(I[521] = (T)(img)(_p11##x,_n8##y,z,c)), \
|
|
(I[547] = (T)(img)(_p11##x,_n9##y,z,c)), \
|
|
(I[573] = (T)(img)(_p11##x,_n10##y,z,c)), \
|
|
(I[599] = (T)(img)(_p11##x,_n11##y,z,c)), \
|
|
(I[625] = (T)(img)(_p11##x,_n12##y,z,c)), \
|
|
(I[651] = (T)(img)(_p11##x,_n13##y,z,c)), \
|
|
(I[2] = (T)(img)(_p10##x,_p12##y,z,c)), \
|
|
(I[28] = (T)(img)(_p10##x,_p11##y,z,c)), \
|
|
(I[54] = (T)(img)(_p10##x,_p10##y,z,c)), \
|
|
(I[80] = (T)(img)(_p10##x,_p9##y,z,c)), \
|
|
(I[106] = (T)(img)(_p10##x,_p8##y,z,c)), \
|
|
(I[132] = (T)(img)(_p10##x,_p7##y,z,c)), \
|
|
(I[158] = (T)(img)(_p10##x,_p6##y,z,c)), \
|
|
(I[184] = (T)(img)(_p10##x,_p5##y,z,c)), \
|
|
(I[210] = (T)(img)(_p10##x,_p4##y,z,c)), \
|
|
(I[236] = (T)(img)(_p10##x,_p3##y,z,c)), \
|
|
(I[262] = (T)(img)(_p10##x,_p2##y,z,c)), \
|
|
(I[288] = (T)(img)(_p10##x,_p1##y,z,c)), \
|
|
(I[314] = (T)(img)(_p10##x,y,z,c)), \
|
|
(I[340] = (T)(img)(_p10##x,_n1##y,z,c)), \
|
|
(I[366] = (T)(img)(_p10##x,_n2##y,z,c)), \
|
|
(I[392] = (T)(img)(_p10##x,_n3##y,z,c)), \
|
|
(I[418] = (T)(img)(_p10##x,_n4##y,z,c)), \
|
|
(I[444] = (T)(img)(_p10##x,_n5##y,z,c)), \
|
|
(I[470] = (T)(img)(_p10##x,_n6##y,z,c)), \
|
|
(I[496] = (T)(img)(_p10##x,_n7##y,z,c)), \
|
|
(I[522] = (T)(img)(_p10##x,_n8##y,z,c)), \
|
|
(I[548] = (T)(img)(_p10##x,_n9##y,z,c)), \
|
|
(I[574] = (T)(img)(_p10##x,_n10##y,z,c)), \
|
|
(I[600] = (T)(img)(_p10##x,_n11##y,z,c)), \
|
|
(I[626] = (T)(img)(_p10##x,_n12##y,z,c)), \
|
|
(I[652] = (T)(img)(_p10##x,_n13##y,z,c)), \
|
|
(I[3] = (T)(img)(_p9##x,_p12##y,z,c)), \
|
|
(I[29] = (T)(img)(_p9##x,_p11##y,z,c)), \
|
|
(I[55] = (T)(img)(_p9##x,_p10##y,z,c)), \
|
|
(I[81] = (T)(img)(_p9##x,_p9##y,z,c)), \
|
|
(I[107] = (T)(img)(_p9##x,_p8##y,z,c)), \
|
|
(I[133] = (T)(img)(_p9##x,_p7##y,z,c)), \
|
|
(I[159] = (T)(img)(_p9##x,_p6##y,z,c)), \
|
|
(I[185] = (T)(img)(_p9##x,_p5##y,z,c)), \
|
|
(I[211] = (T)(img)(_p9##x,_p4##y,z,c)), \
|
|
(I[237] = (T)(img)(_p9##x,_p3##y,z,c)), \
|
|
(I[263] = (T)(img)(_p9##x,_p2##y,z,c)), \
|
|
(I[289] = (T)(img)(_p9##x,_p1##y,z,c)), \
|
|
(I[315] = (T)(img)(_p9##x,y,z,c)), \
|
|
(I[341] = (T)(img)(_p9##x,_n1##y,z,c)), \
|
|
(I[367] = (T)(img)(_p9##x,_n2##y,z,c)), \
|
|
(I[393] = (T)(img)(_p9##x,_n3##y,z,c)), \
|
|
(I[419] = (T)(img)(_p9##x,_n4##y,z,c)), \
|
|
(I[445] = (T)(img)(_p9##x,_n5##y,z,c)), \
|
|
(I[471] = (T)(img)(_p9##x,_n6##y,z,c)), \
|
|
(I[497] = (T)(img)(_p9##x,_n7##y,z,c)), \
|
|
(I[523] = (T)(img)(_p9##x,_n8##y,z,c)), \
|
|
(I[549] = (T)(img)(_p9##x,_n9##y,z,c)), \
|
|
(I[575] = (T)(img)(_p9##x,_n10##y,z,c)), \
|
|
(I[601] = (T)(img)(_p9##x,_n11##y,z,c)), \
|
|
(I[627] = (T)(img)(_p9##x,_n12##y,z,c)), \
|
|
(I[653] = (T)(img)(_p9##x,_n13##y,z,c)), \
|
|
(I[4] = (T)(img)(_p8##x,_p12##y,z,c)), \
|
|
(I[30] = (T)(img)(_p8##x,_p11##y,z,c)), \
|
|
(I[56] = (T)(img)(_p8##x,_p10##y,z,c)), \
|
|
(I[82] = (T)(img)(_p8##x,_p9##y,z,c)), \
|
|
(I[108] = (T)(img)(_p8##x,_p8##y,z,c)), \
|
|
(I[134] = (T)(img)(_p8##x,_p7##y,z,c)), \
|
|
(I[160] = (T)(img)(_p8##x,_p6##y,z,c)), \
|
|
(I[186] = (T)(img)(_p8##x,_p5##y,z,c)), \
|
|
(I[212] = (T)(img)(_p8##x,_p4##y,z,c)), \
|
|
(I[238] = (T)(img)(_p8##x,_p3##y,z,c)), \
|
|
(I[264] = (T)(img)(_p8##x,_p2##y,z,c)), \
|
|
(I[290] = (T)(img)(_p8##x,_p1##y,z,c)), \
|
|
(I[316] = (T)(img)(_p8##x,y,z,c)), \
|
|
(I[342] = (T)(img)(_p8##x,_n1##y,z,c)), \
|
|
(I[368] = (T)(img)(_p8##x,_n2##y,z,c)), \
|
|
(I[394] = (T)(img)(_p8##x,_n3##y,z,c)), \
|
|
(I[420] = (T)(img)(_p8##x,_n4##y,z,c)), \
|
|
(I[446] = (T)(img)(_p8##x,_n5##y,z,c)), \
|
|
(I[472] = (T)(img)(_p8##x,_n6##y,z,c)), \
|
|
(I[498] = (T)(img)(_p8##x,_n7##y,z,c)), \
|
|
(I[524] = (T)(img)(_p8##x,_n8##y,z,c)), \
|
|
(I[550] = (T)(img)(_p8##x,_n9##y,z,c)), \
|
|
(I[576] = (T)(img)(_p8##x,_n10##y,z,c)), \
|
|
(I[602] = (T)(img)(_p8##x,_n11##y,z,c)), \
|
|
(I[628] = (T)(img)(_p8##x,_n12##y,z,c)), \
|
|
(I[654] = (T)(img)(_p8##x,_n13##y,z,c)), \
|
|
(I[5] = (T)(img)(_p7##x,_p12##y,z,c)), \
|
|
(I[31] = (T)(img)(_p7##x,_p11##y,z,c)), \
|
|
(I[57] = (T)(img)(_p7##x,_p10##y,z,c)), \
|
|
(I[83] = (T)(img)(_p7##x,_p9##y,z,c)), \
|
|
(I[109] = (T)(img)(_p7##x,_p8##y,z,c)), \
|
|
(I[135] = (T)(img)(_p7##x,_p7##y,z,c)), \
|
|
(I[161] = (T)(img)(_p7##x,_p6##y,z,c)), \
|
|
(I[187] = (T)(img)(_p7##x,_p5##y,z,c)), \
|
|
(I[213] = (T)(img)(_p7##x,_p4##y,z,c)), \
|
|
(I[239] = (T)(img)(_p7##x,_p3##y,z,c)), \
|
|
(I[265] = (T)(img)(_p7##x,_p2##y,z,c)), \
|
|
(I[291] = (T)(img)(_p7##x,_p1##y,z,c)), \
|
|
(I[317] = (T)(img)(_p7##x,y,z,c)), \
|
|
(I[343] = (T)(img)(_p7##x,_n1##y,z,c)), \
|
|
(I[369] = (T)(img)(_p7##x,_n2##y,z,c)), \
|
|
(I[395] = (T)(img)(_p7##x,_n3##y,z,c)), \
|
|
(I[421] = (T)(img)(_p7##x,_n4##y,z,c)), \
|
|
(I[447] = (T)(img)(_p7##x,_n5##y,z,c)), \
|
|
(I[473] = (T)(img)(_p7##x,_n6##y,z,c)), \
|
|
(I[499] = (T)(img)(_p7##x,_n7##y,z,c)), \
|
|
(I[525] = (T)(img)(_p7##x,_n8##y,z,c)), \
|
|
(I[551] = (T)(img)(_p7##x,_n9##y,z,c)), \
|
|
(I[577] = (T)(img)(_p7##x,_n10##y,z,c)), \
|
|
(I[603] = (T)(img)(_p7##x,_n11##y,z,c)), \
|
|
(I[629] = (T)(img)(_p7##x,_n12##y,z,c)), \
|
|
(I[655] = (T)(img)(_p7##x,_n13##y,z,c)), \
|
|
(I[6] = (T)(img)(_p6##x,_p12##y,z,c)), \
|
|
(I[32] = (T)(img)(_p6##x,_p11##y,z,c)), \
|
|
(I[58] = (T)(img)(_p6##x,_p10##y,z,c)), \
|
|
(I[84] = (T)(img)(_p6##x,_p9##y,z,c)), \
|
|
(I[110] = (T)(img)(_p6##x,_p8##y,z,c)), \
|
|
(I[136] = (T)(img)(_p6##x,_p7##y,z,c)), \
|
|
(I[162] = (T)(img)(_p6##x,_p6##y,z,c)), \
|
|
(I[188] = (T)(img)(_p6##x,_p5##y,z,c)), \
|
|
(I[214] = (T)(img)(_p6##x,_p4##y,z,c)), \
|
|
(I[240] = (T)(img)(_p6##x,_p3##y,z,c)), \
|
|
(I[266] = (T)(img)(_p6##x,_p2##y,z,c)), \
|
|
(I[292] = (T)(img)(_p6##x,_p1##y,z,c)), \
|
|
(I[318] = (T)(img)(_p6##x,y,z,c)), \
|
|
(I[344] = (T)(img)(_p6##x,_n1##y,z,c)), \
|
|
(I[370] = (T)(img)(_p6##x,_n2##y,z,c)), \
|
|
(I[396] = (T)(img)(_p6##x,_n3##y,z,c)), \
|
|
(I[422] = (T)(img)(_p6##x,_n4##y,z,c)), \
|
|
(I[448] = (T)(img)(_p6##x,_n5##y,z,c)), \
|
|
(I[474] = (T)(img)(_p6##x,_n6##y,z,c)), \
|
|
(I[500] = (T)(img)(_p6##x,_n7##y,z,c)), \
|
|
(I[526] = (T)(img)(_p6##x,_n8##y,z,c)), \
|
|
(I[552] = (T)(img)(_p6##x,_n9##y,z,c)), \
|
|
(I[578] = (T)(img)(_p6##x,_n10##y,z,c)), \
|
|
(I[604] = (T)(img)(_p6##x,_n11##y,z,c)), \
|
|
(I[630] = (T)(img)(_p6##x,_n12##y,z,c)), \
|
|
(I[656] = (T)(img)(_p6##x,_n13##y,z,c)), \
|
|
(I[7] = (T)(img)(_p5##x,_p12##y,z,c)), \
|
|
(I[33] = (T)(img)(_p5##x,_p11##y,z,c)), \
|
|
(I[59] = (T)(img)(_p5##x,_p10##y,z,c)), \
|
|
(I[85] = (T)(img)(_p5##x,_p9##y,z,c)), \
|
|
(I[111] = (T)(img)(_p5##x,_p8##y,z,c)), \
|
|
(I[137] = (T)(img)(_p5##x,_p7##y,z,c)), \
|
|
(I[163] = (T)(img)(_p5##x,_p6##y,z,c)), \
|
|
(I[189] = (T)(img)(_p5##x,_p5##y,z,c)), \
|
|
(I[215] = (T)(img)(_p5##x,_p4##y,z,c)), \
|
|
(I[241] = (T)(img)(_p5##x,_p3##y,z,c)), \
|
|
(I[267] = (T)(img)(_p5##x,_p2##y,z,c)), \
|
|
(I[293] = (T)(img)(_p5##x,_p1##y,z,c)), \
|
|
(I[319] = (T)(img)(_p5##x,y,z,c)), \
|
|
(I[345] = (T)(img)(_p5##x,_n1##y,z,c)), \
|
|
(I[371] = (T)(img)(_p5##x,_n2##y,z,c)), \
|
|
(I[397] = (T)(img)(_p5##x,_n3##y,z,c)), \
|
|
(I[423] = (T)(img)(_p5##x,_n4##y,z,c)), \
|
|
(I[449] = (T)(img)(_p5##x,_n5##y,z,c)), \
|
|
(I[475] = (T)(img)(_p5##x,_n6##y,z,c)), \
|
|
(I[501] = (T)(img)(_p5##x,_n7##y,z,c)), \
|
|
(I[527] = (T)(img)(_p5##x,_n8##y,z,c)), \
|
|
(I[553] = (T)(img)(_p5##x,_n9##y,z,c)), \
|
|
(I[579] = (T)(img)(_p5##x,_n10##y,z,c)), \
|
|
(I[605] = (T)(img)(_p5##x,_n11##y,z,c)), \
|
|
(I[631] = (T)(img)(_p5##x,_n12##y,z,c)), \
|
|
(I[657] = (T)(img)(_p5##x,_n13##y,z,c)), \
|
|
(I[8] = (T)(img)(_p4##x,_p12##y,z,c)), \
|
|
(I[34] = (T)(img)(_p4##x,_p11##y,z,c)), \
|
|
(I[60] = (T)(img)(_p4##x,_p10##y,z,c)), \
|
|
(I[86] = (T)(img)(_p4##x,_p9##y,z,c)), \
|
|
(I[112] = (T)(img)(_p4##x,_p8##y,z,c)), \
|
|
(I[138] = (T)(img)(_p4##x,_p7##y,z,c)), \
|
|
(I[164] = (T)(img)(_p4##x,_p6##y,z,c)), \
|
|
(I[190] = (T)(img)(_p4##x,_p5##y,z,c)), \
|
|
(I[216] = (T)(img)(_p4##x,_p4##y,z,c)), \
|
|
(I[242] = (T)(img)(_p4##x,_p3##y,z,c)), \
|
|
(I[268] = (T)(img)(_p4##x,_p2##y,z,c)), \
|
|
(I[294] = (T)(img)(_p4##x,_p1##y,z,c)), \
|
|
(I[320] = (T)(img)(_p4##x,y,z,c)), \
|
|
(I[346] = (T)(img)(_p4##x,_n1##y,z,c)), \
|
|
(I[372] = (T)(img)(_p4##x,_n2##y,z,c)), \
|
|
(I[398] = (T)(img)(_p4##x,_n3##y,z,c)), \
|
|
(I[424] = (T)(img)(_p4##x,_n4##y,z,c)), \
|
|
(I[450] = (T)(img)(_p4##x,_n5##y,z,c)), \
|
|
(I[476] = (T)(img)(_p4##x,_n6##y,z,c)), \
|
|
(I[502] = (T)(img)(_p4##x,_n7##y,z,c)), \
|
|
(I[528] = (T)(img)(_p4##x,_n8##y,z,c)), \
|
|
(I[554] = (T)(img)(_p4##x,_n9##y,z,c)), \
|
|
(I[580] = (T)(img)(_p4##x,_n10##y,z,c)), \
|
|
(I[606] = (T)(img)(_p4##x,_n11##y,z,c)), \
|
|
(I[632] = (T)(img)(_p4##x,_n12##y,z,c)), \
|
|
(I[658] = (T)(img)(_p4##x,_n13##y,z,c)), \
|
|
(I[9] = (T)(img)(_p3##x,_p12##y,z,c)), \
|
|
(I[35] = (T)(img)(_p3##x,_p11##y,z,c)), \
|
|
(I[61] = (T)(img)(_p3##x,_p10##y,z,c)), \
|
|
(I[87] = (T)(img)(_p3##x,_p9##y,z,c)), \
|
|
(I[113] = (T)(img)(_p3##x,_p8##y,z,c)), \
|
|
(I[139] = (T)(img)(_p3##x,_p7##y,z,c)), \
|
|
(I[165] = (T)(img)(_p3##x,_p6##y,z,c)), \
|
|
(I[191] = (T)(img)(_p3##x,_p5##y,z,c)), \
|
|
(I[217] = (T)(img)(_p3##x,_p4##y,z,c)), \
|
|
(I[243] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[269] = (T)(img)(_p3##x,_p2##y,z,c)), \
|
|
(I[295] = (T)(img)(_p3##x,_p1##y,z,c)), \
|
|
(I[321] = (T)(img)(_p3##x,y,z,c)), \
|
|
(I[347] = (T)(img)(_p3##x,_n1##y,z,c)), \
|
|
(I[373] = (T)(img)(_p3##x,_n2##y,z,c)), \
|
|
(I[399] = (T)(img)(_p3##x,_n3##y,z,c)), \
|
|
(I[425] = (T)(img)(_p3##x,_n4##y,z,c)), \
|
|
(I[451] = (T)(img)(_p3##x,_n5##y,z,c)), \
|
|
(I[477] = (T)(img)(_p3##x,_n6##y,z,c)), \
|
|
(I[503] = (T)(img)(_p3##x,_n7##y,z,c)), \
|
|
(I[529] = (T)(img)(_p3##x,_n8##y,z,c)), \
|
|
(I[555] = (T)(img)(_p3##x,_n9##y,z,c)), \
|
|
(I[581] = (T)(img)(_p3##x,_n10##y,z,c)), \
|
|
(I[607] = (T)(img)(_p3##x,_n11##y,z,c)), \
|
|
(I[633] = (T)(img)(_p3##x,_n12##y,z,c)), \
|
|
(I[659] = (T)(img)(_p3##x,_n13##y,z,c)), \
|
|
(I[10] = (T)(img)(_p2##x,_p12##y,z,c)), \
|
|
(I[36] = (T)(img)(_p2##x,_p11##y,z,c)), \
|
|
(I[62] = (T)(img)(_p2##x,_p10##y,z,c)), \
|
|
(I[88] = (T)(img)(_p2##x,_p9##y,z,c)), \
|
|
(I[114] = (T)(img)(_p2##x,_p8##y,z,c)), \
|
|
(I[140] = (T)(img)(_p2##x,_p7##y,z,c)), \
|
|
(I[166] = (T)(img)(_p2##x,_p6##y,z,c)), \
|
|
(I[192] = (T)(img)(_p2##x,_p5##y,z,c)), \
|
|
(I[218] = (T)(img)(_p2##x,_p4##y,z,c)), \
|
|
(I[244] = (T)(img)(_p2##x,_p3##y,z,c)), \
|
|
(I[270] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[296] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[322] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[348] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[374] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[400] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[426] = (T)(img)(_p2##x,_n4##y,z,c)), \
|
|
(I[452] = (T)(img)(_p2##x,_n5##y,z,c)), \
|
|
(I[478] = (T)(img)(_p2##x,_n6##y,z,c)), \
|
|
(I[504] = (T)(img)(_p2##x,_n7##y,z,c)), \
|
|
(I[530] = (T)(img)(_p2##x,_n8##y,z,c)), \
|
|
(I[556] = (T)(img)(_p2##x,_n9##y,z,c)), \
|
|
(I[582] = (T)(img)(_p2##x,_n10##y,z,c)), \
|
|
(I[608] = (T)(img)(_p2##x,_n11##y,z,c)), \
|
|
(I[634] = (T)(img)(_p2##x,_n12##y,z,c)), \
|
|
(I[660] = (T)(img)(_p2##x,_n13##y,z,c)), \
|
|
(I[11] = (T)(img)(_p1##x,_p12##y,z,c)), \
|
|
(I[37] = (T)(img)(_p1##x,_p11##y,z,c)), \
|
|
(I[63] = (T)(img)(_p1##x,_p10##y,z,c)), \
|
|
(I[89] = (T)(img)(_p1##x,_p9##y,z,c)), \
|
|
(I[115] = (T)(img)(_p1##x,_p8##y,z,c)), \
|
|
(I[141] = (T)(img)(_p1##x,_p7##y,z,c)), \
|
|
(I[167] = (T)(img)(_p1##x,_p6##y,z,c)), \
|
|
(I[193] = (T)(img)(_p1##x,_p5##y,z,c)), \
|
|
(I[219] = (T)(img)(_p1##x,_p4##y,z,c)), \
|
|
(I[245] = (T)(img)(_p1##x,_p3##y,z,c)), \
|
|
(I[271] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[297] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[323] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[349] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[375] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[401] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[427] = (T)(img)(_p1##x,_n4##y,z,c)), \
|
|
(I[453] = (T)(img)(_p1##x,_n5##y,z,c)), \
|
|
(I[479] = (T)(img)(_p1##x,_n6##y,z,c)), \
|
|
(I[505] = (T)(img)(_p1##x,_n7##y,z,c)), \
|
|
(I[531] = (T)(img)(_p1##x,_n8##y,z,c)), \
|
|
(I[557] = (T)(img)(_p1##x,_n9##y,z,c)), \
|
|
(I[583] = (T)(img)(_p1##x,_n10##y,z,c)), \
|
|
(I[609] = (T)(img)(_p1##x,_n11##y,z,c)), \
|
|
(I[635] = (T)(img)(_p1##x,_n12##y,z,c)), \
|
|
(I[661] = (T)(img)(_p1##x,_n13##y,z,c)), \
|
|
(I[12] = (T)(img)(x,_p12##y,z,c)), \
|
|
(I[38] = (T)(img)(x,_p11##y,z,c)), \
|
|
(I[64] = (T)(img)(x,_p10##y,z,c)), \
|
|
(I[90] = (T)(img)(x,_p9##y,z,c)), \
|
|
(I[116] = (T)(img)(x,_p8##y,z,c)), \
|
|
(I[142] = (T)(img)(x,_p7##y,z,c)), \
|
|
(I[168] = (T)(img)(x,_p6##y,z,c)), \
|
|
(I[194] = (T)(img)(x,_p5##y,z,c)), \
|
|
(I[220] = (T)(img)(x,_p4##y,z,c)), \
|
|
(I[246] = (T)(img)(x,_p3##y,z,c)), \
|
|
(I[272] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[298] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[324] = (T)(img)(x,y,z,c)), \
|
|
(I[350] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[376] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[402] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[428] = (T)(img)(x,_n4##y,z,c)), \
|
|
(I[454] = (T)(img)(x,_n5##y,z,c)), \
|
|
(I[480] = (T)(img)(x,_n6##y,z,c)), \
|
|
(I[506] = (T)(img)(x,_n7##y,z,c)), \
|
|
(I[532] = (T)(img)(x,_n8##y,z,c)), \
|
|
(I[558] = (T)(img)(x,_n9##y,z,c)), \
|
|
(I[584] = (T)(img)(x,_n10##y,z,c)), \
|
|
(I[610] = (T)(img)(x,_n11##y,z,c)), \
|
|
(I[636] = (T)(img)(x,_n12##y,z,c)), \
|
|
(I[662] = (T)(img)(x,_n13##y,z,c)), \
|
|
(I[13] = (T)(img)(_n1##x,_p12##y,z,c)), \
|
|
(I[39] = (T)(img)(_n1##x,_p11##y,z,c)), \
|
|
(I[65] = (T)(img)(_n1##x,_p10##y,z,c)), \
|
|
(I[91] = (T)(img)(_n1##x,_p9##y,z,c)), \
|
|
(I[117] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[143] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[169] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[195] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[221] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[247] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[273] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[299] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[325] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[351] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[377] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[403] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[429] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[455] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[481] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[507] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[533] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[559] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[585] = (T)(img)(_n1##x,_n10##y,z,c)), \
|
|
(I[611] = (T)(img)(_n1##x,_n11##y,z,c)), \
|
|
(I[637] = (T)(img)(_n1##x,_n12##y,z,c)), \
|
|
(I[663] = (T)(img)(_n1##x,_n13##y,z,c)), \
|
|
(I[14] = (T)(img)(_n2##x,_p12##y,z,c)), \
|
|
(I[40] = (T)(img)(_n2##x,_p11##y,z,c)), \
|
|
(I[66] = (T)(img)(_n2##x,_p10##y,z,c)), \
|
|
(I[92] = (T)(img)(_n2##x,_p9##y,z,c)), \
|
|
(I[118] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[144] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[170] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[196] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[222] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[248] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[274] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[300] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[326] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[352] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[378] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[404] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[430] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[456] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[482] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[508] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[534] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[560] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[586] = (T)(img)(_n2##x,_n10##y,z,c)), \
|
|
(I[612] = (T)(img)(_n2##x,_n11##y,z,c)), \
|
|
(I[638] = (T)(img)(_n2##x,_n12##y,z,c)), \
|
|
(I[664] = (T)(img)(_n2##x,_n13##y,z,c)), \
|
|
(I[15] = (T)(img)(_n3##x,_p12##y,z,c)), \
|
|
(I[41] = (T)(img)(_n3##x,_p11##y,z,c)), \
|
|
(I[67] = (T)(img)(_n3##x,_p10##y,z,c)), \
|
|
(I[93] = (T)(img)(_n3##x,_p9##y,z,c)), \
|
|
(I[119] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[145] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[171] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[197] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[223] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[249] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[275] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[301] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[327] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[353] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[379] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[405] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[431] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[457] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[483] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[509] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[535] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[561] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[587] = (T)(img)(_n3##x,_n10##y,z,c)), \
|
|
(I[613] = (T)(img)(_n3##x,_n11##y,z,c)), \
|
|
(I[639] = (T)(img)(_n3##x,_n12##y,z,c)), \
|
|
(I[665] = (T)(img)(_n3##x,_n13##y,z,c)), \
|
|
(I[16] = (T)(img)(_n4##x,_p12##y,z,c)), \
|
|
(I[42] = (T)(img)(_n4##x,_p11##y,z,c)), \
|
|
(I[68] = (T)(img)(_n4##x,_p10##y,z,c)), \
|
|
(I[94] = (T)(img)(_n4##x,_p9##y,z,c)), \
|
|
(I[120] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[146] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[172] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[198] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[224] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[250] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[276] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[302] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[328] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[354] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[380] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[406] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[432] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[458] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[484] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[510] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[536] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[562] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[588] = (T)(img)(_n4##x,_n10##y,z,c)), \
|
|
(I[614] = (T)(img)(_n4##x,_n11##y,z,c)), \
|
|
(I[640] = (T)(img)(_n4##x,_n12##y,z,c)), \
|
|
(I[666] = (T)(img)(_n4##x,_n13##y,z,c)), \
|
|
(I[17] = (T)(img)(_n5##x,_p12##y,z,c)), \
|
|
(I[43] = (T)(img)(_n5##x,_p11##y,z,c)), \
|
|
(I[69] = (T)(img)(_n5##x,_p10##y,z,c)), \
|
|
(I[95] = (T)(img)(_n5##x,_p9##y,z,c)), \
|
|
(I[121] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[147] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[173] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[199] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[225] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[251] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[277] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[303] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[329] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[355] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[381] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[407] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[433] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[459] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[485] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[511] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[537] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[563] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[589] = (T)(img)(_n5##x,_n10##y,z,c)), \
|
|
(I[615] = (T)(img)(_n5##x,_n11##y,z,c)), \
|
|
(I[641] = (T)(img)(_n5##x,_n12##y,z,c)), \
|
|
(I[667] = (T)(img)(_n5##x,_n13##y,z,c)), \
|
|
(I[18] = (T)(img)(_n6##x,_p12##y,z,c)), \
|
|
(I[44] = (T)(img)(_n6##x,_p11##y,z,c)), \
|
|
(I[70] = (T)(img)(_n6##x,_p10##y,z,c)), \
|
|
(I[96] = (T)(img)(_n6##x,_p9##y,z,c)), \
|
|
(I[122] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[148] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[174] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[200] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[226] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[252] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[278] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[304] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[330] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[356] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[382] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[408] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[434] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[460] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[486] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[512] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[538] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[564] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[590] = (T)(img)(_n6##x,_n10##y,z,c)), \
|
|
(I[616] = (T)(img)(_n6##x,_n11##y,z,c)), \
|
|
(I[642] = (T)(img)(_n6##x,_n12##y,z,c)), \
|
|
(I[668] = (T)(img)(_n6##x,_n13##y,z,c)), \
|
|
(I[19] = (T)(img)(_n7##x,_p12##y,z,c)), \
|
|
(I[45] = (T)(img)(_n7##x,_p11##y,z,c)), \
|
|
(I[71] = (T)(img)(_n7##x,_p10##y,z,c)), \
|
|
(I[97] = (T)(img)(_n7##x,_p9##y,z,c)), \
|
|
(I[123] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[149] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[175] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[201] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[227] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[253] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[279] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[305] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[331] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[357] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[383] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[409] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[435] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[461] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[487] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[513] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[539] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[565] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[591] = (T)(img)(_n7##x,_n10##y,z,c)), \
|
|
(I[617] = (T)(img)(_n7##x,_n11##y,z,c)), \
|
|
(I[643] = (T)(img)(_n7##x,_n12##y,z,c)), \
|
|
(I[669] = (T)(img)(_n7##x,_n13##y,z,c)), \
|
|
(I[20] = (T)(img)(_n8##x,_p12##y,z,c)), \
|
|
(I[46] = (T)(img)(_n8##x,_p11##y,z,c)), \
|
|
(I[72] = (T)(img)(_n8##x,_p10##y,z,c)), \
|
|
(I[98] = (T)(img)(_n8##x,_p9##y,z,c)), \
|
|
(I[124] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[150] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[176] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[202] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[228] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[254] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[280] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[306] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[332] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[358] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[384] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[410] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[436] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[462] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[488] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[514] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[540] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[566] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
(I[592] = (T)(img)(_n8##x,_n10##y,z,c)), \
|
|
(I[618] = (T)(img)(_n8##x,_n11##y,z,c)), \
|
|
(I[644] = (T)(img)(_n8##x,_n12##y,z,c)), \
|
|
(I[670] = (T)(img)(_n8##x,_n13##y,z,c)), \
|
|
(I[21] = (T)(img)(_n9##x,_p12##y,z,c)), \
|
|
(I[47] = (T)(img)(_n9##x,_p11##y,z,c)), \
|
|
(I[73] = (T)(img)(_n9##x,_p10##y,z,c)), \
|
|
(I[99] = (T)(img)(_n9##x,_p9##y,z,c)), \
|
|
(I[125] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[151] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[177] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[203] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[229] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[255] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[281] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[307] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[333] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[359] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[385] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[411] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[437] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[463] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[489] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[515] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[541] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[567] = (T)(img)(_n9##x,_n9##y,z,c)), \
|
|
(I[593] = (T)(img)(_n9##x,_n10##y,z,c)), \
|
|
(I[619] = (T)(img)(_n9##x,_n11##y,z,c)), \
|
|
(I[645] = (T)(img)(_n9##x,_n12##y,z,c)), \
|
|
(I[671] = (T)(img)(_n9##x,_n13##y,z,c)), \
|
|
(I[22] = (T)(img)(_n10##x,_p12##y,z,c)), \
|
|
(I[48] = (T)(img)(_n10##x,_p11##y,z,c)), \
|
|
(I[74] = (T)(img)(_n10##x,_p10##y,z,c)), \
|
|
(I[100] = (T)(img)(_n10##x,_p9##y,z,c)), \
|
|
(I[126] = (T)(img)(_n10##x,_p8##y,z,c)), \
|
|
(I[152] = (T)(img)(_n10##x,_p7##y,z,c)), \
|
|
(I[178] = (T)(img)(_n10##x,_p6##y,z,c)), \
|
|
(I[204] = (T)(img)(_n10##x,_p5##y,z,c)), \
|
|
(I[230] = (T)(img)(_n10##x,_p4##y,z,c)), \
|
|
(I[256] = (T)(img)(_n10##x,_p3##y,z,c)), \
|
|
(I[282] = (T)(img)(_n10##x,_p2##y,z,c)), \
|
|
(I[308] = (T)(img)(_n10##x,_p1##y,z,c)), \
|
|
(I[334] = (T)(img)(_n10##x,y,z,c)), \
|
|
(I[360] = (T)(img)(_n10##x,_n1##y,z,c)), \
|
|
(I[386] = (T)(img)(_n10##x,_n2##y,z,c)), \
|
|
(I[412] = (T)(img)(_n10##x,_n3##y,z,c)), \
|
|
(I[438] = (T)(img)(_n10##x,_n4##y,z,c)), \
|
|
(I[464] = (T)(img)(_n10##x,_n5##y,z,c)), \
|
|
(I[490] = (T)(img)(_n10##x,_n6##y,z,c)), \
|
|
(I[516] = (T)(img)(_n10##x,_n7##y,z,c)), \
|
|
(I[542] = (T)(img)(_n10##x,_n8##y,z,c)), \
|
|
(I[568] = (T)(img)(_n10##x,_n9##y,z,c)), \
|
|
(I[594] = (T)(img)(_n10##x,_n10##y,z,c)), \
|
|
(I[620] = (T)(img)(_n10##x,_n11##y,z,c)), \
|
|
(I[646] = (T)(img)(_n10##x,_n12##y,z,c)), \
|
|
(I[672] = (T)(img)(_n10##x,_n13##y,z,c)), \
|
|
(I[23] = (T)(img)(_n11##x,_p12##y,z,c)), \
|
|
(I[49] = (T)(img)(_n11##x,_p11##y,z,c)), \
|
|
(I[75] = (T)(img)(_n11##x,_p10##y,z,c)), \
|
|
(I[101] = (T)(img)(_n11##x,_p9##y,z,c)), \
|
|
(I[127] = (T)(img)(_n11##x,_p8##y,z,c)), \
|
|
(I[153] = (T)(img)(_n11##x,_p7##y,z,c)), \
|
|
(I[179] = (T)(img)(_n11##x,_p6##y,z,c)), \
|
|
(I[205] = (T)(img)(_n11##x,_p5##y,z,c)), \
|
|
(I[231] = (T)(img)(_n11##x,_p4##y,z,c)), \
|
|
(I[257] = (T)(img)(_n11##x,_p3##y,z,c)), \
|
|
(I[283] = (T)(img)(_n11##x,_p2##y,z,c)), \
|
|
(I[309] = (T)(img)(_n11##x,_p1##y,z,c)), \
|
|
(I[335] = (T)(img)(_n11##x,y,z,c)), \
|
|
(I[361] = (T)(img)(_n11##x,_n1##y,z,c)), \
|
|
(I[387] = (T)(img)(_n11##x,_n2##y,z,c)), \
|
|
(I[413] = (T)(img)(_n11##x,_n3##y,z,c)), \
|
|
(I[439] = (T)(img)(_n11##x,_n4##y,z,c)), \
|
|
(I[465] = (T)(img)(_n11##x,_n5##y,z,c)), \
|
|
(I[491] = (T)(img)(_n11##x,_n6##y,z,c)), \
|
|
(I[517] = (T)(img)(_n11##x,_n7##y,z,c)), \
|
|
(I[543] = (T)(img)(_n11##x,_n8##y,z,c)), \
|
|
(I[569] = (T)(img)(_n11##x,_n9##y,z,c)), \
|
|
(I[595] = (T)(img)(_n11##x,_n10##y,z,c)), \
|
|
(I[621] = (T)(img)(_n11##x,_n11##y,z,c)), \
|
|
(I[647] = (T)(img)(_n11##x,_n12##y,z,c)), \
|
|
(I[673] = (T)(img)(_n11##x,_n13##y,z,c)), \
|
|
(I[24] = (T)(img)(_n12##x,_p12##y,z,c)), \
|
|
(I[50] = (T)(img)(_n12##x,_p11##y,z,c)), \
|
|
(I[76] = (T)(img)(_n12##x,_p10##y,z,c)), \
|
|
(I[102] = (T)(img)(_n12##x,_p9##y,z,c)), \
|
|
(I[128] = (T)(img)(_n12##x,_p8##y,z,c)), \
|
|
(I[154] = (T)(img)(_n12##x,_p7##y,z,c)), \
|
|
(I[180] = (T)(img)(_n12##x,_p6##y,z,c)), \
|
|
(I[206] = (T)(img)(_n12##x,_p5##y,z,c)), \
|
|
(I[232] = (T)(img)(_n12##x,_p4##y,z,c)), \
|
|
(I[258] = (T)(img)(_n12##x,_p3##y,z,c)), \
|
|
(I[284] = (T)(img)(_n12##x,_p2##y,z,c)), \
|
|
(I[310] = (T)(img)(_n12##x,_p1##y,z,c)), \
|
|
(I[336] = (T)(img)(_n12##x,y,z,c)), \
|
|
(I[362] = (T)(img)(_n12##x,_n1##y,z,c)), \
|
|
(I[388] = (T)(img)(_n12##x,_n2##y,z,c)), \
|
|
(I[414] = (T)(img)(_n12##x,_n3##y,z,c)), \
|
|
(I[440] = (T)(img)(_n12##x,_n4##y,z,c)), \
|
|
(I[466] = (T)(img)(_n12##x,_n5##y,z,c)), \
|
|
(I[492] = (T)(img)(_n12##x,_n6##y,z,c)), \
|
|
(I[518] = (T)(img)(_n12##x,_n7##y,z,c)), \
|
|
(I[544] = (T)(img)(_n12##x,_n8##y,z,c)), \
|
|
(I[570] = (T)(img)(_n12##x,_n9##y,z,c)), \
|
|
(I[596] = (T)(img)(_n12##x,_n10##y,z,c)), \
|
|
(I[622] = (T)(img)(_n12##x,_n11##y,z,c)), \
|
|
(I[648] = (T)(img)(_n12##x,_n12##y,z,c)), \
|
|
(I[674] = (T)(img)(_n12##x,_n13##y,z,c)), \
|
|
x + 13>=(img).width()?(img).width() - 1:x + 13); \
|
|
x<=(int)(x1) && ((_n13##x<(img).width() && ( \
|
|
(I[25] = (T)(img)(_n13##x,_p12##y,z,c)), \
|
|
(I[51] = (T)(img)(_n13##x,_p11##y,z,c)), \
|
|
(I[77] = (T)(img)(_n13##x,_p10##y,z,c)), \
|
|
(I[103] = (T)(img)(_n13##x,_p9##y,z,c)), \
|
|
(I[129] = (T)(img)(_n13##x,_p8##y,z,c)), \
|
|
(I[155] = (T)(img)(_n13##x,_p7##y,z,c)), \
|
|
(I[181] = (T)(img)(_n13##x,_p6##y,z,c)), \
|
|
(I[207] = (T)(img)(_n13##x,_p5##y,z,c)), \
|
|
(I[233] = (T)(img)(_n13##x,_p4##y,z,c)), \
|
|
(I[259] = (T)(img)(_n13##x,_p3##y,z,c)), \
|
|
(I[285] = (T)(img)(_n13##x,_p2##y,z,c)), \
|
|
(I[311] = (T)(img)(_n13##x,_p1##y,z,c)), \
|
|
(I[337] = (T)(img)(_n13##x,y,z,c)), \
|
|
(I[363] = (T)(img)(_n13##x,_n1##y,z,c)), \
|
|
(I[389] = (T)(img)(_n13##x,_n2##y,z,c)), \
|
|
(I[415] = (T)(img)(_n13##x,_n3##y,z,c)), \
|
|
(I[441] = (T)(img)(_n13##x,_n4##y,z,c)), \
|
|
(I[467] = (T)(img)(_n13##x,_n5##y,z,c)), \
|
|
(I[493] = (T)(img)(_n13##x,_n6##y,z,c)), \
|
|
(I[519] = (T)(img)(_n13##x,_n7##y,z,c)), \
|
|
(I[545] = (T)(img)(_n13##x,_n8##y,z,c)), \
|
|
(I[571] = (T)(img)(_n13##x,_n9##y,z,c)), \
|
|
(I[597] = (T)(img)(_n13##x,_n10##y,z,c)), \
|
|
(I[623] = (T)(img)(_n13##x,_n11##y,z,c)), \
|
|
(I[649] = (T)(img)(_n13##x,_n12##y,z,c)), \
|
|
(I[675] = (T)(img)(_n13##x,_n13##y,z,c)),1)) || \
|
|
_n12##x==--_n13##x || _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n13##x = _n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], \
|
|
I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], \
|
|
I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], \
|
|
I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], \
|
|
I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], \
|
|
I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], \
|
|
I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], \
|
|
I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], \
|
|
I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], \
|
|
I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], \
|
|
I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], \
|
|
I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], \
|
|
I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], \
|
|
I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], \
|
|
I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], \
|
|
I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], \
|
|
I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], \
|
|
I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], \
|
|
I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], \
|
|
I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], \
|
|
I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], \
|
|
I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], \
|
|
I[572] = I[573], I[573] = I[574], I[574] = I[575], I[575] = I[576], I[576] = I[577], I[577] = I[578], I[578] = I[579], I[579] = I[580], I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], I[587] = I[588], I[588] = I[589], I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], I[593] = I[594], I[594] = I[595], I[595] = I[596], I[596] = I[597], \
|
|
I[598] = I[599], I[599] = I[600], I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], I[607] = I[608], I[608] = I[609], I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], I[615] = I[616], I[616] = I[617], I[617] = I[618], I[618] = I[619], I[619] = I[620], I[620] = I[621], I[621] = I[622], I[622] = I[623], \
|
|
I[624] = I[625], I[625] = I[626], I[626] = I[627], I[627] = I[628], I[628] = I[629], I[629] = I[630], I[630] = I[631], I[631] = I[632], I[632] = I[633], I[633] = I[634], I[634] = I[635], I[635] = I[636], I[636] = I[637], I[637] = I[638], I[638] = I[639], I[639] = I[640], I[640] = I[641], I[641] = I[642], I[642] = I[643], I[643] = I[644], I[644] = I[645], I[645] = I[646], I[646] = I[647], I[647] = I[648], I[648] = I[649], \
|
|
I[650] = I[651], I[651] = I[652], I[652] = I[653], I[653] = I[654], I[654] = I[655], I[655] = I[656], I[656] = I[657], I[657] = I[658], I[658] = I[659], I[659] = I[660], I[660] = I[661], I[661] = I[662], I[662] = I[663], I[663] = I[664], I[664] = I[665], I[665] = I[666], I[666] = I[667], I[667] = I[668], I[668] = I[669], I[669] = I[670], I[670] = I[671], I[671] = I[672], I[672] = I[673], I[673] = I[674], I[674] = I[675], \
|
|
_p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x, ++_n13##x)
|
|
|
|
#define cimg_get26x26(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p12##x,_p12##y,z,c), I[1] = (T)(img)(_p11##x,_p12##y,z,c), I[2] = (T)(img)(_p10##x,_p12##y,z,c), I[3] = (T)(img)(_p9##x,_p12##y,z,c), I[4] = (T)(img)(_p8##x,_p12##y,z,c), I[5] = (T)(img)(_p7##x,_p12##y,z,c), I[6] = (T)(img)(_p6##x,_p12##y,z,c), I[7] = (T)(img)(_p5##x,_p12##y,z,c), I[8] = (T)(img)(_p4##x,_p12##y,z,c), I[9] = (T)(img)(_p3##x,_p12##y,z,c), I[10] = (T)(img)(_p2##x,_p12##y,z,c), I[11] = (T)(img)(_p1##x,_p12##y,z,c), I[12] = (T)(img)(x,_p12##y,z,c), I[13] = (T)(img)(_n1##x,_p12##y,z,c), I[14] = (T)(img)(_n2##x,_p12##y,z,c), I[15] = (T)(img)(_n3##x,_p12##y,z,c), I[16] = (T)(img)(_n4##x,_p12##y,z,c), I[17] = (T)(img)(_n5##x,_p12##y,z,c), I[18] = (T)(img)(_n6##x,_p12##y,z,c), I[19] = (T)(img)(_n7##x,_p12##y,z,c), I[20] = (T)(img)(_n8##x,_p12##y,z,c), I[21] = (T)(img)(_n9##x,_p12##y,z,c), I[22] = (T)(img)(_n10##x,_p12##y,z,c), I[23] = (T)(img)(_n11##x,_p12##y,z,c), I[24] = (T)(img)(_n12##x,_p12##y,z,c), I[25] = (T)(img)(_n13##x,_p12##y,z,c), \
|
|
I[26] = (T)(img)(_p12##x,_p11##y,z,c), I[27] = (T)(img)(_p11##x,_p11##y,z,c), I[28] = (T)(img)(_p10##x,_p11##y,z,c), I[29] = (T)(img)(_p9##x,_p11##y,z,c), I[30] = (T)(img)(_p8##x,_p11##y,z,c), I[31] = (T)(img)(_p7##x,_p11##y,z,c), I[32] = (T)(img)(_p6##x,_p11##y,z,c), I[33] = (T)(img)(_p5##x,_p11##y,z,c), I[34] = (T)(img)(_p4##x,_p11##y,z,c), I[35] = (T)(img)(_p3##x,_p11##y,z,c), I[36] = (T)(img)(_p2##x,_p11##y,z,c), I[37] = (T)(img)(_p1##x,_p11##y,z,c), I[38] = (T)(img)(x,_p11##y,z,c), I[39] = (T)(img)(_n1##x,_p11##y,z,c), I[40] = (T)(img)(_n2##x,_p11##y,z,c), I[41] = (T)(img)(_n3##x,_p11##y,z,c), I[42] = (T)(img)(_n4##x,_p11##y,z,c), I[43] = (T)(img)(_n5##x,_p11##y,z,c), I[44] = (T)(img)(_n6##x,_p11##y,z,c), I[45] = (T)(img)(_n7##x,_p11##y,z,c), I[46] = (T)(img)(_n8##x,_p11##y,z,c), I[47] = (T)(img)(_n9##x,_p11##y,z,c), I[48] = (T)(img)(_n10##x,_p11##y,z,c), I[49] = (T)(img)(_n11##x,_p11##y,z,c), I[50] = (T)(img)(_n12##x,_p11##y,z,c), I[51] = (T)(img)(_n13##x,_p11##y,z,c), \
|
|
I[52] = (T)(img)(_p12##x,_p10##y,z,c), I[53] = (T)(img)(_p11##x,_p10##y,z,c), I[54] = (T)(img)(_p10##x,_p10##y,z,c), I[55] = (T)(img)(_p9##x,_p10##y,z,c), I[56] = (T)(img)(_p8##x,_p10##y,z,c), I[57] = (T)(img)(_p7##x,_p10##y,z,c), I[58] = (T)(img)(_p6##x,_p10##y,z,c), I[59] = (T)(img)(_p5##x,_p10##y,z,c), I[60] = (T)(img)(_p4##x,_p10##y,z,c), I[61] = (T)(img)(_p3##x,_p10##y,z,c), I[62] = (T)(img)(_p2##x,_p10##y,z,c), I[63] = (T)(img)(_p1##x,_p10##y,z,c), I[64] = (T)(img)(x,_p10##y,z,c), I[65] = (T)(img)(_n1##x,_p10##y,z,c), I[66] = (T)(img)(_n2##x,_p10##y,z,c), I[67] = (T)(img)(_n3##x,_p10##y,z,c), I[68] = (T)(img)(_n4##x,_p10##y,z,c), I[69] = (T)(img)(_n5##x,_p10##y,z,c), I[70] = (T)(img)(_n6##x,_p10##y,z,c), I[71] = (T)(img)(_n7##x,_p10##y,z,c), I[72] = (T)(img)(_n8##x,_p10##y,z,c), I[73] = (T)(img)(_n9##x,_p10##y,z,c), I[74] = (T)(img)(_n10##x,_p10##y,z,c), I[75] = (T)(img)(_n11##x,_p10##y,z,c), I[76] = (T)(img)(_n12##x,_p10##y,z,c), I[77] = (T)(img)(_n13##x,_p10##y,z,c), \
|
|
I[78] = (T)(img)(_p12##x,_p9##y,z,c), I[79] = (T)(img)(_p11##x,_p9##y,z,c), I[80] = (T)(img)(_p10##x,_p9##y,z,c), I[81] = (T)(img)(_p9##x,_p9##y,z,c), I[82] = (T)(img)(_p8##x,_p9##y,z,c), I[83] = (T)(img)(_p7##x,_p9##y,z,c), I[84] = (T)(img)(_p6##x,_p9##y,z,c), I[85] = (T)(img)(_p5##x,_p9##y,z,c), I[86] = (T)(img)(_p4##x,_p9##y,z,c), I[87] = (T)(img)(_p3##x,_p9##y,z,c), I[88] = (T)(img)(_p2##x,_p9##y,z,c), I[89] = (T)(img)(_p1##x,_p9##y,z,c), I[90] = (T)(img)(x,_p9##y,z,c), I[91] = (T)(img)(_n1##x,_p9##y,z,c), I[92] = (T)(img)(_n2##x,_p9##y,z,c), I[93] = (T)(img)(_n3##x,_p9##y,z,c), I[94] = (T)(img)(_n4##x,_p9##y,z,c), I[95] = (T)(img)(_n5##x,_p9##y,z,c), I[96] = (T)(img)(_n6##x,_p9##y,z,c), I[97] = (T)(img)(_n7##x,_p9##y,z,c), I[98] = (T)(img)(_n8##x,_p9##y,z,c), I[99] = (T)(img)(_n9##x,_p9##y,z,c), I[100] = (T)(img)(_n10##x,_p9##y,z,c), I[101] = (T)(img)(_n11##x,_p9##y,z,c), I[102] = (T)(img)(_n12##x,_p9##y,z,c), I[103] = (T)(img)(_n13##x,_p9##y,z,c), \
|
|
I[104] = (T)(img)(_p12##x,_p8##y,z,c), I[105] = (T)(img)(_p11##x,_p8##y,z,c), I[106] = (T)(img)(_p10##x,_p8##y,z,c), I[107] = (T)(img)(_p9##x,_p8##y,z,c), I[108] = (T)(img)(_p8##x,_p8##y,z,c), I[109] = (T)(img)(_p7##x,_p8##y,z,c), I[110] = (T)(img)(_p6##x,_p8##y,z,c), I[111] = (T)(img)(_p5##x,_p8##y,z,c), I[112] = (T)(img)(_p4##x,_p8##y,z,c), I[113] = (T)(img)(_p3##x,_p8##y,z,c), I[114] = (T)(img)(_p2##x,_p8##y,z,c), I[115] = (T)(img)(_p1##x,_p8##y,z,c), I[116] = (T)(img)(x,_p8##y,z,c), I[117] = (T)(img)(_n1##x,_p8##y,z,c), I[118] = (T)(img)(_n2##x,_p8##y,z,c), I[119] = (T)(img)(_n3##x,_p8##y,z,c), I[120] = (T)(img)(_n4##x,_p8##y,z,c), I[121] = (T)(img)(_n5##x,_p8##y,z,c), I[122] = (T)(img)(_n6##x,_p8##y,z,c), I[123] = (T)(img)(_n7##x,_p8##y,z,c), I[124] = (T)(img)(_n8##x,_p8##y,z,c), I[125] = (T)(img)(_n9##x,_p8##y,z,c), I[126] = (T)(img)(_n10##x,_p8##y,z,c), I[127] = (T)(img)(_n11##x,_p8##y,z,c), I[128] = (T)(img)(_n12##x,_p8##y,z,c), I[129] = (T)(img)(_n13##x,_p8##y,z,c), \
|
|
I[130] = (T)(img)(_p12##x,_p7##y,z,c), I[131] = (T)(img)(_p11##x,_p7##y,z,c), I[132] = (T)(img)(_p10##x,_p7##y,z,c), I[133] = (T)(img)(_p9##x,_p7##y,z,c), I[134] = (T)(img)(_p8##x,_p7##y,z,c), I[135] = (T)(img)(_p7##x,_p7##y,z,c), I[136] = (T)(img)(_p6##x,_p7##y,z,c), I[137] = (T)(img)(_p5##x,_p7##y,z,c), I[138] = (T)(img)(_p4##x,_p7##y,z,c), I[139] = (T)(img)(_p3##x,_p7##y,z,c), I[140] = (T)(img)(_p2##x,_p7##y,z,c), I[141] = (T)(img)(_p1##x,_p7##y,z,c), I[142] = (T)(img)(x,_p7##y,z,c), I[143] = (T)(img)(_n1##x,_p7##y,z,c), I[144] = (T)(img)(_n2##x,_p7##y,z,c), I[145] = (T)(img)(_n3##x,_p7##y,z,c), I[146] = (T)(img)(_n4##x,_p7##y,z,c), I[147] = (T)(img)(_n5##x,_p7##y,z,c), I[148] = (T)(img)(_n6##x,_p7##y,z,c), I[149] = (T)(img)(_n7##x,_p7##y,z,c), I[150] = (T)(img)(_n8##x,_p7##y,z,c), I[151] = (T)(img)(_n9##x,_p7##y,z,c), I[152] = (T)(img)(_n10##x,_p7##y,z,c), I[153] = (T)(img)(_n11##x,_p7##y,z,c), I[154] = (T)(img)(_n12##x,_p7##y,z,c), I[155] = (T)(img)(_n13##x,_p7##y,z,c), \
|
|
I[156] = (T)(img)(_p12##x,_p6##y,z,c), I[157] = (T)(img)(_p11##x,_p6##y,z,c), I[158] = (T)(img)(_p10##x,_p6##y,z,c), I[159] = (T)(img)(_p9##x,_p6##y,z,c), I[160] = (T)(img)(_p8##x,_p6##y,z,c), I[161] = (T)(img)(_p7##x,_p6##y,z,c), I[162] = (T)(img)(_p6##x,_p6##y,z,c), I[163] = (T)(img)(_p5##x,_p6##y,z,c), I[164] = (T)(img)(_p4##x,_p6##y,z,c), I[165] = (T)(img)(_p3##x,_p6##y,z,c), I[166] = (T)(img)(_p2##x,_p6##y,z,c), I[167] = (T)(img)(_p1##x,_p6##y,z,c), I[168] = (T)(img)(x,_p6##y,z,c), I[169] = (T)(img)(_n1##x,_p6##y,z,c), I[170] = (T)(img)(_n2##x,_p6##y,z,c), I[171] = (T)(img)(_n3##x,_p6##y,z,c), I[172] = (T)(img)(_n4##x,_p6##y,z,c), I[173] = (T)(img)(_n5##x,_p6##y,z,c), I[174] = (T)(img)(_n6##x,_p6##y,z,c), I[175] = (T)(img)(_n7##x,_p6##y,z,c), I[176] = (T)(img)(_n8##x,_p6##y,z,c), I[177] = (T)(img)(_n9##x,_p6##y,z,c), I[178] = (T)(img)(_n10##x,_p6##y,z,c), I[179] = (T)(img)(_n11##x,_p6##y,z,c), I[180] = (T)(img)(_n12##x,_p6##y,z,c), I[181] = (T)(img)(_n13##x,_p6##y,z,c), \
|
|
I[182] = (T)(img)(_p12##x,_p5##y,z,c), I[183] = (T)(img)(_p11##x,_p5##y,z,c), I[184] = (T)(img)(_p10##x,_p5##y,z,c), I[185] = (T)(img)(_p9##x,_p5##y,z,c), I[186] = (T)(img)(_p8##x,_p5##y,z,c), I[187] = (T)(img)(_p7##x,_p5##y,z,c), I[188] = (T)(img)(_p6##x,_p5##y,z,c), I[189] = (T)(img)(_p5##x,_p5##y,z,c), I[190] = (T)(img)(_p4##x,_p5##y,z,c), I[191] = (T)(img)(_p3##x,_p5##y,z,c), I[192] = (T)(img)(_p2##x,_p5##y,z,c), I[193] = (T)(img)(_p1##x,_p5##y,z,c), I[194] = (T)(img)(x,_p5##y,z,c), I[195] = (T)(img)(_n1##x,_p5##y,z,c), I[196] = (T)(img)(_n2##x,_p5##y,z,c), I[197] = (T)(img)(_n3##x,_p5##y,z,c), I[198] = (T)(img)(_n4##x,_p5##y,z,c), I[199] = (T)(img)(_n5##x,_p5##y,z,c), I[200] = (T)(img)(_n6##x,_p5##y,z,c), I[201] = (T)(img)(_n7##x,_p5##y,z,c), I[202] = (T)(img)(_n8##x,_p5##y,z,c), I[203] = (T)(img)(_n9##x,_p5##y,z,c), I[204] = (T)(img)(_n10##x,_p5##y,z,c), I[205] = (T)(img)(_n11##x,_p5##y,z,c), I[206] = (T)(img)(_n12##x,_p5##y,z,c), I[207] = (T)(img)(_n13##x,_p5##y,z,c), \
|
|
I[208] = (T)(img)(_p12##x,_p4##y,z,c), I[209] = (T)(img)(_p11##x,_p4##y,z,c), I[210] = (T)(img)(_p10##x,_p4##y,z,c), I[211] = (T)(img)(_p9##x,_p4##y,z,c), I[212] = (T)(img)(_p8##x,_p4##y,z,c), I[213] = (T)(img)(_p7##x,_p4##y,z,c), I[214] = (T)(img)(_p6##x,_p4##y,z,c), I[215] = (T)(img)(_p5##x,_p4##y,z,c), I[216] = (T)(img)(_p4##x,_p4##y,z,c), I[217] = (T)(img)(_p3##x,_p4##y,z,c), I[218] = (T)(img)(_p2##x,_p4##y,z,c), I[219] = (T)(img)(_p1##x,_p4##y,z,c), I[220] = (T)(img)(x,_p4##y,z,c), I[221] = (T)(img)(_n1##x,_p4##y,z,c), I[222] = (T)(img)(_n2##x,_p4##y,z,c), I[223] = (T)(img)(_n3##x,_p4##y,z,c), I[224] = (T)(img)(_n4##x,_p4##y,z,c), I[225] = (T)(img)(_n5##x,_p4##y,z,c), I[226] = (T)(img)(_n6##x,_p4##y,z,c), I[227] = (T)(img)(_n7##x,_p4##y,z,c), I[228] = (T)(img)(_n8##x,_p4##y,z,c), I[229] = (T)(img)(_n9##x,_p4##y,z,c), I[230] = (T)(img)(_n10##x,_p4##y,z,c), I[231] = (T)(img)(_n11##x,_p4##y,z,c), I[232] = (T)(img)(_n12##x,_p4##y,z,c), I[233] = (T)(img)(_n13##x,_p4##y,z,c), \
|
|
I[234] = (T)(img)(_p12##x,_p3##y,z,c), I[235] = (T)(img)(_p11##x,_p3##y,z,c), I[236] = (T)(img)(_p10##x,_p3##y,z,c), I[237] = (T)(img)(_p9##x,_p3##y,z,c), I[238] = (T)(img)(_p8##x,_p3##y,z,c), I[239] = (T)(img)(_p7##x,_p3##y,z,c), I[240] = (T)(img)(_p6##x,_p3##y,z,c), I[241] = (T)(img)(_p5##x,_p3##y,z,c), I[242] = (T)(img)(_p4##x,_p3##y,z,c), I[243] = (T)(img)(_p3##x,_p3##y,z,c), I[244] = (T)(img)(_p2##x,_p3##y,z,c), I[245] = (T)(img)(_p1##x,_p3##y,z,c), I[246] = (T)(img)(x,_p3##y,z,c), I[247] = (T)(img)(_n1##x,_p3##y,z,c), I[248] = (T)(img)(_n2##x,_p3##y,z,c), I[249] = (T)(img)(_n3##x,_p3##y,z,c), I[250] = (T)(img)(_n4##x,_p3##y,z,c), I[251] = (T)(img)(_n5##x,_p3##y,z,c), I[252] = (T)(img)(_n6##x,_p3##y,z,c), I[253] = (T)(img)(_n7##x,_p3##y,z,c), I[254] = (T)(img)(_n8##x,_p3##y,z,c), I[255] = (T)(img)(_n9##x,_p3##y,z,c), I[256] = (T)(img)(_n10##x,_p3##y,z,c), I[257] = (T)(img)(_n11##x,_p3##y,z,c), I[258] = (T)(img)(_n12##x,_p3##y,z,c), I[259] = (T)(img)(_n13##x,_p3##y,z,c), \
|
|
I[260] = (T)(img)(_p12##x,_p2##y,z,c), I[261] = (T)(img)(_p11##x,_p2##y,z,c), I[262] = (T)(img)(_p10##x,_p2##y,z,c), I[263] = (T)(img)(_p9##x,_p2##y,z,c), I[264] = (T)(img)(_p8##x,_p2##y,z,c), I[265] = (T)(img)(_p7##x,_p2##y,z,c), I[266] = (T)(img)(_p6##x,_p2##y,z,c), I[267] = (T)(img)(_p5##x,_p2##y,z,c), I[268] = (T)(img)(_p4##x,_p2##y,z,c), I[269] = (T)(img)(_p3##x,_p2##y,z,c), I[270] = (T)(img)(_p2##x,_p2##y,z,c), I[271] = (T)(img)(_p1##x,_p2##y,z,c), I[272] = (T)(img)(x,_p2##y,z,c), I[273] = (T)(img)(_n1##x,_p2##y,z,c), I[274] = (T)(img)(_n2##x,_p2##y,z,c), I[275] = (T)(img)(_n3##x,_p2##y,z,c), I[276] = (T)(img)(_n4##x,_p2##y,z,c), I[277] = (T)(img)(_n5##x,_p2##y,z,c), I[278] = (T)(img)(_n6##x,_p2##y,z,c), I[279] = (T)(img)(_n7##x,_p2##y,z,c), I[280] = (T)(img)(_n8##x,_p2##y,z,c), I[281] = (T)(img)(_n9##x,_p2##y,z,c), I[282] = (T)(img)(_n10##x,_p2##y,z,c), I[283] = (T)(img)(_n11##x,_p2##y,z,c), I[284] = (T)(img)(_n12##x,_p2##y,z,c), I[285] = (T)(img)(_n13##x,_p2##y,z,c), \
|
|
I[286] = (T)(img)(_p12##x,_p1##y,z,c), I[287] = (T)(img)(_p11##x,_p1##y,z,c), I[288] = (T)(img)(_p10##x,_p1##y,z,c), I[289] = (T)(img)(_p9##x,_p1##y,z,c), I[290] = (T)(img)(_p8##x,_p1##y,z,c), I[291] = (T)(img)(_p7##x,_p1##y,z,c), I[292] = (T)(img)(_p6##x,_p1##y,z,c), I[293] = (T)(img)(_p5##x,_p1##y,z,c), I[294] = (T)(img)(_p4##x,_p1##y,z,c), I[295] = (T)(img)(_p3##x,_p1##y,z,c), I[296] = (T)(img)(_p2##x,_p1##y,z,c), I[297] = (T)(img)(_p1##x,_p1##y,z,c), I[298] = (T)(img)(x,_p1##y,z,c), I[299] = (T)(img)(_n1##x,_p1##y,z,c), I[300] = (T)(img)(_n2##x,_p1##y,z,c), I[301] = (T)(img)(_n3##x,_p1##y,z,c), I[302] = (T)(img)(_n4##x,_p1##y,z,c), I[303] = (T)(img)(_n5##x,_p1##y,z,c), I[304] = (T)(img)(_n6##x,_p1##y,z,c), I[305] = (T)(img)(_n7##x,_p1##y,z,c), I[306] = (T)(img)(_n8##x,_p1##y,z,c), I[307] = (T)(img)(_n9##x,_p1##y,z,c), I[308] = (T)(img)(_n10##x,_p1##y,z,c), I[309] = (T)(img)(_n11##x,_p1##y,z,c), I[310] = (T)(img)(_n12##x,_p1##y,z,c), I[311] = (T)(img)(_n13##x,_p1##y,z,c), \
|
|
I[312] = (T)(img)(_p12##x,y,z,c), I[313] = (T)(img)(_p11##x,y,z,c), I[314] = (T)(img)(_p10##x,y,z,c), I[315] = (T)(img)(_p9##x,y,z,c), I[316] = (T)(img)(_p8##x,y,z,c), I[317] = (T)(img)(_p7##x,y,z,c), I[318] = (T)(img)(_p6##x,y,z,c), I[319] = (T)(img)(_p5##x,y,z,c), I[320] = (T)(img)(_p4##x,y,z,c), I[321] = (T)(img)(_p3##x,y,z,c), I[322] = (T)(img)(_p2##x,y,z,c), I[323] = (T)(img)(_p1##x,y,z,c), I[324] = (T)(img)(x,y,z,c), I[325] = (T)(img)(_n1##x,y,z,c), I[326] = (T)(img)(_n2##x,y,z,c), I[327] = (T)(img)(_n3##x,y,z,c), I[328] = (T)(img)(_n4##x,y,z,c), I[329] = (T)(img)(_n5##x,y,z,c), I[330] = (T)(img)(_n6##x,y,z,c), I[331] = (T)(img)(_n7##x,y,z,c), I[332] = (T)(img)(_n8##x,y,z,c), I[333] = (T)(img)(_n9##x,y,z,c), I[334] = (T)(img)(_n10##x,y,z,c), I[335] = (T)(img)(_n11##x,y,z,c), I[336] = (T)(img)(_n12##x,y,z,c), I[337] = (T)(img)(_n13##x,y,z,c), \
|
|
I[338] = (T)(img)(_p12##x,_n1##y,z,c), I[339] = (T)(img)(_p11##x,_n1##y,z,c), I[340] = (T)(img)(_p10##x,_n1##y,z,c), I[341] = (T)(img)(_p9##x,_n1##y,z,c), I[342] = (T)(img)(_p8##x,_n1##y,z,c), I[343] = (T)(img)(_p7##x,_n1##y,z,c), I[344] = (T)(img)(_p6##x,_n1##y,z,c), I[345] = (T)(img)(_p5##x,_n1##y,z,c), I[346] = (T)(img)(_p4##x,_n1##y,z,c), I[347] = (T)(img)(_p3##x,_n1##y,z,c), I[348] = (T)(img)(_p2##x,_n1##y,z,c), I[349] = (T)(img)(_p1##x,_n1##y,z,c), I[350] = (T)(img)(x,_n1##y,z,c), I[351] = (T)(img)(_n1##x,_n1##y,z,c), I[352] = (T)(img)(_n2##x,_n1##y,z,c), I[353] = (T)(img)(_n3##x,_n1##y,z,c), I[354] = (T)(img)(_n4##x,_n1##y,z,c), I[355] = (T)(img)(_n5##x,_n1##y,z,c), I[356] = (T)(img)(_n6##x,_n1##y,z,c), I[357] = (T)(img)(_n7##x,_n1##y,z,c), I[358] = (T)(img)(_n8##x,_n1##y,z,c), I[359] = (T)(img)(_n9##x,_n1##y,z,c), I[360] = (T)(img)(_n10##x,_n1##y,z,c), I[361] = (T)(img)(_n11##x,_n1##y,z,c), I[362] = (T)(img)(_n12##x,_n1##y,z,c), I[363] = (T)(img)(_n13##x,_n1##y,z,c), \
|
|
I[364] = (T)(img)(_p12##x,_n2##y,z,c), I[365] = (T)(img)(_p11##x,_n2##y,z,c), I[366] = (T)(img)(_p10##x,_n2##y,z,c), I[367] = (T)(img)(_p9##x,_n2##y,z,c), I[368] = (T)(img)(_p8##x,_n2##y,z,c), I[369] = (T)(img)(_p7##x,_n2##y,z,c), I[370] = (T)(img)(_p6##x,_n2##y,z,c), I[371] = (T)(img)(_p5##x,_n2##y,z,c), I[372] = (T)(img)(_p4##x,_n2##y,z,c), I[373] = (T)(img)(_p3##x,_n2##y,z,c), I[374] = (T)(img)(_p2##x,_n2##y,z,c), I[375] = (T)(img)(_p1##x,_n2##y,z,c), I[376] = (T)(img)(x,_n2##y,z,c), I[377] = (T)(img)(_n1##x,_n2##y,z,c), I[378] = (T)(img)(_n2##x,_n2##y,z,c), I[379] = (T)(img)(_n3##x,_n2##y,z,c), I[380] = (T)(img)(_n4##x,_n2##y,z,c), I[381] = (T)(img)(_n5##x,_n2##y,z,c), I[382] = (T)(img)(_n6##x,_n2##y,z,c), I[383] = (T)(img)(_n7##x,_n2##y,z,c), I[384] = (T)(img)(_n8##x,_n2##y,z,c), I[385] = (T)(img)(_n9##x,_n2##y,z,c), I[386] = (T)(img)(_n10##x,_n2##y,z,c), I[387] = (T)(img)(_n11##x,_n2##y,z,c), I[388] = (T)(img)(_n12##x,_n2##y,z,c), I[389] = (T)(img)(_n13##x,_n2##y,z,c), \
|
|
I[390] = (T)(img)(_p12##x,_n3##y,z,c), I[391] = (T)(img)(_p11##x,_n3##y,z,c), I[392] = (T)(img)(_p10##x,_n3##y,z,c), I[393] = (T)(img)(_p9##x,_n3##y,z,c), I[394] = (T)(img)(_p8##x,_n3##y,z,c), I[395] = (T)(img)(_p7##x,_n3##y,z,c), I[396] = (T)(img)(_p6##x,_n3##y,z,c), I[397] = (T)(img)(_p5##x,_n3##y,z,c), I[398] = (T)(img)(_p4##x,_n3##y,z,c), I[399] = (T)(img)(_p3##x,_n3##y,z,c), I[400] = (T)(img)(_p2##x,_n3##y,z,c), I[401] = (T)(img)(_p1##x,_n3##y,z,c), I[402] = (T)(img)(x,_n3##y,z,c), I[403] = (T)(img)(_n1##x,_n3##y,z,c), I[404] = (T)(img)(_n2##x,_n3##y,z,c), I[405] = (T)(img)(_n3##x,_n3##y,z,c), I[406] = (T)(img)(_n4##x,_n3##y,z,c), I[407] = (T)(img)(_n5##x,_n3##y,z,c), I[408] = (T)(img)(_n6##x,_n3##y,z,c), I[409] = (T)(img)(_n7##x,_n3##y,z,c), I[410] = (T)(img)(_n8##x,_n3##y,z,c), I[411] = (T)(img)(_n9##x,_n3##y,z,c), I[412] = (T)(img)(_n10##x,_n3##y,z,c), I[413] = (T)(img)(_n11##x,_n3##y,z,c), I[414] = (T)(img)(_n12##x,_n3##y,z,c), I[415] = (T)(img)(_n13##x,_n3##y,z,c), \
|
|
I[416] = (T)(img)(_p12##x,_n4##y,z,c), I[417] = (T)(img)(_p11##x,_n4##y,z,c), I[418] = (T)(img)(_p10##x,_n4##y,z,c), I[419] = (T)(img)(_p9##x,_n4##y,z,c), I[420] = (T)(img)(_p8##x,_n4##y,z,c), I[421] = (T)(img)(_p7##x,_n4##y,z,c), I[422] = (T)(img)(_p6##x,_n4##y,z,c), I[423] = (T)(img)(_p5##x,_n4##y,z,c), I[424] = (T)(img)(_p4##x,_n4##y,z,c), I[425] = (T)(img)(_p3##x,_n4##y,z,c), I[426] = (T)(img)(_p2##x,_n4##y,z,c), I[427] = (T)(img)(_p1##x,_n4##y,z,c), I[428] = (T)(img)(x,_n4##y,z,c), I[429] = (T)(img)(_n1##x,_n4##y,z,c), I[430] = (T)(img)(_n2##x,_n4##y,z,c), I[431] = (T)(img)(_n3##x,_n4##y,z,c), I[432] = (T)(img)(_n4##x,_n4##y,z,c), I[433] = (T)(img)(_n5##x,_n4##y,z,c), I[434] = (T)(img)(_n6##x,_n4##y,z,c), I[435] = (T)(img)(_n7##x,_n4##y,z,c), I[436] = (T)(img)(_n8##x,_n4##y,z,c), I[437] = (T)(img)(_n9##x,_n4##y,z,c), I[438] = (T)(img)(_n10##x,_n4##y,z,c), I[439] = (T)(img)(_n11##x,_n4##y,z,c), I[440] = (T)(img)(_n12##x,_n4##y,z,c), I[441] = (T)(img)(_n13##x,_n4##y,z,c), \
|
|
I[442] = (T)(img)(_p12##x,_n5##y,z,c), I[443] = (T)(img)(_p11##x,_n5##y,z,c), I[444] = (T)(img)(_p10##x,_n5##y,z,c), I[445] = (T)(img)(_p9##x,_n5##y,z,c), I[446] = (T)(img)(_p8##x,_n5##y,z,c), I[447] = (T)(img)(_p7##x,_n5##y,z,c), I[448] = (T)(img)(_p6##x,_n5##y,z,c), I[449] = (T)(img)(_p5##x,_n5##y,z,c), I[450] = (T)(img)(_p4##x,_n5##y,z,c), I[451] = (T)(img)(_p3##x,_n5##y,z,c), I[452] = (T)(img)(_p2##x,_n5##y,z,c), I[453] = (T)(img)(_p1##x,_n5##y,z,c), I[454] = (T)(img)(x,_n5##y,z,c), I[455] = (T)(img)(_n1##x,_n5##y,z,c), I[456] = (T)(img)(_n2##x,_n5##y,z,c), I[457] = (T)(img)(_n3##x,_n5##y,z,c), I[458] = (T)(img)(_n4##x,_n5##y,z,c), I[459] = (T)(img)(_n5##x,_n5##y,z,c), I[460] = (T)(img)(_n6##x,_n5##y,z,c), I[461] = (T)(img)(_n7##x,_n5##y,z,c), I[462] = (T)(img)(_n8##x,_n5##y,z,c), I[463] = (T)(img)(_n9##x,_n5##y,z,c), I[464] = (T)(img)(_n10##x,_n5##y,z,c), I[465] = (T)(img)(_n11##x,_n5##y,z,c), I[466] = (T)(img)(_n12##x,_n5##y,z,c), I[467] = (T)(img)(_n13##x,_n5##y,z,c), \
|
|
I[468] = (T)(img)(_p12##x,_n6##y,z,c), I[469] = (T)(img)(_p11##x,_n6##y,z,c), I[470] = (T)(img)(_p10##x,_n6##y,z,c), I[471] = (T)(img)(_p9##x,_n6##y,z,c), I[472] = (T)(img)(_p8##x,_n6##y,z,c), I[473] = (T)(img)(_p7##x,_n6##y,z,c), I[474] = (T)(img)(_p6##x,_n6##y,z,c), I[475] = (T)(img)(_p5##x,_n6##y,z,c), I[476] = (T)(img)(_p4##x,_n6##y,z,c), I[477] = (T)(img)(_p3##x,_n6##y,z,c), I[478] = (T)(img)(_p2##x,_n6##y,z,c), I[479] = (T)(img)(_p1##x,_n6##y,z,c), I[480] = (T)(img)(x,_n6##y,z,c), I[481] = (T)(img)(_n1##x,_n6##y,z,c), I[482] = (T)(img)(_n2##x,_n6##y,z,c), I[483] = (T)(img)(_n3##x,_n6##y,z,c), I[484] = (T)(img)(_n4##x,_n6##y,z,c), I[485] = (T)(img)(_n5##x,_n6##y,z,c), I[486] = (T)(img)(_n6##x,_n6##y,z,c), I[487] = (T)(img)(_n7##x,_n6##y,z,c), I[488] = (T)(img)(_n8##x,_n6##y,z,c), I[489] = (T)(img)(_n9##x,_n6##y,z,c), I[490] = (T)(img)(_n10##x,_n6##y,z,c), I[491] = (T)(img)(_n11##x,_n6##y,z,c), I[492] = (T)(img)(_n12##x,_n6##y,z,c), I[493] = (T)(img)(_n13##x,_n6##y,z,c), \
|
|
I[494] = (T)(img)(_p12##x,_n7##y,z,c), I[495] = (T)(img)(_p11##x,_n7##y,z,c), I[496] = (T)(img)(_p10##x,_n7##y,z,c), I[497] = (T)(img)(_p9##x,_n7##y,z,c), I[498] = (T)(img)(_p8##x,_n7##y,z,c), I[499] = (T)(img)(_p7##x,_n7##y,z,c), I[500] = (T)(img)(_p6##x,_n7##y,z,c), I[501] = (T)(img)(_p5##x,_n7##y,z,c), I[502] = (T)(img)(_p4##x,_n7##y,z,c), I[503] = (T)(img)(_p3##x,_n7##y,z,c), I[504] = (T)(img)(_p2##x,_n7##y,z,c), I[505] = (T)(img)(_p1##x,_n7##y,z,c), I[506] = (T)(img)(x,_n7##y,z,c), I[507] = (T)(img)(_n1##x,_n7##y,z,c), I[508] = (T)(img)(_n2##x,_n7##y,z,c), I[509] = (T)(img)(_n3##x,_n7##y,z,c), I[510] = (T)(img)(_n4##x,_n7##y,z,c), I[511] = (T)(img)(_n5##x,_n7##y,z,c), I[512] = (T)(img)(_n6##x,_n7##y,z,c), I[513] = (T)(img)(_n7##x,_n7##y,z,c), I[514] = (T)(img)(_n8##x,_n7##y,z,c), I[515] = (T)(img)(_n9##x,_n7##y,z,c), I[516] = (T)(img)(_n10##x,_n7##y,z,c), I[517] = (T)(img)(_n11##x,_n7##y,z,c), I[518] = (T)(img)(_n12##x,_n7##y,z,c), I[519] = (T)(img)(_n13##x,_n7##y,z,c), \
|
|
I[520] = (T)(img)(_p12##x,_n8##y,z,c), I[521] = (T)(img)(_p11##x,_n8##y,z,c), I[522] = (T)(img)(_p10##x,_n8##y,z,c), I[523] = (T)(img)(_p9##x,_n8##y,z,c), I[524] = (T)(img)(_p8##x,_n8##y,z,c), I[525] = (T)(img)(_p7##x,_n8##y,z,c), I[526] = (T)(img)(_p6##x,_n8##y,z,c), I[527] = (T)(img)(_p5##x,_n8##y,z,c), I[528] = (T)(img)(_p4##x,_n8##y,z,c), I[529] = (T)(img)(_p3##x,_n8##y,z,c), I[530] = (T)(img)(_p2##x,_n8##y,z,c), I[531] = (T)(img)(_p1##x,_n8##y,z,c), I[532] = (T)(img)(x,_n8##y,z,c), I[533] = (T)(img)(_n1##x,_n8##y,z,c), I[534] = (T)(img)(_n2##x,_n8##y,z,c), I[535] = (T)(img)(_n3##x,_n8##y,z,c), I[536] = (T)(img)(_n4##x,_n8##y,z,c), I[537] = (T)(img)(_n5##x,_n8##y,z,c), I[538] = (T)(img)(_n6##x,_n8##y,z,c), I[539] = (T)(img)(_n7##x,_n8##y,z,c), I[540] = (T)(img)(_n8##x,_n8##y,z,c), I[541] = (T)(img)(_n9##x,_n8##y,z,c), I[542] = (T)(img)(_n10##x,_n8##y,z,c), I[543] = (T)(img)(_n11##x,_n8##y,z,c), I[544] = (T)(img)(_n12##x,_n8##y,z,c), I[545] = (T)(img)(_n13##x,_n8##y,z,c), \
|
|
I[546] = (T)(img)(_p12##x,_n9##y,z,c), I[547] = (T)(img)(_p11##x,_n9##y,z,c), I[548] = (T)(img)(_p10##x,_n9##y,z,c), I[549] = (T)(img)(_p9##x,_n9##y,z,c), I[550] = (T)(img)(_p8##x,_n9##y,z,c), I[551] = (T)(img)(_p7##x,_n9##y,z,c), I[552] = (T)(img)(_p6##x,_n9##y,z,c), I[553] = (T)(img)(_p5##x,_n9##y,z,c), I[554] = (T)(img)(_p4##x,_n9##y,z,c), I[555] = (T)(img)(_p3##x,_n9##y,z,c), I[556] = (T)(img)(_p2##x,_n9##y,z,c), I[557] = (T)(img)(_p1##x,_n9##y,z,c), I[558] = (T)(img)(x,_n9##y,z,c), I[559] = (T)(img)(_n1##x,_n9##y,z,c), I[560] = (T)(img)(_n2##x,_n9##y,z,c), I[561] = (T)(img)(_n3##x,_n9##y,z,c), I[562] = (T)(img)(_n4##x,_n9##y,z,c), I[563] = (T)(img)(_n5##x,_n9##y,z,c), I[564] = (T)(img)(_n6##x,_n9##y,z,c), I[565] = (T)(img)(_n7##x,_n9##y,z,c), I[566] = (T)(img)(_n8##x,_n9##y,z,c), I[567] = (T)(img)(_n9##x,_n9##y,z,c), I[568] = (T)(img)(_n10##x,_n9##y,z,c), I[569] = (T)(img)(_n11##x,_n9##y,z,c), I[570] = (T)(img)(_n12##x,_n9##y,z,c), I[571] = (T)(img)(_n13##x,_n9##y,z,c), \
|
|
I[572] = (T)(img)(_p12##x,_n10##y,z,c), I[573] = (T)(img)(_p11##x,_n10##y,z,c), I[574] = (T)(img)(_p10##x,_n10##y,z,c), I[575] = (T)(img)(_p9##x,_n10##y,z,c), I[576] = (T)(img)(_p8##x,_n10##y,z,c), I[577] = (T)(img)(_p7##x,_n10##y,z,c), I[578] = (T)(img)(_p6##x,_n10##y,z,c), I[579] = (T)(img)(_p5##x,_n10##y,z,c), I[580] = (T)(img)(_p4##x,_n10##y,z,c), I[581] = (T)(img)(_p3##x,_n10##y,z,c), I[582] = (T)(img)(_p2##x,_n10##y,z,c), I[583] = (T)(img)(_p1##x,_n10##y,z,c), I[584] = (T)(img)(x,_n10##y,z,c), I[585] = (T)(img)(_n1##x,_n10##y,z,c), I[586] = (T)(img)(_n2##x,_n10##y,z,c), I[587] = (T)(img)(_n3##x,_n10##y,z,c), I[588] = (T)(img)(_n4##x,_n10##y,z,c), I[589] = (T)(img)(_n5##x,_n10##y,z,c), I[590] = (T)(img)(_n6##x,_n10##y,z,c), I[591] = (T)(img)(_n7##x,_n10##y,z,c), I[592] = (T)(img)(_n8##x,_n10##y,z,c), I[593] = (T)(img)(_n9##x,_n10##y,z,c), I[594] = (T)(img)(_n10##x,_n10##y,z,c), I[595] = (T)(img)(_n11##x,_n10##y,z,c), I[596] = (T)(img)(_n12##x,_n10##y,z,c), I[597] = (T)(img)(_n13##x,_n10##y,z,c), \
|
|
I[598] = (T)(img)(_p12##x,_n11##y,z,c), I[599] = (T)(img)(_p11##x,_n11##y,z,c), I[600] = (T)(img)(_p10##x,_n11##y,z,c), I[601] = (T)(img)(_p9##x,_n11##y,z,c), I[602] = (T)(img)(_p8##x,_n11##y,z,c), I[603] = (T)(img)(_p7##x,_n11##y,z,c), I[604] = (T)(img)(_p6##x,_n11##y,z,c), I[605] = (T)(img)(_p5##x,_n11##y,z,c), I[606] = (T)(img)(_p4##x,_n11##y,z,c), I[607] = (T)(img)(_p3##x,_n11##y,z,c), I[608] = (T)(img)(_p2##x,_n11##y,z,c), I[609] = (T)(img)(_p1##x,_n11##y,z,c), I[610] = (T)(img)(x,_n11##y,z,c), I[611] = (T)(img)(_n1##x,_n11##y,z,c), I[612] = (T)(img)(_n2##x,_n11##y,z,c), I[613] = (T)(img)(_n3##x,_n11##y,z,c), I[614] = (T)(img)(_n4##x,_n11##y,z,c), I[615] = (T)(img)(_n5##x,_n11##y,z,c), I[616] = (T)(img)(_n6##x,_n11##y,z,c), I[617] = (T)(img)(_n7##x,_n11##y,z,c), I[618] = (T)(img)(_n8##x,_n11##y,z,c), I[619] = (T)(img)(_n9##x,_n11##y,z,c), I[620] = (T)(img)(_n10##x,_n11##y,z,c), I[621] = (T)(img)(_n11##x,_n11##y,z,c), I[622] = (T)(img)(_n12##x,_n11##y,z,c), I[623] = (T)(img)(_n13##x,_n11##y,z,c), \
|
|
I[624] = (T)(img)(_p12##x,_n12##y,z,c), I[625] = (T)(img)(_p11##x,_n12##y,z,c), I[626] = (T)(img)(_p10##x,_n12##y,z,c), I[627] = (T)(img)(_p9##x,_n12##y,z,c), I[628] = (T)(img)(_p8##x,_n12##y,z,c), I[629] = (T)(img)(_p7##x,_n12##y,z,c), I[630] = (T)(img)(_p6##x,_n12##y,z,c), I[631] = (T)(img)(_p5##x,_n12##y,z,c), I[632] = (T)(img)(_p4##x,_n12##y,z,c), I[633] = (T)(img)(_p3##x,_n12##y,z,c), I[634] = (T)(img)(_p2##x,_n12##y,z,c), I[635] = (T)(img)(_p1##x,_n12##y,z,c), I[636] = (T)(img)(x,_n12##y,z,c), I[637] = (T)(img)(_n1##x,_n12##y,z,c), I[638] = (T)(img)(_n2##x,_n12##y,z,c), I[639] = (T)(img)(_n3##x,_n12##y,z,c), I[640] = (T)(img)(_n4##x,_n12##y,z,c), I[641] = (T)(img)(_n5##x,_n12##y,z,c), I[642] = (T)(img)(_n6##x,_n12##y,z,c), I[643] = (T)(img)(_n7##x,_n12##y,z,c), I[644] = (T)(img)(_n8##x,_n12##y,z,c), I[645] = (T)(img)(_n9##x,_n12##y,z,c), I[646] = (T)(img)(_n10##x,_n12##y,z,c), I[647] = (T)(img)(_n11##x,_n12##y,z,c), I[648] = (T)(img)(_n12##x,_n12##y,z,c), I[649] = (T)(img)(_n13##x,_n12##y,z,c), \
|
|
I[650] = (T)(img)(_p12##x,_n13##y,z,c), I[651] = (T)(img)(_p11##x,_n13##y,z,c), I[652] = (T)(img)(_p10##x,_n13##y,z,c), I[653] = (T)(img)(_p9##x,_n13##y,z,c), I[654] = (T)(img)(_p8##x,_n13##y,z,c), I[655] = (T)(img)(_p7##x,_n13##y,z,c), I[656] = (T)(img)(_p6##x,_n13##y,z,c), I[657] = (T)(img)(_p5##x,_n13##y,z,c), I[658] = (T)(img)(_p4##x,_n13##y,z,c), I[659] = (T)(img)(_p3##x,_n13##y,z,c), I[660] = (T)(img)(_p2##x,_n13##y,z,c), I[661] = (T)(img)(_p1##x,_n13##y,z,c), I[662] = (T)(img)(x,_n13##y,z,c), I[663] = (T)(img)(_n1##x,_n13##y,z,c), I[664] = (T)(img)(_n2##x,_n13##y,z,c), I[665] = (T)(img)(_n3##x,_n13##y,z,c), I[666] = (T)(img)(_n4##x,_n13##y,z,c), I[667] = (T)(img)(_n5##x,_n13##y,z,c), I[668] = (T)(img)(_n6##x,_n13##y,z,c), I[669] = (T)(img)(_n7##x,_n13##y,z,c), I[670] = (T)(img)(_n8##x,_n13##y,z,c), I[671] = (T)(img)(_n9##x,_n13##y,z,c), I[672] = (T)(img)(_n10##x,_n13##y,z,c), I[673] = (T)(img)(_n11##x,_n13##y,z,c), I[674] = (T)(img)(_n12##x,_n13##y,z,c), I[675] = (T)(img)(_n13##x,_n13##y,z,c);
|
|
|
|
// Define 27x27 loop macros
|
|
//-------------------------
|
|
#define cimg_for27(bound,i) for (int i = 0, \
|
|
_p13##i = 0, _p12##i = 0, _p11##i = 0, _p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
|
|
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
|
|
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
|
|
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
|
|
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
|
|
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
|
|
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
|
|
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
|
|
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9, \
|
|
_n10##i = 10>=(int)(bound)?(int)(bound) - 1:10, \
|
|
_n11##i = 11>=(int)(bound)?(int)(bound) - 1:11, \
|
|
_n12##i = 12>=(int)(bound)?(int)(bound) - 1:12, \
|
|
_n13##i = 13>=(int)(bound)?(int)(bound) - 1:13; \
|
|
_n13##i<(int)(bound) || _n12##i==--_n13##i || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n13##i = _n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
|
|
_p13##i = _p12##i, _p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i, ++_n13##i)
|
|
|
|
#define cimg_for27X(img,x) cimg_for27((img)._width,x)
|
|
#define cimg_for27Y(img,y) cimg_for27((img)._height,y)
|
|
#define cimg_for27Z(img,z) cimg_for27((img)._depth,z)
|
|
#define cimg_for27C(img,c) cimg_for27((img)._spectrum,c)
|
|
#define cimg_for27XY(img,x,y) cimg_for27Y(img,y) cimg_for27X(img,x)
|
|
#define cimg_for27XZ(img,x,z) cimg_for27Z(img,z) cimg_for27X(img,x)
|
|
#define cimg_for27XC(img,x,c) cimg_for27C(img,c) cimg_for27X(img,x)
|
|
#define cimg_for27YZ(img,y,z) cimg_for27Z(img,z) cimg_for27Y(img,y)
|
|
#define cimg_for27YC(img,y,c) cimg_for27C(img,c) cimg_for27Y(img,y)
|
|
#define cimg_for27ZC(img,z,c) cimg_for27C(img,c) cimg_for27Z(img,z)
|
|
#define cimg_for27XYZ(img,x,y,z) cimg_for27Z(img,z) cimg_for27XY(img,x,y)
|
|
#define cimg_for27XZC(img,x,z,c) cimg_for27C(img,c) cimg_for27XZ(img,x,z)
|
|
#define cimg_for27YZC(img,y,z,c) cimg_for27C(img,c) cimg_for27YZ(img,y,z)
|
|
#define cimg_for27XYZC(img,x,y,z,c) cimg_for27C(img,c) cimg_for27XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in27(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p13##i = i - 13<0?0:i - 13, \
|
|
_p12##i = i - 12<0?0:i - 12, \
|
|
_p11##i = i - 11<0?0:i - 11, \
|
|
_p10##i = i - 10<0?0:i - 10, \
|
|
_p9##i = i - 9<0?0:i - 9, \
|
|
_p8##i = i - 8<0?0:i - 8, \
|
|
_p7##i = i - 7<0?0:i - 7, \
|
|
_p6##i = i - 6<0?0:i - 6, \
|
|
_p5##i = i - 5<0?0:i - 5, \
|
|
_p4##i = i - 4<0?0:i - 4, \
|
|
_p3##i = i - 3<0?0:i - 3, \
|
|
_p2##i = i - 2<0?0:i - 2, \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
|
|
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
|
|
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
|
|
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
|
|
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
|
|
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
|
|
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
|
|
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
|
|
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9, \
|
|
_n10##i = i + 10>=(int)(bound)?(int)(bound) - 1:i + 10, \
|
|
_n11##i = i + 11>=(int)(bound)?(int)(bound) - 1:i + 11, \
|
|
_n12##i = i + 12>=(int)(bound)?(int)(bound) - 1:i + 12, \
|
|
_n13##i = i + 13>=(int)(bound)?(int)(bound) - 1:i + 13; \
|
|
i<=(int)(i1) && (_n13##i<(int)(bound) || _n12##i==--_n13##i || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n13##i = _n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
|
|
_p13##i = _p12##i, _p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i, ++_n13##i)
|
|
|
|
#define cimg_for_in27X(img,x0,x1,x) cimg_for_in27((img)._width,x0,x1,x)
|
|
#define cimg_for_in27Y(img,y0,y1,y) cimg_for_in27((img)._height,y0,y1,y)
|
|
#define cimg_for_in27Z(img,z0,z1,z) cimg_for_in27((img)._depth,z0,z1,z)
|
|
#define cimg_for_in27C(img,c0,c1,c) cimg_for_in27((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in27XY(img,x0,y0,x1,y1,x,y) cimg_for_in27Y(img,y0,y1,y) cimg_for_in27X(img,x0,x1,x)
|
|
#define cimg_for_in27XZ(img,x0,z0,x1,z1,x,z) cimg_for_in27Z(img,z0,z1,z) cimg_for_in27X(img,x0,x1,x)
|
|
#define cimg_for_in27XC(img,x0,c0,x1,c1,x,c) cimg_for_in27C(img,c0,c1,c) cimg_for_in27X(img,x0,x1,x)
|
|
#define cimg_for_in27YZ(img,y0,z0,y1,z1,y,z) cimg_for_in27Z(img,z0,z1,z) cimg_for_in27Y(img,y0,y1,y)
|
|
#define cimg_for_in27YC(img,y0,c0,y1,c1,y,c) cimg_for_in27C(img,c0,c1,c) cimg_for_in27Y(img,y0,y1,y)
|
|
#define cimg_for_in27ZC(img,z0,c0,z1,c1,z,c) cimg_for_in27C(img,c0,c1,c) cimg_for_in27Z(img,z0,z1,z)
|
|
#define cimg_for_in27XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in27Z(img,z0,z1,z) cimg_for_in27XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in27XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in27C(img,c0,c1,c) cimg_for_in27XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in27YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in27C(img,c0,c1,c) cimg_for_in27YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in27XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in27C(img,c0,c1,c) cimg_for_in27XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for27x27(img,x,y,z,c,I,T) \
|
|
cimg_for27((img)._height,y) for (int x = 0, \
|
|
_p13##x = 0, _p12##x = 0, _p11##x = 0, _p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
|
|
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
|
|
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
|
|
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
|
|
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
|
|
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
|
|
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
|
|
_n9##x = 9>=((img)._width)?(img).width() - 1:9, \
|
|
_n10##x = 10>=((img)._width)?(img).width() - 1:10, \
|
|
_n11##x = 11>=((img)._width)?(img).width() - 1:11, \
|
|
_n12##x = 12>=((img)._width)?(img).width() - 1:12, \
|
|
_n13##x = (int)( \
|
|
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = I[11] = I[12] = I[13] = (T)(img)(0,_p13##y,z,c)), \
|
|
(I[27] = I[28] = I[29] = I[30] = I[31] = I[32] = I[33] = I[34] = I[35] = I[36] = I[37] = I[38] = I[39] = I[40] = (T)(img)(0,_p12##y,z,c)), \
|
|
(I[54] = I[55] = I[56] = I[57] = I[58] = I[59] = I[60] = I[61] = I[62] = I[63] = I[64] = I[65] = I[66] = I[67] = (T)(img)(0,_p11##y,z,c)), \
|
|
(I[81] = I[82] = I[83] = I[84] = I[85] = I[86] = I[87] = I[88] = I[89] = I[90] = I[91] = I[92] = I[93] = I[94] = (T)(img)(0,_p10##y,z,c)), \
|
|
(I[108] = I[109] = I[110] = I[111] = I[112] = I[113] = I[114] = I[115] = I[116] = I[117] = I[118] = I[119] = I[120] = I[121] = (T)(img)(0,_p9##y,z,c)), \
|
|
(I[135] = I[136] = I[137] = I[138] = I[139] = I[140] = I[141] = I[142] = I[143] = I[144] = I[145] = I[146] = I[147] = I[148] = (T)(img)(0,_p8##y,z,c)), \
|
|
(I[162] = I[163] = I[164] = I[165] = I[166] = I[167] = I[168] = I[169] = I[170] = I[171] = I[172] = I[173] = I[174] = I[175] = (T)(img)(0,_p7##y,z,c)), \
|
|
(I[189] = I[190] = I[191] = I[192] = I[193] = I[194] = I[195] = I[196] = I[197] = I[198] = I[199] = I[200] = I[201] = I[202] = (T)(img)(0,_p6##y,z,c)), \
|
|
(I[216] = I[217] = I[218] = I[219] = I[220] = I[221] = I[222] = I[223] = I[224] = I[225] = I[226] = I[227] = I[228] = I[229] = (T)(img)(0,_p5##y,z,c)), \
|
|
(I[243] = I[244] = I[245] = I[246] = I[247] = I[248] = I[249] = I[250] = I[251] = I[252] = I[253] = I[254] = I[255] = I[256] = (T)(img)(0,_p4##y,z,c)), \
|
|
(I[270] = I[271] = I[272] = I[273] = I[274] = I[275] = I[276] = I[277] = I[278] = I[279] = I[280] = I[281] = I[282] = I[283] = (T)(img)(0,_p3##y,z,c)), \
|
|
(I[297] = I[298] = I[299] = I[300] = I[301] = I[302] = I[303] = I[304] = I[305] = I[306] = I[307] = I[308] = I[309] = I[310] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[324] = I[325] = I[326] = I[327] = I[328] = I[329] = I[330] = I[331] = I[332] = I[333] = I[334] = I[335] = I[336] = I[337] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[351] = I[352] = I[353] = I[354] = I[355] = I[356] = I[357] = I[358] = I[359] = I[360] = I[361] = I[362] = I[363] = I[364] = (T)(img)(0,y,z,c)), \
|
|
(I[378] = I[379] = I[380] = I[381] = I[382] = I[383] = I[384] = I[385] = I[386] = I[387] = I[388] = I[389] = I[390] = I[391] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[405] = I[406] = I[407] = I[408] = I[409] = I[410] = I[411] = I[412] = I[413] = I[414] = I[415] = I[416] = I[417] = I[418] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[432] = I[433] = I[434] = I[435] = I[436] = I[437] = I[438] = I[439] = I[440] = I[441] = I[442] = I[443] = I[444] = I[445] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[459] = I[460] = I[461] = I[462] = I[463] = I[464] = I[465] = I[466] = I[467] = I[468] = I[469] = I[470] = I[471] = I[472] = (T)(img)(0,_n4##y,z,c)), \
|
|
(I[486] = I[487] = I[488] = I[489] = I[490] = I[491] = I[492] = I[493] = I[494] = I[495] = I[496] = I[497] = I[498] = I[499] = (T)(img)(0,_n5##y,z,c)), \
|
|
(I[513] = I[514] = I[515] = I[516] = I[517] = I[518] = I[519] = I[520] = I[521] = I[522] = I[523] = I[524] = I[525] = I[526] = (T)(img)(0,_n6##y,z,c)), \
|
|
(I[540] = I[541] = I[542] = I[543] = I[544] = I[545] = I[546] = I[547] = I[548] = I[549] = I[550] = I[551] = I[552] = I[553] = (T)(img)(0,_n7##y,z,c)), \
|
|
(I[567] = I[568] = I[569] = I[570] = I[571] = I[572] = I[573] = I[574] = I[575] = I[576] = I[577] = I[578] = I[579] = I[580] = (T)(img)(0,_n8##y,z,c)), \
|
|
(I[594] = I[595] = I[596] = I[597] = I[598] = I[599] = I[600] = I[601] = I[602] = I[603] = I[604] = I[605] = I[606] = I[607] = (T)(img)(0,_n9##y,z,c)), \
|
|
(I[621] = I[622] = I[623] = I[624] = I[625] = I[626] = I[627] = I[628] = I[629] = I[630] = I[631] = I[632] = I[633] = I[634] = (T)(img)(0,_n10##y,z,c)), \
|
|
(I[648] = I[649] = I[650] = I[651] = I[652] = I[653] = I[654] = I[655] = I[656] = I[657] = I[658] = I[659] = I[660] = I[661] = (T)(img)(0,_n11##y,z,c)), \
|
|
(I[675] = I[676] = I[677] = I[678] = I[679] = I[680] = I[681] = I[682] = I[683] = I[684] = I[685] = I[686] = I[687] = I[688] = (T)(img)(0,_n12##y,z,c)), \
|
|
(I[702] = I[703] = I[704] = I[705] = I[706] = I[707] = I[708] = I[709] = I[710] = I[711] = I[712] = I[713] = I[714] = I[715] = (T)(img)(0,_n13##y,z,c)), \
|
|
(I[14] = (T)(img)(_n1##x,_p13##y,z,c)), \
|
|
(I[41] = (T)(img)(_n1##x,_p12##y,z,c)), \
|
|
(I[68] = (T)(img)(_n1##x,_p11##y,z,c)), \
|
|
(I[95] = (T)(img)(_n1##x,_p10##y,z,c)), \
|
|
(I[122] = (T)(img)(_n1##x,_p9##y,z,c)), \
|
|
(I[149] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[176] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[203] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[230] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[257] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[284] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[311] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[338] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[365] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[392] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[419] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[446] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[473] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[500] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[527] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[554] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[581] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[608] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[635] = (T)(img)(_n1##x,_n10##y,z,c)), \
|
|
(I[662] = (T)(img)(_n1##x,_n11##y,z,c)), \
|
|
(I[689] = (T)(img)(_n1##x,_n12##y,z,c)), \
|
|
(I[716] = (T)(img)(_n1##x,_n13##y,z,c)), \
|
|
(I[15] = (T)(img)(_n2##x,_p13##y,z,c)), \
|
|
(I[42] = (T)(img)(_n2##x,_p12##y,z,c)), \
|
|
(I[69] = (T)(img)(_n2##x,_p11##y,z,c)), \
|
|
(I[96] = (T)(img)(_n2##x,_p10##y,z,c)), \
|
|
(I[123] = (T)(img)(_n2##x,_p9##y,z,c)), \
|
|
(I[150] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[177] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[204] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[231] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[258] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[285] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[312] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[339] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[366] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[393] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[420] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[447] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[474] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[501] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[528] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[555] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[582] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[609] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[636] = (T)(img)(_n2##x,_n10##y,z,c)), \
|
|
(I[663] = (T)(img)(_n2##x,_n11##y,z,c)), \
|
|
(I[690] = (T)(img)(_n2##x,_n12##y,z,c)), \
|
|
(I[717] = (T)(img)(_n2##x,_n13##y,z,c)), \
|
|
(I[16] = (T)(img)(_n3##x,_p13##y,z,c)), \
|
|
(I[43] = (T)(img)(_n3##x,_p12##y,z,c)), \
|
|
(I[70] = (T)(img)(_n3##x,_p11##y,z,c)), \
|
|
(I[97] = (T)(img)(_n3##x,_p10##y,z,c)), \
|
|
(I[124] = (T)(img)(_n3##x,_p9##y,z,c)), \
|
|
(I[151] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[178] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[205] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[232] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[259] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[286] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[313] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[340] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[367] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[394] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[421] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[448] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[475] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[502] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[529] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[556] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[583] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[610] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[637] = (T)(img)(_n3##x,_n10##y,z,c)), \
|
|
(I[664] = (T)(img)(_n3##x,_n11##y,z,c)), \
|
|
(I[691] = (T)(img)(_n3##x,_n12##y,z,c)), \
|
|
(I[718] = (T)(img)(_n3##x,_n13##y,z,c)), \
|
|
(I[17] = (T)(img)(_n4##x,_p13##y,z,c)), \
|
|
(I[44] = (T)(img)(_n4##x,_p12##y,z,c)), \
|
|
(I[71] = (T)(img)(_n4##x,_p11##y,z,c)), \
|
|
(I[98] = (T)(img)(_n4##x,_p10##y,z,c)), \
|
|
(I[125] = (T)(img)(_n4##x,_p9##y,z,c)), \
|
|
(I[152] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[179] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[206] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[233] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[260] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[287] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[314] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[341] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[368] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[395] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[422] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[449] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[476] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[503] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[530] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[557] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[584] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[611] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[638] = (T)(img)(_n4##x,_n10##y,z,c)), \
|
|
(I[665] = (T)(img)(_n4##x,_n11##y,z,c)), \
|
|
(I[692] = (T)(img)(_n4##x,_n12##y,z,c)), \
|
|
(I[719] = (T)(img)(_n4##x,_n13##y,z,c)), \
|
|
(I[18] = (T)(img)(_n5##x,_p13##y,z,c)), \
|
|
(I[45] = (T)(img)(_n5##x,_p12##y,z,c)), \
|
|
(I[72] = (T)(img)(_n5##x,_p11##y,z,c)), \
|
|
(I[99] = (T)(img)(_n5##x,_p10##y,z,c)), \
|
|
(I[126] = (T)(img)(_n5##x,_p9##y,z,c)), \
|
|
(I[153] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[180] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[207] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[234] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[261] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[288] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[315] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[342] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[369] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[396] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[423] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[450] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[477] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[504] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[531] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[558] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[585] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[612] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[639] = (T)(img)(_n5##x,_n10##y,z,c)), \
|
|
(I[666] = (T)(img)(_n5##x,_n11##y,z,c)), \
|
|
(I[693] = (T)(img)(_n5##x,_n12##y,z,c)), \
|
|
(I[720] = (T)(img)(_n5##x,_n13##y,z,c)), \
|
|
(I[19] = (T)(img)(_n6##x,_p13##y,z,c)), \
|
|
(I[46] = (T)(img)(_n6##x,_p12##y,z,c)), \
|
|
(I[73] = (T)(img)(_n6##x,_p11##y,z,c)), \
|
|
(I[100] = (T)(img)(_n6##x,_p10##y,z,c)), \
|
|
(I[127] = (T)(img)(_n6##x,_p9##y,z,c)), \
|
|
(I[154] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[181] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[208] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[235] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[262] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[289] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[316] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[343] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[370] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[397] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[424] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[451] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[478] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[505] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[532] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[559] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[586] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[613] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[640] = (T)(img)(_n6##x,_n10##y,z,c)), \
|
|
(I[667] = (T)(img)(_n6##x,_n11##y,z,c)), \
|
|
(I[694] = (T)(img)(_n6##x,_n12##y,z,c)), \
|
|
(I[721] = (T)(img)(_n6##x,_n13##y,z,c)), \
|
|
(I[20] = (T)(img)(_n7##x,_p13##y,z,c)), \
|
|
(I[47] = (T)(img)(_n7##x,_p12##y,z,c)), \
|
|
(I[74] = (T)(img)(_n7##x,_p11##y,z,c)), \
|
|
(I[101] = (T)(img)(_n7##x,_p10##y,z,c)), \
|
|
(I[128] = (T)(img)(_n7##x,_p9##y,z,c)), \
|
|
(I[155] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[182] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[209] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[236] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[263] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[290] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[317] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[344] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[371] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[398] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[425] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[452] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[479] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[506] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[533] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[560] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[587] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[614] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[641] = (T)(img)(_n7##x,_n10##y,z,c)), \
|
|
(I[668] = (T)(img)(_n7##x,_n11##y,z,c)), \
|
|
(I[695] = (T)(img)(_n7##x,_n12##y,z,c)), \
|
|
(I[722] = (T)(img)(_n7##x,_n13##y,z,c)), \
|
|
(I[21] = (T)(img)(_n8##x,_p13##y,z,c)), \
|
|
(I[48] = (T)(img)(_n8##x,_p12##y,z,c)), \
|
|
(I[75] = (T)(img)(_n8##x,_p11##y,z,c)), \
|
|
(I[102] = (T)(img)(_n8##x,_p10##y,z,c)), \
|
|
(I[129] = (T)(img)(_n8##x,_p9##y,z,c)), \
|
|
(I[156] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[183] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[210] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[237] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[264] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[291] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[318] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[345] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[372] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[399] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[426] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[453] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[480] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[507] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[534] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[561] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[588] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[615] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
(I[642] = (T)(img)(_n8##x,_n10##y,z,c)), \
|
|
(I[669] = (T)(img)(_n8##x,_n11##y,z,c)), \
|
|
(I[696] = (T)(img)(_n8##x,_n12##y,z,c)), \
|
|
(I[723] = (T)(img)(_n8##x,_n13##y,z,c)), \
|
|
(I[22] = (T)(img)(_n9##x,_p13##y,z,c)), \
|
|
(I[49] = (T)(img)(_n9##x,_p12##y,z,c)), \
|
|
(I[76] = (T)(img)(_n9##x,_p11##y,z,c)), \
|
|
(I[103] = (T)(img)(_n9##x,_p10##y,z,c)), \
|
|
(I[130] = (T)(img)(_n9##x,_p9##y,z,c)), \
|
|
(I[157] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[184] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[211] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[238] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[265] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[292] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[319] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[346] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[373] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[400] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[427] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[454] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[481] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[508] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[535] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[562] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[589] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[616] = (T)(img)(_n9##x,_n9##y,z,c)), \
|
|
(I[643] = (T)(img)(_n9##x,_n10##y,z,c)), \
|
|
(I[670] = (T)(img)(_n9##x,_n11##y,z,c)), \
|
|
(I[697] = (T)(img)(_n9##x,_n12##y,z,c)), \
|
|
(I[724] = (T)(img)(_n9##x,_n13##y,z,c)), \
|
|
(I[23] = (T)(img)(_n10##x,_p13##y,z,c)), \
|
|
(I[50] = (T)(img)(_n10##x,_p12##y,z,c)), \
|
|
(I[77] = (T)(img)(_n10##x,_p11##y,z,c)), \
|
|
(I[104] = (T)(img)(_n10##x,_p10##y,z,c)), \
|
|
(I[131] = (T)(img)(_n10##x,_p9##y,z,c)), \
|
|
(I[158] = (T)(img)(_n10##x,_p8##y,z,c)), \
|
|
(I[185] = (T)(img)(_n10##x,_p7##y,z,c)), \
|
|
(I[212] = (T)(img)(_n10##x,_p6##y,z,c)), \
|
|
(I[239] = (T)(img)(_n10##x,_p5##y,z,c)), \
|
|
(I[266] = (T)(img)(_n10##x,_p4##y,z,c)), \
|
|
(I[293] = (T)(img)(_n10##x,_p3##y,z,c)), \
|
|
(I[320] = (T)(img)(_n10##x,_p2##y,z,c)), \
|
|
(I[347] = (T)(img)(_n10##x,_p1##y,z,c)), \
|
|
(I[374] = (T)(img)(_n10##x,y,z,c)), \
|
|
(I[401] = (T)(img)(_n10##x,_n1##y,z,c)), \
|
|
(I[428] = (T)(img)(_n10##x,_n2##y,z,c)), \
|
|
(I[455] = (T)(img)(_n10##x,_n3##y,z,c)), \
|
|
(I[482] = (T)(img)(_n10##x,_n4##y,z,c)), \
|
|
(I[509] = (T)(img)(_n10##x,_n5##y,z,c)), \
|
|
(I[536] = (T)(img)(_n10##x,_n6##y,z,c)), \
|
|
(I[563] = (T)(img)(_n10##x,_n7##y,z,c)), \
|
|
(I[590] = (T)(img)(_n10##x,_n8##y,z,c)), \
|
|
(I[617] = (T)(img)(_n10##x,_n9##y,z,c)), \
|
|
(I[644] = (T)(img)(_n10##x,_n10##y,z,c)), \
|
|
(I[671] = (T)(img)(_n10##x,_n11##y,z,c)), \
|
|
(I[698] = (T)(img)(_n10##x,_n12##y,z,c)), \
|
|
(I[725] = (T)(img)(_n10##x,_n13##y,z,c)), \
|
|
(I[24] = (T)(img)(_n11##x,_p13##y,z,c)), \
|
|
(I[51] = (T)(img)(_n11##x,_p12##y,z,c)), \
|
|
(I[78] = (T)(img)(_n11##x,_p11##y,z,c)), \
|
|
(I[105] = (T)(img)(_n11##x,_p10##y,z,c)), \
|
|
(I[132] = (T)(img)(_n11##x,_p9##y,z,c)), \
|
|
(I[159] = (T)(img)(_n11##x,_p8##y,z,c)), \
|
|
(I[186] = (T)(img)(_n11##x,_p7##y,z,c)), \
|
|
(I[213] = (T)(img)(_n11##x,_p6##y,z,c)), \
|
|
(I[240] = (T)(img)(_n11##x,_p5##y,z,c)), \
|
|
(I[267] = (T)(img)(_n11##x,_p4##y,z,c)), \
|
|
(I[294] = (T)(img)(_n11##x,_p3##y,z,c)), \
|
|
(I[321] = (T)(img)(_n11##x,_p2##y,z,c)), \
|
|
(I[348] = (T)(img)(_n11##x,_p1##y,z,c)), \
|
|
(I[375] = (T)(img)(_n11##x,y,z,c)), \
|
|
(I[402] = (T)(img)(_n11##x,_n1##y,z,c)), \
|
|
(I[429] = (T)(img)(_n11##x,_n2##y,z,c)), \
|
|
(I[456] = (T)(img)(_n11##x,_n3##y,z,c)), \
|
|
(I[483] = (T)(img)(_n11##x,_n4##y,z,c)), \
|
|
(I[510] = (T)(img)(_n11##x,_n5##y,z,c)), \
|
|
(I[537] = (T)(img)(_n11##x,_n6##y,z,c)), \
|
|
(I[564] = (T)(img)(_n11##x,_n7##y,z,c)), \
|
|
(I[591] = (T)(img)(_n11##x,_n8##y,z,c)), \
|
|
(I[618] = (T)(img)(_n11##x,_n9##y,z,c)), \
|
|
(I[645] = (T)(img)(_n11##x,_n10##y,z,c)), \
|
|
(I[672] = (T)(img)(_n11##x,_n11##y,z,c)), \
|
|
(I[699] = (T)(img)(_n11##x,_n12##y,z,c)), \
|
|
(I[726] = (T)(img)(_n11##x,_n13##y,z,c)), \
|
|
(I[25] = (T)(img)(_n12##x,_p13##y,z,c)), \
|
|
(I[52] = (T)(img)(_n12##x,_p12##y,z,c)), \
|
|
(I[79] = (T)(img)(_n12##x,_p11##y,z,c)), \
|
|
(I[106] = (T)(img)(_n12##x,_p10##y,z,c)), \
|
|
(I[133] = (T)(img)(_n12##x,_p9##y,z,c)), \
|
|
(I[160] = (T)(img)(_n12##x,_p8##y,z,c)), \
|
|
(I[187] = (T)(img)(_n12##x,_p7##y,z,c)), \
|
|
(I[214] = (T)(img)(_n12##x,_p6##y,z,c)), \
|
|
(I[241] = (T)(img)(_n12##x,_p5##y,z,c)), \
|
|
(I[268] = (T)(img)(_n12##x,_p4##y,z,c)), \
|
|
(I[295] = (T)(img)(_n12##x,_p3##y,z,c)), \
|
|
(I[322] = (T)(img)(_n12##x,_p2##y,z,c)), \
|
|
(I[349] = (T)(img)(_n12##x,_p1##y,z,c)), \
|
|
(I[376] = (T)(img)(_n12##x,y,z,c)), \
|
|
(I[403] = (T)(img)(_n12##x,_n1##y,z,c)), \
|
|
(I[430] = (T)(img)(_n12##x,_n2##y,z,c)), \
|
|
(I[457] = (T)(img)(_n12##x,_n3##y,z,c)), \
|
|
(I[484] = (T)(img)(_n12##x,_n4##y,z,c)), \
|
|
(I[511] = (T)(img)(_n12##x,_n5##y,z,c)), \
|
|
(I[538] = (T)(img)(_n12##x,_n6##y,z,c)), \
|
|
(I[565] = (T)(img)(_n12##x,_n7##y,z,c)), \
|
|
(I[592] = (T)(img)(_n12##x,_n8##y,z,c)), \
|
|
(I[619] = (T)(img)(_n12##x,_n9##y,z,c)), \
|
|
(I[646] = (T)(img)(_n12##x,_n10##y,z,c)), \
|
|
(I[673] = (T)(img)(_n12##x,_n11##y,z,c)), \
|
|
(I[700] = (T)(img)(_n12##x,_n12##y,z,c)), \
|
|
(I[727] = (T)(img)(_n12##x,_n13##y,z,c)), \
|
|
13>=((img)._width)?(img).width() - 1:13); \
|
|
(_n13##x<(img).width() && ( \
|
|
(I[26] = (T)(img)(_n13##x,_p13##y,z,c)), \
|
|
(I[53] = (T)(img)(_n13##x,_p12##y,z,c)), \
|
|
(I[80] = (T)(img)(_n13##x,_p11##y,z,c)), \
|
|
(I[107] = (T)(img)(_n13##x,_p10##y,z,c)), \
|
|
(I[134] = (T)(img)(_n13##x,_p9##y,z,c)), \
|
|
(I[161] = (T)(img)(_n13##x,_p8##y,z,c)), \
|
|
(I[188] = (T)(img)(_n13##x,_p7##y,z,c)), \
|
|
(I[215] = (T)(img)(_n13##x,_p6##y,z,c)), \
|
|
(I[242] = (T)(img)(_n13##x,_p5##y,z,c)), \
|
|
(I[269] = (T)(img)(_n13##x,_p4##y,z,c)), \
|
|
(I[296] = (T)(img)(_n13##x,_p3##y,z,c)), \
|
|
(I[323] = (T)(img)(_n13##x,_p2##y,z,c)), \
|
|
(I[350] = (T)(img)(_n13##x,_p1##y,z,c)), \
|
|
(I[377] = (T)(img)(_n13##x,y,z,c)), \
|
|
(I[404] = (T)(img)(_n13##x,_n1##y,z,c)), \
|
|
(I[431] = (T)(img)(_n13##x,_n2##y,z,c)), \
|
|
(I[458] = (T)(img)(_n13##x,_n3##y,z,c)), \
|
|
(I[485] = (T)(img)(_n13##x,_n4##y,z,c)), \
|
|
(I[512] = (T)(img)(_n13##x,_n5##y,z,c)), \
|
|
(I[539] = (T)(img)(_n13##x,_n6##y,z,c)), \
|
|
(I[566] = (T)(img)(_n13##x,_n7##y,z,c)), \
|
|
(I[593] = (T)(img)(_n13##x,_n8##y,z,c)), \
|
|
(I[620] = (T)(img)(_n13##x,_n9##y,z,c)), \
|
|
(I[647] = (T)(img)(_n13##x,_n10##y,z,c)), \
|
|
(I[674] = (T)(img)(_n13##x,_n11##y,z,c)), \
|
|
(I[701] = (T)(img)(_n13##x,_n12##y,z,c)), \
|
|
(I[728] = (T)(img)(_n13##x,_n13##y,z,c)),1)) || \
|
|
_n12##x==--_n13##x || _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n13##x = _n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], \
|
|
I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], \
|
|
I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], \
|
|
I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], \
|
|
I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], \
|
|
I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], \
|
|
I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], \
|
|
I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \
|
|
I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], \
|
|
I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], \
|
|
I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], \
|
|
I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], \
|
|
I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], \
|
|
I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], \
|
|
I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], \
|
|
I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], \
|
|
I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], \
|
|
I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], \
|
|
I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], \
|
|
I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], \
|
|
I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], \
|
|
I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], I[575] = I[576], I[576] = I[577], I[577] = I[578], I[578] = I[579], I[579] = I[580], I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], I[587] = I[588], I[588] = I[589], I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], \
|
|
I[594] = I[595], I[595] = I[596], I[596] = I[597], I[597] = I[598], I[598] = I[599], I[599] = I[600], I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], I[607] = I[608], I[608] = I[609], I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], I[615] = I[616], I[616] = I[617], I[617] = I[618], I[618] = I[619], I[619] = I[620], \
|
|
I[621] = I[622], I[622] = I[623], I[623] = I[624], I[624] = I[625], I[625] = I[626], I[626] = I[627], I[627] = I[628], I[628] = I[629], I[629] = I[630], I[630] = I[631], I[631] = I[632], I[632] = I[633], I[633] = I[634], I[634] = I[635], I[635] = I[636], I[636] = I[637], I[637] = I[638], I[638] = I[639], I[639] = I[640], I[640] = I[641], I[641] = I[642], I[642] = I[643], I[643] = I[644], I[644] = I[645], I[645] = I[646], I[646] = I[647], \
|
|
I[648] = I[649], I[649] = I[650], I[650] = I[651], I[651] = I[652], I[652] = I[653], I[653] = I[654], I[654] = I[655], I[655] = I[656], I[656] = I[657], I[657] = I[658], I[658] = I[659], I[659] = I[660], I[660] = I[661], I[661] = I[662], I[662] = I[663], I[663] = I[664], I[664] = I[665], I[665] = I[666], I[666] = I[667], I[667] = I[668], I[668] = I[669], I[669] = I[670], I[670] = I[671], I[671] = I[672], I[672] = I[673], I[673] = I[674], \
|
|
I[675] = I[676], I[676] = I[677], I[677] = I[678], I[678] = I[679], I[679] = I[680], I[680] = I[681], I[681] = I[682], I[682] = I[683], I[683] = I[684], I[684] = I[685], I[685] = I[686], I[686] = I[687], I[687] = I[688], I[688] = I[689], I[689] = I[690], I[690] = I[691], I[691] = I[692], I[692] = I[693], I[693] = I[694], I[694] = I[695], I[695] = I[696], I[696] = I[697], I[697] = I[698], I[698] = I[699], I[699] = I[700], I[700] = I[701], \
|
|
I[702] = I[703], I[703] = I[704], I[704] = I[705], I[705] = I[706], I[706] = I[707], I[707] = I[708], I[708] = I[709], I[709] = I[710], I[710] = I[711], I[711] = I[712], I[712] = I[713], I[713] = I[714], I[714] = I[715], I[715] = I[716], I[716] = I[717], I[717] = I[718], I[718] = I[719], I[719] = I[720], I[720] = I[721], I[721] = I[722], I[722] = I[723], I[723] = I[724], I[724] = I[725], I[725] = I[726], I[726] = I[727], I[727] = I[728], \
|
|
_p13##x = _p12##x, _p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x, ++_n13##x)
|
|
|
|
#define cimg_for_in27x27(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in27((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p13##x = x - 13<0?0:x - 13, \
|
|
_p12##x = x - 12<0?0:x - 12, \
|
|
_p11##x = x - 11<0?0:x - 11, \
|
|
_p10##x = x - 10<0?0:x - 10, \
|
|
_p9##x = x - 9<0?0:x - 9, \
|
|
_p8##x = x - 8<0?0:x - 8, \
|
|
_p7##x = x - 7<0?0:x - 7, \
|
|
_p6##x = x - 6<0?0:x - 6, \
|
|
_p5##x = x - 5<0?0:x - 5, \
|
|
_p4##x = x - 4<0?0:x - 4, \
|
|
_p3##x = x - 3<0?0:x - 3, \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
|
|
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
|
|
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
|
|
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
|
|
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
|
|
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
|
|
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
|
|
_n9##x = x + 9>=(img).width()?(img).width() - 1:x + 9, \
|
|
_n10##x = x + 10>=(img).width()?(img).width() - 1:x + 10, \
|
|
_n11##x = x + 11>=(img).width()?(img).width() - 1:x + 11, \
|
|
_n12##x = x + 12>=(img).width()?(img).width() - 1:x + 12, \
|
|
_n13##x = (int)( \
|
|
(I[0] = (T)(img)(_p13##x,_p13##y,z,c)), \
|
|
(I[27] = (T)(img)(_p13##x,_p12##y,z,c)), \
|
|
(I[54] = (T)(img)(_p13##x,_p11##y,z,c)), \
|
|
(I[81] = (T)(img)(_p13##x,_p10##y,z,c)), \
|
|
(I[108] = (T)(img)(_p13##x,_p9##y,z,c)), \
|
|
(I[135] = (T)(img)(_p13##x,_p8##y,z,c)), \
|
|
(I[162] = (T)(img)(_p13##x,_p7##y,z,c)), \
|
|
(I[189] = (T)(img)(_p13##x,_p6##y,z,c)), \
|
|
(I[216] = (T)(img)(_p13##x,_p5##y,z,c)), \
|
|
(I[243] = (T)(img)(_p13##x,_p4##y,z,c)), \
|
|
(I[270] = (T)(img)(_p13##x,_p3##y,z,c)), \
|
|
(I[297] = (T)(img)(_p13##x,_p2##y,z,c)), \
|
|
(I[324] = (T)(img)(_p13##x,_p1##y,z,c)), \
|
|
(I[351] = (T)(img)(_p13##x,y,z,c)), \
|
|
(I[378] = (T)(img)(_p13##x,_n1##y,z,c)), \
|
|
(I[405] = (T)(img)(_p13##x,_n2##y,z,c)), \
|
|
(I[432] = (T)(img)(_p13##x,_n3##y,z,c)), \
|
|
(I[459] = (T)(img)(_p13##x,_n4##y,z,c)), \
|
|
(I[486] = (T)(img)(_p13##x,_n5##y,z,c)), \
|
|
(I[513] = (T)(img)(_p13##x,_n6##y,z,c)), \
|
|
(I[540] = (T)(img)(_p13##x,_n7##y,z,c)), \
|
|
(I[567] = (T)(img)(_p13##x,_n8##y,z,c)), \
|
|
(I[594] = (T)(img)(_p13##x,_n9##y,z,c)), \
|
|
(I[621] = (T)(img)(_p13##x,_n10##y,z,c)), \
|
|
(I[648] = (T)(img)(_p13##x,_n11##y,z,c)), \
|
|
(I[675] = (T)(img)(_p13##x,_n12##y,z,c)), \
|
|
(I[702] = (T)(img)(_p13##x,_n13##y,z,c)), \
|
|
(I[1] = (T)(img)(_p12##x,_p13##y,z,c)), \
|
|
(I[28] = (T)(img)(_p12##x,_p12##y,z,c)), \
|
|
(I[55] = (T)(img)(_p12##x,_p11##y,z,c)), \
|
|
(I[82] = (T)(img)(_p12##x,_p10##y,z,c)), \
|
|
(I[109] = (T)(img)(_p12##x,_p9##y,z,c)), \
|
|
(I[136] = (T)(img)(_p12##x,_p8##y,z,c)), \
|
|
(I[163] = (T)(img)(_p12##x,_p7##y,z,c)), \
|
|
(I[190] = (T)(img)(_p12##x,_p6##y,z,c)), \
|
|
(I[217] = (T)(img)(_p12##x,_p5##y,z,c)), \
|
|
(I[244] = (T)(img)(_p12##x,_p4##y,z,c)), \
|
|
(I[271] = (T)(img)(_p12##x,_p3##y,z,c)), \
|
|
(I[298] = (T)(img)(_p12##x,_p2##y,z,c)), \
|
|
(I[325] = (T)(img)(_p12##x,_p1##y,z,c)), \
|
|
(I[352] = (T)(img)(_p12##x,y,z,c)), \
|
|
(I[379] = (T)(img)(_p12##x,_n1##y,z,c)), \
|
|
(I[406] = (T)(img)(_p12##x,_n2##y,z,c)), \
|
|
(I[433] = (T)(img)(_p12##x,_n3##y,z,c)), \
|
|
(I[460] = (T)(img)(_p12##x,_n4##y,z,c)), \
|
|
(I[487] = (T)(img)(_p12##x,_n5##y,z,c)), \
|
|
(I[514] = (T)(img)(_p12##x,_n6##y,z,c)), \
|
|
(I[541] = (T)(img)(_p12##x,_n7##y,z,c)), \
|
|
(I[568] = (T)(img)(_p12##x,_n8##y,z,c)), \
|
|
(I[595] = (T)(img)(_p12##x,_n9##y,z,c)), \
|
|
(I[622] = (T)(img)(_p12##x,_n10##y,z,c)), \
|
|
(I[649] = (T)(img)(_p12##x,_n11##y,z,c)), \
|
|
(I[676] = (T)(img)(_p12##x,_n12##y,z,c)), \
|
|
(I[703] = (T)(img)(_p12##x,_n13##y,z,c)), \
|
|
(I[2] = (T)(img)(_p11##x,_p13##y,z,c)), \
|
|
(I[29] = (T)(img)(_p11##x,_p12##y,z,c)), \
|
|
(I[56] = (T)(img)(_p11##x,_p11##y,z,c)), \
|
|
(I[83] = (T)(img)(_p11##x,_p10##y,z,c)), \
|
|
(I[110] = (T)(img)(_p11##x,_p9##y,z,c)), \
|
|
(I[137] = (T)(img)(_p11##x,_p8##y,z,c)), \
|
|
(I[164] = (T)(img)(_p11##x,_p7##y,z,c)), \
|
|
(I[191] = (T)(img)(_p11##x,_p6##y,z,c)), \
|
|
(I[218] = (T)(img)(_p11##x,_p5##y,z,c)), \
|
|
(I[245] = (T)(img)(_p11##x,_p4##y,z,c)), \
|
|
(I[272] = (T)(img)(_p11##x,_p3##y,z,c)), \
|
|
(I[299] = (T)(img)(_p11##x,_p2##y,z,c)), \
|
|
(I[326] = (T)(img)(_p11##x,_p1##y,z,c)), \
|
|
(I[353] = (T)(img)(_p11##x,y,z,c)), \
|
|
(I[380] = (T)(img)(_p11##x,_n1##y,z,c)), \
|
|
(I[407] = (T)(img)(_p11##x,_n2##y,z,c)), \
|
|
(I[434] = (T)(img)(_p11##x,_n3##y,z,c)), \
|
|
(I[461] = (T)(img)(_p11##x,_n4##y,z,c)), \
|
|
(I[488] = (T)(img)(_p11##x,_n5##y,z,c)), \
|
|
(I[515] = (T)(img)(_p11##x,_n6##y,z,c)), \
|
|
(I[542] = (T)(img)(_p11##x,_n7##y,z,c)), \
|
|
(I[569] = (T)(img)(_p11##x,_n8##y,z,c)), \
|
|
(I[596] = (T)(img)(_p11##x,_n9##y,z,c)), \
|
|
(I[623] = (T)(img)(_p11##x,_n10##y,z,c)), \
|
|
(I[650] = (T)(img)(_p11##x,_n11##y,z,c)), \
|
|
(I[677] = (T)(img)(_p11##x,_n12##y,z,c)), \
|
|
(I[704] = (T)(img)(_p11##x,_n13##y,z,c)), \
|
|
(I[3] = (T)(img)(_p10##x,_p13##y,z,c)), \
|
|
(I[30] = (T)(img)(_p10##x,_p12##y,z,c)), \
|
|
(I[57] = (T)(img)(_p10##x,_p11##y,z,c)), \
|
|
(I[84] = (T)(img)(_p10##x,_p10##y,z,c)), \
|
|
(I[111] = (T)(img)(_p10##x,_p9##y,z,c)), \
|
|
(I[138] = (T)(img)(_p10##x,_p8##y,z,c)), \
|
|
(I[165] = (T)(img)(_p10##x,_p7##y,z,c)), \
|
|
(I[192] = (T)(img)(_p10##x,_p6##y,z,c)), \
|
|
(I[219] = (T)(img)(_p10##x,_p5##y,z,c)), \
|
|
(I[246] = (T)(img)(_p10##x,_p4##y,z,c)), \
|
|
(I[273] = (T)(img)(_p10##x,_p3##y,z,c)), \
|
|
(I[300] = (T)(img)(_p10##x,_p2##y,z,c)), \
|
|
(I[327] = (T)(img)(_p10##x,_p1##y,z,c)), \
|
|
(I[354] = (T)(img)(_p10##x,y,z,c)), \
|
|
(I[381] = (T)(img)(_p10##x,_n1##y,z,c)), \
|
|
(I[408] = (T)(img)(_p10##x,_n2##y,z,c)), \
|
|
(I[435] = (T)(img)(_p10##x,_n3##y,z,c)), \
|
|
(I[462] = (T)(img)(_p10##x,_n4##y,z,c)), \
|
|
(I[489] = (T)(img)(_p10##x,_n5##y,z,c)), \
|
|
(I[516] = (T)(img)(_p10##x,_n6##y,z,c)), \
|
|
(I[543] = (T)(img)(_p10##x,_n7##y,z,c)), \
|
|
(I[570] = (T)(img)(_p10##x,_n8##y,z,c)), \
|
|
(I[597] = (T)(img)(_p10##x,_n9##y,z,c)), \
|
|
(I[624] = (T)(img)(_p10##x,_n10##y,z,c)), \
|
|
(I[651] = (T)(img)(_p10##x,_n11##y,z,c)), \
|
|
(I[678] = (T)(img)(_p10##x,_n12##y,z,c)), \
|
|
(I[705] = (T)(img)(_p10##x,_n13##y,z,c)), \
|
|
(I[4] = (T)(img)(_p9##x,_p13##y,z,c)), \
|
|
(I[31] = (T)(img)(_p9##x,_p12##y,z,c)), \
|
|
(I[58] = (T)(img)(_p9##x,_p11##y,z,c)), \
|
|
(I[85] = (T)(img)(_p9##x,_p10##y,z,c)), \
|
|
(I[112] = (T)(img)(_p9##x,_p9##y,z,c)), \
|
|
(I[139] = (T)(img)(_p9##x,_p8##y,z,c)), \
|
|
(I[166] = (T)(img)(_p9##x,_p7##y,z,c)), \
|
|
(I[193] = (T)(img)(_p9##x,_p6##y,z,c)), \
|
|
(I[220] = (T)(img)(_p9##x,_p5##y,z,c)), \
|
|
(I[247] = (T)(img)(_p9##x,_p4##y,z,c)), \
|
|
(I[274] = (T)(img)(_p9##x,_p3##y,z,c)), \
|
|
(I[301] = (T)(img)(_p9##x,_p2##y,z,c)), \
|
|
(I[328] = (T)(img)(_p9##x,_p1##y,z,c)), \
|
|
(I[355] = (T)(img)(_p9##x,y,z,c)), \
|
|
(I[382] = (T)(img)(_p9##x,_n1##y,z,c)), \
|
|
(I[409] = (T)(img)(_p9##x,_n2##y,z,c)), \
|
|
(I[436] = (T)(img)(_p9##x,_n3##y,z,c)), \
|
|
(I[463] = (T)(img)(_p9##x,_n4##y,z,c)), \
|
|
(I[490] = (T)(img)(_p9##x,_n5##y,z,c)), \
|
|
(I[517] = (T)(img)(_p9##x,_n6##y,z,c)), \
|
|
(I[544] = (T)(img)(_p9##x,_n7##y,z,c)), \
|
|
(I[571] = (T)(img)(_p9##x,_n8##y,z,c)), \
|
|
(I[598] = (T)(img)(_p9##x,_n9##y,z,c)), \
|
|
(I[625] = (T)(img)(_p9##x,_n10##y,z,c)), \
|
|
(I[652] = (T)(img)(_p9##x,_n11##y,z,c)), \
|
|
(I[679] = (T)(img)(_p9##x,_n12##y,z,c)), \
|
|
(I[706] = (T)(img)(_p9##x,_n13##y,z,c)), \
|
|
(I[5] = (T)(img)(_p8##x,_p13##y,z,c)), \
|
|
(I[32] = (T)(img)(_p8##x,_p12##y,z,c)), \
|
|
(I[59] = (T)(img)(_p8##x,_p11##y,z,c)), \
|
|
(I[86] = (T)(img)(_p8##x,_p10##y,z,c)), \
|
|
(I[113] = (T)(img)(_p8##x,_p9##y,z,c)), \
|
|
(I[140] = (T)(img)(_p8##x,_p8##y,z,c)), \
|
|
(I[167] = (T)(img)(_p8##x,_p7##y,z,c)), \
|
|
(I[194] = (T)(img)(_p8##x,_p6##y,z,c)), \
|
|
(I[221] = (T)(img)(_p8##x,_p5##y,z,c)), \
|
|
(I[248] = (T)(img)(_p8##x,_p4##y,z,c)), \
|
|
(I[275] = (T)(img)(_p8##x,_p3##y,z,c)), \
|
|
(I[302] = (T)(img)(_p8##x,_p2##y,z,c)), \
|
|
(I[329] = (T)(img)(_p8##x,_p1##y,z,c)), \
|
|
(I[356] = (T)(img)(_p8##x,y,z,c)), \
|
|
(I[383] = (T)(img)(_p8##x,_n1##y,z,c)), \
|
|
(I[410] = (T)(img)(_p8##x,_n2##y,z,c)), \
|
|
(I[437] = (T)(img)(_p8##x,_n3##y,z,c)), \
|
|
(I[464] = (T)(img)(_p8##x,_n4##y,z,c)), \
|
|
(I[491] = (T)(img)(_p8##x,_n5##y,z,c)), \
|
|
(I[518] = (T)(img)(_p8##x,_n6##y,z,c)), \
|
|
(I[545] = (T)(img)(_p8##x,_n7##y,z,c)), \
|
|
(I[572] = (T)(img)(_p8##x,_n8##y,z,c)), \
|
|
(I[599] = (T)(img)(_p8##x,_n9##y,z,c)), \
|
|
(I[626] = (T)(img)(_p8##x,_n10##y,z,c)), \
|
|
(I[653] = (T)(img)(_p8##x,_n11##y,z,c)), \
|
|
(I[680] = (T)(img)(_p8##x,_n12##y,z,c)), \
|
|
(I[707] = (T)(img)(_p8##x,_n13##y,z,c)), \
|
|
(I[6] = (T)(img)(_p7##x,_p13##y,z,c)), \
|
|
(I[33] = (T)(img)(_p7##x,_p12##y,z,c)), \
|
|
(I[60] = (T)(img)(_p7##x,_p11##y,z,c)), \
|
|
(I[87] = (T)(img)(_p7##x,_p10##y,z,c)), \
|
|
(I[114] = (T)(img)(_p7##x,_p9##y,z,c)), \
|
|
(I[141] = (T)(img)(_p7##x,_p8##y,z,c)), \
|
|
(I[168] = (T)(img)(_p7##x,_p7##y,z,c)), \
|
|
(I[195] = (T)(img)(_p7##x,_p6##y,z,c)), \
|
|
(I[222] = (T)(img)(_p7##x,_p5##y,z,c)), \
|
|
(I[249] = (T)(img)(_p7##x,_p4##y,z,c)), \
|
|
(I[276] = (T)(img)(_p7##x,_p3##y,z,c)), \
|
|
(I[303] = (T)(img)(_p7##x,_p2##y,z,c)), \
|
|
(I[330] = (T)(img)(_p7##x,_p1##y,z,c)), \
|
|
(I[357] = (T)(img)(_p7##x,y,z,c)), \
|
|
(I[384] = (T)(img)(_p7##x,_n1##y,z,c)), \
|
|
(I[411] = (T)(img)(_p7##x,_n2##y,z,c)), \
|
|
(I[438] = (T)(img)(_p7##x,_n3##y,z,c)), \
|
|
(I[465] = (T)(img)(_p7##x,_n4##y,z,c)), \
|
|
(I[492] = (T)(img)(_p7##x,_n5##y,z,c)), \
|
|
(I[519] = (T)(img)(_p7##x,_n6##y,z,c)), \
|
|
(I[546] = (T)(img)(_p7##x,_n7##y,z,c)), \
|
|
(I[573] = (T)(img)(_p7##x,_n8##y,z,c)), \
|
|
(I[600] = (T)(img)(_p7##x,_n9##y,z,c)), \
|
|
(I[627] = (T)(img)(_p7##x,_n10##y,z,c)), \
|
|
(I[654] = (T)(img)(_p7##x,_n11##y,z,c)), \
|
|
(I[681] = (T)(img)(_p7##x,_n12##y,z,c)), \
|
|
(I[708] = (T)(img)(_p7##x,_n13##y,z,c)), \
|
|
(I[7] = (T)(img)(_p6##x,_p13##y,z,c)), \
|
|
(I[34] = (T)(img)(_p6##x,_p12##y,z,c)), \
|
|
(I[61] = (T)(img)(_p6##x,_p11##y,z,c)), \
|
|
(I[88] = (T)(img)(_p6##x,_p10##y,z,c)), \
|
|
(I[115] = (T)(img)(_p6##x,_p9##y,z,c)), \
|
|
(I[142] = (T)(img)(_p6##x,_p8##y,z,c)), \
|
|
(I[169] = (T)(img)(_p6##x,_p7##y,z,c)), \
|
|
(I[196] = (T)(img)(_p6##x,_p6##y,z,c)), \
|
|
(I[223] = (T)(img)(_p6##x,_p5##y,z,c)), \
|
|
(I[250] = (T)(img)(_p6##x,_p4##y,z,c)), \
|
|
(I[277] = (T)(img)(_p6##x,_p3##y,z,c)), \
|
|
(I[304] = (T)(img)(_p6##x,_p2##y,z,c)), \
|
|
(I[331] = (T)(img)(_p6##x,_p1##y,z,c)), \
|
|
(I[358] = (T)(img)(_p6##x,y,z,c)), \
|
|
(I[385] = (T)(img)(_p6##x,_n1##y,z,c)), \
|
|
(I[412] = (T)(img)(_p6##x,_n2##y,z,c)), \
|
|
(I[439] = (T)(img)(_p6##x,_n3##y,z,c)), \
|
|
(I[466] = (T)(img)(_p6##x,_n4##y,z,c)), \
|
|
(I[493] = (T)(img)(_p6##x,_n5##y,z,c)), \
|
|
(I[520] = (T)(img)(_p6##x,_n6##y,z,c)), \
|
|
(I[547] = (T)(img)(_p6##x,_n7##y,z,c)), \
|
|
(I[574] = (T)(img)(_p6##x,_n8##y,z,c)), \
|
|
(I[601] = (T)(img)(_p6##x,_n9##y,z,c)), \
|
|
(I[628] = (T)(img)(_p6##x,_n10##y,z,c)), \
|
|
(I[655] = (T)(img)(_p6##x,_n11##y,z,c)), \
|
|
(I[682] = (T)(img)(_p6##x,_n12##y,z,c)), \
|
|
(I[709] = (T)(img)(_p6##x,_n13##y,z,c)), \
|
|
(I[8] = (T)(img)(_p5##x,_p13##y,z,c)), \
|
|
(I[35] = (T)(img)(_p5##x,_p12##y,z,c)), \
|
|
(I[62] = (T)(img)(_p5##x,_p11##y,z,c)), \
|
|
(I[89] = (T)(img)(_p5##x,_p10##y,z,c)), \
|
|
(I[116] = (T)(img)(_p5##x,_p9##y,z,c)), \
|
|
(I[143] = (T)(img)(_p5##x,_p8##y,z,c)), \
|
|
(I[170] = (T)(img)(_p5##x,_p7##y,z,c)), \
|
|
(I[197] = (T)(img)(_p5##x,_p6##y,z,c)), \
|
|
(I[224] = (T)(img)(_p5##x,_p5##y,z,c)), \
|
|
(I[251] = (T)(img)(_p5##x,_p4##y,z,c)), \
|
|
(I[278] = (T)(img)(_p5##x,_p3##y,z,c)), \
|
|
(I[305] = (T)(img)(_p5##x,_p2##y,z,c)), \
|
|
(I[332] = (T)(img)(_p5##x,_p1##y,z,c)), \
|
|
(I[359] = (T)(img)(_p5##x,y,z,c)), \
|
|
(I[386] = (T)(img)(_p5##x,_n1##y,z,c)), \
|
|
(I[413] = (T)(img)(_p5##x,_n2##y,z,c)), \
|
|
(I[440] = (T)(img)(_p5##x,_n3##y,z,c)), \
|
|
(I[467] = (T)(img)(_p5##x,_n4##y,z,c)), \
|
|
(I[494] = (T)(img)(_p5##x,_n5##y,z,c)), \
|
|
(I[521] = (T)(img)(_p5##x,_n6##y,z,c)), \
|
|
(I[548] = (T)(img)(_p5##x,_n7##y,z,c)), \
|
|
(I[575] = (T)(img)(_p5##x,_n8##y,z,c)), \
|
|
(I[602] = (T)(img)(_p5##x,_n9##y,z,c)), \
|
|
(I[629] = (T)(img)(_p5##x,_n10##y,z,c)), \
|
|
(I[656] = (T)(img)(_p5##x,_n11##y,z,c)), \
|
|
(I[683] = (T)(img)(_p5##x,_n12##y,z,c)), \
|
|
(I[710] = (T)(img)(_p5##x,_n13##y,z,c)), \
|
|
(I[9] = (T)(img)(_p4##x,_p13##y,z,c)), \
|
|
(I[36] = (T)(img)(_p4##x,_p12##y,z,c)), \
|
|
(I[63] = (T)(img)(_p4##x,_p11##y,z,c)), \
|
|
(I[90] = (T)(img)(_p4##x,_p10##y,z,c)), \
|
|
(I[117] = (T)(img)(_p4##x,_p9##y,z,c)), \
|
|
(I[144] = (T)(img)(_p4##x,_p8##y,z,c)), \
|
|
(I[171] = (T)(img)(_p4##x,_p7##y,z,c)), \
|
|
(I[198] = (T)(img)(_p4##x,_p6##y,z,c)), \
|
|
(I[225] = (T)(img)(_p4##x,_p5##y,z,c)), \
|
|
(I[252] = (T)(img)(_p4##x,_p4##y,z,c)), \
|
|
(I[279] = (T)(img)(_p4##x,_p3##y,z,c)), \
|
|
(I[306] = (T)(img)(_p4##x,_p2##y,z,c)), \
|
|
(I[333] = (T)(img)(_p4##x,_p1##y,z,c)), \
|
|
(I[360] = (T)(img)(_p4##x,y,z,c)), \
|
|
(I[387] = (T)(img)(_p4##x,_n1##y,z,c)), \
|
|
(I[414] = (T)(img)(_p4##x,_n2##y,z,c)), \
|
|
(I[441] = (T)(img)(_p4##x,_n3##y,z,c)), \
|
|
(I[468] = (T)(img)(_p4##x,_n4##y,z,c)), \
|
|
(I[495] = (T)(img)(_p4##x,_n5##y,z,c)), \
|
|
(I[522] = (T)(img)(_p4##x,_n6##y,z,c)), \
|
|
(I[549] = (T)(img)(_p4##x,_n7##y,z,c)), \
|
|
(I[576] = (T)(img)(_p4##x,_n8##y,z,c)), \
|
|
(I[603] = (T)(img)(_p4##x,_n9##y,z,c)), \
|
|
(I[630] = (T)(img)(_p4##x,_n10##y,z,c)), \
|
|
(I[657] = (T)(img)(_p4##x,_n11##y,z,c)), \
|
|
(I[684] = (T)(img)(_p4##x,_n12##y,z,c)), \
|
|
(I[711] = (T)(img)(_p4##x,_n13##y,z,c)), \
|
|
(I[10] = (T)(img)(_p3##x,_p13##y,z,c)), \
|
|
(I[37] = (T)(img)(_p3##x,_p12##y,z,c)), \
|
|
(I[64] = (T)(img)(_p3##x,_p11##y,z,c)), \
|
|
(I[91] = (T)(img)(_p3##x,_p10##y,z,c)), \
|
|
(I[118] = (T)(img)(_p3##x,_p9##y,z,c)), \
|
|
(I[145] = (T)(img)(_p3##x,_p8##y,z,c)), \
|
|
(I[172] = (T)(img)(_p3##x,_p7##y,z,c)), \
|
|
(I[199] = (T)(img)(_p3##x,_p6##y,z,c)), \
|
|
(I[226] = (T)(img)(_p3##x,_p5##y,z,c)), \
|
|
(I[253] = (T)(img)(_p3##x,_p4##y,z,c)), \
|
|
(I[280] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[307] = (T)(img)(_p3##x,_p2##y,z,c)), \
|
|
(I[334] = (T)(img)(_p3##x,_p1##y,z,c)), \
|
|
(I[361] = (T)(img)(_p3##x,y,z,c)), \
|
|
(I[388] = (T)(img)(_p3##x,_n1##y,z,c)), \
|
|
(I[415] = (T)(img)(_p3##x,_n2##y,z,c)), \
|
|
(I[442] = (T)(img)(_p3##x,_n3##y,z,c)), \
|
|
(I[469] = (T)(img)(_p3##x,_n4##y,z,c)), \
|
|
(I[496] = (T)(img)(_p3##x,_n5##y,z,c)), \
|
|
(I[523] = (T)(img)(_p3##x,_n6##y,z,c)), \
|
|
(I[550] = (T)(img)(_p3##x,_n7##y,z,c)), \
|
|
(I[577] = (T)(img)(_p3##x,_n8##y,z,c)), \
|
|
(I[604] = (T)(img)(_p3##x,_n9##y,z,c)), \
|
|
(I[631] = (T)(img)(_p3##x,_n10##y,z,c)), \
|
|
(I[658] = (T)(img)(_p3##x,_n11##y,z,c)), \
|
|
(I[685] = (T)(img)(_p3##x,_n12##y,z,c)), \
|
|
(I[712] = (T)(img)(_p3##x,_n13##y,z,c)), \
|
|
(I[11] = (T)(img)(_p2##x,_p13##y,z,c)), \
|
|
(I[38] = (T)(img)(_p2##x,_p12##y,z,c)), \
|
|
(I[65] = (T)(img)(_p2##x,_p11##y,z,c)), \
|
|
(I[92] = (T)(img)(_p2##x,_p10##y,z,c)), \
|
|
(I[119] = (T)(img)(_p2##x,_p9##y,z,c)), \
|
|
(I[146] = (T)(img)(_p2##x,_p8##y,z,c)), \
|
|
(I[173] = (T)(img)(_p2##x,_p7##y,z,c)), \
|
|
(I[200] = (T)(img)(_p2##x,_p6##y,z,c)), \
|
|
(I[227] = (T)(img)(_p2##x,_p5##y,z,c)), \
|
|
(I[254] = (T)(img)(_p2##x,_p4##y,z,c)), \
|
|
(I[281] = (T)(img)(_p2##x,_p3##y,z,c)), \
|
|
(I[308] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[335] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[362] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[389] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[416] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[443] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[470] = (T)(img)(_p2##x,_n4##y,z,c)), \
|
|
(I[497] = (T)(img)(_p2##x,_n5##y,z,c)), \
|
|
(I[524] = (T)(img)(_p2##x,_n6##y,z,c)), \
|
|
(I[551] = (T)(img)(_p2##x,_n7##y,z,c)), \
|
|
(I[578] = (T)(img)(_p2##x,_n8##y,z,c)), \
|
|
(I[605] = (T)(img)(_p2##x,_n9##y,z,c)), \
|
|
(I[632] = (T)(img)(_p2##x,_n10##y,z,c)), \
|
|
(I[659] = (T)(img)(_p2##x,_n11##y,z,c)), \
|
|
(I[686] = (T)(img)(_p2##x,_n12##y,z,c)), \
|
|
(I[713] = (T)(img)(_p2##x,_n13##y,z,c)), \
|
|
(I[12] = (T)(img)(_p1##x,_p13##y,z,c)), \
|
|
(I[39] = (T)(img)(_p1##x,_p12##y,z,c)), \
|
|
(I[66] = (T)(img)(_p1##x,_p11##y,z,c)), \
|
|
(I[93] = (T)(img)(_p1##x,_p10##y,z,c)), \
|
|
(I[120] = (T)(img)(_p1##x,_p9##y,z,c)), \
|
|
(I[147] = (T)(img)(_p1##x,_p8##y,z,c)), \
|
|
(I[174] = (T)(img)(_p1##x,_p7##y,z,c)), \
|
|
(I[201] = (T)(img)(_p1##x,_p6##y,z,c)), \
|
|
(I[228] = (T)(img)(_p1##x,_p5##y,z,c)), \
|
|
(I[255] = (T)(img)(_p1##x,_p4##y,z,c)), \
|
|
(I[282] = (T)(img)(_p1##x,_p3##y,z,c)), \
|
|
(I[309] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[336] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[363] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[390] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[417] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[444] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[471] = (T)(img)(_p1##x,_n4##y,z,c)), \
|
|
(I[498] = (T)(img)(_p1##x,_n5##y,z,c)), \
|
|
(I[525] = (T)(img)(_p1##x,_n6##y,z,c)), \
|
|
(I[552] = (T)(img)(_p1##x,_n7##y,z,c)), \
|
|
(I[579] = (T)(img)(_p1##x,_n8##y,z,c)), \
|
|
(I[606] = (T)(img)(_p1##x,_n9##y,z,c)), \
|
|
(I[633] = (T)(img)(_p1##x,_n10##y,z,c)), \
|
|
(I[660] = (T)(img)(_p1##x,_n11##y,z,c)), \
|
|
(I[687] = (T)(img)(_p1##x,_n12##y,z,c)), \
|
|
(I[714] = (T)(img)(_p1##x,_n13##y,z,c)), \
|
|
(I[13] = (T)(img)(x,_p13##y,z,c)), \
|
|
(I[40] = (T)(img)(x,_p12##y,z,c)), \
|
|
(I[67] = (T)(img)(x,_p11##y,z,c)), \
|
|
(I[94] = (T)(img)(x,_p10##y,z,c)), \
|
|
(I[121] = (T)(img)(x,_p9##y,z,c)), \
|
|
(I[148] = (T)(img)(x,_p8##y,z,c)), \
|
|
(I[175] = (T)(img)(x,_p7##y,z,c)), \
|
|
(I[202] = (T)(img)(x,_p6##y,z,c)), \
|
|
(I[229] = (T)(img)(x,_p5##y,z,c)), \
|
|
(I[256] = (T)(img)(x,_p4##y,z,c)), \
|
|
(I[283] = (T)(img)(x,_p3##y,z,c)), \
|
|
(I[310] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[337] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[364] = (T)(img)(x,y,z,c)), \
|
|
(I[391] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[418] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[445] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[472] = (T)(img)(x,_n4##y,z,c)), \
|
|
(I[499] = (T)(img)(x,_n5##y,z,c)), \
|
|
(I[526] = (T)(img)(x,_n6##y,z,c)), \
|
|
(I[553] = (T)(img)(x,_n7##y,z,c)), \
|
|
(I[580] = (T)(img)(x,_n8##y,z,c)), \
|
|
(I[607] = (T)(img)(x,_n9##y,z,c)), \
|
|
(I[634] = (T)(img)(x,_n10##y,z,c)), \
|
|
(I[661] = (T)(img)(x,_n11##y,z,c)), \
|
|
(I[688] = (T)(img)(x,_n12##y,z,c)), \
|
|
(I[715] = (T)(img)(x,_n13##y,z,c)), \
|
|
(I[14] = (T)(img)(_n1##x,_p13##y,z,c)), \
|
|
(I[41] = (T)(img)(_n1##x,_p12##y,z,c)), \
|
|
(I[68] = (T)(img)(_n1##x,_p11##y,z,c)), \
|
|
(I[95] = (T)(img)(_n1##x,_p10##y,z,c)), \
|
|
(I[122] = (T)(img)(_n1##x,_p9##y,z,c)), \
|
|
(I[149] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[176] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[203] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[230] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[257] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[284] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[311] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[338] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[365] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[392] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[419] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[446] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[473] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[500] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[527] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[554] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[581] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[608] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[635] = (T)(img)(_n1##x,_n10##y,z,c)), \
|
|
(I[662] = (T)(img)(_n1##x,_n11##y,z,c)), \
|
|
(I[689] = (T)(img)(_n1##x,_n12##y,z,c)), \
|
|
(I[716] = (T)(img)(_n1##x,_n13##y,z,c)), \
|
|
(I[15] = (T)(img)(_n2##x,_p13##y,z,c)), \
|
|
(I[42] = (T)(img)(_n2##x,_p12##y,z,c)), \
|
|
(I[69] = (T)(img)(_n2##x,_p11##y,z,c)), \
|
|
(I[96] = (T)(img)(_n2##x,_p10##y,z,c)), \
|
|
(I[123] = (T)(img)(_n2##x,_p9##y,z,c)), \
|
|
(I[150] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[177] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[204] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[231] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[258] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[285] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[312] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[339] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[366] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[393] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[420] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[447] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[474] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[501] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[528] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[555] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[582] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[609] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[636] = (T)(img)(_n2##x,_n10##y,z,c)), \
|
|
(I[663] = (T)(img)(_n2##x,_n11##y,z,c)), \
|
|
(I[690] = (T)(img)(_n2##x,_n12##y,z,c)), \
|
|
(I[717] = (T)(img)(_n2##x,_n13##y,z,c)), \
|
|
(I[16] = (T)(img)(_n3##x,_p13##y,z,c)), \
|
|
(I[43] = (T)(img)(_n3##x,_p12##y,z,c)), \
|
|
(I[70] = (T)(img)(_n3##x,_p11##y,z,c)), \
|
|
(I[97] = (T)(img)(_n3##x,_p10##y,z,c)), \
|
|
(I[124] = (T)(img)(_n3##x,_p9##y,z,c)), \
|
|
(I[151] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[178] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[205] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[232] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[259] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[286] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[313] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[340] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[367] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[394] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[421] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[448] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[475] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[502] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[529] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[556] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[583] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[610] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[637] = (T)(img)(_n3##x,_n10##y,z,c)), \
|
|
(I[664] = (T)(img)(_n3##x,_n11##y,z,c)), \
|
|
(I[691] = (T)(img)(_n3##x,_n12##y,z,c)), \
|
|
(I[718] = (T)(img)(_n3##x,_n13##y,z,c)), \
|
|
(I[17] = (T)(img)(_n4##x,_p13##y,z,c)), \
|
|
(I[44] = (T)(img)(_n4##x,_p12##y,z,c)), \
|
|
(I[71] = (T)(img)(_n4##x,_p11##y,z,c)), \
|
|
(I[98] = (T)(img)(_n4##x,_p10##y,z,c)), \
|
|
(I[125] = (T)(img)(_n4##x,_p9##y,z,c)), \
|
|
(I[152] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[179] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[206] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[233] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[260] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[287] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[314] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[341] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[368] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[395] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[422] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[449] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[476] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[503] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[530] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[557] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[584] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[611] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[638] = (T)(img)(_n4##x,_n10##y,z,c)), \
|
|
(I[665] = (T)(img)(_n4##x,_n11##y,z,c)), \
|
|
(I[692] = (T)(img)(_n4##x,_n12##y,z,c)), \
|
|
(I[719] = (T)(img)(_n4##x,_n13##y,z,c)), \
|
|
(I[18] = (T)(img)(_n5##x,_p13##y,z,c)), \
|
|
(I[45] = (T)(img)(_n5##x,_p12##y,z,c)), \
|
|
(I[72] = (T)(img)(_n5##x,_p11##y,z,c)), \
|
|
(I[99] = (T)(img)(_n5##x,_p10##y,z,c)), \
|
|
(I[126] = (T)(img)(_n5##x,_p9##y,z,c)), \
|
|
(I[153] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[180] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[207] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[234] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[261] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[288] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[315] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[342] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[369] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[396] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[423] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[450] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[477] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[504] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[531] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[558] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[585] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[612] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[639] = (T)(img)(_n5##x,_n10##y,z,c)), \
|
|
(I[666] = (T)(img)(_n5##x,_n11##y,z,c)), \
|
|
(I[693] = (T)(img)(_n5##x,_n12##y,z,c)), \
|
|
(I[720] = (T)(img)(_n5##x,_n13##y,z,c)), \
|
|
(I[19] = (T)(img)(_n6##x,_p13##y,z,c)), \
|
|
(I[46] = (T)(img)(_n6##x,_p12##y,z,c)), \
|
|
(I[73] = (T)(img)(_n6##x,_p11##y,z,c)), \
|
|
(I[100] = (T)(img)(_n6##x,_p10##y,z,c)), \
|
|
(I[127] = (T)(img)(_n6##x,_p9##y,z,c)), \
|
|
(I[154] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[181] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[208] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[235] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[262] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[289] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[316] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[343] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[370] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[397] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[424] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[451] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[478] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[505] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[532] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[559] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[586] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[613] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[640] = (T)(img)(_n6##x,_n10##y,z,c)), \
|
|
(I[667] = (T)(img)(_n6##x,_n11##y,z,c)), \
|
|
(I[694] = (T)(img)(_n6##x,_n12##y,z,c)), \
|
|
(I[721] = (T)(img)(_n6##x,_n13##y,z,c)), \
|
|
(I[20] = (T)(img)(_n7##x,_p13##y,z,c)), \
|
|
(I[47] = (T)(img)(_n7##x,_p12##y,z,c)), \
|
|
(I[74] = (T)(img)(_n7##x,_p11##y,z,c)), \
|
|
(I[101] = (T)(img)(_n7##x,_p10##y,z,c)), \
|
|
(I[128] = (T)(img)(_n7##x,_p9##y,z,c)), \
|
|
(I[155] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[182] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[209] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[236] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[263] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[290] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[317] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[344] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[371] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[398] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[425] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[452] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[479] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[506] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[533] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[560] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[587] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[614] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[641] = (T)(img)(_n7##x,_n10##y,z,c)), \
|
|
(I[668] = (T)(img)(_n7##x,_n11##y,z,c)), \
|
|
(I[695] = (T)(img)(_n7##x,_n12##y,z,c)), \
|
|
(I[722] = (T)(img)(_n7##x,_n13##y,z,c)), \
|
|
(I[21] = (T)(img)(_n8##x,_p13##y,z,c)), \
|
|
(I[48] = (T)(img)(_n8##x,_p12##y,z,c)), \
|
|
(I[75] = (T)(img)(_n8##x,_p11##y,z,c)), \
|
|
(I[102] = (T)(img)(_n8##x,_p10##y,z,c)), \
|
|
(I[129] = (T)(img)(_n8##x,_p9##y,z,c)), \
|
|
(I[156] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[183] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[210] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[237] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[264] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[291] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[318] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[345] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[372] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[399] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[426] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[453] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[480] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[507] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[534] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[561] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[588] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[615] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
(I[642] = (T)(img)(_n8##x,_n10##y,z,c)), \
|
|
(I[669] = (T)(img)(_n8##x,_n11##y,z,c)), \
|
|
(I[696] = (T)(img)(_n8##x,_n12##y,z,c)), \
|
|
(I[723] = (T)(img)(_n8##x,_n13##y,z,c)), \
|
|
(I[22] = (T)(img)(_n9##x,_p13##y,z,c)), \
|
|
(I[49] = (T)(img)(_n9##x,_p12##y,z,c)), \
|
|
(I[76] = (T)(img)(_n9##x,_p11##y,z,c)), \
|
|
(I[103] = (T)(img)(_n9##x,_p10##y,z,c)), \
|
|
(I[130] = (T)(img)(_n9##x,_p9##y,z,c)), \
|
|
(I[157] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[184] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[211] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[238] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[265] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[292] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[319] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[346] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[373] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[400] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[427] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[454] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[481] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[508] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[535] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[562] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[589] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[616] = (T)(img)(_n9##x,_n9##y,z,c)), \
|
|
(I[643] = (T)(img)(_n9##x,_n10##y,z,c)), \
|
|
(I[670] = (T)(img)(_n9##x,_n11##y,z,c)), \
|
|
(I[697] = (T)(img)(_n9##x,_n12##y,z,c)), \
|
|
(I[724] = (T)(img)(_n9##x,_n13##y,z,c)), \
|
|
(I[23] = (T)(img)(_n10##x,_p13##y,z,c)), \
|
|
(I[50] = (T)(img)(_n10##x,_p12##y,z,c)), \
|
|
(I[77] = (T)(img)(_n10##x,_p11##y,z,c)), \
|
|
(I[104] = (T)(img)(_n10##x,_p10##y,z,c)), \
|
|
(I[131] = (T)(img)(_n10##x,_p9##y,z,c)), \
|
|
(I[158] = (T)(img)(_n10##x,_p8##y,z,c)), \
|
|
(I[185] = (T)(img)(_n10##x,_p7##y,z,c)), \
|
|
(I[212] = (T)(img)(_n10##x,_p6##y,z,c)), \
|
|
(I[239] = (T)(img)(_n10##x,_p5##y,z,c)), \
|
|
(I[266] = (T)(img)(_n10##x,_p4##y,z,c)), \
|
|
(I[293] = (T)(img)(_n10##x,_p3##y,z,c)), \
|
|
(I[320] = (T)(img)(_n10##x,_p2##y,z,c)), \
|
|
(I[347] = (T)(img)(_n10##x,_p1##y,z,c)), \
|
|
(I[374] = (T)(img)(_n10##x,y,z,c)), \
|
|
(I[401] = (T)(img)(_n10##x,_n1##y,z,c)), \
|
|
(I[428] = (T)(img)(_n10##x,_n2##y,z,c)), \
|
|
(I[455] = (T)(img)(_n10##x,_n3##y,z,c)), \
|
|
(I[482] = (T)(img)(_n10##x,_n4##y,z,c)), \
|
|
(I[509] = (T)(img)(_n10##x,_n5##y,z,c)), \
|
|
(I[536] = (T)(img)(_n10##x,_n6##y,z,c)), \
|
|
(I[563] = (T)(img)(_n10##x,_n7##y,z,c)), \
|
|
(I[590] = (T)(img)(_n10##x,_n8##y,z,c)), \
|
|
(I[617] = (T)(img)(_n10##x,_n9##y,z,c)), \
|
|
(I[644] = (T)(img)(_n10##x,_n10##y,z,c)), \
|
|
(I[671] = (T)(img)(_n10##x,_n11##y,z,c)), \
|
|
(I[698] = (T)(img)(_n10##x,_n12##y,z,c)), \
|
|
(I[725] = (T)(img)(_n10##x,_n13##y,z,c)), \
|
|
(I[24] = (T)(img)(_n11##x,_p13##y,z,c)), \
|
|
(I[51] = (T)(img)(_n11##x,_p12##y,z,c)), \
|
|
(I[78] = (T)(img)(_n11##x,_p11##y,z,c)), \
|
|
(I[105] = (T)(img)(_n11##x,_p10##y,z,c)), \
|
|
(I[132] = (T)(img)(_n11##x,_p9##y,z,c)), \
|
|
(I[159] = (T)(img)(_n11##x,_p8##y,z,c)), \
|
|
(I[186] = (T)(img)(_n11##x,_p7##y,z,c)), \
|
|
(I[213] = (T)(img)(_n11##x,_p6##y,z,c)), \
|
|
(I[240] = (T)(img)(_n11##x,_p5##y,z,c)), \
|
|
(I[267] = (T)(img)(_n11##x,_p4##y,z,c)), \
|
|
(I[294] = (T)(img)(_n11##x,_p3##y,z,c)), \
|
|
(I[321] = (T)(img)(_n11##x,_p2##y,z,c)), \
|
|
(I[348] = (T)(img)(_n11##x,_p1##y,z,c)), \
|
|
(I[375] = (T)(img)(_n11##x,y,z,c)), \
|
|
(I[402] = (T)(img)(_n11##x,_n1##y,z,c)), \
|
|
(I[429] = (T)(img)(_n11##x,_n2##y,z,c)), \
|
|
(I[456] = (T)(img)(_n11##x,_n3##y,z,c)), \
|
|
(I[483] = (T)(img)(_n11##x,_n4##y,z,c)), \
|
|
(I[510] = (T)(img)(_n11##x,_n5##y,z,c)), \
|
|
(I[537] = (T)(img)(_n11##x,_n6##y,z,c)), \
|
|
(I[564] = (T)(img)(_n11##x,_n7##y,z,c)), \
|
|
(I[591] = (T)(img)(_n11##x,_n8##y,z,c)), \
|
|
(I[618] = (T)(img)(_n11##x,_n9##y,z,c)), \
|
|
(I[645] = (T)(img)(_n11##x,_n10##y,z,c)), \
|
|
(I[672] = (T)(img)(_n11##x,_n11##y,z,c)), \
|
|
(I[699] = (T)(img)(_n11##x,_n12##y,z,c)), \
|
|
(I[726] = (T)(img)(_n11##x,_n13##y,z,c)), \
|
|
(I[25] = (T)(img)(_n12##x,_p13##y,z,c)), \
|
|
(I[52] = (T)(img)(_n12##x,_p12##y,z,c)), \
|
|
(I[79] = (T)(img)(_n12##x,_p11##y,z,c)), \
|
|
(I[106] = (T)(img)(_n12##x,_p10##y,z,c)), \
|
|
(I[133] = (T)(img)(_n12##x,_p9##y,z,c)), \
|
|
(I[160] = (T)(img)(_n12##x,_p8##y,z,c)), \
|
|
(I[187] = (T)(img)(_n12##x,_p7##y,z,c)), \
|
|
(I[214] = (T)(img)(_n12##x,_p6##y,z,c)), \
|
|
(I[241] = (T)(img)(_n12##x,_p5##y,z,c)), \
|
|
(I[268] = (T)(img)(_n12##x,_p4##y,z,c)), \
|
|
(I[295] = (T)(img)(_n12##x,_p3##y,z,c)), \
|
|
(I[322] = (T)(img)(_n12##x,_p2##y,z,c)), \
|
|
(I[349] = (T)(img)(_n12##x,_p1##y,z,c)), \
|
|
(I[376] = (T)(img)(_n12##x,y,z,c)), \
|
|
(I[403] = (T)(img)(_n12##x,_n1##y,z,c)), \
|
|
(I[430] = (T)(img)(_n12##x,_n2##y,z,c)), \
|
|
(I[457] = (T)(img)(_n12##x,_n3##y,z,c)), \
|
|
(I[484] = (T)(img)(_n12##x,_n4##y,z,c)), \
|
|
(I[511] = (T)(img)(_n12##x,_n5##y,z,c)), \
|
|
(I[538] = (T)(img)(_n12##x,_n6##y,z,c)), \
|
|
(I[565] = (T)(img)(_n12##x,_n7##y,z,c)), \
|
|
(I[592] = (T)(img)(_n12##x,_n8##y,z,c)), \
|
|
(I[619] = (T)(img)(_n12##x,_n9##y,z,c)), \
|
|
(I[646] = (T)(img)(_n12##x,_n10##y,z,c)), \
|
|
(I[673] = (T)(img)(_n12##x,_n11##y,z,c)), \
|
|
(I[700] = (T)(img)(_n12##x,_n12##y,z,c)), \
|
|
(I[727] = (T)(img)(_n12##x,_n13##y,z,c)), \
|
|
x + 13>=(img).width()?(img).width() - 1:x + 13); \
|
|
x<=(int)(x1) && ((_n13##x<(img).width() && ( \
|
|
(I[26] = (T)(img)(_n13##x,_p13##y,z,c)), \
|
|
(I[53] = (T)(img)(_n13##x,_p12##y,z,c)), \
|
|
(I[80] = (T)(img)(_n13##x,_p11##y,z,c)), \
|
|
(I[107] = (T)(img)(_n13##x,_p10##y,z,c)), \
|
|
(I[134] = (T)(img)(_n13##x,_p9##y,z,c)), \
|
|
(I[161] = (T)(img)(_n13##x,_p8##y,z,c)), \
|
|
(I[188] = (T)(img)(_n13##x,_p7##y,z,c)), \
|
|
(I[215] = (T)(img)(_n13##x,_p6##y,z,c)), \
|
|
(I[242] = (T)(img)(_n13##x,_p5##y,z,c)), \
|
|
(I[269] = (T)(img)(_n13##x,_p4##y,z,c)), \
|
|
(I[296] = (T)(img)(_n13##x,_p3##y,z,c)), \
|
|
(I[323] = (T)(img)(_n13##x,_p2##y,z,c)), \
|
|
(I[350] = (T)(img)(_n13##x,_p1##y,z,c)), \
|
|
(I[377] = (T)(img)(_n13##x,y,z,c)), \
|
|
(I[404] = (T)(img)(_n13##x,_n1##y,z,c)), \
|
|
(I[431] = (T)(img)(_n13##x,_n2##y,z,c)), \
|
|
(I[458] = (T)(img)(_n13##x,_n3##y,z,c)), \
|
|
(I[485] = (T)(img)(_n13##x,_n4##y,z,c)), \
|
|
(I[512] = (T)(img)(_n13##x,_n5##y,z,c)), \
|
|
(I[539] = (T)(img)(_n13##x,_n6##y,z,c)), \
|
|
(I[566] = (T)(img)(_n13##x,_n7##y,z,c)), \
|
|
(I[593] = (T)(img)(_n13##x,_n8##y,z,c)), \
|
|
(I[620] = (T)(img)(_n13##x,_n9##y,z,c)), \
|
|
(I[647] = (T)(img)(_n13##x,_n10##y,z,c)), \
|
|
(I[674] = (T)(img)(_n13##x,_n11##y,z,c)), \
|
|
(I[701] = (T)(img)(_n13##x,_n12##y,z,c)), \
|
|
(I[728] = (T)(img)(_n13##x,_n13##y,z,c)),1)) || \
|
|
_n12##x==--_n13##x || _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n13##x = _n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], \
|
|
I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], \
|
|
I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], \
|
|
I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], \
|
|
I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], \
|
|
I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], \
|
|
I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], \
|
|
I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \
|
|
I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], \
|
|
I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], \
|
|
I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], \
|
|
I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], \
|
|
I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], \
|
|
I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], \
|
|
I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], \
|
|
I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], \
|
|
I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], \
|
|
I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], \
|
|
I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], \
|
|
I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], \
|
|
I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], \
|
|
I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], I[575] = I[576], I[576] = I[577], I[577] = I[578], I[578] = I[579], I[579] = I[580], I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], I[587] = I[588], I[588] = I[589], I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], \
|
|
I[594] = I[595], I[595] = I[596], I[596] = I[597], I[597] = I[598], I[598] = I[599], I[599] = I[600], I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], I[607] = I[608], I[608] = I[609], I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], I[615] = I[616], I[616] = I[617], I[617] = I[618], I[618] = I[619], I[619] = I[620], \
|
|
I[621] = I[622], I[622] = I[623], I[623] = I[624], I[624] = I[625], I[625] = I[626], I[626] = I[627], I[627] = I[628], I[628] = I[629], I[629] = I[630], I[630] = I[631], I[631] = I[632], I[632] = I[633], I[633] = I[634], I[634] = I[635], I[635] = I[636], I[636] = I[637], I[637] = I[638], I[638] = I[639], I[639] = I[640], I[640] = I[641], I[641] = I[642], I[642] = I[643], I[643] = I[644], I[644] = I[645], I[645] = I[646], I[646] = I[647], \
|
|
I[648] = I[649], I[649] = I[650], I[650] = I[651], I[651] = I[652], I[652] = I[653], I[653] = I[654], I[654] = I[655], I[655] = I[656], I[656] = I[657], I[657] = I[658], I[658] = I[659], I[659] = I[660], I[660] = I[661], I[661] = I[662], I[662] = I[663], I[663] = I[664], I[664] = I[665], I[665] = I[666], I[666] = I[667], I[667] = I[668], I[668] = I[669], I[669] = I[670], I[670] = I[671], I[671] = I[672], I[672] = I[673], I[673] = I[674], \
|
|
I[675] = I[676], I[676] = I[677], I[677] = I[678], I[678] = I[679], I[679] = I[680], I[680] = I[681], I[681] = I[682], I[682] = I[683], I[683] = I[684], I[684] = I[685], I[685] = I[686], I[686] = I[687], I[687] = I[688], I[688] = I[689], I[689] = I[690], I[690] = I[691], I[691] = I[692], I[692] = I[693], I[693] = I[694], I[694] = I[695], I[695] = I[696], I[696] = I[697], I[697] = I[698], I[698] = I[699], I[699] = I[700], I[700] = I[701], \
|
|
I[702] = I[703], I[703] = I[704], I[704] = I[705], I[705] = I[706], I[706] = I[707], I[707] = I[708], I[708] = I[709], I[709] = I[710], I[710] = I[711], I[711] = I[712], I[712] = I[713], I[713] = I[714], I[714] = I[715], I[715] = I[716], I[716] = I[717], I[717] = I[718], I[718] = I[719], I[719] = I[720], I[720] = I[721], I[721] = I[722], I[722] = I[723], I[723] = I[724], I[724] = I[725], I[725] = I[726], I[726] = I[727], I[727] = I[728], \
|
|
_p13##x = _p12##x, _p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x, ++_n13##x)
|
|
|
|
#define cimg_get27x27(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p13##x,_p13##y,z,c), I[1] = (T)(img)(_p12##x,_p13##y,z,c), I[2] = (T)(img)(_p11##x,_p13##y,z,c), I[3] = (T)(img)(_p10##x,_p13##y,z,c), I[4] = (T)(img)(_p9##x,_p13##y,z,c), I[5] = (T)(img)(_p8##x,_p13##y,z,c), I[6] = (T)(img)(_p7##x,_p13##y,z,c), I[7] = (T)(img)(_p6##x,_p13##y,z,c), I[8] = (T)(img)(_p5##x,_p13##y,z,c), I[9] = (T)(img)(_p4##x,_p13##y,z,c), I[10] = (T)(img)(_p3##x,_p13##y,z,c), I[11] = (T)(img)(_p2##x,_p13##y,z,c), I[12] = (T)(img)(_p1##x,_p13##y,z,c), I[13] = (T)(img)(x,_p13##y,z,c), I[14] = (T)(img)(_n1##x,_p13##y,z,c), I[15] = (T)(img)(_n2##x,_p13##y,z,c), I[16] = (T)(img)(_n3##x,_p13##y,z,c), I[17] = (T)(img)(_n4##x,_p13##y,z,c), I[18] = (T)(img)(_n5##x,_p13##y,z,c), I[19] = (T)(img)(_n6##x,_p13##y,z,c), I[20] = (T)(img)(_n7##x,_p13##y,z,c), I[21] = (T)(img)(_n8##x,_p13##y,z,c), I[22] = (T)(img)(_n9##x,_p13##y,z,c), I[23] = (T)(img)(_n10##x,_p13##y,z,c), I[24] = (T)(img)(_n11##x,_p13##y,z,c), I[25] = (T)(img)(_n12##x,_p13##y,z,c), I[26] = (T)(img)(_n13##x,_p13##y,z,c), \
|
|
I[27] = (T)(img)(_p13##x,_p12##y,z,c), I[28] = (T)(img)(_p12##x,_p12##y,z,c), I[29] = (T)(img)(_p11##x,_p12##y,z,c), I[30] = (T)(img)(_p10##x,_p12##y,z,c), I[31] = (T)(img)(_p9##x,_p12##y,z,c), I[32] = (T)(img)(_p8##x,_p12##y,z,c), I[33] = (T)(img)(_p7##x,_p12##y,z,c), I[34] = (T)(img)(_p6##x,_p12##y,z,c), I[35] = (T)(img)(_p5##x,_p12##y,z,c), I[36] = (T)(img)(_p4##x,_p12##y,z,c), I[37] = (T)(img)(_p3##x,_p12##y,z,c), I[38] = (T)(img)(_p2##x,_p12##y,z,c), I[39] = (T)(img)(_p1##x,_p12##y,z,c), I[40] = (T)(img)(x,_p12##y,z,c), I[41] = (T)(img)(_n1##x,_p12##y,z,c), I[42] = (T)(img)(_n2##x,_p12##y,z,c), I[43] = (T)(img)(_n3##x,_p12##y,z,c), I[44] = (T)(img)(_n4##x,_p12##y,z,c), I[45] = (T)(img)(_n5##x,_p12##y,z,c), I[46] = (T)(img)(_n6##x,_p12##y,z,c), I[47] = (T)(img)(_n7##x,_p12##y,z,c), I[48] = (T)(img)(_n8##x,_p12##y,z,c), I[49] = (T)(img)(_n9##x,_p12##y,z,c), I[50] = (T)(img)(_n10##x,_p12##y,z,c), I[51] = (T)(img)(_n11##x,_p12##y,z,c), I[52] = (T)(img)(_n12##x,_p12##y,z,c), I[53] = (T)(img)(_n13##x,_p12##y,z,c), \
|
|
I[54] = (T)(img)(_p13##x,_p11##y,z,c), I[55] = (T)(img)(_p12##x,_p11##y,z,c), I[56] = (T)(img)(_p11##x,_p11##y,z,c), I[57] = (T)(img)(_p10##x,_p11##y,z,c), I[58] = (T)(img)(_p9##x,_p11##y,z,c), I[59] = (T)(img)(_p8##x,_p11##y,z,c), I[60] = (T)(img)(_p7##x,_p11##y,z,c), I[61] = (T)(img)(_p6##x,_p11##y,z,c), I[62] = (T)(img)(_p5##x,_p11##y,z,c), I[63] = (T)(img)(_p4##x,_p11##y,z,c), I[64] = (T)(img)(_p3##x,_p11##y,z,c), I[65] = (T)(img)(_p2##x,_p11##y,z,c), I[66] = (T)(img)(_p1##x,_p11##y,z,c), I[67] = (T)(img)(x,_p11##y,z,c), I[68] = (T)(img)(_n1##x,_p11##y,z,c), I[69] = (T)(img)(_n2##x,_p11##y,z,c), I[70] = (T)(img)(_n3##x,_p11##y,z,c), I[71] = (T)(img)(_n4##x,_p11##y,z,c), I[72] = (T)(img)(_n5##x,_p11##y,z,c), I[73] = (T)(img)(_n6##x,_p11##y,z,c), I[74] = (T)(img)(_n7##x,_p11##y,z,c), I[75] = (T)(img)(_n8##x,_p11##y,z,c), I[76] = (T)(img)(_n9##x,_p11##y,z,c), I[77] = (T)(img)(_n10##x,_p11##y,z,c), I[78] = (T)(img)(_n11##x,_p11##y,z,c), I[79] = (T)(img)(_n12##x,_p11##y,z,c), I[80] = (T)(img)(_n13##x,_p11##y,z,c), \
|
|
I[81] = (T)(img)(_p13##x,_p10##y,z,c), I[82] = (T)(img)(_p12##x,_p10##y,z,c), I[83] = (T)(img)(_p11##x,_p10##y,z,c), I[84] = (T)(img)(_p10##x,_p10##y,z,c), I[85] = (T)(img)(_p9##x,_p10##y,z,c), I[86] = (T)(img)(_p8##x,_p10##y,z,c), I[87] = (T)(img)(_p7##x,_p10##y,z,c), I[88] = (T)(img)(_p6##x,_p10##y,z,c), I[89] = (T)(img)(_p5##x,_p10##y,z,c), I[90] = (T)(img)(_p4##x,_p10##y,z,c), I[91] = (T)(img)(_p3##x,_p10##y,z,c), I[92] = (T)(img)(_p2##x,_p10##y,z,c), I[93] = (T)(img)(_p1##x,_p10##y,z,c), I[94] = (T)(img)(x,_p10##y,z,c), I[95] = (T)(img)(_n1##x,_p10##y,z,c), I[96] = (T)(img)(_n2##x,_p10##y,z,c), I[97] = (T)(img)(_n3##x,_p10##y,z,c), I[98] = (T)(img)(_n4##x,_p10##y,z,c), I[99] = (T)(img)(_n5##x,_p10##y,z,c), I[100] = (T)(img)(_n6##x,_p10##y,z,c), I[101] = (T)(img)(_n7##x,_p10##y,z,c), I[102] = (T)(img)(_n8##x,_p10##y,z,c), I[103] = (T)(img)(_n9##x,_p10##y,z,c), I[104] = (T)(img)(_n10##x,_p10##y,z,c), I[105] = (T)(img)(_n11##x,_p10##y,z,c), I[106] = (T)(img)(_n12##x,_p10##y,z,c), I[107] = (T)(img)(_n13##x,_p10##y,z,c), \
|
|
I[108] = (T)(img)(_p13##x,_p9##y,z,c), I[109] = (T)(img)(_p12##x,_p9##y,z,c), I[110] = (T)(img)(_p11##x,_p9##y,z,c), I[111] = (T)(img)(_p10##x,_p9##y,z,c), I[112] = (T)(img)(_p9##x,_p9##y,z,c), I[113] = (T)(img)(_p8##x,_p9##y,z,c), I[114] = (T)(img)(_p7##x,_p9##y,z,c), I[115] = (T)(img)(_p6##x,_p9##y,z,c), I[116] = (T)(img)(_p5##x,_p9##y,z,c), I[117] = (T)(img)(_p4##x,_p9##y,z,c), I[118] = (T)(img)(_p3##x,_p9##y,z,c), I[119] = (T)(img)(_p2##x,_p9##y,z,c), I[120] = (T)(img)(_p1##x,_p9##y,z,c), I[121] = (T)(img)(x,_p9##y,z,c), I[122] = (T)(img)(_n1##x,_p9##y,z,c), I[123] = (T)(img)(_n2##x,_p9##y,z,c), I[124] = (T)(img)(_n3##x,_p9##y,z,c), I[125] = (T)(img)(_n4##x,_p9##y,z,c), I[126] = (T)(img)(_n5##x,_p9##y,z,c), I[127] = (T)(img)(_n6##x,_p9##y,z,c), I[128] = (T)(img)(_n7##x,_p9##y,z,c), I[129] = (T)(img)(_n8##x,_p9##y,z,c), I[130] = (T)(img)(_n9##x,_p9##y,z,c), I[131] = (T)(img)(_n10##x,_p9##y,z,c), I[132] = (T)(img)(_n11##x,_p9##y,z,c), I[133] = (T)(img)(_n12##x,_p9##y,z,c), I[134] = (T)(img)(_n13##x,_p9##y,z,c), \
|
|
I[135] = (T)(img)(_p13##x,_p8##y,z,c), I[136] = (T)(img)(_p12##x,_p8##y,z,c), I[137] = (T)(img)(_p11##x,_p8##y,z,c), I[138] = (T)(img)(_p10##x,_p8##y,z,c), I[139] = (T)(img)(_p9##x,_p8##y,z,c), I[140] = (T)(img)(_p8##x,_p8##y,z,c), I[141] = (T)(img)(_p7##x,_p8##y,z,c), I[142] = (T)(img)(_p6##x,_p8##y,z,c), I[143] = (T)(img)(_p5##x,_p8##y,z,c), I[144] = (T)(img)(_p4##x,_p8##y,z,c), I[145] = (T)(img)(_p3##x,_p8##y,z,c), I[146] = (T)(img)(_p2##x,_p8##y,z,c), I[147] = (T)(img)(_p1##x,_p8##y,z,c), I[148] = (T)(img)(x,_p8##y,z,c), I[149] = (T)(img)(_n1##x,_p8##y,z,c), I[150] = (T)(img)(_n2##x,_p8##y,z,c), I[151] = (T)(img)(_n3##x,_p8##y,z,c), I[152] = (T)(img)(_n4##x,_p8##y,z,c), I[153] = (T)(img)(_n5##x,_p8##y,z,c), I[154] = (T)(img)(_n6##x,_p8##y,z,c), I[155] = (T)(img)(_n7##x,_p8##y,z,c), I[156] = (T)(img)(_n8##x,_p8##y,z,c), I[157] = (T)(img)(_n9##x,_p8##y,z,c), I[158] = (T)(img)(_n10##x,_p8##y,z,c), I[159] = (T)(img)(_n11##x,_p8##y,z,c), I[160] = (T)(img)(_n12##x,_p8##y,z,c), I[161] = (T)(img)(_n13##x,_p8##y,z,c), \
|
|
I[162] = (T)(img)(_p13##x,_p7##y,z,c), I[163] = (T)(img)(_p12##x,_p7##y,z,c), I[164] = (T)(img)(_p11##x,_p7##y,z,c), I[165] = (T)(img)(_p10##x,_p7##y,z,c), I[166] = (T)(img)(_p9##x,_p7##y,z,c), I[167] = (T)(img)(_p8##x,_p7##y,z,c), I[168] = (T)(img)(_p7##x,_p7##y,z,c), I[169] = (T)(img)(_p6##x,_p7##y,z,c), I[170] = (T)(img)(_p5##x,_p7##y,z,c), I[171] = (T)(img)(_p4##x,_p7##y,z,c), I[172] = (T)(img)(_p3##x,_p7##y,z,c), I[173] = (T)(img)(_p2##x,_p7##y,z,c), I[174] = (T)(img)(_p1##x,_p7##y,z,c), I[175] = (T)(img)(x,_p7##y,z,c), I[176] = (T)(img)(_n1##x,_p7##y,z,c), I[177] = (T)(img)(_n2##x,_p7##y,z,c), I[178] = (T)(img)(_n3##x,_p7##y,z,c), I[179] = (T)(img)(_n4##x,_p7##y,z,c), I[180] = (T)(img)(_n5##x,_p7##y,z,c), I[181] = (T)(img)(_n6##x,_p7##y,z,c), I[182] = (T)(img)(_n7##x,_p7##y,z,c), I[183] = (T)(img)(_n8##x,_p7##y,z,c), I[184] = (T)(img)(_n9##x,_p7##y,z,c), I[185] = (T)(img)(_n10##x,_p7##y,z,c), I[186] = (T)(img)(_n11##x,_p7##y,z,c), I[187] = (T)(img)(_n12##x,_p7##y,z,c), I[188] = (T)(img)(_n13##x,_p7##y,z,c), \
|
|
I[189] = (T)(img)(_p13##x,_p6##y,z,c), I[190] = (T)(img)(_p12##x,_p6##y,z,c), I[191] = (T)(img)(_p11##x,_p6##y,z,c), I[192] = (T)(img)(_p10##x,_p6##y,z,c), I[193] = (T)(img)(_p9##x,_p6##y,z,c), I[194] = (T)(img)(_p8##x,_p6##y,z,c), I[195] = (T)(img)(_p7##x,_p6##y,z,c), I[196] = (T)(img)(_p6##x,_p6##y,z,c), I[197] = (T)(img)(_p5##x,_p6##y,z,c), I[198] = (T)(img)(_p4##x,_p6##y,z,c), I[199] = (T)(img)(_p3##x,_p6##y,z,c), I[200] = (T)(img)(_p2##x,_p6##y,z,c), I[201] = (T)(img)(_p1##x,_p6##y,z,c), I[202] = (T)(img)(x,_p6##y,z,c), I[203] = (T)(img)(_n1##x,_p6##y,z,c), I[204] = (T)(img)(_n2##x,_p6##y,z,c), I[205] = (T)(img)(_n3##x,_p6##y,z,c), I[206] = (T)(img)(_n4##x,_p6##y,z,c), I[207] = (T)(img)(_n5##x,_p6##y,z,c), I[208] = (T)(img)(_n6##x,_p6##y,z,c), I[209] = (T)(img)(_n7##x,_p6##y,z,c), I[210] = (T)(img)(_n8##x,_p6##y,z,c), I[211] = (T)(img)(_n9##x,_p6##y,z,c), I[212] = (T)(img)(_n10##x,_p6##y,z,c), I[213] = (T)(img)(_n11##x,_p6##y,z,c), I[214] = (T)(img)(_n12##x,_p6##y,z,c), I[215] = (T)(img)(_n13##x,_p6##y,z,c), \
|
|
I[216] = (T)(img)(_p13##x,_p5##y,z,c), I[217] = (T)(img)(_p12##x,_p5##y,z,c), I[218] = (T)(img)(_p11##x,_p5##y,z,c), I[219] = (T)(img)(_p10##x,_p5##y,z,c), I[220] = (T)(img)(_p9##x,_p5##y,z,c), I[221] = (T)(img)(_p8##x,_p5##y,z,c), I[222] = (T)(img)(_p7##x,_p5##y,z,c), I[223] = (T)(img)(_p6##x,_p5##y,z,c), I[224] = (T)(img)(_p5##x,_p5##y,z,c), I[225] = (T)(img)(_p4##x,_p5##y,z,c), I[226] = (T)(img)(_p3##x,_p5##y,z,c), I[227] = (T)(img)(_p2##x,_p5##y,z,c), I[228] = (T)(img)(_p1##x,_p5##y,z,c), I[229] = (T)(img)(x,_p5##y,z,c), I[230] = (T)(img)(_n1##x,_p5##y,z,c), I[231] = (T)(img)(_n2##x,_p5##y,z,c), I[232] = (T)(img)(_n3##x,_p5##y,z,c), I[233] = (T)(img)(_n4##x,_p5##y,z,c), I[234] = (T)(img)(_n5##x,_p5##y,z,c), I[235] = (T)(img)(_n6##x,_p5##y,z,c), I[236] = (T)(img)(_n7##x,_p5##y,z,c), I[237] = (T)(img)(_n8##x,_p5##y,z,c), I[238] = (T)(img)(_n9##x,_p5##y,z,c), I[239] = (T)(img)(_n10##x,_p5##y,z,c), I[240] = (T)(img)(_n11##x,_p5##y,z,c), I[241] = (T)(img)(_n12##x,_p5##y,z,c), I[242] = (T)(img)(_n13##x,_p5##y,z,c), \
|
|
I[243] = (T)(img)(_p13##x,_p4##y,z,c), I[244] = (T)(img)(_p12##x,_p4##y,z,c), I[245] = (T)(img)(_p11##x,_p4##y,z,c), I[246] = (T)(img)(_p10##x,_p4##y,z,c), I[247] = (T)(img)(_p9##x,_p4##y,z,c), I[248] = (T)(img)(_p8##x,_p4##y,z,c), I[249] = (T)(img)(_p7##x,_p4##y,z,c), I[250] = (T)(img)(_p6##x,_p4##y,z,c), I[251] = (T)(img)(_p5##x,_p4##y,z,c), I[252] = (T)(img)(_p4##x,_p4##y,z,c), I[253] = (T)(img)(_p3##x,_p4##y,z,c), I[254] = (T)(img)(_p2##x,_p4##y,z,c), I[255] = (T)(img)(_p1##x,_p4##y,z,c), I[256] = (T)(img)(x,_p4##y,z,c), I[257] = (T)(img)(_n1##x,_p4##y,z,c), I[258] = (T)(img)(_n2##x,_p4##y,z,c), I[259] = (T)(img)(_n3##x,_p4##y,z,c), I[260] = (T)(img)(_n4##x,_p4##y,z,c), I[261] = (T)(img)(_n5##x,_p4##y,z,c), I[262] = (T)(img)(_n6##x,_p4##y,z,c), I[263] = (T)(img)(_n7##x,_p4##y,z,c), I[264] = (T)(img)(_n8##x,_p4##y,z,c), I[265] = (T)(img)(_n9##x,_p4##y,z,c), I[266] = (T)(img)(_n10##x,_p4##y,z,c), I[267] = (T)(img)(_n11##x,_p4##y,z,c), I[268] = (T)(img)(_n12##x,_p4##y,z,c), I[269] = (T)(img)(_n13##x,_p4##y,z,c), \
|
|
I[270] = (T)(img)(_p13##x,_p3##y,z,c), I[271] = (T)(img)(_p12##x,_p3##y,z,c), I[272] = (T)(img)(_p11##x,_p3##y,z,c), I[273] = (T)(img)(_p10##x,_p3##y,z,c), I[274] = (T)(img)(_p9##x,_p3##y,z,c), I[275] = (T)(img)(_p8##x,_p3##y,z,c), I[276] = (T)(img)(_p7##x,_p3##y,z,c), I[277] = (T)(img)(_p6##x,_p3##y,z,c), I[278] = (T)(img)(_p5##x,_p3##y,z,c), I[279] = (T)(img)(_p4##x,_p3##y,z,c), I[280] = (T)(img)(_p3##x,_p3##y,z,c), I[281] = (T)(img)(_p2##x,_p3##y,z,c), I[282] = (T)(img)(_p1##x,_p3##y,z,c), I[283] = (T)(img)(x,_p3##y,z,c), I[284] = (T)(img)(_n1##x,_p3##y,z,c), I[285] = (T)(img)(_n2##x,_p3##y,z,c), I[286] = (T)(img)(_n3##x,_p3##y,z,c), I[287] = (T)(img)(_n4##x,_p3##y,z,c), I[288] = (T)(img)(_n5##x,_p3##y,z,c), I[289] = (T)(img)(_n6##x,_p3##y,z,c), I[290] = (T)(img)(_n7##x,_p3##y,z,c), I[291] = (T)(img)(_n8##x,_p3##y,z,c), I[292] = (T)(img)(_n9##x,_p3##y,z,c), I[293] = (T)(img)(_n10##x,_p3##y,z,c), I[294] = (T)(img)(_n11##x,_p3##y,z,c), I[295] = (T)(img)(_n12##x,_p3##y,z,c), I[296] = (T)(img)(_n13##x,_p3##y,z,c), \
|
|
I[297] = (T)(img)(_p13##x,_p2##y,z,c), I[298] = (T)(img)(_p12##x,_p2##y,z,c), I[299] = (T)(img)(_p11##x,_p2##y,z,c), I[300] = (T)(img)(_p10##x,_p2##y,z,c), I[301] = (T)(img)(_p9##x,_p2##y,z,c), I[302] = (T)(img)(_p8##x,_p2##y,z,c), I[303] = (T)(img)(_p7##x,_p2##y,z,c), I[304] = (T)(img)(_p6##x,_p2##y,z,c), I[305] = (T)(img)(_p5##x,_p2##y,z,c), I[306] = (T)(img)(_p4##x,_p2##y,z,c), I[307] = (T)(img)(_p3##x,_p2##y,z,c), I[308] = (T)(img)(_p2##x,_p2##y,z,c), I[309] = (T)(img)(_p1##x,_p2##y,z,c), I[310] = (T)(img)(x,_p2##y,z,c), I[311] = (T)(img)(_n1##x,_p2##y,z,c), I[312] = (T)(img)(_n2##x,_p2##y,z,c), I[313] = (T)(img)(_n3##x,_p2##y,z,c), I[314] = (T)(img)(_n4##x,_p2##y,z,c), I[315] = (T)(img)(_n5##x,_p2##y,z,c), I[316] = (T)(img)(_n6##x,_p2##y,z,c), I[317] = (T)(img)(_n7##x,_p2##y,z,c), I[318] = (T)(img)(_n8##x,_p2##y,z,c), I[319] = (T)(img)(_n9##x,_p2##y,z,c), I[320] = (T)(img)(_n10##x,_p2##y,z,c), I[321] = (T)(img)(_n11##x,_p2##y,z,c), I[322] = (T)(img)(_n12##x,_p2##y,z,c), I[323] = (T)(img)(_n13##x,_p2##y,z,c), \
|
|
I[324] = (T)(img)(_p13##x,_p1##y,z,c), I[325] = (T)(img)(_p12##x,_p1##y,z,c), I[326] = (T)(img)(_p11##x,_p1##y,z,c), I[327] = (T)(img)(_p10##x,_p1##y,z,c), I[328] = (T)(img)(_p9##x,_p1##y,z,c), I[329] = (T)(img)(_p8##x,_p1##y,z,c), I[330] = (T)(img)(_p7##x,_p1##y,z,c), I[331] = (T)(img)(_p6##x,_p1##y,z,c), I[332] = (T)(img)(_p5##x,_p1##y,z,c), I[333] = (T)(img)(_p4##x,_p1##y,z,c), I[334] = (T)(img)(_p3##x,_p1##y,z,c), I[335] = (T)(img)(_p2##x,_p1##y,z,c), I[336] = (T)(img)(_p1##x,_p1##y,z,c), I[337] = (T)(img)(x,_p1##y,z,c), I[338] = (T)(img)(_n1##x,_p1##y,z,c), I[339] = (T)(img)(_n2##x,_p1##y,z,c), I[340] = (T)(img)(_n3##x,_p1##y,z,c), I[341] = (T)(img)(_n4##x,_p1##y,z,c), I[342] = (T)(img)(_n5##x,_p1##y,z,c), I[343] = (T)(img)(_n6##x,_p1##y,z,c), I[344] = (T)(img)(_n7##x,_p1##y,z,c), I[345] = (T)(img)(_n8##x,_p1##y,z,c), I[346] = (T)(img)(_n9##x,_p1##y,z,c), I[347] = (T)(img)(_n10##x,_p1##y,z,c), I[348] = (T)(img)(_n11##x,_p1##y,z,c), I[349] = (T)(img)(_n12##x,_p1##y,z,c), I[350] = (T)(img)(_n13##x,_p1##y,z,c), \
|
|
I[351] = (T)(img)(_p13##x,y,z,c), I[352] = (T)(img)(_p12##x,y,z,c), I[353] = (T)(img)(_p11##x,y,z,c), I[354] = (T)(img)(_p10##x,y,z,c), I[355] = (T)(img)(_p9##x,y,z,c), I[356] = (T)(img)(_p8##x,y,z,c), I[357] = (T)(img)(_p7##x,y,z,c), I[358] = (T)(img)(_p6##x,y,z,c), I[359] = (T)(img)(_p5##x,y,z,c), I[360] = (T)(img)(_p4##x,y,z,c), I[361] = (T)(img)(_p3##x,y,z,c), I[362] = (T)(img)(_p2##x,y,z,c), I[363] = (T)(img)(_p1##x,y,z,c), I[364] = (T)(img)(x,y,z,c), I[365] = (T)(img)(_n1##x,y,z,c), I[366] = (T)(img)(_n2##x,y,z,c), I[367] = (T)(img)(_n3##x,y,z,c), I[368] = (T)(img)(_n4##x,y,z,c), I[369] = (T)(img)(_n5##x,y,z,c), I[370] = (T)(img)(_n6##x,y,z,c), I[371] = (T)(img)(_n7##x,y,z,c), I[372] = (T)(img)(_n8##x,y,z,c), I[373] = (T)(img)(_n9##x,y,z,c), I[374] = (T)(img)(_n10##x,y,z,c), I[375] = (T)(img)(_n11##x,y,z,c), I[376] = (T)(img)(_n12##x,y,z,c), I[377] = (T)(img)(_n13##x,y,z,c), \
|
|
I[378] = (T)(img)(_p13##x,_n1##y,z,c), I[379] = (T)(img)(_p12##x,_n1##y,z,c), I[380] = (T)(img)(_p11##x,_n1##y,z,c), I[381] = (T)(img)(_p10##x,_n1##y,z,c), I[382] = (T)(img)(_p9##x,_n1##y,z,c), I[383] = (T)(img)(_p8##x,_n1##y,z,c), I[384] = (T)(img)(_p7##x,_n1##y,z,c), I[385] = (T)(img)(_p6##x,_n1##y,z,c), I[386] = (T)(img)(_p5##x,_n1##y,z,c), I[387] = (T)(img)(_p4##x,_n1##y,z,c), I[388] = (T)(img)(_p3##x,_n1##y,z,c), I[389] = (T)(img)(_p2##x,_n1##y,z,c), I[390] = (T)(img)(_p1##x,_n1##y,z,c), I[391] = (T)(img)(x,_n1##y,z,c), I[392] = (T)(img)(_n1##x,_n1##y,z,c), I[393] = (T)(img)(_n2##x,_n1##y,z,c), I[394] = (T)(img)(_n3##x,_n1##y,z,c), I[395] = (T)(img)(_n4##x,_n1##y,z,c), I[396] = (T)(img)(_n5##x,_n1##y,z,c), I[397] = (T)(img)(_n6##x,_n1##y,z,c), I[398] = (T)(img)(_n7##x,_n1##y,z,c), I[399] = (T)(img)(_n8##x,_n1##y,z,c), I[400] = (T)(img)(_n9##x,_n1##y,z,c), I[401] = (T)(img)(_n10##x,_n1##y,z,c), I[402] = (T)(img)(_n11##x,_n1##y,z,c), I[403] = (T)(img)(_n12##x,_n1##y,z,c), I[404] = (T)(img)(_n13##x,_n1##y,z,c), \
|
|
I[405] = (T)(img)(_p13##x,_n2##y,z,c), I[406] = (T)(img)(_p12##x,_n2##y,z,c), I[407] = (T)(img)(_p11##x,_n2##y,z,c), I[408] = (T)(img)(_p10##x,_n2##y,z,c), I[409] = (T)(img)(_p9##x,_n2##y,z,c), I[410] = (T)(img)(_p8##x,_n2##y,z,c), I[411] = (T)(img)(_p7##x,_n2##y,z,c), I[412] = (T)(img)(_p6##x,_n2##y,z,c), I[413] = (T)(img)(_p5##x,_n2##y,z,c), I[414] = (T)(img)(_p4##x,_n2##y,z,c), I[415] = (T)(img)(_p3##x,_n2##y,z,c), I[416] = (T)(img)(_p2##x,_n2##y,z,c), I[417] = (T)(img)(_p1##x,_n2##y,z,c), I[418] = (T)(img)(x,_n2##y,z,c), I[419] = (T)(img)(_n1##x,_n2##y,z,c), I[420] = (T)(img)(_n2##x,_n2##y,z,c), I[421] = (T)(img)(_n3##x,_n2##y,z,c), I[422] = (T)(img)(_n4##x,_n2##y,z,c), I[423] = (T)(img)(_n5##x,_n2##y,z,c), I[424] = (T)(img)(_n6##x,_n2##y,z,c), I[425] = (T)(img)(_n7##x,_n2##y,z,c), I[426] = (T)(img)(_n8##x,_n2##y,z,c), I[427] = (T)(img)(_n9##x,_n2##y,z,c), I[428] = (T)(img)(_n10##x,_n2##y,z,c), I[429] = (T)(img)(_n11##x,_n2##y,z,c), I[430] = (T)(img)(_n12##x,_n2##y,z,c), I[431] = (T)(img)(_n13##x,_n2##y,z,c), \
|
|
I[432] = (T)(img)(_p13##x,_n3##y,z,c), I[433] = (T)(img)(_p12##x,_n3##y,z,c), I[434] = (T)(img)(_p11##x,_n3##y,z,c), I[435] = (T)(img)(_p10##x,_n3##y,z,c), I[436] = (T)(img)(_p9##x,_n3##y,z,c), I[437] = (T)(img)(_p8##x,_n3##y,z,c), I[438] = (T)(img)(_p7##x,_n3##y,z,c), I[439] = (T)(img)(_p6##x,_n3##y,z,c), I[440] = (T)(img)(_p5##x,_n3##y,z,c), I[441] = (T)(img)(_p4##x,_n3##y,z,c), I[442] = (T)(img)(_p3##x,_n3##y,z,c), I[443] = (T)(img)(_p2##x,_n3##y,z,c), I[444] = (T)(img)(_p1##x,_n3##y,z,c), I[445] = (T)(img)(x,_n3##y,z,c), I[446] = (T)(img)(_n1##x,_n3##y,z,c), I[447] = (T)(img)(_n2##x,_n3##y,z,c), I[448] = (T)(img)(_n3##x,_n3##y,z,c), I[449] = (T)(img)(_n4##x,_n3##y,z,c), I[450] = (T)(img)(_n5##x,_n3##y,z,c), I[451] = (T)(img)(_n6##x,_n3##y,z,c), I[452] = (T)(img)(_n7##x,_n3##y,z,c), I[453] = (T)(img)(_n8##x,_n3##y,z,c), I[454] = (T)(img)(_n9##x,_n3##y,z,c), I[455] = (T)(img)(_n10##x,_n3##y,z,c), I[456] = (T)(img)(_n11##x,_n3##y,z,c), I[457] = (T)(img)(_n12##x,_n3##y,z,c), I[458] = (T)(img)(_n13##x,_n3##y,z,c), \
|
|
I[459] = (T)(img)(_p13##x,_n4##y,z,c), I[460] = (T)(img)(_p12##x,_n4##y,z,c), I[461] = (T)(img)(_p11##x,_n4##y,z,c), I[462] = (T)(img)(_p10##x,_n4##y,z,c), I[463] = (T)(img)(_p9##x,_n4##y,z,c), I[464] = (T)(img)(_p8##x,_n4##y,z,c), I[465] = (T)(img)(_p7##x,_n4##y,z,c), I[466] = (T)(img)(_p6##x,_n4##y,z,c), I[467] = (T)(img)(_p5##x,_n4##y,z,c), I[468] = (T)(img)(_p4##x,_n4##y,z,c), I[469] = (T)(img)(_p3##x,_n4##y,z,c), I[470] = (T)(img)(_p2##x,_n4##y,z,c), I[471] = (T)(img)(_p1##x,_n4##y,z,c), I[472] = (T)(img)(x,_n4##y,z,c), I[473] = (T)(img)(_n1##x,_n4##y,z,c), I[474] = (T)(img)(_n2##x,_n4##y,z,c), I[475] = (T)(img)(_n3##x,_n4##y,z,c), I[476] = (T)(img)(_n4##x,_n4##y,z,c), I[477] = (T)(img)(_n5##x,_n4##y,z,c), I[478] = (T)(img)(_n6##x,_n4##y,z,c), I[479] = (T)(img)(_n7##x,_n4##y,z,c), I[480] = (T)(img)(_n8##x,_n4##y,z,c), I[481] = (T)(img)(_n9##x,_n4##y,z,c), I[482] = (T)(img)(_n10##x,_n4##y,z,c), I[483] = (T)(img)(_n11##x,_n4##y,z,c), I[484] = (T)(img)(_n12##x,_n4##y,z,c), I[485] = (T)(img)(_n13##x,_n4##y,z,c), \
|
|
I[486] = (T)(img)(_p13##x,_n5##y,z,c), I[487] = (T)(img)(_p12##x,_n5##y,z,c), I[488] = (T)(img)(_p11##x,_n5##y,z,c), I[489] = (T)(img)(_p10##x,_n5##y,z,c), I[490] = (T)(img)(_p9##x,_n5##y,z,c), I[491] = (T)(img)(_p8##x,_n5##y,z,c), I[492] = (T)(img)(_p7##x,_n5##y,z,c), I[493] = (T)(img)(_p6##x,_n5##y,z,c), I[494] = (T)(img)(_p5##x,_n5##y,z,c), I[495] = (T)(img)(_p4##x,_n5##y,z,c), I[496] = (T)(img)(_p3##x,_n5##y,z,c), I[497] = (T)(img)(_p2##x,_n5##y,z,c), I[498] = (T)(img)(_p1##x,_n5##y,z,c), I[499] = (T)(img)(x,_n5##y,z,c), I[500] = (T)(img)(_n1##x,_n5##y,z,c), I[501] = (T)(img)(_n2##x,_n5##y,z,c), I[502] = (T)(img)(_n3##x,_n5##y,z,c), I[503] = (T)(img)(_n4##x,_n5##y,z,c), I[504] = (T)(img)(_n5##x,_n5##y,z,c), I[505] = (T)(img)(_n6##x,_n5##y,z,c), I[506] = (T)(img)(_n7##x,_n5##y,z,c), I[507] = (T)(img)(_n8##x,_n5##y,z,c), I[508] = (T)(img)(_n9##x,_n5##y,z,c), I[509] = (T)(img)(_n10##x,_n5##y,z,c), I[510] = (T)(img)(_n11##x,_n5##y,z,c), I[511] = (T)(img)(_n12##x,_n5##y,z,c), I[512] = (T)(img)(_n13##x,_n5##y,z,c), \
|
|
I[513] = (T)(img)(_p13##x,_n6##y,z,c), I[514] = (T)(img)(_p12##x,_n6##y,z,c), I[515] = (T)(img)(_p11##x,_n6##y,z,c), I[516] = (T)(img)(_p10##x,_n6##y,z,c), I[517] = (T)(img)(_p9##x,_n6##y,z,c), I[518] = (T)(img)(_p8##x,_n6##y,z,c), I[519] = (T)(img)(_p7##x,_n6##y,z,c), I[520] = (T)(img)(_p6##x,_n6##y,z,c), I[521] = (T)(img)(_p5##x,_n6##y,z,c), I[522] = (T)(img)(_p4##x,_n6##y,z,c), I[523] = (T)(img)(_p3##x,_n6##y,z,c), I[524] = (T)(img)(_p2##x,_n6##y,z,c), I[525] = (T)(img)(_p1##x,_n6##y,z,c), I[526] = (T)(img)(x,_n6##y,z,c), I[527] = (T)(img)(_n1##x,_n6##y,z,c), I[528] = (T)(img)(_n2##x,_n6##y,z,c), I[529] = (T)(img)(_n3##x,_n6##y,z,c), I[530] = (T)(img)(_n4##x,_n6##y,z,c), I[531] = (T)(img)(_n5##x,_n6##y,z,c), I[532] = (T)(img)(_n6##x,_n6##y,z,c), I[533] = (T)(img)(_n7##x,_n6##y,z,c), I[534] = (T)(img)(_n8##x,_n6##y,z,c), I[535] = (T)(img)(_n9##x,_n6##y,z,c), I[536] = (T)(img)(_n10##x,_n6##y,z,c), I[537] = (T)(img)(_n11##x,_n6##y,z,c), I[538] = (T)(img)(_n12##x,_n6##y,z,c), I[539] = (T)(img)(_n13##x,_n6##y,z,c), \
|
|
I[540] = (T)(img)(_p13##x,_n7##y,z,c), I[541] = (T)(img)(_p12##x,_n7##y,z,c), I[542] = (T)(img)(_p11##x,_n7##y,z,c), I[543] = (T)(img)(_p10##x,_n7##y,z,c), I[544] = (T)(img)(_p9##x,_n7##y,z,c), I[545] = (T)(img)(_p8##x,_n7##y,z,c), I[546] = (T)(img)(_p7##x,_n7##y,z,c), I[547] = (T)(img)(_p6##x,_n7##y,z,c), I[548] = (T)(img)(_p5##x,_n7##y,z,c), I[549] = (T)(img)(_p4##x,_n7##y,z,c), I[550] = (T)(img)(_p3##x,_n7##y,z,c), I[551] = (T)(img)(_p2##x,_n7##y,z,c), I[552] = (T)(img)(_p1##x,_n7##y,z,c), I[553] = (T)(img)(x,_n7##y,z,c), I[554] = (T)(img)(_n1##x,_n7##y,z,c), I[555] = (T)(img)(_n2##x,_n7##y,z,c), I[556] = (T)(img)(_n3##x,_n7##y,z,c), I[557] = (T)(img)(_n4##x,_n7##y,z,c), I[558] = (T)(img)(_n5##x,_n7##y,z,c), I[559] = (T)(img)(_n6##x,_n7##y,z,c), I[560] = (T)(img)(_n7##x,_n7##y,z,c), I[561] = (T)(img)(_n8##x,_n7##y,z,c), I[562] = (T)(img)(_n9##x,_n7##y,z,c), I[563] = (T)(img)(_n10##x,_n7##y,z,c), I[564] = (T)(img)(_n11##x,_n7##y,z,c), I[565] = (T)(img)(_n12##x,_n7##y,z,c), I[566] = (T)(img)(_n13##x,_n7##y,z,c), \
|
|
I[567] = (T)(img)(_p13##x,_n8##y,z,c), I[568] = (T)(img)(_p12##x,_n8##y,z,c), I[569] = (T)(img)(_p11##x,_n8##y,z,c), I[570] = (T)(img)(_p10##x,_n8##y,z,c), I[571] = (T)(img)(_p9##x,_n8##y,z,c), I[572] = (T)(img)(_p8##x,_n8##y,z,c), I[573] = (T)(img)(_p7##x,_n8##y,z,c), I[574] = (T)(img)(_p6##x,_n8##y,z,c), I[575] = (T)(img)(_p5##x,_n8##y,z,c), I[576] = (T)(img)(_p4##x,_n8##y,z,c), I[577] = (T)(img)(_p3##x,_n8##y,z,c), I[578] = (T)(img)(_p2##x,_n8##y,z,c), I[579] = (T)(img)(_p1##x,_n8##y,z,c), I[580] = (T)(img)(x,_n8##y,z,c), I[581] = (T)(img)(_n1##x,_n8##y,z,c), I[582] = (T)(img)(_n2##x,_n8##y,z,c), I[583] = (T)(img)(_n3##x,_n8##y,z,c), I[584] = (T)(img)(_n4##x,_n8##y,z,c), I[585] = (T)(img)(_n5##x,_n8##y,z,c), I[586] = (T)(img)(_n6##x,_n8##y,z,c), I[587] = (T)(img)(_n7##x,_n8##y,z,c), I[588] = (T)(img)(_n8##x,_n8##y,z,c), I[589] = (T)(img)(_n9##x,_n8##y,z,c), I[590] = (T)(img)(_n10##x,_n8##y,z,c), I[591] = (T)(img)(_n11##x,_n8##y,z,c), I[592] = (T)(img)(_n12##x,_n8##y,z,c), I[593] = (T)(img)(_n13##x,_n8##y,z,c), \
|
|
I[594] = (T)(img)(_p13##x,_n9##y,z,c), I[595] = (T)(img)(_p12##x,_n9##y,z,c), I[596] = (T)(img)(_p11##x,_n9##y,z,c), I[597] = (T)(img)(_p10##x,_n9##y,z,c), I[598] = (T)(img)(_p9##x,_n9##y,z,c), I[599] = (T)(img)(_p8##x,_n9##y,z,c), I[600] = (T)(img)(_p7##x,_n9##y,z,c), I[601] = (T)(img)(_p6##x,_n9##y,z,c), I[602] = (T)(img)(_p5##x,_n9##y,z,c), I[603] = (T)(img)(_p4##x,_n9##y,z,c), I[604] = (T)(img)(_p3##x,_n9##y,z,c), I[605] = (T)(img)(_p2##x,_n9##y,z,c), I[606] = (T)(img)(_p1##x,_n9##y,z,c), I[607] = (T)(img)(x,_n9##y,z,c), I[608] = (T)(img)(_n1##x,_n9##y,z,c), I[609] = (T)(img)(_n2##x,_n9##y,z,c), I[610] = (T)(img)(_n3##x,_n9##y,z,c), I[611] = (T)(img)(_n4##x,_n9##y,z,c), I[612] = (T)(img)(_n5##x,_n9##y,z,c), I[613] = (T)(img)(_n6##x,_n9##y,z,c), I[614] = (T)(img)(_n7##x,_n9##y,z,c), I[615] = (T)(img)(_n8##x,_n9##y,z,c), I[616] = (T)(img)(_n9##x,_n9##y,z,c), I[617] = (T)(img)(_n10##x,_n9##y,z,c), I[618] = (T)(img)(_n11##x,_n9##y,z,c), I[619] = (T)(img)(_n12##x,_n9##y,z,c), I[620] = (T)(img)(_n13##x,_n9##y,z,c), \
|
|
I[621] = (T)(img)(_p13##x,_n10##y,z,c), I[622] = (T)(img)(_p12##x,_n10##y,z,c), I[623] = (T)(img)(_p11##x,_n10##y,z,c), I[624] = (T)(img)(_p10##x,_n10##y,z,c), I[625] = (T)(img)(_p9##x,_n10##y,z,c), I[626] = (T)(img)(_p8##x,_n10##y,z,c), I[627] = (T)(img)(_p7##x,_n10##y,z,c), I[628] = (T)(img)(_p6##x,_n10##y,z,c), I[629] = (T)(img)(_p5##x,_n10##y,z,c), I[630] = (T)(img)(_p4##x,_n10##y,z,c), I[631] = (T)(img)(_p3##x,_n10##y,z,c), I[632] = (T)(img)(_p2##x,_n10##y,z,c), I[633] = (T)(img)(_p1##x,_n10##y,z,c), I[634] = (T)(img)(x,_n10##y,z,c), I[635] = (T)(img)(_n1##x,_n10##y,z,c), I[636] = (T)(img)(_n2##x,_n10##y,z,c), I[637] = (T)(img)(_n3##x,_n10##y,z,c), I[638] = (T)(img)(_n4##x,_n10##y,z,c), I[639] = (T)(img)(_n5##x,_n10##y,z,c), I[640] = (T)(img)(_n6##x,_n10##y,z,c), I[641] = (T)(img)(_n7##x,_n10##y,z,c), I[642] = (T)(img)(_n8##x,_n10##y,z,c), I[643] = (T)(img)(_n9##x,_n10##y,z,c), I[644] = (T)(img)(_n10##x,_n10##y,z,c), I[645] = (T)(img)(_n11##x,_n10##y,z,c), I[646] = (T)(img)(_n12##x,_n10##y,z,c), I[647] = (T)(img)(_n13##x,_n10##y,z,c), \
|
|
I[648] = (T)(img)(_p13##x,_n11##y,z,c), I[649] = (T)(img)(_p12##x,_n11##y,z,c), I[650] = (T)(img)(_p11##x,_n11##y,z,c), I[651] = (T)(img)(_p10##x,_n11##y,z,c), I[652] = (T)(img)(_p9##x,_n11##y,z,c), I[653] = (T)(img)(_p8##x,_n11##y,z,c), I[654] = (T)(img)(_p7##x,_n11##y,z,c), I[655] = (T)(img)(_p6##x,_n11##y,z,c), I[656] = (T)(img)(_p5##x,_n11##y,z,c), I[657] = (T)(img)(_p4##x,_n11##y,z,c), I[658] = (T)(img)(_p3##x,_n11##y,z,c), I[659] = (T)(img)(_p2##x,_n11##y,z,c), I[660] = (T)(img)(_p1##x,_n11##y,z,c), I[661] = (T)(img)(x,_n11##y,z,c), I[662] = (T)(img)(_n1##x,_n11##y,z,c), I[663] = (T)(img)(_n2##x,_n11##y,z,c), I[664] = (T)(img)(_n3##x,_n11##y,z,c), I[665] = (T)(img)(_n4##x,_n11##y,z,c), I[666] = (T)(img)(_n5##x,_n11##y,z,c), I[667] = (T)(img)(_n6##x,_n11##y,z,c), I[668] = (T)(img)(_n7##x,_n11##y,z,c), I[669] = (T)(img)(_n8##x,_n11##y,z,c), I[670] = (T)(img)(_n9##x,_n11##y,z,c), I[671] = (T)(img)(_n10##x,_n11##y,z,c), I[672] = (T)(img)(_n11##x,_n11##y,z,c), I[673] = (T)(img)(_n12##x,_n11##y,z,c), I[674] = (T)(img)(_n13##x,_n11##y,z,c), \
|
|
I[675] = (T)(img)(_p13##x,_n12##y,z,c), I[676] = (T)(img)(_p12##x,_n12##y,z,c), I[677] = (T)(img)(_p11##x,_n12##y,z,c), I[678] = (T)(img)(_p10##x,_n12##y,z,c), I[679] = (T)(img)(_p9##x,_n12##y,z,c), I[680] = (T)(img)(_p8##x,_n12##y,z,c), I[681] = (T)(img)(_p7##x,_n12##y,z,c), I[682] = (T)(img)(_p6##x,_n12##y,z,c), I[683] = (T)(img)(_p5##x,_n12##y,z,c), I[684] = (T)(img)(_p4##x,_n12##y,z,c), I[685] = (T)(img)(_p3##x,_n12##y,z,c), I[686] = (T)(img)(_p2##x,_n12##y,z,c), I[687] = (T)(img)(_p1##x,_n12##y,z,c), I[688] = (T)(img)(x,_n12##y,z,c), I[689] = (T)(img)(_n1##x,_n12##y,z,c), I[690] = (T)(img)(_n2##x,_n12##y,z,c), I[691] = (T)(img)(_n3##x,_n12##y,z,c), I[692] = (T)(img)(_n4##x,_n12##y,z,c), I[693] = (T)(img)(_n5##x,_n12##y,z,c), I[694] = (T)(img)(_n6##x,_n12##y,z,c), I[695] = (T)(img)(_n7##x,_n12##y,z,c), I[696] = (T)(img)(_n8##x,_n12##y,z,c), I[697] = (T)(img)(_n9##x,_n12##y,z,c), I[698] = (T)(img)(_n10##x,_n12##y,z,c), I[699] = (T)(img)(_n11##x,_n12##y,z,c), I[700] = (T)(img)(_n12##x,_n12##y,z,c), I[701] = (T)(img)(_n13##x,_n12##y,z,c), \
|
|
I[702] = (T)(img)(_p13##x,_n13##y,z,c), I[703] = (T)(img)(_p12##x,_n13##y,z,c), I[704] = (T)(img)(_p11##x,_n13##y,z,c), I[705] = (T)(img)(_p10##x,_n13##y,z,c), I[706] = (T)(img)(_p9##x,_n13##y,z,c), I[707] = (T)(img)(_p8##x,_n13##y,z,c), I[708] = (T)(img)(_p7##x,_n13##y,z,c), I[709] = (T)(img)(_p6##x,_n13##y,z,c), I[710] = (T)(img)(_p5##x,_n13##y,z,c), I[711] = (T)(img)(_p4##x,_n13##y,z,c), I[712] = (T)(img)(_p3##x,_n13##y,z,c), I[713] = (T)(img)(_p2##x,_n13##y,z,c), I[714] = (T)(img)(_p1##x,_n13##y,z,c), I[715] = (T)(img)(x,_n13##y,z,c), I[716] = (T)(img)(_n1##x,_n13##y,z,c), I[717] = (T)(img)(_n2##x,_n13##y,z,c), I[718] = (T)(img)(_n3##x,_n13##y,z,c), I[719] = (T)(img)(_n4##x,_n13##y,z,c), I[720] = (T)(img)(_n5##x,_n13##y,z,c), I[721] = (T)(img)(_n6##x,_n13##y,z,c), I[722] = (T)(img)(_n7##x,_n13##y,z,c), I[723] = (T)(img)(_n8##x,_n13##y,z,c), I[724] = (T)(img)(_n9##x,_n13##y,z,c), I[725] = (T)(img)(_n10##x,_n13##y,z,c), I[726] = (T)(img)(_n11##x,_n13##y,z,c), I[727] = (T)(img)(_n12##x,_n13##y,z,c), I[728] = (T)(img)(_n13##x,_n13##y,z,c);
|
|
|
|
// Define 28x28 loop macros
|
|
//-------------------------
|
|
#define cimg_for28(bound,i) for (int i = 0, \
|
|
_p13##i = 0, _p12##i = 0, _p11##i = 0, _p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
|
|
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
|
|
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
|
|
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
|
|
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
|
|
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
|
|
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
|
|
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
|
|
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9, \
|
|
_n10##i = 10>=(int)(bound)?(int)(bound) - 1:10, \
|
|
_n11##i = 11>=(int)(bound)?(int)(bound) - 1:11, \
|
|
_n12##i = 12>=(int)(bound)?(int)(bound) - 1:12, \
|
|
_n13##i = 13>=(int)(bound)?(int)(bound) - 1:13, \
|
|
_n14##i = 14>=(int)(bound)?(int)(bound) - 1:14; \
|
|
_n14##i<(int)(bound) || _n13##i==--_n14##i || _n12##i==--_n13##i || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n14##i = _n13##i = _n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
|
|
_p13##i = _p12##i, _p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i, ++_n13##i, ++_n14##i)
|
|
|
|
#define cimg_for28X(img,x) cimg_for28((img)._width,x)
|
|
#define cimg_for28Y(img,y) cimg_for28((img)._height,y)
|
|
#define cimg_for28Z(img,z) cimg_for28((img)._depth,z)
|
|
#define cimg_for28C(img,c) cimg_for28((img)._spectrum,c)
|
|
#define cimg_for28XY(img,x,y) cimg_for28Y(img,y) cimg_for28X(img,x)
|
|
#define cimg_for28XZ(img,x,z) cimg_for28Z(img,z) cimg_for28X(img,x)
|
|
#define cimg_for28XC(img,x,c) cimg_for28C(img,c) cimg_for28X(img,x)
|
|
#define cimg_for28YZ(img,y,z) cimg_for28Z(img,z) cimg_for28Y(img,y)
|
|
#define cimg_for28YC(img,y,c) cimg_for28C(img,c) cimg_for28Y(img,y)
|
|
#define cimg_for28ZC(img,z,c) cimg_for28C(img,c) cimg_for28Z(img,z)
|
|
#define cimg_for28XYZ(img,x,y,z) cimg_for28Z(img,z) cimg_for28XY(img,x,y)
|
|
#define cimg_for28XZC(img,x,z,c) cimg_for28C(img,c) cimg_for28XZ(img,x,z)
|
|
#define cimg_for28YZC(img,y,z,c) cimg_for28C(img,c) cimg_for28YZ(img,y,z)
|
|
#define cimg_for28XYZC(img,x,y,z,c) cimg_for28C(img,c) cimg_for28XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in28(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p13##i = i - 13<0?0:i - 13, \
|
|
_p12##i = i - 12<0?0:i - 12, \
|
|
_p11##i = i - 11<0?0:i - 11, \
|
|
_p10##i = i - 10<0?0:i - 10, \
|
|
_p9##i = i - 9<0?0:i - 9, \
|
|
_p8##i = i - 8<0?0:i - 8, \
|
|
_p7##i = i - 7<0?0:i - 7, \
|
|
_p6##i = i - 6<0?0:i - 6, \
|
|
_p5##i = i - 5<0?0:i - 5, \
|
|
_p4##i = i - 4<0?0:i - 4, \
|
|
_p3##i = i - 3<0?0:i - 3, \
|
|
_p2##i = i - 2<0?0:i - 2, \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
|
|
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
|
|
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
|
|
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
|
|
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
|
|
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
|
|
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
|
|
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
|
|
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9, \
|
|
_n10##i = i + 10>=(int)(bound)?(int)(bound) - 1:i + 10, \
|
|
_n11##i = i + 11>=(int)(bound)?(int)(bound) - 1:i + 11, \
|
|
_n12##i = i + 12>=(int)(bound)?(int)(bound) - 1:i + 12, \
|
|
_n13##i = i + 13>=(int)(bound)?(int)(bound) - 1:i + 13, \
|
|
_n14##i = i + 14>=(int)(bound)?(int)(bound) - 1:i + 14; \
|
|
i<=(int)(i1) && (_n14##i<(int)(bound) || _n13##i==--_n14##i || _n12##i==--_n13##i || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n14##i = _n13##i = _n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
|
|
_p13##i = _p12##i, _p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i, ++_n13##i, ++_n14##i)
|
|
|
|
#define cimg_for_in28X(img,x0,x1,x) cimg_for_in28((img)._width,x0,x1,x)
|
|
#define cimg_for_in28Y(img,y0,y1,y) cimg_for_in28((img)._height,y0,y1,y)
|
|
#define cimg_for_in28Z(img,z0,z1,z) cimg_for_in28((img)._depth,z0,z1,z)
|
|
#define cimg_for_in28C(img,c0,c1,c) cimg_for_in28((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in28XY(img,x0,y0,x1,y1,x,y) cimg_for_in28Y(img,y0,y1,y) cimg_for_in28X(img,x0,x1,x)
|
|
#define cimg_for_in28XZ(img,x0,z0,x1,z1,x,z) cimg_for_in28Z(img,z0,z1,z) cimg_for_in28X(img,x0,x1,x)
|
|
#define cimg_for_in28XC(img,x0,c0,x1,c1,x,c) cimg_for_in28C(img,c0,c1,c) cimg_for_in28X(img,x0,x1,x)
|
|
#define cimg_for_in28YZ(img,y0,z0,y1,z1,y,z) cimg_for_in28Z(img,z0,z1,z) cimg_for_in28Y(img,y0,y1,y)
|
|
#define cimg_for_in28YC(img,y0,c0,y1,c1,y,c) cimg_for_in28C(img,c0,c1,c) cimg_for_in28Y(img,y0,y1,y)
|
|
#define cimg_for_in28ZC(img,z0,c0,z1,c1,z,c) cimg_for_in28C(img,c0,c1,c) cimg_for_in28Z(img,z0,z1,z)
|
|
#define cimg_for_in28XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in28Z(img,z0,z1,z) cimg_for_in28XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in28XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in28C(img,c0,c1,c) cimg_for_in28XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in28YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in28C(img,c0,c1,c) cimg_for_in28YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in28XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in28C(img,c0,c1,c) cimg_for_in28XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for28x28(img,x,y,z,c,I,T) \
|
|
cimg_for28((img)._height,y) for (int x = 0, \
|
|
_p13##x = 0, _p12##x = 0, _p11##x = 0, _p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
|
|
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
|
|
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
|
|
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
|
|
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
|
|
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
|
|
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
|
|
_n9##x = 9>=((img)._width)?(img).width() - 1:9, \
|
|
_n10##x = 10>=((img)._width)?(img).width() - 1:10, \
|
|
_n11##x = 11>=((img)._width)?(img).width() - 1:11, \
|
|
_n12##x = 12>=((img)._width)?(img).width() - 1:12, \
|
|
_n13##x = 13>=((img)._width)?(img).width() - 1:13, \
|
|
_n14##x = (int)( \
|
|
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = I[11] = I[12] = I[13] = (T)(img)(0,_p13##y,z,c)), \
|
|
(I[28] = I[29] = I[30] = I[31] = I[32] = I[33] = I[34] = I[35] = I[36] = I[37] = I[38] = I[39] = I[40] = I[41] = (T)(img)(0,_p12##y,z,c)), \
|
|
(I[56] = I[57] = I[58] = I[59] = I[60] = I[61] = I[62] = I[63] = I[64] = I[65] = I[66] = I[67] = I[68] = I[69] = (T)(img)(0,_p11##y,z,c)), \
|
|
(I[84] = I[85] = I[86] = I[87] = I[88] = I[89] = I[90] = I[91] = I[92] = I[93] = I[94] = I[95] = I[96] = I[97] = (T)(img)(0,_p10##y,z,c)), \
|
|
(I[112] = I[113] = I[114] = I[115] = I[116] = I[117] = I[118] = I[119] = I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = (T)(img)(0,_p9##y,z,c)), \
|
|
(I[140] = I[141] = I[142] = I[143] = I[144] = I[145] = I[146] = I[147] = I[148] = I[149] = I[150] = I[151] = I[152] = I[153] = (T)(img)(0,_p8##y,z,c)), \
|
|
(I[168] = I[169] = I[170] = I[171] = I[172] = I[173] = I[174] = I[175] = I[176] = I[177] = I[178] = I[179] = I[180] = I[181] = (T)(img)(0,_p7##y,z,c)), \
|
|
(I[196] = I[197] = I[198] = I[199] = I[200] = I[201] = I[202] = I[203] = I[204] = I[205] = I[206] = I[207] = I[208] = I[209] = (T)(img)(0,_p6##y,z,c)), \
|
|
(I[224] = I[225] = I[226] = I[227] = I[228] = I[229] = I[230] = I[231] = I[232] = I[233] = I[234] = I[235] = I[236] = I[237] = (T)(img)(0,_p5##y,z,c)), \
|
|
(I[252] = I[253] = I[254] = I[255] = I[256] = I[257] = I[258] = I[259] = I[260] = I[261] = I[262] = I[263] = I[264] = I[265] = (T)(img)(0,_p4##y,z,c)), \
|
|
(I[280] = I[281] = I[282] = I[283] = I[284] = I[285] = I[286] = I[287] = I[288] = I[289] = I[290] = I[291] = I[292] = I[293] = (T)(img)(0,_p3##y,z,c)), \
|
|
(I[308] = I[309] = I[310] = I[311] = I[312] = I[313] = I[314] = I[315] = I[316] = I[317] = I[318] = I[319] = I[320] = I[321] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[336] = I[337] = I[338] = I[339] = I[340] = I[341] = I[342] = I[343] = I[344] = I[345] = I[346] = I[347] = I[348] = I[349] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[364] = I[365] = I[366] = I[367] = I[368] = I[369] = I[370] = I[371] = I[372] = I[373] = I[374] = I[375] = I[376] = I[377] = (T)(img)(0,y,z,c)), \
|
|
(I[392] = I[393] = I[394] = I[395] = I[396] = I[397] = I[398] = I[399] = I[400] = I[401] = I[402] = I[403] = I[404] = I[405] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[420] = I[421] = I[422] = I[423] = I[424] = I[425] = I[426] = I[427] = I[428] = I[429] = I[430] = I[431] = I[432] = I[433] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[448] = I[449] = I[450] = I[451] = I[452] = I[453] = I[454] = I[455] = I[456] = I[457] = I[458] = I[459] = I[460] = I[461] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[476] = I[477] = I[478] = I[479] = I[480] = I[481] = I[482] = I[483] = I[484] = I[485] = I[486] = I[487] = I[488] = I[489] = (T)(img)(0,_n4##y,z,c)), \
|
|
(I[504] = I[505] = I[506] = I[507] = I[508] = I[509] = I[510] = I[511] = I[512] = I[513] = I[514] = I[515] = I[516] = I[517] = (T)(img)(0,_n5##y,z,c)), \
|
|
(I[532] = I[533] = I[534] = I[535] = I[536] = I[537] = I[538] = I[539] = I[540] = I[541] = I[542] = I[543] = I[544] = I[545] = (T)(img)(0,_n6##y,z,c)), \
|
|
(I[560] = I[561] = I[562] = I[563] = I[564] = I[565] = I[566] = I[567] = I[568] = I[569] = I[570] = I[571] = I[572] = I[573] = (T)(img)(0,_n7##y,z,c)), \
|
|
(I[588] = I[589] = I[590] = I[591] = I[592] = I[593] = I[594] = I[595] = I[596] = I[597] = I[598] = I[599] = I[600] = I[601] = (T)(img)(0,_n8##y,z,c)), \
|
|
(I[616] = I[617] = I[618] = I[619] = I[620] = I[621] = I[622] = I[623] = I[624] = I[625] = I[626] = I[627] = I[628] = I[629] = (T)(img)(0,_n9##y,z,c)), \
|
|
(I[644] = I[645] = I[646] = I[647] = I[648] = I[649] = I[650] = I[651] = I[652] = I[653] = I[654] = I[655] = I[656] = I[657] = (T)(img)(0,_n10##y,z,c)), \
|
|
(I[672] = I[673] = I[674] = I[675] = I[676] = I[677] = I[678] = I[679] = I[680] = I[681] = I[682] = I[683] = I[684] = I[685] = (T)(img)(0,_n11##y,z,c)), \
|
|
(I[700] = I[701] = I[702] = I[703] = I[704] = I[705] = I[706] = I[707] = I[708] = I[709] = I[710] = I[711] = I[712] = I[713] = (T)(img)(0,_n12##y,z,c)), \
|
|
(I[728] = I[729] = I[730] = I[731] = I[732] = I[733] = I[734] = I[735] = I[736] = I[737] = I[738] = I[739] = I[740] = I[741] = (T)(img)(0,_n13##y,z,c)), \
|
|
(I[756] = I[757] = I[758] = I[759] = I[760] = I[761] = I[762] = I[763] = I[764] = I[765] = I[766] = I[767] = I[768] = I[769] = (T)(img)(0,_n14##y,z,c)), \
|
|
(I[14] = (T)(img)(_n1##x,_p13##y,z,c)), \
|
|
(I[42] = (T)(img)(_n1##x,_p12##y,z,c)), \
|
|
(I[70] = (T)(img)(_n1##x,_p11##y,z,c)), \
|
|
(I[98] = (T)(img)(_n1##x,_p10##y,z,c)), \
|
|
(I[126] = (T)(img)(_n1##x,_p9##y,z,c)), \
|
|
(I[154] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[182] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[210] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[238] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[266] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[294] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[322] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[350] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[378] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[406] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[434] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[462] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[490] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[518] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[546] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[574] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[602] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[630] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[658] = (T)(img)(_n1##x,_n10##y,z,c)), \
|
|
(I[686] = (T)(img)(_n1##x,_n11##y,z,c)), \
|
|
(I[714] = (T)(img)(_n1##x,_n12##y,z,c)), \
|
|
(I[742] = (T)(img)(_n1##x,_n13##y,z,c)), \
|
|
(I[770] = (T)(img)(_n1##x,_n14##y,z,c)), \
|
|
(I[15] = (T)(img)(_n2##x,_p13##y,z,c)), \
|
|
(I[43] = (T)(img)(_n2##x,_p12##y,z,c)), \
|
|
(I[71] = (T)(img)(_n2##x,_p11##y,z,c)), \
|
|
(I[99] = (T)(img)(_n2##x,_p10##y,z,c)), \
|
|
(I[127] = (T)(img)(_n2##x,_p9##y,z,c)), \
|
|
(I[155] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[183] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[211] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[239] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[267] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[295] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[323] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[351] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[379] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[407] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[435] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[463] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[491] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[519] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[547] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[575] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[603] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[631] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[659] = (T)(img)(_n2##x,_n10##y,z,c)), \
|
|
(I[687] = (T)(img)(_n2##x,_n11##y,z,c)), \
|
|
(I[715] = (T)(img)(_n2##x,_n12##y,z,c)), \
|
|
(I[743] = (T)(img)(_n2##x,_n13##y,z,c)), \
|
|
(I[771] = (T)(img)(_n2##x,_n14##y,z,c)), \
|
|
(I[16] = (T)(img)(_n3##x,_p13##y,z,c)), \
|
|
(I[44] = (T)(img)(_n3##x,_p12##y,z,c)), \
|
|
(I[72] = (T)(img)(_n3##x,_p11##y,z,c)), \
|
|
(I[100] = (T)(img)(_n3##x,_p10##y,z,c)), \
|
|
(I[128] = (T)(img)(_n3##x,_p9##y,z,c)), \
|
|
(I[156] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[184] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[212] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[240] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[268] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[296] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[324] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[352] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[380] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[408] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[436] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[464] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[492] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[520] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[548] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[576] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[604] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[632] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[660] = (T)(img)(_n3##x,_n10##y,z,c)), \
|
|
(I[688] = (T)(img)(_n3##x,_n11##y,z,c)), \
|
|
(I[716] = (T)(img)(_n3##x,_n12##y,z,c)), \
|
|
(I[744] = (T)(img)(_n3##x,_n13##y,z,c)), \
|
|
(I[772] = (T)(img)(_n3##x,_n14##y,z,c)), \
|
|
(I[17] = (T)(img)(_n4##x,_p13##y,z,c)), \
|
|
(I[45] = (T)(img)(_n4##x,_p12##y,z,c)), \
|
|
(I[73] = (T)(img)(_n4##x,_p11##y,z,c)), \
|
|
(I[101] = (T)(img)(_n4##x,_p10##y,z,c)), \
|
|
(I[129] = (T)(img)(_n4##x,_p9##y,z,c)), \
|
|
(I[157] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[185] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[213] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[241] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[269] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[297] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[325] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[353] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[381] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[409] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[437] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[465] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[493] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[521] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[549] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[577] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[605] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[633] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[661] = (T)(img)(_n4##x,_n10##y,z,c)), \
|
|
(I[689] = (T)(img)(_n4##x,_n11##y,z,c)), \
|
|
(I[717] = (T)(img)(_n4##x,_n12##y,z,c)), \
|
|
(I[745] = (T)(img)(_n4##x,_n13##y,z,c)), \
|
|
(I[773] = (T)(img)(_n4##x,_n14##y,z,c)), \
|
|
(I[18] = (T)(img)(_n5##x,_p13##y,z,c)), \
|
|
(I[46] = (T)(img)(_n5##x,_p12##y,z,c)), \
|
|
(I[74] = (T)(img)(_n5##x,_p11##y,z,c)), \
|
|
(I[102] = (T)(img)(_n5##x,_p10##y,z,c)), \
|
|
(I[130] = (T)(img)(_n5##x,_p9##y,z,c)), \
|
|
(I[158] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[186] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[214] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[242] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[270] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[298] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[326] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[354] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[382] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[410] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[438] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[466] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[494] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[522] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[550] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[578] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[606] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[634] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[662] = (T)(img)(_n5##x,_n10##y,z,c)), \
|
|
(I[690] = (T)(img)(_n5##x,_n11##y,z,c)), \
|
|
(I[718] = (T)(img)(_n5##x,_n12##y,z,c)), \
|
|
(I[746] = (T)(img)(_n5##x,_n13##y,z,c)), \
|
|
(I[774] = (T)(img)(_n5##x,_n14##y,z,c)), \
|
|
(I[19] = (T)(img)(_n6##x,_p13##y,z,c)), \
|
|
(I[47] = (T)(img)(_n6##x,_p12##y,z,c)), \
|
|
(I[75] = (T)(img)(_n6##x,_p11##y,z,c)), \
|
|
(I[103] = (T)(img)(_n6##x,_p10##y,z,c)), \
|
|
(I[131] = (T)(img)(_n6##x,_p9##y,z,c)), \
|
|
(I[159] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[187] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[215] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[243] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[271] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[299] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[327] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[355] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[383] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[411] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[439] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[467] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[495] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[523] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[551] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[579] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[607] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[635] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[663] = (T)(img)(_n6##x,_n10##y,z,c)), \
|
|
(I[691] = (T)(img)(_n6##x,_n11##y,z,c)), \
|
|
(I[719] = (T)(img)(_n6##x,_n12##y,z,c)), \
|
|
(I[747] = (T)(img)(_n6##x,_n13##y,z,c)), \
|
|
(I[775] = (T)(img)(_n6##x,_n14##y,z,c)), \
|
|
(I[20] = (T)(img)(_n7##x,_p13##y,z,c)), \
|
|
(I[48] = (T)(img)(_n7##x,_p12##y,z,c)), \
|
|
(I[76] = (T)(img)(_n7##x,_p11##y,z,c)), \
|
|
(I[104] = (T)(img)(_n7##x,_p10##y,z,c)), \
|
|
(I[132] = (T)(img)(_n7##x,_p9##y,z,c)), \
|
|
(I[160] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[188] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[216] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[244] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[272] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[300] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[328] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[356] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[384] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[412] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[440] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[468] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[496] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[524] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[552] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[580] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[608] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[636] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[664] = (T)(img)(_n7##x,_n10##y,z,c)), \
|
|
(I[692] = (T)(img)(_n7##x,_n11##y,z,c)), \
|
|
(I[720] = (T)(img)(_n7##x,_n12##y,z,c)), \
|
|
(I[748] = (T)(img)(_n7##x,_n13##y,z,c)), \
|
|
(I[776] = (T)(img)(_n7##x,_n14##y,z,c)), \
|
|
(I[21] = (T)(img)(_n8##x,_p13##y,z,c)), \
|
|
(I[49] = (T)(img)(_n8##x,_p12##y,z,c)), \
|
|
(I[77] = (T)(img)(_n8##x,_p11##y,z,c)), \
|
|
(I[105] = (T)(img)(_n8##x,_p10##y,z,c)), \
|
|
(I[133] = (T)(img)(_n8##x,_p9##y,z,c)), \
|
|
(I[161] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[189] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[217] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[245] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[273] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[301] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[329] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[357] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[385] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[413] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[441] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[469] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[497] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[525] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[553] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[581] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[609] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[637] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
(I[665] = (T)(img)(_n8##x,_n10##y,z,c)), \
|
|
(I[693] = (T)(img)(_n8##x,_n11##y,z,c)), \
|
|
(I[721] = (T)(img)(_n8##x,_n12##y,z,c)), \
|
|
(I[749] = (T)(img)(_n8##x,_n13##y,z,c)), \
|
|
(I[777] = (T)(img)(_n8##x,_n14##y,z,c)), \
|
|
(I[22] = (T)(img)(_n9##x,_p13##y,z,c)), \
|
|
(I[50] = (T)(img)(_n9##x,_p12##y,z,c)), \
|
|
(I[78] = (T)(img)(_n9##x,_p11##y,z,c)), \
|
|
(I[106] = (T)(img)(_n9##x,_p10##y,z,c)), \
|
|
(I[134] = (T)(img)(_n9##x,_p9##y,z,c)), \
|
|
(I[162] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[190] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[218] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[246] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[274] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[302] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[330] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[358] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[386] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[414] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[442] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[470] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[498] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[526] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[554] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[582] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[610] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[638] = (T)(img)(_n9##x,_n9##y,z,c)), \
|
|
(I[666] = (T)(img)(_n9##x,_n10##y,z,c)), \
|
|
(I[694] = (T)(img)(_n9##x,_n11##y,z,c)), \
|
|
(I[722] = (T)(img)(_n9##x,_n12##y,z,c)), \
|
|
(I[750] = (T)(img)(_n9##x,_n13##y,z,c)), \
|
|
(I[778] = (T)(img)(_n9##x,_n14##y,z,c)), \
|
|
(I[23] = (T)(img)(_n10##x,_p13##y,z,c)), \
|
|
(I[51] = (T)(img)(_n10##x,_p12##y,z,c)), \
|
|
(I[79] = (T)(img)(_n10##x,_p11##y,z,c)), \
|
|
(I[107] = (T)(img)(_n10##x,_p10##y,z,c)), \
|
|
(I[135] = (T)(img)(_n10##x,_p9##y,z,c)), \
|
|
(I[163] = (T)(img)(_n10##x,_p8##y,z,c)), \
|
|
(I[191] = (T)(img)(_n10##x,_p7##y,z,c)), \
|
|
(I[219] = (T)(img)(_n10##x,_p6##y,z,c)), \
|
|
(I[247] = (T)(img)(_n10##x,_p5##y,z,c)), \
|
|
(I[275] = (T)(img)(_n10##x,_p4##y,z,c)), \
|
|
(I[303] = (T)(img)(_n10##x,_p3##y,z,c)), \
|
|
(I[331] = (T)(img)(_n10##x,_p2##y,z,c)), \
|
|
(I[359] = (T)(img)(_n10##x,_p1##y,z,c)), \
|
|
(I[387] = (T)(img)(_n10##x,y,z,c)), \
|
|
(I[415] = (T)(img)(_n10##x,_n1##y,z,c)), \
|
|
(I[443] = (T)(img)(_n10##x,_n2##y,z,c)), \
|
|
(I[471] = (T)(img)(_n10##x,_n3##y,z,c)), \
|
|
(I[499] = (T)(img)(_n10##x,_n4##y,z,c)), \
|
|
(I[527] = (T)(img)(_n10##x,_n5##y,z,c)), \
|
|
(I[555] = (T)(img)(_n10##x,_n6##y,z,c)), \
|
|
(I[583] = (T)(img)(_n10##x,_n7##y,z,c)), \
|
|
(I[611] = (T)(img)(_n10##x,_n8##y,z,c)), \
|
|
(I[639] = (T)(img)(_n10##x,_n9##y,z,c)), \
|
|
(I[667] = (T)(img)(_n10##x,_n10##y,z,c)), \
|
|
(I[695] = (T)(img)(_n10##x,_n11##y,z,c)), \
|
|
(I[723] = (T)(img)(_n10##x,_n12##y,z,c)), \
|
|
(I[751] = (T)(img)(_n10##x,_n13##y,z,c)), \
|
|
(I[779] = (T)(img)(_n10##x,_n14##y,z,c)), \
|
|
(I[24] = (T)(img)(_n11##x,_p13##y,z,c)), \
|
|
(I[52] = (T)(img)(_n11##x,_p12##y,z,c)), \
|
|
(I[80] = (T)(img)(_n11##x,_p11##y,z,c)), \
|
|
(I[108] = (T)(img)(_n11##x,_p10##y,z,c)), \
|
|
(I[136] = (T)(img)(_n11##x,_p9##y,z,c)), \
|
|
(I[164] = (T)(img)(_n11##x,_p8##y,z,c)), \
|
|
(I[192] = (T)(img)(_n11##x,_p7##y,z,c)), \
|
|
(I[220] = (T)(img)(_n11##x,_p6##y,z,c)), \
|
|
(I[248] = (T)(img)(_n11##x,_p5##y,z,c)), \
|
|
(I[276] = (T)(img)(_n11##x,_p4##y,z,c)), \
|
|
(I[304] = (T)(img)(_n11##x,_p3##y,z,c)), \
|
|
(I[332] = (T)(img)(_n11##x,_p2##y,z,c)), \
|
|
(I[360] = (T)(img)(_n11##x,_p1##y,z,c)), \
|
|
(I[388] = (T)(img)(_n11##x,y,z,c)), \
|
|
(I[416] = (T)(img)(_n11##x,_n1##y,z,c)), \
|
|
(I[444] = (T)(img)(_n11##x,_n2##y,z,c)), \
|
|
(I[472] = (T)(img)(_n11##x,_n3##y,z,c)), \
|
|
(I[500] = (T)(img)(_n11##x,_n4##y,z,c)), \
|
|
(I[528] = (T)(img)(_n11##x,_n5##y,z,c)), \
|
|
(I[556] = (T)(img)(_n11##x,_n6##y,z,c)), \
|
|
(I[584] = (T)(img)(_n11##x,_n7##y,z,c)), \
|
|
(I[612] = (T)(img)(_n11##x,_n8##y,z,c)), \
|
|
(I[640] = (T)(img)(_n11##x,_n9##y,z,c)), \
|
|
(I[668] = (T)(img)(_n11##x,_n10##y,z,c)), \
|
|
(I[696] = (T)(img)(_n11##x,_n11##y,z,c)), \
|
|
(I[724] = (T)(img)(_n11##x,_n12##y,z,c)), \
|
|
(I[752] = (T)(img)(_n11##x,_n13##y,z,c)), \
|
|
(I[780] = (T)(img)(_n11##x,_n14##y,z,c)), \
|
|
(I[25] = (T)(img)(_n12##x,_p13##y,z,c)), \
|
|
(I[53] = (T)(img)(_n12##x,_p12##y,z,c)), \
|
|
(I[81] = (T)(img)(_n12##x,_p11##y,z,c)), \
|
|
(I[109] = (T)(img)(_n12##x,_p10##y,z,c)), \
|
|
(I[137] = (T)(img)(_n12##x,_p9##y,z,c)), \
|
|
(I[165] = (T)(img)(_n12##x,_p8##y,z,c)), \
|
|
(I[193] = (T)(img)(_n12##x,_p7##y,z,c)), \
|
|
(I[221] = (T)(img)(_n12##x,_p6##y,z,c)), \
|
|
(I[249] = (T)(img)(_n12##x,_p5##y,z,c)), \
|
|
(I[277] = (T)(img)(_n12##x,_p4##y,z,c)), \
|
|
(I[305] = (T)(img)(_n12##x,_p3##y,z,c)), \
|
|
(I[333] = (T)(img)(_n12##x,_p2##y,z,c)), \
|
|
(I[361] = (T)(img)(_n12##x,_p1##y,z,c)), \
|
|
(I[389] = (T)(img)(_n12##x,y,z,c)), \
|
|
(I[417] = (T)(img)(_n12##x,_n1##y,z,c)), \
|
|
(I[445] = (T)(img)(_n12##x,_n2##y,z,c)), \
|
|
(I[473] = (T)(img)(_n12##x,_n3##y,z,c)), \
|
|
(I[501] = (T)(img)(_n12##x,_n4##y,z,c)), \
|
|
(I[529] = (T)(img)(_n12##x,_n5##y,z,c)), \
|
|
(I[557] = (T)(img)(_n12##x,_n6##y,z,c)), \
|
|
(I[585] = (T)(img)(_n12##x,_n7##y,z,c)), \
|
|
(I[613] = (T)(img)(_n12##x,_n8##y,z,c)), \
|
|
(I[641] = (T)(img)(_n12##x,_n9##y,z,c)), \
|
|
(I[669] = (T)(img)(_n12##x,_n10##y,z,c)), \
|
|
(I[697] = (T)(img)(_n12##x,_n11##y,z,c)), \
|
|
(I[725] = (T)(img)(_n12##x,_n12##y,z,c)), \
|
|
(I[753] = (T)(img)(_n12##x,_n13##y,z,c)), \
|
|
(I[781] = (T)(img)(_n12##x,_n14##y,z,c)), \
|
|
(I[26] = (T)(img)(_n13##x,_p13##y,z,c)), \
|
|
(I[54] = (T)(img)(_n13##x,_p12##y,z,c)), \
|
|
(I[82] = (T)(img)(_n13##x,_p11##y,z,c)), \
|
|
(I[110] = (T)(img)(_n13##x,_p10##y,z,c)), \
|
|
(I[138] = (T)(img)(_n13##x,_p9##y,z,c)), \
|
|
(I[166] = (T)(img)(_n13##x,_p8##y,z,c)), \
|
|
(I[194] = (T)(img)(_n13##x,_p7##y,z,c)), \
|
|
(I[222] = (T)(img)(_n13##x,_p6##y,z,c)), \
|
|
(I[250] = (T)(img)(_n13##x,_p5##y,z,c)), \
|
|
(I[278] = (T)(img)(_n13##x,_p4##y,z,c)), \
|
|
(I[306] = (T)(img)(_n13##x,_p3##y,z,c)), \
|
|
(I[334] = (T)(img)(_n13##x,_p2##y,z,c)), \
|
|
(I[362] = (T)(img)(_n13##x,_p1##y,z,c)), \
|
|
(I[390] = (T)(img)(_n13##x,y,z,c)), \
|
|
(I[418] = (T)(img)(_n13##x,_n1##y,z,c)), \
|
|
(I[446] = (T)(img)(_n13##x,_n2##y,z,c)), \
|
|
(I[474] = (T)(img)(_n13##x,_n3##y,z,c)), \
|
|
(I[502] = (T)(img)(_n13##x,_n4##y,z,c)), \
|
|
(I[530] = (T)(img)(_n13##x,_n5##y,z,c)), \
|
|
(I[558] = (T)(img)(_n13##x,_n6##y,z,c)), \
|
|
(I[586] = (T)(img)(_n13##x,_n7##y,z,c)), \
|
|
(I[614] = (T)(img)(_n13##x,_n8##y,z,c)), \
|
|
(I[642] = (T)(img)(_n13##x,_n9##y,z,c)), \
|
|
(I[670] = (T)(img)(_n13##x,_n10##y,z,c)), \
|
|
(I[698] = (T)(img)(_n13##x,_n11##y,z,c)), \
|
|
(I[726] = (T)(img)(_n13##x,_n12##y,z,c)), \
|
|
(I[754] = (T)(img)(_n13##x,_n13##y,z,c)), \
|
|
(I[782] = (T)(img)(_n13##x,_n14##y,z,c)), \
|
|
14>=((img)._width)?(img).width() - 1:14); \
|
|
(_n14##x<(img).width() && ( \
|
|
(I[27] = (T)(img)(_n14##x,_p13##y,z,c)), \
|
|
(I[55] = (T)(img)(_n14##x,_p12##y,z,c)), \
|
|
(I[83] = (T)(img)(_n14##x,_p11##y,z,c)), \
|
|
(I[111] = (T)(img)(_n14##x,_p10##y,z,c)), \
|
|
(I[139] = (T)(img)(_n14##x,_p9##y,z,c)), \
|
|
(I[167] = (T)(img)(_n14##x,_p8##y,z,c)), \
|
|
(I[195] = (T)(img)(_n14##x,_p7##y,z,c)), \
|
|
(I[223] = (T)(img)(_n14##x,_p6##y,z,c)), \
|
|
(I[251] = (T)(img)(_n14##x,_p5##y,z,c)), \
|
|
(I[279] = (T)(img)(_n14##x,_p4##y,z,c)), \
|
|
(I[307] = (T)(img)(_n14##x,_p3##y,z,c)), \
|
|
(I[335] = (T)(img)(_n14##x,_p2##y,z,c)), \
|
|
(I[363] = (T)(img)(_n14##x,_p1##y,z,c)), \
|
|
(I[391] = (T)(img)(_n14##x,y,z,c)), \
|
|
(I[419] = (T)(img)(_n14##x,_n1##y,z,c)), \
|
|
(I[447] = (T)(img)(_n14##x,_n2##y,z,c)), \
|
|
(I[475] = (T)(img)(_n14##x,_n3##y,z,c)), \
|
|
(I[503] = (T)(img)(_n14##x,_n4##y,z,c)), \
|
|
(I[531] = (T)(img)(_n14##x,_n5##y,z,c)), \
|
|
(I[559] = (T)(img)(_n14##x,_n6##y,z,c)), \
|
|
(I[587] = (T)(img)(_n14##x,_n7##y,z,c)), \
|
|
(I[615] = (T)(img)(_n14##x,_n8##y,z,c)), \
|
|
(I[643] = (T)(img)(_n14##x,_n9##y,z,c)), \
|
|
(I[671] = (T)(img)(_n14##x,_n10##y,z,c)), \
|
|
(I[699] = (T)(img)(_n14##x,_n11##y,z,c)), \
|
|
(I[727] = (T)(img)(_n14##x,_n12##y,z,c)), \
|
|
(I[755] = (T)(img)(_n14##x,_n13##y,z,c)), \
|
|
(I[783] = (T)(img)(_n14##x,_n14##y,z,c)),1)) || \
|
|
_n13##x==--_n14##x || _n12##x==--_n13##x || _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n14##x = _n13##x = _n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], \
|
|
I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \
|
|
I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
|
|
I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \
|
|
I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], \
|
|
I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
|
|
I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], \
|
|
I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \
|
|
I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], \
|
|
I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], \
|
|
I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], \
|
|
I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \
|
|
I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], \
|
|
I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], \
|
|
I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], \
|
|
I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], \
|
|
I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], \
|
|
I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], \
|
|
I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], \
|
|
I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], \
|
|
I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], I[575] = I[576], I[576] = I[577], I[577] = I[578], I[578] = I[579], I[579] = I[580], I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], \
|
|
I[588] = I[589], I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], I[593] = I[594], I[594] = I[595], I[595] = I[596], I[596] = I[597], I[597] = I[598], I[598] = I[599], I[599] = I[600], I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], I[607] = I[608], I[608] = I[609], I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], \
|
|
I[616] = I[617], I[617] = I[618], I[618] = I[619], I[619] = I[620], I[620] = I[621], I[621] = I[622], I[622] = I[623], I[623] = I[624], I[624] = I[625], I[625] = I[626], I[626] = I[627], I[627] = I[628], I[628] = I[629], I[629] = I[630], I[630] = I[631], I[631] = I[632], I[632] = I[633], I[633] = I[634], I[634] = I[635], I[635] = I[636], I[636] = I[637], I[637] = I[638], I[638] = I[639], I[639] = I[640], I[640] = I[641], I[641] = I[642], I[642] = I[643], \
|
|
I[644] = I[645], I[645] = I[646], I[646] = I[647], I[647] = I[648], I[648] = I[649], I[649] = I[650], I[650] = I[651], I[651] = I[652], I[652] = I[653], I[653] = I[654], I[654] = I[655], I[655] = I[656], I[656] = I[657], I[657] = I[658], I[658] = I[659], I[659] = I[660], I[660] = I[661], I[661] = I[662], I[662] = I[663], I[663] = I[664], I[664] = I[665], I[665] = I[666], I[666] = I[667], I[667] = I[668], I[668] = I[669], I[669] = I[670], I[670] = I[671], \
|
|
I[672] = I[673], I[673] = I[674], I[674] = I[675], I[675] = I[676], I[676] = I[677], I[677] = I[678], I[678] = I[679], I[679] = I[680], I[680] = I[681], I[681] = I[682], I[682] = I[683], I[683] = I[684], I[684] = I[685], I[685] = I[686], I[686] = I[687], I[687] = I[688], I[688] = I[689], I[689] = I[690], I[690] = I[691], I[691] = I[692], I[692] = I[693], I[693] = I[694], I[694] = I[695], I[695] = I[696], I[696] = I[697], I[697] = I[698], I[698] = I[699], \
|
|
I[700] = I[701], I[701] = I[702], I[702] = I[703], I[703] = I[704], I[704] = I[705], I[705] = I[706], I[706] = I[707], I[707] = I[708], I[708] = I[709], I[709] = I[710], I[710] = I[711], I[711] = I[712], I[712] = I[713], I[713] = I[714], I[714] = I[715], I[715] = I[716], I[716] = I[717], I[717] = I[718], I[718] = I[719], I[719] = I[720], I[720] = I[721], I[721] = I[722], I[722] = I[723], I[723] = I[724], I[724] = I[725], I[725] = I[726], I[726] = I[727], \
|
|
I[728] = I[729], I[729] = I[730], I[730] = I[731], I[731] = I[732], I[732] = I[733], I[733] = I[734], I[734] = I[735], I[735] = I[736], I[736] = I[737], I[737] = I[738], I[738] = I[739], I[739] = I[740], I[740] = I[741], I[741] = I[742], I[742] = I[743], I[743] = I[744], I[744] = I[745], I[745] = I[746], I[746] = I[747], I[747] = I[748], I[748] = I[749], I[749] = I[750], I[750] = I[751], I[751] = I[752], I[752] = I[753], I[753] = I[754], I[754] = I[755], \
|
|
I[756] = I[757], I[757] = I[758], I[758] = I[759], I[759] = I[760], I[760] = I[761], I[761] = I[762], I[762] = I[763], I[763] = I[764], I[764] = I[765], I[765] = I[766], I[766] = I[767], I[767] = I[768], I[768] = I[769], I[769] = I[770], I[770] = I[771], I[771] = I[772], I[772] = I[773], I[773] = I[774], I[774] = I[775], I[775] = I[776], I[776] = I[777], I[777] = I[778], I[778] = I[779], I[779] = I[780], I[780] = I[781], I[781] = I[782], I[782] = I[783], \
|
|
_p13##x = _p12##x, _p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x, ++_n13##x, ++_n14##x)
|
|
|
|
#define cimg_for_in28x28(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in28((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p13##x = x - 13<0?0:x - 13, \
|
|
_p12##x = x - 12<0?0:x - 12, \
|
|
_p11##x = x - 11<0?0:x - 11, \
|
|
_p10##x = x - 10<0?0:x - 10, \
|
|
_p9##x = x - 9<0?0:x - 9, \
|
|
_p8##x = x - 8<0?0:x - 8, \
|
|
_p7##x = x - 7<0?0:x - 7, \
|
|
_p6##x = x - 6<0?0:x - 6, \
|
|
_p5##x = x - 5<0?0:x - 5, \
|
|
_p4##x = x - 4<0?0:x - 4, \
|
|
_p3##x = x - 3<0?0:x - 3, \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
|
|
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
|
|
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
|
|
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
|
|
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
|
|
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
|
|
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
|
|
_n9##x = x + 9>=(img).width()?(img).width() - 1:x + 9, \
|
|
_n10##x = x + 10>=(img).width()?(img).width() - 1:x + 10, \
|
|
_n11##x = x + 11>=(img).width()?(img).width() - 1:x + 11, \
|
|
_n12##x = x + 12>=(img).width()?(img).width() - 1:x + 12, \
|
|
_n13##x = x + 13>=(img).width()?(img).width() - 1:x + 13, \
|
|
_n14##x = (int)( \
|
|
(I[0] = (T)(img)(_p13##x,_p13##y,z,c)), \
|
|
(I[28] = (T)(img)(_p13##x,_p12##y,z,c)), \
|
|
(I[56] = (T)(img)(_p13##x,_p11##y,z,c)), \
|
|
(I[84] = (T)(img)(_p13##x,_p10##y,z,c)), \
|
|
(I[112] = (T)(img)(_p13##x,_p9##y,z,c)), \
|
|
(I[140] = (T)(img)(_p13##x,_p8##y,z,c)), \
|
|
(I[168] = (T)(img)(_p13##x,_p7##y,z,c)), \
|
|
(I[196] = (T)(img)(_p13##x,_p6##y,z,c)), \
|
|
(I[224] = (T)(img)(_p13##x,_p5##y,z,c)), \
|
|
(I[252] = (T)(img)(_p13##x,_p4##y,z,c)), \
|
|
(I[280] = (T)(img)(_p13##x,_p3##y,z,c)), \
|
|
(I[308] = (T)(img)(_p13##x,_p2##y,z,c)), \
|
|
(I[336] = (T)(img)(_p13##x,_p1##y,z,c)), \
|
|
(I[364] = (T)(img)(_p13##x,y,z,c)), \
|
|
(I[392] = (T)(img)(_p13##x,_n1##y,z,c)), \
|
|
(I[420] = (T)(img)(_p13##x,_n2##y,z,c)), \
|
|
(I[448] = (T)(img)(_p13##x,_n3##y,z,c)), \
|
|
(I[476] = (T)(img)(_p13##x,_n4##y,z,c)), \
|
|
(I[504] = (T)(img)(_p13##x,_n5##y,z,c)), \
|
|
(I[532] = (T)(img)(_p13##x,_n6##y,z,c)), \
|
|
(I[560] = (T)(img)(_p13##x,_n7##y,z,c)), \
|
|
(I[588] = (T)(img)(_p13##x,_n8##y,z,c)), \
|
|
(I[616] = (T)(img)(_p13##x,_n9##y,z,c)), \
|
|
(I[644] = (T)(img)(_p13##x,_n10##y,z,c)), \
|
|
(I[672] = (T)(img)(_p13##x,_n11##y,z,c)), \
|
|
(I[700] = (T)(img)(_p13##x,_n12##y,z,c)), \
|
|
(I[728] = (T)(img)(_p13##x,_n13##y,z,c)), \
|
|
(I[756] = (T)(img)(_p13##x,_n14##y,z,c)), \
|
|
(I[1] = (T)(img)(_p12##x,_p13##y,z,c)), \
|
|
(I[29] = (T)(img)(_p12##x,_p12##y,z,c)), \
|
|
(I[57] = (T)(img)(_p12##x,_p11##y,z,c)), \
|
|
(I[85] = (T)(img)(_p12##x,_p10##y,z,c)), \
|
|
(I[113] = (T)(img)(_p12##x,_p9##y,z,c)), \
|
|
(I[141] = (T)(img)(_p12##x,_p8##y,z,c)), \
|
|
(I[169] = (T)(img)(_p12##x,_p7##y,z,c)), \
|
|
(I[197] = (T)(img)(_p12##x,_p6##y,z,c)), \
|
|
(I[225] = (T)(img)(_p12##x,_p5##y,z,c)), \
|
|
(I[253] = (T)(img)(_p12##x,_p4##y,z,c)), \
|
|
(I[281] = (T)(img)(_p12##x,_p3##y,z,c)), \
|
|
(I[309] = (T)(img)(_p12##x,_p2##y,z,c)), \
|
|
(I[337] = (T)(img)(_p12##x,_p1##y,z,c)), \
|
|
(I[365] = (T)(img)(_p12##x,y,z,c)), \
|
|
(I[393] = (T)(img)(_p12##x,_n1##y,z,c)), \
|
|
(I[421] = (T)(img)(_p12##x,_n2##y,z,c)), \
|
|
(I[449] = (T)(img)(_p12##x,_n3##y,z,c)), \
|
|
(I[477] = (T)(img)(_p12##x,_n4##y,z,c)), \
|
|
(I[505] = (T)(img)(_p12##x,_n5##y,z,c)), \
|
|
(I[533] = (T)(img)(_p12##x,_n6##y,z,c)), \
|
|
(I[561] = (T)(img)(_p12##x,_n7##y,z,c)), \
|
|
(I[589] = (T)(img)(_p12##x,_n8##y,z,c)), \
|
|
(I[617] = (T)(img)(_p12##x,_n9##y,z,c)), \
|
|
(I[645] = (T)(img)(_p12##x,_n10##y,z,c)), \
|
|
(I[673] = (T)(img)(_p12##x,_n11##y,z,c)), \
|
|
(I[701] = (T)(img)(_p12##x,_n12##y,z,c)), \
|
|
(I[729] = (T)(img)(_p12##x,_n13##y,z,c)), \
|
|
(I[757] = (T)(img)(_p12##x,_n14##y,z,c)), \
|
|
(I[2] = (T)(img)(_p11##x,_p13##y,z,c)), \
|
|
(I[30] = (T)(img)(_p11##x,_p12##y,z,c)), \
|
|
(I[58] = (T)(img)(_p11##x,_p11##y,z,c)), \
|
|
(I[86] = (T)(img)(_p11##x,_p10##y,z,c)), \
|
|
(I[114] = (T)(img)(_p11##x,_p9##y,z,c)), \
|
|
(I[142] = (T)(img)(_p11##x,_p8##y,z,c)), \
|
|
(I[170] = (T)(img)(_p11##x,_p7##y,z,c)), \
|
|
(I[198] = (T)(img)(_p11##x,_p6##y,z,c)), \
|
|
(I[226] = (T)(img)(_p11##x,_p5##y,z,c)), \
|
|
(I[254] = (T)(img)(_p11##x,_p4##y,z,c)), \
|
|
(I[282] = (T)(img)(_p11##x,_p3##y,z,c)), \
|
|
(I[310] = (T)(img)(_p11##x,_p2##y,z,c)), \
|
|
(I[338] = (T)(img)(_p11##x,_p1##y,z,c)), \
|
|
(I[366] = (T)(img)(_p11##x,y,z,c)), \
|
|
(I[394] = (T)(img)(_p11##x,_n1##y,z,c)), \
|
|
(I[422] = (T)(img)(_p11##x,_n2##y,z,c)), \
|
|
(I[450] = (T)(img)(_p11##x,_n3##y,z,c)), \
|
|
(I[478] = (T)(img)(_p11##x,_n4##y,z,c)), \
|
|
(I[506] = (T)(img)(_p11##x,_n5##y,z,c)), \
|
|
(I[534] = (T)(img)(_p11##x,_n6##y,z,c)), \
|
|
(I[562] = (T)(img)(_p11##x,_n7##y,z,c)), \
|
|
(I[590] = (T)(img)(_p11##x,_n8##y,z,c)), \
|
|
(I[618] = (T)(img)(_p11##x,_n9##y,z,c)), \
|
|
(I[646] = (T)(img)(_p11##x,_n10##y,z,c)), \
|
|
(I[674] = (T)(img)(_p11##x,_n11##y,z,c)), \
|
|
(I[702] = (T)(img)(_p11##x,_n12##y,z,c)), \
|
|
(I[730] = (T)(img)(_p11##x,_n13##y,z,c)), \
|
|
(I[758] = (T)(img)(_p11##x,_n14##y,z,c)), \
|
|
(I[3] = (T)(img)(_p10##x,_p13##y,z,c)), \
|
|
(I[31] = (T)(img)(_p10##x,_p12##y,z,c)), \
|
|
(I[59] = (T)(img)(_p10##x,_p11##y,z,c)), \
|
|
(I[87] = (T)(img)(_p10##x,_p10##y,z,c)), \
|
|
(I[115] = (T)(img)(_p10##x,_p9##y,z,c)), \
|
|
(I[143] = (T)(img)(_p10##x,_p8##y,z,c)), \
|
|
(I[171] = (T)(img)(_p10##x,_p7##y,z,c)), \
|
|
(I[199] = (T)(img)(_p10##x,_p6##y,z,c)), \
|
|
(I[227] = (T)(img)(_p10##x,_p5##y,z,c)), \
|
|
(I[255] = (T)(img)(_p10##x,_p4##y,z,c)), \
|
|
(I[283] = (T)(img)(_p10##x,_p3##y,z,c)), \
|
|
(I[311] = (T)(img)(_p10##x,_p2##y,z,c)), \
|
|
(I[339] = (T)(img)(_p10##x,_p1##y,z,c)), \
|
|
(I[367] = (T)(img)(_p10##x,y,z,c)), \
|
|
(I[395] = (T)(img)(_p10##x,_n1##y,z,c)), \
|
|
(I[423] = (T)(img)(_p10##x,_n2##y,z,c)), \
|
|
(I[451] = (T)(img)(_p10##x,_n3##y,z,c)), \
|
|
(I[479] = (T)(img)(_p10##x,_n4##y,z,c)), \
|
|
(I[507] = (T)(img)(_p10##x,_n5##y,z,c)), \
|
|
(I[535] = (T)(img)(_p10##x,_n6##y,z,c)), \
|
|
(I[563] = (T)(img)(_p10##x,_n7##y,z,c)), \
|
|
(I[591] = (T)(img)(_p10##x,_n8##y,z,c)), \
|
|
(I[619] = (T)(img)(_p10##x,_n9##y,z,c)), \
|
|
(I[647] = (T)(img)(_p10##x,_n10##y,z,c)), \
|
|
(I[675] = (T)(img)(_p10##x,_n11##y,z,c)), \
|
|
(I[703] = (T)(img)(_p10##x,_n12##y,z,c)), \
|
|
(I[731] = (T)(img)(_p10##x,_n13##y,z,c)), \
|
|
(I[759] = (T)(img)(_p10##x,_n14##y,z,c)), \
|
|
(I[4] = (T)(img)(_p9##x,_p13##y,z,c)), \
|
|
(I[32] = (T)(img)(_p9##x,_p12##y,z,c)), \
|
|
(I[60] = (T)(img)(_p9##x,_p11##y,z,c)), \
|
|
(I[88] = (T)(img)(_p9##x,_p10##y,z,c)), \
|
|
(I[116] = (T)(img)(_p9##x,_p9##y,z,c)), \
|
|
(I[144] = (T)(img)(_p9##x,_p8##y,z,c)), \
|
|
(I[172] = (T)(img)(_p9##x,_p7##y,z,c)), \
|
|
(I[200] = (T)(img)(_p9##x,_p6##y,z,c)), \
|
|
(I[228] = (T)(img)(_p9##x,_p5##y,z,c)), \
|
|
(I[256] = (T)(img)(_p9##x,_p4##y,z,c)), \
|
|
(I[284] = (T)(img)(_p9##x,_p3##y,z,c)), \
|
|
(I[312] = (T)(img)(_p9##x,_p2##y,z,c)), \
|
|
(I[340] = (T)(img)(_p9##x,_p1##y,z,c)), \
|
|
(I[368] = (T)(img)(_p9##x,y,z,c)), \
|
|
(I[396] = (T)(img)(_p9##x,_n1##y,z,c)), \
|
|
(I[424] = (T)(img)(_p9##x,_n2##y,z,c)), \
|
|
(I[452] = (T)(img)(_p9##x,_n3##y,z,c)), \
|
|
(I[480] = (T)(img)(_p9##x,_n4##y,z,c)), \
|
|
(I[508] = (T)(img)(_p9##x,_n5##y,z,c)), \
|
|
(I[536] = (T)(img)(_p9##x,_n6##y,z,c)), \
|
|
(I[564] = (T)(img)(_p9##x,_n7##y,z,c)), \
|
|
(I[592] = (T)(img)(_p9##x,_n8##y,z,c)), \
|
|
(I[620] = (T)(img)(_p9##x,_n9##y,z,c)), \
|
|
(I[648] = (T)(img)(_p9##x,_n10##y,z,c)), \
|
|
(I[676] = (T)(img)(_p9##x,_n11##y,z,c)), \
|
|
(I[704] = (T)(img)(_p9##x,_n12##y,z,c)), \
|
|
(I[732] = (T)(img)(_p9##x,_n13##y,z,c)), \
|
|
(I[760] = (T)(img)(_p9##x,_n14##y,z,c)), \
|
|
(I[5] = (T)(img)(_p8##x,_p13##y,z,c)), \
|
|
(I[33] = (T)(img)(_p8##x,_p12##y,z,c)), \
|
|
(I[61] = (T)(img)(_p8##x,_p11##y,z,c)), \
|
|
(I[89] = (T)(img)(_p8##x,_p10##y,z,c)), \
|
|
(I[117] = (T)(img)(_p8##x,_p9##y,z,c)), \
|
|
(I[145] = (T)(img)(_p8##x,_p8##y,z,c)), \
|
|
(I[173] = (T)(img)(_p8##x,_p7##y,z,c)), \
|
|
(I[201] = (T)(img)(_p8##x,_p6##y,z,c)), \
|
|
(I[229] = (T)(img)(_p8##x,_p5##y,z,c)), \
|
|
(I[257] = (T)(img)(_p8##x,_p4##y,z,c)), \
|
|
(I[285] = (T)(img)(_p8##x,_p3##y,z,c)), \
|
|
(I[313] = (T)(img)(_p8##x,_p2##y,z,c)), \
|
|
(I[341] = (T)(img)(_p8##x,_p1##y,z,c)), \
|
|
(I[369] = (T)(img)(_p8##x,y,z,c)), \
|
|
(I[397] = (T)(img)(_p8##x,_n1##y,z,c)), \
|
|
(I[425] = (T)(img)(_p8##x,_n2##y,z,c)), \
|
|
(I[453] = (T)(img)(_p8##x,_n3##y,z,c)), \
|
|
(I[481] = (T)(img)(_p8##x,_n4##y,z,c)), \
|
|
(I[509] = (T)(img)(_p8##x,_n5##y,z,c)), \
|
|
(I[537] = (T)(img)(_p8##x,_n6##y,z,c)), \
|
|
(I[565] = (T)(img)(_p8##x,_n7##y,z,c)), \
|
|
(I[593] = (T)(img)(_p8##x,_n8##y,z,c)), \
|
|
(I[621] = (T)(img)(_p8##x,_n9##y,z,c)), \
|
|
(I[649] = (T)(img)(_p8##x,_n10##y,z,c)), \
|
|
(I[677] = (T)(img)(_p8##x,_n11##y,z,c)), \
|
|
(I[705] = (T)(img)(_p8##x,_n12##y,z,c)), \
|
|
(I[733] = (T)(img)(_p8##x,_n13##y,z,c)), \
|
|
(I[761] = (T)(img)(_p8##x,_n14##y,z,c)), \
|
|
(I[6] = (T)(img)(_p7##x,_p13##y,z,c)), \
|
|
(I[34] = (T)(img)(_p7##x,_p12##y,z,c)), \
|
|
(I[62] = (T)(img)(_p7##x,_p11##y,z,c)), \
|
|
(I[90] = (T)(img)(_p7##x,_p10##y,z,c)), \
|
|
(I[118] = (T)(img)(_p7##x,_p9##y,z,c)), \
|
|
(I[146] = (T)(img)(_p7##x,_p8##y,z,c)), \
|
|
(I[174] = (T)(img)(_p7##x,_p7##y,z,c)), \
|
|
(I[202] = (T)(img)(_p7##x,_p6##y,z,c)), \
|
|
(I[230] = (T)(img)(_p7##x,_p5##y,z,c)), \
|
|
(I[258] = (T)(img)(_p7##x,_p4##y,z,c)), \
|
|
(I[286] = (T)(img)(_p7##x,_p3##y,z,c)), \
|
|
(I[314] = (T)(img)(_p7##x,_p2##y,z,c)), \
|
|
(I[342] = (T)(img)(_p7##x,_p1##y,z,c)), \
|
|
(I[370] = (T)(img)(_p7##x,y,z,c)), \
|
|
(I[398] = (T)(img)(_p7##x,_n1##y,z,c)), \
|
|
(I[426] = (T)(img)(_p7##x,_n2##y,z,c)), \
|
|
(I[454] = (T)(img)(_p7##x,_n3##y,z,c)), \
|
|
(I[482] = (T)(img)(_p7##x,_n4##y,z,c)), \
|
|
(I[510] = (T)(img)(_p7##x,_n5##y,z,c)), \
|
|
(I[538] = (T)(img)(_p7##x,_n6##y,z,c)), \
|
|
(I[566] = (T)(img)(_p7##x,_n7##y,z,c)), \
|
|
(I[594] = (T)(img)(_p7##x,_n8##y,z,c)), \
|
|
(I[622] = (T)(img)(_p7##x,_n9##y,z,c)), \
|
|
(I[650] = (T)(img)(_p7##x,_n10##y,z,c)), \
|
|
(I[678] = (T)(img)(_p7##x,_n11##y,z,c)), \
|
|
(I[706] = (T)(img)(_p7##x,_n12##y,z,c)), \
|
|
(I[734] = (T)(img)(_p7##x,_n13##y,z,c)), \
|
|
(I[762] = (T)(img)(_p7##x,_n14##y,z,c)), \
|
|
(I[7] = (T)(img)(_p6##x,_p13##y,z,c)), \
|
|
(I[35] = (T)(img)(_p6##x,_p12##y,z,c)), \
|
|
(I[63] = (T)(img)(_p6##x,_p11##y,z,c)), \
|
|
(I[91] = (T)(img)(_p6##x,_p10##y,z,c)), \
|
|
(I[119] = (T)(img)(_p6##x,_p9##y,z,c)), \
|
|
(I[147] = (T)(img)(_p6##x,_p8##y,z,c)), \
|
|
(I[175] = (T)(img)(_p6##x,_p7##y,z,c)), \
|
|
(I[203] = (T)(img)(_p6##x,_p6##y,z,c)), \
|
|
(I[231] = (T)(img)(_p6##x,_p5##y,z,c)), \
|
|
(I[259] = (T)(img)(_p6##x,_p4##y,z,c)), \
|
|
(I[287] = (T)(img)(_p6##x,_p3##y,z,c)), \
|
|
(I[315] = (T)(img)(_p6##x,_p2##y,z,c)), \
|
|
(I[343] = (T)(img)(_p6##x,_p1##y,z,c)), \
|
|
(I[371] = (T)(img)(_p6##x,y,z,c)), \
|
|
(I[399] = (T)(img)(_p6##x,_n1##y,z,c)), \
|
|
(I[427] = (T)(img)(_p6##x,_n2##y,z,c)), \
|
|
(I[455] = (T)(img)(_p6##x,_n3##y,z,c)), \
|
|
(I[483] = (T)(img)(_p6##x,_n4##y,z,c)), \
|
|
(I[511] = (T)(img)(_p6##x,_n5##y,z,c)), \
|
|
(I[539] = (T)(img)(_p6##x,_n6##y,z,c)), \
|
|
(I[567] = (T)(img)(_p6##x,_n7##y,z,c)), \
|
|
(I[595] = (T)(img)(_p6##x,_n8##y,z,c)), \
|
|
(I[623] = (T)(img)(_p6##x,_n9##y,z,c)), \
|
|
(I[651] = (T)(img)(_p6##x,_n10##y,z,c)), \
|
|
(I[679] = (T)(img)(_p6##x,_n11##y,z,c)), \
|
|
(I[707] = (T)(img)(_p6##x,_n12##y,z,c)), \
|
|
(I[735] = (T)(img)(_p6##x,_n13##y,z,c)), \
|
|
(I[763] = (T)(img)(_p6##x,_n14##y,z,c)), \
|
|
(I[8] = (T)(img)(_p5##x,_p13##y,z,c)), \
|
|
(I[36] = (T)(img)(_p5##x,_p12##y,z,c)), \
|
|
(I[64] = (T)(img)(_p5##x,_p11##y,z,c)), \
|
|
(I[92] = (T)(img)(_p5##x,_p10##y,z,c)), \
|
|
(I[120] = (T)(img)(_p5##x,_p9##y,z,c)), \
|
|
(I[148] = (T)(img)(_p5##x,_p8##y,z,c)), \
|
|
(I[176] = (T)(img)(_p5##x,_p7##y,z,c)), \
|
|
(I[204] = (T)(img)(_p5##x,_p6##y,z,c)), \
|
|
(I[232] = (T)(img)(_p5##x,_p5##y,z,c)), \
|
|
(I[260] = (T)(img)(_p5##x,_p4##y,z,c)), \
|
|
(I[288] = (T)(img)(_p5##x,_p3##y,z,c)), \
|
|
(I[316] = (T)(img)(_p5##x,_p2##y,z,c)), \
|
|
(I[344] = (T)(img)(_p5##x,_p1##y,z,c)), \
|
|
(I[372] = (T)(img)(_p5##x,y,z,c)), \
|
|
(I[400] = (T)(img)(_p5##x,_n1##y,z,c)), \
|
|
(I[428] = (T)(img)(_p5##x,_n2##y,z,c)), \
|
|
(I[456] = (T)(img)(_p5##x,_n3##y,z,c)), \
|
|
(I[484] = (T)(img)(_p5##x,_n4##y,z,c)), \
|
|
(I[512] = (T)(img)(_p5##x,_n5##y,z,c)), \
|
|
(I[540] = (T)(img)(_p5##x,_n6##y,z,c)), \
|
|
(I[568] = (T)(img)(_p5##x,_n7##y,z,c)), \
|
|
(I[596] = (T)(img)(_p5##x,_n8##y,z,c)), \
|
|
(I[624] = (T)(img)(_p5##x,_n9##y,z,c)), \
|
|
(I[652] = (T)(img)(_p5##x,_n10##y,z,c)), \
|
|
(I[680] = (T)(img)(_p5##x,_n11##y,z,c)), \
|
|
(I[708] = (T)(img)(_p5##x,_n12##y,z,c)), \
|
|
(I[736] = (T)(img)(_p5##x,_n13##y,z,c)), \
|
|
(I[764] = (T)(img)(_p5##x,_n14##y,z,c)), \
|
|
(I[9] = (T)(img)(_p4##x,_p13##y,z,c)), \
|
|
(I[37] = (T)(img)(_p4##x,_p12##y,z,c)), \
|
|
(I[65] = (T)(img)(_p4##x,_p11##y,z,c)), \
|
|
(I[93] = (T)(img)(_p4##x,_p10##y,z,c)), \
|
|
(I[121] = (T)(img)(_p4##x,_p9##y,z,c)), \
|
|
(I[149] = (T)(img)(_p4##x,_p8##y,z,c)), \
|
|
(I[177] = (T)(img)(_p4##x,_p7##y,z,c)), \
|
|
(I[205] = (T)(img)(_p4##x,_p6##y,z,c)), \
|
|
(I[233] = (T)(img)(_p4##x,_p5##y,z,c)), \
|
|
(I[261] = (T)(img)(_p4##x,_p4##y,z,c)), \
|
|
(I[289] = (T)(img)(_p4##x,_p3##y,z,c)), \
|
|
(I[317] = (T)(img)(_p4##x,_p2##y,z,c)), \
|
|
(I[345] = (T)(img)(_p4##x,_p1##y,z,c)), \
|
|
(I[373] = (T)(img)(_p4##x,y,z,c)), \
|
|
(I[401] = (T)(img)(_p4##x,_n1##y,z,c)), \
|
|
(I[429] = (T)(img)(_p4##x,_n2##y,z,c)), \
|
|
(I[457] = (T)(img)(_p4##x,_n3##y,z,c)), \
|
|
(I[485] = (T)(img)(_p4##x,_n4##y,z,c)), \
|
|
(I[513] = (T)(img)(_p4##x,_n5##y,z,c)), \
|
|
(I[541] = (T)(img)(_p4##x,_n6##y,z,c)), \
|
|
(I[569] = (T)(img)(_p4##x,_n7##y,z,c)), \
|
|
(I[597] = (T)(img)(_p4##x,_n8##y,z,c)), \
|
|
(I[625] = (T)(img)(_p4##x,_n9##y,z,c)), \
|
|
(I[653] = (T)(img)(_p4##x,_n10##y,z,c)), \
|
|
(I[681] = (T)(img)(_p4##x,_n11##y,z,c)), \
|
|
(I[709] = (T)(img)(_p4##x,_n12##y,z,c)), \
|
|
(I[737] = (T)(img)(_p4##x,_n13##y,z,c)), \
|
|
(I[765] = (T)(img)(_p4##x,_n14##y,z,c)), \
|
|
(I[10] = (T)(img)(_p3##x,_p13##y,z,c)), \
|
|
(I[38] = (T)(img)(_p3##x,_p12##y,z,c)), \
|
|
(I[66] = (T)(img)(_p3##x,_p11##y,z,c)), \
|
|
(I[94] = (T)(img)(_p3##x,_p10##y,z,c)), \
|
|
(I[122] = (T)(img)(_p3##x,_p9##y,z,c)), \
|
|
(I[150] = (T)(img)(_p3##x,_p8##y,z,c)), \
|
|
(I[178] = (T)(img)(_p3##x,_p7##y,z,c)), \
|
|
(I[206] = (T)(img)(_p3##x,_p6##y,z,c)), \
|
|
(I[234] = (T)(img)(_p3##x,_p5##y,z,c)), \
|
|
(I[262] = (T)(img)(_p3##x,_p4##y,z,c)), \
|
|
(I[290] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[318] = (T)(img)(_p3##x,_p2##y,z,c)), \
|
|
(I[346] = (T)(img)(_p3##x,_p1##y,z,c)), \
|
|
(I[374] = (T)(img)(_p3##x,y,z,c)), \
|
|
(I[402] = (T)(img)(_p3##x,_n1##y,z,c)), \
|
|
(I[430] = (T)(img)(_p3##x,_n2##y,z,c)), \
|
|
(I[458] = (T)(img)(_p3##x,_n3##y,z,c)), \
|
|
(I[486] = (T)(img)(_p3##x,_n4##y,z,c)), \
|
|
(I[514] = (T)(img)(_p3##x,_n5##y,z,c)), \
|
|
(I[542] = (T)(img)(_p3##x,_n6##y,z,c)), \
|
|
(I[570] = (T)(img)(_p3##x,_n7##y,z,c)), \
|
|
(I[598] = (T)(img)(_p3##x,_n8##y,z,c)), \
|
|
(I[626] = (T)(img)(_p3##x,_n9##y,z,c)), \
|
|
(I[654] = (T)(img)(_p3##x,_n10##y,z,c)), \
|
|
(I[682] = (T)(img)(_p3##x,_n11##y,z,c)), \
|
|
(I[710] = (T)(img)(_p3##x,_n12##y,z,c)), \
|
|
(I[738] = (T)(img)(_p3##x,_n13##y,z,c)), \
|
|
(I[766] = (T)(img)(_p3##x,_n14##y,z,c)), \
|
|
(I[11] = (T)(img)(_p2##x,_p13##y,z,c)), \
|
|
(I[39] = (T)(img)(_p2##x,_p12##y,z,c)), \
|
|
(I[67] = (T)(img)(_p2##x,_p11##y,z,c)), \
|
|
(I[95] = (T)(img)(_p2##x,_p10##y,z,c)), \
|
|
(I[123] = (T)(img)(_p2##x,_p9##y,z,c)), \
|
|
(I[151] = (T)(img)(_p2##x,_p8##y,z,c)), \
|
|
(I[179] = (T)(img)(_p2##x,_p7##y,z,c)), \
|
|
(I[207] = (T)(img)(_p2##x,_p6##y,z,c)), \
|
|
(I[235] = (T)(img)(_p2##x,_p5##y,z,c)), \
|
|
(I[263] = (T)(img)(_p2##x,_p4##y,z,c)), \
|
|
(I[291] = (T)(img)(_p2##x,_p3##y,z,c)), \
|
|
(I[319] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[347] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[375] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[403] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[431] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[459] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[487] = (T)(img)(_p2##x,_n4##y,z,c)), \
|
|
(I[515] = (T)(img)(_p2##x,_n5##y,z,c)), \
|
|
(I[543] = (T)(img)(_p2##x,_n6##y,z,c)), \
|
|
(I[571] = (T)(img)(_p2##x,_n7##y,z,c)), \
|
|
(I[599] = (T)(img)(_p2##x,_n8##y,z,c)), \
|
|
(I[627] = (T)(img)(_p2##x,_n9##y,z,c)), \
|
|
(I[655] = (T)(img)(_p2##x,_n10##y,z,c)), \
|
|
(I[683] = (T)(img)(_p2##x,_n11##y,z,c)), \
|
|
(I[711] = (T)(img)(_p2##x,_n12##y,z,c)), \
|
|
(I[739] = (T)(img)(_p2##x,_n13##y,z,c)), \
|
|
(I[767] = (T)(img)(_p2##x,_n14##y,z,c)), \
|
|
(I[12] = (T)(img)(_p1##x,_p13##y,z,c)), \
|
|
(I[40] = (T)(img)(_p1##x,_p12##y,z,c)), \
|
|
(I[68] = (T)(img)(_p1##x,_p11##y,z,c)), \
|
|
(I[96] = (T)(img)(_p1##x,_p10##y,z,c)), \
|
|
(I[124] = (T)(img)(_p1##x,_p9##y,z,c)), \
|
|
(I[152] = (T)(img)(_p1##x,_p8##y,z,c)), \
|
|
(I[180] = (T)(img)(_p1##x,_p7##y,z,c)), \
|
|
(I[208] = (T)(img)(_p1##x,_p6##y,z,c)), \
|
|
(I[236] = (T)(img)(_p1##x,_p5##y,z,c)), \
|
|
(I[264] = (T)(img)(_p1##x,_p4##y,z,c)), \
|
|
(I[292] = (T)(img)(_p1##x,_p3##y,z,c)), \
|
|
(I[320] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[348] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[376] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[404] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[432] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[460] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[488] = (T)(img)(_p1##x,_n4##y,z,c)), \
|
|
(I[516] = (T)(img)(_p1##x,_n5##y,z,c)), \
|
|
(I[544] = (T)(img)(_p1##x,_n6##y,z,c)), \
|
|
(I[572] = (T)(img)(_p1##x,_n7##y,z,c)), \
|
|
(I[600] = (T)(img)(_p1##x,_n8##y,z,c)), \
|
|
(I[628] = (T)(img)(_p1##x,_n9##y,z,c)), \
|
|
(I[656] = (T)(img)(_p1##x,_n10##y,z,c)), \
|
|
(I[684] = (T)(img)(_p1##x,_n11##y,z,c)), \
|
|
(I[712] = (T)(img)(_p1##x,_n12##y,z,c)), \
|
|
(I[740] = (T)(img)(_p1##x,_n13##y,z,c)), \
|
|
(I[768] = (T)(img)(_p1##x,_n14##y,z,c)), \
|
|
(I[13] = (T)(img)(x,_p13##y,z,c)), \
|
|
(I[41] = (T)(img)(x,_p12##y,z,c)), \
|
|
(I[69] = (T)(img)(x,_p11##y,z,c)), \
|
|
(I[97] = (T)(img)(x,_p10##y,z,c)), \
|
|
(I[125] = (T)(img)(x,_p9##y,z,c)), \
|
|
(I[153] = (T)(img)(x,_p8##y,z,c)), \
|
|
(I[181] = (T)(img)(x,_p7##y,z,c)), \
|
|
(I[209] = (T)(img)(x,_p6##y,z,c)), \
|
|
(I[237] = (T)(img)(x,_p5##y,z,c)), \
|
|
(I[265] = (T)(img)(x,_p4##y,z,c)), \
|
|
(I[293] = (T)(img)(x,_p3##y,z,c)), \
|
|
(I[321] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[349] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[377] = (T)(img)(x,y,z,c)), \
|
|
(I[405] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[433] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[461] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[489] = (T)(img)(x,_n4##y,z,c)), \
|
|
(I[517] = (T)(img)(x,_n5##y,z,c)), \
|
|
(I[545] = (T)(img)(x,_n6##y,z,c)), \
|
|
(I[573] = (T)(img)(x,_n7##y,z,c)), \
|
|
(I[601] = (T)(img)(x,_n8##y,z,c)), \
|
|
(I[629] = (T)(img)(x,_n9##y,z,c)), \
|
|
(I[657] = (T)(img)(x,_n10##y,z,c)), \
|
|
(I[685] = (T)(img)(x,_n11##y,z,c)), \
|
|
(I[713] = (T)(img)(x,_n12##y,z,c)), \
|
|
(I[741] = (T)(img)(x,_n13##y,z,c)), \
|
|
(I[769] = (T)(img)(x,_n14##y,z,c)), \
|
|
(I[14] = (T)(img)(_n1##x,_p13##y,z,c)), \
|
|
(I[42] = (T)(img)(_n1##x,_p12##y,z,c)), \
|
|
(I[70] = (T)(img)(_n1##x,_p11##y,z,c)), \
|
|
(I[98] = (T)(img)(_n1##x,_p10##y,z,c)), \
|
|
(I[126] = (T)(img)(_n1##x,_p9##y,z,c)), \
|
|
(I[154] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[182] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[210] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[238] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[266] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[294] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[322] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[350] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[378] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[406] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[434] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[462] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[490] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[518] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[546] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[574] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[602] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[630] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[658] = (T)(img)(_n1##x,_n10##y,z,c)), \
|
|
(I[686] = (T)(img)(_n1##x,_n11##y,z,c)), \
|
|
(I[714] = (T)(img)(_n1##x,_n12##y,z,c)), \
|
|
(I[742] = (T)(img)(_n1##x,_n13##y,z,c)), \
|
|
(I[770] = (T)(img)(_n1##x,_n14##y,z,c)), \
|
|
(I[15] = (T)(img)(_n2##x,_p13##y,z,c)), \
|
|
(I[43] = (T)(img)(_n2##x,_p12##y,z,c)), \
|
|
(I[71] = (T)(img)(_n2##x,_p11##y,z,c)), \
|
|
(I[99] = (T)(img)(_n2##x,_p10##y,z,c)), \
|
|
(I[127] = (T)(img)(_n2##x,_p9##y,z,c)), \
|
|
(I[155] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[183] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[211] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[239] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[267] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[295] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[323] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[351] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[379] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[407] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[435] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[463] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[491] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[519] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[547] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[575] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[603] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[631] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[659] = (T)(img)(_n2##x,_n10##y,z,c)), \
|
|
(I[687] = (T)(img)(_n2##x,_n11##y,z,c)), \
|
|
(I[715] = (T)(img)(_n2##x,_n12##y,z,c)), \
|
|
(I[743] = (T)(img)(_n2##x,_n13##y,z,c)), \
|
|
(I[771] = (T)(img)(_n2##x,_n14##y,z,c)), \
|
|
(I[16] = (T)(img)(_n3##x,_p13##y,z,c)), \
|
|
(I[44] = (T)(img)(_n3##x,_p12##y,z,c)), \
|
|
(I[72] = (T)(img)(_n3##x,_p11##y,z,c)), \
|
|
(I[100] = (T)(img)(_n3##x,_p10##y,z,c)), \
|
|
(I[128] = (T)(img)(_n3##x,_p9##y,z,c)), \
|
|
(I[156] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[184] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[212] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[240] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[268] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[296] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[324] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[352] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[380] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[408] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[436] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[464] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[492] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[520] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[548] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[576] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[604] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[632] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[660] = (T)(img)(_n3##x,_n10##y,z,c)), \
|
|
(I[688] = (T)(img)(_n3##x,_n11##y,z,c)), \
|
|
(I[716] = (T)(img)(_n3##x,_n12##y,z,c)), \
|
|
(I[744] = (T)(img)(_n3##x,_n13##y,z,c)), \
|
|
(I[772] = (T)(img)(_n3##x,_n14##y,z,c)), \
|
|
(I[17] = (T)(img)(_n4##x,_p13##y,z,c)), \
|
|
(I[45] = (T)(img)(_n4##x,_p12##y,z,c)), \
|
|
(I[73] = (T)(img)(_n4##x,_p11##y,z,c)), \
|
|
(I[101] = (T)(img)(_n4##x,_p10##y,z,c)), \
|
|
(I[129] = (T)(img)(_n4##x,_p9##y,z,c)), \
|
|
(I[157] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[185] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[213] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[241] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[269] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[297] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[325] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[353] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[381] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[409] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[437] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[465] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[493] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[521] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[549] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[577] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[605] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[633] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[661] = (T)(img)(_n4##x,_n10##y,z,c)), \
|
|
(I[689] = (T)(img)(_n4##x,_n11##y,z,c)), \
|
|
(I[717] = (T)(img)(_n4##x,_n12##y,z,c)), \
|
|
(I[745] = (T)(img)(_n4##x,_n13##y,z,c)), \
|
|
(I[773] = (T)(img)(_n4##x,_n14##y,z,c)), \
|
|
(I[18] = (T)(img)(_n5##x,_p13##y,z,c)), \
|
|
(I[46] = (T)(img)(_n5##x,_p12##y,z,c)), \
|
|
(I[74] = (T)(img)(_n5##x,_p11##y,z,c)), \
|
|
(I[102] = (T)(img)(_n5##x,_p10##y,z,c)), \
|
|
(I[130] = (T)(img)(_n5##x,_p9##y,z,c)), \
|
|
(I[158] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[186] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[214] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[242] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[270] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[298] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[326] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[354] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[382] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[410] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[438] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[466] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[494] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[522] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[550] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[578] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[606] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[634] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[662] = (T)(img)(_n5##x,_n10##y,z,c)), \
|
|
(I[690] = (T)(img)(_n5##x,_n11##y,z,c)), \
|
|
(I[718] = (T)(img)(_n5##x,_n12##y,z,c)), \
|
|
(I[746] = (T)(img)(_n5##x,_n13##y,z,c)), \
|
|
(I[774] = (T)(img)(_n5##x,_n14##y,z,c)), \
|
|
(I[19] = (T)(img)(_n6##x,_p13##y,z,c)), \
|
|
(I[47] = (T)(img)(_n6##x,_p12##y,z,c)), \
|
|
(I[75] = (T)(img)(_n6##x,_p11##y,z,c)), \
|
|
(I[103] = (T)(img)(_n6##x,_p10##y,z,c)), \
|
|
(I[131] = (T)(img)(_n6##x,_p9##y,z,c)), \
|
|
(I[159] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[187] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[215] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[243] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[271] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[299] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[327] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[355] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[383] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[411] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[439] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[467] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[495] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[523] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[551] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[579] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[607] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[635] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[663] = (T)(img)(_n6##x,_n10##y,z,c)), \
|
|
(I[691] = (T)(img)(_n6##x,_n11##y,z,c)), \
|
|
(I[719] = (T)(img)(_n6##x,_n12##y,z,c)), \
|
|
(I[747] = (T)(img)(_n6##x,_n13##y,z,c)), \
|
|
(I[775] = (T)(img)(_n6##x,_n14##y,z,c)), \
|
|
(I[20] = (T)(img)(_n7##x,_p13##y,z,c)), \
|
|
(I[48] = (T)(img)(_n7##x,_p12##y,z,c)), \
|
|
(I[76] = (T)(img)(_n7##x,_p11##y,z,c)), \
|
|
(I[104] = (T)(img)(_n7##x,_p10##y,z,c)), \
|
|
(I[132] = (T)(img)(_n7##x,_p9##y,z,c)), \
|
|
(I[160] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[188] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[216] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[244] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[272] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[300] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[328] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[356] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[384] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[412] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[440] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[468] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[496] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[524] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[552] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[580] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[608] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[636] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[664] = (T)(img)(_n7##x,_n10##y,z,c)), \
|
|
(I[692] = (T)(img)(_n7##x,_n11##y,z,c)), \
|
|
(I[720] = (T)(img)(_n7##x,_n12##y,z,c)), \
|
|
(I[748] = (T)(img)(_n7##x,_n13##y,z,c)), \
|
|
(I[776] = (T)(img)(_n7##x,_n14##y,z,c)), \
|
|
(I[21] = (T)(img)(_n8##x,_p13##y,z,c)), \
|
|
(I[49] = (T)(img)(_n8##x,_p12##y,z,c)), \
|
|
(I[77] = (T)(img)(_n8##x,_p11##y,z,c)), \
|
|
(I[105] = (T)(img)(_n8##x,_p10##y,z,c)), \
|
|
(I[133] = (T)(img)(_n8##x,_p9##y,z,c)), \
|
|
(I[161] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[189] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[217] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[245] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[273] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[301] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[329] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[357] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[385] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[413] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[441] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[469] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[497] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[525] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[553] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[581] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[609] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[637] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
(I[665] = (T)(img)(_n8##x,_n10##y,z,c)), \
|
|
(I[693] = (T)(img)(_n8##x,_n11##y,z,c)), \
|
|
(I[721] = (T)(img)(_n8##x,_n12##y,z,c)), \
|
|
(I[749] = (T)(img)(_n8##x,_n13##y,z,c)), \
|
|
(I[777] = (T)(img)(_n8##x,_n14##y,z,c)), \
|
|
(I[22] = (T)(img)(_n9##x,_p13##y,z,c)), \
|
|
(I[50] = (T)(img)(_n9##x,_p12##y,z,c)), \
|
|
(I[78] = (T)(img)(_n9##x,_p11##y,z,c)), \
|
|
(I[106] = (T)(img)(_n9##x,_p10##y,z,c)), \
|
|
(I[134] = (T)(img)(_n9##x,_p9##y,z,c)), \
|
|
(I[162] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[190] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[218] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[246] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[274] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[302] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[330] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[358] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[386] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[414] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[442] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[470] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[498] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[526] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[554] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[582] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[610] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[638] = (T)(img)(_n9##x,_n9##y,z,c)), \
|
|
(I[666] = (T)(img)(_n9##x,_n10##y,z,c)), \
|
|
(I[694] = (T)(img)(_n9##x,_n11##y,z,c)), \
|
|
(I[722] = (T)(img)(_n9##x,_n12##y,z,c)), \
|
|
(I[750] = (T)(img)(_n9##x,_n13##y,z,c)), \
|
|
(I[778] = (T)(img)(_n9##x,_n14##y,z,c)), \
|
|
(I[23] = (T)(img)(_n10##x,_p13##y,z,c)), \
|
|
(I[51] = (T)(img)(_n10##x,_p12##y,z,c)), \
|
|
(I[79] = (T)(img)(_n10##x,_p11##y,z,c)), \
|
|
(I[107] = (T)(img)(_n10##x,_p10##y,z,c)), \
|
|
(I[135] = (T)(img)(_n10##x,_p9##y,z,c)), \
|
|
(I[163] = (T)(img)(_n10##x,_p8##y,z,c)), \
|
|
(I[191] = (T)(img)(_n10##x,_p7##y,z,c)), \
|
|
(I[219] = (T)(img)(_n10##x,_p6##y,z,c)), \
|
|
(I[247] = (T)(img)(_n10##x,_p5##y,z,c)), \
|
|
(I[275] = (T)(img)(_n10##x,_p4##y,z,c)), \
|
|
(I[303] = (T)(img)(_n10##x,_p3##y,z,c)), \
|
|
(I[331] = (T)(img)(_n10##x,_p2##y,z,c)), \
|
|
(I[359] = (T)(img)(_n10##x,_p1##y,z,c)), \
|
|
(I[387] = (T)(img)(_n10##x,y,z,c)), \
|
|
(I[415] = (T)(img)(_n10##x,_n1##y,z,c)), \
|
|
(I[443] = (T)(img)(_n10##x,_n2##y,z,c)), \
|
|
(I[471] = (T)(img)(_n10##x,_n3##y,z,c)), \
|
|
(I[499] = (T)(img)(_n10##x,_n4##y,z,c)), \
|
|
(I[527] = (T)(img)(_n10##x,_n5##y,z,c)), \
|
|
(I[555] = (T)(img)(_n10##x,_n6##y,z,c)), \
|
|
(I[583] = (T)(img)(_n10##x,_n7##y,z,c)), \
|
|
(I[611] = (T)(img)(_n10##x,_n8##y,z,c)), \
|
|
(I[639] = (T)(img)(_n10##x,_n9##y,z,c)), \
|
|
(I[667] = (T)(img)(_n10##x,_n10##y,z,c)), \
|
|
(I[695] = (T)(img)(_n10##x,_n11##y,z,c)), \
|
|
(I[723] = (T)(img)(_n10##x,_n12##y,z,c)), \
|
|
(I[751] = (T)(img)(_n10##x,_n13##y,z,c)), \
|
|
(I[779] = (T)(img)(_n10##x,_n14##y,z,c)), \
|
|
(I[24] = (T)(img)(_n11##x,_p13##y,z,c)), \
|
|
(I[52] = (T)(img)(_n11##x,_p12##y,z,c)), \
|
|
(I[80] = (T)(img)(_n11##x,_p11##y,z,c)), \
|
|
(I[108] = (T)(img)(_n11##x,_p10##y,z,c)), \
|
|
(I[136] = (T)(img)(_n11##x,_p9##y,z,c)), \
|
|
(I[164] = (T)(img)(_n11##x,_p8##y,z,c)), \
|
|
(I[192] = (T)(img)(_n11##x,_p7##y,z,c)), \
|
|
(I[220] = (T)(img)(_n11##x,_p6##y,z,c)), \
|
|
(I[248] = (T)(img)(_n11##x,_p5##y,z,c)), \
|
|
(I[276] = (T)(img)(_n11##x,_p4##y,z,c)), \
|
|
(I[304] = (T)(img)(_n11##x,_p3##y,z,c)), \
|
|
(I[332] = (T)(img)(_n11##x,_p2##y,z,c)), \
|
|
(I[360] = (T)(img)(_n11##x,_p1##y,z,c)), \
|
|
(I[388] = (T)(img)(_n11##x,y,z,c)), \
|
|
(I[416] = (T)(img)(_n11##x,_n1##y,z,c)), \
|
|
(I[444] = (T)(img)(_n11##x,_n2##y,z,c)), \
|
|
(I[472] = (T)(img)(_n11##x,_n3##y,z,c)), \
|
|
(I[500] = (T)(img)(_n11##x,_n4##y,z,c)), \
|
|
(I[528] = (T)(img)(_n11##x,_n5##y,z,c)), \
|
|
(I[556] = (T)(img)(_n11##x,_n6##y,z,c)), \
|
|
(I[584] = (T)(img)(_n11##x,_n7##y,z,c)), \
|
|
(I[612] = (T)(img)(_n11##x,_n8##y,z,c)), \
|
|
(I[640] = (T)(img)(_n11##x,_n9##y,z,c)), \
|
|
(I[668] = (T)(img)(_n11##x,_n10##y,z,c)), \
|
|
(I[696] = (T)(img)(_n11##x,_n11##y,z,c)), \
|
|
(I[724] = (T)(img)(_n11##x,_n12##y,z,c)), \
|
|
(I[752] = (T)(img)(_n11##x,_n13##y,z,c)), \
|
|
(I[780] = (T)(img)(_n11##x,_n14##y,z,c)), \
|
|
(I[25] = (T)(img)(_n12##x,_p13##y,z,c)), \
|
|
(I[53] = (T)(img)(_n12##x,_p12##y,z,c)), \
|
|
(I[81] = (T)(img)(_n12##x,_p11##y,z,c)), \
|
|
(I[109] = (T)(img)(_n12##x,_p10##y,z,c)), \
|
|
(I[137] = (T)(img)(_n12##x,_p9##y,z,c)), \
|
|
(I[165] = (T)(img)(_n12##x,_p8##y,z,c)), \
|
|
(I[193] = (T)(img)(_n12##x,_p7##y,z,c)), \
|
|
(I[221] = (T)(img)(_n12##x,_p6##y,z,c)), \
|
|
(I[249] = (T)(img)(_n12##x,_p5##y,z,c)), \
|
|
(I[277] = (T)(img)(_n12##x,_p4##y,z,c)), \
|
|
(I[305] = (T)(img)(_n12##x,_p3##y,z,c)), \
|
|
(I[333] = (T)(img)(_n12##x,_p2##y,z,c)), \
|
|
(I[361] = (T)(img)(_n12##x,_p1##y,z,c)), \
|
|
(I[389] = (T)(img)(_n12##x,y,z,c)), \
|
|
(I[417] = (T)(img)(_n12##x,_n1##y,z,c)), \
|
|
(I[445] = (T)(img)(_n12##x,_n2##y,z,c)), \
|
|
(I[473] = (T)(img)(_n12##x,_n3##y,z,c)), \
|
|
(I[501] = (T)(img)(_n12##x,_n4##y,z,c)), \
|
|
(I[529] = (T)(img)(_n12##x,_n5##y,z,c)), \
|
|
(I[557] = (T)(img)(_n12##x,_n6##y,z,c)), \
|
|
(I[585] = (T)(img)(_n12##x,_n7##y,z,c)), \
|
|
(I[613] = (T)(img)(_n12##x,_n8##y,z,c)), \
|
|
(I[641] = (T)(img)(_n12##x,_n9##y,z,c)), \
|
|
(I[669] = (T)(img)(_n12##x,_n10##y,z,c)), \
|
|
(I[697] = (T)(img)(_n12##x,_n11##y,z,c)), \
|
|
(I[725] = (T)(img)(_n12##x,_n12##y,z,c)), \
|
|
(I[753] = (T)(img)(_n12##x,_n13##y,z,c)), \
|
|
(I[781] = (T)(img)(_n12##x,_n14##y,z,c)), \
|
|
(I[26] = (T)(img)(_n13##x,_p13##y,z,c)), \
|
|
(I[54] = (T)(img)(_n13##x,_p12##y,z,c)), \
|
|
(I[82] = (T)(img)(_n13##x,_p11##y,z,c)), \
|
|
(I[110] = (T)(img)(_n13##x,_p10##y,z,c)), \
|
|
(I[138] = (T)(img)(_n13##x,_p9##y,z,c)), \
|
|
(I[166] = (T)(img)(_n13##x,_p8##y,z,c)), \
|
|
(I[194] = (T)(img)(_n13##x,_p7##y,z,c)), \
|
|
(I[222] = (T)(img)(_n13##x,_p6##y,z,c)), \
|
|
(I[250] = (T)(img)(_n13##x,_p5##y,z,c)), \
|
|
(I[278] = (T)(img)(_n13##x,_p4##y,z,c)), \
|
|
(I[306] = (T)(img)(_n13##x,_p3##y,z,c)), \
|
|
(I[334] = (T)(img)(_n13##x,_p2##y,z,c)), \
|
|
(I[362] = (T)(img)(_n13##x,_p1##y,z,c)), \
|
|
(I[390] = (T)(img)(_n13##x,y,z,c)), \
|
|
(I[418] = (T)(img)(_n13##x,_n1##y,z,c)), \
|
|
(I[446] = (T)(img)(_n13##x,_n2##y,z,c)), \
|
|
(I[474] = (T)(img)(_n13##x,_n3##y,z,c)), \
|
|
(I[502] = (T)(img)(_n13##x,_n4##y,z,c)), \
|
|
(I[530] = (T)(img)(_n13##x,_n5##y,z,c)), \
|
|
(I[558] = (T)(img)(_n13##x,_n6##y,z,c)), \
|
|
(I[586] = (T)(img)(_n13##x,_n7##y,z,c)), \
|
|
(I[614] = (T)(img)(_n13##x,_n8##y,z,c)), \
|
|
(I[642] = (T)(img)(_n13##x,_n9##y,z,c)), \
|
|
(I[670] = (T)(img)(_n13##x,_n10##y,z,c)), \
|
|
(I[698] = (T)(img)(_n13##x,_n11##y,z,c)), \
|
|
(I[726] = (T)(img)(_n13##x,_n12##y,z,c)), \
|
|
(I[754] = (T)(img)(_n13##x,_n13##y,z,c)), \
|
|
(I[782] = (T)(img)(_n13##x,_n14##y,z,c)), \
|
|
x + 14>=(img).width()?(img).width() - 1:x + 14); \
|
|
x<=(int)(x1) && ((_n14##x<(img).width() && ( \
|
|
(I[27] = (T)(img)(_n14##x,_p13##y,z,c)), \
|
|
(I[55] = (T)(img)(_n14##x,_p12##y,z,c)), \
|
|
(I[83] = (T)(img)(_n14##x,_p11##y,z,c)), \
|
|
(I[111] = (T)(img)(_n14##x,_p10##y,z,c)), \
|
|
(I[139] = (T)(img)(_n14##x,_p9##y,z,c)), \
|
|
(I[167] = (T)(img)(_n14##x,_p8##y,z,c)), \
|
|
(I[195] = (T)(img)(_n14##x,_p7##y,z,c)), \
|
|
(I[223] = (T)(img)(_n14##x,_p6##y,z,c)), \
|
|
(I[251] = (T)(img)(_n14##x,_p5##y,z,c)), \
|
|
(I[279] = (T)(img)(_n14##x,_p4##y,z,c)), \
|
|
(I[307] = (T)(img)(_n14##x,_p3##y,z,c)), \
|
|
(I[335] = (T)(img)(_n14##x,_p2##y,z,c)), \
|
|
(I[363] = (T)(img)(_n14##x,_p1##y,z,c)), \
|
|
(I[391] = (T)(img)(_n14##x,y,z,c)), \
|
|
(I[419] = (T)(img)(_n14##x,_n1##y,z,c)), \
|
|
(I[447] = (T)(img)(_n14##x,_n2##y,z,c)), \
|
|
(I[475] = (T)(img)(_n14##x,_n3##y,z,c)), \
|
|
(I[503] = (T)(img)(_n14##x,_n4##y,z,c)), \
|
|
(I[531] = (T)(img)(_n14##x,_n5##y,z,c)), \
|
|
(I[559] = (T)(img)(_n14##x,_n6##y,z,c)), \
|
|
(I[587] = (T)(img)(_n14##x,_n7##y,z,c)), \
|
|
(I[615] = (T)(img)(_n14##x,_n8##y,z,c)), \
|
|
(I[643] = (T)(img)(_n14##x,_n9##y,z,c)), \
|
|
(I[671] = (T)(img)(_n14##x,_n10##y,z,c)), \
|
|
(I[699] = (T)(img)(_n14##x,_n11##y,z,c)), \
|
|
(I[727] = (T)(img)(_n14##x,_n12##y,z,c)), \
|
|
(I[755] = (T)(img)(_n14##x,_n13##y,z,c)), \
|
|
(I[783] = (T)(img)(_n14##x,_n14##y,z,c)),1)) || \
|
|
_n13##x==--_n14##x || _n12##x==--_n13##x || _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n14##x = _n13##x = _n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], \
|
|
I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \
|
|
I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
|
|
I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \
|
|
I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], \
|
|
I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
|
|
I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], \
|
|
I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \
|
|
I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], \
|
|
I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], \
|
|
I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], \
|
|
I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \
|
|
I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], \
|
|
I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], \
|
|
I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], \
|
|
I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], \
|
|
I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], \
|
|
I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], \
|
|
I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], \
|
|
I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], \
|
|
I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], I[575] = I[576], I[576] = I[577], I[577] = I[578], I[578] = I[579], I[579] = I[580], I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], \
|
|
I[588] = I[589], I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], I[593] = I[594], I[594] = I[595], I[595] = I[596], I[596] = I[597], I[597] = I[598], I[598] = I[599], I[599] = I[600], I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], I[607] = I[608], I[608] = I[609], I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], \
|
|
I[616] = I[617], I[617] = I[618], I[618] = I[619], I[619] = I[620], I[620] = I[621], I[621] = I[622], I[622] = I[623], I[623] = I[624], I[624] = I[625], I[625] = I[626], I[626] = I[627], I[627] = I[628], I[628] = I[629], I[629] = I[630], I[630] = I[631], I[631] = I[632], I[632] = I[633], I[633] = I[634], I[634] = I[635], I[635] = I[636], I[636] = I[637], I[637] = I[638], I[638] = I[639], I[639] = I[640], I[640] = I[641], I[641] = I[642], I[642] = I[643], \
|
|
I[644] = I[645], I[645] = I[646], I[646] = I[647], I[647] = I[648], I[648] = I[649], I[649] = I[650], I[650] = I[651], I[651] = I[652], I[652] = I[653], I[653] = I[654], I[654] = I[655], I[655] = I[656], I[656] = I[657], I[657] = I[658], I[658] = I[659], I[659] = I[660], I[660] = I[661], I[661] = I[662], I[662] = I[663], I[663] = I[664], I[664] = I[665], I[665] = I[666], I[666] = I[667], I[667] = I[668], I[668] = I[669], I[669] = I[670], I[670] = I[671], \
|
|
I[672] = I[673], I[673] = I[674], I[674] = I[675], I[675] = I[676], I[676] = I[677], I[677] = I[678], I[678] = I[679], I[679] = I[680], I[680] = I[681], I[681] = I[682], I[682] = I[683], I[683] = I[684], I[684] = I[685], I[685] = I[686], I[686] = I[687], I[687] = I[688], I[688] = I[689], I[689] = I[690], I[690] = I[691], I[691] = I[692], I[692] = I[693], I[693] = I[694], I[694] = I[695], I[695] = I[696], I[696] = I[697], I[697] = I[698], I[698] = I[699], \
|
|
I[700] = I[701], I[701] = I[702], I[702] = I[703], I[703] = I[704], I[704] = I[705], I[705] = I[706], I[706] = I[707], I[707] = I[708], I[708] = I[709], I[709] = I[710], I[710] = I[711], I[711] = I[712], I[712] = I[713], I[713] = I[714], I[714] = I[715], I[715] = I[716], I[716] = I[717], I[717] = I[718], I[718] = I[719], I[719] = I[720], I[720] = I[721], I[721] = I[722], I[722] = I[723], I[723] = I[724], I[724] = I[725], I[725] = I[726], I[726] = I[727], \
|
|
I[728] = I[729], I[729] = I[730], I[730] = I[731], I[731] = I[732], I[732] = I[733], I[733] = I[734], I[734] = I[735], I[735] = I[736], I[736] = I[737], I[737] = I[738], I[738] = I[739], I[739] = I[740], I[740] = I[741], I[741] = I[742], I[742] = I[743], I[743] = I[744], I[744] = I[745], I[745] = I[746], I[746] = I[747], I[747] = I[748], I[748] = I[749], I[749] = I[750], I[750] = I[751], I[751] = I[752], I[752] = I[753], I[753] = I[754], I[754] = I[755], \
|
|
I[756] = I[757], I[757] = I[758], I[758] = I[759], I[759] = I[760], I[760] = I[761], I[761] = I[762], I[762] = I[763], I[763] = I[764], I[764] = I[765], I[765] = I[766], I[766] = I[767], I[767] = I[768], I[768] = I[769], I[769] = I[770], I[770] = I[771], I[771] = I[772], I[772] = I[773], I[773] = I[774], I[774] = I[775], I[775] = I[776], I[776] = I[777], I[777] = I[778], I[778] = I[779], I[779] = I[780], I[780] = I[781], I[781] = I[782], I[782] = I[783], \
|
|
_p13##x = _p12##x, _p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x, ++_n13##x, ++_n14##x)
|
|
|
|
#define cimg_get28x28(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p13##x,_p13##y,z,c), I[1] = (T)(img)(_p12##x,_p13##y,z,c), I[2] = (T)(img)(_p11##x,_p13##y,z,c), I[3] = (T)(img)(_p10##x,_p13##y,z,c), I[4] = (T)(img)(_p9##x,_p13##y,z,c), I[5] = (T)(img)(_p8##x,_p13##y,z,c), I[6] = (T)(img)(_p7##x,_p13##y,z,c), I[7] = (T)(img)(_p6##x,_p13##y,z,c), I[8] = (T)(img)(_p5##x,_p13##y,z,c), I[9] = (T)(img)(_p4##x,_p13##y,z,c), I[10] = (T)(img)(_p3##x,_p13##y,z,c), I[11] = (T)(img)(_p2##x,_p13##y,z,c), I[12] = (T)(img)(_p1##x,_p13##y,z,c), I[13] = (T)(img)(x,_p13##y,z,c), I[14] = (T)(img)(_n1##x,_p13##y,z,c), I[15] = (T)(img)(_n2##x,_p13##y,z,c), I[16] = (T)(img)(_n3##x,_p13##y,z,c), I[17] = (T)(img)(_n4##x,_p13##y,z,c), I[18] = (T)(img)(_n5##x,_p13##y,z,c), I[19] = (T)(img)(_n6##x,_p13##y,z,c), I[20] = (T)(img)(_n7##x,_p13##y,z,c), I[21] = (T)(img)(_n8##x,_p13##y,z,c), I[22] = (T)(img)(_n9##x,_p13##y,z,c), I[23] = (T)(img)(_n10##x,_p13##y,z,c), I[24] = (T)(img)(_n11##x,_p13##y,z,c), I[25] = (T)(img)(_n12##x,_p13##y,z,c), I[26] = (T)(img)(_n13##x,_p13##y,z,c), I[27] = (T)(img)(_n14##x,_p13##y,z,c), \
|
|
I[28] = (T)(img)(_p13##x,_p12##y,z,c), I[29] = (T)(img)(_p12##x,_p12##y,z,c), I[30] = (T)(img)(_p11##x,_p12##y,z,c), I[31] = (T)(img)(_p10##x,_p12##y,z,c), I[32] = (T)(img)(_p9##x,_p12##y,z,c), I[33] = (T)(img)(_p8##x,_p12##y,z,c), I[34] = (T)(img)(_p7##x,_p12##y,z,c), I[35] = (T)(img)(_p6##x,_p12##y,z,c), I[36] = (T)(img)(_p5##x,_p12##y,z,c), I[37] = (T)(img)(_p4##x,_p12##y,z,c), I[38] = (T)(img)(_p3##x,_p12##y,z,c), I[39] = (T)(img)(_p2##x,_p12##y,z,c), I[40] = (T)(img)(_p1##x,_p12##y,z,c), I[41] = (T)(img)(x,_p12##y,z,c), I[42] = (T)(img)(_n1##x,_p12##y,z,c), I[43] = (T)(img)(_n2##x,_p12##y,z,c), I[44] = (T)(img)(_n3##x,_p12##y,z,c), I[45] = (T)(img)(_n4##x,_p12##y,z,c), I[46] = (T)(img)(_n5##x,_p12##y,z,c), I[47] = (T)(img)(_n6##x,_p12##y,z,c), I[48] = (T)(img)(_n7##x,_p12##y,z,c), I[49] = (T)(img)(_n8##x,_p12##y,z,c), I[50] = (T)(img)(_n9##x,_p12##y,z,c), I[51] = (T)(img)(_n10##x,_p12##y,z,c), I[52] = (T)(img)(_n11##x,_p12##y,z,c), I[53] = (T)(img)(_n12##x,_p12##y,z,c), I[54] = (T)(img)(_n13##x,_p12##y,z,c), I[55] = (T)(img)(_n14##x,_p12##y,z,c), \
|
|
I[56] = (T)(img)(_p13##x,_p11##y,z,c), I[57] = (T)(img)(_p12##x,_p11##y,z,c), I[58] = (T)(img)(_p11##x,_p11##y,z,c), I[59] = (T)(img)(_p10##x,_p11##y,z,c), I[60] = (T)(img)(_p9##x,_p11##y,z,c), I[61] = (T)(img)(_p8##x,_p11##y,z,c), I[62] = (T)(img)(_p7##x,_p11##y,z,c), I[63] = (T)(img)(_p6##x,_p11##y,z,c), I[64] = (T)(img)(_p5##x,_p11##y,z,c), I[65] = (T)(img)(_p4##x,_p11##y,z,c), I[66] = (T)(img)(_p3##x,_p11##y,z,c), I[67] = (T)(img)(_p2##x,_p11##y,z,c), I[68] = (T)(img)(_p1##x,_p11##y,z,c), I[69] = (T)(img)(x,_p11##y,z,c), I[70] = (T)(img)(_n1##x,_p11##y,z,c), I[71] = (T)(img)(_n2##x,_p11##y,z,c), I[72] = (T)(img)(_n3##x,_p11##y,z,c), I[73] = (T)(img)(_n4##x,_p11##y,z,c), I[74] = (T)(img)(_n5##x,_p11##y,z,c), I[75] = (T)(img)(_n6##x,_p11##y,z,c), I[76] = (T)(img)(_n7##x,_p11##y,z,c), I[77] = (T)(img)(_n8##x,_p11##y,z,c), I[78] = (T)(img)(_n9##x,_p11##y,z,c), I[79] = (T)(img)(_n10##x,_p11##y,z,c), I[80] = (T)(img)(_n11##x,_p11##y,z,c), I[81] = (T)(img)(_n12##x,_p11##y,z,c), I[82] = (T)(img)(_n13##x,_p11##y,z,c), I[83] = (T)(img)(_n14##x,_p11##y,z,c), \
|
|
I[84] = (T)(img)(_p13##x,_p10##y,z,c), I[85] = (T)(img)(_p12##x,_p10##y,z,c), I[86] = (T)(img)(_p11##x,_p10##y,z,c), I[87] = (T)(img)(_p10##x,_p10##y,z,c), I[88] = (T)(img)(_p9##x,_p10##y,z,c), I[89] = (T)(img)(_p8##x,_p10##y,z,c), I[90] = (T)(img)(_p7##x,_p10##y,z,c), I[91] = (T)(img)(_p6##x,_p10##y,z,c), I[92] = (T)(img)(_p5##x,_p10##y,z,c), I[93] = (T)(img)(_p4##x,_p10##y,z,c), I[94] = (T)(img)(_p3##x,_p10##y,z,c), I[95] = (T)(img)(_p2##x,_p10##y,z,c), I[96] = (T)(img)(_p1##x,_p10##y,z,c), I[97] = (T)(img)(x,_p10##y,z,c), I[98] = (T)(img)(_n1##x,_p10##y,z,c), I[99] = (T)(img)(_n2##x,_p10##y,z,c), I[100] = (T)(img)(_n3##x,_p10##y,z,c), I[101] = (T)(img)(_n4##x,_p10##y,z,c), I[102] = (T)(img)(_n5##x,_p10##y,z,c), I[103] = (T)(img)(_n6##x,_p10##y,z,c), I[104] = (T)(img)(_n7##x,_p10##y,z,c), I[105] = (T)(img)(_n8##x,_p10##y,z,c), I[106] = (T)(img)(_n9##x,_p10##y,z,c), I[107] = (T)(img)(_n10##x,_p10##y,z,c), I[108] = (T)(img)(_n11##x,_p10##y,z,c), I[109] = (T)(img)(_n12##x,_p10##y,z,c), I[110] = (T)(img)(_n13##x,_p10##y,z,c), I[111] = (T)(img)(_n14##x,_p10##y,z,c), \
|
|
I[112] = (T)(img)(_p13##x,_p9##y,z,c), I[113] = (T)(img)(_p12##x,_p9##y,z,c), I[114] = (T)(img)(_p11##x,_p9##y,z,c), I[115] = (T)(img)(_p10##x,_p9##y,z,c), I[116] = (T)(img)(_p9##x,_p9##y,z,c), I[117] = (T)(img)(_p8##x,_p9##y,z,c), I[118] = (T)(img)(_p7##x,_p9##y,z,c), I[119] = (T)(img)(_p6##x,_p9##y,z,c), I[120] = (T)(img)(_p5##x,_p9##y,z,c), I[121] = (T)(img)(_p4##x,_p9##y,z,c), I[122] = (T)(img)(_p3##x,_p9##y,z,c), I[123] = (T)(img)(_p2##x,_p9##y,z,c), I[124] = (T)(img)(_p1##x,_p9##y,z,c), I[125] = (T)(img)(x,_p9##y,z,c), I[126] = (T)(img)(_n1##x,_p9##y,z,c), I[127] = (T)(img)(_n2##x,_p9##y,z,c), I[128] = (T)(img)(_n3##x,_p9##y,z,c), I[129] = (T)(img)(_n4##x,_p9##y,z,c), I[130] = (T)(img)(_n5##x,_p9##y,z,c), I[131] = (T)(img)(_n6##x,_p9##y,z,c), I[132] = (T)(img)(_n7##x,_p9##y,z,c), I[133] = (T)(img)(_n8##x,_p9##y,z,c), I[134] = (T)(img)(_n9##x,_p9##y,z,c), I[135] = (T)(img)(_n10##x,_p9##y,z,c), I[136] = (T)(img)(_n11##x,_p9##y,z,c), I[137] = (T)(img)(_n12##x,_p9##y,z,c), I[138] = (T)(img)(_n13##x,_p9##y,z,c), I[139] = (T)(img)(_n14##x,_p9##y,z,c), \
|
|
I[140] = (T)(img)(_p13##x,_p8##y,z,c), I[141] = (T)(img)(_p12##x,_p8##y,z,c), I[142] = (T)(img)(_p11##x,_p8##y,z,c), I[143] = (T)(img)(_p10##x,_p8##y,z,c), I[144] = (T)(img)(_p9##x,_p8##y,z,c), I[145] = (T)(img)(_p8##x,_p8##y,z,c), I[146] = (T)(img)(_p7##x,_p8##y,z,c), I[147] = (T)(img)(_p6##x,_p8##y,z,c), I[148] = (T)(img)(_p5##x,_p8##y,z,c), I[149] = (T)(img)(_p4##x,_p8##y,z,c), I[150] = (T)(img)(_p3##x,_p8##y,z,c), I[151] = (T)(img)(_p2##x,_p8##y,z,c), I[152] = (T)(img)(_p1##x,_p8##y,z,c), I[153] = (T)(img)(x,_p8##y,z,c), I[154] = (T)(img)(_n1##x,_p8##y,z,c), I[155] = (T)(img)(_n2##x,_p8##y,z,c), I[156] = (T)(img)(_n3##x,_p8##y,z,c), I[157] = (T)(img)(_n4##x,_p8##y,z,c), I[158] = (T)(img)(_n5##x,_p8##y,z,c), I[159] = (T)(img)(_n6##x,_p8##y,z,c), I[160] = (T)(img)(_n7##x,_p8##y,z,c), I[161] = (T)(img)(_n8##x,_p8##y,z,c), I[162] = (T)(img)(_n9##x,_p8##y,z,c), I[163] = (T)(img)(_n10##x,_p8##y,z,c), I[164] = (T)(img)(_n11##x,_p8##y,z,c), I[165] = (T)(img)(_n12##x,_p8##y,z,c), I[166] = (T)(img)(_n13##x,_p8##y,z,c), I[167] = (T)(img)(_n14##x,_p8##y,z,c), \
|
|
I[168] = (T)(img)(_p13##x,_p7##y,z,c), I[169] = (T)(img)(_p12##x,_p7##y,z,c), I[170] = (T)(img)(_p11##x,_p7##y,z,c), I[171] = (T)(img)(_p10##x,_p7##y,z,c), I[172] = (T)(img)(_p9##x,_p7##y,z,c), I[173] = (T)(img)(_p8##x,_p7##y,z,c), I[174] = (T)(img)(_p7##x,_p7##y,z,c), I[175] = (T)(img)(_p6##x,_p7##y,z,c), I[176] = (T)(img)(_p5##x,_p7##y,z,c), I[177] = (T)(img)(_p4##x,_p7##y,z,c), I[178] = (T)(img)(_p3##x,_p7##y,z,c), I[179] = (T)(img)(_p2##x,_p7##y,z,c), I[180] = (T)(img)(_p1##x,_p7##y,z,c), I[181] = (T)(img)(x,_p7##y,z,c), I[182] = (T)(img)(_n1##x,_p7##y,z,c), I[183] = (T)(img)(_n2##x,_p7##y,z,c), I[184] = (T)(img)(_n3##x,_p7##y,z,c), I[185] = (T)(img)(_n4##x,_p7##y,z,c), I[186] = (T)(img)(_n5##x,_p7##y,z,c), I[187] = (T)(img)(_n6##x,_p7##y,z,c), I[188] = (T)(img)(_n7##x,_p7##y,z,c), I[189] = (T)(img)(_n8##x,_p7##y,z,c), I[190] = (T)(img)(_n9##x,_p7##y,z,c), I[191] = (T)(img)(_n10##x,_p7##y,z,c), I[192] = (T)(img)(_n11##x,_p7##y,z,c), I[193] = (T)(img)(_n12##x,_p7##y,z,c), I[194] = (T)(img)(_n13##x,_p7##y,z,c), I[195] = (T)(img)(_n14##x,_p7##y,z,c), \
|
|
I[196] = (T)(img)(_p13##x,_p6##y,z,c), I[197] = (T)(img)(_p12##x,_p6##y,z,c), I[198] = (T)(img)(_p11##x,_p6##y,z,c), I[199] = (T)(img)(_p10##x,_p6##y,z,c), I[200] = (T)(img)(_p9##x,_p6##y,z,c), I[201] = (T)(img)(_p8##x,_p6##y,z,c), I[202] = (T)(img)(_p7##x,_p6##y,z,c), I[203] = (T)(img)(_p6##x,_p6##y,z,c), I[204] = (T)(img)(_p5##x,_p6##y,z,c), I[205] = (T)(img)(_p4##x,_p6##y,z,c), I[206] = (T)(img)(_p3##x,_p6##y,z,c), I[207] = (T)(img)(_p2##x,_p6##y,z,c), I[208] = (T)(img)(_p1##x,_p6##y,z,c), I[209] = (T)(img)(x,_p6##y,z,c), I[210] = (T)(img)(_n1##x,_p6##y,z,c), I[211] = (T)(img)(_n2##x,_p6##y,z,c), I[212] = (T)(img)(_n3##x,_p6##y,z,c), I[213] = (T)(img)(_n4##x,_p6##y,z,c), I[214] = (T)(img)(_n5##x,_p6##y,z,c), I[215] = (T)(img)(_n6##x,_p6##y,z,c), I[216] = (T)(img)(_n7##x,_p6##y,z,c), I[217] = (T)(img)(_n8##x,_p6##y,z,c), I[218] = (T)(img)(_n9##x,_p6##y,z,c), I[219] = (T)(img)(_n10##x,_p6##y,z,c), I[220] = (T)(img)(_n11##x,_p6##y,z,c), I[221] = (T)(img)(_n12##x,_p6##y,z,c), I[222] = (T)(img)(_n13##x,_p6##y,z,c), I[223] = (T)(img)(_n14##x,_p6##y,z,c), \
|
|
I[224] = (T)(img)(_p13##x,_p5##y,z,c), I[225] = (T)(img)(_p12##x,_p5##y,z,c), I[226] = (T)(img)(_p11##x,_p5##y,z,c), I[227] = (T)(img)(_p10##x,_p5##y,z,c), I[228] = (T)(img)(_p9##x,_p5##y,z,c), I[229] = (T)(img)(_p8##x,_p5##y,z,c), I[230] = (T)(img)(_p7##x,_p5##y,z,c), I[231] = (T)(img)(_p6##x,_p5##y,z,c), I[232] = (T)(img)(_p5##x,_p5##y,z,c), I[233] = (T)(img)(_p4##x,_p5##y,z,c), I[234] = (T)(img)(_p3##x,_p5##y,z,c), I[235] = (T)(img)(_p2##x,_p5##y,z,c), I[236] = (T)(img)(_p1##x,_p5##y,z,c), I[237] = (T)(img)(x,_p5##y,z,c), I[238] = (T)(img)(_n1##x,_p5##y,z,c), I[239] = (T)(img)(_n2##x,_p5##y,z,c), I[240] = (T)(img)(_n3##x,_p5##y,z,c), I[241] = (T)(img)(_n4##x,_p5##y,z,c), I[242] = (T)(img)(_n5##x,_p5##y,z,c), I[243] = (T)(img)(_n6##x,_p5##y,z,c), I[244] = (T)(img)(_n7##x,_p5##y,z,c), I[245] = (T)(img)(_n8##x,_p5##y,z,c), I[246] = (T)(img)(_n9##x,_p5##y,z,c), I[247] = (T)(img)(_n10##x,_p5##y,z,c), I[248] = (T)(img)(_n11##x,_p5##y,z,c), I[249] = (T)(img)(_n12##x,_p5##y,z,c), I[250] = (T)(img)(_n13##x,_p5##y,z,c), I[251] = (T)(img)(_n14##x,_p5##y,z,c), \
|
|
I[252] = (T)(img)(_p13##x,_p4##y,z,c), I[253] = (T)(img)(_p12##x,_p4##y,z,c), I[254] = (T)(img)(_p11##x,_p4##y,z,c), I[255] = (T)(img)(_p10##x,_p4##y,z,c), I[256] = (T)(img)(_p9##x,_p4##y,z,c), I[257] = (T)(img)(_p8##x,_p4##y,z,c), I[258] = (T)(img)(_p7##x,_p4##y,z,c), I[259] = (T)(img)(_p6##x,_p4##y,z,c), I[260] = (T)(img)(_p5##x,_p4##y,z,c), I[261] = (T)(img)(_p4##x,_p4##y,z,c), I[262] = (T)(img)(_p3##x,_p4##y,z,c), I[263] = (T)(img)(_p2##x,_p4##y,z,c), I[264] = (T)(img)(_p1##x,_p4##y,z,c), I[265] = (T)(img)(x,_p4##y,z,c), I[266] = (T)(img)(_n1##x,_p4##y,z,c), I[267] = (T)(img)(_n2##x,_p4##y,z,c), I[268] = (T)(img)(_n3##x,_p4##y,z,c), I[269] = (T)(img)(_n4##x,_p4##y,z,c), I[270] = (T)(img)(_n5##x,_p4##y,z,c), I[271] = (T)(img)(_n6##x,_p4##y,z,c), I[272] = (T)(img)(_n7##x,_p4##y,z,c), I[273] = (T)(img)(_n8##x,_p4##y,z,c), I[274] = (T)(img)(_n9##x,_p4##y,z,c), I[275] = (T)(img)(_n10##x,_p4##y,z,c), I[276] = (T)(img)(_n11##x,_p4##y,z,c), I[277] = (T)(img)(_n12##x,_p4##y,z,c), I[278] = (T)(img)(_n13##x,_p4##y,z,c), I[279] = (T)(img)(_n14##x,_p4##y,z,c), \
|
|
I[280] = (T)(img)(_p13##x,_p3##y,z,c), I[281] = (T)(img)(_p12##x,_p3##y,z,c), I[282] = (T)(img)(_p11##x,_p3##y,z,c), I[283] = (T)(img)(_p10##x,_p3##y,z,c), I[284] = (T)(img)(_p9##x,_p3##y,z,c), I[285] = (T)(img)(_p8##x,_p3##y,z,c), I[286] = (T)(img)(_p7##x,_p3##y,z,c), I[287] = (T)(img)(_p6##x,_p3##y,z,c), I[288] = (T)(img)(_p5##x,_p3##y,z,c), I[289] = (T)(img)(_p4##x,_p3##y,z,c), I[290] = (T)(img)(_p3##x,_p3##y,z,c), I[291] = (T)(img)(_p2##x,_p3##y,z,c), I[292] = (T)(img)(_p1##x,_p3##y,z,c), I[293] = (T)(img)(x,_p3##y,z,c), I[294] = (T)(img)(_n1##x,_p3##y,z,c), I[295] = (T)(img)(_n2##x,_p3##y,z,c), I[296] = (T)(img)(_n3##x,_p3##y,z,c), I[297] = (T)(img)(_n4##x,_p3##y,z,c), I[298] = (T)(img)(_n5##x,_p3##y,z,c), I[299] = (T)(img)(_n6##x,_p3##y,z,c), I[300] = (T)(img)(_n7##x,_p3##y,z,c), I[301] = (T)(img)(_n8##x,_p3##y,z,c), I[302] = (T)(img)(_n9##x,_p3##y,z,c), I[303] = (T)(img)(_n10##x,_p3##y,z,c), I[304] = (T)(img)(_n11##x,_p3##y,z,c), I[305] = (T)(img)(_n12##x,_p3##y,z,c), I[306] = (T)(img)(_n13##x,_p3##y,z,c), I[307] = (T)(img)(_n14##x,_p3##y,z,c), \
|
|
I[308] = (T)(img)(_p13##x,_p2##y,z,c), I[309] = (T)(img)(_p12##x,_p2##y,z,c), I[310] = (T)(img)(_p11##x,_p2##y,z,c), I[311] = (T)(img)(_p10##x,_p2##y,z,c), I[312] = (T)(img)(_p9##x,_p2##y,z,c), I[313] = (T)(img)(_p8##x,_p2##y,z,c), I[314] = (T)(img)(_p7##x,_p2##y,z,c), I[315] = (T)(img)(_p6##x,_p2##y,z,c), I[316] = (T)(img)(_p5##x,_p2##y,z,c), I[317] = (T)(img)(_p4##x,_p2##y,z,c), I[318] = (T)(img)(_p3##x,_p2##y,z,c), I[319] = (T)(img)(_p2##x,_p2##y,z,c), I[320] = (T)(img)(_p1##x,_p2##y,z,c), I[321] = (T)(img)(x,_p2##y,z,c), I[322] = (T)(img)(_n1##x,_p2##y,z,c), I[323] = (T)(img)(_n2##x,_p2##y,z,c), I[324] = (T)(img)(_n3##x,_p2##y,z,c), I[325] = (T)(img)(_n4##x,_p2##y,z,c), I[326] = (T)(img)(_n5##x,_p2##y,z,c), I[327] = (T)(img)(_n6##x,_p2##y,z,c), I[328] = (T)(img)(_n7##x,_p2##y,z,c), I[329] = (T)(img)(_n8##x,_p2##y,z,c), I[330] = (T)(img)(_n9##x,_p2##y,z,c), I[331] = (T)(img)(_n10##x,_p2##y,z,c), I[332] = (T)(img)(_n11##x,_p2##y,z,c), I[333] = (T)(img)(_n12##x,_p2##y,z,c), I[334] = (T)(img)(_n13##x,_p2##y,z,c), I[335] = (T)(img)(_n14##x,_p2##y,z,c), \
|
|
I[336] = (T)(img)(_p13##x,_p1##y,z,c), I[337] = (T)(img)(_p12##x,_p1##y,z,c), I[338] = (T)(img)(_p11##x,_p1##y,z,c), I[339] = (T)(img)(_p10##x,_p1##y,z,c), I[340] = (T)(img)(_p9##x,_p1##y,z,c), I[341] = (T)(img)(_p8##x,_p1##y,z,c), I[342] = (T)(img)(_p7##x,_p1##y,z,c), I[343] = (T)(img)(_p6##x,_p1##y,z,c), I[344] = (T)(img)(_p5##x,_p1##y,z,c), I[345] = (T)(img)(_p4##x,_p1##y,z,c), I[346] = (T)(img)(_p3##x,_p1##y,z,c), I[347] = (T)(img)(_p2##x,_p1##y,z,c), I[348] = (T)(img)(_p1##x,_p1##y,z,c), I[349] = (T)(img)(x,_p1##y,z,c), I[350] = (T)(img)(_n1##x,_p1##y,z,c), I[351] = (T)(img)(_n2##x,_p1##y,z,c), I[352] = (T)(img)(_n3##x,_p1##y,z,c), I[353] = (T)(img)(_n4##x,_p1##y,z,c), I[354] = (T)(img)(_n5##x,_p1##y,z,c), I[355] = (T)(img)(_n6##x,_p1##y,z,c), I[356] = (T)(img)(_n7##x,_p1##y,z,c), I[357] = (T)(img)(_n8##x,_p1##y,z,c), I[358] = (T)(img)(_n9##x,_p1##y,z,c), I[359] = (T)(img)(_n10##x,_p1##y,z,c), I[360] = (T)(img)(_n11##x,_p1##y,z,c), I[361] = (T)(img)(_n12##x,_p1##y,z,c), I[362] = (T)(img)(_n13##x,_p1##y,z,c), I[363] = (T)(img)(_n14##x,_p1##y,z,c), \
|
|
I[364] = (T)(img)(_p13##x,y,z,c), I[365] = (T)(img)(_p12##x,y,z,c), I[366] = (T)(img)(_p11##x,y,z,c), I[367] = (T)(img)(_p10##x,y,z,c), I[368] = (T)(img)(_p9##x,y,z,c), I[369] = (T)(img)(_p8##x,y,z,c), I[370] = (T)(img)(_p7##x,y,z,c), I[371] = (T)(img)(_p6##x,y,z,c), I[372] = (T)(img)(_p5##x,y,z,c), I[373] = (T)(img)(_p4##x,y,z,c), I[374] = (T)(img)(_p3##x,y,z,c), I[375] = (T)(img)(_p2##x,y,z,c), I[376] = (T)(img)(_p1##x,y,z,c), I[377] = (T)(img)(x,y,z,c), I[378] = (T)(img)(_n1##x,y,z,c), I[379] = (T)(img)(_n2##x,y,z,c), I[380] = (T)(img)(_n3##x,y,z,c), I[381] = (T)(img)(_n4##x,y,z,c), I[382] = (T)(img)(_n5##x,y,z,c), I[383] = (T)(img)(_n6##x,y,z,c), I[384] = (T)(img)(_n7##x,y,z,c), I[385] = (T)(img)(_n8##x,y,z,c), I[386] = (T)(img)(_n9##x,y,z,c), I[387] = (T)(img)(_n10##x,y,z,c), I[388] = (T)(img)(_n11##x,y,z,c), I[389] = (T)(img)(_n12##x,y,z,c), I[390] = (T)(img)(_n13##x,y,z,c), I[391] = (T)(img)(_n14##x,y,z,c), \
|
|
I[392] = (T)(img)(_p13##x,_n1##y,z,c), I[393] = (T)(img)(_p12##x,_n1##y,z,c), I[394] = (T)(img)(_p11##x,_n1##y,z,c), I[395] = (T)(img)(_p10##x,_n1##y,z,c), I[396] = (T)(img)(_p9##x,_n1##y,z,c), I[397] = (T)(img)(_p8##x,_n1##y,z,c), I[398] = (T)(img)(_p7##x,_n1##y,z,c), I[399] = (T)(img)(_p6##x,_n1##y,z,c), I[400] = (T)(img)(_p5##x,_n1##y,z,c), I[401] = (T)(img)(_p4##x,_n1##y,z,c), I[402] = (T)(img)(_p3##x,_n1##y,z,c), I[403] = (T)(img)(_p2##x,_n1##y,z,c), I[404] = (T)(img)(_p1##x,_n1##y,z,c), I[405] = (T)(img)(x,_n1##y,z,c), I[406] = (T)(img)(_n1##x,_n1##y,z,c), I[407] = (T)(img)(_n2##x,_n1##y,z,c), I[408] = (T)(img)(_n3##x,_n1##y,z,c), I[409] = (T)(img)(_n4##x,_n1##y,z,c), I[410] = (T)(img)(_n5##x,_n1##y,z,c), I[411] = (T)(img)(_n6##x,_n1##y,z,c), I[412] = (T)(img)(_n7##x,_n1##y,z,c), I[413] = (T)(img)(_n8##x,_n1##y,z,c), I[414] = (T)(img)(_n9##x,_n1##y,z,c), I[415] = (T)(img)(_n10##x,_n1##y,z,c), I[416] = (T)(img)(_n11##x,_n1##y,z,c), I[417] = (T)(img)(_n12##x,_n1##y,z,c), I[418] = (T)(img)(_n13##x,_n1##y,z,c), I[419] = (T)(img)(_n14##x,_n1##y,z,c), \
|
|
I[420] = (T)(img)(_p13##x,_n2##y,z,c), I[421] = (T)(img)(_p12##x,_n2##y,z,c), I[422] = (T)(img)(_p11##x,_n2##y,z,c), I[423] = (T)(img)(_p10##x,_n2##y,z,c), I[424] = (T)(img)(_p9##x,_n2##y,z,c), I[425] = (T)(img)(_p8##x,_n2##y,z,c), I[426] = (T)(img)(_p7##x,_n2##y,z,c), I[427] = (T)(img)(_p6##x,_n2##y,z,c), I[428] = (T)(img)(_p5##x,_n2##y,z,c), I[429] = (T)(img)(_p4##x,_n2##y,z,c), I[430] = (T)(img)(_p3##x,_n2##y,z,c), I[431] = (T)(img)(_p2##x,_n2##y,z,c), I[432] = (T)(img)(_p1##x,_n2##y,z,c), I[433] = (T)(img)(x,_n2##y,z,c), I[434] = (T)(img)(_n1##x,_n2##y,z,c), I[435] = (T)(img)(_n2##x,_n2##y,z,c), I[436] = (T)(img)(_n3##x,_n2##y,z,c), I[437] = (T)(img)(_n4##x,_n2##y,z,c), I[438] = (T)(img)(_n5##x,_n2##y,z,c), I[439] = (T)(img)(_n6##x,_n2##y,z,c), I[440] = (T)(img)(_n7##x,_n2##y,z,c), I[441] = (T)(img)(_n8##x,_n2##y,z,c), I[442] = (T)(img)(_n9##x,_n2##y,z,c), I[443] = (T)(img)(_n10##x,_n2##y,z,c), I[444] = (T)(img)(_n11##x,_n2##y,z,c), I[445] = (T)(img)(_n12##x,_n2##y,z,c), I[446] = (T)(img)(_n13##x,_n2##y,z,c), I[447] = (T)(img)(_n14##x,_n2##y,z,c), \
|
|
I[448] = (T)(img)(_p13##x,_n3##y,z,c), I[449] = (T)(img)(_p12##x,_n3##y,z,c), I[450] = (T)(img)(_p11##x,_n3##y,z,c), I[451] = (T)(img)(_p10##x,_n3##y,z,c), I[452] = (T)(img)(_p9##x,_n3##y,z,c), I[453] = (T)(img)(_p8##x,_n3##y,z,c), I[454] = (T)(img)(_p7##x,_n3##y,z,c), I[455] = (T)(img)(_p6##x,_n3##y,z,c), I[456] = (T)(img)(_p5##x,_n3##y,z,c), I[457] = (T)(img)(_p4##x,_n3##y,z,c), I[458] = (T)(img)(_p3##x,_n3##y,z,c), I[459] = (T)(img)(_p2##x,_n3##y,z,c), I[460] = (T)(img)(_p1##x,_n3##y,z,c), I[461] = (T)(img)(x,_n3##y,z,c), I[462] = (T)(img)(_n1##x,_n3##y,z,c), I[463] = (T)(img)(_n2##x,_n3##y,z,c), I[464] = (T)(img)(_n3##x,_n3##y,z,c), I[465] = (T)(img)(_n4##x,_n3##y,z,c), I[466] = (T)(img)(_n5##x,_n3##y,z,c), I[467] = (T)(img)(_n6##x,_n3##y,z,c), I[468] = (T)(img)(_n7##x,_n3##y,z,c), I[469] = (T)(img)(_n8##x,_n3##y,z,c), I[470] = (T)(img)(_n9##x,_n3##y,z,c), I[471] = (T)(img)(_n10##x,_n3##y,z,c), I[472] = (T)(img)(_n11##x,_n3##y,z,c), I[473] = (T)(img)(_n12##x,_n3##y,z,c), I[474] = (T)(img)(_n13##x,_n3##y,z,c), I[475] = (T)(img)(_n14##x,_n3##y,z,c), \
|
|
I[476] = (T)(img)(_p13##x,_n4##y,z,c), I[477] = (T)(img)(_p12##x,_n4##y,z,c), I[478] = (T)(img)(_p11##x,_n4##y,z,c), I[479] = (T)(img)(_p10##x,_n4##y,z,c), I[480] = (T)(img)(_p9##x,_n4##y,z,c), I[481] = (T)(img)(_p8##x,_n4##y,z,c), I[482] = (T)(img)(_p7##x,_n4##y,z,c), I[483] = (T)(img)(_p6##x,_n4##y,z,c), I[484] = (T)(img)(_p5##x,_n4##y,z,c), I[485] = (T)(img)(_p4##x,_n4##y,z,c), I[486] = (T)(img)(_p3##x,_n4##y,z,c), I[487] = (T)(img)(_p2##x,_n4##y,z,c), I[488] = (T)(img)(_p1##x,_n4##y,z,c), I[489] = (T)(img)(x,_n4##y,z,c), I[490] = (T)(img)(_n1##x,_n4##y,z,c), I[491] = (T)(img)(_n2##x,_n4##y,z,c), I[492] = (T)(img)(_n3##x,_n4##y,z,c), I[493] = (T)(img)(_n4##x,_n4##y,z,c), I[494] = (T)(img)(_n5##x,_n4##y,z,c), I[495] = (T)(img)(_n6##x,_n4##y,z,c), I[496] = (T)(img)(_n7##x,_n4##y,z,c), I[497] = (T)(img)(_n8##x,_n4##y,z,c), I[498] = (T)(img)(_n9##x,_n4##y,z,c), I[499] = (T)(img)(_n10##x,_n4##y,z,c), I[500] = (T)(img)(_n11##x,_n4##y,z,c), I[501] = (T)(img)(_n12##x,_n4##y,z,c), I[502] = (T)(img)(_n13##x,_n4##y,z,c), I[503] = (T)(img)(_n14##x,_n4##y,z,c), \
|
|
I[504] = (T)(img)(_p13##x,_n5##y,z,c), I[505] = (T)(img)(_p12##x,_n5##y,z,c), I[506] = (T)(img)(_p11##x,_n5##y,z,c), I[507] = (T)(img)(_p10##x,_n5##y,z,c), I[508] = (T)(img)(_p9##x,_n5##y,z,c), I[509] = (T)(img)(_p8##x,_n5##y,z,c), I[510] = (T)(img)(_p7##x,_n5##y,z,c), I[511] = (T)(img)(_p6##x,_n5##y,z,c), I[512] = (T)(img)(_p5##x,_n5##y,z,c), I[513] = (T)(img)(_p4##x,_n5##y,z,c), I[514] = (T)(img)(_p3##x,_n5##y,z,c), I[515] = (T)(img)(_p2##x,_n5##y,z,c), I[516] = (T)(img)(_p1##x,_n5##y,z,c), I[517] = (T)(img)(x,_n5##y,z,c), I[518] = (T)(img)(_n1##x,_n5##y,z,c), I[519] = (T)(img)(_n2##x,_n5##y,z,c), I[520] = (T)(img)(_n3##x,_n5##y,z,c), I[521] = (T)(img)(_n4##x,_n5##y,z,c), I[522] = (T)(img)(_n5##x,_n5##y,z,c), I[523] = (T)(img)(_n6##x,_n5##y,z,c), I[524] = (T)(img)(_n7##x,_n5##y,z,c), I[525] = (T)(img)(_n8##x,_n5##y,z,c), I[526] = (T)(img)(_n9##x,_n5##y,z,c), I[527] = (T)(img)(_n10##x,_n5##y,z,c), I[528] = (T)(img)(_n11##x,_n5##y,z,c), I[529] = (T)(img)(_n12##x,_n5##y,z,c), I[530] = (T)(img)(_n13##x,_n5##y,z,c), I[531] = (T)(img)(_n14##x,_n5##y,z,c), \
|
|
I[532] = (T)(img)(_p13##x,_n6##y,z,c), I[533] = (T)(img)(_p12##x,_n6##y,z,c), I[534] = (T)(img)(_p11##x,_n6##y,z,c), I[535] = (T)(img)(_p10##x,_n6##y,z,c), I[536] = (T)(img)(_p9##x,_n6##y,z,c), I[537] = (T)(img)(_p8##x,_n6##y,z,c), I[538] = (T)(img)(_p7##x,_n6##y,z,c), I[539] = (T)(img)(_p6##x,_n6##y,z,c), I[540] = (T)(img)(_p5##x,_n6##y,z,c), I[541] = (T)(img)(_p4##x,_n6##y,z,c), I[542] = (T)(img)(_p3##x,_n6##y,z,c), I[543] = (T)(img)(_p2##x,_n6##y,z,c), I[544] = (T)(img)(_p1##x,_n6##y,z,c), I[545] = (T)(img)(x,_n6##y,z,c), I[546] = (T)(img)(_n1##x,_n6##y,z,c), I[547] = (T)(img)(_n2##x,_n6##y,z,c), I[548] = (T)(img)(_n3##x,_n6##y,z,c), I[549] = (T)(img)(_n4##x,_n6##y,z,c), I[550] = (T)(img)(_n5##x,_n6##y,z,c), I[551] = (T)(img)(_n6##x,_n6##y,z,c), I[552] = (T)(img)(_n7##x,_n6##y,z,c), I[553] = (T)(img)(_n8##x,_n6##y,z,c), I[554] = (T)(img)(_n9##x,_n6##y,z,c), I[555] = (T)(img)(_n10##x,_n6##y,z,c), I[556] = (T)(img)(_n11##x,_n6##y,z,c), I[557] = (T)(img)(_n12##x,_n6##y,z,c), I[558] = (T)(img)(_n13##x,_n6##y,z,c), I[559] = (T)(img)(_n14##x,_n6##y,z,c), \
|
|
I[560] = (T)(img)(_p13##x,_n7##y,z,c), I[561] = (T)(img)(_p12##x,_n7##y,z,c), I[562] = (T)(img)(_p11##x,_n7##y,z,c), I[563] = (T)(img)(_p10##x,_n7##y,z,c), I[564] = (T)(img)(_p9##x,_n7##y,z,c), I[565] = (T)(img)(_p8##x,_n7##y,z,c), I[566] = (T)(img)(_p7##x,_n7##y,z,c), I[567] = (T)(img)(_p6##x,_n7##y,z,c), I[568] = (T)(img)(_p5##x,_n7##y,z,c), I[569] = (T)(img)(_p4##x,_n7##y,z,c), I[570] = (T)(img)(_p3##x,_n7##y,z,c), I[571] = (T)(img)(_p2##x,_n7##y,z,c), I[572] = (T)(img)(_p1##x,_n7##y,z,c), I[573] = (T)(img)(x,_n7##y,z,c), I[574] = (T)(img)(_n1##x,_n7##y,z,c), I[575] = (T)(img)(_n2##x,_n7##y,z,c), I[576] = (T)(img)(_n3##x,_n7##y,z,c), I[577] = (T)(img)(_n4##x,_n7##y,z,c), I[578] = (T)(img)(_n5##x,_n7##y,z,c), I[579] = (T)(img)(_n6##x,_n7##y,z,c), I[580] = (T)(img)(_n7##x,_n7##y,z,c), I[581] = (T)(img)(_n8##x,_n7##y,z,c), I[582] = (T)(img)(_n9##x,_n7##y,z,c), I[583] = (T)(img)(_n10##x,_n7##y,z,c), I[584] = (T)(img)(_n11##x,_n7##y,z,c), I[585] = (T)(img)(_n12##x,_n7##y,z,c), I[586] = (T)(img)(_n13##x,_n7##y,z,c), I[587] = (T)(img)(_n14##x,_n7##y,z,c), \
|
|
I[588] = (T)(img)(_p13##x,_n8##y,z,c), I[589] = (T)(img)(_p12##x,_n8##y,z,c), I[590] = (T)(img)(_p11##x,_n8##y,z,c), I[591] = (T)(img)(_p10##x,_n8##y,z,c), I[592] = (T)(img)(_p9##x,_n8##y,z,c), I[593] = (T)(img)(_p8##x,_n8##y,z,c), I[594] = (T)(img)(_p7##x,_n8##y,z,c), I[595] = (T)(img)(_p6##x,_n8##y,z,c), I[596] = (T)(img)(_p5##x,_n8##y,z,c), I[597] = (T)(img)(_p4##x,_n8##y,z,c), I[598] = (T)(img)(_p3##x,_n8##y,z,c), I[599] = (T)(img)(_p2##x,_n8##y,z,c), I[600] = (T)(img)(_p1##x,_n8##y,z,c), I[601] = (T)(img)(x,_n8##y,z,c), I[602] = (T)(img)(_n1##x,_n8##y,z,c), I[603] = (T)(img)(_n2##x,_n8##y,z,c), I[604] = (T)(img)(_n3##x,_n8##y,z,c), I[605] = (T)(img)(_n4##x,_n8##y,z,c), I[606] = (T)(img)(_n5##x,_n8##y,z,c), I[607] = (T)(img)(_n6##x,_n8##y,z,c), I[608] = (T)(img)(_n7##x,_n8##y,z,c), I[609] = (T)(img)(_n8##x,_n8##y,z,c), I[610] = (T)(img)(_n9##x,_n8##y,z,c), I[611] = (T)(img)(_n10##x,_n8##y,z,c), I[612] = (T)(img)(_n11##x,_n8##y,z,c), I[613] = (T)(img)(_n12##x,_n8##y,z,c), I[614] = (T)(img)(_n13##x,_n8##y,z,c), I[615] = (T)(img)(_n14##x,_n8##y,z,c), \
|
|
I[616] = (T)(img)(_p13##x,_n9##y,z,c), I[617] = (T)(img)(_p12##x,_n9##y,z,c), I[618] = (T)(img)(_p11##x,_n9##y,z,c), I[619] = (T)(img)(_p10##x,_n9##y,z,c), I[620] = (T)(img)(_p9##x,_n9##y,z,c), I[621] = (T)(img)(_p8##x,_n9##y,z,c), I[622] = (T)(img)(_p7##x,_n9##y,z,c), I[623] = (T)(img)(_p6##x,_n9##y,z,c), I[624] = (T)(img)(_p5##x,_n9##y,z,c), I[625] = (T)(img)(_p4##x,_n9##y,z,c), I[626] = (T)(img)(_p3##x,_n9##y,z,c), I[627] = (T)(img)(_p2##x,_n9##y,z,c), I[628] = (T)(img)(_p1##x,_n9##y,z,c), I[629] = (T)(img)(x,_n9##y,z,c), I[630] = (T)(img)(_n1##x,_n9##y,z,c), I[631] = (T)(img)(_n2##x,_n9##y,z,c), I[632] = (T)(img)(_n3##x,_n9##y,z,c), I[633] = (T)(img)(_n4##x,_n9##y,z,c), I[634] = (T)(img)(_n5##x,_n9##y,z,c), I[635] = (T)(img)(_n6##x,_n9##y,z,c), I[636] = (T)(img)(_n7##x,_n9##y,z,c), I[637] = (T)(img)(_n8##x,_n9##y,z,c), I[638] = (T)(img)(_n9##x,_n9##y,z,c), I[639] = (T)(img)(_n10##x,_n9##y,z,c), I[640] = (T)(img)(_n11##x,_n9##y,z,c), I[641] = (T)(img)(_n12##x,_n9##y,z,c), I[642] = (T)(img)(_n13##x,_n9##y,z,c), I[643] = (T)(img)(_n14##x,_n9##y,z,c), \
|
|
I[644] = (T)(img)(_p13##x,_n10##y,z,c), I[645] = (T)(img)(_p12##x,_n10##y,z,c), I[646] = (T)(img)(_p11##x,_n10##y,z,c), I[647] = (T)(img)(_p10##x,_n10##y,z,c), I[648] = (T)(img)(_p9##x,_n10##y,z,c), I[649] = (T)(img)(_p8##x,_n10##y,z,c), I[650] = (T)(img)(_p7##x,_n10##y,z,c), I[651] = (T)(img)(_p6##x,_n10##y,z,c), I[652] = (T)(img)(_p5##x,_n10##y,z,c), I[653] = (T)(img)(_p4##x,_n10##y,z,c), I[654] = (T)(img)(_p3##x,_n10##y,z,c), I[655] = (T)(img)(_p2##x,_n10##y,z,c), I[656] = (T)(img)(_p1##x,_n10##y,z,c), I[657] = (T)(img)(x,_n10##y,z,c), I[658] = (T)(img)(_n1##x,_n10##y,z,c), I[659] = (T)(img)(_n2##x,_n10##y,z,c), I[660] = (T)(img)(_n3##x,_n10##y,z,c), I[661] = (T)(img)(_n4##x,_n10##y,z,c), I[662] = (T)(img)(_n5##x,_n10##y,z,c), I[663] = (T)(img)(_n6##x,_n10##y,z,c), I[664] = (T)(img)(_n7##x,_n10##y,z,c), I[665] = (T)(img)(_n8##x,_n10##y,z,c), I[666] = (T)(img)(_n9##x,_n10##y,z,c), I[667] = (T)(img)(_n10##x,_n10##y,z,c), I[668] = (T)(img)(_n11##x,_n10##y,z,c), I[669] = (T)(img)(_n12##x,_n10##y,z,c), I[670] = (T)(img)(_n13##x,_n10##y,z,c), I[671] = (T)(img)(_n14##x,_n10##y,z,c), \
|
|
I[672] = (T)(img)(_p13##x,_n11##y,z,c), I[673] = (T)(img)(_p12##x,_n11##y,z,c), I[674] = (T)(img)(_p11##x,_n11##y,z,c), I[675] = (T)(img)(_p10##x,_n11##y,z,c), I[676] = (T)(img)(_p9##x,_n11##y,z,c), I[677] = (T)(img)(_p8##x,_n11##y,z,c), I[678] = (T)(img)(_p7##x,_n11##y,z,c), I[679] = (T)(img)(_p6##x,_n11##y,z,c), I[680] = (T)(img)(_p5##x,_n11##y,z,c), I[681] = (T)(img)(_p4##x,_n11##y,z,c), I[682] = (T)(img)(_p3##x,_n11##y,z,c), I[683] = (T)(img)(_p2##x,_n11##y,z,c), I[684] = (T)(img)(_p1##x,_n11##y,z,c), I[685] = (T)(img)(x,_n11##y,z,c), I[686] = (T)(img)(_n1##x,_n11##y,z,c), I[687] = (T)(img)(_n2##x,_n11##y,z,c), I[688] = (T)(img)(_n3##x,_n11##y,z,c), I[689] = (T)(img)(_n4##x,_n11##y,z,c), I[690] = (T)(img)(_n5##x,_n11##y,z,c), I[691] = (T)(img)(_n6##x,_n11##y,z,c), I[692] = (T)(img)(_n7##x,_n11##y,z,c), I[693] = (T)(img)(_n8##x,_n11##y,z,c), I[694] = (T)(img)(_n9##x,_n11##y,z,c), I[695] = (T)(img)(_n10##x,_n11##y,z,c), I[696] = (T)(img)(_n11##x,_n11##y,z,c), I[697] = (T)(img)(_n12##x,_n11##y,z,c), I[698] = (T)(img)(_n13##x,_n11##y,z,c), I[699] = (T)(img)(_n14##x,_n11##y,z,c), \
|
|
I[700] = (T)(img)(_p13##x,_n12##y,z,c), I[701] = (T)(img)(_p12##x,_n12##y,z,c), I[702] = (T)(img)(_p11##x,_n12##y,z,c), I[703] = (T)(img)(_p10##x,_n12##y,z,c), I[704] = (T)(img)(_p9##x,_n12##y,z,c), I[705] = (T)(img)(_p8##x,_n12##y,z,c), I[706] = (T)(img)(_p7##x,_n12##y,z,c), I[707] = (T)(img)(_p6##x,_n12##y,z,c), I[708] = (T)(img)(_p5##x,_n12##y,z,c), I[709] = (T)(img)(_p4##x,_n12##y,z,c), I[710] = (T)(img)(_p3##x,_n12##y,z,c), I[711] = (T)(img)(_p2##x,_n12##y,z,c), I[712] = (T)(img)(_p1##x,_n12##y,z,c), I[713] = (T)(img)(x,_n12##y,z,c), I[714] = (T)(img)(_n1##x,_n12##y,z,c), I[715] = (T)(img)(_n2##x,_n12##y,z,c), I[716] = (T)(img)(_n3##x,_n12##y,z,c), I[717] = (T)(img)(_n4##x,_n12##y,z,c), I[718] = (T)(img)(_n5##x,_n12##y,z,c), I[719] = (T)(img)(_n6##x,_n12##y,z,c), I[720] = (T)(img)(_n7##x,_n12##y,z,c), I[721] = (T)(img)(_n8##x,_n12##y,z,c), I[722] = (T)(img)(_n9##x,_n12##y,z,c), I[723] = (T)(img)(_n10##x,_n12##y,z,c), I[724] = (T)(img)(_n11##x,_n12##y,z,c), I[725] = (T)(img)(_n12##x,_n12##y,z,c), I[726] = (T)(img)(_n13##x,_n12##y,z,c), I[727] = (T)(img)(_n14##x,_n12##y,z,c), \
|
|
I[728] = (T)(img)(_p13##x,_n13##y,z,c), I[729] = (T)(img)(_p12##x,_n13##y,z,c), I[730] = (T)(img)(_p11##x,_n13##y,z,c), I[731] = (T)(img)(_p10##x,_n13##y,z,c), I[732] = (T)(img)(_p9##x,_n13##y,z,c), I[733] = (T)(img)(_p8##x,_n13##y,z,c), I[734] = (T)(img)(_p7##x,_n13##y,z,c), I[735] = (T)(img)(_p6##x,_n13##y,z,c), I[736] = (T)(img)(_p5##x,_n13##y,z,c), I[737] = (T)(img)(_p4##x,_n13##y,z,c), I[738] = (T)(img)(_p3##x,_n13##y,z,c), I[739] = (T)(img)(_p2##x,_n13##y,z,c), I[740] = (T)(img)(_p1##x,_n13##y,z,c), I[741] = (T)(img)(x,_n13##y,z,c), I[742] = (T)(img)(_n1##x,_n13##y,z,c), I[743] = (T)(img)(_n2##x,_n13##y,z,c), I[744] = (T)(img)(_n3##x,_n13##y,z,c), I[745] = (T)(img)(_n4##x,_n13##y,z,c), I[746] = (T)(img)(_n5##x,_n13##y,z,c), I[747] = (T)(img)(_n6##x,_n13##y,z,c), I[748] = (T)(img)(_n7##x,_n13##y,z,c), I[749] = (T)(img)(_n8##x,_n13##y,z,c), I[750] = (T)(img)(_n9##x,_n13##y,z,c), I[751] = (T)(img)(_n10##x,_n13##y,z,c), I[752] = (T)(img)(_n11##x,_n13##y,z,c), I[753] = (T)(img)(_n12##x,_n13##y,z,c), I[754] = (T)(img)(_n13##x,_n13##y,z,c), I[755] = (T)(img)(_n14##x,_n13##y,z,c), \
|
|
I[756] = (T)(img)(_p13##x,_n14##y,z,c), I[757] = (T)(img)(_p12##x,_n14##y,z,c), I[758] = (T)(img)(_p11##x,_n14##y,z,c), I[759] = (T)(img)(_p10##x,_n14##y,z,c), I[760] = (T)(img)(_p9##x,_n14##y,z,c), I[761] = (T)(img)(_p8##x,_n14##y,z,c), I[762] = (T)(img)(_p7##x,_n14##y,z,c), I[763] = (T)(img)(_p6##x,_n14##y,z,c), I[764] = (T)(img)(_p5##x,_n14##y,z,c), I[765] = (T)(img)(_p4##x,_n14##y,z,c), I[766] = (T)(img)(_p3##x,_n14##y,z,c), I[767] = (T)(img)(_p2##x,_n14##y,z,c), I[768] = (T)(img)(_p1##x,_n14##y,z,c), I[769] = (T)(img)(x,_n14##y,z,c), I[770] = (T)(img)(_n1##x,_n14##y,z,c), I[771] = (T)(img)(_n2##x,_n14##y,z,c), I[772] = (T)(img)(_n3##x,_n14##y,z,c), I[773] = (T)(img)(_n4##x,_n14##y,z,c), I[774] = (T)(img)(_n5##x,_n14##y,z,c), I[775] = (T)(img)(_n6##x,_n14##y,z,c), I[776] = (T)(img)(_n7##x,_n14##y,z,c), I[777] = (T)(img)(_n8##x,_n14##y,z,c), I[778] = (T)(img)(_n9##x,_n14##y,z,c), I[779] = (T)(img)(_n10##x,_n14##y,z,c), I[780] = (T)(img)(_n11##x,_n14##y,z,c), I[781] = (T)(img)(_n12##x,_n14##y,z,c), I[782] = (T)(img)(_n13##x,_n14##y,z,c), I[783] = (T)(img)(_n14##x,_n14##y,z,c);
|
|
|
|
// Define 29x29 loop macros
|
|
//-------------------------
|
|
#define cimg_for29(bound,i) for (int i = 0, \
|
|
_p14##i = 0, _p13##i = 0, _p12##i = 0, _p11##i = 0, _p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
|
|
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
|
|
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
|
|
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
|
|
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
|
|
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
|
|
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
|
|
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
|
|
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9, \
|
|
_n10##i = 10>=(int)(bound)?(int)(bound) - 1:10, \
|
|
_n11##i = 11>=(int)(bound)?(int)(bound) - 1:11, \
|
|
_n12##i = 12>=(int)(bound)?(int)(bound) - 1:12, \
|
|
_n13##i = 13>=(int)(bound)?(int)(bound) - 1:13, \
|
|
_n14##i = 14>=(int)(bound)?(int)(bound) - 1:14; \
|
|
_n14##i<(int)(bound) || _n13##i==--_n14##i || _n12##i==--_n13##i || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n14##i = _n13##i = _n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
|
|
_p14##i = _p13##i, _p13##i = _p12##i, _p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i, ++_n13##i, ++_n14##i)
|
|
|
|
#define cimg_for29X(img,x) cimg_for29((img)._width,x)
|
|
#define cimg_for29Y(img,y) cimg_for29((img)._height,y)
|
|
#define cimg_for29Z(img,z) cimg_for29((img)._depth,z)
|
|
#define cimg_for29C(img,c) cimg_for29((img)._spectrum,c)
|
|
#define cimg_for29XY(img,x,y) cimg_for29Y(img,y) cimg_for29X(img,x)
|
|
#define cimg_for29XZ(img,x,z) cimg_for29Z(img,z) cimg_for29X(img,x)
|
|
#define cimg_for29XC(img,x,c) cimg_for29C(img,c) cimg_for29X(img,x)
|
|
#define cimg_for29YZ(img,y,z) cimg_for29Z(img,z) cimg_for29Y(img,y)
|
|
#define cimg_for29YC(img,y,c) cimg_for29C(img,c) cimg_for29Y(img,y)
|
|
#define cimg_for29ZC(img,z,c) cimg_for29C(img,c) cimg_for29Z(img,z)
|
|
#define cimg_for29XYZ(img,x,y,z) cimg_for29Z(img,z) cimg_for29XY(img,x,y)
|
|
#define cimg_for29XZC(img,x,z,c) cimg_for29C(img,c) cimg_for29XZ(img,x,z)
|
|
#define cimg_for29YZC(img,y,z,c) cimg_for29C(img,c) cimg_for29YZ(img,y,z)
|
|
#define cimg_for29XYZC(img,x,y,z,c) cimg_for29C(img,c) cimg_for29XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in29(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p14##i = i - 14<0?0:i - 14, \
|
|
_p13##i = i - 13<0?0:i - 13, \
|
|
_p12##i = i - 12<0?0:i - 12, \
|
|
_p11##i = i - 11<0?0:i - 11, \
|
|
_p10##i = i - 10<0?0:i - 10, \
|
|
_p9##i = i - 9<0?0:i - 9, \
|
|
_p8##i = i - 8<0?0:i - 8, \
|
|
_p7##i = i - 7<0?0:i - 7, \
|
|
_p6##i = i - 6<0?0:i - 6, \
|
|
_p5##i = i - 5<0?0:i - 5, \
|
|
_p4##i = i - 4<0?0:i - 4, \
|
|
_p3##i = i - 3<0?0:i - 3, \
|
|
_p2##i = i - 2<0?0:i - 2, \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
|
|
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
|
|
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
|
|
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
|
|
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
|
|
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
|
|
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
|
|
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
|
|
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9, \
|
|
_n10##i = i + 10>=(int)(bound)?(int)(bound) - 1:i + 10, \
|
|
_n11##i = i + 11>=(int)(bound)?(int)(bound) - 1:i + 11, \
|
|
_n12##i = i + 12>=(int)(bound)?(int)(bound) - 1:i + 12, \
|
|
_n13##i = i + 13>=(int)(bound)?(int)(bound) - 1:i + 13, \
|
|
_n14##i = i + 14>=(int)(bound)?(int)(bound) - 1:i + 14; \
|
|
i<=(int)(i1) && (_n14##i<(int)(bound) || _n13##i==--_n14##i || _n12##i==--_n13##i || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n14##i = _n13##i = _n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
|
|
_p14##i = _p13##i, _p13##i = _p12##i, _p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i, ++_n13##i, ++_n14##i)
|
|
|
|
#define cimg_for_in29X(img,x0,x1,x) cimg_for_in29((img)._width,x0,x1,x)
|
|
#define cimg_for_in29Y(img,y0,y1,y) cimg_for_in29((img)._height,y0,y1,y)
|
|
#define cimg_for_in29Z(img,z0,z1,z) cimg_for_in29((img)._depth,z0,z1,z)
|
|
#define cimg_for_in29C(img,c0,c1,c) cimg_for_in29((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in29XY(img,x0,y0,x1,y1,x,y) cimg_for_in29Y(img,y0,y1,y) cimg_for_in29X(img,x0,x1,x)
|
|
#define cimg_for_in29XZ(img,x0,z0,x1,z1,x,z) cimg_for_in29Z(img,z0,z1,z) cimg_for_in29X(img,x0,x1,x)
|
|
#define cimg_for_in29XC(img,x0,c0,x1,c1,x,c) cimg_for_in29C(img,c0,c1,c) cimg_for_in29X(img,x0,x1,x)
|
|
#define cimg_for_in29YZ(img,y0,z0,y1,z1,y,z) cimg_for_in29Z(img,z0,z1,z) cimg_for_in29Y(img,y0,y1,y)
|
|
#define cimg_for_in29YC(img,y0,c0,y1,c1,y,c) cimg_for_in29C(img,c0,c1,c) cimg_for_in29Y(img,y0,y1,y)
|
|
#define cimg_for_in29ZC(img,z0,c0,z1,c1,z,c) cimg_for_in29C(img,c0,c1,c) cimg_for_in29Z(img,z0,z1,z)
|
|
#define cimg_for_in29XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in29Z(img,z0,z1,z) cimg_for_in29XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in29XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in29C(img,c0,c1,c) cimg_for_in29XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in29YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in29C(img,c0,c1,c) cimg_for_in29YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in29XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in29C(img,c0,c1,c) cimg_for_in29XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for29x29(img,x,y,z,c,I,T) \
|
|
cimg_for29((img)._height,y) for (int x = 0, \
|
|
_p14##x = 0, _p13##x = 0, _p12##x = 0, _p11##x = 0, _p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
|
|
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
|
|
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
|
|
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
|
|
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
|
|
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
|
|
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
|
|
_n9##x = 9>=((img)._width)?(img).width() - 1:9, \
|
|
_n10##x = 10>=((img)._width)?(img).width() - 1:10, \
|
|
_n11##x = 11>=((img)._width)?(img).width() - 1:11, \
|
|
_n12##x = 12>=((img)._width)?(img).width() - 1:12, \
|
|
_n13##x = 13>=((img)._width)?(img).width() - 1:13, \
|
|
_n14##x = (int)( \
|
|
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = I[11] = I[12] = I[13] = I[14] = (T)(img)(0,_p14##y,z,c)), \
|
|
(I[29] = I[30] = I[31] = I[32] = I[33] = I[34] = I[35] = I[36] = I[37] = I[38] = I[39] = I[40] = I[41] = I[42] = I[43] = (T)(img)(0,_p13##y,z,c)), \
|
|
(I[58] = I[59] = I[60] = I[61] = I[62] = I[63] = I[64] = I[65] = I[66] = I[67] = I[68] = I[69] = I[70] = I[71] = I[72] = (T)(img)(0,_p12##y,z,c)), \
|
|
(I[87] = I[88] = I[89] = I[90] = I[91] = I[92] = I[93] = I[94] = I[95] = I[96] = I[97] = I[98] = I[99] = I[100] = I[101] = (T)(img)(0,_p11##y,z,c)), \
|
|
(I[116] = I[117] = I[118] = I[119] = I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = I[126] = I[127] = I[128] = I[129] = I[130] = (T)(img)(0,_p10##y,z,c)), \
|
|
(I[145] = I[146] = I[147] = I[148] = I[149] = I[150] = I[151] = I[152] = I[153] = I[154] = I[155] = I[156] = I[157] = I[158] = I[159] = (T)(img)(0,_p9##y,z,c)), \
|
|
(I[174] = I[175] = I[176] = I[177] = I[178] = I[179] = I[180] = I[181] = I[182] = I[183] = I[184] = I[185] = I[186] = I[187] = I[188] = (T)(img)(0,_p8##y,z,c)), \
|
|
(I[203] = I[204] = I[205] = I[206] = I[207] = I[208] = I[209] = I[210] = I[211] = I[212] = I[213] = I[214] = I[215] = I[216] = I[217] = (T)(img)(0,_p7##y,z,c)), \
|
|
(I[232] = I[233] = I[234] = I[235] = I[236] = I[237] = I[238] = I[239] = I[240] = I[241] = I[242] = I[243] = I[244] = I[245] = I[246] = (T)(img)(0,_p6##y,z,c)), \
|
|
(I[261] = I[262] = I[263] = I[264] = I[265] = I[266] = I[267] = I[268] = I[269] = I[270] = I[271] = I[272] = I[273] = I[274] = I[275] = (T)(img)(0,_p5##y,z,c)), \
|
|
(I[290] = I[291] = I[292] = I[293] = I[294] = I[295] = I[296] = I[297] = I[298] = I[299] = I[300] = I[301] = I[302] = I[303] = I[304] = (T)(img)(0,_p4##y,z,c)), \
|
|
(I[319] = I[320] = I[321] = I[322] = I[323] = I[324] = I[325] = I[326] = I[327] = I[328] = I[329] = I[330] = I[331] = I[332] = I[333] = (T)(img)(0,_p3##y,z,c)), \
|
|
(I[348] = I[349] = I[350] = I[351] = I[352] = I[353] = I[354] = I[355] = I[356] = I[357] = I[358] = I[359] = I[360] = I[361] = I[362] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[377] = I[378] = I[379] = I[380] = I[381] = I[382] = I[383] = I[384] = I[385] = I[386] = I[387] = I[388] = I[389] = I[390] = I[391] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[406] = I[407] = I[408] = I[409] = I[410] = I[411] = I[412] = I[413] = I[414] = I[415] = I[416] = I[417] = I[418] = I[419] = I[420] = (T)(img)(0,y,z,c)), \
|
|
(I[435] = I[436] = I[437] = I[438] = I[439] = I[440] = I[441] = I[442] = I[443] = I[444] = I[445] = I[446] = I[447] = I[448] = I[449] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[464] = I[465] = I[466] = I[467] = I[468] = I[469] = I[470] = I[471] = I[472] = I[473] = I[474] = I[475] = I[476] = I[477] = I[478] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[493] = I[494] = I[495] = I[496] = I[497] = I[498] = I[499] = I[500] = I[501] = I[502] = I[503] = I[504] = I[505] = I[506] = I[507] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[522] = I[523] = I[524] = I[525] = I[526] = I[527] = I[528] = I[529] = I[530] = I[531] = I[532] = I[533] = I[534] = I[535] = I[536] = (T)(img)(0,_n4##y,z,c)), \
|
|
(I[551] = I[552] = I[553] = I[554] = I[555] = I[556] = I[557] = I[558] = I[559] = I[560] = I[561] = I[562] = I[563] = I[564] = I[565] = (T)(img)(0,_n5##y,z,c)), \
|
|
(I[580] = I[581] = I[582] = I[583] = I[584] = I[585] = I[586] = I[587] = I[588] = I[589] = I[590] = I[591] = I[592] = I[593] = I[594] = (T)(img)(0,_n6##y,z,c)), \
|
|
(I[609] = I[610] = I[611] = I[612] = I[613] = I[614] = I[615] = I[616] = I[617] = I[618] = I[619] = I[620] = I[621] = I[622] = I[623] = (T)(img)(0,_n7##y,z,c)), \
|
|
(I[638] = I[639] = I[640] = I[641] = I[642] = I[643] = I[644] = I[645] = I[646] = I[647] = I[648] = I[649] = I[650] = I[651] = I[652] = (T)(img)(0,_n8##y,z,c)), \
|
|
(I[667] = I[668] = I[669] = I[670] = I[671] = I[672] = I[673] = I[674] = I[675] = I[676] = I[677] = I[678] = I[679] = I[680] = I[681] = (T)(img)(0,_n9##y,z,c)), \
|
|
(I[696] = I[697] = I[698] = I[699] = I[700] = I[701] = I[702] = I[703] = I[704] = I[705] = I[706] = I[707] = I[708] = I[709] = I[710] = (T)(img)(0,_n10##y,z,c)), \
|
|
(I[725] = I[726] = I[727] = I[728] = I[729] = I[730] = I[731] = I[732] = I[733] = I[734] = I[735] = I[736] = I[737] = I[738] = I[739] = (T)(img)(0,_n11##y,z,c)), \
|
|
(I[754] = I[755] = I[756] = I[757] = I[758] = I[759] = I[760] = I[761] = I[762] = I[763] = I[764] = I[765] = I[766] = I[767] = I[768] = (T)(img)(0,_n12##y,z,c)), \
|
|
(I[783] = I[784] = I[785] = I[786] = I[787] = I[788] = I[789] = I[790] = I[791] = I[792] = I[793] = I[794] = I[795] = I[796] = I[797] = (T)(img)(0,_n13##y,z,c)), \
|
|
(I[812] = I[813] = I[814] = I[815] = I[816] = I[817] = I[818] = I[819] = I[820] = I[821] = I[822] = I[823] = I[824] = I[825] = I[826] = (T)(img)(0,_n14##y,z,c)), \
|
|
(I[15] = (T)(img)(_n1##x,_p14##y,z,c)), \
|
|
(I[44] = (T)(img)(_n1##x,_p13##y,z,c)), \
|
|
(I[73] = (T)(img)(_n1##x,_p12##y,z,c)), \
|
|
(I[102] = (T)(img)(_n1##x,_p11##y,z,c)), \
|
|
(I[131] = (T)(img)(_n1##x,_p10##y,z,c)), \
|
|
(I[160] = (T)(img)(_n1##x,_p9##y,z,c)), \
|
|
(I[189] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[218] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[247] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[276] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[305] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[334] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[363] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[392] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[421] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[450] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[479] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[508] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[537] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[566] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[595] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[624] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[653] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[682] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[711] = (T)(img)(_n1##x,_n10##y,z,c)), \
|
|
(I[740] = (T)(img)(_n1##x,_n11##y,z,c)), \
|
|
(I[769] = (T)(img)(_n1##x,_n12##y,z,c)), \
|
|
(I[798] = (T)(img)(_n1##x,_n13##y,z,c)), \
|
|
(I[827] = (T)(img)(_n1##x,_n14##y,z,c)), \
|
|
(I[16] = (T)(img)(_n2##x,_p14##y,z,c)), \
|
|
(I[45] = (T)(img)(_n2##x,_p13##y,z,c)), \
|
|
(I[74] = (T)(img)(_n2##x,_p12##y,z,c)), \
|
|
(I[103] = (T)(img)(_n2##x,_p11##y,z,c)), \
|
|
(I[132] = (T)(img)(_n2##x,_p10##y,z,c)), \
|
|
(I[161] = (T)(img)(_n2##x,_p9##y,z,c)), \
|
|
(I[190] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[219] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[248] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[277] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[306] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[335] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[364] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[393] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[422] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[451] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[480] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[509] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[538] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[567] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[596] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[625] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[654] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[683] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[712] = (T)(img)(_n2##x,_n10##y,z,c)), \
|
|
(I[741] = (T)(img)(_n2##x,_n11##y,z,c)), \
|
|
(I[770] = (T)(img)(_n2##x,_n12##y,z,c)), \
|
|
(I[799] = (T)(img)(_n2##x,_n13##y,z,c)), \
|
|
(I[828] = (T)(img)(_n2##x,_n14##y,z,c)), \
|
|
(I[17] = (T)(img)(_n3##x,_p14##y,z,c)), \
|
|
(I[46] = (T)(img)(_n3##x,_p13##y,z,c)), \
|
|
(I[75] = (T)(img)(_n3##x,_p12##y,z,c)), \
|
|
(I[104] = (T)(img)(_n3##x,_p11##y,z,c)), \
|
|
(I[133] = (T)(img)(_n3##x,_p10##y,z,c)), \
|
|
(I[162] = (T)(img)(_n3##x,_p9##y,z,c)), \
|
|
(I[191] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[220] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[249] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[278] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[307] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[336] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[365] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[394] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[423] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[452] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[481] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[510] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[539] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[568] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[597] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[626] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[655] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[684] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[713] = (T)(img)(_n3##x,_n10##y,z,c)), \
|
|
(I[742] = (T)(img)(_n3##x,_n11##y,z,c)), \
|
|
(I[771] = (T)(img)(_n3##x,_n12##y,z,c)), \
|
|
(I[800] = (T)(img)(_n3##x,_n13##y,z,c)), \
|
|
(I[829] = (T)(img)(_n3##x,_n14##y,z,c)), \
|
|
(I[18] = (T)(img)(_n4##x,_p14##y,z,c)), \
|
|
(I[47] = (T)(img)(_n4##x,_p13##y,z,c)), \
|
|
(I[76] = (T)(img)(_n4##x,_p12##y,z,c)), \
|
|
(I[105] = (T)(img)(_n4##x,_p11##y,z,c)), \
|
|
(I[134] = (T)(img)(_n4##x,_p10##y,z,c)), \
|
|
(I[163] = (T)(img)(_n4##x,_p9##y,z,c)), \
|
|
(I[192] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[221] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[250] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[279] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[308] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[337] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[366] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[395] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[424] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[453] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[482] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[511] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[540] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[569] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[598] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[627] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[656] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[685] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[714] = (T)(img)(_n4##x,_n10##y,z,c)), \
|
|
(I[743] = (T)(img)(_n4##x,_n11##y,z,c)), \
|
|
(I[772] = (T)(img)(_n4##x,_n12##y,z,c)), \
|
|
(I[801] = (T)(img)(_n4##x,_n13##y,z,c)), \
|
|
(I[830] = (T)(img)(_n4##x,_n14##y,z,c)), \
|
|
(I[19] = (T)(img)(_n5##x,_p14##y,z,c)), \
|
|
(I[48] = (T)(img)(_n5##x,_p13##y,z,c)), \
|
|
(I[77] = (T)(img)(_n5##x,_p12##y,z,c)), \
|
|
(I[106] = (T)(img)(_n5##x,_p11##y,z,c)), \
|
|
(I[135] = (T)(img)(_n5##x,_p10##y,z,c)), \
|
|
(I[164] = (T)(img)(_n5##x,_p9##y,z,c)), \
|
|
(I[193] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[222] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[251] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[280] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[309] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[338] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[367] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[396] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[425] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[454] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[483] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[512] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[541] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[570] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[599] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[628] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[657] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[686] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[715] = (T)(img)(_n5##x,_n10##y,z,c)), \
|
|
(I[744] = (T)(img)(_n5##x,_n11##y,z,c)), \
|
|
(I[773] = (T)(img)(_n5##x,_n12##y,z,c)), \
|
|
(I[802] = (T)(img)(_n5##x,_n13##y,z,c)), \
|
|
(I[831] = (T)(img)(_n5##x,_n14##y,z,c)), \
|
|
(I[20] = (T)(img)(_n6##x,_p14##y,z,c)), \
|
|
(I[49] = (T)(img)(_n6##x,_p13##y,z,c)), \
|
|
(I[78] = (T)(img)(_n6##x,_p12##y,z,c)), \
|
|
(I[107] = (T)(img)(_n6##x,_p11##y,z,c)), \
|
|
(I[136] = (T)(img)(_n6##x,_p10##y,z,c)), \
|
|
(I[165] = (T)(img)(_n6##x,_p9##y,z,c)), \
|
|
(I[194] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[223] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[252] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[281] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[310] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[339] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[368] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[397] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[426] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[455] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[484] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[513] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[542] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[571] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[600] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[629] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[658] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[687] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[716] = (T)(img)(_n6##x,_n10##y,z,c)), \
|
|
(I[745] = (T)(img)(_n6##x,_n11##y,z,c)), \
|
|
(I[774] = (T)(img)(_n6##x,_n12##y,z,c)), \
|
|
(I[803] = (T)(img)(_n6##x,_n13##y,z,c)), \
|
|
(I[832] = (T)(img)(_n6##x,_n14##y,z,c)), \
|
|
(I[21] = (T)(img)(_n7##x,_p14##y,z,c)), \
|
|
(I[50] = (T)(img)(_n7##x,_p13##y,z,c)), \
|
|
(I[79] = (T)(img)(_n7##x,_p12##y,z,c)), \
|
|
(I[108] = (T)(img)(_n7##x,_p11##y,z,c)), \
|
|
(I[137] = (T)(img)(_n7##x,_p10##y,z,c)), \
|
|
(I[166] = (T)(img)(_n7##x,_p9##y,z,c)), \
|
|
(I[195] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[224] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[253] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[282] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[311] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[340] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[369] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[398] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[427] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[456] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[485] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[514] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[543] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[572] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[601] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[630] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[659] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[688] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[717] = (T)(img)(_n7##x,_n10##y,z,c)), \
|
|
(I[746] = (T)(img)(_n7##x,_n11##y,z,c)), \
|
|
(I[775] = (T)(img)(_n7##x,_n12##y,z,c)), \
|
|
(I[804] = (T)(img)(_n7##x,_n13##y,z,c)), \
|
|
(I[833] = (T)(img)(_n7##x,_n14##y,z,c)), \
|
|
(I[22] = (T)(img)(_n8##x,_p14##y,z,c)), \
|
|
(I[51] = (T)(img)(_n8##x,_p13##y,z,c)), \
|
|
(I[80] = (T)(img)(_n8##x,_p12##y,z,c)), \
|
|
(I[109] = (T)(img)(_n8##x,_p11##y,z,c)), \
|
|
(I[138] = (T)(img)(_n8##x,_p10##y,z,c)), \
|
|
(I[167] = (T)(img)(_n8##x,_p9##y,z,c)), \
|
|
(I[196] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[225] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[254] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[283] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[312] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[341] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[370] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[399] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[428] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[457] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[486] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[515] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[544] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[573] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[602] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[631] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[660] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[689] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
(I[718] = (T)(img)(_n8##x,_n10##y,z,c)), \
|
|
(I[747] = (T)(img)(_n8##x,_n11##y,z,c)), \
|
|
(I[776] = (T)(img)(_n8##x,_n12##y,z,c)), \
|
|
(I[805] = (T)(img)(_n8##x,_n13##y,z,c)), \
|
|
(I[834] = (T)(img)(_n8##x,_n14##y,z,c)), \
|
|
(I[23] = (T)(img)(_n9##x,_p14##y,z,c)), \
|
|
(I[52] = (T)(img)(_n9##x,_p13##y,z,c)), \
|
|
(I[81] = (T)(img)(_n9##x,_p12##y,z,c)), \
|
|
(I[110] = (T)(img)(_n9##x,_p11##y,z,c)), \
|
|
(I[139] = (T)(img)(_n9##x,_p10##y,z,c)), \
|
|
(I[168] = (T)(img)(_n9##x,_p9##y,z,c)), \
|
|
(I[197] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[226] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[255] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[284] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[313] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[342] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[371] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[400] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[429] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[458] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[487] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[516] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[545] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[574] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[603] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[632] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[661] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[690] = (T)(img)(_n9##x,_n9##y,z,c)), \
|
|
(I[719] = (T)(img)(_n9##x,_n10##y,z,c)), \
|
|
(I[748] = (T)(img)(_n9##x,_n11##y,z,c)), \
|
|
(I[777] = (T)(img)(_n9##x,_n12##y,z,c)), \
|
|
(I[806] = (T)(img)(_n9##x,_n13##y,z,c)), \
|
|
(I[835] = (T)(img)(_n9##x,_n14##y,z,c)), \
|
|
(I[24] = (T)(img)(_n10##x,_p14##y,z,c)), \
|
|
(I[53] = (T)(img)(_n10##x,_p13##y,z,c)), \
|
|
(I[82] = (T)(img)(_n10##x,_p12##y,z,c)), \
|
|
(I[111] = (T)(img)(_n10##x,_p11##y,z,c)), \
|
|
(I[140] = (T)(img)(_n10##x,_p10##y,z,c)), \
|
|
(I[169] = (T)(img)(_n10##x,_p9##y,z,c)), \
|
|
(I[198] = (T)(img)(_n10##x,_p8##y,z,c)), \
|
|
(I[227] = (T)(img)(_n10##x,_p7##y,z,c)), \
|
|
(I[256] = (T)(img)(_n10##x,_p6##y,z,c)), \
|
|
(I[285] = (T)(img)(_n10##x,_p5##y,z,c)), \
|
|
(I[314] = (T)(img)(_n10##x,_p4##y,z,c)), \
|
|
(I[343] = (T)(img)(_n10##x,_p3##y,z,c)), \
|
|
(I[372] = (T)(img)(_n10##x,_p2##y,z,c)), \
|
|
(I[401] = (T)(img)(_n10##x,_p1##y,z,c)), \
|
|
(I[430] = (T)(img)(_n10##x,y,z,c)), \
|
|
(I[459] = (T)(img)(_n10##x,_n1##y,z,c)), \
|
|
(I[488] = (T)(img)(_n10##x,_n2##y,z,c)), \
|
|
(I[517] = (T)(img)(_n10##x,_n3##y,z,c)), \
|
|
(I[546] = (T)(img)(_n10##x,_n4##y,z,c)), \
|
|
(I[575] = (T)(img)(_n10##x,_n5##y,z,c)), \
|
|
(I[604] = (T)(img)(_n10##x,_n6##y,z,c)), \
|
|
(I[633] = (T)(img)(_n10##x,_n7##y,z,c)), \
|
|
(I[662] = (T)(img)(_n10##x,_n8##y,z,c)), \
|
|
(I[691] = (T)(img)(_n10##x,_n9##y,z,c)), \
|
|
(I[720] = (T)(img)(_n10##x,_n10##y,z,c)), \
|
|
(I[749] = (T)(img)(_n10##x,_n11##y,z,c)), \
|
|
(I[778] = (T)(img)(_n10##x,_n12##y,z,c)), \
|
|
(I[807] = (T)(img)(_n10##x,_n13##y,z,c)), \
|
|
(I[836] = (T)(img)(_n10##x,_n14##y,z,c)), \
|
|
(I[25] = (T)(img)(_n11##x,_p14##y,z,c)), \
|
|
(I[54] = (T)(img)(_n11##x,_p13##y,z,c)), \
|
|
(I[83] = (T)(img)(_n11##x,_p12##y,z,c)), \
|
|
(I[112] = (T)(img)(_n11##x,_p11##y,z,c)), \
|
|
(I[141] = (T)(img)(_n11##x,_p10##y,z,c)), \
|
|
(I[170] = (T)(img)(_n11##x,_p9##y,z,c)), \
|
|
(I[199] = (T)(img)(_n11##x,_p8##y,z,c)), \
|
|
(I[228] = (T)(img)(_n11##x,_p7##y,z,c)), \
|
|
(I[257] = (T)(img)(_n11##x,_p6##y,z,c)), \
|
|
(I[286] = (T)(img)(_n11##x,_p5##y,z,c)), \
|
|
(I[315] = (T)(img)(_n11##x,_p4##y,z,c)), \
|
|
(I[344] = (T)(img)(_n11##x,_p3##y,z,c)), \
|
|
(I[373] = (T)(img)(_n11##x,_p2##y,z,c)), \
|
|
(I[402] = (T)(img)(_n11##x,_p1##y,z,c)), \
|
|
(I[431] = (T)(img)(_n11##x,y,z,c)), \
|
|
(I[460] = (T)(img)(_n11##x,_n1##y,z,c)), \
|
|
(I[489] = (T)(img)(_n11##x,_n2##y,z,c)), \
|
|
(I[518] = (T)(img)(_n11##x,_n3##y,z,c)), \
|
|
(I[547] = (T)(img)(_n11##x,_n4##y,z,c)), \
|
|
(I[576] = (T)(img)(_n11##x,_n5##y,z,c)), \
|
|
(I[605] = (T)(img)(_n11##x,_n6##y,z,c)), \
|
|
(I[634] = (T)(img)(_n11##x,_n7##y,z,c)), \
|
|
(I[663] = (T)(img)(_n11##x,_n8##y,z,c)), \
|
|
(I[692] = (T)(img)(_n11##x,_n9##y,z,c)), \
|
|
(I[721] = (T)(img)(_n11##x,_n10##y,z,c)), \
|
|
(I[750] = (T)(img)(_n11##x,_n11##y,z,c)), \
|
|
(I[779] = (T)(img)(_n11##x,_n12##y,z,c)), \
|
|
(I[808] = (T)(img)(_n11##x,_n13##y,z,c)), \
|
|
(I[837] = (T)(img)(_n11##x,_n14##y,z,c)), \
|
|
(I[26] = (T)(img)(_n12##x,_p14##y,z,c)), \
|
|
(I[55] = (T)(img)(_n12##x,_p13##y,z,c)), \
|
|
(I[84] = (T)(img)(_n12##x,_p12##y,z,c)), \
|
|
(I[113] = (T)(img)(_n12##x,_p11##y,z,c)), \
|
|
(I[142] = (T)(img)(_n12##x,_p10##y,z,c)), \
|
|
(I[171] = (T)(img)(_n12##x,_p9##y,z,c)), \
|
|
(I[200] = (T)(img)(_n12##x,_p8##y,z,c)), \
|
|
(I[229] = (T)(img)(_n12##x,_p7##y,z,c)), \
|
|
(I[258] = (T)(img)(_n12##x,_p6##y,z,c)), \
|
|
(I[287] = (T)(img)(_n12##x,_p5##y,z,c)), \
|
|
(I[316] = (T)(img)(_n12##x,_p4##y,z,c)), \
|
|
(I[345] = (T)(img)(_n12##x,_p3##y,z,c)), \
|
|
(I[374] = (T)(img)(_n12##x,_p2##y,z,c)), \
|
|
(I[403] = (T)(img)(_n12##x,_p1##y,z,c)), \
|
|
(I[432] = (T)(img)(_n12##x,y,z,c)), \
|
|
(I[461] = (T)(img)(_n12##x,_n1##y,z,c)), \
|
|
(I[490] = (T)(img)(_n12##x,_n2##y,z,c)), \
|
|
(I[519] = (T)(img)(_n12##x,_n3##y,z,c)), \
|
|
(I[548] = (T)(img)(_n12##x,_n4##y,z,c)), \
|
|
(I[577] = (T)(img)(_n12##x,_n5##y,z,c)), \
|
|
(I[606] = (T)(img)(_n12##x,_n6##y,z,c)), \
|
|
(I[635] = (T)(img)(_n12##x,_n7##y,z,c)), \
|
|
(I[664] = (T)(img)(_n12##x,_n8##y,z,c)), \
|
|
(I[693] = (T)(img)(_n12##x,_n9##y,z,c)), \
|
|
(I[722] = (T)(img)(_n12##x,_n10##y,z,c)), \
|
|
(I[751] = (T)(img)(_n12##x,_n11##y,z,c)), \
|
|
(I[780] = (T)(img)(_n12##x,_n12##y,z,c)), \
|
|
(I[809] = (T)(img)(_n12##x,_n13##y,z,c)), \
|
|
(I[838] = (T)(img)(_n12##x,_n14##y,z,c)), \
|
|
(I[27] = (T)(img)(_n13##x,_p14##y,z,c)), \
|
|
(I[56] = (T)(img)(_n13##x,_p13##y,z,c)), \
|
|
(I[85] = (T)(img)(_n13##x,_p12##y,z,c)), \
|
|
(I[114] = (T)(img)(_n13##x,_p11##y,z,c)), \
|
|
(I[143] = (T)(img)(_n13##x,_p10##y,z,c)), \
|
|
(I[172] = (T)(img)(_n13##x,_p9##y,z,c)), \
|
|
(I[201] = (T)(img)(_n13##x,_p8##y,z,c)), \
|
|
(I[230] = (T)(img)(_n13##x,_p7##y,z,c)), \
|
|
(I[259] = (T)(img)(_n13##x,_p6##y,z,c)), \
|
|
(I[288] = (T)(img)(_n13##x,_p5##y,z,c)), \
|
|
(I[317] = (T)(img)(_n13##x,_p4##y,z,c)), \
|
|
(I[346] = (T)(img)(_n13##x,_p3##y,z,c)), \
|
|
(I[375] = (T)(img)(_n13##x,_p2##y,z,c)), \
|
|
(I[404] = (T)(img)(_n13##x,_p1##y,z,c)), \
|
|
(I[433] = (T)(img)(_n13##x,y,z,c)), \
|
|
(I[462] = (T)(img)(_n13##x,_n1##y,z,c)), \
|
|
(I[491] = (T)(img)(_n13##x,_n2##y,z,c)), \
|
|
(I[520] = (T)(img)(_n13##x,_n3##y,z,c)), \
|
|
(I[549] = (T)(img)(_n13##x,_n4##y,z,c)), \
|
|
(I[578] = (T)(img)(_n13##x,_n5##y,z,c)), \
|
|
(I[607] = (T)(img)(_n13##x,_n6##y,z,c)), \
|
|
(I[636] = (T)(img)(_n13##x,_n7##y,z,c)), \
|
|
(I[665] = (T)(img)(_n13##x,_n8##y,z,c)), \
|
|
(I[694] = (T)(img)(_n13##x,_n9##y,z,c)), \
|
|
(I[723] = (T)(img)(_n13##x,_n10##y,z,c)), \
|
|
(I[752] = (T)(img)(_n13##x,_n11##y,z,c)), \
|
|
(I[781] = (T)(img)(_n13##x,_n12##y,z,c)), \
|
|
(I[810] = (T)(img)(_n13##x,_n13##y,z,c)), \
|
|
(I[839] = (T)(img)(_n13##x,_n14##y,z,c)), \
|
|
14>=((img)._width)?(img).width() - 1:14); \
|
|
(_n14##x<(img).width() && ( \
|
|
(I[28] = (T)(img)(_n14##x,_p14##y,z,c)), \
|
|
(I[57] = (T)(img)(_n14##x,_p13##y,z,c)), \
|
|
(I[86] = (T)(img)(_n14##x,_p12##y,z,c)), \
|
|
(I[115] = (T)(img)(_n14##x,_p11##y,z,c)), \
|
|
(I[144] = (T)(img)(_n14##x,_p10##y,z,c)), \
|
|
(I[173] = (T)(img)(_n14##x,_p9##y,z,c)), \
|
|
(I[202] = (T)(img)(_n14##x,_p8##y,z,c)), \
|
|
(I[231] = (T)(img)(_n14##x,_p7##y,z,c)), \
|
|
(I[260] = (T)(img)(_n14##x,_p6##y,z,c)), \
|
|
(I[289] = (T)(img)(_n14##x,_p5##y,z,c)), \
|
|
(I[318] = (T)(img)(_n14##x,_p4##y,z,c)), \
|
|
(I[347] = (T)(img)(_n14##x,_p3##y,z,c)), \
|
|
(I[376] = (T)(img)(_n14##x,_p2##y,z,c)), \
|
|
(I[405] = (T)(img)(_n14##x,_p1##y,z,c)), \
|
|
(I[434] = (T)(img)(_n14##x,y,z,c)), \
|
|
(I[463] = (T)(img)(_n14##x,_n1##y,z,c)), \
|
|
(I[492] = (T)(img)(_n14##x,_n2##y,z,c)), \
|
|
(I[521] = (T)(img)(_n14##x,_n3##y,z,c)), \
|
|
(I[550] = (T)(img)(_n14##x,_n4##y,z,c)), \
|
|
(I[579] = (T)(img)(_n14##x,_n5##y,z,c)), \
|
|
(I[608] = (T)(img)(_n14##x,_n6##y,z,c)), \
|
|
(I[637] = (T)(img)(_n14##x,_n7##y,z,c)), \
|
|
(I[666] = (T)(img)(_n14##x,_n8##y,z,c)), \
|
|
(I[695] = (T)(img)(_n14##x,_n9##y,z,c)), \
|
|
(I[724] = (T)(img)(_n14##x,_n10##y,z,c)), \
|
|
(I[753] = (T)(img)(_n14##x,_n11##y,z,c)), \
|
|
(I[782] = (T)(img)(_n14##x,_n12##y,z,c)), \
|
|
(I[811] = (T)(img)(_n14##x,_n13##y,z,c)), \
|
|
(I[840] = (T)(img)(_n14##x,_n14##y,z,c)),1)) || \
|
|
_n13##x==--_n14##x || _n12##x==--_n13##x || _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n14##x = _n13##x = _n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], \
|
|
I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], \
|
|
I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], \
|
|
I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], \
|
|
I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], \
|
|
I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], \
|
|
I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], \
|
|
I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], \
|
|
I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], \
|
|
I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], \
|
|
I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], \
|
|
I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], \
|
|
I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], \
|
|
I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], \
|
|
I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], \
|
|
I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], \
|
|
I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], \
|
|
I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], \
|
|
I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], \
|
|
I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], I[575] = I[576], I[576] = I[577], I[577] = I[578], I[578] = I[579], \
|
|
I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], I[587] = I[588], I[588] = I[589], I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], I[593] = I[594], I[594] = I[595], I[595] = I[596], I[596] = I[597], I[597] = I[598], I[598] = I[599], I[599] = I[600], I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], I[607] = I[608], \
|
|
I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], I[615] = I[616], I[616] = I[617], I[617] = I[618], I[618] = I[619], I[619] = I[620], I[620] = I[621], I[621] = I[622], I[622] = I[623], I[623] = I[624], I[624] = I[625], I[625] = I[626], I[626] = I[627], I[627] = I[628], I[628] = I[629], I[629] = I[630], I[630] = I[631], I[631] = I[632], I[632] = I[633], I[633] = I[634], I[634] = I[635], I[635] = I[636], I[636] = I[637], \
|
|
I[638] = I[639], I[639] = I[640], I[640] = I[641], I[641] = I[642], I[642] = I[643], I[643] = I[644], I[644] = I[645], I[645] = I[646], I[646] = I[647], I[647] = I[648], I[648] = I[649], I[649] = I[650], I[650] = I[651], I[651] = I[652], I[652] = I[653], I[653] = I[654], I[654] = I[655], I[655] = I[656], I[656] = I[657], I[657] = I[658], I[658] = I[659], I[659] = I[660], I[660] = I[661], I[661] = I[662], I[662] = I[663], I[663] = I[664], I[664] = I[665], I[665] = I[666], \
|
|
I[667] = I[668], I[668] = I[669], I[669] = I[670], I[670] = I[671], I[671] = I[672], I[672] = I[673], I[673] = I[674], I[674] = I[675], I[675] = I[676], I[676] = I[677], I[677] = I[678], I[678] = I[679], I[679] = I[680], I[680] = I[681], I[681] = I[682], I[682] = I[683], I[683] = I[684], I[684] = I[685], I[685] = I[686], I[686] = I[687], I[687] = I[688], I[688] = I[689], I[689] = I[690], I[690] = I[691], I[691] = I[692], I[692] = I[693], I[693] = I[694], I[694] = I[695], \
|
|
I[696] = I[697], I[697] = I[698], I[698] = I[699], I[699] = I[700], I[700] = I[701], I[701] = I[702], I[702] = I[703], I[703] = I[704], I[704] = I[705], I[705] = I[706], I[706] = I[707], I[707] = I[708], I[708] = I[709], I[709] = I[710], I[710] = I[711], I[711] = I[712], I[712] = I[713], I[713] = I[714], I[714] = I[715], I[715] = I[716], I[716] = I[717], I[717] = I[718], I[718] = I[719], I[719] = I[720], I[720] = I[721], I[721] = I[722], I[722] = I[723], I[723] = I[724], \
|
|
I[725] = I[726], I[726] = I[727], I[727] = I[728], I[728] = I[729], I[729] = I[730], I[730] = I[731], I[731] = I[732], I[732] = I[733], I[733] = I[734], I[734] = I[735], I[735] = I[736], I[736] = I[737], I[737] = I[738], I[738] = I[739], I[739] = I[740], I[740] = I[741], I[741] = I[742], I[742] = I[743], I[743] = I[744], I[744] = I[745], I[745] = I[746], I[746] = I[747], I[747] = I[748], I[748] = I[749], I[749] = I[750], I[750] = I[751], I[751] = I[752], I[752] = I[753], \
|
|
I[754] = I[755], I[755] = I[756], I[756] = I[757], I[757] = I[758], I[758] = I[759], I[759] = I[760], I[760] = I[761], I[761] = I[762], I[762] = I[763], I[763] = I[764], I[764] = I[765], I[765] = I[766], I[766] = I[767], I[767] = I[768], I[768] = I[769], I[769] = I[770], I[770] = I[771], I[771] = I[772], I[772] = I[773], I[773] = I[774], I[774] = I[775], I[775] = I[776], I[776] = I[777], I[777] = I[778], I[778] = I[779], I[779] = I[780], I[780] = I[781], I[781] = I[782], \
|
|
I[783] = I[784], I[784] = I[785], I[785] = I[786], I[786] = I[787], I[787] = I[788], I[788] = I[789], I[789] = I[790], I[790] = I[791], I[791] = I[792], I[792] = I[793], I[793] = I[794], I[794] = I[795], I[795] = I[796], I[796] = I[797], I[797] = I[798], I[798] = I[799], I[799] = I[800], I[800] = I[801], I[801] = I[802], I[802] = I[803], I[803] = I[804], I[804] = I[805], I[805] = I[806], I[806] = I[807], I[807] = I[808], I[808] = I[809], I[809] = I[810], I[810] = I[811], \
|
|
I[812] = I[813], I[813] = I[814], I[814] = I[815], I[815] = I[816], I[816] = I[817], I[817] = I[818], I[818] = I[819], I[819] = I[820], I[820] = I[821], I[821] = I[822], I[822] = I[823], I[823] = I[824], I[824] = I[825], I[825] = I[826], I[826] = I[827], I[827] = I[828], I[828] = I[829], I[829] = I[830], I[830] = I[831], I[831] = I[832], I[832] = I[833], I[833] = I[834], I[834] = I[835], I[835] = I[836], I[836] = I[837], I[837] = I[838], I[838] = I[839], I[839] = I[840], \
|
|
_p14##x = _p13##x, _p13##x = _p12##x, _p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x, ++_n13##x, ++_n14##x)
|
|
|
|
#define cimg_for_in29x29(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in29((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p14##x = x - 14<0?0:x - 14, \
|
|
_p13##x = x - 13<0?0:x - 13, \
|
|
_p12##x = x - 12<0?0:x - 12, \
|
|
_p11##x = x - 11<0?0:x - 11, \
|
|
_p10##x = x - 10<0?0:x - 10, \
|
|
_p9##x = x - 9<0?0:x - 9, \
|
|
_p8##x = x - 8<0?0:x - 8, \
|
|
_p7##x = x - 7<0?0:x - 7, \
|
|
_p6##x = x - 6<0?0:x - 6, \
|
|
_p5##x = x - 5<0?0:x - 5, \
|
|
_p4##x = x - 4<0?0:x - 4, \
|
|
_p3##x = x - 3<0?0:x - 3, \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
|
|
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
|
|
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
|
|
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
|
|
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
|
|
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
|
|
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
|
|
_n9##x = x + 9>=(img).width()?(img).width() - 1:x + 9, \
|
|
_n10##x = x + 10>=(img).width()?(img).width() - 1:x + 10, \
|
|
_n11##x = x + 11>=(img).width()?(img).width() - 1:x + 11, \
|
|
_n12##x = x + 12>=(img).width()?(img).width() - 1:x + 12, \
|
|
_n13##x = x + 13>=(img).width()?(img).width() - 1:x + 13, \
|
|
_n14##x = (int)( \
|
|
(I[0] = (T)(img)(_p14##x,_p14##y,z,c)), \
|
|
(I[29] = (T)(img)(_p14##x,_p13##y,z,c)), \
|
|
(I[58] = (T)(img)(_p14##x,_p12##y,z,c)), \
|
|
(I[87] = (T)(img)(_p14##x,_p11##y,z,c)), \
|
|
(I[116] = (T)(img)(_p14##x,_p10##y,z,c)), \
|
|
(I[145] = (T)(img)(_p14##x,_p9##y,z,c)), \
|
|
(I[174] = (T)(img)(_p14##x,_p8##y,z,c)), \
|
|
(I[203] = (T)(img)(_p14##x,_p7##y,z,c)), \
|
|
(I[232] = (T)(img)(_p14##x,_p6##y,z,c)), \
|
|
(I[261] = (T)(img)(_p14##x,_p5##y,z,c)), \
|
|
(I[290] = (T)(img)(_p14##x,_p4##y,z,c)), \
|
|
(I[319] = (T)(img)(_p14##x,_p3##y,z,c)), \
|
|
(I[348] = (T)(img)(_p14##x,_p2##y,z,c)), \
|
|
(I[377] = (T)(img)(_p14##x,_p1##y,z,c)), \
|
|
(I[406] = (T)(img)(_p14##x,y,z,c)), \
|
|
(I[435] = (T)(img)(_p14##x,_n1##y,z,c)), \
|
|
(I[464] = (T)(img)(_p14##x,_n2##y,z,c)), \
|
|
(I[493] = (T)(img)(_p14##x,_n3##y,z,c)), \
|
|
(I[522] = (T)(img)(_p14##x,_n4##y,z,c)), \
|
|
(I[551] = (T)(img)(_p14##x,_n5##y,z,c)), \
|
|
(I[580] = (T)(img)(_p14##x,_n6##y,z,c)), \
|
|
(I[609] = (T)(img)(_p14##x,_n7##y,z,c)), \
|
|
(I[638] = (T)(img)(_p14##x,_n8##y,z,c)), \
|
|
(I[667] = (T)(img)(_p14##x,_n9##y,z,c)), \
|
|
(I[696] = (T)(img)(_p14##x,_n10##y,z,c)), \
|
|
(I[725] = (T)(img)(_p14##x,_n11##y,z,c)), \
|
|
(I[754] = (T)(img)(_p14##x,_n12##y,z,c)), \
|
|
(I[783] = (T)(img)(_p14##x,_n13##y,z,c)), \
|
|
(I[812] = (T)(img)(_p14##x,_n14##y,z,c)), \
|
|
(I[1] = (T)(img)(_p13##x,_p14##y,z,c)), \
|
|
(I[30] = (T)(img)(_p13##x,_p13##y,z,c)), \
|
|
(I[59] = (T)(img)(_p13##x,_p12##y,z,c)), \
|
|
(I[88] = (T)(img)(_p13##x,_p11##y,z,c)), \
|
|
(I[117] = (T)(img)(_p13##x,_p10##y,z,c)), \
|
|
(I[146] = (T)(img)(_p13##x,_p9##y,z,c)), \
|
|
(I[175] = (T)(img)(_p13##x,_p8##y,z,c)), \
|
|
(I[204] = (T)(img)(_p13##x,_p7##y,z,c)), \
|
|
(I[233] = (T)(img)(_p13##x,_p6##y,z,c)), \
|
|
(I[262] = (T)(img)(_p13##x,_p5##y,z,c)), \
|
|
(I[291] = (T)(img)(_p13##x,_p4##y,z,c)), \
|
|
(I[320] = (T)(img)(_p13##x,_p3##y,z,c)), \
|
|
(I[349] = (T)(img)(_p13##x,_p2##y,z,c)), \
|
|
(I[378] = (T)(img)(_p13##x,_p1##y,z,c)), \
|
|
(I[407] = (T)(img)(_p13##x,y,z,c)), \
|
|
(I[436] = (T)(img)(_p13##x,_n1##y,z,c)), \
|
|
(I[465] = (T)(img)(_p13##x,_n2##y,z,c)), \
|
|
(I[494] = (T)(img)(_p13##x,_n3##y,z,c)), \
|
|
(I[523] = (T)(img)(_p13##x,_n4##y,z,c)), \
|
|
(I[552] = (T)(img)(_p13##x,_n5##y,z,c)), \
|
|
(I[581] = (T)(img)(_p13##x,_n6##y,z,c)), \
|
|
(I[610] = (T)(img)(_p13##x,_n7##y,z,c)), \
|
|
(I[639] = (T)(img)(_p13##x,_n8##y,z,c)), \
|
|
(I[668] = (T)(img)(_p13##x,_n9##y,z,c)), \
|
|
(I[697] = (T)(img)(_p13##x,_n10##y,z,c)), \
|
|
(I[726] = (T)(img)(_p13##x,_n11##y,z,c)), \
|
|
(I[755] = (T)(img)(_p13##x,_n12##y,z,c)), \
|
|
(I[784] = (T)(img)(_p13##x,_n13##y,z,c)), \
|
|
(I[813] = (T)(img)(_p13##x,_n14##y,z,c)), \
|
|
(I[2] = (T)(img)(_p12##x,_p14##y,z,c)), \
|
|
(I[31] = (T)(img)(_p12##x,_p13##y,z,c)), \
|
|
(I[60] = (T)(img)(_p12##x,_p12##y,z,c)), \
|
|
(I[89] = (T)(img)(_p12##x,_p11##y,z,c)), \
|
|
(I[118] = (T)(img)(_p12##x,_p10##y,z,c)), \
|
|
(I[147] = (T)(img)(_p12##x,_p9##y,z,c)), \
|
|
(I[176] = (T)(img)(_p12##x,_p8##y,z,c)), \
|
|
(I[205] = (T)(img)(_p12##x,_p7##y,z,c)), \
|
|
(I[234] = (T)(img)(_p12##x,_p6##y,z,c)), \
|
|
(I[263] = (T)(img)(_p12##x,_p5##y,z,c)), \
|
|
(I[292] = (T)(img)(_p12##x,_p4##y,z,c)), \
|
|
(I[321] = (T)(img)(_p12##x,_p3##y,z,c)), \
|
|
(I[350] = (T)(img)(_p12##x,_p2##y,z,c)), \
|
|
(I[379] = (T)(img)(_p12##x,_p1##y,z,c)), \
|
|
(I[408] = (T)(img)(_p12##x,y,z,c)), \
|
|
(I[437] = (T)(img)(_p12##x,_n1##y,z,c)), \
|
|
(I[466] = (T)(img)(_p12##x,_n2##y,z,c)), \
|
|
(I[495] = (T)(img)(_p12##x,_n3##y,z,c)), \
|
|
(I[524] = (T)(img)(_p12##x,_n4##y,z,c)), \
|
|
(I[553] = (T)(img)(_p12##x,_n5##y,z,c)), \
|
|
(I[582] = (T)(img)(_p12##x,_n6##y,z,c)), \
|
|
(I[611] = (T)(img)(_p12##x,_n7##y,z,c)), \
|
|
(I[640] = (T)(img)(_p12##x,_n8##y,z,c)), \
|
|
(I[669] = (T)(img)(_p12##x,_n9##y,z,c)), \
|
|
(I[698] = (T)(img)(_p12##x,_n10##y,z,c)), \
|
|
(I[727] = (T)(img)(_p12##x,_n11##y,z,c)), \
|
|
(I[756] = (T)(img)(_p12##x,_n12##y,z,c)), \
|
|
(I[785] = (T)(img)(_p12##x,_n13##y,z,c)), \
|
|
(I[814] = (T)(img)(_p12##x,_n14##y,z,c)), \
|
|
(I[3] = (T)(img)(_p11##x,_p14##y,z,c)), \
|
|
(I[32] = (T)(img)(_p11##x,_p13##y,z,c)), \
|
|
(I[61] = (T)(img)(_p11##x,_p12##y,z,c)), \
|
|
(I[90] = (T)(img)(_p11##x,_p11##y,z,c)), \
|
|
(I[119] = (T)(img)(_p11##x,_p10##y,z,c)), \
|
|
(I[148] = (T)(img)(_p11##x,_p9##y,z,c)), \
|
|
(I[177] = (T)(img)(_p11##x,_p8##y,z,c)), \
|
|
(I[206] = (T)(img)(_p11##x,_p7##y,z,c)), \
|
|
(I[235] = (T)(img)(_p11##x,_p6##y,z,c)), \
|
|
(I[264] = (T)(img)(_p11##x,_p5##y,z,c)), \
|
|
(I[293] = (T)(img)(_p11##x,_p4##y,z,c)), \
|
|
(I[322] = (T)(img)(_p11##x,_p3##y,z,c)), \
|
|
(I[351] = (T)(img)(_p11##x,_p2##y,z,c)), \
|
|
(I[380] = (T)(img)(_p11##x,_p1##y,z,c)), \
|
|
(I[409] = (T)(img)(_p11##x,y,z,c)), \
|
|
(I[438] = (T)(img)(_p11##x,_n1##y,z,c)), \
|
|
(I[467] = (T)(img)(_p11##x,_n2##y,z,c)), \
|
|
(I[496] = (T)(img)(_p11##x,_n3##y,z,c)), \
|
|
(I[525] = (T)(img)(_p11##x,_n4##y,z,c)), \
|
|
(I[554] = (T)(img)(_p11##x,_n5##y,z,c)), \
|
|
(I[583] = (T)(img)(_p11##x,_n6##y,z,c)), \
|
|
(I[612] = (T)(img)(_p11##x,_n7##y,z,c)), \
|
|
(I[641] = (T)(img)(_p11##x,_n8##y,z,c)), \
|
|
(I[670] = (T)(img)(_p11##x,_n9##y,z,c)), \
|
|
(I[699] = (T)(img)(_p11##x,_n10##y,z,c)), \
|
|
(I[728] = (T)(img)(_p11##x,_n11##y,z,c)), \
|
|
(I[757] = (T)(img)(_p11##x,_n12##y,z,c)), \
|
|
(I[786] = (T)(img)(_p11##x,_n13##y,z,c)), \
|
|
(I[815] = (T)(img)(_p11##x,_n14##y,z,c)), \
|
|
(I[4] = (T)(img)(_p10##x,_p14##y,z,c)), \
|
|
(I[33] = (T)(img)(_p10##x,_p13##y,z,c)), \
|
|
(I[62] = (T)(img)(_p10##x,_p12##y,z,c)), \
|
|
(I[91] = (T)(img)(_p10##x,_p11##y,z,c)), \
|
|
(I[120] = (T)(img)(_p10##x,_p10##y,z,c)), \
|
|
(I[149] = (T)(img)(_p10##x,_p9##y,z,c)), \
|
|
(I[178] = (T)(img)(_p10##x,_p8##y,z,c)), \
|
|
(I[207] = (T)(img)(_p10##x,_p7##y,z,c)), \
|
|
(I[236] = (T)(img)(_p10##x,_p6##y,z,c)), \
|
|
(I[265] = (T)(img)(_p10##x,_p5##y,z,c)), \
|
|
(I[294] = (T)(img)(_p10##x,_p4##y,z,c)), \
|
|
(I[323] = (T)(img)(_p10##x,_p3##y,z,c)), \
|
|
(I[352] = (T)(img)(_p10##x,_p2##y,z,c)), \
|
|
(I[381] = (T)(img)(_p10##x,_p1##y,z,c)), \
|
|
(I[410] = (T)(img)(_p10##x,y,z,c)), \
|
|
(I[439] = (T)(img)(_p10##x,_n1##y,z,c)), \
|
|
(I[468] = (T)(img)(_p10##x,_n2##y,z,c)), \
|
|
(I[497] = (T)(img)(_p10##x,_n3##y,z,c)), \
|
|
(I[526] = (T)(img)(_p10##x,_n4##y,z,c)), \
|
|
(I[555] = (T)(img)(_p10##x,_n5##y,z,c)), \
|
|
(I[584] = (T)(img)(_p10##x,_n6##y,z,c)), \
|
|
(I[613] = (T)(img)(_p10##x,_n7##y,z,c)), \
|
|
(I[642] = (T)(img)(_p10##x,_n8##y,z,c)), \
|
|
(I[671] = (T)(img)(_p10##x,_n9##y,z,c)), \
|
|
(I[700] = (T)(img)(_p10##x,_n10##y,z,c)), \
|
|
(I[729] = (T)(img)(_p10##x,_n11##y,z,c)), \
|
|
(I[758] = (T)(img)(_p10##x,_n12##y,z,c)), \
|
|
(I[787] = (T)(img)(_p10##x,_n13##y,z,c)), \
|
|
(I[816] = (T)(img)(_p10##x,_n14##y,z,c)), \
|
|
(I[5] = (T)(img)(_p9##x,_p14##y,z,c)), \
|
|
(I[34] = (T)(img)(_p9##x,_p13##y,z,c)), \
|
|
(I[63] = (T)(img)(_p9##x,_p12##y,z,c)), \
|
|
(I[92] = (T)(img)(_p9##x,_p11##y,z,c)), \
|
|
(I[121] = (T)(img)(_p9##x,_p10##y,z,c)), \
|
|
(I[150] = (T)(img)(_p9##x,_p9##y,z,c)), \
|
|
(I[179] = (T)(img)(_p9##x,_p8##y,z,c)), \
|
|
(I[208] = (T)(img)(_p9##x,_p7##y,z,c)), \
|
|
(I[237] = (T)(img)(_p9##x,_p6##y,z,c)), \
|
|
(I[266] = (T)(img)(_p9##x,_p5##y,z,c)), \
|
|
(I[295] = (T)(img)(_p9##x,_p4##y,z,c)), \
|
|
(I[324] = (T)(img)(_p9##x,_p3##y,z,c)), \
|
|
(I[353] = (T)(img)(_p9##x,_p2##y,z,c)), \
|
|
(I[382] = (T)(img)(_p9##x,_p1##y,z,c)), \
|
|
(I[411] = (T)(img)(_p9##x,y,z,c)), \
|
|
(I[440] = (T)(img)(_p9##x,_n1##y,z,c)), \
|
|
(I[469] = (T)(img)(_p9##x,_n2##y,z,c)), \
|
|
(I[498] = (T)(img)(_p9##x,_n3##y,z,c)), \
|
|
(I[527] = (T)(img)(_p9##x,_n4##y,z,c)), \
|
|
(I[556] = (T)(img)(_p9##x,_n5##y,z,c)), \
|
|
(I[585] = (T)(img)(_p9##x,_n6##y,z,c)), \
|
|
(I[614] = (T)(img)(_p9##x,_n7##y,z,c)), \
|
|
(I[643] = (T)(img)(_p9##x,_n8##y,z,c)), \
|
|
(I[672] = (T)(img)(_p9##x,_n9##y,z,c)), \
|
|
(I[701] = (T)(img)(_p9##x,_n10##y,z,c)), \
|
|
(I[730] = (T)(img)(_p9##x,_n11##y,z,c)), \
|
|
(I[759] = (T)(img)(_p9##x,_n12##y,z,c)), \
|
|
(I[788] = (T)(img)(_p9##x,_n13##y,z,c)), \
|
|
(I[817] = (T)(img)(_p9##x,_n14##y,z,c)), \
|
|
(I[6] = (T)(img)(_p8##x,_p14##y,z,c)), \
|
|
(I[35] = (T)(img)(_p8##x,_p13##y,z,c)), \
|
|
(I[64] = (T)(img)(_p8##x,_p12##y,z,c)), \
|
|
(I[93] = (T)(img)(_p8##x,_p11##y,z,c)), \
|
|
(I[122] = (T)(img)(_p8##x,_p10##y,z,c)), \
|
|
(I[151] = (T)(img)(_p8##x,_p9##y,z,c)), \
|
|
(I[180] = (T)(img)(_p8##x,_p8##y,z,c)), \
|
|
(I[209] = (T)(img)(_p8##x,_p7##y,z,c)), \
|
|
(I[238] = (T)(img)(_p8##x,_p6##y,z,c)), \
|
|
(I[267] = (T)(img)(_p8##x,_p5##y,z,c)), \
|
|
(I[296] = (T)(img)(_p8##x,_p4##y,z,c)), \
|
|
(I[325] = (T)(img)(_p8##x,_p3##y,z,c)), \
|
|
(I[354] = (T)(img)(_p8##x,_p2##y,z,c)), \
|
|
(I[383] = (T)(img)(_p8##x,_p1##y,z,c)), \
|
|
(I[412] = (T)(img)(_p8##x,y,z,c)), \
|
|
(I[441] = (T)(img)(_p8##x,_n1##y,z,c)), \
|
|
(I[470] = (T)(img)(_p8##x,_n2##y,z,c)), \
|
|
(I[499] = (T)(img)(_p8##x,_n3##y,z,c)), \
|
|
(I[528] = (T)(img)(_p8##x,_n4##y,z,c)), \
|
|
(I[557] = (T)(img)(_p8##x,_n5##y,z,c)), \
|
|
(I[586] = (T)(img)(_p8##x,_n6##y,z,c)), \
|
|
(I[615] = (T)(img)(_p8##x,_n7##y,z,c)), \
|
|
(I[644] = (T)(img)(_p8##x,_n8##y,z,c)), \
|
|
(I[673] = (T)(img)(_p8##x,_n9##y,z,c)), \
|
|
(I[702] = (T)(img)(_p8##x,_n10##y,z,c)), \
|
|
(I[731] = (T)(img)(_p8##x,_n11##y,z,c)), \
|
|
(I[760] = (T)(img)(_p8##x,_n12##y,z,c)), \
|
|
(I[789] = (T)(img)(_p8##x,_n13##y,z,c)), \
|
|
(I[818] = (T)(img)(_p8##x,_n14##y,z,c)), \
|
|
(I[7] = (T)(img)(_p7##x,_p14##y,z,c)), \
|
|
(I[36] = (T)(img)(_p7##x,_p13##y,z,c)), \
|
|
(I[65] = (T)(img)(_p7##x,_p12##y,z,c)), \
|
|
(I[94] = (T)(img)(_p7##x,_p11##y,z,c)), \
|
|
(I[123] = (T)(img)(_p7##x,_p10##y,z,c)), \
|
|
(I[152] = (T)(img)(_p7##x,_p9##y,z,c)), \
|
|
(I[181] = (T)(img)(_p7##x,_p8##y,z,c)), \
|
|
(I[210] = (T)(img)(_p7##x,_p7##y,z,c)), \
|
|
(I[239] = (T)(img)(_p7##x,_p6##y,z,c)), \
|
|
(I[268] = (T)(img)(_p7##x,_p5##y,z,c)), \
|
|
(I[297] = (T)(img)(_p7##x,_p4##y,z,c)), \
|
|
(I[326] = (T)(img)(_p7##x,_p3##y,z,c)), \
|
|
(I[355] = (T)(img)(_p7##x,_p2##y,z,c)), \
|
|
(I[384] = (T)(img)(_p7##x,_p1##y,z,c)), \
|
|
(I[413] = (T)(img)(_p7##x,y,z,c)), \
|
|
(I[442] = (T)(img)(_p7##x,_n1##y,z,c)), \
|
|
(I[471] = (T)(img)(_p7##x,_n2##y,z,c)), \
|
|
(I[500] = (T)(img)(_p7##x,_n3##y,z,c)), \
|
|
(I[529] = (T)(img)(_p7##x,_n4##y,z,c)), \
|
|
(I[558] = (T)(img)(_p7##x,_n5##y,z,c)), \
|
|
(I[587] = (T)(img)(_p7##x,_n6##y,z,c)), \
|
|
(I[616] = (T)(img)(_p7##x,_n7##y,z,c)), \
|
|
(I[645] = (T)(img)(_p7##x,_n8##y,z,c)), \
|
|
(I[674] = (T)(img)(_p7##x,_n9##y,z,c)), \
|
|
(I[703] = (T)(img)(_p7##x,_n10##y,z,c)), \
|
|
(I[732] = (T)(img)(_p7##x,_n11##y,z,c)), \
|
|
(I[761] = (T)(img)(_p7##x,_n12##y,z,c)), \
|
|
(I[790] = (T)(img)(_p7##x,_n13##y,z,c)), \
|
|
(I[819] = (T)(img)(_p7##x,_n14##y,z,c)), \
|
|
(I[8] = (T)(img)(_p6##x,_p14##y,z,c)), \
|
|
(I[37] = (T)(img)(_p6##x,_p13##y,z,c)), \
|
|
(I[66] = (T)(img)(_p6##x,_p12##y,z,c)), \
|
|
(I[95] = (T)(img)(_p6##x,_p11##y,z,c)), \
|
|
(I[124] = (T)(img)(_p6##x,_p10##y,z,c)), \
|
|
(I[153] = (T)(img)(_p6##x,_p9##y,z,c)), \
|
|
(I[182] = (T)(img)(_p6##x,_p8##y,z,c)), \
|
|
(I[211] = (T)(img)(_p6##x,_p7##y,z,c)), \
|
|
(I[240] = (T)(img)(_p6##x,_p6##y,z,c)), \
|
|
(I[269] = (T)(img)(_p6##x,_p5##y,z,c)), \
|
|
(I[298] = (T)(img)(_p6##x,_p4##y,z,c)), \
|
|
(I[327] = (T)(img)(_p6##x,_p3##y,z,c)), \
|
|
(I[356] = (T)(img)(_p6##x,_p2##y,z,c)), \
|
|
(I[385] = (T)(img)(_p6##x,_p1##y,z,c)), \
|
|
(I[414] = (T)(img)(_p6##x,y,z,c)), \
|
|
(I[443] = (T)(img)(_p6##x,_n1##y,z,c)), \
|
|
(I[472] = (T)(img)(_p6##x,_n2##y,z,c)), \
|
|
(I[501] = (T)(img)(_p6##x,_n3##y,z,c)), \
|
|
(I[530] = (T)(img)(_p6##x,_n4##y,z,c)), \
|
|
(I[559] = (T)(img)(_p6##x,_n5##y,z,c)), \
|
|
(I[588] = (T)(img)(_p6##x,_n6##y,z,c)), \
|
|
(I[617] = (T)(img)(_p6##x,_n7##y,z,c)), \
|
|
(I[646] = (T)(img)(_p6##x,_n8##y,z,c)), \
|
|
(I[675] = (T)(img)(_p6##x,_n9##y,z,c)), \
|
|
(I[704] = (T)(img)(_p6##x,_n10##y,z,c)), \
|
|
(I[733] = (T)(img)(_p6##x,_n11##y,z,c)), \
|
|
(I[762] = (T)(img)(_p6##x,_n12##y,z,c)), \
|
|
(I[791] = (T)(img)(_p6##x,_n13##y,z,c)), \
|
|
(I[820] = (T)(img)(_p6##x,_n14##y,z,c)), \
|
|
(I[9] = (T)(img)(_p5##x,_p14##y,z,c)), \
|
|
(I[38] = (T)(img)(_p5##x,_p13##y,z,c)), \
|
|
(I[67] = (T)(img)(_p5##x,_p12##y,z,c)), \
|
|
(I[96] = (T)(img)(_p5##x,_p11##y,z,c)), \
|
|
(I[125] = (T)(img)(_p5##x,_p10##y,z,c)), \
|
|
(I[154] = (T)(img)(_p5##x,_p9##y,z,c)), \
|
|
(I[183] = (T)(img)(_p5##x,_p8##y,z,c)), \
|
|
(I[212] = (T)(img)(_p5##x,_p7##y,z,c)), \
|
|
(I[241] = (T)(img)(_p5##x,_p6##y,z,c)), \
|
|
(I[270] = (T)(img)(_p5##x,_p5##y,z,c)), \
|
|
(I[299] = (T)(img)(_p5##x,_p4##y,z,c)), \
|
|
(I[328] = (T)(img)(_p5##x,_p3##y,z,c)), \
|
|
(I[357] = (T)(img)(_p5##x,_p2##y,z,c)), \
|
|
(I[386] = (T)(img)(_p5##x,_p1##y,z,c)), \
|
|
(I[415] = (T)(img)(_p5##x,y,z,c)), \
|
|
(I[444] = (T)(img)(_p5##x,_n1##y,z,c)), \
|
|
(I[473] = (T)(img)(_p5##x,_n2##y,z,c)), \
|
|
(I[502] = (T)(img)(_p5##x,_n3##y,z,c)), \
|
|
(I[531] = (T)(img)(_p5##x,_n4##y,z,c)), \
|
|
(I[560] = (T)(img)(_p5##x,_n5##y,z,c)), \
|
|
(I[589] = (T)(img)(_p5##x,_n6##y,z,c)), \
|
|
(I[618] = (T)(img)(_p5##x,_n7##y,z,c)), \
|
|
(I[647] = (T)(img)(_p5##x,_n8##y,z,c)), \
|
|
(I[676] = (T)(img)(_p5##x,_n9##y,z,c)), \
|
|
(I[705] = (T)(img)(_p5##x,_n10##y,z,c)), \
|
|
(I[734] = (T)(img)(_p5##x,_n11##y,z,c)), \
|
|
(I[763] = (T)(img)(_p5##x,_n12##y,z,c)), \
|
|
(I[792] = (T)(img)(_p5##x,_n13##y,z,c)), \
|
|
(I[821] = (T)(img)(_p5##x,_n14##y,z,c)), \
|
|
(I[10] = (T)(img)(_p4##x,_p14##y,z,c)), \
|
|
(I[39] = (T)(img)(_p4##x,_p13##y,z,c)), \
|
|
(I[68] = (T)(img)(_p4##x,_p12##y,z,c)), \
|
|
(I[97] = (T)(img)(_p4##x,_p11##y,z,c)), \
|
|
(I[126] = (T)(img)(_p4##x,_p10##y,z,c)), \
|
|
(I[155] = (T)(img)(_p4##x,_p9##y,z,c)), \
|
|
(I[184] = (T)(img)(_p4##x,_p8##y,z,c)), \
|
|
(I[213] = (T)(img)(_p4##x,_p7##y,z,c)), \
|
|
(I[242] = (T)(img)(_p4##x,_p6##y,z,c)), \
|
|
(I[271] = (T)(img)(_p4##x,_p5##y,z,c)), \
|
|
(I[300] = (T)(img)(_p4##x,_p4##y,z,c)), \
|
|
(I[329] = (T)(img)(_p4##x,_p3##y,z,c)), \
|
|
(I[358] = (T)(img)(_p4##x,_p2##y,z,c)), \
|
|
(I[387] = (T)(img)(_p4##x,_p1##y,z,c)), \
|
|
(I[416] = (T)(img)(_p4##x,y,z,c)), \
|
|
(I[445] = (T)(img)(_p4##x,_n1##y,z,c)), \
|
|
(I[474] = (T)(img)(_p4##x,_n2##y,z,c)), \
|
|
(I[503] = (T)(img)(_p4##x,_n3##y,z,c)), \
|
|
(I[532] = (T)(img)(_p4##x,_n4##y,z,c)), \
|
|
(I[561] = (T)(img)(_p4##x,_n5##y,z,c)), \
|
|
(I[590] = (T)(img)(_p4##x,_n6##y,z,c)), \
|
|
(I[619] = (T)(img)(_p4##x,_n7##y,z,c)), \
|
|
(I[648] = (T)(img)(_p4##x,_n8##y,z,c)), \
|
|
(I[677] = (T)(img)(_p4##x,_n9##y,z,c)), \
|
|
(I[706] = (T)(img)(_p4##x,_n10##y,z,c)), \
|
|
(I[735] = (T)(img)(_p4##x,_n11##y,z,c)), \
|
|
(I[764] = (T)(img)(_p4##x,_n12##y,z,c)), \
|
|
(I[793] = (T)(img)(_p4##x,_n13##y,z,c)), \
|
|
(I[822] = (T)(img)(_p4##x,_n14##y,z,c)), \
|
|
(I[11] = (T)(img)(_p3##x,_p14##y,z,c)), \
|
|
(I[40] = (T)(img)(_p3##x,_p13##y,z,c)), \
|
|
(I[69] = (T)(img)(_p3##x,_p12##y,z,c)), \
|
|
(I[98] = (T)(img)(_p3##x,_p11##y,z,c)), \
|
|
(I[127] = (T)(img)(_p3##x,_p10##y,z,c)), \
|
|
(I[156] = (T)(img)(_p3##x,_p9##y,z,c)), \
|
|
(I[185] = (T)(img)(_p3##x,_p8##y,z,c)), \
|
|
(I[214] = (T)(img)(_p3##x,_p7##y,z,c)), \
|
|
(I[243] = (T)(img)(_p3##x,_p6##y,z,c)), \
|
|
(I[272] = (T)(img)(_p3##x,_p5##y,z,c)), \
|
|
(I[301] = (T)(img)(_p3##x,_p4##y,z,c)), \
|
|
(I[330] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[359] = (T)(img)(_p3##x,_p2##y,z,c)), \
|
|
(I[388] = (T)(img)(_p3##x,_p1##y,z,c)), \
|
|
(I[417] = (T)(img)(_p3##x,y,z,c)), \
|
|
(I[446] = (T)(img)(_p3##x,_n1##y,z,c)), \
|
|
(I[475] = (T)(img)(_p3##x,_n2##y,z,c)), \
|
|
(I[504] = (T)(img)(_p3##x,_n3##y,z,c)), \
|
|
(I[533] = (T)(img)(_p3##x,_n4##y,z,c)), \
|
|
(I[562] = (T)(img)(_p3##x,_n5##y,z,c)), \
|
|
(I[591] = (T)(img)(_p3##x,_n6##y,z,c)), \
|
|
(I[620] = (T)(img)(_p3##x,_n7##y,z,c)), \
|
|
(I[649] = (T)(img)(_p3##x,_n8##y,z,c)), \
|
|
(I[678] = (T)(img)(_p3##x,_n9##y,z,c)), \
|
|
(I[707] = (T)(img)(_p3##x,_n10##y,z,c)), \
|
|
(I[736] = (T)(img)(_p3##x,_n11##y,z,c)), \
|
|
(I[765] = (T)(img)(_p3##x,_n12##y,z,c)), \
|
|
(I[794] = (T)(img)(_p3##x,_n13##y,z,c)), \
|
|
(I[823] = (T)(img)(_p3##x,_n14##y,z,c)), \
|
|
(I[12] = (T)(img)(_p2##x,_p14##y,z,c)), \
|
|
(I[41] = (T)(img)(_p2##x,_p13##y,z,c)), \
|
|
(I[70] = (T)(img)(_p2##x,_p12##y,z,c)), \
|
|
(I[99] = (T)(img)(_p2##x,_p11##y,z,c)), \
|
|
(I[128] = (T)(img)(_p2##x,_p10##y,z,c)), \
|
|
(I[157] = (T)(img)(_p2##x,_p9##y,z,c)), \
|
|
(I[186] = (T)(img)(_p2##x,_p8##y,z,c)), \
|
|
(I[215] = (T)(img)(_p2##x,_p7##y,z,c)), \
|
|
(I[244] = (T)(img)(_p2##x,_p6##y,z,c)), \
|
|
(I[273] = (T)(img)(_p2##x,_p5##y,z,c)), \
|
|
(I[302] = (T)(img)(_p2##x,_p4##y,z,c)), \
|
|
(I[331] = (T)(img)(_p2##x,_p3##y,z,c)), \
|
|
(I[360] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[389] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[418] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[447] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[476] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[505] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[534] = (T)(img)(_p2##x,_n4##y,z,c)), \
|
|
(I[563] = (T)(img)(_p2##x,_n5##y,z,c)), \
|
|
(I[592] = (T)(img)(_p2##x,_n6##y,z,c)), \
|
|
(I[621] = (T)(img)(_p2##x,_n7##y,z,c)), \
|
|
(I[650] = (T)(img)(_p2##x,_n8##y,z,c)), \
|
|
(I[679] = (T)(img)(_p2##x,_n9##y,z,c)), \
|
|
(I[708] = (T)(img)(_p2##x,_n10##y,z,c)), \
|
|
(I[737] = (T)(img)(_p2##x,_n11##y,z,c)), \
|
|
(I[766] = (T)(img)(_p2##x,_n12##y,z,c)), \
|
|
(I[795] = (T)(img)(_p2##x,_n13##y,z,c)), \
|
|
(I[824] = (T)(img)(_p2##x,_n14##y,z,c)), \
|
|
(I[13] = (T)(img)(_p1##x,_p14##y,z,c)), \
|
|
(I[42] = (T)(img)(_p1##x,_p13##y,z,c)), \
|
|
(I[71] = (T)(img)(_p1##x,_p12##y,z,c)), \
|
|
(I[100] = (T)(img)(_p1##x,_p11##y,z,c)), \
|
|
(I[129] = (T)(img)(_p1##x,_p10##y,z,c)), \
|
|
(I[158] = (T)(img)(_p1##x,_p9##y,z,c)), \
|
|
(I[187] = (T)(img)(_p1##x,_p8##y,z,c)), \
|
|
(I[216] = (T)(img)(_p1##x,_p7##y,z,c)), \
|
|
(I[245] = (T)(img)(_p1##x,_p6##y,z,c)), \
|
|
(I[274] = (T)(img)(_p1##x,_p5##y,z,c)), \
|
|
(I[303] = (T)(img)(_p1##x,_p4##y,z,c)), \
|
|
(I[332] = (T)(img)(_p1##x,_p3##y,z,c)), \
|
|
(I[361] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[390] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[419] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[448] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[477] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[506] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[535] = (T)(img)(_p1##x,_n4##y,z,c)), \
|
|
(I[564] = (T)(img)(_p1##x,_n5##y,z,c)), \
|
|
(I[593] = (T)(img)(_p1##x,_n6##y,z,c)), \
|
|
(I[622] = (T)(img)(_p1##x,_n7##y,z,c)), \
|
|
(I[651] = (T)(img)(_p1##x,_n8##y,z,c)), \
|
|
(I[680] = (T)(img)(_p1##x,_n9##y,z,c)), \
|
|
(I[709] = (T)(img)(_p1##x,_n10##y,z,c)), \
|
|
(I[738] = (T)(img)(_p1##x,_n11##y,z,c)), \
|
|
(I[767] = (T)(img)(_p1##x,_n12##y,z,c)), \
|
|
(I[796] = (T)(img)(_p1##x,_n13##y,z,c)), \
|
|
(I[825] = (T)(img)(_p1##x,_n14##y,z,c)), \
|
|
(I[14] = (T)(img)(x,_p14##y,z,c)), \
|
|
(I[43] = (T)(img)(x,_p13##y,z,c)), \
|
|
(I[72] = (T)(img)(x,_p12##y,z,c)), \
|
|
(I[101] = (T)(img)(x,_p11##y,z,c)), \
|
|
(I[130] = (T)(img)(x,_p10##y,z,c)), \
|
|
(I[159] = (T)(img)(x,_p9##y,z,c)), \
|
|
(I[188] = (T)(img)(x,_p8##y,z,c)), \
|
|
(I[217] = (T)(img)(x,_p7##y,z,c)), \
|
|
(I[246] = (T)(img)(x,_p6##y,z,c)), \
|
|
(I[275] = (T)(img)(x,_p5##y,z,c)), \
|
|
(I[304] = (T)(img)(x,_p4##y,z,c)), \
|
|
(I[333] = (T)(img)(x,_p3##y,z,c)), \
|
|
(I[362] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[391] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[420] = (T)(img)(x,y,z,c)), \
|
|
(I[449] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[478] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[507] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[536] = (T)(img)(x,_n4##y,z,c)), \
|
|
(I[565] = (T)(img)(x,_n5##y,z,c)), \
|
|
(I[594] = (T)(img)(x,_n6##y,z,c)), \
|
|
(I[623] = (T)(img)(x,_n7##y,z,c)), \
|
|
(I[652] = (T)(img)(x,_n8##y,z,c)), \
|
|
(I[681] = (T)(img)(x,_n9##y,z,c)), \
|
|
(I[710] = (T)(img)(x,_n10##y,z,c)), \
|
|
(I[739] = (T)(img)(x,_n11##y,z,c)), \
|
|
(I[768] = (T)(img)(x,_n12##y,z,c)), \
|
|
(I[797] = (T)(img)(x,_n13##y,z,c)), \
|
|
(I[826] = (T)(img)(x,_n14##y,z,c)), \
|
|
(I[15] = (T)(img)(_n1##x,_p14##y,z,c)), \
|
|
(I[44] = (T)(img)(_n1##x,_p13##y,z,c)), \
|
|
(I[73] = (T)(img)(_n1##x,_p12##y,z,c)), \
|
|
(I[102] = (T)(img)(_n1##x,_p11##y,z,c)), \
|
|
(I[131] = (T)(img)(_n1##x,_p10##y,z,c)), \
|
|
(I[160] = (T)(img)(_n1##x,_p9##y,z,c)), \
|
|
(I[189] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[218] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[247] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[276] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[305] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[334] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[363] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[392] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[421] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[450] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[479] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[508] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[537] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[566] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[595] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[624] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[653] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[682] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[711] = (T)(img)(_n1##x,_n10##y,z,c)), \
|
|
(I[740] = (T)(img)(_n1##x,_n11##y,z,c)), \
|
|
(I[769] = (T)(img)(_n1##x,_n12##y,z,c)), \
|
|
(I[798] = (T)(img)(_n1##x,_n13##y,z,c)), \
|
|
(I[827] = (T)(img)(_n1##x,_n14##y,z,c)), \
|
|
(I[16] = (T)(img)(_n2##x,_p14##y,z,c)), \
|
|
(I[45] = (T)(img)(_n2##x,_p13##y,z,c)), \
|
|
(I[74] = (T)(img)(_n2##x,_p12##y,z,c)), \
|
|
(I[103] = (T)(img)(_n2##x,_p11##y,z,c)), \
|
|
(I[132] = (T)(img)(_n2##x,_p10##y,z,c)), \
|
|
(I[161] = (T)(img)(_n2##x,_p9##y,z,c)), \
|
|
(I[190] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[219] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[248] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[277] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[306] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[335] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[364] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[393] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[422] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[451] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[480] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[509] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[538] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[567] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[596] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[625] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[654] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[683] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[712] = (T)(img)(_n2##x,_n10##y,z,c)), \
|
|
(I[741] = (T)(img)(_n2##x,_n11##y,z,c)), \
|
|
(I[770] = (T)(img)(_n2##x,_n12##y,z,c)), \
|
|
(I[799] = (T)(img)(_n2##x,_n13##y,z,c)), \
|
|
(I[828] = (T)(img)(_n2##x,_n14##y,z,c)), \
|
|
(I[17] = (T)(img)(_n3##x,_p14##y,z,c)), \
|
|
(I[46] = (T)(img)(_n3##x,_p13##y,z,c)), \
|
|
(I[75] = (T)(img)(_n3##x,_p12##y,z,c)), \
|
|
(I[104] = (T)(img)(_n3##x,_p11##y,z,c)), \
|
|
(I[133] = (T)(img)(_n3##x,_p10##y,z,c)), \
|
|
(I[162] = (T)(img)(_n3##x,_p9##y,z,c)), \
|
|
(I[191] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[220] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[249] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[278] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[307] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[336] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[365] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[394] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[423] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[452] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[481] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[510] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[539] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[568] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[597] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[626] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[655] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[684] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[713] = (T)(img)(_n3##x,_n10##y,z,c)), \
|
|
(I[742] = (T)(img)(_n3##x,_n11##y,z,c)), \
|
|
(I[771] = (T)(img)(_n3##x,_n12##y,z,c)), \
|
|
(I[800] = (T)(img)(_n3##x,_n13##y,z,c)), \
|
|
(I[829] = (T)(img)(_n3##x,_n14##y,z,c)), \
|
|
(I[18] = (T)(img)(_n4##x,_p14##y,z,c)), \
|
|
(I[47] = (T)(img)(_n4##x,_p13##y,z,c)), \
|
|
(I[76] = (T)(img)(_n4##x,_p12##y,z,c)), \
|
|
(I[105] = (T)(img)(_n4##x,_p11##y,z,c)), \
|
|
(I[134] = (T)(img)(_n4##x,_p10##y,z,c)), \
|
|
(I[163] = (T)(img)(_n4##x,_p9##y,z,c)), \
|
|
(I[192] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[221] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[250] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[279] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[308] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[337] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[366] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[395] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[424] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[453] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[482] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[511] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[540] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[569] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[598] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[627] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[656] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[685] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[714] = (T)(img)(_n4##x,_n10##y,z,c)), \
|
|
(I[743] = (T)(img)(_n4##x,_n11##y,z,c)), \
|
|
(I[772] = (T)(img)(_n4##x,_n12##y,z,c)), \
|
|
(I[801] = (T)(img)(_n4##x,_n13##y,z,c)), \
|
|
(I[830] = (T)(img)(_n4##x,_n14##y,z,c)), \
|
|
(I[19] = (T)(img)(_n5##x,_p14##y,z,c)), \
|
|
(I[48] = (T)(img)(_n5##x,_p13##y,z,c)), \
|
|
(I[77] = (T)(img)(_n5##x,_p12##y,z,c)), \
|
|
(I[106] = (T)(img)(_n5##x,_p11##y,z,c)), \
|
|
(I[135] = (T)(img)(_n5##x,_p10##y,z,c)), \
|
|
(I[164] = (T)(img)(_n5##x,_p9##y,z,c)), \
|
|
(I[193] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[222] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[251] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[280] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[309] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[338] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[367] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[396] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[425] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[454] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[483] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[512] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[541] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[570] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[599] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[628] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[657] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[686] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[715] = (T)(img)(_n5##x,_n10##y,z,c)), \
|
|
(I[744] = (T)(img)(_n5##x,_n11##y,z,c)), \
|
|
(I[773] = (T)(img)(_n5##x,_n12##y,z,c)), \
|
|
(I[802] = (T)(img)(_n5##x,_n13##y,z,c)), \
|
|
(I[831] = (T)(img)(_n5##x,_n14##y,z,c)), \
|
|
(I[20] = (T)(img)(_n6##x,_p14##y,z,c)), \
|
|
(I[49] = (T)(img)(_n6##x,_p13##y,z,c)), \
|
|
(I[78] = (T)(img)(_n6##x,_p12##y,z,c)), \
|
|
(I[107] = (T)(img)(_n6##x,_p11##y,z,c)), \
|
|
(I[136] = (T)(img)(_n6##x,_p10##y,z,c)), \
|
|
(I[165] = (T)(img)(_n6##x,_p9##y,z,c)), \
|
|
(I[194] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[223] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[252] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[281] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[310] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[339] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[368] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[397] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[426] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[455] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[484] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[513] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[542] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[571] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[600] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[629] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[658] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[687] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[716] = (T)(img)(_n6##x,_n10##y,z,c)), \
|
|
(I[745] = (T)(img)(_n6##x,_n11##y,z,c)), \
|
|
(I[774] = (T)(img)(_n6##x,_n12##y,z,c)), \
|
|
(I[803] = (T)(img)(_n6##x,_n13##y,z,c)), \
|
|
(I[832] = (T)(img)(_n6##x,_n14##y,z,c)), \
|
|
(I[21] = (T)(img)(_n7##x,_p14##y,z,c)), \
|
|
(I[50] = (T)(img)(_n7##x,_p13##y,z,c)), \
|
|
(I[79] = (T)(img)(_n7##x,_p12##y,z,c)), \
|
|
(I[108] = (T)(img)(_n7##x,_p11##y,z,c)), \
|
|
(I[137] = (T)(img)(_n7##x,_p10##y,z,c)), \
|
|
(I[166] = (T)(img)(_n7##x,_p9##y,z,c)), \
|
|
(I[195] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[224] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[253] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[282] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[311] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[340] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[369] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[398] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[427] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[456] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[485] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[514] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[543] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[572] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[601] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[630] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[659] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[688] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[717] = (T)(img)(_n7##x,_n10##y,z,c)), \
|
|
(I[746] = (T)(img)(_n7##x,_n11##y,z,c)), \
|
|
(I[775] = (T)(img)(_n7##x,_n12##y,z,c)), \
|
|
(I[804] = (T)(img)(_n7##x,_n13##y,z,c)), \
|
|
(I[833] = (T)(img)(_n7##x,_n14##y,z,c)), \
|
|
(I[22] = (T)(img)(_n8##x,_p14##y,z,c)), \
|
|
(I[51] = (T)(img)(_n8##x,_p13##y,z,c)), \
|
|
(I[80] = (T)(img)(_n8##x,_p12##y,z,c)), \
|
|
(I[109] = (T)(img)(_n8##x,_p11##y,z,c)), \
|
|
(I[138] = (T)(img)(_n8##x,_p10##y,z,c)), \
|
|
(I[167] = (T)(img)(_n8##x,_p9##y,z,c)), \
|
|
(I[196] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[225] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[254] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[283] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[312] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[341] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[370] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[399] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[428] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[457] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[486] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[515] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[544] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[573] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[602] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[631] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[660] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[689] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
(I[718] = (T)(img)(_n8##x,_n10##y,z,c)), \
|
|
(I[747] = (T)(img)(_n8##x,_n11##y,z,c)), \
|
|
(I[776] = (T)(img)(_n8##x,_n12##y,z,c)), \
|
|
(I[805] = (T)(img)(_n8##x,_n13##y,z,c)), \
|
|
(I[834] = (T)(img)(_n8##x,_n14##y,z,c)), \
|
|
(I[23] = (T)(img)(_n9##x,_p14##y,z,c)), \
|
|
(I[52] = (T)(img)(_n9##x,_p13##y,z,c)), \
|
|
(I[81] = (T)(img)(_n9##x,_p12##y,z,c)), \
|
|
(I[110] = (T)(img)(_n9##x,_p11##y,z,c)), \
|
|
(I[139] = (T)(img)(_n9##x,_p10##y,z,c)), \
|
|
(I[168] = (T)(img)(_n9##x,_p9##y,z,c)), \
|
|
(I[197] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[226] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[255] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[284] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[313] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[342] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[371] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[400] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[429] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[458] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[487] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[516] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[545] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[574] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[603] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[632] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[661] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[690] = (T)(img)(_n9##x,_n9##y,z,c)), \
|
|
(I[719] = (T)(img)(_n9##x,_n10##y,z,c)), \
|
|
(I[748] = (T)(img)(_n9##x,_n11##y,z,c)), \
|
|
(I[777] = (T)(img)(_n9##x,_n12##y,z,c)), \
|
|
(I[806] = (T)(img)(_n9##x,_n13##y,z,c)), \
|
|
(I[835] = (T)(img)(_n9##x,_n14##y,z,c)), \
|
|
(I[24] = (T)(img)(_n10##x,_p14##y,z,c)), \
|
|
(I[53] = (T)(img)(_n10##x,_p13##y,z,c)), \
|
|
(I[82] = (T)(img)(_n10##x,_p12##y,z,c)), \
|
|
(I[111] = (T)(img)(_n10##x,_p11##y,z,c)), \
|
|
(I[140] = (T)(img)(_n10##x,_p10##y,z,c)), \
|
|
(I[169] = (T)(img)(_n10##x,_p9##y,z,c)), \
|
|
(I[198] = (T)(img)(_n10##x,_p8##y,z,c)), \
|
|
(I[227] = (T)(img)(_n10##x,_p7##y,z,c)), \
|
|
(I[256] = (T)(img)(_n10##x,_p6##y,z,c)), \
|
|
(I[285] = (T)(img)(_n10##x,_p5##y,z,c)), \
|
|
(I[314] = (T)(img)(_n10##x,_p4##y,z,c)), \
|
|
(I[343] = (T)(img)(_n10##x,_p3##y,z,c)), \
|
|
(I[372] = (T)(img)(_n10##x,_p2##y,z,c)), \
|
|
(I[401] = (T)(img)(_n10##x,_p1##y,z,c)), \
|
|
(I[430] = (T)(img)(_n10##x,y,z,c)), \
|
|
(I[459] = (T)(img)(_n10##x,_n1##y,z,c)), \
|
|
(I[488] = (T)(img)(_n10##x,_n2##y,z,c)), \
|
|
(I[517] = (T)(img)(_n10##x,_n3##y,z,c)), \
|
|
(I[546] = (T)(img)(_n10##x,_n4##y,z,c)), \
|
|
(I[575] = (T)(img)(_n10##x,_n5##y,z,c)), \
|
|
(I[604] = (T)(img)(_n10##x,_n6##y,z,c)), \
|
|
(I[633] = (T)(img)(_n10##x,_n7##y,z,c)), \
|
|
(I[662] = (T)(img)(_n10##x,_n8##y,z,c)), \
|
|
(I[691] = (T)(img)(_n10##x,_n9##y,z,c)), \
|
|
(I[720] = (T)(img)(_n10##x,_n10##y,z,c)), \
|
|
(I[749] = (T)(img)(_n10##x,_n11##y,z,c)), \
|
|
(I[778] = (T)(img)(_n10##x,_n12##y,z,c)), \
|
|
(I[807] = (T)(img)(_n10##x,_n13##y,z,c)), \
|
|
(I[836] = (T)(img)(_n10##x,_n14##y,z,c)), \
|
|
(I[25] = (T)(img)(_n11##x,_p14##y,z,c)), \
|
|
(I[54] = (T)(img)(_n11##x,_p13##y,z,c)), \
|
|
(I[83] = (T)(img)(_n11##x,_p12##y,z,c)), \
|
|
(I[112] = (T)(img)(_n11##x,_p11##y,z,c)), \
|
|
(I[141] = (T)(img)(_n11##x,_p10##y,z,c)), \
|
|
(I[170] = (T)(img)(_n11##x,_p9##y,z,c)), \
|
|
(I[199] = (T)(img)(_n11##x,_p8##y,z,c)), \
|
|
(I[228] = (T)(img)(_n11##x,_p7##y,z,c)), \
|
|
(I[257] = (T)(img)(_n11##x,_p6##y,z,c)), \
|
|
(I[286] = (T)(img)(_n11##x,_p5##y,z,c)), \
|
|
(I[315] = (T)(img)(_n11##x,_p4##y,z,c)), \
|
|
(I[344] = (T)(img)(_n11##x,_p3##y,z,c)), \
|
|
(I[373] = (T)(img)(_n11##x,_p2##y,z,c)), \
|
|
(I[402] = (T)(img)(_n11##x,_p1##y,z,c)), \
|
|
(I[431] = (T)(img)(_n11##x,y,z,c)), \
|
|
(I[460] = (T)(img)(_n11##x,_n1##y,z,c)), \
|
|
(I[489] = (T)(img)(_n11##x,_n2##y,z,c)), \
|
|
(I[518] = (T)(img)(_n11##x,_n3##y,z,c)), \
|
|
(I[547] = (T)(img)(_n11##x,_n4##y,z,c)), \
|
|
(I[576] = (T)(img)(_n11##x,_n5##y,z,c)), \
|
|
(I[605] = (T)(img)(_n11##x,_n6##y,z,c)), \
|
|
(I[634] = (T)(img)(_n11##x,_n7##y,z,c)), \
|
|
(I[663] = (T)(img)(_n11##x,_n8##y,z,c)), \
|
|
(I[692] = (T)(img)(_n11##x,_n9##y,z,c)), \
|
|
(I[721] = (T)(img)(_n11##x,_n10##y,z,c)), \
|
|
(I[750] = (T)(img)(_n11##x,_n11##y,z,c)), \
|
|
(I[779] = (T)(img)(_n11##x,_n12##y,z,c)), \
|
|
(I[808] = (T)(img)(_n11##x,_n13##y,z,c)), \
|
|
(I[837] = (T)(img)(_n11##x,_n14##y,z,c)), \
|
|
(I[26] = (T)(img)(_n12##x,_p14##y,z,c)), \
|
|
(I[55] = (T)(img)(_n12##x,_p13##y,z,c)), \
|
|
(I[84] = (T)(img)(_n12##x,_p12##y,z,c)), \
|
|
(I[113] = (T)(img)(_n12##x,_p11##y,z,c)), \
|
|
(I[142] = (T)(img)(_n12##x,_p10##y,z,c)), \
|
|
(I[171] = (T)(img)(_n12##x,_p9##y,z,c)), \
|
|
(I[200] = (T)(img)(_n12##x,_p8##y,z,c)), \
|
|
(I[229] = (T)(img)(_n12##x,_p7##y,z,c)), \
|
|
(I[258] = (T)(img)(_n12##x,_p6##y,z,c)), \
|
|
(I[287] = (T)(img)(_n12##x,_p5##y,z,c)), \
|
|
(I[316] = (T)(img)(_n12##x,_p4##y,z,c)), \
|
|
(I[345] = (T)(img)(_n12##x,_p3##y,z,c)), \
|
|
(I[374] = (T)(img)(_n12##x,_p2##y,z,c)), \
|
|
(I[403] = (T)(img)(_n12##x,_p1##y,z,c)), \
|
|
(I[432] = (T)(img)(_n12##x,y,z,c)), \
|
|
(I[461] = (T)(img)(_n12##x,_n1##y,z,c)), \
|
|
(I[490] = (T)(img)(_n12##x,_n2##y,z,c)), \
|
|
(I[519] = (T)(img)(_n12##x,_n3##y,z,c)), \
|
|
(I[548] = (T)(img)(_n12##x,_n4##y,z,c)), \
|
|
(I[577] = (T)(img)(_n12##x,_n5##y,z,c)), \
|
|
(I[606] = (T)(img)(_n12##x,_n6##y,z,c)), \
|
|
(I[635] = (T)(img)(_n12##x,_n7##y,z,c)), \
|
|
(I[664] = (T)(img)(_n12##x,_n8##y,z,c)), \
|
|
(I[693] = (T)(img)(_n12##x,_n9##y,z,c)), \
|
|
(I[722] = (T)(img)(_n12##x,_n10##y,z,c)), \
|
|
(I[751] = (T)(img)(_n12##x,_n11##y,z,c)), \
|
|
(I[780] = (T)(img)(_n12##x,_n12##y,z,c)), \
|
|
(I[809] = (T)(img)(_n12##x,_n13##y,z,c)), \
|
|
(I[838] = (T)(img)(_n12##x,_n14##y,z,c)), \
|
|
(I[27] = (T)(img)(_n13##x,_p14##y,z,c)), \
|
|
(I[56] = (T)(img)(_n13##x,_p13##y,z,c)), \
|
|
(I[85] = (T)(img)(_n13##x,_p12##y,z,c)), \
|
|
(I[114] = (T)(img)(_n13##x,_p11##y,z,c)), \
|
|
(I[143] = (T)(img)(_n13##x,_p10##y,z,c)), \
|
|
(I[172] = (T)(img)(_n13##x,_p9##y,z,c)), \
|
|
(I[201] = (T)(img)(_n13##x,_p8##y,z,c)), \
|
|
(I[230] = (T)(img)(_n13##x,_p7##y,z,c)), \
|
|
(I[259] = (T)(img)(_n13##x,_p6##y,z,c)), \
|
|
(I[288] = (T)(img)(_n13##x,_p5##y,z,c)), \
|
|
(I[317] = (T)(img)(_n13##x,_p4##y,z,c)), \
|
|
(I[346] = (T)(img)(_n13##x,_p3##y,z,c)), \
|
|
(I[375] = (T)(img)(_n13##x,_p2##y,z,c)), \
|
|
(I[404] = (T)(img)(_n13##x,_p1##y,z,c)), \
|
|
(I[433] = (T)(img)(_n13##x,y,z,c)), \
|
|
(I[462] = (T)(img)(_n13##x,_n1##y,z,c)), \
|
|
(I[491] = (T)(img)(_n13##x,_n2##y,z,c)), \
|
|
(I[520] = (T)(img)(_n13##x,_n3##y,z,c)), \
|
|
(I[549] = (T)(img)(_n13##x,_n4##y,z,c)), \
|
|
(I[578] = (T)(img)(_n13##x,_n5##y,z,c)), \
|
|
(I[607] = (T)(img)(_n13##x,_n6##y,z,c)), \
|
|
(I[636] = (T)(img)(_n13##x,_n7##y,z,c)), \
|
|
(I[665] = (T)(img)(_n13##x,_n8##y,z,c)), \
|
|
(I[694] = (T)(img)(_n13##x,_n9##y,z,c)), \
|
|
(I[723] = (T)(img)(_n13##x,_n10##y,z,c)), \
|
|
(I[752] = (T)(img)(_n13##x,_n11##y,z,c)), \
|
|
(I[781] = (T)(img)(_n13##x,_n12##y,z,c)), \
|
|
(I[810] = (T)(img)(_n13##x,_n13##y,z,c)), \
|
|
(I[839] = (T)(img)(_n13##x,_n14##y,z,c)), \
|
|
x + 14>=(img).width()?(img).width() - 1:x + 14); \
|
|
x<=(int)(x1) && ((_n14##x<(img).width() && ( \
|
|
(I[28] = (T)(img)(_n14##x,_p14##y,z,c)), \
|
|
(I[57] = (T)(img)(_n14##x,_p13##y,z,c)), \
|
|
(I[86] = (T)(img)(_n14##x,_p12##y,z,c)), \
|
|
(I[115] = (T)(img)(_n14##x,_p11##y,z,c)), \
|
|
(I[144] = (T)(img)(_n14##x,_p10##y,z,c)), \
|
|
(I[173] = (T)(img)(_n14##x,_p9##y,z,c)), \
|
|
(I[202] = (T)(img)(_n14##x,_p8##y,z,c)), \
|
|
(I[231] = (T)(img)(_n14##x,_p7##y,z,c)), \
|
|
(I[260] = (T)(img)(_n14##x,_p6##y,z,c)), \
|
|
(I[289] = (T)(img)(_n14##x,_p5##y,z,c)), \
|
|
(I[318] = (T)(img)(_n14##x,_p4##y,z,c)), \
|
|
(I[347] = (T)(img)(_n14##x,_p3##y,z,c)), \
|
|
(I[376] = (T)(img)(_n14##x,_p2##y,z,c)), \
|
|
(I[405] = (T)(img)(_n14##x,_p1##y,z,c)), \
|
|
(I[434] = (T)(img)(_n14##x,y,z,c)), \
|
|
(I[463] = (T)(img)(_n14##x,_n1##y,z,c)), \
|
|
(I[492] = (T)(img)(_n14##x,_n2##y,z,c)), \
|
|
(I[521] = (T)(img)(_n14##x,_n3##y,z,c)), \
|
|
(I[550] = (T)(img)(_n14##x,_n4##y,z,c)), \
|
|
(I[579] = (T)(img)(_n14##x,_n5##y,z,c)), \
|
|
(I[608] = (T)(img)(_n14##x,_n6##y,z,c)), \
|
|
(I[637] = (T)(img)(_n14##x,_n7##y,z,c)), \
|
|
(I[666] = (T)(img)(_n14##x,_n8##y,z,c)), \
|
|
(I[695] = (T)(img)(_n14##x,_n9##y,z,c)), \
|
|
(I[724] = (T)(img)(_n14##x,_n10##y,z,c)), \
|
|
(I[753] = (T)(img)(_n14##x,_n11##y,z,c)), \
|
|
(I[782] = (T)(img)(_n14##x,_n12##y,z,c)), \
|
|
(I[811] = (T)(img)(_n14##x,_n13##y,z,c)), \
|
|
(I[840] = (T)(img)(_n14##x,_n14##y,z,c)),1)) || \
|
|
_n13##x==--_n14##x || _n12##x==--_n13##x || _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n14##x = _n13##x = _n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], \
|
|
I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], \
|
|
I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], \
|
|
I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], \
|
|
I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], \
|
|
I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], \
|
|
I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], \
|
|
I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], \
|
|
I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], \
|
|
I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], \
|
|
I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], \
|
|
I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], \
|
|
I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], \
|
|
I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], \
|
|
I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], \
|
|
I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], \
|
|
I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], \
|
|
I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], \
|
|
I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], \
|
|
I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], I[575] = I[576], I[576] = I[577], I[577] = I[578], I[578] = I[579], \
|
|
I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], I[587] = I[588], I[588] = I[589], I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], I[593] = I[594], I[594] = I[595], I[595] = I[596], I[596] = I[597], I[597] = I[598], I[598] = I[599], I[599] = I[600], I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], I[607] = I[608], \
|
|
I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], I[615] = I[616], I[616] = I[617], I[617] = I[618], I[618] = I[619], I[619] = I[620], I[620] = I[621], I[621] = I[622], I[622] = I[623], I[623] = I[624], I[624] = I[625], I[625] = I[626], I[626] = I[627], I[627] = I[628], I[628] = I[629], I[629] = I[630], I[630] = I[631], I[631] = I[632], I[632] = I[633], I[633] = I[634], I[634] = I[635], I[635] = I[636], I[636] = I[637], \
|
|
I[638] = I[639], I[639] = I[640], I[640] = I[641], I[641] = I[642], I[642] = I[643], I[643] = I[644], I[644] = I[645], I[645] = I[646], I[646] = I[647], I[647] = I[648], I[648] = I[649], I[649] = I[650], I[650] = I[651], I[651] = I[652], I[652] = I[653], I[653] = I[654], I[654] = I[655], I[655] = I[656], I[656] = I[657], I[657] = I[658], I[658] = I[659], I[659] = I[660], I[660] = I[661], I[661] = I[662], I[662] = I[663], I[663] = I[664], I[664] = I[665], I[665] = I[666], \
|
|
I[667] = I[668], I[668] = I[669], I[669] = I[670], I[670] = I[671], I[671] = I[672], I[672] = I[673], I[673] = I[674], I[674] = I[675], I[675] = I[676], I[676] = I[677], I[677] = I[678], I[678] = I[679], I[679] = I[680], I[680] = I[681], I[681] = I[682], I[682] = I[683], I[683] = I[684], I[684] = I[685], I[685] = I[686], I[686] = I[687], I[687] = I[688], I[688] = I[689], I[689] = I[690], I[690] = I[691], I[691] = I[692], I[692] = I[693], I[693] = I[694], I[694] = I[695], \
|
|
I[696] = I[697], I[697] = I[698], I[698] = I[699], I[699] = I[700], I[700] = I[701], I[701] = I[702], I[702] = I[703], I[703] = I[704], I[704] = I[705], I[705] = I[706], I[706] = I[707], I[707] = I[708], I[708] = I[709], I[709] = I[710], I[710] = I[711], I[711] = I[712], I[712] = I[713], I[713] = I[714], I[714] = I[715], I[715] = I[716], I[716] = I[717], I[717] = I[718], I[718] = I[719], I[719] = I[720], I[720] = I[721], I[721] = I[722], I[722] = I[723], I[723] = I[724], \
|
|
I[725] = I[726], I[726] = I[727], I[727] = I[728], I[728] = I[729], I[729] = I[730], I[730] = I[731], I[731] = I[732], I[732] = I[733], I[733] = I[734], I[734] = I[735], I[735] = I[736], I[736] = I[737], I[737] = I[738], I[738] = I[739], I[739] = I[740], I[740] = I[741], I[741] = I[742], I[742] = I[743], I[743] = I[744], I[744] = I[745], I[745] = I[746], I[746] = I[747], I[747] = I[748], I[748] = I[749], I[749] = I[750], I[750] = I[751], I[751] = I[752], I[752] = I[753], \
|
|
I[754] = I[755], I[755] = I[756], I[756] = I[757], I[757] = I[758], I[758] = I[759], I[759] = I[760], I[760] = I[761], I[761] = I[762], I[762] = I[763], I[763] = I[764], I[764] = I[765], I[765] = I[766], I[766] = I[767], I[767] = I[768], I[768] = I[769], I[769] = I[770], I[770] = I[771], I[771] = I[772], I[772] = I[773], I[773] = I[774], I[774] = I[775], I[775] = I[776], I[776] = I[777], I[777] = I[778], I[778] = I[779], I[779] = I[780], I[780] = I[781], I[781] = I[782], \
|
|
I[783] = I[784], I[784] = I[785], I[785] = I[786], I[786] = I[787], I[787] = I[788], I[788] = I[789], I[789] = I[790], I[790] = I[791], I[791] = I[792], I[792] = I[793], I[793] = I[794], I[794] = I[795], I[795] = I[796], I[796] = I[797], I[797] = I[798], I[798] = I[799], I[799] = I[800], I[800] = I[801], I[801] = I[802], I[802] = I[803], I[803] = I[804], I[804] = I[805], I[805] = I[806], I[806] = I[807], I[807] = I[808], I[808] = I[809], I[809] = I[810], I[810] = I[811], \
|
|
I[812] = I[813], I[813] = I[814], I[814] = I[815], I[815] = I[816], I[816] = I[817], I[817] = I[818], I[818] = I[819], I[819] = I[820], I[820] = I[821], I[821] = I[822], I[822] = I[823], I[823] = I[824], I[824] = I[825], I[825] = I[826], I[826] = I[827], I[827] = I[828], I[828] = I[829], I[829] = I[830], I[830] = I[831], I[831] = I[832], I[832] = I[833], I[833] = I[834], I[834] = I[835], I[835] = I[836], I[836] = I[837], I[837] = I[838], I[838] = I[839], I[839] = I[840], \
|
|
_p14##x = _p13##x, _p13##x = _p12##x, _p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x, ++_n13##x, ++_n14##x)
|
|
|
|
#define cimg_get29x29(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p14##x,_p14##y,z,c), I[1] = (T)(img)(_p13##x,_p14##y,z,c), I[2] = (T)(img)(_p12##x,_p14##y,z,c), I[3] = (T)(img)(_p11##x,_p14##y,z,c), I[4] = (T)(img)(_p10##x,_p14##y,z,c), I[5] = (T)(img)(_p9##x,_p14##y,z,c), I[6] = (T)(img)(_p8##x,_p14##y,z,c), I[7] = (T)(img)(_p7##x,_p14##y,z,c), I[8] = (T)(img)(_p6##x,_p14##y,z,c), I[9] = (T)(img)(_p5##x,_p14##y,z,c), I[10] = (T)(img)(_p4##x,_p14##y,z,c), I[11] = (T)(img)(_p3##x,_p14##y,z,c), I[12] = (T)(img)(_p2##x,_p14##y,z,c), I[13] = (T)(img)(_p1##x,_p14##y,z,c), I[14] = (T)(img)(x,_p14##y,z,c), I[15] = (T)(img)(_n1##x,_p14##y,z,c), I[16] = (T)(img)(_n2##x,_p14##y,z,c), I[17] = (T)(img)(_n3##x,_p14##y,z,c), I[18] = (T)(img)(_n4##x,_p14##y,z,c), I[19] = (T)(img)(_n5##x,_p14##y,z,c), I[20] = (T)(img)(_n6##x,_p14##y,z,c), I[21] = (T)(img)(_n7##x,_p14##y,z,c), I[22] = (T)(img)(_n8##x,_p14##y,z,c), I[23] = (T)(img)(_n9##x,_p14##y,z,c), I[24] = (T)(img)(_n10##x,_p14##y,z,c), I[25] = (T)(img)(_n11##x,_p14##y,z,c), I[26] = (T)(img)(_n12##x,_p14##y,z,c), I[27] = (T)(img)(_n13##x,_p14##y,z,c), I[28] = (T)(img)(_n14##x,_p14##y,z,c), \
|
|
I[29] = (T)(img)(_p14##x,_p13##y,z,c), I[30] = (T)(img)(_p13##x,_p13##y,z,c), I[31] = (T)(img)(_p12##x,_p13##y,z,c), I[32] = (T)(img)(_p11##x,_p13##y,z,c), I[33] = (T)(img)(_p10##x,_p13##y,z,c), I[34] = (T)(img)(_p9##x,_p13##y,z,c), I[35] = (T)(img)(_p8##x,_p13##y,z,c), I[36] = (T)(img)(_p7##x,_p13##y,z,c), I[37] = (T)(img)(_p6##x,_p13##y,z,c), I[38] = (T)(img)(_p5##x,_p13##y,z,c), I[39] = (T)(img)(_p4##x,_p13##y,z,c), I[40] = (T)(img)(_p3##x,_p13##y,z,c), I[41] = (T)(img)(_p2##x,_p13##y,z,c), I[42] = (T)(img)(_p1##x,_p13##y,z,c), I[43] = (T)(img)(x,_p13##y,z,c), I[44] = (T)(img)(_n1##x,_p13##y,z,c), I[45] = (T)(img)(_n2##x,_p13##y,z,c), I[46] = (T)(img)(_n3##x,_p13##y,z,c), I[47] = (T)(img)(_n4##x,_p13##y,z,c), I[48] = (T)(img)(_n5##x,_p13##y,z,c), I[49] = (T)(img)(_n6##x,_p13##y,z,c), I[50] = (T)(img)(_n7##x,_p13##y,z,c), I[51] = (T)(img)(_n8##x,_p13##y,z,c), I[52] = (T)(img)(_n9##x,_p13##y,z,c), I[53] = (T)(img)(_n10##x,_p13##y,z,c), I[54] = (T)(img)(_n11##x,_p13##y,z,c), I[55] = (T)(img)(_n12##x,_p13##y,z,c), I[56] = (T)(img)(_n13##x,_p13##y,z,c), I[57] = (T)(img)(_n14##x,_p13##y,z,c), \
|
|
I[58] = (T)(img)(_p14##x,_p12##y,z,c), I[59] = (T)(img)(_p13##x,_p12##y,z,c), I[60] = (T)(img)(_p12##x,_p12##y,z,c), I[61] = (T)(img)(_p11##x,_p12##y,z,c), I[62] = (T)(img)(_p10##x,_p12##y,z,c), I[63] = (T)(img)(_p9##x,_p12##y,z,c), I[64] = (T)(img)(_p8##x,_p12##y,z,c), I[65] = (T)(img)(_p7##x,_p12##y,z,c), I[66] = (T)(img)(_p6##x,_p12##y,z,c), I[67] = (T)(img)(_p5##x,_p12##y,z,c), I[68] = (T)(img)(_p4##x,_p12##y,z,c), I[69] = (T)(img)(_p3##x,_p12##y,z,c), I[70] = (T)(img)(_p2##x,_p12##y,z,c), I[71] = (T)(img)(_p1##x,_p12##y,z,c), I[72] = (T)(img)(x,_p12##y,z,c), I[73] = (T)(img)(_n1##x,_p12##y,z,c), I[74] = (T)(img)(_n2##x,_p12##y,z,c), I[75] = (T)(img)(_n3##x,_p12##y,z,c), I[76] = (T)(img)(_n4##x,_p12##y,z,c), I[77] = (T)(img)(_n5##x,_p12##y,z,c), I[78] = (T)(img)(_n6##x,_p12##y,z,c), I[79] = (T)(img)(_n7##x,_p12##y,z,c), I[80] = (T)(img)(_n8##x,_p12##y,z,c), I[81] = (T)(img)(_n9##x,_p12##y,z,c), I[82] = (T)(img)(_n10##x,_p12##y,z,c), I[83] = (T)(img)(_n11##x,_p12##y,z,c), I[84] = (T)(img)(_n12##x,_p12##y,z,c), I[85] = (T)(img)(_n13##x,_p12##y,z,c), I[86] = (T)(img)(_n14##x,_p12##y,z,c), \
|
|
I[87] = (T)(img)(_p14##x,_p11##y,z,c), I[88] = (T)(img)(_p13##x,_p11##y,z,c), I[89] = (T)(img)(_p12##x,_p11##y,z,c), I[90] = (T)(img)(_p11##x,_p11##y,z,c), I[91] = (T)(img)(_p10##x,_p11##y,z,c), I[92] = (T)(img)(_p9##x,_p11##y,z,c), I[93] = (T)(img)(_p8##x,_p11##y,z,c), I[94] = (T)(img)(_p7##x,_p11##y,z,c), I[95] = (T)(img)(_p6##x,_p11##y,z,c), I[96] = (T)(img)(_p5##x,_p11##y,z,c), I[97] = (T)(img)(_p4##x,_p11##y,z,c), I[98] = (T)(img)(_p3##x,_p11##y,z,c), I[99] = (T)(img)(_p2##x,_p11##y,z,c), I[100] = (T)(img)(_p1##x,_p11##y,z,c), I[101] = (T)(img)(x,_p11##y,z,c), I[102] = (T)(img)(_n1##x,_p11##y,z,c), I[103] = (T)(img)(_n2##x,_p11##y,z,c), I[104] = (T)(img)(_n3##x,_p11##y,z,c), I[105] = (T)(img)(_n4##x,_p11##y,z,c), I[106] = (T)(img)(_n5##x,_p11##y,z,c), I[107] = (T)(img)(_n6##x,_p11##y,z,c), I[108] = (T)(img)(_n7##x,_p11##y,z,c), I[109] = (T)(img)(_n8##x,_p11##y,z,c), I[110] = (T)(img)(_n9##x,_p11##y,z,c), I[111] = (T)(img)(_n10##x,_p11##y,z,c), I[112] = (T)(img)(_n11##x,_p11##y,z,c), I[113] = (T)(img)(_n12##x,_p11##y,z,c), I[114] = (T)(img)(_n13##x,_p11##y,z,c), I[115] = (T)(img)(_n14##x,_p11##y,z,c), \
|
|
I[116] = (T)(img)(_p14##x,_p10##y,z,c), I[117] = (T)(img)(_p13##x,_p10##y,z,c), I[118] = (T)(img)(_p12##x,_p10##y,z,c), I[119] = (T)(img)(_p11##x,_p10##y,z,c), I[120] = (T)(img)(_p10##x,_p10##y,z,c), I[121] = (T)(img)(_p9##x,_p10##y,z,c), I[122] = (T)(img)(_p8##x,_p10##y,z,c), I[123] = (T)(img)(_p7##x,_p10##y,z,c), I[124] = (T)(img)(_p6##x,_p10##y,z,c), I[125] = (T)(img)(_p5##x,_p10##y,z,c), I[126] = (T)(img)(_p4##x,_p10##y,z,c), I[127] = (T)(img)(_p3##x,_p10##y,z,c), I[128] = (T)(img)(_p2##x,_p10##y,z,c), I[129] = (T)(img)(_p1##x,_p10##y,z,c), I[130] = (T)(img)(x,_p10##y,z,c), I[131] = (T)(img)(_n1##x,_p10##y,z,c), I[132] = (T)(img)(_n2##x,_p10##y,z,c), I[133] = (T)(img)(_n3##x,_p10##y,z,c), I[134] = (T)(img)(_n4##x,_p10##y,z,c), I[135] = (T)(img)(_n5##x,_p10##y,z,c), I[136] = (T)(img)(_n6##x,_p10##y,z,c), I[137] = (T)(img)(_n7##x,_p10##y,z,c), I[138] = (T)(img)(_n8##x,_p10##y,z,c), I[139] = (T)(img)(_n9##x,_p10##y,z,c), I[140] = (T)(img)(_n10##x,_p10##y,z,c), I[141] = (T)(img)(_n11##x,_p10##y,z,c), I[142] = (T)(img)(_n12##x,_p10##y,z,c), I[143] = (T)(img)(_n13##x,_p10##y,z,c), I[144] = (T)(img)(_n14##x,_p10##y,z,c), \
|
|
I[145] = (T)(img)(_p14##x,_p9##y,z,c), I[146] = (T)(img)(_p13##x,_p9##y,z,c), I[147] = (T)(img)(_p12##x,_p9##y,z,c), I[148] = (T)(img)(_p11##x,_p9##y,z,c), I[149] = (T)(img)(_p10##x,_p9##y,z,c), I[150] = (T)(img)(_p9##x,_p9##y,z,c), I[151] = (T)(img)(_p8##x,_p9##y,z,c), I[152] = (T)(img)(_p7##x,_p9##y,z,c), I[153] = (T)(img)(_p6##x,_p9##y,z,c), I[154] = (T)(img)(_p5##x,_p9##y,z,c), I[155] = (T)(img)(_p4##x,_p9##y,z,c), I[156] = (T)(img)(_p3##x,_p9##y,z,c), I[157] = (T)(img)(_p2##x,_p9##y,z,c), I[158] = (T)(img)(_p1##x,_p9##y,z,c), I[159] = (T)(img)(x,_p9##y,z,c), I[160] = (T)(img)(_n1##x,_p9##y,z,c), I[161] = (T)(img)(_n2##x,_p9##y,z,c), I[162] = (T)(img)(_n3##x,_p9##y,z,c), I[163] = (T)(img)(_n4##x,_p9##y,z,c), I[164] = (T)(img)(_n5##x,_p9##y,z,c), I[165] = (T)(img)(_n6##x,_p9##y,z,c), I[166] = (T)(img)(_n7##x,_p9##y,z,c), I[167] = (T)(img)(_n8##x,_p9##y,z,c), I[168] = (T)(img)(_n9##x,_p9##y,z,c), I[169] = (T)(img)(_n10##x,_p9##y,z,c), I[170] = (T)(img)(_n11##x,_p9##y,z,c), I[171] = (T)(img)(_n12##x,_p9##y,z,c), I[172] = (T)(img)(_n13##x,_p9##y,z,c), I[173] = (T)(img)(_n14##x,_p9##y,z,c), \
|
|
I[174] = (T)(img)(_p14##x,_p8##y,z,c), I[175] = (T)(img)(_p13##x,_p8##y,z,c), I[176] = (T)(img)(_p12##x,_p8##y,z,c), I[177] = (T)(img)(_p11##x,_p8##y,z,c), I[178] = (T)(img)(_p10##x,_p8##y,z,c), I[179] = (T)(img)(_p9##x,_p8##y,z,c), I[180] = (T)(img)(_p8##x,_p8##y,z,c), I[181] = (T)(img)(_p7##x,_p8##y,z,c), I[182] = (T)(img)(_p6##x,_p8##y,z,c), I[183] = (T)(img)(_p5##x,_p8##y,z,c), I[184] = (T)(img)(_p4##x,_p8##y,z,c), I[185] = (T)(img)(_p3##x,_p8##y,z,c), I[186] = (T)(img)(_p2##x,_p8##y,z,c), I[187] = (T)(img)(_p1##x,_p8##y,z,c), I[188] = (T)(img)(x,_p8##y,z,c), I[189] = (T)(img)(_n1##x,_p8##y,z,c), I[190] = (T)(img)(_n2##x,_p8##y,z,c), I[191] = (T)(img)(_n3##x,_p8##y,z,c), I[192] = (T)(img)(_n4##x,_p8##y,z,c), I[193] = (T)(img)(_n5##x,_p8##y,z,c), I[194] = (T)(img)(_n6##x,_p8##y,z,c), I[195] = (T)(img)(_n7##x,_p8##y,z,c), I[196] = (T)(img)(_n8##x,_p8##y,z,c), I[197] = (T)(img)(_n9##x,_p8##y,z,c), I[198] = (T)(img)(_n10##x,_p8##y,z,c), I[199] = (T)(img)(_n11##x,_p8##y,z,c), I[200] = (T)(img)(_n12##x,_p8##y,z,c), I[201] = (T)(img)(_n13##x,_p8##y,z,c), I[202] = (T)(img)(_n14##x,_p8##y,z,c), \
|
|
I[203] = (T)(img)(_p14##x,_p7##y,z,c), I[204] = (T)(img)(_p13##x,_p7##y,z,c), I[205] = (T)(img)(_p12##x,_p7##y,z,c), I[206] = (T)(img)(_p11##x,_p7##y,z,c), I[207] = (T)(img)(_p10##x,_p7##y,z,c), I[208] = (T)(img)(_p9##x,_p7##y,z,c), I[209] = (T)(img)(_p8##x,_p7##y,z,c), I[210] = (T)(img)(_p7##x,_p7##y,z,c), I[211] = (T)(img)(_p6##x,_p7##y,z,c), I[212] = (T)(img)(_p5##x,_p7##y,z,c), I[213] = (T)(img)(_p4##x,_p7##y,z,c), I[214] = (T)(img)(_p3##x,_p7##y,z,c), I[215] = (T)(img)(_p2##x,_p7##y,z,c), I[216] = (T)(img)(_p1##x,_p7##y,z,c), I[217] = (T)(img)(x,_p7##y,z,c), I[218] = (T)(img)(_n1##x,_p7##y,z,c), I[219] = (T)(img)(_n2##x,_p7##y,z,c), I[220] = (T)(img)(_n3##x,_p7##y,z,c), I[221] = (T)(img)(_n4##x,_p7##y,z,c), I[222] = (T)(img)(_n5##x,_p7##y,z,c), I[223] = (T)(img)(_n6##x,_p7##y,z,c), I[224] = (T)(img)(_n7##x,_p7##y,z,c), I[225] = (T)(img)(_n8##x,_p7##y,z,c), I[226] = (T)(img)(_n9##x,_p7##y,z,c), I[227] = (T)(img)(_n10##x,_p7##y,z,c), I[228] = (T)(img)(_n11##x,_p7##y,z,c), I[229] = (T)(img)(_n12##x,_p7##y,z,c), I[230] = (T)(img)(_n13##x,_p7##y,z,c), I[231] = (T)(img)(_n14##x,_p7##y,z,c), \
|
|
I[232] = (T)(img)(_p14##x,_p6##y,z,c), I[233] = (T)(img)(_p13##x,_p6##y,z,c), I[234] = (T)(img)(_p12##x,_p6##y,z,c), I[235] = (T)(img)(_p11##x,_p6##y,z,c), I[236] = (T)(img)(_p10##x,_p6##y,z,c), I[237] = (T)(img)(_p9##x,_p6##y,z,c), I[238] = (T)(img)(_p8##x,_p6##y,z,c), I[239] = (T)(img)(_p7##x,_p6##y,z,c), I[240] = (T)(img)(_p6##x,_p6##y,z,c), I[241] = (T)(img)(_p5##x,_p6##y,z,c), I[242] = (T)(img)(_p4##x,_p6##y,z,c), I[243] = (T)(img)(_p3##x,_p6##y,z,c), I[244] = (T)(img)(_p2##x,_p6##y,z,c), I[245] = (T)(img)(_p1##x,_p6##y,z,c), I[246] = (T)(img)(x,_p6##y,z,c), I[247] = (T)(img)(_n1##x,_p6##y,z,c), I[248] = (T)(img)(_n2##x,_p6##y,z,c), I[249] = (T)(img)(_n3##x,_p6##y,z,c), I[250] = (T)(img)(_n4##x,_p6##y,z,c), I[251] = (T)(img)(_n5##x,_p6##y,z,c), I[252] = (T)(img)(_n6##x,_p6##y,z,c), I[253] = (T)(img)(_n7##x,_p6##y,z,c), I[254] = (T)(img)(_n8##x,_p6##y,z,c), I[255] = (T)(img)(_n9##x,_p6##y,z,c), I[256] = (T)(img)(_n10##x,_p6##y,z,c), I[257] = (T)(img)(_n11##x,_p6##y,z,c), I[258] = (T)(img)(_n12##x,_p6##y,z,c), I[259] = (T)(img)(_n13##x,_p6##y,z,c), I[260] = (T)(img)(_n14##x,_p6##y,z,c), \
|
|
I[261] = (T)(img)(_p14##x,_p5##y,z,c), I[262] = (T)(img)(_p13##x,_p5##y,z,c), I[263] = (T)(img)(_p12##x,_p5##y,z,c), I[264] = (T)(img)(_p11##x,_p5##y,z,c), I[265] = (T)(img)(_p10##x,_p5##y,z,c), I[266] = (T)(img)(_p9##x,_p5##y,z,c), I[267] = (T)(img)(_p8##x,_p5##y,z,c), I[268] = (T)(img)(_p7##x,_p5##y,z,c), I[269] = (T)(img)(_p6##x,_p5##y,z,c), I[270] = (T)(img)(_p5##x,_p5##y,z,c), I[271] = (T)(img)(_p4##x,_p5##y,z,c), I[272] = (T)(img)(_p3##x,_p5##y,z,c), I[273] = (T)(img)(_p2##x,_p5##y,z,c), I[274] = (T)(img)(_p1##x,_p5##y,z,c), I[275] = (T)(img)(x,_p5##y,z,c), I[276] = (T)(img)(_n1##x,_p5##y,z,c), I[277] = (T)(img)(_n2##x,_p5##y,z,c), I[278] = (T)(img)(_n3##x,_p5##y,z,c), I[279] = (T)(img)(_n4##x,_p5##y,z,c), I[280] = (T)(img)(_n5##x,_p5##y,z,c), I[281] = (T)(img)(_n6##x,_p5##y,z,c), I[282] = (T)(img)(_n7##x,_p5##y,z,c), I[283] = (T)(img)(_n8##x,_p5##y,z,c), I[284] = (T)(img)(_n9##x,_p5##y,z,c), I[285] = (T)(img)(_n10##x,_p5##y,z,c), I[286] = (T)(img)(_n11##x,_p5##y,z,c), I[287] = (T)(img)(_n12##x,_p5##y,z,c), I[288] = (T)(img)(_n13##x,_p5##y,z,c), I[289] = (T)(img)(_n14##x,_p5##y,z,c), \
|
|
I[290] = (T)(img)(_p14##x,_p4##y,z,c), I[291] = (T)(img)(_p13##x,_p4##y,z,c), I[292] = (T)(img)(_p12##x,_p4##y,z,c), I[293] = (T)(img)(_p11##x,_p4##y,z,c), I[294] = (T)(img)(_p10##x,_p4##y,z,c), I[295] = (T)(img)(_p9##x,_p4##y,z,c), I[296] = (T)(img)(_p8##x,_p4##y,z,c), I[297] = (T)(img)(_p7##x,_p4##y,z,c), I[298] = (T)(img)(_p6##x,_p4##y,z,c), I[299] = (T)(img)(_p5##x,_p4##y,z,c), I[300] = (T)(img)(_p4##x,_p4##y,z,c), I[301] = (T)(img)(_p3##x,_p4##y,z,c), I[302] = (T)(img)(_p2##x,_p4##y,z,c), I[303] = (T)(img)(_p1##x,_p4##y,z,c), I[304] = (T)(img)(x,_p4##y,z,c), I[305] = (T)(img)(_n1##x,_p4##y,z,c), I[306] = (T)(img)(_n2##x,_p4##y,z,c), I[307] = (T)(img)(_n3##x,_p4##y,z,c), I[308] = (T)(img)(_n4##x,_p4##y,z,c), I[309] = (T)(img)(_n5##x,_p4##y,z,c), I[310] = (T)(img)(_n6##x,_p4##y,z,c), I[311] = (T)(img)(_n7##x,_p4##y,z,c), I[312] = (T)(img)(_n8##x,_p4##y,z,c), I[313] = (T)(img)(_n9##x,_p4##y,z,c), I[314] = (T)(img)(_n10##x,_p4##y,z,c), I[315] = (T)(img)(_n11##x,_p4##y,z,c), I[316] = (T)(img)(_n12##x,_p4##y,z,c), I[317] = (T)(img)(_n13##x,_p4##y,z,c), I[318] = (T)(img)(_n14##x,_p4##y,z,c), \
|
|
I[319] = (T)(img)(_p14##x,_p3##y,z,c), I[320] = (T)(img)(_p13##x,_p3##y,z,c), I[321] = (T)(img)(_p12##x,_p3##y,z,c), I[322] = (T)(img)(_p11##x,_p3##y,z,c), I[323] = (T)(img)(_p10##x,_p3##y,z,c), I[324] = (T)(img)(_p9##x,_p3##y,z,c), I[325] = (T)(img)(_p8##x,_p3##y,z,c), I[326] = (T)(img)(_p7##x,_p3##y,z,c), I[327] = (T)(img)(_p6##x,_p3##y,z,c), I[328] = (T)(img)(_p5##x,_p3##y,z,c), I[329] = (T)(img)(_p4##x,_p3##y,z,c), I[330] = (T)(img)(_p3##x,_p3##y,z,c), I[331] = (T)(img)(_p2##x,_p3##y,z,c), I[332] = (T)(img)(_p1##x,_p3##y,z,c), I[333] = (T)(img)(x,_p3##y,z,c), I[334] = (T)(img)(_n1##x,_p3##y,z,c), I[335] = (T)(img)(_n2##x,_p3##y,z,c), I[336] = (T)(img)(_n3##x,_p3##y,z,c), I[337] = (T)(img)(_n4##x,_p3##y,z,c), I[338] = (T)(img)(_n5##x,_p3##y,z,c), I[339] = (T)(img)(_n6##x,_p3##y,z,c), I[340] = (T)(img)(_n7##x,_p3##y,z,c), I[341] = (T)(img)(_n8##x,_p3##y,z,c), I[342] = (T)(img)(_n9##x,_p3##y,z,c), I[343] = (T)(img)(_n10##x,_p3##y,z,c), I[344] = (T)(img)(_n11##x,_p3##y,z,c), I[345] = (T)(img)(_n12##x,_p3##y,z,c), I[346] = (T)(img)(_n13##x,_p3##y,z,c), I[347] = (T)(img)(_n14##x,_p3##y,z,c), \
|
|
I[348] = (T)(img)(_p14##x,_p2##y,z,c), I[349] = (T)(img)(_p13##x,_p2##y,z,c), I[350] = (T)(img)(_p12##x,_p2##y,z,c), I[351] = (T)(img)(_p11##x,_p2##y,z,c), I[352] = (T)(img)(_p10##x,_p2##y,z,c), I[353] = (T)(img)(_p9##x,_p2##y,z,c), I[354] = (T)(img)(_p8##x,_p2##y,z,c), I[355] = (T)(img)(_p7##x,_p2##y,z,c), I[356] = (T)(img)(_p6##x,_p2##y,z,c), I[357] = (T)(img)(_p5##x,_p2##y,z,c), I[358] = (T)(img)(_p4##x,_p2##y,z,c), I[359] = (T)(img)(_p3##x,_p2##y,z,c), I[360] = (T)(img)(_p2##x,_p2##y,z,c), I[361] = (T)(img)(_p1##x,_p2##y,z,c), I[362] = (T)(img)(x,_p2##y,z,c), I[363] = (T)(img)(_n1##x,_p2##y,z,c), I[364] = (T)(img)(_n2##x,_p2##y,z,c), I[365] = (T)(img)(_n3##x,_p2##y,z,c), I[366] = (T)(img)(_n4##x,_p2##y,z,c), I[367] = (T)(img)(_n5##x,_p2##y,z,c), I[368] = (T)(img)(_n6##x,_p2##y,z,c), I[369] = (T)(img)(_n7##x,_p2##y,z,c), I[370] = (T)(img)(_n8##x,_p2##y,z,c), I[371] = (T)(img)(_n9##x,_p2##y,z,c), I[372] = (T)(img)(_n10##x,_p2##y,z,c), I[373] = (T)(img)(_n11##x,_p2##y,z,c), I[374] = (T)(img)(_n12##x,_p2##y,z,c), I[375] = (T)(img)(_n13##x,_p2##y,z,c), I[376] = (T)(img)(_n14##x,_p2##y,z,c), \
|
|
I[377] = (T)(img)(_p14##x,_p1##y,z,c), I[378] = (T)(img)(_p13##x,_p1##y,z,c), I[379] = (T)(img)(_p12##x,_p1##y,z,c), I[380] = (T)(img)(_p11##x,_p1##y,z,c), I[381] = (T)(img)(_p10##x,_p1##y,z,c), I[382] = (T)(img)(_p9##x,_p1##y,z,c), I[383] = (T)(img)(_p8##x,_p1##y,z,c), I[384] = (T)(img)(_p7##x,_p1##y,z,c), I[385] = (T)(img)(_p6##x,_p1##y,z,c), I[386] = (T)(img)(_p5##x,_p1##y,z,c), I[387] = (T)(img)(_p4##x,_p1##y,z,c), I[388] = (T)(img)(_p3##x,_p1##y,z,c), I[389] = (T)(img)(_p2##x,_p1##y,z,c), I[390] = (T)(img)(_p1##x,_p1##y,z,c), I[391] = (T)(img)(x,_p1##y,z,c), I[392] = (T)(img)(_n1##x,_p1##y,z,c), I[393] = (T)(img)(_n2##x,_p1##y,z,c), I[394] = (T)(img)(_n3##x,_p1##y,z,c), I[395] = (T)(img)(_n4##x,_p1##y,z,c), I[396] = (T)(img)(_n5##x,_p1##y,z,c), I[397] = (T)(img)(_n6##x,_p1##y,z,c), I[398] = (T)(img)(_n7##x,_p1##y,z,c), I[399] = (T)(img)(_n8##x,_p1##y,z,c), I[400] = (T)(img)(_n9##x,_p1##y,z,c), I[401] = (T)(img)(_n10##x,_p1##y,z,c), I[402] = (T)(img)(_n11##x,_p1##y,z,c), I[403] = (T)(img)(_n12##x,_p1##y,z,c), I[404] = (T)(img)(_n13##x,_p1##y,z,c), I[405] = (T)(img)(_n14##x,_p1##y,z,c), \
|
|
I[406] = (T)(img)(_p14##x,y,z,c), I[407] = (T)(img)(_p13##x,y,z,c), I[408] = (T)(img)(_p12##x,y,z,c), I[409] = (T)(img)(_p11##x,y,z,c), I[410] = (T)(img)(_p10##x,y,z,c), I[411] = (T)(img)(_p9##x,y,z,c), I[412] = (T)(img)(_p8##x,y,z,c), I[413] = (T)(img)(_p7##x,y,z,c), I[414] = (T)(img)(_p6##x,y,z,c), I[415] = (T)(img)(_p5##x,y,z,c), I[416] = (T)(img)(_p4##x,y,z,c), I[417] = (T)(img)(_p3##x,y,z,c), I[418] = (T)(img)(_p2##x,y,z,c), I[419] = (T)(img)(_p1##x,y,z,c), I[420] = (T)(img)(x,y,z,c), I[421] = (T)(img)(_n1##x,y,z,c), I[422] = (T)(img)(_n2##x,y,z,c), I[423] = (T)(img)(_n3##x,y,z,c), I[424] = (T)(img)(_n4##x,y,z,c), I[425] = (T)(img)(_n5##x,y,z,c), I[426] = (T)(img)(_n6##x,y,z,c), I[427] = (T)(img)(_n7##x,y,z,c), I[428] = (T)(img)(_n8##x,y,z,c), I[429] = (T)(img)(_n9##x,y,z,c), I[430] = (T)(img)(_n10##x,y,z,c), I[431] = (T)(img)(_n11##x,y,z,c), I[432] = (T)(img)(_n12##x,y,z,c), I[433] = (T)(img)(_n13##x,y,z,c), I[434] = (T)(img)(_n14##x,y,z,c), \
|
|
I[435] = (T)(img)(_p14##x,_n1##y,z,c), I[436] = (T)(img)(_p13##x,_n1##y,z,c), I[437] = (T)(img)(_p12##x,_n1##y,z,c), I[438] = (T)(img)(_p11##x,_n1##y,z,c), I[439] = (T)(img)(_p10##x,_n1##y,z,c), I[440] = (T)(img)(_p9##x,_n1##y,z,c), I[441] = (T)(img)(_p8##x,_n1##y,z,c), I[442] = (T)(img)(_p7##x,_n1##y,z,c), I[443] = (T)(img)(_p6##x,_n1##y,z,c), I[444] = (T)(img)(_p5##x,_n1##y,z,c), I[445] = (T)(img)(_p4##x,_n1##y,z,c), I[446] = (T)(img)(_p3##x,_n1##y,z,c), I[447] = (T)(img)(_p2##x,_n1##y,z,c), I[448] = (T)(img)(_p1##x,_n1##y,z,c), I[449] = (T)(img)(x,_n1##y,z,c), I[450] = (T)(img)(_n1##x,_n1##y,z,c), I[451] = (T)(img)(_n2##x,_n1##y,z,c), I[452] = (T)(img)(_n3##x,_n1##y,z,c), I[453] = (T)(img)(_n4##x,_n1##y,z,c), I[454] = (T)(img)(_n5##x,_n1##y,z,c), I[455] = (T)(img)(_n6##x,_n1##y,z,c), I[456] = (T)(img)(_n7##x,_n1##y,z,c), I[457] = (T)(img)(_n8##x,_n1##y,z,c), I[458] = (T)(img)(_n9##x,_n1##y,z,c), I[459] = (T)(img)(_n10##x,_n1##y,z,c), I[460] = (T)(img)(_n11##x,_n1##y,z,c), I[461] = (T)(img)(_n12##x,_n1##y,z,c), I[462] = (T)(img)(_n13##x,_n1##y,z,c), I[463] = (T)(img)(_n14##x,_n1##y,z,c), \
|
|
I[464] = (T)(img)(_p14##x,_n2##y,z,c), I[465] = (T)(img)(_p13##x,_n2##y,z,c), I[466] = (T)(img)(_p12##x,_n2##y,z,c), I[467] = (T)(img)(_p11##x,_n2##y,z,c), I[468] = (T)(img)(_p10##x,_n2##y,z,c), I[469] = (T)(img)(_p9##x,_n2##y,z,c), I[470] = (T)(img)(_p8##x,_n2##y,z,c), I[471] = (T)(img)(_p7##x,_n2##y,z,c), I[472] = (T)(img)(_p6##x,_n2##y,z,c), I[473] = (T)(img)(_p5##x,_n2##y,z,c), I[474] = (T)(img)(_p4##x,_n2##y,z,c), I[475] = (T)(img)(_p3##x,_n2##y,z,c), I[476] = (T)(img)(_p2##x,_n2##y,z,c), I[477] = (T)(img)(_p1##x,_n2##y,z,c), I[478] = (T)(img)(x,_n2##y,z,c), I[479] = (T)(img)(_n1##x,_n2##y,z,c), I[480] = (T)(img)(_n2##x,_n2##y,z,c), I[481] = (T)(img)(_n3##x,_n2##y,z,c), I[482] = (T)(img)(_n4##x,_n2##y,z,c), I[483] = (T)(img)(_n5##x,_n2##y,z,c), I[484] = (T)(img)(_n6##x,_n2##y,z,c), I[485] = (T)(img)(_n7##x,_n2##y,z,c), I[486] = (T)(img)(_n8##x,_n2##y,z,c), I[487] = (T)(img)(_n9##x,_n2##y,z,c), I[488] = (T)(img)(_n10##x,_n2##y,z,c), I[489] = (T)(img)(_n11##x,_n2##y,z,c), I[490] = (T)(img)(_n12##x,_n2##y,z,c), I[491] = (T)(img)(_n13##x,_n2##y,z,c), I[492] = (T)(img)(_n14##x,_n2##y,z,c), \
|
|
I[493] = (T)(img)(_p14##x,_n3##y,z,c), I[494] = (T)(img)(_p13##x,_n3##y,z,c), I[495] = (T)(img)(_p12##x,_n3##y,z,c), I[496] = (T)(img)(_p11##x,_n3##y,z,c), I[497] = (T)(img)(_p10##x,_n3##y,z,c), I[498] = (T)(img)(_p9##x,_n3##y,z,c), I[499] = (T)(img)(_p8##x,_n3##y,z,c), I[500] = (T)(img)(_p7##x,_n3##y,z,c), I[501] = (T)(img)(_p6##x,_n3##y,z,c), I[502] = (T)(img)(_p5##x,_n3##y,z,c), I[503] = (T)(img)(_p4##x,_n3##y,z,c), I[504] = (T)(img)(_p3##x,_n3##y,z,c), I[505] = (T)(img)(_p2##x,_n3##y,z,c), I[506] = (T)(img)(_p1##x,_n3##y,z,c), I[507] = (T)(img)(x,_n3##y,z,c), I[508] = (T)(img)(_n1##x,_n3##y,z,c), I[509] = (T)(img)(_n2##x,_n3##y,z,c), I[510] = (T)(img)(_n3##x,_n3##y,z,c), I[511] = (T)(img)(_n4##x,_n3##y,z,c), I[512] = (T)(img)(_n5##x,_n3##y,z,c), I[513] = (T)(img)(_n6##x,_n3##y,z,c), I[514] = (T)(img)(_n7##x,_n3##y,z,c), I[515] = (T)(img)(_n8##x,_n3##y,z,c), I[516] = (T)(img)(_n9##x,_n3##y,z,c), I[517] = (T)(img)(_n10##x,_n3##y,z,c), I[518] = (T)(img)(_n11##x,_n3##y,z,c), I[519] = (T)(img)(_n12##x,_n3##y,z,c), I[520] = (T)(img)(_n13##x,_n3##y,z,c), I[521] = (T)(img)(_n14##x,_n3##y,z,c), \
|
|
I[522] = (T)(img)(_p14##x,_n4##y,z,c), I[523] = (T)(img)(_p13##x,_n4##y,z,c), I[524] = (T)(img)(_p12##x,_n4##y,z,c), I[525] = (T)(img)(_p11##x,_n4##y,z,c), I[526] = (T)(img)(_p10##x,_n4##y,z,c), I[527] = (T)(img)(_p9##x,_n4##y,z,c), I[528] = (T)(img)(_p8##x,_n4##y,z,c), I[529] = (T)(img)(_p7##x,_n4##y,z,c), I[530] = (T)(img)(_p6##x,_n4##y,z,c), I[531] = (T)(img)(_p5##x,_n4##y,z,c), I[532] = (T)(img)(_p4##x,_n4##y,z,c), I[533] = (T)(img)(_p3##x,_n4##y,z,c), I[534] = (T)(img)(_p2##x,_n4##y,z,c), I[535] = (T)(img)(_p1##x,_n4##y,z,c), I[536] = (T)(img)(x,_n4##y,z,c), I[537] = (T)(img)(_n1##x,_n4##y,z,c), I[538] = (T)(img)(_n2##x,_n4##y,z,c), I[539] = (T)(img)(_n3##x,_n4##y,z,c), I[540] = (T)(img)(_n4##x,_n4##y,z,c), I[541] = (T)(img)(_n5##x,_n4##y,z,c), I[542] = (T)(img)(_n6##x,_n4##y,z,c), I[543] = (T)(img)(_n7##x,_n4##y,z,c), I[544] = (T)(img)(_n8##x,_n4##y,z,c), I[545] = (T)(img)(_n9##x,_n4##y,z,c), I[546] = (T)(img)(_n10##x,_n4##y,z,c), I[547] = (T)(img)(_n11##x,_n4##y,z,c), I[548] = (T)(img)(_n12##x,_n4##y,z,c), I[549] = (T)(img)(_n13##x,_n4##y,z,c), I[550] = (T)(img)(_n14##x,_n4##y,z,c), \
|
|
I[551] = (T)(img)(_p14##x,_n5##y,z,c), I[552] = (T)(img)(_p13##x,_n5##y,z,c), I[553] = (T)(img)(_p12##x,_n5##y,z,c), I[554] = (T)(img)(_p11##x,_n5##y,z,c), I[555] = (T)(img)(_p10##x,_n5##y,z,c), I[556] = (T)(img)(_p9##x,_n5##y,z,c), I[557] = (T)(img)(_p8##x,_n5##y,z,c), I[558] = (T)(img)(_p7##x,_n5##y,z,c), I[559] = (T)(img)(_p6##x,_n5##y,z,c), I[560] = (T)(img)(_p5##x,_n5##y,z,c), I[561] = (T)(img)(_p4##x,_n5##y,z,c), I[562] = (T)(img)(_p3##x,_n5##y,z,c), I[563] = (T)(img)(_p2##x,_n5##y,z,c), I[564] = (T)(img)(_p1##x,_n5##y,z,c), I[565] = (T)(img)(x,_n5##y,z,c), I[566] = (T)(img)(_n1##x,_n5##y,z,c), I[567] = (T)(img)(_n2##x,_n5##y,z,c), I[568] = (T)(img)(_n3##x,_n5##y,z,c), I[569] = (T)(img)(_n4##x,_n5##y,z,c), I[570] = (T)(img)(_n5##x,_n5##y,z,c), I[571] = (T)(img)(_n6##x,_n5##y,z,c), I[572] = (T)(img)(_n7##x,_n5##y,z,c), I[573] = (T)(img)(_n8##x,_n5##y,z,c), I[574] = (T)(img)(_n9##x,_n5##y,z,c), I[575] = (T)(img)(_n10##x,_n5##y,z,c), I[576] = (T)(img)(_n11##x,_n5##y,z,c), I[577] = (T)(img)(_n12##x,_n5##y,z,c), I[578] = (T)(img)(_n13##x,_n5##y,z,c), I[579] = (T)(img)(_n14##x,_n5##y,z,c), \
|
|
I[580] = (T)(img)(_p14##x,_n6##y,z,c), I[581] = (T)(img)(_p13##x,_n6##y,z,c), I[582] = (T)(img)(_p12##x,_n6##y,z,c), I[583] = (T)(img)(_p11##x,_n6##y,z,c), I[584] = (T)(img)(_p10##x,_n6##y,z,c), I[585] = (T)(img)(_p9##x,_n6##y,z,c), I[586] = (T)(img)(_p8##x,_n6##y,z,c), I[587] = (T)(img)(_p7##x,_n6##y,z,c), I[588] = (T)(img)(_p6##x,_n6##y,z,c), I[589] = (T)(img)(_p5##x,_n6##y,z,c), I[590] = (T)(img)(_p4##x,_n6##y,z,c), I[591] = (T)(img)(_p3##x,_n6##y,z,c), I[592] = (T)(img)(_p2##x,_n6##y,z,c), I[593] = (T)(img)(_p1##x,_n6##y,z,c), I[594] = (T)(img)(x,_n6##y,z,c), I[595] = (T)(img)(_n1##x,_n6##y,z,c), I[596] = (T)(img)(_n2##x,_n6##y,z,c), I[597] = (T)(img)(_n3##x,_n6##y,z,c), I[598] = (T)(img)(_n4##x,_n6##y,z,c), I[599] = (T)(img)(_n5##x,_n6##y,z,c), I[600] = (T)(img)(_n6##x,_n6##y,z,c), I[601] = (T)(img)(_n7##x,_n6##y,z,c), I[602] = (T)(img)(_n8##x,_n6##y,z,c), I[603] = (T)(img)(_n9##x,_n6##y,z,c), I[604] = (T)(img)(_n10##x,_n6##y,z,c), I[605] = (T)(img)(_n11##x,_n6##y,z,c), I[606] = (T)(img)(_n12##x,_n6##y,z,c), I[607] = (T)(img)(_n13##x,_n6##y,z,c), I[608] = (T)(img)(_n14##x,_n6##y,z,c), \
|
|
I[609] = (T)(img)(_p14##x,_n7##y,z,c), I[610] = (T)(img)(_p13##x,_n7##y,z,c), I[611] = (T)(img)(_p12##x,_n7##y,z,c), I[612] = (T)(img)(_p11##x,_n7##y,z,c), I[613] = (T)(img)(_p10##x,_n7##y,z,c), I[614] = (T)(img)(_p9##x,_n7##y,z,c), I[615] = (T)(img)(_p8##x,_n7##y,z,c), I[616] = (T)(img)(_p7##x,_n7##y,z,c), I[617] = (T)(img)(_p6##x,_n7##y,z,c), I[618] = (T)(img)(_p5##x,_n7##y,z,c), I[619] = (T)(img)(_p4##x,_n7##y,z,c), I[620] = (T)(img)(_p3##x,_n7##y,z,c), I[621] = (T)(img)(_p2##x,_n7##y,z,c), I[622] = (T)(img)(_p1##x,_n7##y,z,c), I[623] = (T)(img)(x,_n7##y,z,c), I[624] = (T)(img)(_n1##x,_n7##y,z,c), I[625] = (T)(img)(_n2##x,_n7##y,z,c), I[626] = (T)(img)(_n3##x,_n7##y,z,c), I[627] = (T)(img)(_n4##x,_n7##y,z,c), I[628] = (T)(img)(_n5##x,_n7##y,z,c), I[629] = (T)(img)(_n6##x,_n7##y,z,c), I[630] = (T)(img)(_n7##x,_n7##y,z,c), I[631] = (T)(img)(_n8##x,_n7##y,z,c), I[632] = (T)(img)(_n9##x,_n7##y,z,c), I[633] = (T)(img)(_n10##x,_n7##y,z,c), I[634] = (T)(img)(_n11##x,_n7##y,z,c), I[635] = (T)(img)(_n12##x,_n7##y,z,c), I[636] = (T)(img)(_n13##x,_n7##y,z,c), I[637] = (T)(img)(_n14##x,_n7##y,z,c), \
|
|
I[638] = (T)(img)(_p14##x,_n8##y,z,c), I[639] = (T)(img)(_p13##x,_n8##y,z,c), I[640] = (T)(img)(_p12##x,_n8##y,z,c), I[641] = (T)(img)(_p11##x,_n8##y,z,c), I[642] = (T)(img)(_p10##x,_n8##y,z,c), I[643] = (T)(img)(_p9##x,_n8##y,z,c), I[644] = (T)(img)(_p8##x,_n8##y,z,c), I[645] = (T)(img)(_p7##x,_n8##y,z,c), I[646] = (T)(img)(_p6##x,_n8##y,z,c), I[647] = (T)(img)(_p5##x,_n8##y,z,c), I[648] = (T)(img)(_p4##x,_n8##y,z,c), I[649] = (T)(img)(_p3##x,_n8##y,z,c), I[650] = (T)(img)(_p2##x,_n8##y,z,c), I[651] = (T)(img)(_p1##x,_n8##y,z,c), I[652] = (T)(img)(x,_n8##y,z,c), I[653] = (T)(img)(_n1##x,_n8##y,z,c), I[654] = (T)(img)(_n2##x,_n8##y,z,c), I[655] = (T)(img)(_n3##x,_n8##y,z,c), I[656] = (T)(img)(_n4##x,_n8##y,z,c), I[657] = (T)(img)(_n5##x,_n8##y,z,c), I[658] = (T)(img)(_n6##x,_n8##y,z,c), I[659] = (T)(img)(_n7##x,_n8##y,z,c), I[660] = (T)(img)(_n8##x,_n8##y,z,c), I[661] = (T)(img)(_n9##x,_n8##y,z,c), I[662] = (T)(img)(_n10##x,_n8##y,z,c), I[663] = (T)(img)(_n11##x,_n8##y,z,c), I[664] = (T)(img)(_n12##x,_n8##y,z,c), I[665] = (T)(img)(_n13##x,_n8##y,z,c), I[666] = (T)(img)(_n14##x,_n8##y,z,c), \
|
|
I[667] = (T)(img)(_p14##x,_n9##y,z,c), I[668] = (T)(img)(_p13##x,_n9##y,z,c), I[669] = (T)(img)(_p12##x,_n9##y,z,c), I[670] = (T)(img)(_p11##x,_n9##y,z,c), I[671] = (T)(img)(_p10##x,_n9##y,z,c), I[672] = (T)(img)(_p9##x,_n9##y,z,c), I[673] = (T)(img)(_p8##x,_n9##y,z,c), I[674] = (T)(img)(_p7##x,_n9##y,z,c), I[675] = (T)(img)(_p6##x,_n9##y,z,c), I[676] = (T)(img)(_p5##x,_n9##y,z,c), I[677] = (T)(img)(_p4##x,_n9##y,z,c), I[678] = (T)(img)(_p3##x,_n9##y,z,c), I[679] = (T)(img)(_p2##x,_n9##y,z,c), I[680] = (T)(img)(_p1##x,_n9##y,z,c), I[681] = (T)(img)(x,_n9##y,z,c), I[682] = (T)(img)(_n1##x,_n9##y,z,c), I[683] = (T)(img)(_n2##x,_n9##y,z,c), I[684] = (T)(img)(_n3##x,_n9##y,z,c), I[685] = (T)(img)(_n4##x,_n9##y,z,c), I[686] = (T)(img)(_n5##x,_n9##y,z,c), I[687] = (T)(img)(_n6##x,_n9##y,z,c), I[688] = (T)(img)(_n7##x,_n9##y,z,c), I[689] = (T)(img)(_n8##x,_n9##y,z,c), I[690] = (T)(img)(_n9##x,_n9##y,z,c), I[691] = (T)(img)(_n10##x,_n9##y,z,c), I[692] = (T)(img)(_n11##x,_n9##y,z,c), I[693] = (T)(img)(_n12##x,_n9##y,z,c), I[694] = (T)(img)(_n13##x,_n9##y,z,c), I[695] = (T)(img)(_n14##x,_n9##y,z,c), \
|
|
I[696] = (T)(img)(_p14##x,_n10##y,z,c), I[697] = (T)(img)(_p13##x,_n10##y,z,c), I[698] = (T)(img)(_p12##x,_n10##y,z,c), I[699] = (T)(img)(_p11##x,_n10##y,z,c), I[700] = (T)(img)(_p10##x,_n10##y,z,c), I[701] = (T)(img)(_p9##x,_n10##y,z,c), I[702] = (T)(img)(_p8##x,_n10##y,z,c), I[703] = (T)(img)(_p7##x,_n10##y,z,c), I[704] = (T)(img)(_p6##x,_n10##y,z,c), I[705] = (T)(img)(_p5##x,_n10##y,z,c), I[706] = (T)(img)(_p4##x,_n10##y,z,c), I[707] = (T)(img)(_p3##x,_n10##y,z,c), I[708] = (T)(img)(_p2##x,_n10##y,z,c), I[709] = (T)(img)(_p1##x,_n10##y,z,c), I[710] = (T)(img)(x,_n10##y,z,c), I[711] = (T)(img)(_n1##x,_n10##y,z,c), I[712] = (T)(img)(_n2##x,_n10##y,z,c), I[713] = (T)(img)(_n3##x,_n10##y,z,c), I[714] = (T)(img)(_n4##x,_n10##y,z,c), I[715] = (T)(img)(_n5##x,_n10##y,z,c), I[716] = (T)(img)(_n6##x,_n10##y,z,c), I[717] = (T)(img)(_n7##x,_n10##y,z,c), I[718] = (T)(img)(_n8##x,_n10##y,z,c), I[719] = (T)(img)(_n9##x,_n10##y,z,c), I[720] = (T)(img)(_n10##x,_n10##y,z,c), I[721] = (T)(img)(_n11##x,_n10##y,z,c), I[722] = (T)(img)(_n12##x,_n10##y,z,c), I[723] = (T)(img)(_n13##x,_n10##y,z,c), I[724] = (T)(img)(_n14##x,_n10##y,z,c), \
|
|
I[725] = (T)(img)(_p14##x,_n11##y,z,c), I[726] = (T)(img)(_p13##x,_n11##y,z,c), I[727] = (T)(img)(_p12##x,_n11##y,z,c), I[728] = (T)(img)(_p11##x,_n11##y,z,c), I[729] = (T)(img)(_p10##x,_n11##y,z,c), I[730] = (T)(img)(_p9##x,_n11##y,z,c), I[731] = (T)(img)(_p8##x,_n11##y,z,c), I[732] = (T)(img)(_p7##x,_n11##y,z,c), I[733] = (T)(img)(_p6##x,_n11##y,z,c), I[734] = (T)(img)(_p5##x,_n11##y,z,c), I[735] = (T)(img)(_p4##x,_n11##y,z,c), I[736] = (T)(img)(_p3##x,_n11##y,z,c), I[737] = (T)(img)(_p2##x,_n11##y,z,c), I[738] = (T)(img)(_p1##x,_n11##y,z,c), I[739] = (T)(img)(x,_n11##y,z,c), I[740] = (T)(img)(_n1##x,_n11##y,z,c), I[741] = (T)(img)(_n2##x,_n11##y,z,c), I[742] = (T)(img)(_n3##x,_n11##y,z,c), I[743] = (T)(img)(_n4##x,_n11##y,z,c), I[744] = (T)(img)(_n5##x,_n11##y,z,c), I[745] = (T)(img)(_n6##x,_n11##y,z,c), I[746] = (T)(img)(_n7##x,_n11##y,z,c), I[747] = (T)(img)(_n8##x,_n11##y,z,c), I[748] = (T)(img)(_n9##x,_n11##y,z,c), I[749] = (T)(img)(_n10##x,_n11##y,z,c), I[750] = (T)(img)(_n11##x,_n11##y,z,c), I[751] = (T)(img)(_n12##x,_n11##y,z,c), I[752] = (T)(img)(_n13##x,_n11##y,z,c), I[753] = (T)(img)(_n14##x,_n11##y,z,c), \
|
|
I[754] = (T)(img)(_p14##x,_n12##y,z,c), I[755] = (T)(img)(_p13##x,_n12##y,z,c), I[756] = (T)(img)(_p12##x,_n12##y,z,c), I[757] = (T)(img)(_p11##x,_n12##y,z,c), I[758] = (T)(img)(_p10##x,_n12##y,z,c), I[759] = (T)(img)(_p9##x,_n12##y,z,c), I[760] = (T)(img)(_p8##x,_n12##y,z,c), I[761] = (T)(img)(_p7##x,_n12##y,z,c), I[762] = (T)(img)(_p6##x,_n12##y,z,c), I[763] = (T)(img)(_p5##x,_n12##y,z,c), I[764] = (T)(img)(_p4##x,_n12##y,z,c), I[765] = (T)(img)(_p3##x,_n12##y,z,c), I[766] = (T)(img)(_p2##x,_n12##y,z,c), I[767] = (T)(img)(_p1##x,_n12##y,z,c), I[768] = (T)(img)(x,_n12##y,z,c), I[769] = (T)(img)(_n1##x,_n12##y,z,c), I[770] = (T)(img)(_n2##x,_n12##y,z,c), I[771] = (T)(img)(_n3##x,_n12##y,z,c), I[772] = (T)(img)(_n4##x,_n12##y,z,c), I[773] = (T)(img)(_n5##x,_n12##y,z,c), I[774] = (T)(img)(_n6##x,_n12##y,z,c), I[775] = (T)(img)(_n7##x,_n12##y,z,c), I[776] = (T)(img)(_n8##x,_n12##y,z,c), I[777] = (T)(img)(_n9##x,_n12##y,z,c), I[778] = (T)(img)(_n10##x,_n12##y,z,c), I[779] = (T)(img)(_n11##x,_n12##y,z,c), I[780] = (T)(img)(_n12##x,_n12##y,z,c), I[781] = (T)(img)(_n13##x,_n12##y,z,c), I[782] = (T)(img)(_n14##x,_n12##y,z,c), \
|
|
I[783] = (T)(img)(_p14##x,_n13##y,z,c), I[784] = (T)(img)(_p13##x,_n13##y,z,c), I[785] = (T)(img)(_p12##x,_n13##y,z,c), I[786] = (T)(img)(_p11##x,_n13##y,z,c), I[787] = (T)(img)(_p10##x,_n13##y,z,c), I[788] = (T)(img)(_p9##x,_n13##y,z,c), I[789] = (T)(img)(_p8##x,_n13##y,z,c), I[790] = (T)(img)(_p7##x,_n13##y,z,c), I[791] = (T)(img)(_p6##x,_n13##y,z,c), I[792] = (T)(img)(_p5##x,_n13##y,z,c), I[793] = (T)(img)(_p4##x,_n13##y,z,c), I[794] = (T)(img)(_p3##x,_n13##y,z,c), I[795] = (T)(img)(_p2##x,_n13##y,z,c), I[796] = (T)(img)(_p1##x,_n13##y,z,c), I[797] = (T)(img)(x,_n13##y,z,c), I[798] = (T)(img)(_n1##x,_n13##y,z,c), I[799] = (T)(img)(_n2##x,_n13##y,z,c), I[800] = (T)(img)(_n3##x,_n13##y,z,c), I[801] = (T)(img)(_n4##x,_n13##y,z,c), I[802] = (T)(img)(_n5##x,_n13##y,z,c), I[803] = (T)(img)(_n6##x,_n13##y,z,c), I[804] = (T)(img)(_n7##x,_n13##y,z,c), I[805] = (T)(img)(_n8##x,_n13##y,z,c), I[806] = (T)(img)(_n9##x,_n13##y,z,c), I[807] = (T)(img)(_n10##x,_n13##y,z,c), I[808] = (T)(img)(_n11##x,_n13##y,z,c), I[809] = (T)(img)(_n12##x,_n13##y,z,c), I[810] = (T)(img)(_n13##x,_n13##y,z,c), I[811] = (T)(img)(_n14##x,_n13##y,z,c), \
|
|
I[812] = (T)(img)(_p14##x,_n14##y,z,c), I[813] = (T)(img)(_p13##x,_n14##y,z,c), I[814] = (T)(img)(_p12##x,_n14##y,z,c), I[815] = (T)(img)(_p11##x,_n14##y,z,c), I[816] = (T)(img)(_p10##x,_n14##y,z,c), I[817] = (T)(img)(_p9##x,_n14##y,z,c), I[818] = (T)(img)(_p8##x,_n14##y,z,c), I[819] = (T)(img)(_p7##x,_n14##y,z,c), I[820] = (T)(img)(_p6##x,_n14##y,z,c), I[821] = (T)(img)(_p5##x,_n14##y,z,c), I[822] = (T)(img)(_p4##x,_n14##y,z,c), I[823] = (T)(img)(_p3##x,_n14##y,z,c), I[824] = (T)(img)(_p2##x,_n14##y,z,c), I[825] = (T)(img)(_p1##x,_n14##y,z,c), I[826] = (T)(img)(x,_n14##y,z,c), I[827] = (T)(img)(_n1##x,_n14##y,z,c), I[828] = (T)(img)(_n2##x,_n14##y,z,c), I[829] = (T)(img)(_n3##x,_n14##y,z,c), I[830] = (T)(img)(_n4##x,_n14##y,z,c), I[831] = (T)(img)(_n5##x,_n14##y,z,c), I[832] = (T)(img)(_n6##x,_n14##y,z,c), I[833] = (T)(img)(_n7##x,_n14##y,z,c), I[834] = (T)(img)(_n8##x,_n14##y,z,c), I[835] = (T)(img)(_n9##x,_n14##y,z,c), I[836] = (T)(img)(_n10##x,_n14##y,z,c), I[837] = (T)(img)(_n11##x,_n14##y,z,c), I[838] = (T)(img)(_n12##x,_n14##y,z,c), I[839] = (T)(img)(_n13##x,_n14##y,z,c), I[840] = (T)(img)(_n14##x,_n14##y,z,c);
|
|
|
|
// Define 30x30 loop macros
|
|
//-------------------------
|
|
#define cimg_for30(bound,i) for (int i = 0, \
|
|
_p14##i = 0, _p13##i = 0, _p12##i = 0, _p11##i = 0, _p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
|
|
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
|
|
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
|
|
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
|
|
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
|
|
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
|
|
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
|
|
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
|
|
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9, \
|
|
_n10##i = 10>=(int)(bound)?(int)(bound) - 1:10, \
|
|
_n11##i = 11>=(int)(bound)?(int)(bound) - 1:11, \
|
|
_n12##i = 12>=(int)(bound)?(int)(bound) - 1:12, \
|
|
_n13##i = 13>=(int)(bound)?(int)(bound) - 1:13, \
|
|
_n14##i = 14>=(int)(bound)?(int)(bound) - 1:14, \
|
|
_n15##i = 15>=(int)(bound)?(int)(bound) - 1:15; \
|
|
_n15##i<(int)(bound) || _n14##i==--_n15##i || _n13##i==--_n14##i || _n12##i==--_n13##i || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n15##i = _n14##i = _n13##i = _n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
|
|
_p14##i = _p13##i, _p13##i = _p12##i, _p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i, ++_n13##i, ++_n14##i, ++_n15##i)
|
|
|
|
#define cimg_for30X(img,x) cimg_for30((img)._width,x)
|
|
#define cimg_for30Y(img,y) cimg_for30((img)._height,y)
|
|
#define cimg_for30Z(img,z) cimg_for30((img)._depth,z)
|
|
#define cimg_for30C(img,c) cimg_for30((img)._spectrum,c)
|
|
#define cimg_for30XY(img,x,y) cimg_for30Y(img,y) cimg_for30X(img,x)
|
|
#define cimg_for30XZ(img,x,z) cimg_for30Z(img,z) cimg_for30X(img,x)
|
|
#define cimg_for30XC(img,x,c) cimg_for30C(img,c) cimg_for30X(img,x)
|
|
#define cimg_for30YZ(img,y,z) cimg_for30Z(img,z) cimg_for30Y(img,y)
|
|
#define cimg_for30YC(img,y,c) cimg_for30C(img,c) cimg_for30Y(img,y)
|
|
#define cimg_for30ZC(img,z,c) cimg_for30C(img,c) cimg_for30Z(img,z)
|
|
#define cimg_for30XYZ(img,x,y,z) cimg_for30Z(img,z) cimg_for30XY(img,x,y)
|
|
#define cimg_for30XZC(img,x,z,c) cimg_for30C(img,c) cimg_for30XZ(img,x,z)
|
|
#define cimg_for30YZC(img,y,z,c) cimg_for30C(img,c) cimg_for30YZ(img,y,z)
|
|
#define cimg_for30XYZC(img,x,y,z,c) cimg_for30C(img,c) cimg_for30XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in30(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p14##i = i - 14<0?0:i - 14, \
|
|
_p13##i = i - 13<0?0:i - 13, \
|
|
_p12##i = i - 12<0?0:i - 12, \
|
|
_p11##i = i - 11<0?0:i - 11, \
|
|
_p10##i = i - 10<0?0:i - 10, \
|
|
_p9##i = i - 9<0?0:i - 9, \
|
|
_p8##i = i - 8<0?0:i - 8, \
|
|
_p7##i = i - 7<0?0:i - 7, \
|
|
_p6##i = i - 6<0?0:i - 6, \
|
|
_p5##i = i - 5<0?0:i - 5, \
|
|
_p4##i = i - 4<0?0:i - 4, \
|
|
_p3##i = i - 3<0?0:i - 3, \
|
|
_p2##i = i - 2<0?0:i - 2, \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
|
|
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
|
|
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
|
|
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
|
|
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
|
|
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
|
|
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
|
|
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
|
|
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9, \
|
|
_n10##i = i + 10>=(int)(bound)?(int)(bound) - 1:i + 10, \
|
|
_n11##i = i + 11>=(int)(bound)?(int)(bound) - 1:i + 11, \
|
|
_n12##i = i + 12>=(int)(bound)?(int)(bound) - 1:i + 12, \
|
|
_n13##i = i + 13>=(int)(bound)?(int)(bound) - 1:i + 13, \
|
|
_n14##i = i + 14>=(int)(bound)?(int)(bound) - 1:i + 14, \
|
|
_n15##i = i + 15>=(int)(bound)?(int)(bound) - 1:i + 15; \
|
|
i<=(int)(i1) && (_n15##i<(int)(bound) || _n14##i==--_n15##i || _n13##i==--_n14##i || _n12##i==--_n13##i || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n15##i = _n14##i = _n13##i = _n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
|
|
_p14##i = _p13##i, _p13##i = _p12##i, _p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i, ++_n13##i, ++_n14##i, ++_n15##i)
|
|
|
|
#define cimg_for_in30X(img,x0,x1,x) cimg_for_in30((img)._width,x0,x1,x)
|
|
#define cimg_for_in30Y(img,y0,y1,y) cimg_for_in30((img)._height,y0,y1,y)
|
|
#define cimg_for_in30Z(img,z0,z1,z) cimg_for_in30((img)._depth,z0,z1,z)
|
|
#define cimg_for_in30C(img,c0,c1,c) cimg_for_in30((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in30XY(img,x0,y0,x1,y1,x,y) cimg_for_in30Y(img,y0,y1,y) cimg_for_in30X(img,x0,x1,x)
|
|
#define cimg_for_in30XZ(img,x0,z0,x1,z1,x,z) cimg_for_in30Z(img,z0,z1,z) cimg_for_in30X(img,x0,x1,x)
|
|
#define cimg_for_in30XC(img,x0,c0,x1,c1,x,c) cimg_for_in30C(img,c0,c1,c) cimg_for_in30X(img,x0,x1,x)
|
|
#define cimg_for_in30YZ(img,y0,z0,y1,z1,y,z) cimg_for_in30Z(img,z0,z1,z) cimg_for_in30Y(img,y0,y1,y)
|
|
#define cimg_for_in30YC(img,y0,c0,y1,c1,y,c) cimg_for_in30C(img,c0,c1,c) cimg_for_in30Y(img,y0,y1,y)
|
|
#define cimg_for_in30ZC(img,z0,c0,z1,c1,z,c) cimg_for_in30C(img,c0,c1,c) cimg_for_in30Z(img,z0,z1,z)
|
|
#define cimg_for_in30XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in30Z(img,z0,z1,z) cimg_for_in30XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in30XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in30C(img,c0,c1,c) cimg_for_in30XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in30YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in30C(img,c0,c1,c) cimg_for_in30YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in30XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in30C(img,c0,c1,c) cimg_for_in30XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for30x30(img,x,y,z,c,I,T) \
|
|
cimg_for30((img)._height,y) for (int x = 0, \
|
|
_p14##x = 0, _p13##x = 0, _p12##x = 0, _p11##x = 0, _p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
|
|
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
|
|
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
|
|
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
|
|
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
|
|
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
|
|
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
|
|
_n9##x = 9>=((img)._width)?(img).width() - 1:9, \
|
|
_n10##x = 10>=((img)._width)?(img).width() - 1:10, \
|
|
_n11##x = 11>=((img)._width)?(img).width() - 1:11, \
|
|
_n12##x = 12>=((img)._width)?(img).width() - 1:12, \
|
|
_n13##x = 13>=((img)._width)?(img).width() - 1:13, \
|
|
_n14##x = 14>=((img)._width)?(img).width() - 1:14, \
|
|
_n15##x = (int)( \
|
|
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = I[11] = I[12] = I[13] = I[14] = (T)(img)(0,_p14##y,z,c)), \
|
|
(I[30] = I[31] = I[32] = I[33] = I[34] = I[35] = I[36] = I[37] = I[38] = I[39] = I[40] = I[41] = I[42] = I[43] = I[44] = (T)(img)(0,_p13##y,z,c)), \
|
|
(I[60] = I[61] = I[62] = I[63] = I[64] = I[65] = I[66] = I[67] = I[68] = I[69] = I[70] = I[71] = I[72] = I[73] = I[74] = (T)(img)(0,_p12##y,z,c)), \
|
|
(I[90] = I[91] = I[92] = I[93] = I[94] = I[95] = I[96] = I[97] = I[98] = I[99] = I[100] = I[101] = I[102] = I[103] = I[104] = (T)(img)(0,_p11##y,z,c)), \
|
|
(I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = I[126] = I[127] = I[128] = I[129] = I[130] = I[131] = I[132] = I[133] = I[134] = (T)(img)(0,_p10##y,z,c)), \
|
|
(I[150] = I[151] = I[152] = I[153] = I[154] = I[155] = I[156] = I[157] = I[158] = I[159] = I[160] = I[161] = I[162] = I[163] = I[164] = (T)(img)(0,_p9##y,z,c)), \
|
|
(I[180] = I[181] = I[182] = I[183] = I[184] = I[185] = I[186] = I[187] = I[188] = I[189] = I[190] = I[191] = I[192] = I[193] = I[194] = (T)(img)(0,_p8##y,z,c)), \
|
|
(I[210] = I[211] = I[212] = I[213] = I[214] = I[215] = I[216] = I[217] = I[218] = I[219] = I[220] = I[221] = I[222] = I[223] = I[224] = (T)(img)(0,_p7##y,z,c)), \
|
|
(I[240] = I[241] = I[242] = I[243] = I[244] = I[245] = I[246] = I[247] = I[248] = I[249] = I[250] = I[251] = I[252] = I[253] = I[254] = (T)(img)(0,_p6##y,z,c)), \
|
|
(I[270] = I[271] = I[272] = I[273] = I[274] = I[275] = I[276] = I[277] = I[278] = I[279] = I[280] = I[281] = I[282] = I[283] = I[284] = (T)(img)(0,_p5##y,z,c)), \
|
|
(I[300] = I[301] = I[302] = I[303] = I[304] = I[305] = I[306] = I[307] = I[308] = I[309] = I[310] = I[311] = I[312] = I[313] = I[314] = (T)(img)(0,_p4##y,z,c)), \
|
|
(I[330] = I[331] = I[332] = I[333] = I[334] = I[335] = I[336] = I[337] = I[338] = I[339] = I[340] = I[341] = I[342] = I[343] = I[344] = (T)(img)(0,_p3##y,z,c)), \
|
|
(I[360] = I[361] = I[362] = I[363] = I[364] = I[365] = I[366] = I[367] = I[368] = I[369] = I[370] = I[371] = I[372] = I[373] = I[374] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[390] = I[391] = I[392] = I[393] = I[394] = I[395] = I[396] = I[397] = I[398] = I[399] = I[400] = I[401] = I[402] = I[403] = I[404] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[420] = I[421] = I[422] = I[423] = I[424] = I[425] = I[426] = I[427] = I[428] = I[429] = I[430] = I[431] = I[432] = I[433] = I[434] = (T)(img)(0,y,z,c)), \
|
|
(I[450] = I[451] = I[452] = I[453] = I[454] = I[455] = I[456] = I[457] = I[458] = I[459] = I[460] = I[461] = I[462] = I[463] = I[464] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[480] = I[481] = I[482] = I[483] = I[484] = I[485] = I[486] = I[487] = I[488] = I[489] = I[490] = I[491] = I[492] = I[493] = I[494] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[510] = I[511] = I[512] = I[513] = I[514] = I[515] = I[516] = I[517] = I[518] = I[519] = I[520] = I[521] = I[522] = I[523] = I[524] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[540] = I[541] = I[542] = I[543] = I[544] = I[545] = I[546] = I[547] = I[548] = I[549] = I[550] = I[551] = I[552] = I[553] = I[554] = (T)(img)(0,_n4##y,z,c)), \
|
|
(I[570] = I[571] = I[572] = I[573] = I[574] = I[575] = I[576] = I[577] = I[578] = I[579] = I[580] = I[581] = I[582] = I[583] = I[584] = (T)(img)(0,_n5##y,z,c)), \
|
|
(I[600] = I[601] = I[602] = I[603] = I[604] = I[605] = I[606] = I[607] = I[608] = I[609] = I[610] = I[611] = I[612] = I[613] = I[614] = (T)(img)(0,_n6##y,z,c)), \
|
|
(I[630] = I[631] = I[632] = I[633] = I[634] = I[635] = I[636] = I[637] = I[638] = I[639] = I[640] = I[641] = I[642] = I[643] = I[644] = (T)(img)(0,_n7##y,z,c)), \
|
|
(I[660] = I[661] = I[662] = I[663] = I[664] = I[665] = I[666] = I[667] = I[668] = I[669] = I[670] = I[671] = I[672] = I[673] = I[674] = (T)(img)(0,_n8##y,z,c)), \
|
|
(I[690] = I[691] = I[692] = I[693] = I[694] = I[695] = I[696] = I[697] = I[698] = I[699] = I[700] = I[701] = I[702] = I[703] = I[704] = (T)(img)(0,_n9##y,z,c)), \
|
|
(I[720] = I[721] = I[722] = I[723] = I[724] = I[725] = I[726] = I[727] = I[728] = I[729] = I[730] = I[731] = I[732] = I[733] = I[734] = (T)(img)(0,_n10##y,z,c)), \
|
|
(I[750] = I[751] = I[752] = I[753] = I[754] = I[755] = I[756] = I[757] = I[758] = I[759] = I[760] = I[761] = I[762] = I[763] = I[764] = (T)(img)(0,_n11##y,z,c)), \
|
|
(I[780] = I[781] = I[782] = I[783] = I[784] = I[785] = I[786] = I[787] = I[788] = I[789] = I[790] = I[791] = I[792] = I[793] = I[794] = (T)(img)(0,_n12##y,z,c)), \
|
|
(I[810] = I[811] = I[812] = I[813] = I[814] = I[815] = I[816] = I[817] = I[818] = I[819] = I[820] = I[821] = I[822] = I[823] = I[824] = (T)(img)(0,_n13##y,z,c)), \
|
|
(I[840] = I[841] = I[842] = I[843] = I[844] = I[845] = I[846] = I[847] = I[848] = I[849] = I[850] = I[851] = I[852] = I[853] = I[854] = (T)(img)(0,_n14##y,z,c)), \
|
|
(I[870] = I[871] = I[872] = I[873] = I[874] = I[875] = I[876] = I[877] = I[878] = I[879] = I[880] = I[881] = I[882] = I[883] = I[884] = (T)(img)(0,_n15##y,z,c)), \
|
|
(I[15] = (T)(img)(_n1##x,_p14##y,z,c)), \
|
|
(I[45] = (T)(img)(_n1##x,_p13##y,z,c)), \
|
|
(I[75] = (T)(img)(_n1##x,_p12##y,z,c)), \
|
|
(I[105] = (T)(img)(_n1##x,_p11##y,z,c)), \
|
|
(I[135] = (T)(img)(_n1##x,_p10##y,z,c)), \
|
|
(I[165] = (T)(img)(_n1##x,_p9##y,z,c)), \
|
|
(I[195] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[225] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[255] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[285] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[315] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[345] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[375] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[405] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[435] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[465] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[495] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[525] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[555] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[585] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[615] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[645] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[675] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[705] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[735] = (T)(img)(_n1##x,_n10##y,z,c)), \
|
|
(I[765] = (T)(img)(_n1##x,_n11##y,z,c)), \
|
|
(I[795] = (T)(img)(_n1##x,_n12##y,z,c)), \
|
|
(I[825] = (T)(img)(_n1##x,_n13##y,z,c)), \
|
|
(I[855] = (T)(img)(_n1##x,_n14##y,z,c)), \
|
|
(I[885] = (T)(img)(_n1##x,_n15##y,z,c)), \
|
|
(I[16] = (T)(img)(_n2##x,_p14##y,z,c)), \
|
|
(I[46] = (T)(img)(_n2##x,_p13##y,z,c)), \
|
|
(I[76] = (T)(img)(_n2##x,_p12##y,z,c)), \
|
|
(I[106] = (T)(img)(_n2##x,_p11##y,z,c)), \
|
|
(I[136] = (T)(img)(_n2##x,_p10##y,z,c)), \
|
|
(I[166] = (T)(img)(_n2##x,_p9##y,z,c)), \
|
|
(I[196] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[226] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[256] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[286] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[316] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[346] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[376] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[406] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[436] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[466] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[496] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[526] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[556] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[586] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[616] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[646] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[676] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[706] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[736] = (T)(img)(_n2##x,_n10##y,z,c)), \
|
|
(I[766] = (T)(img)(_n2##x,_n11##y,z,c)), \
|
|
(I[796] = (T)(img)(_n2##x,_n12##y,z,c)), \
|
|
(I[826] = (T)(img)(_n2##x,_n13##y,z,c)), \
|
|
(I[856] = (T)(img)(_n2##x,_n14##y,z,c)), \
|
|
(I[886] = (T)(img)(_n2##x,_n15##y,z,c)), \
|
|
(I[17] = (T)(img)(_n3##x,_p14##y,z,c)), \
|
|
(I[47] = (T)(img)(_n3##x,_p13##y,z,c)), \
|
|
(I[77] = (T)(img)(_n3##x,_p12##y,z,c)), \
|
|
(I[107] = (T)(img)(_n3##x,_p11##y,z,c)), \
|
|
(I[137] = (T)(img)(_n3##x,_p10##y,z,c)), \
|
|
(I[167] = (T)(img)(_n3##x,_p9##y,z,c)), \
|
|
(I[197] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[227] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[257] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[287] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[317] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[347] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[377] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[407] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[437] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[467] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[497] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[527] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[557] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[587] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[617] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[647] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[677] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[707] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[737] = (T)(img)(_n3##x,_n10##y,z,c)), \
|
|
(I[767] = (T)(img)(_n3##x,_n11##y,z,c)), \
|
|
(I[797] = (T)(img)(_n3##x,_n12##y,z,c)), \
|
|
(I[827] = (T)(img)(_n3##x,_n13##y,z,c)), \
|
|
(I[857] = (T)(img)(_n3##x,_n14##y,z,c)), \
|
|
(I[887] = (T)(img)(_n3##x,_n15##y,z,c)), \
|
|
(I[18] = (T)(img)(_n4##x,_p14##y,z,c)), \
|
|
(I[48] = (T)(img)(_n4##x,_p13##y,z,c)), \
|
|
(I[78] = (T)(img)(_n4##x,_p12##y,z,c)), \
|
|
(I[108] = (T)(img)(_n4##x,_p11##y,z,c)), \
|
|
(I[138] = (T)(img)(_n4##x,_p10##y,z,c)), \
|
|
(I[168] = (T)(img)(_n4##x,_p9##y,z,c)), \
|
|
(I[198] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[228] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[258] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[288] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[318] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[348] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[378] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[408] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[438] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[468] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[498] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[528] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[558] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[588] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[618] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[648] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[678] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[708] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[738] = (T)(img)(_n4##x,_n10##y,z,c)), \
|
|
(I[768] = (T)(img)(_n4##x,_n11##y,z,c)), \
|
|
(I[798] = (T)(img)(_n4##x,_n12##y,z,c)), \
|
|
(I[828] = (T)(img)(_n4##x,_n13##y,z,c)), \
|
|
(I[858] = (T)(img)(_n4##x,_n14##y,z,c)), \
|
|
(I[888] = (T)(img)(_n4##x,_n15##y,z,c)), \
|
|
(I[19] = (T)(img)(_n5##x,_p14##y,z,c)), \
|
|
(I[49] = (T)(img)(_n5##x,_p13##y,z,c)), \
|
|
(I[79] = (T)(img)(_n5##x,_p12##y,z,c)), \
|
|
(I[109] = (T)(img)(_n5##x,_p11##y,z,c)), \
|
|
(I[139] = (T)(img)(_n5##x,_p10##y,z,c)), \
|
|
(I[169] = (T)(img)(_n5##x,_p9##y,z,c)), \
|
|
(I[199] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[229] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[259] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[289] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[319] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[349] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[379] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[409] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[439] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[469] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[499] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[529] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[559] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[589] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[619] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[649] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[679] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[709] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[739] = (T)(img)(_n5##x,_n10##y,z,c)), \
|
|
(I[769] = (T)(img)(_n5##x,_n11##y,z,c)), \
|
|
(I[799] = (T)(img)(_n5##x,_n12##y,z,c)), \
|
|
(I[829] = (T)(img)(_n5##x,_n13##y,z,c)), \
|
|
(I[859] = (T)(img)(_n5##x,_n14##y,z,c)), \
|
|
(I[889] = (T)(img)(_n5##x,_n15##y,z,c)), \
|
|
(I[20] = (T)(img)(_n6##x,_p14##y,z,c)), \
|
|
(I[50] = (T)(img)(_n6##x,_p13##y,z,c)), \
|
|
(I[80] = (T)(img)(_n6##x,_p12##y,z,c)), \
|
|
(I[110] = (T)(img)(_n6##x,_p11##y,z,c)), \
|
|
(I[140] = (T)(img)(_n6##x,_p10##y,z,c)), \
|
|
(I[170] = (T)(img)(_n6##x,_p9##y,z,c)), \
|
|
(I[200] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[230] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[260] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[290] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[320] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[350] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[380] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[410] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[440] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[470] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[500] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[530] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[560] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[590] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[620] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[650] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[680] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[710] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[740] = (T)(img)(_n6##x,_n10##y,z,c)), \
|
|
(I[770] = (T)(img)(_n6##x,_n11##y,z,c)), \
|
|
(I[800] = (T)(img)(_n6##x,_n12##y,z,c)), \
|
|
(I[830] = (T)(img)(_n6##x,_n13##y,z,c)), \
|
|
(I[860] = (T)(img)(_n6##x,_n14##y,z,c)), \
|
|
(I[890] = (T)(img)(_n6##x,_n15##y,z,c)), \
|
|
(I[21] = (T)(img)(_n7##x,_p14##y,z,c)), \
|
|
(I[51] = (T)(img)(_n7##x,_p13##y,z,c)), \
|
|
(I[81] = (T)(img)(_n7##x,_p12##y,z,c)), \
|
|
(I[111] = (T)(img)(_n7##x,_p11##y,z,c)), \
|
|
(I[141] = (T)(img)(_n7##x,_p10##y,z,c)), \
|
|
(I[171] = (T)(img)(_n7##x,_p9##y,z,c)), \
|
|
(I[201] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[231] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[261] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[291] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[321] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[351] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[381] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[411] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[441] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[471] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[501] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[531] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[561] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[591] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[621] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[651] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[681] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[711] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[741] = (T)(img)(_n7##x,_n10##y,z,c)), \
|
|
(I[771] = (T)(img)(_n7##x,_n11##y,z,c)), \
|
|
(I[801] = (T)(img)(_n7##x,_n12##y,z,c)), \
|
|
(I[831] = (T)(img)(_n7##x,_n13##y,z,c)), \
|
|
(I[861] = (T)(img)(_n7##x,_n14##y,z,c)), \
|
|
(I[891] = (T)(img)(_n7##x,_n15##y,z,c)), \
|
|
(I[22] = (T)(img)(_n8##x,_p14##y,z,c)), \
|
|
(I[52] = (T)(img)(_n8##x,_p13##y,z,c)), \
|
|
(I[82] = (T)(img)(_n8##x,_p12##y,z,c)), \
|
|
(I[112] = (T)(img)(_n8##x,_p11##y,z,c)), \
|
|
(I[142] = (T)(img)(_n8##x,_p10##y,z,c)), \
|
|
(I[172] = (T)(img)(_n8##x,_p9##y,z,c)), \
|
|
(I[202] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[232] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[262] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[292] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[322] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[352] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[382] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[412] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[442] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[472] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[502] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[532] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[562] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[592] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[622] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[652] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[682] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[712] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
(I[742] = (T)(img)(_n8##x,_n10##y,z,c)), \
|
|
(I[772] = (T)(img)(_n8##x,_n11##y,z,c)), \
|
|
(I[802] = (T)(img)(_n8##x,_n12##y,z,c)), \
|
|
(I[832] = (T)(img)(_n8##x,_n13##y,z,c)), \
|
|
(I[862] = (T)(img)(_n8##x,_n14##y,z,c)), \
|
|
(I[892] = (T)(img)(_n8##x,_n15##y,z,c)), \
|
|
(I[23] = (T)(img)(_n9##x,_p14##y,z,c)), \
|
|
(I[53] = (T)(img)(_n9##x,_p13##y,z,c)), \
|
|
(I[83] = (T)(img)(_n9##x,_p12##y,z,c)), \
|
|
(I[113] = (T)(img)(_n9##x,_p11##y,z,c)), \
|
|
(I[143] = (T)(img)(_n9##x,_p10##y,z,c)), \
|
|
(I[173] = (T)(img)(_n9##x,_p9##y,z,c)), \
|
|
(I[203] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[233] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[263] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[293] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[323] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[353] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[383] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[413] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[443] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[473] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[503] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[533] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[563] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[593] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[623] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[653] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[683] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[713] = (T)(img)(_n9##x,_n9##y,z,c)), \
|
|
(I[743] = (T)(img)(_n9##x,_n10##y,z,c)), \
|
|
(I[773] = (T)(img)(_n9##x,_n11##y,z,c)), \
|
|
(I[803] = (T)(img)(_n9##x,_n12##y,z,c)), \
|
|
(I[833] = (T)(img)(_n9##x,_n13##y,z,c)), \
|
|
(I[863] = (T)(img)(_n9##x,_n14##y,z,c)), \
|
|
(I[893] = (T)(img)(_n9##x,_n15##y,z,c)), \
|
|
(I[24] = (T)(img)(_n10##x,_p14##y,z,c)), \
|
|
(I[54] = (T)(img)(_n10##x,_p13##y,z,c)), \
|
|
(I[84] = (T)(img)(_n10##x,_p12##y,z,c)), \
|
|
(I[114] = (T)(img)(_n10##x,_p11##y,z,c)), \
|
|
(I[144] = (T)(img)(_n10##x,_p10##y,z,c)), \
|
|
(I[174] = (T)(img)(_n10##x,_p9##y,z,c)), \
|
|
(I[204] = (T)(img)(_n10##x,_p8##y,z,c)), \
|
|
(I[234] = (T)(img)(_n10##x,_p7##y,z,c)), \
|
|
(I[264] = (T)(img)(_n10##x,_p6##y,z,c)), \
|
|
(I[294] = (T)(img)(_n10##x,_p5##y,z,c)), \
|
|
(I[324] = (T)(img)(_n10##x,_p4##y,z,c)), \
|
|
(I[354] = (T)(img)(_n10##x,_p3##y,z,c)), \
|
|
(I[384] = (T)(img)(_n10##x,_p2##y,z,c)), \
|
|
(I[414] = (T)(img)(_n10##x,_p1##y,z,c)), \
|
|
(I[444] = (T)(img)(_n10##x,y,z,c)), \
|
|
(I[474] = (T)(img)(_n10##x,_n1##y,z,c)), \
|
|
(I[504] = (T)(img)(_n10##x,_n2##y,z,c)), \
|
|
(I[534] = (T)(img)(_n10##x,_n3##y,z,c)), \
|
|
(I[564] = (T)(img)(_n10##x,_n4##y,z,c)), \
|
|
(I[594] = (T)(img)(_n10##x,_n5##y,z,c)), \
|
|
(I[624] = (T)(img)(_n10##x,_n6##y,z,c)), \
|
|
(I[654] = (T)(img)(_n10##x,_n7##y,z,c)), \
|
|
(I[684] = (T)(img)(_n10##x,_n8##y,z,c)), \
|
|
(I[714] = (T)(img)(_n10##x,_n9##y,z,c)), \
|
|
(I[744] = (T)(img)(_n10##x,_n10##y,z,c)), \
|
|
(I[774] = (T)(img)(_n10##x,_n11##y,z,c)), \
|
|
(I[804] = (T)(img)(_n10##x,_n12##y,z,c)), \
|
|
(I[834] = (T)(img)(_n10##x,_n13##y,z,c)), \
|
|
(I[864] = (T)(img)(_n10##x,_n14##y,z,c)), \
|
|
(I[894] = (T)(img)(_n10##x,_n15##y,z,c)), \
|
|
(I[25] = (T)(img)(_n11##x,_p14##y,z,c)), \
|
|
(I[55] = (T)(img)(_n11##x,_p13##y,z,c)), \
|
|
(I[85] = (T)(img)(_n11##x,_p12##y,z,c)), \
|
|
(I[115] = (T)(img)(_n11##x,_p11##y,z,c)), \
|
|
(I[145] = (T)(img)(_n11##x,_p10##y,z,c)), \
|
|
(I[175] = (T)(img)(_n11##x,_p9##y,z,c)), \
|
|
(I[205] = (T)(img)(_n11##x,_p8##y,z,c)), \
|
|
(I[235] = (T)(img)(_n11##x,_p7##y,z,c)), \
|
|
(I[265] = (T)(img)(_n11##x,_p6##y,z,c)), \
|
|
(I[295] = (T)(img)(_n11##x,_p5##y,z,c)), \
|
|
(I[325] = (T)(img)(_n11##x,_p4##y,z,c)), \
|
|
(I[355] = (T)(img)(_n11##x,_p3##y,z,c)), \
|
|
(I[385] = (T)(img)(_n11##x,_p2##y,z,c)), \
|
|
(I[415] = (T)(img)(_n11##x,_p1##y,z,c)), \
|
|
(I[445] = (T)(img)(_n11##x,y,z,c)), \
|
|
(I[475] = (T)(img)(_n11##x,_n1##y,z,c)), \
|
|
(I[505] = (T)(img)(_n11##x,_n2##y,z,c)), \
|
|
(I[535] = (T)(img)(_n11##x,_n3##y,z,c)), \
|
|
(I[565] = (T)(img)(_n11##x,_n4##y,z,c)), \
|
|
(I[595] = (T)(img)(_n11##x,_n5##y,z,c)), \
|
|
(I[625] = (T)(img)(_n11##x,_n6##y,z,c)), \
|
|
(I[655] = (T)(img)(_n11##x,_n7##y,z,c)), \
|
|
(I[685] = (T)(img)(_n11##x,_n8##y,z,c)), \
|
|
(I[715] = (T)(img)(_n11##x,_n9##y,z,c)), \
|
|
(I[745] = (T)(img)(_n11##x,_n10##y,z,c)), \
|
|
(I[775] = (T)(img)(_n11##x,_n11##y,z,c)), \
|
|
(I[805] = (T)(img)(_n11##x,_n12##y,z,c)), \
|
|
(I[835] = (T)(img)(_n11##x,_n13##y,z,c)), \
|
|
(I[865] = (T)(img)(_n11##x,_n14##y,z,c)), \
|
|
(I[895] = (T)(img)(_n11##x,_n15##y,z,c)), \
|
|
(I[26] = (T)(img)(_n12##x,_p14##y,z,c)), \
|
|
(I[56] = (T)(img)(_n12##x,_p13##y,z,c)), \
|
|
(I[86] = (T)(img)(_n12##x,_p12##y,z,c)), \
|
|
(I[116] = (T)(img)(_n12##x,_p11##y,z,c)), \
|
|
(I[146] = (T)(img)(_n12##x,_p10##y,z,c)), \
|
|
(I[176] = (T)(img)(_n12##x,_p9##y,z,c)), \
|
|
(I[206] = (T)(img)(_n12##x,_p8##y,z,c)), \
|
|
(I[236] = (T)(img)(_n12##x,_p7##y,z,c)), \
|
|
(I[266] = (T)(img)(_n12##x,_p6##y,z,c)), \
|
|
(I[296] = (T)(img)(_n12##x,_p5##y,z,c)), \
|
|
(I[326] = (T)(img)(_n12##x,_p4##y,z,c)), \
|
|
(I[356] = (T)(img)(_n12##x,_p3##y,z,c)), \
|
|
(I[386] = (T)(img)(_n12##x,_p2##y,z,c)), \
|
|
(I[416] = (T)(img)(_n12##x,_p1##y,z,c)), \
|
|
(I[446] = (T)(img)(_n12##x,y,z,c)), \
|
|
(I[476] = (T)(img)(_n12##x,_n1##y,z,c)), \
|
|
(I[506] = (T)(img)(_n12##x,_n2##y,z,c)), \
|
|
(I[536] = (T)(img)(_n12##x,_n3##y,z,c)), \
|
|
(I[566] = (T)(img)(_n12##x,_n4##y,z,c)), \
|
|
(I[596] = (T)(img)(_n12##x,_n5##y,z,c)), \
|
|
(I[626] = (T)(img)(_n12##x,_n6##y,z,c)), \
|
|
(I[656] = (T)(img)(_n12##x,_n7##y,z,c)), \
|
|
(I[686] = (T)(img)(_n12##x,_n8##y,z,c)), \
|
|
(I[716] = (T)(img)(_n12##x,_n9##y,z,c)), \
|
|
(I[746] = (T)(img)(_n12##x,_n10##y,z,c)), \
|
|
(I[776] = (T)(img)(_n12##x,_n11##y,z,c)), \
|
|
(I[806] = (T)(img)(_n12##x,_n12##y,z,c)), \
|
|
(I[836] = (T)(img)(_n12##x,_n13##y,z,c)), \
|
|
(I[866] = (T)(img)(_n12##x,_n14##y,z,c)), \
|
|
(I[896] = (T)(img)(_n12##x,_n15##y,z,c)), \
|
|
(I[27] = (T)(img)(_n13##x,_p14##y,z,c)), \
|
|
(I[57] = (T)(img)(_n13##x,_p13##y,z,c)), \
|
|
(I[87] = (T)(img)(_n13##x,_p12##y,z,c)), \
|
|
(I[117] = (T)(img)(_n13##x,_p11##y,z,c)), \
|
|
(I[147] = (T)(img)(_n13##x,_p10##y,z,c)), \
|
|
(I[177] = (T)(img)(_n13##x,_p9##y,z,c)), \
|
|
(I[207] = (T)(img)(_n13##x,_p8##y,z,c)), \
|
|
(I[237] = (T)(img)(_n13##x,_p7##y,z,c)), \
|
|
(I[267] = (T)(img)(_n13##x,_p6##y,z,c)), \
|
|
(I[297] = (T)(img)(_n13##x,_p5##y,z,c)), \
|
|
(I[327] = (T)(img)(_n13##x,_p4##y,z,c)), \
|
|
(I[357] = (T)(img)(_n13##x,_p3##y,z,c)), \
|
|
(I[387] = (T)(img)(_n13##x,_p2##y,z,c)), \
|
|
(I[417] = (T)(img)(_n13##x,_p1##y,z,c)), \
|
|
(I[447] = (T)(img)(_n13##x,y,z,c)), \
|
|
(I[477] = (T)(img)(_n13##x,_n1##y,z,c)), \
|
|
(I[507] = (T)(img)(_n13##x,_n2##y,z,c)), \
|
|
(I[537] = (T)(img)(_n13##x,_n3##y,z,c)), \
|
|
(I[567] = (T)(img)(_n13##x,_n4##y,z,c)), \
|
|
(I[597] = (T)(img)(_n13##x,_n5##y,z,c)), \
|
|
(I[627] = (T)(img)(_n13##x,_n6##y,z,c)), \
|
|
(I[657] = (T)(img)(_n13##x,_n7##y,z,c)), \
|
|
(I[687] = (T)(img)(_n13##x,_n8##y,z,c)), \
|
|
(I[717] = (T)(img)(_n13##x,_n9##y,z,c)), \
|
|
(I[747] = (T)(img)(_n13##x,_n10##y,z,c)), \
|
|
(I[777] = (T)(img)(_n13##x,_n11##y,z,c)), \
|
|
(I[807] = (T)(img)(_n13##x,_n12##y,z,c)), \
|
|
(I[837] = (T)(img)(_n13##x,_n13##y,z,c)), \
|
|
(I[867] = (T)(img)(_n13##x,_n14##y,z,c)), \
|
|
(I[897] = (T)(img)(_n13##x,_n15##y,z,c)), \
|
|
(I[28] = (T)(img)(_n14##x,_p14##y,z,c)), \
|
|
(I[58] = (T)(img)(_n14##x,_p13##y,z,c)), \
|
|
(I[88] = (T)(img)(_n14##x,_p12##y,z,c)), \
|
|
(I[118] = (T)(img)(_n14##x,_p11##y,z,c)), \
|
|
(I[148] = (T)(img)(_n14##x,_p10##y,z,c)), \
|
|
(I[178] = (T)(img)(_n14##x,_p9##y,z,c)), \
|
|
(I[208] = (T)(img)(_n14##x,_p8##y,z,c)), \
|
|
(I[238] = (T)(img)(_n14##x,_p7##y,z,c)), \
|
|
(I[268] = (T)(img)(_n14##x,_p6##y,z,c)), \
|
|
(I[298] = (T)(img)(_n14##x,_p5##y,z,c)), \
|
|
(I[328] = (T)(img)(_n14##x,_p4##y,z,c)), \
|
|
(I[358] = (T)(img)(_n14##x,_p3##y,z,c)), \
|
|
(I[388] = (T)(img)(_n14##x,_p2##y,z,c)), \
|
|
(I[418] = (T)(img)(_n14##x,_p1##y,z,c)), \
|
|
(I[448] = (T)(img)(_n14##x,y,z,c)), \
|
|
(I[478] = (T)(img)(_n14##x,_n1##y,z,c)), \
|
|
(I[508] = (T)(img)(_n14##x,_n2##y,z,c)), \
|
|
(I[538] = (T)(img)(_n14##x,_n3##y,z,c)), \
|
|
(I[568] = (T)(img)(_n14##x,_n4##y,z,c)), \
|
|
(I[598] = (T)(img)(_n14##x,_n5##y,z,c)), \
|
|
(I[628] = (T)(img)(_n14##x,_n6##y,z,c)), \
|
|
(I[658] = (T)(img)(_n14##x,_n7##y,z,c)), \
|
|
(I[688] = (T)(img)(_n14##x,_n8##y,z,c)), \
|
|
(I[718] = (T)(img)(_n14##x,_n9##y,z,c)), \
|
|
(I[748] = (T)(img)(_n14##x,_n10##y,z,c)), \
|
|
(I[778] = (T)(img)(_n14##x,_n11##y,z,c)), \
|
|
(I[808] = (T)(img)(_n14##x,_n12##y,z,c)), \
|
|
(I[838] = (T)(img)(_n14##x,_n13##y,z,c)), \
|
|
(I[868] = (T)(img)(_n14##x,_n14##y,z,c)), \
|
|
(I[898] = (T)(img)(_n14##x,_n15##y,z,c)), \
|
|
15>=((img)._width)?(img).width() - 1:15); \
|
|
(_n15##x<(img).width() && ( \
|
|
(I[29] = (T)(img)(_n15##x,_p14##y,z,c)), \
|
|
(I[59] = (T)(img)(_n15##x,_p13##y,z,c)), \
|
|
(I[89] = (T)(img)(_n15##x,_p12##y,z,c)), \
|
|
(I[119] = (T)(img)(_n15##x,_p11##y,z,c)), \
|
|
(I[149] = (T)(img)(_n15##x,_p10##y,z,c)), \
|
|
(I[179] = (T)(img)(_n15##x,_p9##y,z,c)), \
|
|
(I[209] = (T)(img)(_n15##x,_p8##y,z,c)), \
|
|
(I[239] = (T)(img)(_n15##x,_p7##y,z,c)), \
|
|
(I[269] = (T)(img)(_n15##x,_p6##y,z,c)), \
|
|
(I[299] = (T)(img)(_n15##x,_p5##y,z,c)), \
|
|
(I[329] = (T)(img)(_n15##x,_p4##y,z,c)), \
|
|
(I[359] = (T)(img)(_n15##x,_p3##y,z,c)), \
|
|
(I[389] = (T)(img)(_n15##x,_p2##y,z,c)), \
|
|
(I[419] = (T)(img)(_n15##x,_p1##y,z,c)), \
|
|
(I[449] = (T)(img)(_n15##x,y,z,c)), \
|
|
(I[479] = (T)(img)(_n15##x,_n1##y,z,c)), \
|
|
(I[509] = (T)(img)(_n15##x,_n2##y,z,c)), \
|
|
(I[539] = (T)(img)(_n15##x,_n3##y,z,c)), \
|
|
(I[569] = (T)(img)(_n15##x,_n4##y,z,c)), \
|
|
(I[599] = (T)(img)(_n15##x,_n5##y,z,c)), \
|
|
(I[629] = (T)(img)(_n15##x,_n6##y,z,c)), \
|
|
(I[659] = (T)(img)(_n15##x,_n7##y,z,c)), \
|
|
(I[689] = (T)(img)(_n15##x,_n8##y,z,c)), \
|
|
(I[719] = (T)(img)(_n15##x,_n9##y,z,c)), \
|
|
(I[749] = (T)(img)(_n15##x,_n10##y,z,c)), \
|
|
(I[779] = (T)(img)(_n15##x,_n11##y,z,c)), \
|
|
(I[809] = (T)(img)(_n15##x,_n12##y,z,c)), \
|
|
(I[839] = (T)(img)(_n15##x,_n13##y,z,c)), \
|
|
(I[869] = (T)(img)(_n15##x,_n14##y,z,c)), \
|
|
(I[899] = (T)(img)(_n15##x,_n15##y,z,c)),1)) || \
|
|
_n14##x==--_n15##x || _n13##x==--_n14##x || _n12##x==--_n13##x || _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n15##x = _n14##x = _n13##x = _n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
|
|
I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
|
|
I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
|
|
I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
|
|
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], \
|
|
I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \
|
|
I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \
|
|
I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \
|
|
I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], \
|
|
I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], \
|
|
I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], \
|
|
I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], \
|
|
I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], \
|
|
I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], \
|
|
I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], \
|
|
I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], \
|
|
I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], \
|
|
I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], \
|
|
I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], \
|
|
I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], I[575] = I[576], I[576] = I[577], I[577] = I[578], I[578] = I[579], I[579] = I[580], I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], I[587] = I[588], I[588] = I[589], I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], I[593] = I[594], I[594] = I[595], I[595] = I[596], I[596] = I[597], I[597] = I[598], I[598] = I[599], \
|
|
I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], I[607] = I[608], I[608] = I[609], I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], I[615] = I[616], I[616] = I[617], I[617] = I[618], I[618] = I[619], I[619] = I[620], I[620] = I[621], I[621] = I[622], I[622] = I[623], I[623] = I[624], I[624] = I[625], I[625] = I[626], I[626] = I[627], I[627] = I[628], I[628] = I[629], \
|
|
I[630] = I[631], I[631] = I[632], I[632] = I[633], I[633] = I[634], I[634] = I[635], I[635] = I[636], I[636] = I[637], I[637] = I[638], I[638] = I[639], I[639] = I[640], I[640] = I[641], I[641] = I[642], I[642] = I[643], I[643] = I[644], I[644] = I[645], I[645] = I[646], I[646] = I[647], I[647] = I[648], I[648] = I[649], I[649] = I[650], I[650] = I[651], I[651] = I[652], I[652] = I[653], I[653] = I[654], I[654] = I[655], I[655] = I[656], I[656] = I[657], I[657] = I[658], I[658] = I[659], \
|
|
I[660] = I[661], I[661] = I[662], I[662] = I[663], I[663] = I[664], I[664] = I[665], I[665] = I[666], I[666] = I[667], I[667] = I[668], I[668] = I[669], I[669] = I[670], I[670] = I[671], I[671] = I[672], I[672] = I[673], I[673] = I[674], I[674] = I[675], I[675] = I[676], I[676] = I[677], I[677] = I[678], I[678] = I[679], I[679] = I[680], I[680] = I[681], I[681] = I[682], I[682] = I[683], I[683] = I[684], I[684] = I[685], I[685] = I[686], I[686] = I[687], I[687] = I[688], I[688] = I[689], \
|
|
I[690] = I[691], I[691] = I[692], I[692] = I[693], I[693] = I[694], I[694] = I[695], I[695] = I[696], I[696] = I[697], I[697] = I[698], I[698] = I[699], I[699] = I[700], I[700] = I[701], I[701] = I[702], I[702] = I[703], I[703] = I[704], I[704] = I[705], I[705] = I[706], I[706] = I[707], I[707] = I[708], I[708] = I[709], I[709] = I[710], I[710] = I[711], I[711] = I[712], I[712] = I[713], I[713] = I[714], I[714] = I[715], I[715] = I[716], I[716] = I[717], I[717] = I[718], I[718] = I[719], \
|
|
I[720] = I[721], I[721] = I[722], I[722] = I[723], I[723] = I[724], I[724] = I[725], I[725] = I[726], I[726] = I[727], I[727] = I[728], I[728] = I[729], I[729] = I[730], I[730] = I[731], I[731] = I[732], I[732] = I[733], I[733] = I[734], I[734] = I[735], I[735] = I[736], I[736] = I[737], I[737] = I[738], I[738] = I[739], I[739] = I[740], I[740] = I[741], I[741] = I[742], I[742] = I[743], I[743] = I[744], I[744] = I[745], I[745] = I[746], I[746] = I[747], I[747] = I[748], I[748] = I[749], \
|
|
I[750] = I[751], I[751] = I[752], I[752] = I[753], I[753] = I[754], I[754] = I[755], I[755] = I[756], I[756] = I[757], I[757] = I[758], I[758] = I[759], I[759] = I[760], I[760] = I[761], I[761] = I[762], I[762] = I[763], I[763] = I[764], I[764] = I[765], I[765] = I[766], I[766] = I[767], I[767] = I[768], I[768] = I[769], I[769] = I[770], I[770] = I[771], I[771] = I[772], I[772] = I[773], I[773] = I[774], I[774] = I[775], I[775] = I[776], I[776] = I[777], I[777] = I[778], I[778] = I[779], \
|
|
I[780] = I[781], I[781] = I[782], I[782] = I[783], I[783] = I[784], I[784] = I[785], I[785] = I[786], I[786] = I[787], I[787] = I[788], I[788] = I[789], I[789] = I[790], I[790] = I[791], I[791] = I[792], I[792] = I[793], I[793] = I[794], I[794] = I[795], I[795] = I[796], I[796] = I[797], I[797] = I[798], I[798] = I[799], I[799] = I[800], I[800] = I[801], I[801] = I[802], I[802] = I[803], I[803] = I[804], I[804] = I[805], I[805] = I[806], I[806] = I[807], I[807] = I[808], I[808] = I[809], \
|
|
I[810] = I[811], I[811] = I[812], I[812] = I[813], I[813] = I[814], I[814] = I[815], I[815] = I[816], I[816] = I[817], I[817] = I[818], I[818] = I[819], I[819] = I[820], I[820] = I[821], I[821] = I[822], I[822] = I[823], I[823] = I[824], I[824] = I[825], I[825] = I[826], I[826] = I[827], I[827] = I[828], I[828] = I[829], I[829] = I[830], I[830] = I[831], I[831] = I[832], I[832] = I[833], I[833] = I[834], I[834] = I[835], I[835] = I[836], I[836] = I[837], I[837] = I[838], I[838] = I[839], \
|
|
I[840] = I[841], I[841] = I[842], I[842] = I[843], I[843] = I[844], I[844] = I[845], I[845] = I[846], I[846] = I[847], I[847] = I[848], I[848] = I[849], I[849] = I[850], I[850] = I[851], I[851] = I[852], I[852] = I[853], I[853] = I[854], I[854] = I[855], I[855] = I[856], I[856] = I[857], I[857] = I[858], I[858] = I[859], I[859] = I[860], I[860] = I[861], I[861] = I[862], I[862] = I[863], I[863] = I[864], I[864] = I[865], I[865] = I[866], I[866] = I[867], I[867] = I[868], I[868] = I[869], \
|
|
I[870] = I[871], I[871] = I[872], I[872] = I[873], I[873] = I[874], I[874] = I[875], I[875] = I[876], I[876] = I[877], I[877] = I[878], I[878] = I[879], I[879] = I[880], I[880] = I[881], I[881] = I[882], I[882] = I[883], I[883] = I[884], I[884] = I[885], I[885] = I[886], I[886] = I[887], I[887] = I[888], I[888] = I[889], I[889] = I[890], I[890] = I[891], I[891] = I[892], I[892] = I[893], I[893] = I[894], I[894] = I[895], I[895] = I[896], I[896] = I[897], I[897] = I[898], I[898] = I[899], \
|
|
_p14##x = _p13##x, _p13##x = _p12##x, _p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x, ++_n13##x, ++_n14##x, ++_n15##x)
|
|
|
|
#define cimg_for_in30x30(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in30((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p14##x = x - 14<0?0:x - 14, \
|
|
_p13##x = x - 13<0?0:x - 13, \
|
|
_p12##x = x - 12<0?0:x - 12, \
|
|
_p11##x = x - 11<0?0:x - 11, \
|
|
_p10##x = x - 10<0?0:x - 10, \
|
|
_p9##x = x - 9<0?0:x - 9, \
|
|
_p8##x = x - 8<0?0:x - 8, \
|
|
_p7##x = x - 7<0?0:x - 7, \
|
|
_p6##x = x - 6<0?0:x - 6, \
|
|
_p5##x = x - 5<0?0:x - 5, \
|
|
_p4##x = x - 4<0?0:x - 4, \
|
|
_p3##x = x - 3<0?0:x - 3, \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
|
|
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
|
|
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
|
|
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
|
|
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
|
|
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
|
|
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
|
|
_n9##x = x + 9>=(img).width()?(img).width() - 1:x + 9, \
|
|
_n10##x = x + 10>=(img).width()?(img).width() - 1:x + 10, \
|
|
_n11##x = x + 11>=(img).width()?(img).width() - 1:x + 11, \
|
|
_n12##x = x + 12>=(img).width()?(img).width() - 1:x + 12, \
|
|
_n13##x = x + 13>=(img).width()?(img).width() - 1:x + 13, \
|
|
_n14##x = x + 14>=(img).width()?(img).width() - 1:x + 14, \
|
|
_n15##x = (int)( \
|
|
(I[0] = (T)(img)(_p14##x,_p14##y,z,c)), \
|
|
(I[30] = (T)(img)(_p14##x,_p13##y,z,c)), \
|
|
(I[60] = (T)(img)(_p14##x,_p12##y,z,c)), \
|
|
(I[90] = (T)(img)(_p14##x,_p11##y,z,c)), \
|
|
(I[120] = (T)(img)(_p14##x,_p10##y,z,c)), \
|
|
(I[150] = (T)(img)(_p14##x,_p9##y,z,c)), \
|
|
(I[180] = (T)(img)(_p14##x,_p8##y,z,c)), \
|
|
(I[210] = (T)(img)(_p14##x,_p7##y,z,c)), \
|
|
(I[240] = (T)(img)(_p14##x,_p6##y,z,c)), \
|
|
(I[270] = (T)(img)(_p14##x,_p5##y,z,c)), \
|
|
(I[300] = (T)(img)(_p14##x,_p4##y,z,c)), \
|
|
(I[330] = (T)(img)(_p14##x,_p3##y,z,c)), \
|
|
(I[360] = (T)(img)(_p14##x,_p2##y,z,c)), \
|
|
(I[390] = (T)(img)(_p14##x,_p1##y,z,c)), \
|
|
(I[420] = (T)(img)(_p14##x,y,z,c)), \
|
|
(I[450] = (T)(img)(_p14##x,_n1##y,z,c)), \
|
|
(I[480] = (T)(img)(_p14##x,_n2##y,z,c)), \
|
|
(I[510] = (T)(img)(_p14##x,_n3##y,z,c)), \
|
|
(I[540] = (T)(img)(_p14##x,_n4##y,z,c)), \
|
|
(I[570] = (T)(img)(_p14##x,_n5##y,z,c)), \
|
|
(I[600] = (T)(img)(_p14##x,_n6##y,z,c)), \
|
|
(I[630] = (T)(img)(_p14##x,_n7##y,z,c)), \
|
|
(I[660] = (T)(img)(_p14##x,_n8##y,z,c)), \
|
|
(I[690] = (T)(img)(_p14##x,_n9##y,z,c)), \
|
|
(I[720] = (T)(img)(_p14##x,_n10##y,z,c)), \
|
|
(I[750] = (T)(img)(_p14##x,_n11##y,z,c)), \
|
|
(I[780] = (T)(img)(_p14##x,_n12##y,z,c)), \
|
|
(I[810] = (T)(img)(_p14##x,_n13##y,z,c)), \
|
|
(I[840] = (T)(img)(_p14##x,_n14##y,z,c)), \
|
|
(I[870] = (T)(img)(_p14##x,_n15##y,z,c)), \
|
|
(I[1] = (T)(img)(_p13##x,_p14##y,z,c)), \
|
|
(I[31] = (T)(img)(_p13##x,_p13##y,z,c)), \
|
|
(I[61] = (T)(img)(_p13##x,_p12##y,z,c)), \
|
|
(I[91] = (T)(img)(_p13##x,_p11##y,z,c)), \
|
|
(I[121] = (T)(img)(_p13##x,_p10##y,z,c)), \
|
|
(I[151] = (T)(img)(_p13##x,_p9##y,z,c)), \
|
|
(I[181] = (T)(img)(_p13##x,_p8##y,z,c)), \
|
|
(I[211] = (T)(img)(_p13##x,_p7##y,z,c)), \
|
|
(I[241] = (T)(img)(_p13##x,_p6##y,z,c)), \
|
|
(I[271] = (T)(img)(_p13##x,_p5##y,z,c)), \
|
|
(I[301] = (T)(img)(_p13##x,_p4##y,z,c)), \
|
|
(I[331] = (T)(img)(_p13##x,_p3##y,z,c)), \
|
|
(I[361] = (T)(img)(_p13##x,_p2##y,z,c)), \
|
|
(I[391] = (T)(img)(_p13##x,_p1##y,z,c)), \
|
|
(I[421] = (T)(img)(_p13##x,y,z,c)), \
|
|
(I[451] = (T)(img)(_p13##x,_n1##y,z,c)), \
|
|
(I[481] = (T)(img)(_p13##x,_n2##y,z,c)), \
|
|
(I[511] = (T)(img)(_p13##x,_n3##y,z,c)), \
|
|
(I[541] = (T)(img)(_p13##x,_n4##y,z,c)), \
|
|
(I[571] = (T)(img)(_p13##x,_n5##y,z,c)), \
|
|
(I[601] = (T)(img)(_p13##x,_n6##y,z,c)), \
|
|
(I[631] = (T)(img)(_p13##x,_n7##y,z,c)), \
|
|
(I[661] = (T)(img)(_p13##x,_n8##y,z,c)), \
|
|
(I[691] = (T)(img)(_p13##x,_n9##y,z,c)), \
|
|
(I[721] = (T)(img)(_p13##x,_n10##y,z,c)), \
|
|
(I[751] = (T)(img)(_p13##x,_n11##y,z,c)), \
|
|
(I[781] = (T)(img)(_p13##x,_n12##y,z,c)), \
|
|
(I[811] = (T)(img)(_p13##x,_n13##y,z,c)), \
|
|
(I[841] = (T)(img)(_p13##x,_n14##y,z,c)), \
|
|
(I[871] = (T)(img)(_p13##x,_n15##y,z,c)), \
|
|
(I[2] = (T)(img)(_p12##x,_p14##y,z,c)), \
|
|
(I[32] = (T)(img)(_p12##x,_p13##y,z,c)), \
|
|
(I[62] = (T)(img)(_p12##x,_p12##y,z,c)), \
|
|
(I[92] = (T)(img)(_p12##x,_p11##y,z,c)), \
|
|
(I[122] = (T)(img)(_p12##x,_p10##y,z,c)), \
|
|
(I[152] = (T)(img)(_p12##x,_p9##y,z,c)), \
|
|
(I[182] = (T)(img)(_p12##x,_p8##y,z,c)), \
|
|
(I[212] = (T)(img)(_p12##x,_p7##y,z,c)), \
|
|
(I[242] = (T)(img)(_p12##x,_p6##y,z,c)), \
|
|
(I[272] = (T)(img)(_p12##x,_p5##y,z,c)), \
|
|
(I[302] = (T)(img)(_p12##x,_p4##y,z,c)), \
|
|
(I[332] = (T)(img)(_p12##x,_p3##y,z,c)), \
|
|
(I[362] = (T)(img)(_p12##x,_p2##y,z,c)), \
|
|
(I[392] = (T)(img)(_p12##x,_p1##y,z,c)), \
|
|
(I[422] = (T)(img)(_p12##x,y,z,c)), \
|
|
(I[452] = (T)(img)(_p12##x,_n1##y,z,c)), \
|
|
(I[482] = (T)(img)(_p12##x,_n2##y,z,c)), \
|
|
(I[512] = (T)(img)(_p12##x,_n3##y,z,c)), \
|
|
(I[542] = (T)(img)(_p12##x,_n4##y,z,c)), \
|
|
(I[572] = (T)(img)(_p12##x,_n5##y,z,c)), \
|
|
(I[602] = (T)(img)(_p12##x,_n6##y,z,c)), \
|
|
(I[632] = (T)(img)(_p12##x,_n7##y,z,c)), \
|
|
(I[662] = (T)(img)(_p12##x,_n8##y,z,c)), \
|
|
(I[692] = (T)(img)(_p12##x,_n9##y,z,c)), \
|
|
(I[722] = (T)(img)(_p12##x,_n10##y,z,c)), \
|
|
(I[752] = (T)(img)(_p12##x,_n11##y,z,c)), \
|
|
(I[782] = (T)(img)(_p12##x,_n12##y,z,c)), \
|
|
(I[812] = (T)(img)(_p12##x,_n13##y,z,c)), \
|
|
(I[842] = (T)(img)(_p12##x,_n14##y,z,c)), \
|
|
(I[872] = (T)(img)(_p12##x,_n15##y,z,c)), \
|
|
(I[3] = (T)(img)(_p11##x,_p14##y,z,c)), \
|
|
(I[33] = (T)(img)(_p11##x,_p13##y,z,c)), \
|
|
(I[63] = (T)(img)(_p11##x,_p12##y,z,c)), \
|
|
(I[93] = (T)(img)(_p11##x,_p11##y,z,c)), \
|
|
(I[123] = (T)(img)(_p11##x,_p10##y,z,c)), \
|
|
(I[153] = (T)(img)(_p11##x,_p9##y,z,c)), \
|
|
(I[183] = (T)(img)(_p11##x,_p8##y,z,c)), \
|
|
(I[213] = (T)(img)(_p11##x,_p7##y,z,c)), \
|
|
(I[243] = (T)(img)(_p11##x,_p6##y,z,c)), \
|
|
(I[273] = (T)(img)(_p11##x,_p5##y,z,c)), \
|
|
(I[303] = (T)(img)(_p11##x,_p4##y,z,c)), \
|
|
(I[333] = (T)(img)(_p11##x,_p3##y,z,c)), \
|
|
(I[363] = (T)(img)(_p11##x,_p2##y,z,c)), \
|
|
(I[393] = (T)(img)(_p11##x,_p1##y,z,c)), \
|
|
(I[423] = (T)(img)(_p11##x,y,z,c)), \
|
|
(I[453] = (T)(img)(_p11##x,_n1##y,z,c)), \
|
|
(I[483] = (T)(img)(_p11##x,_n2##y,z,c)), \
|
|
(I[513] = (T)(img)(_p11##x,_n3##y,z,c)), \
|
|
(I[543] = (T)(img)(_p11##x,_n4##y,z,c)), \
|
|
(I[573] = (T)(img)(_p11##x,_n5##y,z,c)), \
|
|
(I[603] = (T)(img)(_p11##x,_n6##y,z,c)), \
|
|
(I[633] = (T)(img)(_p11##x,_n7##y,z,c)), \
|
|
(I[663] = (T)(img)(_p11##x,_n8##y,z,c)), \
|
|
(I[693] = (T)(img)(_p11##x,_n9##y,z,c)), \
|
|
(I[723] = (T)(img)(_p11##x,_n10##y,z,c)), \
|
|
(I[753] = (T)(img)(_p11##x,_n11##y,z,c)), \
|
|
(I[783] = (T)(img)(_p11##x,_n12##y,z,c)), \
|
|
(I[813] = (T)(img)(_p11##x,_n13##y,z,c)), \
|
|
(I[843] = (T)(img)(_p11##x,_n14##y,z,c)), \
|
|
(I[873] = (T)(img)(_p11##x,_n15##y,z,c)), \
|
|
(I[4] = (T)(img)(_p10##x,_p14##y,z,c)), \
|
|
(I[34] = (T)(img)(_p10##x,_p13##y,z,c)), \
|
|
(I[64] = (T)(img)(_p10##x,_p12##y,z,c)), \
|
|
(I[94] = (T)(img)(_p10##x,_p11##y,z,c)), \
|
|
(I[124] = (T)(img)(_p10##x,_p10##y,z,c)), \
|
|
(I[154] = (T)(img)(_p10##x,_p9##y,z,c)), \
|
|
(I[184] = (T)(img)(_p10##x,_p8##y,z,c)), \
|
|
(I[214] = (T)(img)(_p10##x,_p7##y,z,c)), \
|
|
(I[244] = (T)(img)(_p10##x,_p6##y,z,c)), \
|
|
(I[274] = (T)(img)(_p10##x,_p5##y,z,c)), \
|
|
(I[304] = (T)(img)(_p10##x,_p4##y,z,c)), \
|
|
(I[334] = (T)(img)(_p10##x,_p3##y,z,c)), \
|
|
(I[364] = (T)(img)(_p10##x,_p2##y,z,c)), \
|
|
(I[394] = (T)(img)(_p10##x,_p1##y,z,c)), \
|
|
(I[424] = (T)(img)(_p10##x,y,z,c)), \
|
|
(I[454] = (T)(img)(_p10##x,_n1##y,z,c)), \
|
|
(I[484] = (T)(img)(_p10##x,_n2##y,z,c)), \
|
|
(I[514] = (T)(img)(_p10##x,_n3##y,z,c)), \
|
|
(I[544] = (T)(img)(_p10##x,_n4##y,z,c)), \
|
|
(I[574] = (T)(img)(_p10##x,_n5##y,z,c)), \
|
|
(I[604] = (T)(img)(_p10##x,_n6##y,z,c)), \
|
|
(I[634] = (T)(img)(_p10##x,_n7##y,z,c)), \
|
|
(I[664] = (T)(img)(_p10##x,_n8##y,z,c)), \
|
|
(I[694] = (T)(img)(_p10##x,_n9##y,z,c)), \
|
|
(I[724] = (T)(img)(_p10##x,_n10##y,z,c)), \
|
|
(I[754] = (T)(img)(_p10##x,_n11##y,z,c)), \
|
|
(I[784] = (T)(img)(_p10##x,_n12##y,z,c)), \
|
|
(I[814] = (T)(img)(_p10##x,_n13##y,z,c)), \
|
|
(I[844] = (T)(img)(_p10##x,_n14##y,z,c)), \
|
|
(I[874] = (T)(img)(_p10##x,_n15##y,z,c)), \
|
|
(I[5] = (T)(img)(_p9##x,_p14##y,z,c)), \
|
|
(I[35] = (T)(img)(_p9##x,_p13##y,z,c)), \
|
|
(I[65] = (T)(img)(_p9##x,_p12##y,z,c)), \
|
|
(I[95] = (T)(img)(_p9##x,_p11##y,z,c)), \
|
|
(I[125] = (T)(img)(_p9##x,_p10##y,z,c)), \
|
|
(I[155] = (T)(img)(_p9##x,_p9##y,z,c)), \
|
|
(I[185] = (T)(img)(_p9##x,_p8##y,z,c)), \
|
|
(I[215] = (T)(img)(_p9##x,_p7##y,z,c)), \
|
|
(I[245] = (T)(img)(_p9##x,_p6##y,z,c)), \
|
|
(I[275] = (T)(img)(_p9##x,_p5##y,z,c)), \
|
|
(I[305] = (T)(img)(_p9##x,_p4##y,z,c)), \
|
|
(I[335] = (T)(img)(_p9##x,_p3##y,z,c)), \
|
|
(I[365] = (T)(img)(_p9##x,_p2##y,z,c)), \
|
|
(I[395] = (T)(img)(_p9##x,_p1##y,z,c)), \
|
|
(I[425] = (T)(img)(_p9##x,y,z,c)), \
|
|
(I[455] = (T)(img)(_p9##x,_n1##y,z,c)), \
|
|
(I[485] = (T)(img)(_p9##x,_n2##y,z,c)), \
|
|
(I[515] = (T)(img)(_p9##x,_n3##y,z,c)), \
|
|
(I[545] = (T)(img)(_p9##x,_n4##y,z,c)), \
|
|
(I[575] = (T)(img)(_p9##x,_n5##y,z,c)), \
|
|
(I[605] = (T)(img)(_p9##x,_n6##y,z,c)), \
|
|
(I[635] = (T)(img)(_p9##x,_n7##y,z,c)), \
|
|
(I[665] = (T)(img)(_p9##x,_n8##y,z,c)), \
|
|
(I[695] = (T)(img)(_p9##x,_n9##y,z,c)), \
|
|
(I[725] = (T)(img)(_p9##x,_n10##y,z,c)), \
|
|
(I[755] = (T)(img)(_p9##x,_n11##y,z,c)), \
|
|
(I[785] = (T)(img)(_p9##x,_n12##y,z,c)), \
|
|
(I[815] = (T)(img)(_p9##x,_n13##y,z,c)), \
|
|
(I[845] = (T)(img)(_p9##x,_n14##y,z,c)), \
|
|
(I[875] = (T)(img)(_p9##x,_n15##y,z,c)), \
|
|
(I[6] = (T)(img)(_p8##x,_p14##y,z,c)), \
|
|
(I[36] = (T)(img)(_p8##x,_p13##y,z,c)), \
|
|
(I[66] = (T)(img)(_p8##x,_p12##y,z,c)), \
|
|
(I[96] = (T)(img)(_p8##x,_p11##y,z,c)), \
|
|
(I[126] = (T)(img)(_p8##x,_p10##y,z,c)), \
|
|
(I[156] = (T)(img)(_p8##x,_p9##y,z,c)), \
|
|
(I[186] = (T)(img)(_p8##x,_p8##y,z,c)), \
|
|
(I[216] = (T)(img)(_p8##x,_p7##y,z,c)), \
|
|
(I[246] = (T)(img)(_p8##x,_p6##y,z,c)), \
|
|
(I[276] = (T)(img)(_p8##x,_p5##y,z,c)), \
|
|
(I[306] = (T)(img)(_p8##x,_p4##y,z,c)), \
|
|
(I[336] = (T)(img)(_p8##x,_p3##y,z,c)), \
|
|
(I[366] = (T)(img)(_p8##x,_p2##y,z,c)), \
|
|
(I[396] = (T)(img)(_p8##x,_p1##y,z,c)), \
|
|
(I[426] = (T)(img)(_p8##x,y,z,c)), \
|
|
(I[456] = (T)(img)(_p8##x,_n1##y,z,c)), \
|
|
(I[486] = (T)(img)(_p8##x,_n2##y,z,c)), \
|
|
(I[516] = (T)(img)(_p8##x,_n3##y,z,c)), \
|
|
(I[546] = (T)(img)(_p8##x,_n4##y,z,c)), \
|
|
(I[576] = (T)(img)(_p8##x,_n5##y,z,c)), \
|
|
(I[606] = (T)(img)(_p8##x,_n6##y,z,c)), \
|
|
(I[636] = (T)(img)(_p8##x,_n7##y,z,c)), \
|
|
(I[666] = (T)(img)(_p8##x,_n8##y,z,c)), \
|
|
(I[696] = (T)(img)(_p8##x,_n9##y,z,c)), \
|
|
(I[726] = (T)(img)(_p8##x,_n10##y,z,c)), \
|
|
(I[756] = (T)(img)(_p8##x,_n11##y,z,c)), \
|
|
(I[786] = (T)(img)(_p8##x,_n12##y,z,c)), \
|
|
(I[816] = (T)(img)(_p8##x,_n13##y,z,c)), \
|
|
(I[846] = (T)(img)(_p8##x,_n14##y,z,c)), \
|
|
(I[876] = (T)(img)(_p8##x,_n15##y,z,c)), \
|
|
(I[7] = (T)(img)(_p7##x,_p14##y,z,c)), \
|
|
(I[37] = (T)(img)(_p7##x,_p13##y,z,c)), \
|
|
(I[67] = (T)(img)(_p7##x,_p12##y,z,c)), \
|
|
(I[97] = (T)(img)(_p7##x,_p11##y,z,c)), \
|
|
(I[127] = (T)(img)(_p7##x,_p10##y,z,c)), \
|
|
(I[157] = (T)(img)(_p7##x,_p9##y,z,c)), \
|
|
(I[187] = (T)(img)(_p7##x,_p8##y,z,c)), \
|
|
(I[217] = (T)(img)(_p7##x,_p7##y,z,c)), \
|
|
(I[247] = (T)(img)(_p7##x,_p6##y,z,c)), \
|
|
(I[277] = (T)(img)(_p7##x,_p5##y,z,c)), \
|
|
(I[307] = (T)(img)(_p7##x,_p4##y,z,c)), \
|
|
(I[337] = (T)(img)(_p7##x,_p3##y,z,c)), \
|
|
(I[367] = (T)(img)(_p7##x,_p2##y,z,c)), \
|
|
(I[397] = (T)(img)(_p7##x,_p1##y,z,c)), \
|
|
(I[427] = (T)(img)(_p7##x,y,z,c)), \
|
|
(I[457] = (T)(img)(_p7##x,_n1##y,z,c)), \
|
|
(I[487] = (T)(img)(_p7##x,_n2##y,z,c)), \
|
|
(I[517] = (T)(img)(_p7##x,_n3##y,z,c)), \
|
|
(I[547] = (T)(img)(_p7##x,_n4##y,z,c)), \
|
|
(I[577] = (T)(img)(_p7##x,_n5##y,z,c)), \
|
|
(I[607] = (T)(img)(_p7##x,_n6##y,z,c)), \
|
|
(I[637] = (T)(img)(_p7##x,_n7##y,z,c)), \
|
|
(I[667] = (T)(img)(_p7##x,_n8##y,z,c)), \
|
|
(I[697] = (T)(img)(_p7##x,_n9##y,z,c)), \
|
|
(I[727] = (T)(img)(_p7##x,_n10##y,z,c)), \
|
|
(I[757] = (T)(img)(_p7##x,_n11##y,z,c)), \
|
|
(I[787] = (T)(img)(_p7##x,_n12##y,z,c)), \
|
|
(I[817] = (T)(img)(_p7##x,_n13##y,z,c)), \
|
|
(I[847] = (T)(img)(_p7##x,_n14##y,z,c)), \
|
|
(I[877] = (T)(img)(_p7##x,_n15##y,z,c)), \
|
|
(I[8] = (T)(img)(_p6##x,_p14##y,z,c)), \
|
|
(I[38] = (T)(img)(_p6##x,_p13##y,z,c)), \
|
|
(I[68] = (T)(img)(_p6##x,_p12##y,z,c)), \
|
|
(I[98] = (T)(img)(_p6##x,_p11##y,z,c)), \
|
|
(I[128] = (T)(img)(_p6##x,_p10##y,z,c)), \
|
|
(I[158] = (T)(img)(_p6##x,_p9##y,z,c)), \
|
|
(I[188] = (T)(img)(_p6##x,_p8##y,z,c)), \
|
|
(I[218] = (T)(img)(_p6##x,_p7##y,z,c)), \
|
|
(I[248] = (T)(img)(_p6##x,_p6##y,z,c)), \
|
|
(I[278] = (T)(img)(_p6##x,_p5##y,z,c)), \
|
|
(I[308] = (T)(img)(_p6##x,_p4##y,z,c)), \
|
|
(I[338] = (T)(img)(_p6##x,_p3##y,z,c)), \
|
|
(I[368] = (T)(img)(_p6##x,_p2##y,z,c)), \
|
|
(I[398] = (T)(img)(_p6##x,_p1##y,z,c)), \
|
|
(I[428] = (T)(img)(_p6##x,y,z,c)), \
|
|
(I[458] = (T)(img)(_p6##x,_n1##y,z,c)), \
|
|
(I[488] = (T)(img)(_p6##x,_n2##y,z,c)), \
|
|
(I[518] = (T)(img)(_p6##x,_n3##y,z,c)), \
|
|
(I[548] = (T)(img)(_p6##x,_n4##y,z,c)), \
|
|
(I[578] = (T)(img)(_p6##x,_n5##y,z,c)), \
|
|
(I[608] = (T)(img)(_p6##x,_n6##y,z,c)), \
|
|
(I[638] = (T)(img)(_p6##x,_n7##y,z,c)), \
|
|
(I[668] = (T)(img)(_p6##x,_n8##y,z,c)), \
|
|
(I[698] = (T)(img)(_p6##x,_n9##y,z,c)), \
|
|
(I[728] = (T)(img)(_p6##x,_n10##y,z,c)), \
|
|
(I[758] = (T)(img)(_p6##x,_n11##y,z,c)), \
|
|
(I[788] = (T)(img)(_p6##x,_n12##y,z,c)), \
|
|
(I[818] = (T)(img)(_p6##x,_n13##y,z,c)), \
|
|
(I[848] = (T)(img)(_p6##x,_n14##y,z,c)), \
|
|
(I[878] = (T)(img)(_p6##x,_n15##y,z,c)), \
|
|
(I[9] = (T)(img)(_p5##x,_p14##y,z,c)), \
|
|
(I[39] = (T)(img)(_p5##x,_p13##y,z,c)), \
|
|
(I[69] = (T)(img)(_p5##x,_p12##y,z,c)), \
|
|
(I[99] = (T)(img)(_p5##x,_p11##y,z,c)), \
|
|
(I[129] = (T)(img)(_p5##x,_p10##y,z,c)), \
|
|
(I[159] = (T)(img)(_p5##x,_p9##y,z,c)), \
|
|
(I[189] = (T)(img)(_p5##x,_p8##y,z,c)), \
|
|
(I[219] = (T)(img)(_p5##x,_p7##y,z,c)), \
|
|
(I[249] = (T)(img)(_p5##x,_p6##y,z,c)), \
|
|
(I[279] = (T)(img)(_p5##x,_p5##y,z,c)), \
|
|
(I[309] = (T)(img)(_p5##x,_p4##y,z,c)), \
|
|
(I[339] = (T)(img)(_p5##x,_p3##y,z,c)), \
|
|
(I[369] = (T)(img)(_p5##x,_p2##y,z,c)), \
|
|
(I[399] = (T)(img)(_p5##x,_p1##y,z,c)), \
|
|
(I[429] = (T)(img)(_p5##x,y,z,c)), \
|
|
(I[459] = (T)(img)(_p5##x,_n1##y,z,c)), \
|
|
(I[489] = (T)(img)(_p5##x,_n2##y,z,c)), \
|
|
(I[519] = (T)(img)(_p5##x,_n3##y,z,c)), \
|
|
(I[549] = (T)(img)(_p5##x,_n4##y,z,c)), \
|
|
(I[579] = (T)(img)(_p5##x,_n5##y,z,c)), \
|
|
(I[609] = (T)(img)(_p5##x,_n6##y,z,c)), \
|
|
(I[639] = (T)(img)(_p5##x,_n7##y,z,c)), \
|
|
(I[669] = (T)(img)(_p5##x,_n8##y,z,c)), \
|
|
(I[699] = (T)(img)(_p5##x,_n9##y,z,c)), \
|
|
(I[729] = (T)(img)(_p5##x,_n10##y,z,c)), \
|
|
(I[759] = (T)(img)(_p5##x,_n11##y,z,c)), \
|
|
(I[789] = (T)(img)(_p5##x,_n12##y,z,c)), \
|
|
(I[819] = (T)(img)(_p5##x,_n13##y,z,c)), \
|
|
(I[849] = (T)(img)(_p5##x,_n14##y,z,c)), \
|
|
(I[879] = (T)(img)(_p5##x,_n15##y,z,c)), \
|
|
(I[10] = (T)(img)(_p4##x,_p14##y,z,c)), \
|
|
(I[40] = (T)(img)(_p4##x,_p13##y,z,c)), \
|
|
(I[70] = (T)(img)(_p4##x,_p12##y,z,c)), \
|
|
(I[100] = (T)(img)(_p4##x,_p11##y,z,c)), \
|
|
(I[130] = (T)(img)(_p4##x,_p10##y,z,c)), \
|
|
(I[160] = (T)(img)(_p4##x,_p9##y,z,c)), \
|
|
(I[190] = (T)(img)(_p4##x,_p8##y,z,c)), \
|
|
(I[220] = (T)(img)(_p4##x,_p7##y,z,c)), \
|
|
(I[250] = (T)(img)(_p4##x,_p6##y,z,c)), \
|
|
(I[280] = (T)(img)(_p4##x,_p5##y,z,c)), \
|
|
(I[310] = (T)(img)(_p4##x,_p4##y,z,c)), \
|
|
(I[340] = (T)(img)(_p4##x,_p3##y,z,c)), \
|
|
(I[370] = (T)(img)(_p4##x,_p2##y,z,c)), \
|
|
(I[400] = (T)(img)(_p4##x,_p1##y,z,c)), \
|
|
(I[430] = (T)(img)(_p4##x,y,z,c)), \
|
|
(I[460] = (T)(img)(_p4##x,_n1##y,z,c)), \
|
|
(I[490] = (T)(img)(_p4##x,_n2##y,z,c)), \
|
|
(I[520] = (T)(img)(_p4##x,_n3##y,z,c)), \
|
|
(I[550] = (T)(img)(_p4##x,_n4##y,z,c)), \
|
|
(I[580] = (T)(img)(_p4##x,_n5##y,z,c)), \
|
|
(I[610] = (T)(img)(_p4##x,_n6##y,z,c)), \
|
|
(I[640] = (T)(img)(_p4##x,_n7##y,z,c)), \
|
|
(I[670] = (T)(img)(_p4##x,_n8##y,z,c)), \
|
|
(I[700] = (T)(img)(_p4##x,_n9##y,z,c)), \
|
|
(I[730] = (T)(img)(_p4##x,_n10##y,z,c)), \
|
|
(I[760] = (T)(img)(_p4##x,_n11##y,z,c)), \
|
|
(I[790] = (T)(img)(_p4##x,_n12##y,z,c)), \
|
|
(I[820] = (T)(img)(_p4##x,_n13##y,z,c)), \
|
|
(I[850] = (T)(img)(_p4##x,_n14##y,z,c)), \
|
|
(I[880] = (T)(img)(_p4##x,_n15##y,z,c)), \
|
|
(I[11] = (T)(img)(_p3##x,_p14##y,z,c)), \
|
|
(I[41] = (T)(img)(_p3##x,_p13##y,z,c)), \
|
|
(I[71] = (T)(img)(_p3##x,_p12##y,z,c)), \
|
|
(I[101] = (T)(img)(_p3##x,_p11##y,z,c)), \
|
|
(I[131] = (T)(img)(_p3##x,_p10##y,z,c)), \
|
|
(I[161] = (T)(img)(_p3##x,_p9##y,z,c)), \
|
|
(I[191] = (T)(img)(_p3##x,_p8##y,z,c)), \
|
|
(I[221] = (T)(img)(_p3##x,_p7##y,z,c)), \
|
|
(I[251] = (T)(img)(_p3##x,_p6##y,z,c)), \
|
|
(I[281] = (T)(img)(_p3##x,_p5##y,z,c)), \
|
|
(I[311] = (T)(img)(_p3##x,_p4##y,z,c)), \
|
|
(I[341] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[371] = (T)(img)(_p3##x,_p2##y,z,c)), \
|
|
(I[401] = (T)(img)(_p3##x,_p1##y,z,c)), \
|
|
(I[431] = (T)(img)(_p3##x,y,z,c)), \
|
|
(I[461] = (T)(img)(_p3##x,_n1##y,z,c)), \
|
|
(I[491] = (T)(img)(_p3##x,_n2##y,z,c)), \
|
|
(I[521] = (T)(img)(_p3##x,_n3##y,z,c)), \
|
|
(I[551] = (T)(img)(_p3##x,_n4##y,z,c)), \
|
|
(I[581] = (T)(img)(_p3##x,_n5##y,z,c)), \
|
|
(I[611] = (T)(img)(_p3##x,_n6##y,z,c)), \
|
|
(I[641] = (T)(img)(_p3##x,_n7##y,z,c)), \
|
|
(I[671] = (T)(img)(_p3##x,_n8##y,z,c)), \
|
|
(I[701] = (T)(img)(_p3##x,_n9##y,z,c)), \
|
|
(I[731] = (T)(img)(_p3##x,_n10##y,z,c)), \
|
|
(I[761] = (T)(img)(_p3##x,_n11##y,z,c)), \
|
|
(I[791] = (T)(img)(_p3##x,_n12##y,z,c)), \
|
|
(I[821] = (T)(img)(_p3##x,_n13##y,z,c)), \
|
|
(I[851] = (T)(img)(_p3##x,_n14##y,z,c)), \
|
|
(I[881] = (T)(img)(_p3##x,_n15##y,z,c)), \
|
|
(I[12] = (T)(img)(_p2##x,_p14##y,z,c)), \
|
|
(I[42] = (T)(img)(_p2##x,_p13##y,z,c)), \
|
|
(I[72] = (T)(img)(_p2##x,_p12##y,z,c)), \
|
|
(I[102] = (T)(img)(_p2##x,_p11##y,z,c)), \
|
|
(I[132] = (T)(img)(_p2##x,_p10##y,z,c)), \
|
|
(I[162] = (T)(img)(_p2##x,_p9##y,z,c)), \
|
|
(I[192] = (T)(img)(_p2##x,_p8##y,z,c)), \
|
|
(I[222] = (T)(img)(_p2##x,_p7##y,z,c)), \
|
|
(I[252] = (T)(img)(_p2##x,_p6##y,z,c)), \
|
|
(I[282] = (T)(img)(_p2##x,_p5##y,z,c)), \
|
|
(I[312] = (T)(img)(_p2##x,_p4##y,z,c)), \
|
|
(I[342] = (T)(img)(_p2##x,_p3##y,z,c)), \
|
|
(I[372] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[402] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[432] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[462] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[492] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[522] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[552] = (T)(img)(_p2##x,_n4##y,z,c)), \
|
|
(I[582] = (T)(img)(_p2##x,_n5##y,z,c)), \
|
|
(I[612] = (T)(img)(_p2##x,_n6##y,z,c)), \
|
|
(I[642] = (T)(img)(_p2##x,_n7##y,z,c)), \
|
|
(I[672] = (T)(img)(_p2##x,_n8##y,z,c)), \
|
|
(I[702] = (T)(img)(_p2##x,_n9##y,z,c)), \
|
|
(I[732] = (T)(img)(_p2##x,_n10##y,z,c)), \
|
|
(I[762] = (T)(img)(_p2##x,_n11##y,z,c)), \
|
|
(I[792] = (T)(img)(_p2##x,_n12##y,z,c)), \
|
|
(I[822] = (T)(img)(_p2##x,_n13##y,z,c)), \
|
|
(I[852] = (T)(img)(_p2##x,_n14##y,z,c)), \
|
|
(I[882] = (T)(img)(_p2##x,_n15##y,z,c)), \
|
|
(I[13] = (T)(img)(_p1##x,_p14##y,z,c)), \
|
|
(I[43] = (T)(img)(_p1##x,_p13##y,z,c)), \
|
|
(I[73] = (T)(img)(_p1##x,_p12##y,z,c)), \
|
|
(I[103] = (T)(img)(_p1##x,_p11##y,z,c)), \
|
|
(I[133] = (T)(img)(_p1##x,_p10##y,z,c)), \
|
|
(I[163] = (T)(img)(_p1##x,_p9##y,z,c)), \
|
|
(I[193] = (T)(img)(_p1##x,_p8##y,z,c)), \
|
|
(I[223] = (T)(img)(_p1##x,_p7##y,z,c)), \
|
|
(I[253] = (T)(img)(_p1##x,_p6##y,z,c)), \
|
|
(I[283] = (T)(img)(_p1##x,_p5##y,z,c)), \
|
|
(I[313] = (T)(img)(_p1##x,_p4##y,z,c)), \
|
|
(I[343] = (T)(img)(_p1##x,_p3##y,z,c)), \
|
|
(I[373] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[403] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[433] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[463] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[493] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[523] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[553] = (T)(img)(_p1##x,_n4##y,z,c)), \
|
|
(I[583] = (T)(img)(_p1##x,_n5##y,z,c)), \
|
|
(I[613] = (T)(img)(_p1##x,_n6##y,z,c)), \
|
|
(I[643] = (T)(img)(_p1##x,_n7##y,z,c)), \
|
|
(I[673] = (T)(img)(_p1##x,_n8##y,z,c)), \
|
|
(I[703] = (T)(img)(_p1##x,_n9##y,z,c)), \
|
|
(I[733] = (T)(img)(_p1##x,_n10##y,z,c)), \
|
|
(I[763] = (T)(img)(_p1##x,_n11##y,z,c)), \
|
|
(I[793] = (T)(img)(_p1##x,_n12##y,z,c)), \
|
|
(I[823] = (T)(img)(_p1##x,_n13##y,z,c)), \
|
|
(I[853] = (T)(img)(_p1##x,_n14##y,z,c)), \
|
|
(I[883] = (T)(img)(_p1##x,_n15##y,z,c)), \
|
|
(I[14] = (T)(img)(x,_p14##y,z,c)), \
|
|
(I[44] = (T)(img)(x,_p13##y,z,c)), \
|
|
(I[74] = (T)(img)(x,_p12##y,z,c)), \
|
|
(I[104] = (T)(img)(x,_p11##y,z,c)), \
|
|
(I[134] = (T)(img)(x,_p10##y,z,c)), \
|
|
(I[164] = (T)(img)(x,_p9##y,z,c)), \
|
|
(I[194] = (T)(img)(x,_p8##y,z,c)), \
|
|
(I[224] = (T)(img)(x,_p7##y,z,c)), \
|
|
(I[254] = (T)(img)(x,_p6##y,z,c)), \
|
|
(I[284] = (T)(img)(x,_p5##y,z,c)), \
|
|
(I[314] = (T)(img)(x,_p4##y,z,c)), \
|
|
(I[344] = (T)(img)(x,_p3##y,z,c)), \
|
|
(I[374] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[404] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[434] = (T)(img)(x,y,z,c)), \
|
|
(I[464] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[494] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[524] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[554] = (T)(img)(x,_n4##y,z,c)), \
|
|
(I[584] = (T)(img)(x,_n5##y,z,c)), \
|
|
(I[614] = (T)(img)(x,_n6##y,z,c)), \
|
|
(I[644] = (T)(img)(x,_n7##y,z,c)), \
|
|
(I[674] = (T)(img)(x,_n8##y,z,c)), \
|
|
(I[704] = (T)(img)(x,_n9##y,z,c)), \
|
|
(I[734] = (T)(img)(x,_n10##y,z,c)), \
|
|
(I[764] = (T)(img)(x,_n11##y,z,c)), \
|
|
(I[794] = (T)(img)(x,_n12##y,z,c)), \
|
|
(I[824] = (T)(img)(x,_n13##y,z,c)), \
|
|
(I[854] = (T)(img)(x,_n14##y,z,c)), \
|
|
(I[884] = (T)(img)(x,_n15##y,z,c)), \
|
|
(I[15] = (T)(img)(_n1##x,_p14##y,z,c)), \
|
|
(I[45] = (T)(img)(_n1##x,_p13##y,z,c)), \
|
|
(I[75] = (T)(img)(_n1##x,_p12##y,z,c)), \
|
|
(I[105] = (T)(img)(_n1##x,_p11##y,z,c)), \
|
|
(I[135] = (T)(img)(_n1##x,_p10##y,z,c)), \
|
|
(I[165] = (T)(img)(_n1##x,_p9##y,z,c)), \
|
|
(I[195] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[225] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[255] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[285] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[315] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[345] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[375] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[405] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[435] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[465] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[495] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[525] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[555] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[585] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[615] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[645] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[675] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[705] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[735] = (T)(img)(_n1##x,_n10##y,z,c)), \
|
|
(I[765] = (T)(img)(_n1##x,_n11##y,z,c)), \
|
|
(I[795] = (T)(img)(_n1##x,_n12##y,z,c)), \
|
|
(I[825] = (T)(img)(_n1##x,_n13##y,z,c)), \
|
|
(I[855] = (T)(img)(_n1##x,_n14##y,z,c)), \
|
|
(I[885] = (T)(img)(_n1##x,_n15##y,z,c)), \
|
|
(I[16] = (T)(img)(_n2##x,_p14##y,z,c)), \
|
|
(I[46] = (T)(img)(_n2##x,_p13##y,z,c)), \
|
|
(I[76] = (T)(img)(_n2##x,_p12##y,z,c)), \
|
|
(I[106] = (T)(img)(_n2##x,_p11##y,z,c)), \
|
|
(I[136] = (T)(img)(_n2##x,_p10##y,z,c)), \
|
|
(I[166] = (T)(img)(_n2##x,_p9##y,z,c)), \
|
|
(I[196] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[226] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[256] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[286] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[316] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[346] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[376] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[406] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[436] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[466] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[496] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[526] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[556] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[586] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[616] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[646] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[676] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[706] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[736] = (T)(img)(_n2##x,_n10##y,z,c)), \
|
|
(I[766] = (T)(img)(_n2##x,_n11##y,z,c)), \
|
|
(I[796] = (T)(img)(_n2##x,_n12##y,z,c)), \
|
|
(I[826] = (T)(img)(_n2##x,_n13##y,z,c)), \
|
|
(I[856] = (T)(img)(_n2##x,_n14##y,z,c)), \
|
|
(I[886] = (T)(img)(_n2##x,_n15##y,z,c)), \
|
|
(I[17] = (T)(img)(_n3##x,_p14##y,z,c)), \
|
|
(I[47] = (T)(img)(_n3##x,_p13##y,z,c)), \
|
|
(I[77] = (T)(img)(_n3##x,_p12##y,z,c)), \
|
|
(I[107] = (T)(img)(_n3##x,_p11##y,z,c)), \
|
|
(I[137] = (T)(img)(_n3##x,_p10##y,z,c)), \
|
|
(I[167] = (T)(img)(_n3##x,_p9##y,z,c)), \
|
|
(I[197] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[227] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[257] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[287] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[317] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[347] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[377] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[407] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[437] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[467] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[497] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[527] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[557] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[587] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[617] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[647] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[677] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[707] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[737] = (T)(img)(_n3##x,_n10##y,z,c)), \
|
|
(I[767] = (T)(img)(_n3##x,_n11##y,z,c)), \
|
|
(I[797] = (T)(img)(_n3##x,_n12##y,z,c)), \
|
|
(I[827] = (T)(img)(_n3##x,_n13##y,z,c)), \
|
|
(I[857] = (T)(img)(_n3##x,_n14##y,z,c)), \
|
|
(I[887] = (T)(img)(_n3##x,_n15##y,z,c)), \
|
|
(I[18] = (T)(img)(_n4##x,_p14##y,z,c)), \
|
|
(I[48] = (T)(img)(_n4##x,_p13##y,z,c)), \
|
|
(I[78] = (T)(img)(_n4##x,_p12##y,z,c)), \
|
|
(I[108] = (T)(img)(_n4##x,_p11##y,z,c)), \
|
|
(I[138] = (T)(img)(_n4##x,_p10##y,z,c)), \
|
|
(I[168] = (T)(img)(_n4##x,_p9##y,z,c)), \
|
|
(I[198] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[228] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[258] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[288] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[318] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[348] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[378] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[408] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[438] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[468] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[498] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[528] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[558] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[588] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[618] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[648] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[678] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[708] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[738] = (T)(img)(_n4##x,_n10##y,z,c)), \
|
|
(I[768] = (T)(img)(_n4##x,_n11##y,z,c)), \
|
|
(I[798] = (T)(img)(_n4##x,_n12##y,z,c)), \
|
|
(I[828] = (T)(img)(_n4##x,_n13##y,z,c)), \
|
|
(I[858] = (T)(img)(_n4##x,_n14##y,z,c)), \
|
|
(I[888] = (T)(img)(_n4##x,_n15##y,z,c)), \
|
|
(I[19] = (T)(img)(_n5##x,_p14##y,z,c)), \
|
|
(I[49] = (T)(img)(_n5##x,_p13##y,z,c)), \
|
|
(I[79] = (T)(img)(_n5##x,_p12##y,z,c)), \
|
|
(I[109] = (T)(img)(_n5##x,_p11##y,z,c)), \
|
|
(I[139] = (T)(img)(_n5##x,_p10##y,z,c)), \
|
|
(I[169] = (T)(img)(_n5##x,_p9##y,z,c)), \
|
|
(I[199] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[229] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[259] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[289] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[319] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[349] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[379] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[409] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[439] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[469] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[499] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[529] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[559] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[589] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[619] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[649] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[679] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[709] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[739] = (T)(img)(_n5##x,_n10##y,z,c)), \
|
|
(I[769] = (T)(img)(_n5##x,_n11##y,z,c)), \
|
|
(I[799] = (T)(img)(_n5##x,_n12##y,z,c)), \
|
|
(I[829] = (T)(img)(_n5##x,_n13##y,z,c)), \
|
|
(I[859] = (T)(img)(_n5##x,_n14##y,z,c)), \
|
|
(I[889] = (T)(img)(_n5##x,_n15##y,z,c)), \
|
|
(I[20] = (T)(img)(_n6##x,_p14##y,z,c)), \
|
|
(I[50] = (T)(img)(_n6##x,_p13##y,z,c)), \
|
|
(I[80] = (T)(img)(_n6##x,_p12##y,z,c)), \
|
|
(I[110] = (T)(img)(_n6##x,_p11##y,z,c)), \
|
|
(I[140] = (T)(img)(_n6##x,_p10##y,z,c)), \
|
|
(I[170] = (T)(img)(_n6##x,_p9##y,z,c)), \
|
|
(I[200] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[230] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[260] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[290] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[320] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[350] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[380] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[410] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[440] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[470] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[500] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[530] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[560] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[590] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[620] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[650] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[680] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[710] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[740] = (T)(img)(_n6##x,_n10##y,z,c)), \
|
|
(I[770] = (T)(img)(_n6##x,_n11##y,z,c)), \
|
|
(I[800] = (T)(img)(_n6##x,_n12##y,z,c)), \
|
|
(I[830] = (T)(img)(_n6##x,_n13##y,z,c)), \
|
|
(I[860] = (T)(img)(_n6##x,_n14##y,z,c)), \
|
|
(I[890] = (T)(img)(_n6##x,_n15##y,z,c)), \
|
|
(I[21] = (T)(img)(_n7##x,_p14##y,z,c)), \
|
|
(I[51] = (T)(img)(_n7##x,_p13##y,z,c)), \
|
|
(I[81] = (T)(img)(_n7##x,_p12##y,z,c)), \
|
|
(I[111] = (T)(img)(_n7##x,_p11##y,z,c)), \
|
|
(I[141] = (T)(img)(_n7##x,_p10##y,z,c)), \
|
|
(I[171] = (T)(img)(_n7##x,_p9##y,z,c)), \
|
|
(I[201] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[231] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[261] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[291] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[321] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[351] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[381] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[411] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[441] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[471] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[501] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[531] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[561] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[591] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[621] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[651] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[681] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[711] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[741] = (T)(img)(_n7##x,_n10##y,z,c)), \
|
|
(I[771] = (T)(img)(_n7##x,_n11##y,z,c)), \
|
|
(I[801] = (T)(img)(_n7##x,_n12##y,z,c)), \
|
|
(I[831] = (T)(img)(_n7##x,_n13##y,z,c)), \
|
|
(I[861] = (T)(img)(_n7##x,_n14##y,z,c)), \
|
|
(I[891] = (T)(img)(_n7##x,_n15##y,z,c)), \
|
|
(I[22] = (T)(img)(_n8##x,_p14##y,z,c)), \
|
|
(I[52] = (T)(img)(_n8##x,_p13##y,z,c)), \
|
|
(I[82] = (T)(img)(_n8##x,_p12##y,z,c)), \
|
|
(I[112] = (T)(img)(_n8##x,_p11##y,z,c)), \
|
|
(I[142] = (T)(img)(_n8##x,_p10##y,z,c)), \
|
|
(I[172] = (T)(img)(_n8##x,_p9##y,z,c)), \
|
|
(I[202] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[232] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[262] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[292] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[322] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[352] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[382] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[412] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[442] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[472] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[502] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[532] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[562] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[592] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[622] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[652] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[682] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[712] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
(I[742] = (T)(img)(_n8##x,_n10##y,z,c)), \
|
|
(I[772] = (T)(img)(_n8##x,_n11##y,z,c)), \
|
|
(I[802] = (T)(img)(_n8##x,_n12##y,z,c)), \
|
|
(I[832] = (T)(img)(_n8##x,_n13##y,z,c)), \
|
|
(I[862] = (T)(img)(_n8##x,_n14##y,z,c)), \
|
|
(I[892] = (T)(img)(_n8##x,_n15##y,z,c)), \
|
|
(I[23] = (T)(img)(_n9##x,_p14##y,z,c)), \
|
|
(I[53] = (T)(img)(_n9##x,_p13##y,z,c)), \
|
|
(I[83] = (T)(img)(_n9##x,_p12##y,z,c)), \
|
|
(I[113] = (T)(img)(_n9##x,_p11##y,z,c)), \
|
|
(I[143] = (T)(img)(_n9##x,_p10##y,z,c)), \
|
|
(I[173] = (T)(img)(_n9##x,_p9##y,z,c)), \
|
|
(I[203] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[233] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[263] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[293] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[323] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[353] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[383] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[413] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[443] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[473] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[503] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[533] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[563] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[593] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[623] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[653] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[683] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[713] = (T)(img)(_n9##x,_n9##y,z,c)), \
|
|
(I[743] = (T)(img)(_n9##x,_n10##y,z,c)), \
|
|
(I[773] = (T)(img)(_n9##x,_n11##y,z,c)), \
|
|
(I[803] = (T)(img)(_n9##x,_n12##y,z,c)), \
|
|
(I[833] = (T)(img)(_n9##x,_n13##y,z,c)), \
|
|
(I[863] = (T)(img)(_n9##x,_n14##y,z,c)), \
|
|
(I[893] = (T)(img)(_n9##x,_n15##y,z,c)), \
|
|
(I[24] = (T)(img)(_n10##x,_p14##y,z,c)), \
|
|
(I[54] = (T)(img)(_n10##x,_p13##y,z,c)), \
|
|
(I[84] = (T)(img)(_n10##x,_p12##y,z,c)), \
|
|
(I[114] = (T)(img)(_n10##x,_p11##y,z,c)), \
|
|
(I[144] = (T)(img)(_n10##x,_p10##y,z,c)), \
|
|
(I[174] = (T)(img)(_n10##x,_p9##y,z,c)), \
|
|
(I[204] = (T)(img)(_n10##x,_p8##y,z,c)), \
|
|
(I[234] = (T)(img)(_n10##x,_p7##y,z,c)), \
|
|
(I[264] = (T)(img)(_n10##x,_p6##y,z,c)), \
|
|
(I[294] = (T)(img)(_n10##x,_p5##y,z,c)), \
|
|
(I[324] = (T)(img)(_n10##x,_p4##y,z,c)), \
|
|
(I[354] = (T)(img)(_n10##x,_p3##y,z,c)), \
|
|
(I[384] = (T)(img)(_n10##x,_p2##y,z,c)), \
|
|
(I[414] = (T)(img)(_n10##x,_p1##y,z,c)), \
|
|
(I[444] = (T)(img)(_n10##x,y,z,c)), \
|
|
(I[474] = (T)(img)(_n10##x,_n1##y,z,c)), \
|
|
(I[504] = (T)(img)(_n10##x,_n2##y,z,c)), \
|
|
(I[534] = (T)(img)(_n10##x,_n3##y,z,c)), \
|
|
(I[564] = (T)(img)(_n10##x,_n4##y,z,c)), \
|
|
(I[594] = (T)(img)(_n10##x,_n5##y,z,c)), \
|
|
(I[624] = (T)(img)(_n10##x,_n6##y,z,c)), \
|
|
(I[654] = (T)(img)(_n10##x,_n7##y,z,c)), \
|
|
(I[684] = (T)(img)(_n10##x,_n8##y,z,c)), \
|
|
(I[714] = (T)(img)(_n10##x,_n9##y,z,c)), \
|
|
(I[744] = (T)(img)(_n10##x,_n10##y,z,c)), \
|
|
(I[774] = (T)(img)(_n10##x,_n11##y,z,c)), \
|
|
(I[804] = (T)(img)(_n10##x,_n12##y,z,c)), \
|
|
(I[834] = (T)(img)(_n10##x,_n13##y,z,c)), \
|
|
(I[864] = (T)(img)(_n10##x,_n14##y,z,c)), \
|
|
(I[894] = (T)(img)(_n10##x,_n15##y,z,c)), \
|
|
(I[25] = (T)(img)(_n11##x,_p14##y,z,c)), \
|
|
(I[55] = (T)(img)(_n11##x,_p13##y,z,c)), \
|
|
(I[85] = (T)(img)(_n11##x,_p12##y,z,c)), \
|
|
(I[115] = (T)(img)(_n11##x,_p11##y,z,c)), \
|
|
(I[145] = (T)(img)(_n11##x,_p10##y,z,c)), \
|
|
(I[175] = (T)(img)(_n11##x,_p9##y,z,c)), \
|
|
(I[205] = (T)(img)(_n11##x,_p8##y,z,c)), \
|
|
(I[235] = (T)(img)(_n11##x,_p7##y,z,c)), \
|
|
(I[265] = (T)(img)(_n11##x,_p6##y,z,c)), \
|
|
(I[295] = (T)(img)(_n11##x,_p5##y,z,c)), \
|
|
(I[325] = (T)(img)(_n11##x,_p4##y,z,c)), \
|
|
(I[355] = (T)(img)(_n11##x,_p3##y,z,c)), \
|
|
(I[385] = (T)(img)(_n11##x,_p2##y,z,c)), \
|
|
(I[415] = (T)(img)(_n11##x,_p1##y,z,c)), \
|
|
(I[445] = (T)(img)(_n11##x,y,z,c)), \
|
|
(I[475] = (T)(img)(_n11##x,_n1##y,z,c)), \
|
|
(I[505] = (T)(img)(_n11##x,_n2##y,z,c)), \
|
|
(I[535] = (T)(img)(_n11##x,_n3##y,z,c)), \
|
|
(I[565] = (T)(img)(_n11##x,_n4##y,z,c)), \
|
|
(I[595] = (T)(img)(_n11##x,_n5##y,z,c)), \
|
|
(I[625] = (T)(img)(_n11##x,_n6##y,z,c)), \
|
|
(I[655] = (T)(img)(_n11##x,_n7##y,z,c)), \
|
|
(I[685] = (T)(img)(_n11##x,_n8##y,z,c)), \
|
|
(I[715] = (T)(img)(_n11##x,_n9##y,z,c)), \
|
|
(I[745] = (T)(img)(_n11##x,_n10##y,z,c)), \
|
|
(I[775] = (T)(img)(_n11##x,_n11##y,z,c)), \
|
|
(I[805] = (T)(img)(_n11##x,_n12##y,z,c)), \
|
|
(I[835] = (T)(img)(_n11##x,_n13##y,z,c)), \
|
|
(I[865] = (T)(img)(_n11##x,_n14##y,z,c)), \
|
|
(I[895] = (T)(img)(_n11##x,_n15##y,z,c)), \
|
|
(I[26] = (T)(img)(_n12##x,_p14##y,z,c)), \
|
|
(I[56] = (T)(img)(_n12##x,_p13##y,z,c)), \
|
|
(I[86] = (T)(img)(_n12##x,_p12##y,z,c)), \
|
|
(I[116] = (T)(img)(_n12##x,_p11##y,z,c)), \
|
|
(I[146] = (T)(img)(_n12##x,_p10##y,z,c)), \
|
|
(I[176] = (T)(img)(_n12##x,_p9##y,z,c)), \
|
|
(I[206] = (T)(img)(_n12##x,_p8##y,z,c)), \
|
|
(I[236] = (T)(img)(_n12##x,_p7##y,z,c)), \
|
|
(I[266] = (T)(img)(_n12##x,_p6##y,z,c)), \
|
|
(I[296] = (T)(img)(_n12##x,_p5##y,z,c)), \
|
|
(I[326] = (T)(img)(_n12##x,_p4##y,z,c)), \
|
|
(I[356] = (T)(img)(_n12##x,_p3##y,z,c)), \
|
|
(I[386] = (T)(img)(_n12##x,_p2##y,z,c)), \
|
|
(I[416] = (T)(img)(_n12##x,_p1##y,z,c)), \
|
|
(I[446] = (T)(img)(_n12##x,y,z,c)), \
|
|
(I[476] = (T)(img)(_n12##x,_n1##y,z,c)), \
|
|
(I[506] = (T)(img)(_n12##x,_n2##y,z,c)), \
|
|
(I[536] = (T)(img)(_n12##x,_n3##y,z,c)), \
|
|
(I[566] = (T)(img)(_n12##x,_n4##y,z,c)), \
|
|
(I[596] = (T)(img)(_n12##x,_n5##y,z,c)), \
|
|
(I[626] = (T)(img)(_n12##x,_n6##y,z,c)), \
|
|
(I[656] = (T)(img)(_n12##x,_n7##y,z,c)), \
|
|
(I[686] = (T)(img)(_n12##x,_n8##y,z,c)), \
|
|
(I[716] = (T)(img)(_n12##x,_n9##y,z,c)), \
|
|
(I[746] = (T)(img)(_n12##x,_n10##y,z,c)), \
|
|
(I[776] = (T)(img)(_n12##x,_n11##y,z,c)), \
|
|
(I[806] = (T)(img)(_n12##x,_n12##y,z,c)), \
|
|
(I[836] = (T)(img)(_n12##x,_n13##y,z,c)), \
|
|
(I[866] = (T)(img)(_n12##x,_n14##y,z,c)), \
|
|
(I[896] = (T)(img)(_n12##x,_n15##y,z,c)), \
|
|
(I[27] = (T)(img)(_n13##x,_p14##y,z,c)), \
|
|
(I[57] = (T)(img)(_n13##x,_p13##y,z,c)), \
|
|
(I[87] = (T)(img)(_n13##x,_p12##y,z,c)), \
|
|
(I[117] = (T)(img)(_n13##x,_p11##y,z,c)), \
|
|
(I[147] = (T)(img)(_n13##x,_p10##y,z,c)), \
|
|
(I[177] = (T)(img)(_n13##x,_p9##y,z,c)), \
|
|
(I[207] = (T)(img)(_n13##x,_p8##y,z,c)), \
|
|
(I[237] = (T)(img)(_n13##x,_p7##y,z,c)), \
|
|
(I[267] = (T)(img)(_n13##x,_p6##y,z,c)), \
|
|
(I[297] = (T)(img)(_n13##x,_p5##y,z,c)), \
|
|
(I[327] = (T)(img)(_n13##x,_p4##y,z,c)), \
|
|
(I[357] = (T)(img)(_n13##x,_p3##y,z,c)), \
|
|
(I[387] = (T)(img)(_n13##x,_p2##y,z,c)), \
|
|
(I[417] = (T)(img)(_n13##x,_p1##y,z,c)), \
|
|
(I[447] = (T)(img)(_n13##x,y,z,c)), \
|
|
(I[477] = (T)(img)(_n13##x,_n1##y,z,c)), \
|
|
(I[507] = (T)(img)(_n13##x,_n2##y,z,c)), \
|
|
(I[537] = (T)(img)(_n13##x,_n3##y,z,c)), \
|
|
(I[567] = (T)(img)(_n13##x,_n4##y,z,c)), \
|
|
(I[597] = (T)(img)(_n13##x,_n5##y,z,c)), \
|
|
(I[627] = (T)(img)(_n13##x,_n6##y,z,c)), \
|
|
(I[657] = (T)(img)(_n13##x,_n7##y,z,c)), \
|
|
(I[687] = (T)(img)(_n13##x,_n8##y,z,c)), \
|
|
(I[717] = (T)(img)(_n13##x,_n9##y,z,c)), \
|
|
(I[747] = (T)(img)(_n13##x,_n10##y,z,c)), \
|
|
(I[777] = (T)(img)(_n13##x,_n11##y,z,c)), \
|
|
(I[807] = (T)(img)(_n13##x,_n12##y,z,c)), \
|
|
(I[837] = (T)(img)(_n13##x,_n13##y,z,c)), \
|
|
(I[867] = (T)(img)(_n13##x,_n14##y,z,c)), \
|
|
(I[897] = (T)(img)(_n13##x,_n15##y,z,c)), \
|
|
(I[28] = (T)(img)(_n14##x,_p14##y,z,c)), \
|
|
(I[58] = (T)(img)(_n14##x,_p13##y,z,c)), \
|
|
(I[88] = (T)(img)(_n14##x,_p12##y,z,c)), \
|
|
(I[118] = (T)(img)(_n14##x,_p11##y,z,c)), \
|
|
(I[148] = (T)(img)(_n14##x,_p10##y,z,c)), \
|
|
(I[178] = (T)(img)(_n14##x,_p9##y,z,c)), \
|
|
(I[208] = (T)(img)(_n14##x,_p8##y,z,c)), \
|
|
(I[238] = (T)(img)(_n14##x,_p7##y,z,c)), \
|
|
(I[268] = (T)(img)(_n14##x,_p6##y,z,c)), \
|
|
(I[298] = (T)(img)(_n14##x,_p5##y,z,c)), \
|
|
(I[328] = (T)(img)(_n14##x,_p4##y,z,c)), \
|
|
(I[358] = (T)(img)(_n14##x,_p3##y,z,c)), \
|
|
(I[388] = (T)(img)(_n14##x,_p2##y,z,c)), \
|
|
(I[418] = (T)(img)(_n14##x,_p1##y,z,c)), \
|
|
(I[448] = (T)(img)(_n14##x,y,z,c)), \
|
|
(I[478] = (T)(img)(_n14##x,_n1##y,z,c)), \
|
|
(I[508] = (T)(img)(_n14##x,_n2##y,z,c)), \
|
|
(I[538] = (T)(img)(_n14##x,_n3##y,z,c)), \
|
|
(I[568] = (T)(img)(_n14##x,_n4##y,z,c)), \
|
|
(I[598] = (T)(img)(_n14##x,_n5##y,z,c)), \
|
|
(I[628] = (T)(img)(_n14##x,_n6##y,z,c)), \
|
|
(I[658] = (T)(img)(_n14##x,_n7##y,z,c)), \
|
|
(I[688] = (T)(img)(_n14##x,_n8##y,z,c)), \
|
|
(I[718] = (T)(img)(_n14##x,_n9##y,z,c)), \
|
|
(I[748] = (T)(img)(_n14##x,_n10##y,z,c)), \
|
|
(I[778] = (T)(img)(_n14##x,_n11##y,z,c)), \
|
|
(I[808] = (T)(img)(_n14##x,_n12##y,z,c)), \
|
|
(I[838] = (T)(img)(_n14##x,_n13##y,z,c)), \
|
|
(I[868] = (T)(img)(_n14##x,_n14##y,z,c)), \
|
|
(I[898] = (T)(img)(_n14##x,_n15##y,z,c)), \
|
|
x + 15>=(img).width()?(img).width() - 1:x + 15); \
|
|
x<=(int)(x1) && ((_n15##x<(img).width() && ( \
|
|
(I[29] = (T)(img)(_n15##x,_p14##y,z,c)), \
|
|
(I[59] = (T)(img)(_n15##x,_p13##y,z,c)), \
|
|
(I[89] = (T)(img)(_n15##x,_p12##y,z,c)), \
|
|
(I[119] = (T)(img)(_n15##x,_p11##y,z,c)), \
|
|
(I[149] = (T)(img)(_n15##x,_p10##y,z,c)), \
|
|
(I[179] = (T)(img)(_n15##x,_p9##y,z,c)), \
|
|
(I[209] = (T)(img)(_n15##x,_p8##y,z,c)), \
|
|
(I[239] = (T)(img)(_n15##x,_p7##y,z,c)), \
|
|
(I[269] = (T)(img)(_n15##x,_p6##y,z,c)), \
|
|
(I[299] = (T)(img)(_n15##x,_p5##y,z,c)), \
|
|
(I[329] = (T)(img)(_n15##x,_p4##y,z,c)), \
|
|
(I[359] = (T)(img)(_n15##x,_p3##y,z,c)), \
|
|
(I[389] = (T)(img)(_n15##x,_p2##y,z,c)), \
|
|
(I[419] = (T)(img)(_n15##x,_p1##y,z,c)), \
|
|
(I[449] = (T)(img)(_n15##x,y,z,c)), \
|
|
(I[479] = (T)(img)(_n15##x,_n1##y,z,c)), \
|
|
(I[509] = (T)(img)(_n15##x,_n2##y,z,c)), \
|
|
(I[539] = (T)(img)(_n15##x,_n3##y,z,c)), \
|
|
(I[569] = (T)(img)(_n15##x,_n4##y,z,c)), \
|
|
(I[599] = (T)(img)(_n15##x,_n5##y,z,c)), \
|
|
(I[629] = (T)(img)(_n15##x,_n6##y,z,c)), \
|
|
(I[659] = (T)(img)(_n15##x,_n7##y,z,c)), \
|
|
(I[689] = (T)(img)(_n15##x,_n8##y,z,c)), \
|
|
(I[719] = (T)(img)(_n15##x,_n9##y,z,c)), \
|
|
(I[749] = (T)(img)(_n15##x,_n10##y,z,c)), \
|
|
(I[779] = (T)(img)(_n15##x,_n11##y,z,c)), \
|
|
(I[809] = (T)(img)(_n15##x,_n12##y,z,c)), \
|
|
(I[839] = (T)(img)(_n15##x,_n13##y,z,c)), \
|
|
(I[869] = (T)(img)(_n15##x,_n14##y,z,c)), \
|
|
(I[899] = (T)(img)(_n15##x,_n15##y,z,c)),1)) || \
|
|
_n14##x==--_n15##x || _n13##x==--_n14##x || _n12##x==--_n13##x || _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n15##x = _n14##x = _n13##x = _n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
|
|
I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
|
|
I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
|
|
I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
|
|
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], \
|
|
I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \
|
|
I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \
|
|
I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \
|
|
I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], \
|
|
I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], \
|
|
I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], \
|
|
I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], \
|
|
I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], \
|
|
I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], \
|
|
I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], \
|
|
I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], \
|
|
I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], \
|
|
I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], \
|
|
I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], \
|
|
I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], I[575] = I[576], I[576] = I[577], I[577] = I[578], I[578] = I[579], I[579] = I[580], I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], I[587] = I[588], I[588] = I[589], I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], I[593] = I[594], I[594] = I[595], I[595] = I[596], I[596] = I[597], I[597] = I[598], I[598] = I[599], \
|
|
I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], I[607] = I[608], I[608] = I[609], I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], I[615] = I[616], I[616] = I[617], I[617] = I[618], I[618] = I[619], I[619] = I[620], I[620] = I[621], I[621] = I[622], I[622] = I[623], I[623] = I[624], I[624] = I[625], I[625] = I[626], I[626] = I[627], I[627] = I[628], I[628] = I[629], \
|
|
I[630] = I[631], I[631] = I[632], I[632] = I[633], I[633] = I[634], I[634] = I[635], I[635] = I[636], I[636] = I[637], I[637] = I[638], I[638] = I[639], I[639] = I[640], I[640] = I[641], I[641] = I[642], I[642] = I[643], I[643] = I[644], I[644] = I[645], I[645] = I[646], I[646] = I[647], I[647] = I[648], I[648] = I[649], I[649] = I[650], I[650] = I[651], I[651] = I[652], I[652] = I[653], I[653] = I[654], I[654] = I[655], I[655] = I[656], I[656] = I[657], I[657] = I[658], I[658] = I[659], \
|
|
I[660] = I[661], I[661] = I[662], I[662] = I[663], I[663] = I[664], I[664] = I[665], I[665] = I[666], I[666] = I[667], I[667] = I[668], I[668] = I[669], I[669] = I[670], I[670] = I[671], I[671] = I[672], I[672] = I[673], I[673] = I[674], I[674] = I[675], I[675] = I[676], I[676] = I[677], I[677] = I[678], I[678] = I[679], I[679] = I[680], I[680] = I[681], I[681] = I[682], I[682] = I[683], I[683] = I[684], I[684] = I[685], I[685] = I[686], I[686] = I[687], I[687] = I[688], I[688] = I[689], \
|
|
I[690] = I[691], I[691] = I[692], I[692] = I[693], I[693] = I[694], I[694] = I[695], I[695] = I[696], I[696] = I[697], I[697] = I[698], I[698] = I[699], I[699] = I[700], I[700] = I[701], I[701] = I[702], I[702] = I[703], I[703] = I[704], I[704] = I[705], I[705] = I[706], I[706] = I[707], I[707] = I[708], I[708] = I[709], I[709] = I[710], I[710] = I[711], I[711] = I[712], I[712] = I[713], I[713] = I[714], I[714] = I[715], I[715] = I[716], I[716] = I[717], I[717] = I[718], I[718] = I[719], \
|
|
I[720] = I[721], I[721] = I[722], I[722] = I[723], I[723] = I[724], I[724] = I[725], I[725] = I[726], I[726] = I[727], I[727] = I[728], I[728] = I[729], I[729] = I[730], I[730] = I[731], I[731] = I[732], I[732] = I[733], I[733] = I[734], I[734] = I[735], I[735] = I[736], I[736] = I[737], I[737] = I[738], I[738] = I[739], I[739] = I[740], I[740] = I[741], I[741] = I[742], I[742] = I[743], I[743] = I[744], I[744] = I[745], I[745] = I[746], I[746] = I[747], I[747] = I[748], I[748] = I[749], \
|
|
I[750] = I[751], I[751] = I[752], I[752] = I[753], I[753] = I[754], I[754] = I[755], I[755] = I[756], I[756] = I[757], I[757] = I[758], I[758] = I[759], I[759] = I[760], I[760] = I[761], I[761] = I[762], I[762] = I[763], I[763] = I[764], I[764] = I[765], I[765] = I[766], I[766] = I[767], I[767] = I[768], I[768] = I[769], I[769] = I[770], I[770] = I[771], I[771] = I[772], I[772] = I[773], I[773] = I[774], I[774] = I[775], I[775] = I[776], I[776] = I[777], I[777] = I[778], I[778] = I[779], \
|
|
I[780] = I[781], I[781] = I[782], I[782] = I[783], I[783] = I[784], I[784] = I[785], I[785] = I[786], I[786] = I[787], I[787] = I[788], I[788] = I[789], I[789] = I[790], I[790] = I[791], I[791] = I[792], I[792] = I[793], I[793] = I[794], I[794] = I[795], I[795] = I[796], I[796] = I[797], I[797] = I[798], I[798] = I[799], I[799] = I[800], I[800] = I[801], I[801] = I[802], I[802] = I[803], I[803] = I[804], I[804] = I[805], I[805] = I[806], I[806] = I[807], I[807] = I[808], I[808] = I[809], \
|
|
I[810] = I[811], I[811] = I[812], I[812] = I[813], I[813] = I[814], I[814] = I[815], I[815] = I[816], I[816] = I[817], I[817] = I[818], I[818] = I[819], I[819] = I[820], I[820] = I[821], I[821] = I[822], I[822] = I[823], I[823] = I[824], I[824] = I[825], I[825] = I[826], I[826] = I[827], I[827] = I[828], I[828] = I[829], I[829] = I[830], I[830] = I[831], I[831] = I[832], I[832] = I[833], I[833] = I[834], I[834] = I[835], I[835] = I[836], I[836] = I[837], I[837] = I[838], I[838] = I[839], \
|
|
I[840] = I[841], I[841] = I[842], I[842] = I[843], I[843] = I[844], I[844] = I[845], I[845] = I[846], I[846] = I[847], I[847] = I[848], I[848] = I[849], I[849] = I[850], I[850] = I[851], I[851] = I[852], I[852] = I[853], I[853] = I[854], I[854] = I[855], I[855] = I[856], I[856] = I[857], I[857] = I[858], I[858] = I[859], I[859] = I[860], I[860] = I[861], I[861] = I[862], I[862] = I[863], I[863] = I[864], I[864] = I[865], I[865] = I[866], I[866] = I[867], I[867] = I[868], I[868] = I[869], \
|
|
I[870] = I[871], I[871] = I[872], I[872] = I[873], I[873] = I[874], I[874] = I[875], I[875] = I[876], I[876] = I[877], I[877] = I[878], I[878] = I[879], I[879] = I[880], I[880] = I[881], I[881] = I[882], I[882] = I[883], I[883] = I[884], I[884] = I[885], I[885] = I[886], I[886] = I[887], I[887] = I[888], I[888] = I[889], I[889] = I[890], I[890] = I[891], I[891] = I[892], I[892] = I[893], I[893] = I[894], I[894] = I[895], I[895] = I[896], I[896] = I[897], I[897] = I[898], I[898] = I[899], \
|
|
_p14##x = _p13##x, _p13##x = _p12##x, _p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x, ++_n13##x, ++_n14##x, ++_n15##x)
|
|
|
|
#define cimg_get30x30(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p14##x,_p14##y,z,c), I[1] = (T)(img)(_p13##x,_p14##y,z,c), I[2] = (T)(img)(_p12##x,_p14##y,z,c), I[3] = (T)(img)(_p11##x,_p14##y,z,c), I[4] = (T)(img)(_p10##x,_p14##y,z,c), I[5] = (T)(img)(_p9##x,_p14##y,z,c), I[6] = (T)(img)(_p8##x,_p14##y,z,c), I[7] = (T)(img)(_p7##x,_p14##y,z,c), I[8] = (T)(img)(_p6##x,_p14##y,z,c), I[9] = (T)(img)(_p5##x,_p14##y,z,c), I[10] = (T)(img)(_p4##x,_p14##y,z,c), I[11] = (T)(img)(_p3##x,_p14##y,z,c), I[12] = (T)(img)(_p2##x,_p14##y,z,c), I[13] = (T)(img)(_p1##x,_p14##y,z,c), I[14] = (T)(img)(x,_p14##y,z,c), I[15] = (T)(img)(_n1##x,_p14##y,z,c), I[16] = (T)(img)(_n2##x,_p14##y,z,c), I[17] = (T)(img)(_n3##x,_p14##y,z,c), I[18] = (T)(img)(_n4##x,_p14##y,z,c), I[19] = (T)(img)(_n5##x,_p14##y,z,c), I[20] = (T)(img)(_n6##x,_p14##y,z,c), I[21] = (T)(img)(_n7##x,_p14##y,z,c), I[22] = (T)(img)(_n8##x,_p14##y,z,c), I[23] = (T)(img)(_n9##x,_p14##y,z,c), I[24] = (T)(img)(_n10##x,_p14##y,z,c), I[25] = (T)(img)(_n11##x,_p14##y,z,c), I[26] = (T)(img)(_n12##x,_p14##y,z,c), I[27] = (T)(img)(_n13##x,_p14##y,z,c), I[28] = (T)(img)(_n14##x,_p14##y,z,c), I[29] = (T)(img)(_n15##x,_p14##y,z,c), \
|
|
I[30] = (T)(img)(_p14##x,_p13##y,z,c), I[31] = (T)(img)(_p13##x,_p13##y,z,c), I[32] = (T)(img)(_p12##x,_p13##y,z,c), I[33] = (T)(img)(_p11##x,_p13##y,z,c), I[34] = (T)(img)(_p10##x,_p13##y,z,c), I[35] = (T)(img)(_p9##x,_p13##y,z,c), I[36] = (T)(img)(_p8##x,_p13##y,z,c), I[37] = (T)(img)(_p7##x,_p13##y,z,c), I[38] = (T)(img)(_p6##x,_p13##y,z,c), I[39] = (T)(img)(_p5##x,_p13##y,z,c), I[40] = (T)(img)(_p4##x,_p13##y,z,c), I[41] = (T)(img)(_p3##x,_p13##y,z,c), I[42] = (T)(img)(_p2##x,_p13##y,z,c), I[43] = (T)(img)(_p1##x,_p13##y,z,c), I[44] = (T)(img)(x,_p13##y,z,c), I[45] = (T)(img)(_n1##x,_p13##y,z,c), I[46] = (T)(img)(_n2##x,_p13##y,z,c), I[47] = (T)(img)(_n3##x,_p13##y,z,c), I[48] = (T)(img)(_n4##x,_p13##y,z,c), I[49] = (T)(img)(_n5##x,_p13##y,z,c), I[50] = (T)(img)(_n6##x,_p13##y,z,c), I[51] = (T)(img)(_n7##x,_p13##y,z,c), I[52] = (T)(img)(_n8##x,_p13##y,z,c), I[53] = (T)(img)(_n9##x,_p13##y,z,c), I[54] = (T)(img)(_n10##x,_p13##y,z,c), I[55] = (T)(img)(_n11##x,_p13##y,z,c), I[56] = (T)(img)(_n12##x,_p13##y,z,c), I[57] = (T)(img)(_n13##x,_p13##y,z,c), I[58] = (T)(img)(_n14##x,_p13##y,z,c), I[59] = (T)(img)(_n15##x,_p13##y,z,c), \
|
|
I[60] = (T)(img)(_p14##x,_p12##y,z,c), I[61] = (T)(img)(_p13##x,_p12##y,z,c), I[62] = (T)(img)(_p12##x,_p12##y,z,c), I[63] = (T)(img)(_p11##x,_p12##y,z,c), I[64] = (T)(img)(_p10##x,_p12##y,z,c), I[65] = (T)(img)(_p9##x,_p12##y,z,c), I[66] = (T)(img)(_p8##x,_p12##y,z,c), I[67] = (T)(img)(_p7##x,_p12##y,z,c), I[68] = (T)(img)(_p6##x,_p12##y,z,c), I[69] = (T)(img)(_p5##x,_p12##y,z,c), I[70] = (T)(img)(_p4##x,_p12##y,z,c), I[71] = (T)(img)(_p3##x,_p12##y,z,c), I[72] = (T)(img)(_p2##x,_p12##y,z,c), I[73] = (T)(img)(_p1##x,_p12##y,z,c), I[74] = (T)(img)(x,_p12##y,z,c), I[75] = (T)(img)(_n1##x,_p12##y,z,c), I[76] = (T)(img)(_n2##x,_p12##y,z,c), I[77] = (T)(img)(_n3##x,_p12##y,z,c), I[78] = (T)(img)(_n4##x,_p12##y,z,c), I[79] = (T)(img)(_n5##x,_p12##y,z,c), I[80] = (T)(img)(_n6##x,_p12##y,z,c), I[81] = (T)(img)(_n7##x,_p12##y,z,c), I[82] = (T)(img)(_n8##x,_p12##y,z,c), I[83] = (T)(img)(_n9##x,_p12##y,z,c), I[84] = (T)(img)(_n10##x,_p12##y,z,c), I[85] = (T)(img)(_n11##x,_p12##y,z,c), I[86] = (T)(img)(_n12##x,_p12##y,z,c), I[87] = (T)(img)(_n13##x,_p12##y,z,c), I[88] = (T)(img)(_n14##x,_p12##y,z,c), I[89] = (T)(img)(_n15##x,_p12##y,z,c), \
|
|
I[90] = (T)(img)(_p14##x,_p11##y,z,c), I[91] = (T)(img)(_p13##x,_p11##y,z,c), I[92] = (T)(img)(_p12##x,_p11##y,z,c), I[93] = (T)(img)(_p11##x,_p11##y,z,c), I[94] = (T)(img)(_p10##x,_p11##y,z,c), I[95] = (T)(img)(_p9##x,_p11##y,z,c), I[96] = (T)(img)(_p8##x,_p11##y,z,c), I[97] = (T)(img)(_p7##x,_p11##y,z,c), I[98] = (T)(img)(_p6##x,_p11##y,z,c), I[99] = (T)(img)(_p5##x,_p11##y,z,c), I[100] = (T)(img)(_p4##x,_p11##y,z,c), I[101] = (T)(img)(_p3##x,_p11##y,z,c), I[102] = (T)(img)(_p2##x,_p11##y,z,c), I[103] = (T)(img)(_p1##x,_p11##y,z,c), I[104] = (T)(img)(x,_p11##y,z,c), I[105] = (T)(img)(_n1##x,_p11##y,z,c), I[106] = (T)(img)(_n2##x,_p11##y,z,c), I[107] = (T)(img)(_n3##x,_p11##y,z,c), I[108] = (T)(img)(_n4##x,_p11##y,z,c), I[109] = (T)(img)(_n5##x,_p11##y,z,c), I[110] = (T)(img)(_n6##x,_p11##y,z,c), I[111] = (T)(img)(_n7##x,_p11##y,z,c), I[112] = (T)(img)(_n8##x,_p11##y,z,c), I[113] = (T)(img)(_n9##x,_p11##y,z,c), I[114] = (T)(img)(_n10##x,_p11##y,z,c), I[115] = (T)(img)(_n11##x,_p11##y,z,c), I[116] = (T)(img)(_n12##x,_p11##y,z,c), I[117] = (T)(img)(_n13##x,_p11##y,z,c), I[118] = (T)(img)(_n14##x,_p11##y,z,c), I[119] = (T)(img)(_n15##x,_p11##y,z,c), \
|
|
I[120] = (T)(img)(_p14##x,_p10##y,z,c), I[121] = (T)(img)(_p13##x,_p10##y,z,c), I[122] = (T)(img)(_p12##x,_p10##y,z,c), I[123] = (T)(img)(_p11##x,_p10##y,z,c), I[124] = (T)(img)(_p10##x,_p10##y,z,c), I[125] = (T)(img)(_p9##x,_p10##y,z,c), I[126] = (T)(img)(_p8##x,_p10##y,z,c), I[127] = (T)(img)(_p7##x,_p10##y,z,c), I[128] = (T)(img)(_p6##x,_p10##y,z,c), I[129] = (T)(img)(_p5##x,_p10##y,z,c), I[130] = (T)(img)(_p4##x,_p10##y,z,c), I[131] = (T)(img)(_p3##x,_p10##y,z,c), I[132] = (T)(img)(_p2##x,_p10##y,z,c), I[133] = (T)(img)(_p1##x,_p10##y,z,c), I[134] = (T)(img)(x,_p10##y,z,c), I[135] = (T)(img)(_n1##x,_p10##y,z,c), I[136] = (T)(img)(_n2##x,_p10##y,z,c), I[137] = (T)(img)(_n3##x,_p10##y,z,c), I[138] = (T)(img)(_n4##x,_p10##y,z,c), I[139] = (T)(img)(_n5##x,_p10##y,z,c), I[140] = (T)(img)(_n6##x,_p10##y,z,c), I[141] = (T)(img)(_n7##x,_p10##y,z,c), I[142] = (T)(img)(_n8##x,_p10##y,z,c), I[143] = (T)(img)(_n9##x,_p10##y,z,c), I[144] = (T)(img)(_n10##x,_p10##y,z,c), I[145] = (T)(img)(_n11##x,_p10##y,z,c), I[146] = (T)(img)(_n12##x,_p10##y,z,c), I[147] = (T)(img)(_n13##x,_p10##y,z,c), I[148] = (T)(img)(_n14##x,_p10##y,z,c), I[149] = (T)(img)(_n15##x,_p10##y,z,c), \
|
|
I[150] = (T)(img)(_p14##x,_p9##y,z,c), I[151] = (T)(img)(_p13##x,_p9##y,z,c), I[152] = (T)(img)(_p12##x,_p9##y,z,c), I[153] = (T)(img)(_p11##x,_p9##y,z,c), I[154] = (T)(img)(_p10##x,_p9##y,z,c), I[155] = (T)(img)(_p9##x,_p9##y,z,c), I[156] = (T)(img)(_p8##x,_p9##y,z,c), I[157] = (T)(img)(_p7##x,_p9##y,z,c), I[158] = (T)(img)(_p6##x,_p9##y,z,c), I[159] = (T)(img)(_p5##x,_p9##y,z,c), I[160] = (T)(img)(_p4##x,_p9##y,z,c), I[161] = (T)(img)(_p3##x,_p9##y,z,c), I[162] = (T)(img)(_p2##x,_p9##y,z,c), I[163] = (T)(img)(_p1##x,_p9##y,z,c), I[164] = (T)(img)(x,_p9##y,z,c), I[165] = (T)(img)(_n1##x,_p9##y,z,c), I[166] = (T)(img)(_n2##x,_p9##y,z,c), I[167] = (T)(img)(_n3##x,_p9##y,z,c), I[168] = (T)(img)(_n4##x,_p9##y,z,c), I[169] = (T)(img)(_n5##x,_p9##y,z,c), I[170] = (T)(img)(_n6##x,_p9##y,z,c), I[171] = (T)(img)(_n7##x,_p9##y,z,c), I[172] = (T)(img)(_n8##x,_p9##y,z,c), I[173] = (T)(img)(_n9##x,_p9##y,z,c), I[174] = (T)(img)(_n10##x,_p9##y,z,c), I[175] = (T)(img)(_n11##x,_p9##y,z,c), I[176] = (T)(img)(_n12##x,_p9##y,z,c), I[177] = (T)(img)(_n13##x,_p9##y,z,c), I[178] = (T)(img)(_n14##x,_p9##y,z,c), I[179] = (T)(img)(_n15##x,_p9##y,z,c), \
|
|
I[180] = (T)(img)(_p14##x,_p8##y,z,c), I[181] = (T)(img)(_p13##x,_p8##y,z,c), I[182] = (T)(img)(_p12##x,_p8##y,z,c), I[183] = (T)(img)(_p11##x,_p8##y,z,c), I[184] = (T)(img)(_p10##x,_p8##y,z,c), I[185] = (T)(img)(_p9##x,_p8##y,z,c), I[186] = (T)(img)(_p8##x,_p8##y,z,c), I[187] = (T)(img)(_p7##x,_p8##y,z,c), I[188] = (T)(img)(_p6##x,_p8##y,z,c), I[189] = (T)(img)(_p5##x,_p8##y,z,c), I[190] = (T)(img)(_p4##x,_p8##y,z,c), I[191] = (T)(img)(_p3##x,_p8##y,z,c), I[192] = (T)(img)(_p2##x,_p8##y,z,c), I[193] = (T)(img)(_p1##x,_p8##y,z,c), I[194] = (T)(img)(x,_p8##y,z,c), I[195] = (T)(img)(_n1##x,_p8##y,z,c), I[196] = (T)(img)(_n2##x,_p8##y,z,c), I[197] = (T)(img)(_n3##x,_p8##y,z,c), I[198] = (T)(img)(_n4##x,_p8##y,z,c), I[199] = (T)(img)(_n5##x,_p8##y,z,c), I[200] = (T)(img)(_n6##x,_p8##y,z,c), I[201] = (T)(img)(_n7##x,_p8##y,z,c), I[202] = (T)(img)(_n8##x,_p8##y,z,c), I[203] = (T)(img)(_n9##x,_p8##y,z,c), I[204] = (T)(img)(_n10##x,_p8##y,z,c), I[205] = (T)(img)(_n11##x,_p8##y,z,c), I[206] = (T)(img)(_n12##x,_p8##y,z,c), I[207] = (T)(img)(_n13##x,_p8##y,z,c), I[208] = (T)(img)(_n14##x,_p8##y,z,c), I[209] = (T)(img)(_n15##x,_p8##y,z,c), \
|
|
I[210] = (T)(img)(_p14##x,_p7##y,z,c), I[211] = (T)(img)(_p13##x,_p7##y,z,c), I[212] = (T)(img)(_p12##x,_p7##y,z,c), I[213] = (T)(img)(_p11##x,_p7##y,z,c), I[214] = (T)(img)(_p10##x,_p7##y,z,c), I[215] = (T)(img)(_p9##x,_p7##y,z,c), I[216] = (T)(img)(_p8##x,_p7##y,z,c), I[217] = (T)(img)(_p7##x,_p7##y,z,c), I[218] = (T)(img)(_p6##x,_p7##y,z,c), I[219] = (T)(img)(_p5##x,_p7##y,z,c), I[220] = (T)(img)(_p4##x,_p7##y,z,c), I[221] = (T)(img)(_p3##x,_p7##y,z,c), I[222] = (T)(img)(_p2##x,_p7##y,z,c), I[223] = (T)(img)(_p1##x,_p7##y,z,c), I[224] = (T)(img)(x,_p7##y,z,c), I[225] = (T)(img)(_n1##x,_p7##y,z,c), I[226] = (T)(img)(_n2##x,_p7##y,z,c), I[227] = (T)(img)(_n3##x,_p7##y,z,c), I[228] = (T)(img)(_n4##x,_p7##y,z,c), I[229] = (T)(img)(_n5##x,_p7##y,z,c), I[230] = (T)(img)(_n6##x,_p7##y,z,c), I[231] = (T)(img)(_n7##x,_p7##y,z,c), I[232] = (T)(img)(_n8##x,_p7##y,z,c), I[233] = (T)(img)(_n9##x,_p7##y,z,c), I[234] = (T)(img)(_n10##x,_p7##y,z,c), I[235] = (T)(img)(_n11##x,_p7##y,z,c), I[236] = (T)(img)(_n12##x,_p7##y,z,c), I[237] = (T)(img)(_n13##x,_p7##y,z,c), I[238] = (T)(img)(_n14##x,_p7##y,z,c), I[239] = (T)(img)(_n15##x,_p7##y,z,c), \
|
|
I[240] = (T)(img)(_p14##x,_p6##y,z,c), I[241] = (T)(img)(_p13##x,_p6##y,z,c), I[242] = (T)(img)(_p12##x,_p6##y,z,c), I[243] = (T)(img)(_p11##x,_p6##y,z,c), I[244] = (T)(img)(_p10##x,_p6##y,z,c), I[245] = (T)(img)(_p9##x,_p6##y,z,c), I[246] = (T)(img)(_p8##x,_p6##y,z,c), I[247] = (T)(img)(_p7##x,_p6##y,z,c), I[248] = (T)(img)(_p6##x,_p6##y,z,c), I[249] = (T)(img)(_p5##x,_p6##y,z,c), I[250] = (T)(img)(_p4##x,_p6##y,z,c), I[251] = (T)(img)(_p3##x,_p6##y,z,c), I[252] = (T)(img)(_p2##x,_p6##y,z,c), I[253] = (T)(img)(_p1##x,_p6##y,z,c), I[254] = (T)(img)(x,_p6##y,z,c), I[255] = (T)(img)(_n1##x,_p6##y,z,c), I[256] = (T)(img)(_n2##x,_p6##y,z,c), I[257] = (T)(img)(_n3##x,_p6##y,z,c), I[258] = (T)(img)(_n4##x,_p6##y,z,c), I[259] = (T)(img)(_n5##x,_p6##y,z,c), I[260] = (T)(img)(_n6##x,_p6##y,z,c), I[261] = (T)(img)(_n7##x,_p6##y,z,c), I[262] = (T)(img)(_n8##x,_p6##y,z,c), I[263] = (T)(img)(_n9##x,_p6##y,z,c), I[264] = (T)(img)(_n10##x,_p6##y,z,c), I[265] = (T)(img)(_n11##x,_p6##y,z,c), I[266] = (T)(img)(_n12##x,_p6##y,z,c), I[267] = (T)(img)(_n13##x,_p6##y,z,c), I[268] = (T)(img)(_n14##x,_p6##y,z,c), I[269] = (T)(img)(_n15##x,_p6##y,z,c), \
|
|
I[270] = (T)(img)(_p14##x,_p5##y,z,c), I[271] = (T)(img)(_p13##x,_p5##y,z,c), I[272] = (T)(img)(_p12##x,_p5##y,z,c), I[273] = (T)(img)(_p11##x,_p5##y,z,c), I[274] = (T)(img)(_p10##x,_p5##y,z,c), I[275] = (T)(img)(_p9##x,_p5##y,z,c), I[276] = (T)(img)(_p8##x,_p5##y,z,c), I[277] = (T)(img)(_p7##x,_p5##y,z,c), I[278] = (T)(img)(_p6##x,_p5##y,z,c), I[279] = (T)(img)(_p5##x,_p5##y,z,c), I[280] = (T)(img)(_p4##x,_p5##y,z,c), I[281] = (T)(img)(_p3##x,_p5##y,z,c), I[282] = (T)(img)(_p2##x,_p5##y,z,c), I[283] = (T)(img)(_p1##x,_p5##y,z,c), I[284] = (T)(img)(x,_p5##y,z,c), I[285] = (T)(img)(_n1##x,_p5##y,z,c), I[286] = (T)(img)(_n2##x,_p5##y,z,c), I[287] = (T)(img)(_n3##x,_p5##y,z,c), I[288] = (T)(img)(_n4##x,_p5##y,z,c), I[289] = (T)(img)(_n5##x,_p5##y,z,c), I[290] = (T)(img)(_n6##x,_p5##y,z,c), I[291] = (T)(img)(_n7##x,_p5##y,z,c), I[292] = (T)(img)(_n8##x,_p5##y,z,c), I[293] = (T)(img)(_n9##x,_p5##y,z,c), I[294] = (T)(img)(_n10##x,_p5##y,z,c), I[295] = (T)(img)(_n11##x,_p5##y,z,c), I[296] = (T)(img)(_n12##x,_p5##y,z,c), I[297] = (T)(img)(_n13##x,_p5##y,z,c), I[298] = (T)(img)(_n14##x,_p5##y,z,c), I[299] = (T)(img)(_n15##x,_p5##y,z,c), \
|
|
I[300] = (T)(img)(_p14##x,_p4##y,z,c), I[301] = (T)(img)(_p13##x,_p4##y,z,c), I[302] = (T)(img)(_p12##x,_p4##y,z,c), I[303] = (T)(img)(_p11##x,_p4##y,z,c), I[304] = (T)(img)(_p10##x,_p4##y,z,c), I[305] = (T)(img)(_p9##x,_p4##y,z,c), I[306] = (T)(img)(_p8##x,_p4##y,z,c), I[307] = (T)(img)(_p7##x,_p4##y,z,c), I[308] = (T)(img)(_p6##x,_p4##y,z,c), I[309] = (T)(img)(_p5##x,_p4##y,z,c), I[310] = (T)(img)(_p4##x,_p4##y,z,c), I[311] = (T)(img)(_p3##x,_p4##y,z,c), I[312] = (T)(img)(_p2##x,_p4##y,z,c), I[313] = (T)(img)(_p1##x,_p4##y,z,c), I[314] = (T)(img)(x,_p4##y,z,c), I[315] = (T)(img)(_n1##x,_p4##y,z,c), I[316] = (T)(img)(_n2##x,_p4##y,z,c), I[317] = (T)(img)(_n3##x,_p4##y,z,c), I[318] = (T)(img)(_n4##x,_p4##y,z,c), I[319] = (T)(img)(_n5##x,_p4##y,z,c), I[320] = (T)(img)(_n6##x,_p4##y,z,c), I[321] = (T)(img)(_n7##x,_p4##y,z,c), I[322] = (T)(img)(_n8##x,_p4##y,z,c), I[323] = (T)(img)(_n9##x,_p4##y,z,c), I[324] = (T)(img)(_n10##x,_p4##y,z,c), I[325] = (T)(img)(_n11##x,_p4##y,z,c), I[326] = (T)(img)(_n12##x,_p4##y,z,c), I[327] = (T)(img)(_n13##x,_p4##y,z,c), I[328] = (T)(img)(_n14##x,_p4##y,z,c), I[329] = (T)(img)(_n15##x,_p4##y,z,c), \
|
|
I[330] = (T)(img)(_p14##x,_p3##y,z,c), I[331] = (T)(img)(_p13##x,_p3##y,z,c), I[332] = (T)(img)(_p12##x,_p3##y,z,c), I[333] = (T)(img)(_p11##x,_p3##y,z,c), I[334] = (T)(img)(_p10##x,_p3##y,z,c), I[335] = (T)(img)(_p9##x,_p3##y,z,c), I[336] = (T)(img)(_p8##x,_p3##y,z,c), I[337] = (T)(img)(_p7##x,_p3##y,z,c), I[338] = (T)(img)(_p6##x,_p3##y,z,c), I[339] = (T)(img)(_p5##x,_p3##y,z,c), I[340] = (T)(img)(_p4##x,_p3##y,z,c), I[341] = (T)(img)(_p3##x,_p3##y,z,c), I[342] = (T)(img)(_p2##x,_p3##y,z,c), I[343] = (T)(img)(_p1##x,_p3##y,z,c), I[344] = (T)(img)(x,_p3##y,z,c), I[345] = (T)(img)(_n1##x,_p3##y,z,c), I[346] = (T)(img)(_n2##x,_p3##y,z,c), I[347] = (T)(img)(_n3##x,_p3##y,z,c), I[348] = (T)(img)(_n4##x,_p3##y,z,c), I[349] = (T)(img)(_n5##x,_p3##y,z,c), I[350] = (T)(img)(_n6##x,_p3##y,z,c), I[351] = (T)(img)(_n7##x,_p3##y,z,c), I[352] = (T)(img)(_n8##x,_p3##y,z,c), I[353] = (T)(img)(_n9##x,_p3##y,z,c), I[354] = (T)(img)(_n10##x,_p3##y,z,c), I[355] = (T)(img)(_n11##x,_p3##y,z,c), I[356] = (T)(img)(_n12##x,_p3##y,z,c), I[357] = (T)(img)(_n13##x,_p3##y,z,c), I[358] = (T)(img)(_n14##x,_p3##y,z,c), I[359] = (T)(img)(_n15##x,_p3##y,z,c), \
|
|
I[360] = (T)(img)(_p14##x,_p2##y,z,c), I[361] = (T)(img)(_p13##x,_p2##y,z,c), I[362] = (T)(img)(_p12##x,_p2##y,z,c), I[363] = (T)(img)(_p11##x,_p2##y,z,c), I[364] = (T)(img)(_p10##x,_p2##y,z,c), I[365] = (T)(img)(_p9##x,_p2##y,z,c), I[366] = (T)(img)(_p8##x,_p2##y,z,c), I[367] = (T)(img)(_p7##x,_p2##y,z,c), I[368] = (T)(img)(_p6##x,_p2##y,z,c), I[369] = (T)(img)(_p5##x,_p2##y,z,c), I[370] = (T)(img)(_p4##x,_p2##y,z,c), I[371] = (T)(img)(_p3##x,_p2##y,z,c), I[372] = (T)(img)(_p2##x,_p2##y,z,c), I[373] = (T)(img)(_p1##x,_p2##y,z,c), I[374] = (T)(img)(x,_p2##y,z,c), I[375] = (T)(img)(_n1##x,_p2##y,z,c), I[376] = (T)(img)(_n2##x,_p2##y,z,c), I[377] = (T)(img)(_n3##x,_p2##y,z,c), I[378] = (T)(img)(_n4##x,_p2##y,z,c), I[379] = (T)(img)(_n5##x,_p2##y,z,c), I[380] = (T)(img)(_n6##x,_p2##y,z,c), I[381] = (T)(img)(_n7##x,_p2##y,z,c), I[382] = (T)(img)(_n8##x,_p2##y,z,c), I[383] = (T)(img)(_n9##x,_p2##y,z,c), I[384] = (T)(img)(_n10##x,_p2##y,z,c), I[385] = (T)(img)(_n11##x,_p2##y,z,c), I[386] = (T)(img)(_n12##x,_p2##y,z,c), I[387] = (T)(img)(_n13##x,_p2##y,z,c), I[388] = (T)(img)(_n14##x,_p2##y,z,c), I[389] = (T)(img)(_n15##x,_p2##y,z,c), \
|
|
I[390] = (T)(img)(_p14##x,_p1##y,z,c), I[391] = (T)(img)(_p13##x,_p1##y,z,c), I[392] = (T)(img)(_p12##x,_p1##y,z,c), I[393] = (T)(img)(_p11##x,_p1##y,z,c), I[394] = (T)(img)(_p10##x,_p1##y,z,c), I[395] = (T)(img)(_p9##x,_p1##y,z,c), I[396] = (T)(img)(_p8##x,_p1##y,z,c), I[397] = (T)(img)(_p7##x,_p1##y,z,c), I[398] = (T)(img)(_p6##x,_p1##y,z,c), I[399] = (T)(img)(_p5##x,_p1##y,z,c), I[400] = (T)(img)(_p4##x,_p1##y,z,c), I[401] = (T)(img)(_p3##x,_p1##y,z,c), I[402] = (T)(img)(_p2##x,_p1##y,z,c), I[403] = (T)(img)(_p1##x,_p1##y,z,c), I[404] = (T)(img)(x,_p1##y,z,c), I[405] = (T)(img)(_n1##x,_p1##y,z,c), I[406] = (T)(img)(_n2##x,_p1##y,z,c), I[407] = (T)(img)(_n3##x,_p1##y,z,c), I[408] = (T)(img)(_n4##x,_p1##y,z,c), I[409] = (T)(img)(_n5##x,_p1##y,z,c), I[410] = (T)(img)(_n6##x,_p1##y,z,c), I[411] = (T)(img)(_n7##x,_p1##y,z,c), I[412] = (T)(img)(_n8##x,_p1##y,z,c), I[413] = (T)(img)(_n9##x,_p1##y,z,c), I[414] = (T)(img)(_n10##x,_p1##y,z,c), I[415] = (T)(img)(_n11##x,_p1##y,z,c), I[416] = (T)(img)(_n12##x,_p1##y,z,c), I[417] = (T)(img)(_n13##x,_p1##y,z,c), I[418] = (T)(img)(_n14##x,_p1##y,z,c), I[419] = (T)(img)(_n15##x,_p1##y,z,c), \
|
|
I[420] = (T)(img)(_p14##x,y,z,c), I[421] = (T)(img)(_p13##x,y,z,c), I[422] = (T)(img)(_p12##x,y,z,c), I[423] = (T)(img)(_p11##x,y,z,c), I[424] = (T)(img)(_p10##x,y,z,c), I[425] = (T)(img)(_p9##x,y,z,c), I[426] = (T)(img)(_p8##x,y,z,c), I[427] = (T)(img)(_p7##x,y,z,c), I[428] = (T)(img)(_p6##x,y,z,c), I[429] = (T)(img)(_p5##x,y,z,c), I[430] = (T)(img)(_p4##x,y,z,c), I[431] = (T)(img)(_p3##x,y,z,c), I[432] = (T)(img)(_p2##x,y,z,c), I[433] = (T)(img)(_p1##x,y,z,c), I[434] = (T)(img)(x,y,z,c), I[435] = (T)(img)(_n1##x,y,z,c), I[436] = (T)(img)(_n2##x,y,z,c), I[437] = (T)(img)(_n3##x,y,z,c), I[438] = (T)(img)(_n4##x,y,z,c), I[439] = (T)(img)(_n5##x,y,z,c), I[440] = (T)(img)(_n6##x,y,z,c), I[441] = (T)(img)(_n7##x,y,z,c), I[442] = (T)(img)(_n8##x,y,z,c), I[443] = (T)(img)(_n9##x,y,z,c), I[444] = (T)(img)(_n10##x,y,z,c), I[445] = (T)(img)(_n11##x,y,z,c), I[446] = (T)(img)(_n12##x,y,z,c), I[447] = (T)(img)(_n13##x,y,z,c), I[448] = (T)(img)(_n14##x,y,z,c), I[449] = (T)(img)(_n15##x,y,z,c), \
|
|
I[450] = (T)(img)(_p14##x,_n1##y,z,c), I[451] = (T)(img)(_p13##x,_n1##y,z,c), I[452] = (T)(img)(_p12##x,_n1##y,z,c), I[453] = (T)(img)(_p11##x,_n1##y,z,c), I[454] = (T)(img)(_p10##x,_n1##y,z,c), I[455] = (T)(img)(_p9##x,_n1##y,z,c), I[456] = (T)(img)(_p8##x,_n1##y,z,c), I[457] = (T)(img)(_p7##x,_n1##y,z,c), I[458] = (T)(img)(_p6##x,_n1##y,z,c), I[459] = (T)(img)(_p5##x,_n1##y,z,c), I[460] = (T)(img)(_p4##x,_n1##y,z,c), I[461] = (T)(img)(_p3##x,_n1##y,z,c), I[462] = (T)(img)(_p2##x,_n1##y,z,c), I[463] = (T)(img)(_p1##x,_n1##y,z,c), I[464] = (T)(img)(x,_n1##y,z,c), I[465] = (T)(img)(_n1##x,_n1##y,z,c), I[466] = (T)(img)(_n2##x,_n1##y,z,c), I[467] = (T)(img)(_n3##x,_n1##y,z,c), I[468] = (T)(img)(_n4##x,_n1##y,z,c), I[469] = (T)(img)(_n5##x,_n1##y,z,c), I[470] = (T)(img)(_n6##x,_n1##y,z,c), I[471] = (T)(img)(_n7##x,_n1##y,z,c), I[472] = (T)(img)(_n8##x,_n1##y,z,c), I[473] = (T)(img)(_n9##x,_n1##y,z,c), I[474] = (T)(img)(_n10##x,_n1##y,z,c), I[475] = (T)(img)(_n11##x,_n1##y,z,c), I[476] = (T)(img)(_n12##x,_n1##y,z,c), I[477] = (T)(img)(_n13##x,_n1##y,z,c), I[478] = (T)(img)(_n14##x,_n1##y,z,c), I[479] = (T)(img)(_n15##x,_n1##y,z,c), \
|
|
I[480] = (T)(img)(_p14##x,_n2##y,z,c), I[481] = (T)(img)(_p13##x,_n2##y,z,c), I[482] = (T)(img)(_p12##x,_n2##y,z,c), I[483] = (T)(img)(_p11##x,_n2##y,z,c), I[484] = (T)(img)(_p10##x,_n2##y,z,c), I[485] = (T)(img)(_p9##x,_n2##y,z,c), I[486] = (T)(img)(_p8##x,_n2##y,z,c), I[487] = (T)(img)(_p7##x,_n2##y,z,c), I[488] = (T)(img)(_p6##x,_n2##y,z,c), I[489] = (T)(img)(_p5##x,_n2##y,z,c), I[490] = (T)(img)(_p4##x,_n2##y,z,c), I[491] = (T)(img)(_p3##x,_n2##y,z,c), I[492] = (T)(img)(_p2##x,_n2##y,z,c), I[493] = (T)(img)(_p1##x,_n2##y,z,c), I[494] = (T)(img)(x,_n2##y,z,c), I[495] = (T)(img)(_n1##x,_n2##y,z,c), I[496] = (T)(img)(_n2##x,_n2##y,z,c), I[497] = (T)(img)(_n3##x,_n2##y,z,c), I[498] = (T)(img)(_n4##x,_n2##y,z,c), I[499] = (T)(img)(_n5##x,_n2##y,z,c), I[500] = (T)(img)(_n6##x,_n2##y,z,c), I[501] = (T)(img)(_n7##x,_n2##y,z,c), I[502] = (T)(img)(_n8##x,_n2##y,z,c), I[503] = (T)(img)(_n9##x,_n2##y,z,c), I[504] = (T)(img)(_n10##x,_n2##y,z,c), I[505] = (T)(img)(_n11##x,_n2##y,z,c), I[506] = (T)(img)(_n12##x,_n2##y,z,c), I[507] = (T)(img)(_n13##x,_n2##y,z,c), I[508] = (T)(img)(_n14##x,_n2##y,z,c), I[509] = (T)(img)(_n15##x,_n2##y,z,c), \
|
|
I[510] = (T)(img)(_p14##x,_n3##y,z,c), I[511] = (T)(img)(_p13##x,_n3##y,z,c), I[512] = (T)(img)(_p12##x,_n3##y,z,c), I[513] = (T)(img)(_p11##x,_n3##y,z,c), I[514] = (T)(img)(_p10##x,_n3##y,z,c), I[515] = (T)(img)(_p9##x,_n3##y,z,c), I[516] = (T)(img)(_p8##x,_n3##y,z,c), I[517] = (T)(img)(_p7##x,_n3##y,z,c), I[518] = (T)(img)(_p6##x,_n3##y,z,c), I[519] = (T)(img)(_p5##x,_n3##y,z,c), I[520] = (T)(img)(_p4##x,_n3##y,z,c), I[521] = (T)(img)(_p3##x,_n3##y,z,c), I[522] = (T)(img)(_p2##x,_n3##y,z,c), I[523] = (T)(img)(_p1##x,_n3##y,z,c), I[524] = (T)(img)(x,_n3##y,z,c), I[525] = (T)(img)(_n1##x,_n3##y,z,c), I[526] = (T)(img)(_n2##x,_n3##y,z,c), I[527] = (T)(img)(_n3##x,_n3##y,z,c), I[528] = (T)(img)(_n4##x,_n3##y,z,c), I[529] = (T)(img)(_n5##x,_n3##y,z,c), I[530] = (T)(img)(_n6##x,_n3##y,z,c), I[531] = (T)(img)(_n7##x,_n3##y,z,c), I[532] = (T)(img)(_n8##x,_n3##y,z,c), I[533] = (T)(img)(_n9##x,_n3##y,z,c), I[534] = (T)(img)(_n10##x,_n3##y,z,c), I[535] = (T)(img)(_n11##x,_n3##y,z,c), I[536] = (T)(img)(_n12##x,_n3##y,z,c), I[537] = (T)(img)(_n13##x,_n3##y,z,c), I[538] = (T)(img)(_n14##x,_n3##y,z,c), I[539] = (T)(img)(_n15##x,_n3##y,z,c), \
|
|
I[540] = (T)(img)(_p14##x,_n4##y,z,c), I[541] = (T)(img)(_p13##x,_n4##y,z,c), I[542] = (T)(img)(_p12##x,_n4##y,z,c), I[543] = (T)(img)(_p11##x,_n4##y,z,c), I[544] = (T)(img)(_p10##x,_n4##y,z,c), I[545] = (T)(img)(_p9##x,_n4##y,z,c), I[546] = (T)(img)(_p8##x,_n4##y,z,c), I[547] = (T)(img)(_p7##x,_n4##y,z,c), I[548] = (T)(img)(_p6##x,_n4##y,z,c), I[549] = (T)(img)(_p5##x,_n4##y,z,c), I[550] = (T)(img)(_p4##x,_n4##y,z,c), I[551] = (T)(img)(_p3##x,_n4##y,z,c), I[552] = (T)(img)(_p2##x,_n4##y,z,c), I[553] = (T)(img)(_p1##x,_n4##y,z,c), I[554] = (T)(img)(x,_n4##y,z,c), I[555] = (T)(img)(_n1##x,_n4##y,z,c), I[556] = (T)(img)(_n2##x,_n4##y,z,c), I[557] = (T)(img)(_n3##x,_n4##y,z,c), I[558] = (T)(img)(_n4##x,_n4##y,z,c), I[559] = (T)(img)(_n5##x,_n4##y,z,c), I[560] = (T)(img)(_n6##x,_n4##y,z,c), I[561] = (T)(img)(_n7##x,_n4##y,z,c), I[562] = (T)(img)(_n8##x,_n4##y,z,c), I[563] = (T)(img)(_n9##x,_n4##y,z,c), I[564] = (T)(img)(_n10##x,_n4##y,z,c), I[565] = (T)(img)(_n11##x,_n4##y,z,c), I[566] = (T)(img)(_n12##x,_n4##y,z,c), I[567] = (T)(img)(_n13##x,_n4##y,z,c), I[568] = (T)(img)(_n14##x,_n4##y,z,c), I[569] = (T)(img)(_n15##x,_n4##y,z,c), \
|
|
I[570] = (T)(img)(_p14##x,_n5##y,z,c), I[571] = (T)(img)(_p13##x,_n5##y,z,c), I[572] = (T)(img)(_p12##x,_n5##y,z,c), I[573] = (T)(img)(_p11##x,_n5##y,z,c), I[574] = (T)(img)(_p10##x,_n5##y,z,c), I[575] = (T)(img)(_p9##x,_n5##y,z,c), I[576] = (T)(img)(_p8##x,_n5##y,z,c), I[577] = (T)(img)(_p7##x,_n5##y,z,c), I[578] = (T)(img)(_p6##x,_n5##y,z,c), I[579] = (T)(img)(_p5##x,_n5##y,z,c), I[580] = (T)(img)(_p4##x,_n5##y,z,c), I[581] = (T)(img)(_p3##x,_n5##y,z,c), I[582] = (T)(img)(_p2##x,_n5##y,z,c), I[583] = (T)(img)(_p1##x,_n5##y,z,c), I[584] = (T)(img)(x,_n5##y,z,c), I[585] = (T)(img)(_n1##x,_n5##y,z,c), I[586] = (T)(img)(_n2##x,_n5##y,z,c), I[587] = (T)(img)(_n3##x,_n5##y,z,c), I[588] = (T)(img)(_n4##x,_n5##y,z,c), I[589] = (T)(img)(_n5##x,_n5##y,z,c), I[590] = (T)(img)(_n6##x,_n5##y,z,c), I[591] = (T)(img)(_n7##x,_n5##y,z,c), I[592] = (T)(img)(_n8##x,_n5##y,z,c), I[593] = (T)(img)(_n9##x,_n5##y,z,c), I[594] = (T)(img)(_n10##x,_n5##y,z,c), I[595] = (T)(img)(_n11##x,_n5##y,z,c), I[596] = (T)(img)(_n12##x,_n5##y,z,c), I[597] = (T)(img)(_n13##x,_n5##y,z,c), I[598] = (T)(img)(_n14##x,_n5##y,z,c), I[599] = (T)(img)(_n15##x,_n5##y,z,c), \
|
|
I[600] = (T)(img)(_p14##x,_n6##y,z,c), I[601] = (T)(img)(_p13##x,_n6##y,z,c), I[602] = (T)(img)(_p12##x,_n6##y,z,c), I[603] = (T)(img)(_p11##x,_n6##y,z,c), I[604] = (T)(img)(_p10##x,_n6##y,z,c), I[605] = (T)(img)(_p9##x,_n6##y,z,c), I[606] = (T)(img)(_p8##x,_n6##y,z,c), I[607] = (T)(img)(_p7##x,_n6##y,z,c), I[608] = (T)(img)(_p6##x,_n6##y,z,c), I[609] = (T)(img)(_p5##x,_n6##y,z,c), I[610] = (T)(img)(_p4##x,_n6##y,z,c), I[611] = (T)(img)(_p3##x,_n6##y,z,c), I[612] = (T)(img)(_p2##x,_n6##y,z,c), I[613] = (T)(img)(_p1##x,_n6##y,z,c), I[614] = (T)(img)(x,_n6##y,z,c), I[615] = (T)(img)(_n1##x,_n6##y,z,c), I[616] = (T)(img)(_n2##x,_n6##y,z,c), I[617] = (T)(img)(_n3##x,_n6##y,z,c), I[618] = (T)(img)(_n4##x,_n6##y,z,c), I[619] = (T)(img)(_n5##x,_n6##y,z,c), I[620] = (T)(img)(_n6##x,_n6##y,z,c), I[621] = (T)(img)(_n7##x,_n6##y,z,c), I[622] = (T)(img)(_n8##x,_n6##y,z,c), I[623] = (T)(img)(_n9##x,_n6##y,z,c), I[624] = (T)(img)(_n10##x,_n6##y,z,c), I[625] = (T)(img)(_n11##x,_n6##y,z,c), I[626] = (T)(img)(_n12##x,_n6##y,z,c), I[627] = (T)(img)(_n13##x,_n6##y,z,c), I[628] = (T)(img)(_n14##x,_n6##y,z,c), I[629] = (T)(img)(_n15##x,_n6##y,z,c), \
|
|
I[630] = (T)(img)(_p14##x,_n7##y,z,c), I[631] = (T)(img)(_p13##x,_n7##y,z,c), I[632] = (T)(img)(_p12##x,_n7##y,z,c), I[633] = (T)(img)(_p11##x,_n7##y,z,c), I[634] = (T)(img)(_p10##x,_n7##y,z,c), I[635] = (T)(img)(_p9##x,_n7##y,z,c), I[636] = (T)(img)(_p8##x,_n7##y,z,c), I[637] = (T)(img)(_p7##x,_n7##y,z,c), I[638] = (T)(img)(_p6##x,_n7##y,z,c), I[639] = (T)(img)(_p5##x,_n7##y,z,c), I[640] = (T)(img)(_p4##x,_n7##y,z,c), I[641] = (T)(img)(_p3##x,_n7##y,z,c), I[642] = (T)(img)(_p2##x,_n7##y,z,c), I[643] = (T)(img)(_p1##x,_n7##y,z,c), I[644] = (T)(img)(x,_n7##y,z,c), I[645] = (T)(img)(_n1##x,_n7##y,z,c), I[646] = (T)(img)(_n2##x,_n7##y,z,c), I[647] = (T)(img)(_n3##x,_n7##y,z,c), I[648] = (T)(img)(_n4##x,_n7##y,z,c), I[649] = (T)(img)(_n5##x,_n7##y,z,c), I[650] = (T)(img)(_n6##x,_n7##y,z,c), I[651] = (T)(img)(_n7##x,_n7##y,z,c), I[652] = (T)(img)(_n8##x,_n7##y,z,c), I[653] = (T)(img)(_n9##x,_n7##y,z,c), I[654] = (T)(img)(_n10##x,_n7##y,z,c), I[655] = (T)(img)(_n11##x,_n7##y,z,c), I[656] = (T)(img)(_n12##x,_n7##y,z,c), I[657] = (T)(img)(_n13##x,_n7##y,z,c), I[658] = (T)(img)(_n14##x,_n7##y,z,c), I[659] = (T)(img)(_n15##x,_n7##y,z,c), \
|
|
I[660] = (T)(img)(_p14##x,_n8##y,z,c), I[661] = (T)(img)(_p13##x,_n8##y,z,c), I[662] = (T)(img)(_p12##x,_n8##y,z,c), I[663] = (T)(img)(_p11##x,_n8##y,z,c), I[664] = (T)(img)(_p10##x,_n8##y,z,c), I[665] = (T)(img)(_p9##x,_n8##y,z,c), I[666] = (T)(img)(_p8##x,_n8##y,z,c), I[667] = (T)(img)(_p7##x,_n8##y,z,c), I[668] = (T)(img)(_p6##x,_n8##y,z,c), I[669] = (T)(img)(_p5##x,_n8##y,z,c), I[670] = (T)(img)(_p4##x,_n8##y,z,c), I[671] = (T)(img)(_p3##x,_n8##y,z,c), I[672] = (T)(img)(_p2##x,_n8##y,z,c), I[673] = (T)(img)(_p1##x,_n8##y,z,c), I[674] = (T)(img)(x,_n8##y,z,c), I[675] = (T)(img)(_n1##x,_n8##y,z,c), I[676] = (T)(img)(_n2##x,_n8##y,z,c), I[677] = (T)(img)(_n3##x,_n8##y,z,c), I[678] = (T)(img)(_n4##x,_n8##y,z,c), I[679] = (T)(img)(_n5##x,_n8##y,z,c), I[680] = (T)(img)(_n6##x,_n8##y,z,c), I[681] = (T)(img)(_n7##x,_n8##y,z,c), I[682] = (T)(img)(_n8##x,_n8##y,z,c), I[683] = (T)(img)(_n9##x,_n8##y,z,c), I[684] = (T)(img)(_n10##x,_n8##y,z,c), I[685] = (T)(img)(_n11##x,_n8##y,z,c), I[686] = (T)(img)(_n12##x,_n8##y,z,c), I[687] = (T)(img)(_n13##x,_n8##y,z,c), I[688] = (T)(img)(_n14##x,_n8##y,z,c), I[689] = (T)(img)(_n15##x,_n8##y,z,c), \
|
|
I[690] = (T)(img)(_p14##x,_n9##y,z,c), I[691] = (T)(img)(_p13##x,_n9##y,z,c), I[692] = (T)(img)(_p12##x,_n9##y,z,c), I[693] = (T)(img)(_p11##x,_n9##y,z,c), I[694] = (T)(img)(_p10##x,_n9##y,z,c), I[695] = (T)(img)(_p9##x,_n9##y,z,c), I[696] = (T)(img)(_p8##x,_n9##y,z,c), I[697] = (T)(img)(_p7##x,_n9##y,z,c), I[698] = (T)(img)(_p6##x,_n9##y,z,c), I[699] = (T)(img)(_p5##x,_n9##y,z,c), I[700] = (T)(img)(_p4##x,_n9##y,z,c), I[701] = (T)(img)(_p3##x,_n9##y,z,c), I[702] = (T)(img)(_p2##x,_n9##y,z,c), I[703] = (T)(img)(_p1##x,_n9##y,z,c), I[704] = (T)(img)(x,_n9##y,z,c), I[705] = (T)(img)(_n1##x,_n9##y,z,c), I[706] = (T)(img)(_n2##x,_n9##y,z,c), I[707] = (T)(img)(_n3##x,_n9##y,z,c), I[708] = (T)(img)(_n4##x,_n9##y,z,c), I[709] = (T)(img)(_n5##x,_n9##y,z,c), I[710] = (T)(img)(_n6##x,_n9##y,z,c), I[711] = (T)(img)(_n7##x,_n9##y,z,c), I[712] = (T)(img)(_n8##x,_n9##y,z,c), I[713] = (T)(img)(_n9##x,_n9##y,z,c), I[714] = (T)(img)(_n10##x,_n9##y,z,c), I[715] = (T)(img)(_n11##x,_n9##y,z,c), I[716] = (T)(img)(_n12##x,_n9##y,z,c), I[717] = (T)(img)(_n13##x,_n9##y,z,c), I[718] = (T)(img)(_n14##x,_n9##y,z,c), I[719] = (T)(img)(_n15##x,_n9##y,z,c), \
|
|
I[720] = (T)(img)(_p14##x,_n10##y,z,c), I[721] = (T)(img)(_p13##x,_n10##y,z,c), I[722] = (T)(img)(_p12##x,_n10##y,z,c), I[723] = (T)(img)(_p11##x,_n10##y,z,c), I[724] = (T)(img)(_p10##x,_n10##y,z,c), I[725] = (T)(img)(_p9##x,_n10##y,z,c), I[726] = (T)(img)(_p8##x,_n10##y,z,c), I[727] = (T)(img)(_p7##x,_n10##y,z,c), I[728] = (T)(img)(_p6##x,_n10##y,z,c), I[729] = (T)(img)(_p5##x,_n10##y,z,c), I[730] = (T)(img)(_p4##x,_n10##y,z,c), I[731] = (T)(img)(_p3##x,_n10##y,z,c), I[732] = (T)(img)(_p2##x,_n10##y,z,c), I[733] = (T)(img)(_p1##x,_n10##y,z,c), I[734] = (T)(img)(x,_n10##y,z,c), I[735] = (T)(img)(_n1##x,_n10##y,z,c), I[736] = (T)(img)(_n2##x,_n10##y,z,c), I[737] = (T)(img)(_n3##x,_n10##y,z,c), I[738] = (T)(img)(_n4##x,_n10##y,z,c), I[739] = (T)(img)(_n5##x,_n10##y,z,c), I[740] = (T)(img)(_n6##x,_n10##y,z,c), I[741] = (T)(img)(_n7##x,_n10##y,z,c), I[742] = (T)(img)(_n8##x,_n10##y,z,c), I[743] = (T)(img)(_n9##x,_n10##y,z,c), I[744] = (T)(img)(_n10##x,_n10##y,z,c), I[745] = (T)(img)(_n11##x,_n10##y,z,c), I[746] = (T)(img)(_n12##x,_n10##y,z,c), I[747] = (T)(img)(_n13##x,_n10##y,z,c), I[748] = (T)(img)(_n14##x,_n10##y,z,c), I[749] = (T)(img)(_n15##x,_n10##y,z,c), \
|
|
I[750] = (T)(img)(_p14##x,_n11##y,z,c), I[751] = (T)(img)(_p13##x,_n11##y,z,c), I[752] = (T)(img)(_p12##x,_n11##y,z,c), I[753] = (T)(img)(_p11##x,_n11##y,z,c), I[754] = (T)(img)(_p10##x,_n11##y,z,c), I[755] = (T)(img)(_p9##x,_n11##y,z,c), I[756] = (T)(img)(_p8##x,_n11##y,z,c), I[757] = (T)(img)(_p7##x,_n11##y,z,c), I[758] = (T)(img)(_p6##x,_n11##y,z,c), I[759] = (T)(img)(_p5##x,_n11##y,z,c), I[760] = (T)(img)(_p4##x,_n11##y,z,c), I[761] = (T)(img)(_p3##x,_n11##y,z,c), I[762] = (T)(img)(_p2##x,_n11##y,z,c), I[763] = (T)(img)(_p1##x,_n11##y,z,c), I[764] = (T)(img)(x,_n11##y,z,c), I[765] = (T)(img)(_n1##x,_n11##y,z,c), I[766] = (T)(img)(_n2##x,_n11##y,z,c), I[767] = (T)(img)(_n3##x,_n11##y,z,c), I[768] = (T)(img)(_n4##x,_n11##y,z,c), I[769] = (T)(img)(_n5##x,_n11##y,z,c), I[770] = (T)(img)(_n6##x,_n11##y,z,c), I[771] = (T)(img)(_n7##x,_n11##y,z,c), I[772] = (T)(img)(_n8##x,_n11##y,z,c), I[773] = (T)(img)(_n9##x,_n11##y,z,c), I[774] = (T)(img)(_n10##x,_n11##y,z,c), I[775] = (T)(img)(_n11##x,_n11##y,z,c), I[776] = (T)(img)(_n12##x,_n11##y,z,c), I[777] = (T)(img)(_n13##x,_n11##y,z,c), I[778] = (T)(img)(_n14##x,_n11##y,z,c), I[779] = (T)(img)(_n15##x,_n11##y,z,c), \
|
|
I[780] = (T)(img)(_p14##x,_n12##y,z,c), I[781] = (T)(img)(_p13##x,_n12##y,z,c), I[782] = (T)(img)(_p12##x,_n12##y,z,c), I[783] = (T)(img)(_p11##x,_n12##y,z,c), I[784] = (T)(img)(_p10##x,_n12##y,z,c), I[785] = (T)(img)(_p9##x,_n12##y,z,c), I[786] = (T)(img)(_p8##x,_n12##y,z,c), I[787] = (T)(img)(_p7##x,_n12##y,z,c), I[788] = (T)(img)(_p6##x,_n12##y,z,c), I[789] = (T)(img)(_p5##x,_n12##y,z,c), I[790] = (T)(img)(_p4##x,_n12##y,z,c), I[791] = (T)(img)(_p3##x,_n12##y,z,c), I[792] = (T)(img)(_p2##x,_n12##y,z,c), I[793] = (T)(img)(_p1##x,_n12##y,z,c), I[794] = (T)(img)(x,_n12##y,z,c), I[795] = (T)(img)(_n1##x,_n12##y,z,c), I[796] = (T)(img)(_n2##x,_n12##y,z,c), I[797] = (T)(img)(_n3##x,_n12##y,z,c), I[798] = (T)(img)(_n4##x,_n12##y,z,c), I[799] = (T)(img)(_n5##x,_n12##y,z,c), I[800] = (T)(img)(_n6##x,_n12##y,z,c), I[801] = (T)(img)(_n7##x,_n12##y,z,c), I[802] = (T)(img)(_n8##x,_n12##y,z,c), I[803] = (T)(img)(_n9##x,_n12##y,z,c), I[804] = (T)(img)(_n10##x,_n12##y,z,c), I[805] = (T)(img)(_n11##x,_n12##y,z,c), I[806] = (T)(img)(_n12##x,_n12##y,z,c), I[807] = (T)(img)(_n13##x,_n12##y,z,c), I[808] = (T)(img)(_n14##x,_n12##y,z,c), I[809] = (T)(img)(_n15##x,_n12##y,z,c), \
|
|
I[810] = (T)(img)(_p14##x,_n13##y,z,c), I[811] = (T)(img)(_p13##x,_n13##y,z,c), I[812] = (T)(img)(_p12##x,_n13##y,z,c), I[813] = (T)(img)(_p11##x,_n13##y,z,c), I[814] = (T)(img)(_p10##x,_n13##y,z,c), I[815] = (T)(img)(_p9##x,_n13##y,z,c), I[816] = (T)(img)(_p8##x,_n13##y,z,c), I[817] = (T)(img)(_p7##x,_n13##y,z,c), I[818] = (T)(img)(_p6##x,_n13##y,z,c), I[819] = (T)(img)(_p5##x,_n13##y,z,c), I[820] = (T)(img)(_p4##x,_n13##y,z,c), I[821] = (T)(img)(_p3##x,_n13##y,z,c), I[822] = (T)(img)(_p2##x,_n13##y,z,c), I[823] = (T)(img)(_p1##x,_n13##y,z,c), I[824] = (T)(img)(x,_n13##y,z,c), I[825] = (T)(img)(_n1##x,_n13##y,z,c), I[826] = (T)(img)(_n2##x,_n13##y,z,c), I[827] = (T)(img)(_n3##x,_n13##y,z,c), I[828] = (T)(img)(_n4##x,_n13##y,z,c), I[829] = (T)(img)(_n5##x,_n13##y,z,c), I[830] = (T)(img)(_n6##x,_n13##y,z,c), I[831] = (T)(img)(_n7##x,_n13##y,z,c), I[832] = (T)(img)(_n8##x,_n13##y,z,c), I[833] = (T)(img)(_n9##x,_n13##y,z,c), I[834] = (T)(img)(_n10##x,_n13##y,z,c), I[835] = (T)(img)(_n11##x,_n13##y,z,c), I[836] = (T)(img)(_n12##x,_n13##y,z,c), I[837] = (T)(img)(_n13##x,_n13##y,z,c), I[838] = (T)(img)(_n14##x,_n13##y,z,c), I[839] = (T)(img)(_n15##x,_n13##y,z,c), \
|
|
I[840] = (T)(img)(_p14##x,_n14##y,z,c), I[841] = (T)(img)(_p13##x,_n14##y,z,c), I[842] = (T)(img)(_p12##x,_n14##y,z,c), I[843] = (T)(img)(_p11##x,_n14##y,z,c), I[844] = (T)(img)(_p10##x,_n14##y,z,c), I[845] = (T)(img)(_p9##x,_n14##y,z,c), I[846] = (T)(img)(_p8##x,_n14##y,z,c), I[847] = (T)(img)(_p7##x,_n14##y,z,c), I[848] = (T)(img)(_p6##x,_n14##y,z,c), I[849] = (T)(img)(_p5##x,_n14##y,z,c), I[850] = (T)(img)(_p4##x,_n14##y,z,c), I[851] = (T)(img)(_p3##x,_n14##y,z,c), I[852] = (T)(img)(_p2##x,_n14##y,z,c), I[853] = (T)(img)(_p1##x,_n14##y,z,c), I[854] = (T)(img)(x,_n14##y,z,c), I[855] = (T)(img)(_n1##x,_n14##y,z,c), I[856] = (T)(img)(_n2##x,_n14##y,z,c), I[857] = (T)(img)(_n3##x,_n14##y,z,c), I[858] = (T)(img)(_n4##x,_n14##y,z,c), I[859] = (T)(img)(_n5##x,_n14##y,z,c), I[860] = (T)(img)(_n6##x,_n14##y,z,c), I[861] = (T)(img)(_n7##x,_n14##y,z,c), I[862] = (T)(img)(_n8##x,_n14##y,z,c), I[863] = (T)(img)(_n9##x,_n14##y,z,c), I[864] = (T)(img)(_n10##x,_n14##y,z,c), I[865] = (T)(img)(_n11##x,_n14##y,z,c), I[866] = (T)(img)(_n12##x,_n14##y,z,c), I[867] = (T)(img)(_n13##x,_n14##y,z,c), I[868] = (T)(img)(_n14##x,_n14##y,z,c), I[869] = (T)(img)(_n15##x,_n14##y,z,c), \
|
|
I[870] = (T)(img)(_p14##x,_n15##y,z,c), I[871] = (T)(img)(_p13##x,_n15##y,z,c), I[872] = (T)(img)(_p12##x,_n15##y,z,c), I[873] = (T)(img)(_p11##x,_n15##y,z,c), I[874] = (T)(img)(_p10##x,_n15##y,z,c), I[875] = (T)(img)(_p9##x,_n15##y,z,c), I[876] = (T)(img)(_p8##x,_n15##y,z,c), I[877] = (T)(img)(_p7##x,_n15##y,z,c), I[878] = (T)(img)(_p6##x,_n15##y,z,c), I[879] = (T)(img)(_p5##x,_n15##y,z,c), I[880] = (T)(img)(_p4##x,_n15##y,z,c), I[881] = (T)(img)(_p3##x,_n15##y,z,c), I[882] = (T)(img)(_p2##x,_n15##y,z,c), I[883] = (T)(img)(_p1##x,_n15##y,z,c), I[884] = (T)(img)(x,_n15##y,z,c), I[885] = (T)(img)(_n1##x,_n15##y,z,c), I[886] = (T)(img)(_n2##x,_n15##y,z,c), I[887] = (T)(img)(_n3##x,_n15##y,z,c), I[888] = (T)(img)(_n4##x,_n15##y,z,c), I[889] = (T)(img)(_n5##x,_n15##y,z,c), I[890] = (T)(img)(_n6##x,_n15##y,z,c), I[891] = (T)(img)(_n7##x,_n15##y,z,c), I[892] = (T)(img)(_n8##x,_n15##y,z,c), I[893] = (T)(img)(_n9##x,_n15##y,z,c), I[894] = (T)(img)(_n10##x,_n15##y,z,c), I[895] = (T)(img)(_n11##x,_n15##y,z,c), I[896] = (T)(img)(_n12##x,_n15##y,z,c), I[897] = (T)(img)(_n13##x,_n15##y,z,c), I[898] = (T)(img)(_n14##x,_n15##y,z,c), I[899] = (T)(img)(_n15##x,_n15##y,z,c);
|
|
|
|
// Define 31x31 loop macros
|
|
//-------------------------
|
|
#define cimg_for31(bound,i) for (int i = 0, \
|
|
_p15##i = 0, _p14##i = 0, _p13##i = 0, _p12##i = 0, _p11##i = 0, _p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
|
|
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
|
|
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
|
|
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
|
|
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
|
|
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
|
|
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
|
|
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
|
|
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9, \
|
|
_n10##i = 10>=(int)(bound)?(int)(bound) - 1:10, \
|
|
_n11##i = 11>=(int)(bound)?(int)(bound) - 1:11, \
|
|
_n12##i = 12>=(int)(bound)?(int)(bound) - 1:12, \
|
|
_n13##i = 13>=(int)(bound)?(int)(bound) - 1:13, \
|
|
_n14##i = 14>=(int)(bound)?(int)(bound) - 1:14, \
|
|
_n15##i = 15>=(int)(bound)?(int)(bound) - 1:15; \
|
|
_n15##i<(int)(bound) || _n14##i==--_n15##i || _n13##i==--_n14##i || _n12##i==--_n13##i || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n15##i = _n14##i = _n13##i = _n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
|
|
_p15##i = _p14##i, _p14##i = _p13##i, _p13##i = _p12##i, _p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i, ++_n13##i, ++_n14##i, ++_n15##i)
|
|
|
|
#define cimg_for31X(img,x) cimg_for31((img)._width,x)
|
|
#define cimg_for31Y(img,y) cimg_for31((img)._height,y)
|
|
#define cimg_for31Z(img,z) cimg_for31((img)._depth,z)
|
|
#define cimg_for31C(img,c) cimg_for31((img)._spectrum,c)
|
|
#define cimg_for31XY(img,x,y) cimg_for31Y(img,y) cimg_for31X(img,x)
|
|
#define cimg_for31XZ(img,x,z) cimg_for31Z(img,z) cimg_for31X(img,x)
|
|
#define cimg_for31XC(img,x,c) cimg_for31C(img,c) cimg_for31X(img,x)
|
|
#define cimg_for31YZ(img,y,z) cimg_for31Z(img,z) cimg_for31Y(img,y)
|
|
#define cimg_for31YC(img,y,c) cimg_for31C(img,c) cimg_for31Y(img,y)
|
|
#define cimg_for31ZC(img,z,c) cimg_for31C(img,c) cimg_for31Z(img,z)
|
|
#define cimg_for31XYZ(img,x,y,z) cimg_for31Z(img,z) cimg_for31XY(img,x,y)
|
|
#define cimg_for31XZC(img,x,z,c) cimg_for31C(img,c) cimg_for31XZ(img,x,z)
|
|
#define cimg_for31YZC(img,y,z,c) cimg_for31C(img,c) cimg_for31YZ(img,y,z)
|
|
#define cimg_for31XYZC(img,x,y,z,c) cimg_for31C(img,c) cimg_for31XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in31(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p15##i = i - 15<0?0:i - 15, \
|
|
_p14##i = i - 14<0?0:i - 14, \
|
|
_p13##i = i - 13<0?0:i - 13, \
|
|
_p12##i = i - 12<0?0:i - 12, \
|
|
_p11##i = i - 11<0?0:i - 11, \
|
|
_p10##i = i - 10<0?0:i - 10, \
|
|
_p9##i = i - 9<0?0:i - 9, \
|
|
_p8##i = i - 8<0?0:i - 8, \
|
|
_p7##i = i - 7<0?0:i - 7, \
|
|
_p6##i = i - 6<0?0:i - 6, \
|
|
_p5##i = i - 5<0?0:i - 5, \
|
|
_p4##i = i - 4<0?0:i - 4, \
|
|
_p3##i = i - 3<0?0:i - 3, \
|
|
_p2##i = i - 2<0?0:i - 2, \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
|
|
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
|
|
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
|
|
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
|
|
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
|
|
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
|
|
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
|
|
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
|
|
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9, \
|
|
_n10##i = i + 10>=(int)(bound)?(int)(bound) - 1:i + 10, \
|
|
_n11##i = i + 11>=(int)(bound)?(int)(bound) - 1:i + 11, \
|
|
_n12##i = i + 12>=(int)(bound)?(int)(bound) - 1:i + 12, \
|
|
_n13##i = i + 13>=(int)(bound)?(int)(bound) - 1:i + 13, \
|
|
_n14##i = i + 14>=(int)(bound)?(int)(bound) - 1:i + 14, \
|
|
_n15##i = i + 15>=(int)(bound)?(int)(bound) - 1:i + 15; \
|
|
i<=(int)(i1) && (_n15##i<(int)(bound) || _n14##i==--_n15##i || _n13##i==--_n14##i || _n12##i==--_n13##i || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n15##i = _n14##i = _n13##i = _n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
|
|
_p15##i = _p14##i, _p14##i = _p13##i, _p13##i = _p12##i, _p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i, ++_n13##i, ++_n14##i, ++_n15##i)
|
|
|
|
#define cimg_for_in31X(img,x0,x1,x) cimg_for_in31((img)._width,x0,x1,x)
|
|
#define cimg_for_in31Y(img,y0,y1,y) cimg_for_in31((img)._height,y0,y1,y)
|
|
#define cimg_for_in31Z(img,z0,z1,z) cimg_for_in31((img)._depth,z0,z1,z)
|
|
#define cimg_for_in31C(img,c0,c1,c) cimg_for_in31((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in31XY(img,x0,y0,x1,y1,x,y) cimg_for_in31Y(img,y0,y1,y) cimg_for_in31X(img,x0,x1,x)
|
|
#define cimg_for_in31XZ(img,x0,z0,x1,z1,x,z) cimg_for_in31Z(img,z0,z1,z) cimg_for_in31X(img,x0,x1,x)
|
|
#define cimg_for_in31XC(img,x0,c0,x1,c1,x,c) cimg_for_in31C(img,c0,c1,c) cimg_for_in31X(img,x0,x1,x)
|
|
#define cimg_for_in31YZ(img,y0,z0,y1,z1,y,z) cimg_for_in31Z(img,z0,z1,z) cimg_for_in31Y(img,y0,y1,y)
|
|
#define cimg_for_in31YC(img,y0,c0,y1,c1,y,c) cimg_for_in31C(img,c0,c1,c) cimg_for_in31Y(img,y0,y1,y)
|
|
#define cimg_for_in31ZC(img,z0,c0,z1,c1,z,c) cimg_for_in31C(img,c0,c1,c) cimg_for_in31Z(img,z0,z1,z)
|
|
#define cimg_for_in31XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in31Z(img,z0,z1,z) cimg_for_in31XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in31XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in31C(img,c0,c1,c) cimg_for_in31XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in31YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in31C(img,c0,c1,c) cimg_for_in31YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in31XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in31C(img,c0,c1,c) cimg_for_in31XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for31x31(img,x,y,z,c,I,T) \
|
|
cimg_for31((img)._height,y) for (int x = 0, \
|
|
_p15##x = 0, _p14##x = 0, _p13##x = 0, _p12##x = 0, _p11##x = 0, _p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
|
|
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
|
|
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
|
|
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
|
|
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
|
|
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
|
|
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
|
|
_n9##x = 9>=((img)._width)?(img).width() - 1:9, \
|
|
_n10##x = 10>=((img)._width)?(img).width() - 1:10, \
|
|
_n11##x = 11>=((img)._width)?(img).width() - 1:11, \
|
|
_n12##x = 12>=((img)._width)?(img).width() - 1:12, \
|
|
_n13##x = 13>=((img)._width)?(img).width() - 1:13, \
|
|
_n14##x = 14>=((img)._width)?(img).width() - 1:14, \
|
|
_n15##x = (int)( \
|
|
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = I[11] = I[12] = I[13] = I[14] = I[15] = (T)(img)(0,_p15##y,z,c)), \
|
|
(I[31] = I[32] = I[33] = I[34] = I[35] = I[36] = I[37] = I[38] = I[39] = I[40] = I[41] = I[42] = I[43] = I[44] = I[45] = I[46] = (T)(img)(0,_p14##y,z,c)), \
|
|
(I[62] = I[63] = I[64] = I[65] = I[66] = I[67] = I[68] = I[69] = I[70] = I[71] = I[72] = I[73] = I[74] = I[75] = I[76] = I[77] = (T)(img)(0,_p13##y,z,c)), \
|
|
(I[93] = I[94] = I[95] = I[96] = I[97] = I[98] = I[99] = I[100] = I[101] = I[102] = I[103] = I[104] = I[105] = I[106] = I[107] = I[108] = (T)(img)(0,_p12##y,z,c)), \
|
|
(I[124] = I[125] = I[126] = I[127] = I[128] = I[129] = I[130] = I[131] = I[132] = I[133] = I[134] = I[135] = I[136] = I[137] = I[138] = I[139] = (T)(img)(0,_p11##y,z,c)), \
|
|
(I[155] = I[156] = I[157] = I[158] = I[159] = I[160] = I[161] = I[162] = I[163] = I[164] = I[165] = I[166] = I[167] = I[168] = I[169] = I[170] = (T)(img)(0,_p10##y,z,c)), \
|
|
(I[186] = I[187] = I[188] = I[189] = I[190] = I[191] = I[192] = I[193] = I[194] = I[195] = I[196] = I[197] = I[198] = I[199] = I[200] = I[201] = (T)(img)(0,_p9##y,z,c)), \
|
|
(I[217] = I[218] = I[219] = I[220] = I[221] = I[222] = I[223] = I[224] = I[225] = I[226] = I[227] = I[228] = I[229] = I[230] = I[231] = I[232] = (T)(img)(0,_p8##y,z,c)), \
|
|
(I[248] = I[249] = I[250] = I[251] = I[252] = I[253] = I[254] = I[255] = I[256] = I[257] = I[258] = I[259] = I[260] = I[261] = I[262] = I[263] = (T)(img)(0,_p7##y,z,c)), \
|
|
(I[279] = I[280] = I[281] = I[282] = I[283] = I[284] = I[285] = I[286] = I[287] = I[288] = I[289] = I[290] = I[291] = I[292] = I[293] = I[294] = (T)(img)(0,_p6##y,z,c)), \
|
|
(I[310] = I[311] = I[312] = I[313] = I[314] = I[315] = I[316] = I[317] = I[318] = I[319] = I[320] = I[321] = I[322] = I[323] = I[324] = I[325] = (T)(img)(0,_p5##y,z,c)), \
|
|
(I[341] = I[342] = I[343] = I[344] = I[345] = I[346] = I[347] = I[348] = I[349] = I[350] = I[351] = I[352] = I[353] = I[354] = I[355] = I[356] = (T)(img)(0,_p4##y,z,c)), \
|
|
(I[372] = I[373] = I[374] = I[375] = I[376] = I[377] = I[378] = I[379] = I[380] = I[381] = I[382] = I[383] = I[384] = I[385] = I[386] = I[387] = (T)(img)(0,_p3##y,z,c)), \
|
|
(I[403] = I[404] = I[405] = I[406] = I[407] = I[408] = I[409] = I[410] = I[411] = I[412] = I[413] = I[414] = I[415] = I[416] = I[417] = I[418] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[434] = I[435] = I[436] = I[437] = I[438] = I[439] = I[440] = I[441] = I[442] = I[443] = I[444] = I[445] = I[446] = I[447] = I[448] = I[449] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[465] = I[466] = I[467] = I[468] = I[469] = I[470] = I[471] = I[472] = I[473] = I[474] = I[475] = I[476] = I[477] = I[478] = I[479] = I[480] = (T)(img)(0,y,z,c)), \
|
|
(I[496] = I[497] = I[498] = I[499] = I[500] = I[501] = I[502] = I[503] = I[504] = I[505] = I[506] = I[507] = I[508] = I[509] = I[510] = I[511] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[527] = I[528] = I[529] = I[530] = I[531] = I[532] = I[533] = I[534] = I[535] = I[536] = I[537] = I[538] = I[539] = I[540] = I[541] = I[542] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[558] = I[559] = I[560] = I[561] = I[562] = I[563] = I[564] = I[565] = I[566] = I[567] = I[568] = I[569] = I[570] = I[571] = I[572] = I[573] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[589] = I[590] = I[591] = I[592] = I[593] = I[594] = I[595] = I[596] = I[597] = I[598] = I[599] = I[600] = I[601] = I[602] = I[603] = I[604] = (T)(img)(0,_n4##y,z,c)), \
|
|
(I[620] = I[621] = I[622] = I[623] = I[624] = I[625] = I[626] = I[627] = I[628] = I[629] = I[630] = I[631] = I[632] = I[633] = I[634] = I[635] = (T)(img)(0,_n5##y,z,c)), \
|
|
(I[651] = I[652] = I[653] = I[654] = I[655] = I[656] = I[657] = I[658] = I[659] = I[660] = I[661] = I[662] = I[663] = I[664] = I[665] = I[666] = (T)(img)(0,_n6##y,z,c)), \
|
|
(I[682] = I[683] = I[684] = I[685] = I[686] = I[687] = I[688] = I[689] = I[690] = I[691] = I[692] = I[693] = I[694] = I[695] = I[696] = I[697] = (T)(img)(0,_n7##y,z,c)), \
|
|
(I[713] = I[714] = I[715] = I[716] = I[717] = I[718] = I[719] = I[720] = I[721] = I[722] = I[723] = I[724] = I[725] = I[726] = I[727] = I[728] = (T)(img)(0,_n8##y,z,c)), \
|
|
(I[744] = I[745] = I[746] = I[747] = I[748] = I[749] = I[750] = I[751] = I[752] = I[753] = I[754] = I[755] = I[756] = I[757] = I[758] = I[759] = (T)(img)(0,_n9##y,z,c)), \
|
|
(I[775] = I[776] = I[777] = I[778] = I[779] = I[780] = I[781] = I[782] = I[783] = I[784] = I[785] = I[786] = I[787] = I[788] = I[789] = I[790] = (T)(img)(0,_n10##y,z,c)), \
|
|
(I[806] = I[807] = I[808] = I[809] = I[810] = I[811] = I[812] = I[813] = I[814] = I[815] = I[816] = I[817] = I[818] = I[819] = I[820] = I[821] = (T)(img)(0,_n11##y,z,c)), \
|
|
(I[837] = I[838] = I[839] = I[840] = I[841] = I[842] = I[843] = I[844] = I[845] = I[846] = I[847] = I[848] = I[849] = I[850] = I[851] = I[852] = (T)(img)(0,_n12##y,z,c)), \
|
|
(I[868] = I[869] = I[870] = I[871] = I[872] = I[873] = I[874] = I[875] = I[876] = I[877] = I[878] = I[879] = I[880] = I[881] = I[882] = I[883] = (T)(img)(0,_n13##y,z,c)), \
|
|
(I[899] = I[900] = I[901] = I[902] = I[903] = I[904] = I[905] = I[906] = I[907] = I[908] = I[909] = I[910] = I[911] = I[912] = I[913] = I[914] = (T)(img)(0,_n14##y,z,c)), \
|
|
(I[930] = I[931] = I[932] = I[933] = I[934] = I[935] = I[936] = I[937] = I[938] = I[939] = I[940] = I[941] = I[942] = I[943] = I[944] = I[945] = (T)(img)(0,_n15##y,z,c)), \
|
|
(I[16] = (T)(img)(_n1##x,_p15##y,z,c)), \
|
|
(I[47] = (T)(img)(_n1##x,_p14##y,z,c)), \
|
|
(I[78] = (T)(img)(_n1##x,_p13##y,z,c)), \
|
|
(I[109] = (T)(img)(_n1##x,_p12##y,z,c)), \
|
|
(I[140] = (T)(img)(_n1##x,_p11##y,z,c)), \
|
|
(I[171] = (T)(img)(_n1##x,_p10##y,z,c)), \
|
|
(I[202] = (T)(img)(_n1##x,_p9##y,z,c)), \
|
|
(I[233] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[264] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[295] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[326] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[357] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[388] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[419] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[450] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[481] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[512] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[543] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[574] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[605] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[636] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[667] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[698] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[729] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[760] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[791] = (T)(img)(_n1##x,_n10##y,z,c)), \
|
|
(I[822] = (T)(img)(_n1##x,_n11##y,z,c)), \
|
|
(I[853] = (T)(img)(_n1##x,_n12##y,z,c)), \
|
|
(I[884] = (T)(img)(_n1##x,_n13##y,z,c)), \
|
|
(I[915] = (T)(img)(_n1##x,_n14##y,z,c)), \
|
|
(I[946] = (T)(img)(_n1##x,_n15##y,z,c)), \
|
|
(I[17] = (T)(img)(_n2##x,_p15##y,z,c)), \
|
|
(I[48] = (T)(img)(_n2##x,_p14##y,z,c)), \
|
|
(I[79] = (T)(img)(_n2##x,_p13##y,z,c)), \
|
|
(I[110] = (T)(img)(_n2##x,_p12##y,z,c)), \
|
|
(I[141] = (T)(img)(_n2##x,_p11##y,z,c)), \
|
|
(I[172] = (T)(img)(_n2##x,_p10##y,z,c)), \
|
|
(I[203] = (T)(img)(_n2##x,_p9##y,z,c)), \
|
|
(I[234] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[265] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[296] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[327] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[358] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[389] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[420] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[451] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[482] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[513] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[544] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[575] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[606] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[637] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[668] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[699] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[730] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[761] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[792] = (T)(img)(_n2##x,_n10##y,z,c)), \
|
|
(I[823] = (T)(img)(_n2##x,_n11##y,z,c)), \
|
|
(I[854] = (T)(img)(_n2##x,_n12##y,z,c)), \
|
|
(I[885] = (T)(img)(_n2##x,_n13##y,z,c)), \
|
|
(I[916] = (T)(img)(_n2##x,_n14##y,z,c)), \
|
|
(I[947] = (T)(img)(_n2##x,_n15##y,z,c)), \
|
|
(I[18] = (T)(img)(_n3##x,_p15##y,z,c)), \
|
|
(I[49] = (T)(img)(_n3##x,_p14##y,z,c)), \
|
|
(I[80] = (T)(img)(_n3##x,_p13##y,z,c)), \
|
|
(I[111] = (T)(img)(_n3##x,_p12##y,z,c)), \
|
|
(I[142] = (T)(img)(_n3##x,_p11##y,z,c)), \
|
|
(I[173] = (T)(img)(_n3##x,_p10##y,z,c)), \
|
|
(I[204] = (T)(img)(_n3##x,_p9##y,z,c)), \
|
|
(I[235] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[266] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[297] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[328] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[359] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[390] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[421] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[452] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[483] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[514] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[545] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[576] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[607] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[638] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[669] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[700] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[731] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[762] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[793] = (T)(img)(_n3##x,_n10##y,z,c)), \
|
|
(I[824] = (T)(img)(_n3##x,_n11##y,z,c)), \
|
|
(I[855] = (T)(img)(_n3##x,_n12##y,z,c)), \
|
|
(I[886] = (T)(img)(_n3##x,_n13##y,z,c)), \
|
|
(I[917] = (T)(img)(_n3##x,_n14##y,z,c)), \
|
|
(I[948] = (T)(img)(_n3##x,_n15##y,z,c)), \
|
|
(I[19] = (T)(img)(_n4##x,_p15##y,z,c)), \
|
|
(I[50] = (T)(img)(_n4##x,_p14##y,z,c)), \
|
|
(I[81] = (T)(img)(_n4##x,_p13##y,z,c)), \
|
|
(I[112] = (T)(img)(_n4##x,_p12##y,z,c)), \
|
|
(I[143] = (T)(img)(_n4##x,_p11##y,z,c)), \
|
|
(I[174] = (T)(img)(_n4##x,_p10##y,z,c)), \
|
|
(I[205] = (T)(img)(_n4##x,_p9##y,z,c)), \
|
|
(I[236] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[267] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[298] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[329] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[360] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[391] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[422] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[453] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[484] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[515] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[546] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[577] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[608] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[639] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[670] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[701] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[732] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[763] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[794] = (T)(img)(_n4##x,_n10##y,z,c)), \
|
|
(I[825] = (T)(img)(_n4##x,_n11##y,z,c)), \
|
|
(I[856] = (T)(img)(_n4##x,_n12##y,z,c)), \
|
|
(I[887] = (T)(img)(_n4##x,_n13##y,z,c)), \
|
|
(I[918] = (T)(img)(_n4##x,_n14##y,z,c)), \
|
|
(I[949] = (T)(img)(_n4##x,_n15##y,z,c)), \
|
|
(I[20] = (T)(img)(_n5##x,_p15##y,z,c)), \
|
|
(I[51] = (T)(img)(_n5##x,_p14##y,z,c)), \
|
|
(I[82] = (T)(img)(_n5##x,_p13##y,z,c)), \
|
|
(I[113] = (T)(img)(_n5##x,_p12##y,z,c)), \
|
|
(I[144] = (T)(img)(_n5##x,_p11##y,z,c)), \
|
|
(I[175] = (T)(img)(_n5##x,_p10##y,z,c)), \
|
|
(I[206] = (T)(img)(_n5##x,_p9##y,z,c)), \
|
|
(I[237] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[268] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[299] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[330] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[361] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[392] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[423] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[454] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[485] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[516] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[547] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[578] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[609] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[640] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[671] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[702] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[733] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[764] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[795] = (T)(img)(_n5##x,_n10##y,z,c)), \
|
|
(I[826] = (T)(img)(_n5##x,_n11##y,z,c)), \
|
|
(I[857] = (T)(img)(_n5##x,_n12##y,z,c)), \
|
|
(I[888] = (T)(img)(_n5##x,_n13##y,z,c)), \
|
|
(I[919] = (T)(img)(_n5##x,_n14##y,z,c)), \
|
|
(I[950] = (T)(img)(_n5##x,_n15##y,z,c)), \
|
|
(I[21] = (T)(img)(_n6##x,_p15##y,z,c)), \
|
|
(I[52] = (T)(img)(_n6##x,_p14##y,z,c)), \
|
|
(I[83] = (T)(img)(_n6##x,_p13##y,z,c)), \
|
|
(I[114] = (T)(img)(_n6##x,_p12##y,z,c)), \
|
|
(I[145] = (T)(img)(_n6##x,_p11##y,z,c)), \
|
|
(I[176] = (T)(img)(_n6##x,_p10##y,z,c)), \
|
|
(I[207] = (T)(img)(_n6##x,_p9##y,z,c)), \
|
|
(I[238] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[269] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[300] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[331] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[362] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[393] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[424] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[455] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[486] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[517] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[548] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[579] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[610] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[641] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[672] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[703] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[734] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[765] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[796] = (T)(img)(_n6##x,_n10##y,z,c)), \
|
|
(I[827] = (T)(img)(_n6##x,_n11##y,z,c)), \
|
|
(I[858] = (T)(img)(_n6##x,_n12##y,z,c)), \
|
|
(I[889] = (T)(img)(_n6##x,_n13##y,z,c)), \
|
|
(I[920] = (T)(img)(_n6##x,_n14##y,z,c)), \
|
|
(I[951] = (T)(img)(_n6##x,_n15##y,z,c)), \
|
|
(I[22] = (T)(img)(_n7##x,_p15##y,z,c)), \
|
|
(I[53] = (T)(img)(_n7##x,_p14##y,z,c)), \
|
|
(I[84] = (T)(img)(_n7##x,_p13##y,z,c)), \
|
|
(I[115] = (T)(img)(_n7##x,_p12##y,z,c)), \
|
|
(I[146] = (T)(img)(_n7##x,_p11##y,z,c)), \
|
|
(I[177] = (T)(img)(_n7##x,_p10##y,z,c)), \
|
|
(I[208] = (T)(img)(_n7##x,_p9##y,z,c)), \
|
|
(I[239] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[270] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[301] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[332] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[363] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[394] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[425] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[456] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[487] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[518] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[549] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[580] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[611] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[642] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[673] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[704] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[735] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[766] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[797] = (T)(img)(_n7##x,_n10##y,z,c)), \
|
|
(I[828] = (T)(img)(_n7##x,_n11##y,z,c)), \
|
|
(I[859] = (T)(img)(_n7##x,_n12##y,z,c)), \
|
|
(I[890] = (T)(img)(_n7##x,_n13##y,z,c)), \
|
|
(I[921] = (T)(img)(_n7##x,_n14##y,z,c)), \
|
|
(I[952] = (T)(img)(_n7##x,_n15##y,z,c)), \
|
|
(I[23] = (T)(img)(_n8##x,_p15##y,z,c)), \
|
|
(I[54] = (T)(img)(_n8##x,_p14##y,z,c)), \
|
|
(I[85] = (T)(img)(_n8##x,_p13##y,z,c)), \
|
|
(I[116] = (T)(img)(_n8##x,_p12##y,z,c)), \
|
|
(I[147] = (T)(img)(_n8##x,_p11##y,z,c)), \
|
|
(I[178] = (T)(img)(_n8##x,_p10##y,z,c)), \
|
|
(I[209] = (T)(img)(_n8##x,_p9##y,z,c)), \
|
|
(I[240] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[271] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[302] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[333] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[364] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[395] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[426] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[457] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[488] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[519] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[550] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[581] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[612] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[643] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[674] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[705] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[736] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[767] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
(I[798] = (T)(img)(_n8##x,_n10##y,z,c)), \
|
|
(I[829] = (T)(img)(_n8##x,_n11##y,z,c)), \
|
|
(I[860] = (T)(img)(_n8##x,_n12##y,z,c)), \
|
|
(I[891] = (T)(img)(_n8##x,_n13##y,z,c)), \
|
|
(I[922] = (T)(img)(_n8##x,_n14##y,z,c)), \
|
|
(I[953] = (T)(img)(_n8##x,_n15##y,z,c)), \
|
|
(I[24] = (T)(img)(_n9##x,_p15##y,z,c)), \
|
|
(I[55] = (T)(img)(_n9##x,_p14##y,z,c)), \
|
|
(I[86] = (T)(img)(_n9##x,_p13##y,z,c)), \
|
|
(I[117] = (T)(img)(_n9##x,_p12##y,z,c)), \
|
|
(I[148] = (T)(img)(_n9##x,_p11##y,z,c)), \
|
|
(I[179] = (T)(img)(_n9##x,_p10##y,z,c)), \
|
|
(I[210] = (T)(img)(_n9##x,_p9##y,z,c)), \
|
|
(I[241] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[272] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[303] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[334] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[365] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[396] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[427] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[458] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[489] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[520] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[551] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[582] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[613] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[644] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[675] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[706] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[737] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[768] = (T)(img)(_n9##x,_n9##y,z,c)), \
|
|
(I[799] = (T)(img)(_n9##x,_n10##y,z,c)), \
|
|
(I[830] = (T)(img)(_n9##x,_n11##y,z,c)), \
|
|
(I[861] = (T)(img)(_n9##x,_n12##y,z,c)), \
|
|
(I[892] = (T)(img)(_n9##x,_n13##y,z,c)), \
|
|
(I[923] = (T)(img)(_n9##x,_n14##y,z,c)), \
|
|
(I[954] = (T)(img)(_n9##x,_n15##y,z,c)), \
|
|
(I[25] = (T)(img)(_n10##x,_p15##y,z,c)), \
|
|
(I[56] = (T)(img)(_n10##x,_p14##y,z,c)), \
|
|
(I[87] = (T)(img)(_n10##x,_p13##y,z,c)), \
|
|
(I[118] = (T)(img)(_n10##x,_p12##y,z,c)), \
|
|
(I[149] = (T)(img)(_n10##x,_p11##y,z,c)), \
|
|
(I[180] = (T)(img)(_n10##x,_p10##y,z,c)), \
|
|
(I[211] = (T)(img)(_n10##x,_p9##y,z,c)), \
|
|
(I[242] = (T)(img)(_n10##x,_p8##y,z,c)), \
|
|
(I[273] = (T)(img)(_n10##x,_p7##y,z,c)), \
|
|
(I[304] = (T)(img)(_n10##x,_p6##y,z,c)), \
|
|
(I[335] = (T)(img)(_n10##x,_p5##y,z,c)), \
|
|
(I[366] = (T)(img)(_n10##x,_p4##y,z,c)), \
|
|
(I[397] = (T)(img)(_n10##x,_p3##y,z,c)), \
|
|
(I[428] = (T)(img)(_n10##x,_p2##y,z,c)), \
|
|
(I[459] = (T)(img)(_n10##x,_p1##y,z,c)), \
|
|
(I[490] = (T)(img)(_n10##x,y,z,c)), \
|
|
(I[521] = (T)(img)(_n10##x,_n1##y,z,c)), \
|
|
(I[552] = (T)(img)(_n10##x,_n2##y,z,c)), \
|
|
(I[583] = (T)(img)(_n10##x,_n3##y,z,c)), \
|
|
(I[614] = (T)(img)(_n10##x,_n4##y,z,c)), \
|
|
(I[645] = (T)(img)(_n10##x,_n5##y,z,c)), \
|
|
(I[676] = (T)(img)(_n10##x,_n6##y,z,c)), \
|
|
(I[707] = (T)(img)(_n10##x,_n7##y,z,c)), \
|
|
(I[738] = (T)(img)(_n10##x,_n8##y,z,c)), \
|
|
(I[769] = (T)(img)(_n10##x,_n9##y,z,c)), \
|
|
(I[800] = (T)(img)(_n10##x,_n10##y,z,c)), \
|
|
(I[831] = (T)(img)(_n10##x,_n11##y,z,c)), \
|
|
(I[862] = (T)(img)(_n10##x,_n12##y,z,c)), \
|
|
(I[893] = (T)(img)(_n10##x,_n13##y,z,c)), \
|
|
(I[924] = (T)(img)(_n10##x,_n14##y,z,c)), \
|
|
(I[955] = (T)(img)(_n10##x,_n15##y,z,c)), \
|
|
(I[26] = (T)(img)(_n11##x,_p15##y,z,c)), \
|
|
(I[57] = (T)(img)(_n11##x,_p14##y,z,c)), \
|
|
(I[88] = (T)(img)(_n11##x,_p13##y,z,c)), \
|
|
(I[119] = (T)(img)(_n11##x,_p12##y,z,c)), \
|
|
(I[150] = (T)(img)(_n11##x,_p11##y,z,c)), \
|
|
(I[181] = (T)(img)(_n11##x,_p10##y,z,c)), \
|
|
(I[212] = (T)(img)(_n11##x,_p9##y,z,c)), \
|
|
(I[243] = (T)(img)(_n11##x,_p8##y,z,c)), \
|
|
(I[274] = (T)(img)(_n11##x,_p7##y,z,c)), \
|
|
(I[305] = (T)(img)(_n11##x,_p6##y,z,c)), \
|
|
(I[336] = (T)(img)(_n11##x,_p5##y,z,c)), \
|
|
(I[367] = (T)(img)(_n11##x,_p4##y,z,c)), \
|
|
(I[398] = (T)(img)(_n11##x,_p3##y,z,c)), \
|
|
(I[429] = (T)(img)(_n11##x,_p2##y,z,c)), \
|
|
(I[460] = (T)(img)(_n11##x,_p1##y,z,c)), \
|
|
(I[491] = (T)(img)(_n11##x,y,z,c)), \
|
|
(I[522] = (T)(img)(_n11##x,_n1##y,z,c)), \
|
|
(I[553] = (T)(img)(_n11##x,_n2##y,z,c)), \
|
|
(I[584] = (T)(img)(_n11##x,_n3##y,z,c)), \
|
|
(I[615] = (T)(img)(_n11##x,_n4##y,z,c)), \
|
|
(I[646] = (T)(img)(_n11##x,_n5##y,z,c)), \
|
|
(I[677] = (T)(img)(_n11##x,_n6##y,z,c)), \
|
|
(I[708] = (T)(img)(_n11##x,_n7##y,z,c)), \
|
|
(I[739] = (T)(img)(_n11##x,_n8##y,z,c)), \
|
|
(I[770] = (T)(img)(_n11##x,_n9##y,z,c)), \
|
|
(I[801] = (T)(img)(_n11##x,_n10##y,z,c)), \
|
|
(I[832] = (T)(img)(_n11##x,_n11##y,z,c)), \
|
|
(I[863] = (T)(img)(_n11##x,_n12##y,z,c)), \
|
|
(I[894] = (T)(img)(_n11##x,_n13##y,z,c)), \
|
|
(I[925] = (T)(img)(_n11##x,_n14##y,z,c)), \
|
|
(I[956] = (T)(img)(_n11##x,_n15##y,z,c)), \
|
|
(I[27] = (T)(img)(_n12##x,_p15##y,z,c)), \
|
|
(I[58] = (T)(img)(_n12##x,_p14##y,z,c)), \
|
|
(I[89] = (T)(img)(_n12##x,_p13##y,z,c)), \
|
|
(I[120] = (T)(img)(_n12##x,_p12##y,z,c)), \
|
|
(I[151] = (T)(img)(_n12##x,_p11##y,z,c)), \
|
|
(I[182] = (T)(img)(_n12##x,_p10##y,z,c)), \
|
|
(I[213] = (T)(img)(_n12##x,_p9##y,z,c)), \
|
|
(I[244] = (T)(img)(_n12##x,_p8##y,z,c)), \
|
|
(I[275] = (T)(img)(_n12##x,_p7##y,z,c)), \
|
|
(I[306] = (T)(img)(_n12##x,_p6##y,z,c)), \
|
|
(I[337] = (T)(img)(_n12##x,_p5##y,z,c)), \
|
|
(I[368] = (T)(img)(_n12##x,_p4##y,z,c)), \
|
|
(I[399] = (T)(img)(_n12##x,_p3##y,z,c)), \
|
|
(I[430] = (T)(img)(_n12##x,_p2##y,z,c)), \
|
|
(I[461] = (T)(img)(_n12##x,_p1##y,z,c)), \
|
|
(I[492] = (T)(img)(_n12##x,y,z,c)), \
|
|
(I[523] = (T)(img)(_n12##x,_n1##y,z,c)), \
|
|
(I[554] = (T)(img)(_n12##x,_n2##y,z,c)), \
|
|
(I[585] = (T)(img)(_n12##x,_n3##y,z,c)), \
|
|
(I[616] = (T)(img)(_n12##x,_n4##y,z,c)), \
|
|
(I[647] = (T)(img)(_n12##x,_n5##y,z,c)), \
|
|
(I[678] = (T)(img)(_n12##x,_n6##y,z,c)), \
|
|
(I[709] = (T)(img)(_n12##x,_n7##y,z,c)), \
|
|
(I[740] = (T)(img)(_n12##x,_n8##y,z,c)), \
|
|
(I[771] = (T)(img)(_n12##x,_n9##y,z,c)), \
|
|
(I[802] = (T)(img)(_n12##x,_n10##y,z,c)), \
|
|
(I[833] = (T)(img)(_n12##x,_n11##y,z,c)), \
|
|
(I[864] = (T)(img)(_n12##x,_n12##y,z,c)), \
|
|
(I[895] = (T)(img)(_n12##x,_n13##y,z,c)), \
|
|
(I[926] = (T)(img)(_n12##x,_n14##y,z,c)), \
|
|
(I[957] = (T)(img)(_n12##x,_n15##y,z,c)), \
|
|
(I[28] = (T)(img)(_n13##x,_p15##y,z,c)), \
|
|
(I[59] = (T)(img)(_n13##x,_p14##y,z,c)), \
|
|
(I[90] = (T)(img)(_n13##x,_p13##y,z,c)), \
|
|
(I[121] = (T)(img)(_n13##x,_p12##y,z,c)), \
|
|
(I[152] = (T)(img)(_n13##x,_p11##y,z,c)), \
|
|
(I[183] = (T)(img)(_n13##x,_p10##y,z,c)), \
|
|
(I[214] = (T)(img)(_n13##x,_p9##y,z,c)), \
|
|
(I[245] = (T)(img)(_n13##x,_p8##y,z,c)), \
|
|
(I[276] = (T)(img)(_n13##x,_p7##y,z,c)), \
|
|
(I[307] = (T)(img)(_n13##x,_p6##y,z,c)), \
|
|
(I[338] = (T)(img)(_n13##x,_p5##y,z,c)), \
|
|
(I[369] = (T)(img)(_n13##x,_p4##y,z,c)), \
|
|
(I[400] = (T)(img)(_n13##x,_p3##y,z,c)), \
|
|
(I[431] = (T)(img)(_n13##x,_p2##y,z,c)), \
|
|
(I[462] = (T)(img)(_n13##x,_p1##y,z,c)), \
|
|
(I[493] = (T)(img)(_n13##x,y,z,c)), \
|
|
(I[524] = (T)(img)(_n13##x,_n1##y,z,c)), \
|
|
(I[555] = (T)(img)(_n13##x,_n2##y,z,c)), \
|
|
(I[586] = (T)(img)(_n13##x,_n3##y,z,c)), \
|
|
(I[617] = (T)(img)(_n13##x,_n4##y,z,c)), \
|
|
(I[648] = (T)(img)(_n13##x,_n5##y,z,c)), \
|
|
(I[679] = (T)(img)(_n13##x,_n6##y,z,c)), \
|
|
(I[710] = (T)(img)(_n13##x,_n7##y,z,c)), \
|
|
(I[741] = (T)(img)(_n13##x,_n8##y,z,c)), \
|
|
(I[772] = (T)(img)(_n13##x,_n9##y,z,c)), \
|
|
(I[803] = (T)(img)(_n13##x,_n10##y,z,c)), \
|
|
(I[834] = (T)(img)(_n13##x,_n11##y,z,c)), \
|
|
(I[865] = (T)(img)(_n13##x,_n12##y,z,c)), \
|
|
(I[896] = (T)(img)(_n13##x,_n13##y,z,c)), \
|
|
(I[927] = (T)(img)(_n13##x,_n14##y,z,c)), \
|
|
(I[958] = (T)(img)(_n13##x,_n15##y,z,c)), \
|
|
(I[29] = (T)(img)(_n14##x,_p15##y,z,c)), \
|
|
(I[60] = (T)(img)(_n14##x,_p14##y,z,c)), \
|
|
(I[91] = (T)(img)(_n14##x,_p13##y,z,c)), \
|
|
(I[122] = (T)(img)(_n14##x,_p12##y,z,c)), \
|
|
(I[153] = (T)(img)(_n14##x,_p11##y,z,c)), \
|
|
(I[184] = (T)(img)(_n14##x,_p10##y,z,c)), \
|
|
(I[215] = (T)(img)(_n14##x,_p9##y,z,c)), \
|
|
(I[246] = (T)(img)(_n14##x,_p8##y,z,c)), \
|
|
(I[277] = (T)(img)(_n14##x,_p7##y,z,c)), \
|
|
(I[308] = (T)(img)(_n14##x,_p6##y,z,c)), \
|
|
(I[339] = (T)(img)(_n14##x,_p5##y,z,c)), \
|
|
(I[370] = (T)(img)(_n14##x,_p4##y,z,c)), \
|
|
(I[401] = (T)(img)(_n14##x,_p3##y,z,c)), \
|
|
(I[432] = (T)(img)(_n14##x,_p2##y,z,c)), \
|
|
(I[463] = (T)(img)(_n14##x,_p1##y,z,c)), \
|
|
(I[494] = (T)(img)(_n14##x,y,z,c)), \
|
|
(I[525] = (T)(img)(_n14##x,_n1##y,z,c)), \
|
|
(I[556] = (T)(img)(_n14##x,_n2##y,z,c)), \
|
|
(I[587] = (T)(img)(_n14##x,_n3##y,z,c)), \
|
|
(I[618] = (T)(img)(_n14##x,_n4##y,z,c)), \
|
|
(I[649] = (T)(img)(_n14##x,_n5##y,z,c)), \
|
|
(I[680] = (T)(img)(_n14##x,_n6##y,z,c)), \
|
|
(I[711] = (T)(img)(_n14##x,_n7##y,z,c)), \
|
|
(I[742] = (T)(img)(_n14##x,_n8##y,z,c)), \
|
|
(I[773] = (T)(img)(_n14##x,_n9##y,z,c)), \
|
|
(I[804] = (T)(img)(_n14##x,_n10##y,z,c)), \
|
|
(I[835] = (T)(img)(_n14##x,_n11##y,z,c)), \
|
|
(I[866] = (T)(img)(_n14##x,_n12##y,z,c)), \
|
|
(I[897] = (T)(img)(_n14##x,_n13##y,z,c)), \
|
|
(I[928] = (T)(img)(_n14##x,_n14##y,z,c)), \
|
|
(I[959] = (T)(img)(_n14##x,_n15##y,z,c)), \
|
|
15>=((img)._width)?(img).width() - 1:15); \
|
|
(_n15##x<(img).width() && ( \
|
|
(I[30] = (T)(img)(_n15##x,_p15##y,z,c)), \
|
|
(I[61] = (T)(img)(_n15##x,_p14##y,z,c)), \
|
|
(I[92] = (T)(img)(_n15##x,_p13##y,z,c)), \
|
|
(I[123] = (T)(img)(_n15##x,_p12##y,z,c)), \
|
|
(I[154] = (T)(img)(_n15##x,_p11##y,z,c)), \
|
|
(I[185] = (T)(img)(_n15##x,_p10##y,z,c)), \
|
|
(I[216] = (T)(img)(_n15##x,_p9##y,z,c)), \
|
|
(I[247] = (T)(img)(_n15##x,_p8##y,z,c)), \
|
|
(I[278] = (T)(img)(_n15##x,_p7##y,z,c)), \
|
|
(I[309] = (T)(img)(_n15##x,_p6##y,z,c)), \
|
|
(I[340] = (T)(img)(_n15##x,_p5##y,z,c)), \
|
|
(I[371] = (T)(img)(_n15##x,_p4##y,z,c)), \
|
|
(I[402] = (T)(img)(_n15##x,_p3##y,z,c)), \
|
|
(I[433] = (T)(img)(_n15##x,_p2##y,z,c)), \
|
|
(I[464] = (T)(img)(_n15##x,_p1##y,z,c)), \
|
|
(I[495] = (T)(img)(_n15##x,y,z,c)), \
|
|
(I[526] = (T)(img)(_n15##x,_n1##y,z,c)), \
|
|
(I[557] = (T)(img)(_n15##x,_n2##y,z,c)), \
|
|
(I[588] = (T)(img)(_n15##x,_n3##y,z,c)), \
|
|
(I[619] = (T)(img)(_n15##x,_n4##y,z,c)), \
|
|
(I[650] = (T)(img)(_n15##x,_n5##y,z,c)), \
|
|
(I[681] = (T)(img)(_n15##x,_n6##y,z,c)), \
|
|
(I[712] = (T)(img)(_n15##x,_n7##y,z,c)), \
|
|
(I[743] = (T)(img)(_n15##x,_n8##y,z,c)), \
|
|
(I[774] = (T)(img)(_n15##x,_n9##y,z,c)), \
|
|
(I[805] = (T)(img)(_n15##x,_n10##y,z,c)), \
|
|
(I[836] = (T)(img)(_n15##x,_n11##y,z,c)), \
|
|
(I[867] = (T)(img)(_n15##x,_n12##y,z,c)), \
|
|
(I[898] = (T)(img)(_n15##x,_n13##y,z,c)), \
|
|
(I[929] = (T)(img)(_n15##x,_n14##y,z,c)), \
|
|
(I[960] = (T)(img)(_n15##x,_n15##y,z,c)),1)) || \
|
|
_n14##x==--_n15##x || _n13##x==--_n14##x || _n12##x==--_n13##x || _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n15##x = _n14##x = _n13##x = _n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], \
|
|
I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], \
|
|
I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], \
|
|
I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], \
|
|
I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], \
|
|
I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], \
|
|
I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], \
|
|
I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], \
|
|
I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], \
|
|
I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], \
|
|
I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], \
|
|
I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], \
|
|
I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], \
|
|
I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], \
|
|
I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], \
|
|
I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], \
|
|
I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], \
|
|
I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], \
|
|
I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], I[575] = I[576], I[576] = I[577], I[577] = I[578], I[578] = I[579], I[579] = I[580], I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], I[587] = I[588], \
|
|
I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], I[593] = I[594], I[594] = I[595], I[595] = I[596], I[596] = I[597], I[597] = I[598], I[598] = I[599], I[599] = I[600], I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], I[607] = I[608], I[608] = I[609], I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], I[615] = I[616], I[616] = I[617], I[617] = I[618], I[618] = I[619], \
|
|
I[620] = I[621], I[621] = I[622], I[622] = I[623], I[623] = I[624], I[624] = I[625], I[625] = I[626], I[626] = I[627], I[627] = I[628], I[628] = I[629], I[629] = I[630], I[630] = I[631], I[631] = I[632], I[632] = I[633], I[633] = I[634], I[634] = I[635], I[635] = I[636], I[636] = I[637], I[637] = I[638], I[638] = I[639], I[639] = I[640], I[640] = I[641], I[641] = I[642], I[642] = I[643], I[643] = I[644], I[644] = I[645], I[645] = I[646], I[646] = I[647], I[647] = I[648], I[648] = I[649], I[649] = I[650], \
|
|
I[651] = I[652], I[652] = I[653], I[653] = I[654], I[654] = I[655], I[655] = I[656], I[656] = I[657], I[657] = I[658], I[658] = I[659], I[659] = I[660], I[660] = I[661], I[661] = I[662], I[662] = I[663], I[663] = I[664], I[664] = I[665], I[665] = I[666], I[666] = I[667], I[667] = I[668], I[668] = I[669], I[669] = I[670], I[670] = I[671], I[671] = I[672], I[672] = I[673], I[673] = I[674], I[674] = I[675], I[675] = I[676], I[676] = I[677], I[677] = I[678], I[678] = I[679], I[679] = I[680], I[680] = I[681], \
|
|
I[682] = I[683], I[683] = I[684], I[684] = I[685], I[685] = I[686], I[686] = I[687], I[687] = I[688], I[688] = I[689], I[689] = I[690], I[690] = I[691], I[691] = I[692], I[692] = I[693], I[693] = I[694], I[694] = I[695], I[695] = I[696], I[696] = I[697], I[697] = I[698], I[698] = I[699], I[699] = I[700], I[700] = I[701], I[701] = I[702], I[702] = I[703], I[703] = I[704], I[704] = I[705], I[705] = I[706], I[706] = I[707], I[707] = I[708], I[708] = I[709], I[709] = I[710], I[710] = I[711], I[711] = I[712], \
|
|
I[713] = I[714], I[714] = I[715], I[715] = I[716], I[716] = I[717], I[717] = I[718], I[718] = I[719], I[719] = I[720], I[720] = I[721], I[721] = I[722], I[722] = I[723], I[723] = I[724], I[724] = I[725], I[725] = I[726], I[726] = I[727], I[727] = I[728], I[728] = I[729], I[729] = I[730], I[730] = I[731], I[731] = I[732], I[732] = I[733], I[733] = I[734], I[734] = I[735], I[735] = I[736], I[736] = I[737], I[737] = I[738], I[738] = I[739], I[739] = I[740], I[740] = I[741], I[741] = I[742], I[742] = I[743], \
|
|
I[744] = I[745], I[745] = I[746], I[746] = I[747], I[747] = I[748], I[748] = I[749], I[749] = I[750], I[750] = I[751], I[751] = I[752], I[752] = I[753], I[753] = I[754], I[754] = I[755], I[755] = I[756], I[756] = I[757], I[757] = I[758], I[758] = I[759], I[759] = I[760], I[760] = I[761], I[761] = I[762], I[762] = I[763], I[763] = I[764], I[764] = I[765], I[765] = I[766], I[766] = I[767], I[767] = I[768], I[768] = I[769], I[769] = I[770], I[770] = I[771], I[771] = I[772], I[772] = I[773], I[773] = I[774], \
|
|
I[775] = I[776], I[776] = I[777], I[777] = I[778], I[778] = I[779], I[779] = I[780], I[780] = I[781], I[781] = I[782], I[782] = I[783], I[783] = I[784], I[784] = I[785], I[785] = I[786], I[786] = I[787], I[787] = I[788], I[788] = I[789], I[789] = I[790], I[790] = I[791], I[791] = I[792], I[792] = I[793], I[793] = I[794], I[794] = I[795], I[795] = I[796], I[796] = I[797], I[797] = I[798], I[798] = I[799], I[799] = I[800], I[800] = I[801], I[801] = I[802], I[802] = I[803], I[803] = I[804], I[804] = I[805], \
|
|
I[806] = I[807], I[807] = I[808], I[808] = I[809], I[809] = I[810], I[810] = I[811], I[811] = I[812], I[812] = I[813], I[813] = I[814], I[814] = I[815], I[815] = I[816], I[816] = I[817], I[817] = I[818], I[818] = I[819], I[819] = I[820], I[820] = I[821], I[821] = I[822], I[822] = I[823], I[823] = I[824], I[824] = I[825], I[825] = I[826], I[826] = I[827], I[827] = I[828], I[828] = I[829], I[829] = I[830], I[830] = I[831], I[831] = I[832], I[832] = I[833], I[833] = I[834], I[834] = I[835], I[835] = I[836], \
|
|
I[837] = I[838], I[838] = I[839], I[839] = I[840], I[840] = I[841], I[841] = I[842], I[842] = I[843], I[843] = I[844], I[844] = I[845], I[845] = I[846], I[846] = I[847], I[847] = I[848], I[848] = I[849], I[849] = I[850], I[850] = I[851], I[851] = I[852], I[852] = I[853], I[853] = I[854], I[854] = I[855], I[855] = I[856], I[856] = I[857], I[857] = I[858], I[858] = I[859], I[859] = I[860], I[860] = I[861], I[861] = I[862], I[862] = I[863], I[863] = I[864], I[864] = I[865], I[865] = I[866], I[866] = I[867], \
|
|
I[868] = I[869], I[869] = I[870], I[870] = I[871], I[871] = I[872], I[872] = I[873], I[873] = I[874], I[874] = I[875], I[875] = I[876], I[876] = I[877], I[877] = I[878], I[878] = I[879], I[879] = I[880], I[880] = I[881], I[881] = I[882], I[882] = I[883], I[883] = I[884], I[884] = I[885], I[885] = I[886], I[886] = I[887], I[887] = I[888], I[888] = I[889], I[889] = I[890], I[890] = I[891], I[891] = I[892], I[892] = I[893], I[893] = I[894], I[894] = I[895], I[895] = I[896], I[896] = I[897], I[897] = I[898], \
|
|
I[899] = I[900], I[900] = I[901], I[901] = I[902], I[902] = I[903], I[903] = I[904], I[904] = I[905], I[905] = I[906], I[906] = I[907], I[907] = I[908], I[908] = I[909], I[909] = I[910], I[910] = I[911], I[911] = I[912], I[912] = I[913], I[913] = I[914], I[914] = I[915], I[915] = I[916], I[916] = I[917], I[917] = I[918], I[918] = I[919], I[919] = I[920], I[920] = I[921], I[921] = I[922], I[922] = I[923], I[923] = I[924], I[924] = I[925], I[925] = I[926], I[926] = I[927], I[927] = I[928], I[928] = I[929], \
|
|
I[930] = I[931], I[931] = I[932], I[932] = I[933], I[933] = I[934], I[934] = I[935], I[935] = I[936], I[936] = I[937], I[937] = I[938], I[938] = I[939], I[939] = I[940], I[940] = I[941], I[941] = I[942], I[942] = I[943], I[943] = I[944], I[944] = I[945], I[945] = I[946], I[946] = I[947], I[947] = I[948], I[948] = I[949], I[949] = I[950], I[950] = I[951], I[951] = I[952], I[952] = I[953], I[953] = I[954], I[954] = I[955], I[955] = I[956], I[956] = I[957], I[957] = I[958], I[958] = I[959], I[959] = I[960], \
|
|
_p15##x = _p14##x, _p14##x = _p13##x, _p13##x = _p12##x, _p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x, ++_n13##x, ++_n14##x, ++_n15##x)
|
|
|
|
#define cimg_for_in31x31(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in31((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p15##x = x - 15<0?0:x - 15, \
|
|
_p14##x = x - 14<0?0:x - 14, \
|
|
_p13##x = x - 13<0?0:x - 13, \
|
|
_p12##x = x - 12<0?0:x - 12, \
|
|
_p11##x = x - 11<0?0:x - 11, \
|
|
_p10##x = x - 10<0?0:x - 10, \
|
|
_p9##x = x - 9<0?0:x - 9, \
|
|
_p8##x = x - 8<0?0:x - 8, \
|
|
_p7##x = x - 7<0?0:x - 7, \
|
|
_p6##x = x - 6<0?0:x - 6, \
|
|
_p5##x = x - 5<0?0:x - 5, \
|
|
_p4##x = x - 4<0?0:x - 4, \
|
|
_p3##x = x - 3<0?0:x - 3, \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
|
|
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
|
|
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
|
|
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
|
|
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
|
|
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
|
|
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
|
|
_n9##x = x + 9>=(img).width()?(img).width() - 1:x + 9, \
|
|
_n10##x = x + 10>=(img).width()?(img).width() - 1:x + 10, \
|
|
_n11##x = x + 11>=(img).width()?(img).width() - 1:x + 11, \
|
|
_n12##x = x + 12>=(img).width()?(img).width() - 1:x + 12, \
|
|
_n13##x = x + 13>=(img).width()?(img).width() - 1:x + 13, \
|
|
_n14##x = x + 14>=(img).width()?(img).width() - 1:x + 14, \
|
|
_n15##x = (int)( \
|
|
(I[0] = (T)(img)(_p15##x,_p15##y,z,c)), \
|
|
(I[31] = (T)(img)(_p15##x,_p14##y,z,c)), \
|
|
(I[62] = (T)(img)(_p15##x,_p13##y,z,c)), \
|
|
(I[93] = (T)(img)(_p15##x,_p12##y,z,c)), \
|
|
(I[124] = (T)(img)(_p15##x,_p11##y,z,c)), \
|
|
(I[155] = (T)(img)(_p15##x,_p10##y,z,c)), \
|
|
(I[186] = (T)(img)(_p15##x,_p9##y,z,c)), \
|
|
(I[217] = (T)(img)(_p15##x,_p8##y,z,c)), \
|
|
(I[248] = (T)(img)(_p15##x,_p7##y,z,c)), \
|
|
(I[279] = (T)(img)(_p15##x,_p6##y,z,c)), \
|
|
(I[310] = (T)(img)(_p15##x,_p5##y,z,c)), \
|
|
(I[341] = (T)(img)(_p15##x,_p4##y,z,c)), \
|
|
(I[372] = (T)(img)(_p15##x,_p3##y,z,c)), \
|
|
(I[403] = (T)(img)(_p15##x,_p2##y,z,c)), \
|
|
(I[434] = (T)(img)(_p15##x,_p1##y,z,c)), \
|
|
(I[465] = (T)(img)(_p15##x,y,z,c)), \
|
|
(I[496] = (T)(img)(_p15##x,_n1##y,z,c)), \
|
|
(I[527] = (T)(img)(_p15##x,_n2##y,z,c)), \
|
|
(I[558] = (T)(img)(_p15##x,_n3##y,z,c)), \
|
|
(I[589] = (T)(img)(_p15##x,_n4##y,z,c)), \
|
|
(I[620] = (T)(img)(_p15##x,_n5##y,z,c)), \
|
|
(I[651] = (T)(img)(_p15##x,_n6##y,z,c)), \
|
|
(I[682] = (T)(img)(_p15##x,_n7##y,z,c)), \
|
|
(I[713] = (T)(img)(_p15##x,_n8##y,z,c)), \
|
|
(I[744] = (T)(img)(_p15##x,_n9##y,z,c)), \
|
|
(I[775] = (T)(img)(_p15##x,_n10##y,z,c)), \
|
|
(I[806] = (T)(img)(_p15##x,_n11##y,z,c)), \
|
|
(I[837] = (T)(img)(_p15##x,_n12##y,z,c)), \
|
|
(I[868] = (T)(img)(_p15##x,_n13##y,z,c)), \
|
|
(I[899] = (T)(img)(_p15##x,_n14##y,z,c)), \
|
|
(I[930] = (T)(img)(_p15##x,_n15##y,z,c)), \
|
|
(I[1] = (T)(img)(_p14##x,_p15##y,z,c)), \
|
|
(I[32] = (T)(img)(_p14##x,_p14##y,z,c)), \
|
|
(I[63] = (T)(img)(_p14##x,_p13##y,z,c)), \
|
|
(I[94] = (T)(img)(_p14##x,_p12##y,z,c)), \
|
|
(I[125] = (T)(img)(_p14##x,_p11##y,z,c)), \
|
|
(I[156] = (T)(img)(_p14##x,_p10##y,z,c)), \
|
|
(I[187] = (T)(img)(_p14##x,_p9##y,z,c)), \
|
|
(I[218] = (T)(img)(_p14##x,_p8##y,z,c)), \
|
|
(I[249] = (T)(img)(_p14##x,_p7##y,z,c)), \
|
|
(I[280] = (T)(img)(_p14##x,_p6##y,z,c)), \
|
|
(I[311] = (T)(img)(_p14##x,_p5##y,z,c)), \
|
|
(I[342] = (T)(img)(_p14##x,_p4##y,z,c)), \
|
|
(I[373] = (T)(img)(_p14##x,_p3##y,z,c)), \
|
|
(I[404] = (T)(img)(_p14##x,_p2##y,z,c)), \
|
|
(I[435] = (T)(img)(_p14##x,_p1##y,z,c)), \
|
|
(I[466] = (T)(img)(_p14##x,y,z,c)), \
|
|
(I[497] = (T)(img)(_p14##x,_n1##y,z,c)), \
|
|
(I[528] = (T)(img)(_p14##x,_n2##y,z,c)), \
|
|
(I[559] = (T)(img)(_p14##x,_n3##y,z,c)), \
|
|
(I[590] = (T)(img)(_p14##x,_n4##y,z,c)), \
|
|
(I[621] = (T)(img)(_p14##x,_n5##y,z,c)), \
|
|
(I[652] = (T)(img)(_p14##x,_n6##y,z,c)), \
|
|
(I[683] = (T)(img)(_p14##x,_n7##y,z,c)), \
|
|
(I[714] = (T)(img)(_p14##x,_n8##y,z,c)), \
|
|
(I[745] = (T)(img)(_p14##x,_n9##y,z,c)), \
|
|
(I[776] = (T)(img)(_p14##x,_n10##y,z,c)), \
|
|
(I[807] = (T)(img)(_p14##x,_n11##y,z,c)), \
|
|
(I[838] = (T)(img)(_p14##x,_n12##y,z,c)), \
|
|
(I[869] = (T)(img)(_p14##x,_n13##y,z,c)), \
|
|
(I[900] = (T)(img)(_p14##x,_n14##y,z,c)), \
|
|
(I[931] = (T)(img)(_p14##x,_n15##y,z,c)), \
|
|
(I[2] = (T)(img)(_p13##x,_p15##y,z,c)), \
|
|
(I[33] = (T)(img)(_p13##x,_p14##y,z,c)), \
|
|
(I[64] = (T)(img)(_p13##x,_p13##y,z,c)), \
|
|
(I[95] = (T)(img)(_p13##x,_p12##y,z,c)), \
|
|
(I[126] = (T)(img)(_p13##x,_p11##y,z,c)), \
|
|
(I[157] = (T)(img)(_p13##x,_p10##y,z,c)), \
|
|
(I[188] = (T)(img)(_p13##x,_p9##y,z,c)), \
|
|
(I[219] = (T)(img)(_p13##x,_p8##y,z,c)), \
|
|
(I[250] = (T)(img)(_p13##x,_p7##y,z,c)), \
|
|
(I[281] = (T)(img)(_p13##x,_p6##y,z,c)), \
|
|
(I[312] = (T)(img)(_p13##x,_p5##y,z,c)), \
|
|
(I[343] = (T)(img)(_p13##x,_p4##y,z,c)), \
|
|
(I[374] = (T)(img)(_p13##x,_p3##y,z,c)), \
|
|
(I[405] = (T)(img)(_p13##x,_p2##y,z,c)), \
|
|
(I[436] = (T)(img)(_p13##x,_p1##y,z,c)), \
|
|
(I[467] = (T)(img)(_p13##x,y,z,c)), \
|
|
(I[498] = (T)(img)(_p13##x,_n1##y,z,c)), \
|
|
(I[529] = (T)(img)(_p13##x,_n2##y,z,c)), \
|
|
(I[560] = (T)(img)(_p13##x,_n3##y,z,c)), \
|
|
(I[591] = (T)(img)(_p13##x,_n4##y,z,c)), \
|
|
(I[622] = (T)(img)(_p13##x,_n5##y,z,c)), \
|
|
(I[653] = (T)(img)(_p13##x,_n6##y,z,c)), \
|
|
(I[684] = (T)(img)(_p13##x,_n7##y,z,c)), \
|
|
(I[715] = (T)(img)(_p13##x,_n8##y,z,c)), \
|
|
(I[746] = (T)(img)(_p13##x,_n9##y,z,c)), \
|
|
(I[777] = (T)(img)(_p13##x,_n10##y,z,c)), \
|
|
(I[808] = (T)(img)(_p13##x,_n11##y,z,c)), \
|
|
(I[839] = (T)(img)(_p13##x,_n12##y,z,c)), \
|
|
(I[870] = (T)(img)(_p13##x,_n13##y,z,c)), \
|
|
(I[901] = (T)(img)(_p13##x,_n14##y,z,c)), \
|
|
(I[932] = (T)(img)(_p13##x,_n15##y,z,c)), \
|
|
(I[3] = (T)(img)(_p12##x,_p15##y,z,c)), \
|
|
(I[34] = (T)(img)(_p12##x,_p14##y,z,c)), \
|
|
(I[65] = (T)(img)(_p12##x,_p13##y,z,c)), \
|
|
(I[96] = (T)(img)(_p12##x,_p12##y,z,c)), \
|
|
(I[127] = (T)(img)(_p12##x,_p11##y,z,c)), \
|
|
(I[158] = (T)(img)(_p12##x,_p10##y,z,c)), \
|
|
(I[189] = (T)(img)(_p12##x,_p9##y,z,c)), \
|
|
(I[220] = (T)(img)(_p12##x,_p8##y,z,c)), \
|
|
(I[251] = (T)(img)(_p12##x,_p7##y,z,c)), \
|
|
(I[282] = (T)(img)(_p12##x,_p6##y,z,c)), \
|
|
(I[313] = (T)(img)(_p12##x,_p5##y,z,c)), \
|
|
(I[344] = (T)(img)(_p12##x,_p4##y,z,c)), \
|
|
(I[375] = (T)(img)(_p12##x,_p3##y,z,c)), \
|
|
(I[406] = (T)(img)(_p12##x,_p2##y,z,c)), \
|
|
(I[437] = (T)(img)(_p12##x,_p1##y,z,c)), \
|
|
(I[468] = (T)(img)(_p12##x,y,z,c)), \
|
|
(I[499] = (T)(img)(_p12##x,_n1##y,z,c)), \
|
|
(I[530] = (T)(img)(_p12##x,_n2##y,z,c)), \
|
|
(I[561] = (T)(img)(_p12##x,_n3##y,z,c)), \
|
|
(I[592] = (T)(img)(_p12##x,_n4##y,z,c)), \
|
|
(I[623] = (T)(img)(_p12##x,_n5##y,z,c)), \
|
|
(I[654] = (T)(img)(_p12##x,_n6##y,z,c)), \
|
|
(I[685] = (T)(img)(_p12##x,_n7##y,z,c)), \
|
|
(I[716] = (T)(img)(_p12##x,_n8##y,z,c)), \
|
|
(I[747] = (T)(img)(_p12##x,_n9##y,z,c)), \
|
|
(I[778] = (T)(img)(_p12##x,_n10##y,z,c)), \
|
|
(I[809] = (T)(img)(_p12##x,_n11##y,z,c)), \
|
|
(I[840] = (T)(img)(_p12##x,_n12##y,z,c)), \
|
|
(I[871] = (T)(img)(_p12##x,_n13##y,z,c)), \
|
|
(I[902] = (T)(img)(_p12##x,_n14##y,z,c)), \
|
|
(I[933] = (T)(img)(_p12##x,_n15##y,z,c)), \
|
|
(I[4] = (T)(img)(_p11##x,_p15##y,z,c)), \
|
|
(I[35] = (T)(img)(_p11##x,_p14##y,z,c)), \
|
|
(I[66] = (T)(img)(_p11##x,_p13##y,z,c)), \
|
|
(I[97] = (T)(img)(_p11##x,_p12##y,z,c)), \
|
|
(I[128] = (T)(img)(_p11##x,_p11##y,z,c)), \
|
|
(I[159] = (T)(img)(_p11##x,_p10##y,z,c)), \
|
|
(I[190] = (T)(img)(_p11##x,_p9##y,z,c)), \
|
|
(I[221] = (T)(img)(_p11##x,_p8##y,z,c)), \
|
|
(I[252] = (T)(img)(_p11##x,_p7##y,z,c)), \
|
|
(I[283] = (T)(img)(_p11##x,_p6##y,z,c)), \
|
|
(I[314] = (T)(img)(_p11##x,_p5##y,z,c)), \
|
|
(I[345] = (T)(img)(_p11##x,_p4##y,z,c)), \
|
|
(I[376] = (T)(img)(_p11##x,_p3##y,z,c)), \
|
|
(I[407] = (T)(img)(_p11##x,_p2##y,z,c)), \
|
|
(I[438] = (T)(img)(_p11##x,_p1##y,z,c)), \
|
|
(I[469] = (T)(img)(_p11##x,y,z,c)), \
|
|
(I[500] = (T)(img)(_p11##x,_n1##y,z,c)), \
|
|
(I[531] = (T)(img)(_p11##x,_n2##y,z,c)), \
|
|
(I[562] = (T)(img)(_p11##x,_n3##y,z,c)), \
|
|
(I[593] = (T)(img)(_p11##x,_n4##y,z,c)), \
|
|
(I[624] = (T)(img)(_p11##x,_n5##y,z,c)), \
|
|
(I[655] = (T)(img)(_p11##x,_n6##y,z,c)), \
|
|
(I[686] = (T)(img)(_p11##x,_n7##y,z,c)), \
|
|
(I[717] = (T)(img)(_p11##x,_n8##y,z,c)), \
|
|
(I[748] = (T)(img)(_p11##x,_n9##y,z,c)), \
|
|
(I[779] = (T)(img)(_p11##x,_n10##y,z,c)), \
|
|
(I[810] = (T)(img)(_p11##x,_n11##y,z,c)), \
|
|
(I[841] = (T)(img)(_p11##x,_n12##y,z,c)), \
|
|
(I[872] = (T)(img)(_p11##x,_n13##y,z,c)), \
|
|
(I[903] = (T)(img)(_p11##x,_n14##y,z,c)), \
|
|
(I[934] = (T)(img)(_p11##x,_n15##y,z,c)), \
|
|
(I[5] = (T)(img)(_p10##x,_p15##y,z,c)), \
|
|
(I[36] = (T)(img)(_p10##x,_p14##y,z,c)), \
|
|
(I[67] = (T)(img)(_p10##x,_p13##y,z,c)), \
|
|
(I[98] = (T)(img)(_p10##x,_p12##y,z,c)), \
|
|
(I[129] = (T)(img)(_p10##x,_p11##y,z,c)), \
|
|
(I[160] = (T)(img)(_p10##x,_p10##y,z,c)), \
|
|
(I[191] = (T)(img)(_p10##x,_p9##y,z,c)), \
|
|
(I[222] = (T)(img)(_p10##x,_p8##y,z,c)), \
|
|
(I[253] = (T)(img)(_p10##x,_p7##y,z,c)), \
|
|
(I[284] = (T)(img)(_p10##x,_p6##y,z,c)), \
|
|
(I[315] = (T)(img)(_p10##x,_p5##y,z,c)), \
|
|
(I[346] = (T)(img)(_p10##x,_p4##y,z,c)), \
|
|
(I[377] = (T)(img)(_p10##x,_p3##y,z,c)), \
|
|
(I[408] = (T)(img)(_p10##x,_p2##y,z,c)), \
|
|
(I[439] = (T)(img)(_p10##x,_p1##y,z,c)), \
|
|
(I[470] = (T)(img)(_p10##x,y,z,c)), \
|
|
(I[501] = (T)(img)(_p10##x,_n1##y,z,c)), \
|
|
(I[532] = (T)(img)(_p10##x,_n2##y,z,c)), \
|
|
(I[563] = (T)(img)(_p10##x,_n3##y,z,c)), \
|
|
(I[594] = (T)(img)(_p10##x,_n4##y,z,c)), \
|
|
(I[625] = (T)(img)(_p10##x,_n5##y,z,c)), \
|
|
(I[656] = (T)(img)(_p10##x,_n6##y,z,c)), \
|
|
(I[687] = (T)(img)(_p10##x,_n7##y,z,c)), \
|
|
(I[718] = (T)(img)(_p10##x,_n8##y,z,c)), \
|
|
(I[749] = (T)(img)(_p10##x,_n9##y,z,c)), \
|
|
(I[780] = (T)(img)(_p10##x,_n10##y,z,c)), \
|
|
(I[811] = (T)(img)(_p10##x,_n11##y,z,c)), \
|
|
(I[842] = (T)(img)(_p10##x,_n12##y,z,c)), \
|
|
(I[873] = (T)(img)(_p10##x,_n13##y,z,c)), \
|
|
(I[904] = (T)(img)(_p10##x,_n14##y,z,c)), \
|
|
(I[935] = (T)(img)(_p10##x,_n15##y,z,c)), \
|
|
(I[6] = (T)(img)(_p9##x,_p15##y,z,c)), \
|
|
(I[37] = (T)(img)(_p9##x,_p14##y,z,c)), \
|
|
(I[68] = (T)(img)(_p9##x,_p13##y,z,c)), \
|
|
(I[99] = (T)(img)(_p9##x,_p12##y,z,c)), \
|
|
(I[130] = (T)(img)(_p9##x,_p11##y,z,c)), \
|
|
(I[161] = (T)(img)(_p9##x,_p10##y,z,c)), \
|
|
(I[192] = (T)(img)(_p9##x,_p9##y,z,c)), \
|
|
(I[223] = (T)(img)(_p9##x,_p8##y,z,c)), \
|
|
(I[254] = (T)(img)(_p9##x,_p7##y,z,c)), \
|
|
(I[285] = (T)(img)(_p9##x,_p6##y,z,c)), \
|
|
(I[316] = (T)(img)(_p9##x,_p5##y,z,c)), \
|
|
(I[347] = (T)(img)(_p9##x,_p4##y,z,c)), \
|
|
(I[378] = (T)(img)(_p9##x,_p3##y,z,c)), \
|
|
(I[409] = (T)(img)(_p9##x,_p2##y,z,c)), \
|
|
(I[440] = (T)(img)(_p9##x,_p1##y,z,c)), \
|
|
(I[471] = (T)(img)(_p9##x,y,z,c)), \
|
|
(I[502] = (T)(img)(_p9##x,_n1##y,z,c)), \
|
|
(I[533] = (T)(img)(_p9##x,_n2##y,z,c)), \
|
|
(I[564] = (T)(img)(_p9##x,_n3##y,z,c)), \
|
|
(I[595] = (T)(img)(_p9##x,_n4##y,z,c)), \
|
|
(I[626] = (T)(img)(_p9##x,_n5##y,z,c)), \
|
|
(I[657] = (T)(img)(_p9##x,_n6##y,z,c)), \
|
|
(I[688] = (T)(img)(_p9##x,_n7##y,z,c)), \
|
|
(I[719] = (T)(img)(_p9##x,_n8##y,z,c)), \
|
|
(I[750] = (T)(img)(_p9##x,_n9##y,z,c)), \
|
|
(I[781] = (T)(img)(_p9##x,_n10##y,z,c)), \
|
|
(I[812] = (T)(img)(_p9##x,_n11##y,z,c)), \
|
|
(I[843] = (T)(img)(_p9##x,_n12##y,z,c)), \
|
|
(I[874] = (T)(img)(_p9##x,_n13##y,z,c)), \
|
|
(I[905] = (T)(img)(_p9##x,_n14##y,z,c)), \
|
|
(I[936] = (T)(img)(_p9##x,_n15##y,z,c)), \
|
|
(I[7] = (T)(img)(_p8##x,_p15##y,z,c)), \
|
|
(I[38] = (T)(img)(_p8##x,_p14##y,z,c)), \
|
|
(I[69] = (T)(img)(_p8##x,_p13##y,z,c)), \
|
|
(I[100] = (T)(img)(_p8##x,_p12##y,z,c)), \
|
|
(I[131] = (T)(img)(_p8##x,_p11##y,z,c)), \
|
|
(I[162] = (T)(img)(_p8##x,_p10##y,z,c)), \
|
|
(I[193] = (T)(img)(_p8##x,_p9##y,z,c)), \
|
|
(I[224] = (T)(img)(_p8##x,_p8##y,z,c)), \
|
|
(I[255] = (T)(img)(_p8##x,_p7##y,z,c)), \
|
|
(I[286] = (T)(img)(_p8##x,_p6##y,z,c)), \
|
|
(I[317] = (T)(img)(_p8##x,_p5##y,z,c)), \
|
|
(I[348] = (T)(img)(_p8##x,_p4##y,z,c)), \
|
|
(I[379] = (T)(img)(_p8##x,_p3##y,z,c)), \
|
|
(I[410] = (T)(img)(_p8##x,_p2##y,z,c)), \
|
|
(I[441] = (T)(img)(_p8##x,_p1##y,z,c)), \
|
|
(I[472] = (T)(img)(_p8##x,y,z,c)), \
|
|
(I[503] = (T)(img)(_p8##x,_n1##y,z,c)), \
|
|
(I[534] = (T)(img)(_p8##x,_n2##y,z,c)), \
|
|
(I[565] = (T)(img)(_p8##x,_n3##y,z,c)), \
|
|
(I[596] = (T)(img)(_p8##x,_n4##y,z,c)), \
|
|
(I[627] = (T)(img)(_p8##x,_n5##y,z,c)), \
|
|
(I[658] = (T)(img)(_p8##x,_n6##y,z,c)), \
|
|
(I[689] = (T)(img)(_p8##x,_n7##y,z,c)), \
|
|
(I[720] = (T)(img)(_p8##x,_n8##y,z,c)), \
|
|
(I[751] = (T)(img)(_p8##x,_n9##y,z,c)), \
|
|
(I[782] = (T)(img)(_p8##x,_n10##y,z,c)), \
|
|
(I[813] = (T)(img)(_p8##x,_n11##y,z,c)), \
|
|
(I[844] = (T)(img)(_p8##x,_n12##y,z,c)), \
|
|
(I[875] = (T)(img)(_p8##x,_n13##y,z,c)), \
|
|
(I[906] = (T)(img)(_p8##x,_n14##y,z,c)), \
|
|
(I[937] = (T)(img)(_p8##x,_n15##y,z,c)), \
|
|
(I[8] = (T)(img)(_p7##x,_p15##y,z,c)), \
|
|
(I[39] = (T)(img)(_p7##x,_p14##y,z,c)), \
|
|
(I[70] = (T)(img)(_p7##x,_p13##y,z,c)), \
|
|
(I[101] = (T)(img)(_p7##x,_p12##y,z,c)), \
|
|
(I[132] = (T)(img)(_p7##x,_p11##y,z,c)), \
|
|
(I[163] = (T)(img)(_p7##x,_p10##y,z,c)), \
|
|
(I[194] = (T)(img)(_p7##x,_p9##y,z,c)), \
|
|
(I[225] = (T)(img)(_p7##x,_p8##y,z,c)), \
|
|
(I[256] = (T)(img)(_p7##x,_p7##y,z,c)), \
|
|
(I[287] = (T)(img)(_p7##x,_p6##y,z,c)), \
|
|
(I[318] = (T)(img)(_p7##x,_p5##y,z,c)), \
|
|
(I[349] = (T)(img)(_p7##x,_p4##y,z,c)), \
|
|
(I[380] = (T)(img)(_p7##x,_p3##y,z,c)), \
|
|
(I[411] = (T)(img)(_p7##x,_p2##y,z,c)), \
|
|
(I[442] = (T)(img)(_p7##x,_p1##y,z,c)), \
|
|
(I[473] = (T)(img)(_p7##x,y,z,c)), \
|
|
(I[504] = (T)(img)(_p7##x,_n1##y,z,c)), \
|
|
(I[535] = (T)(img)(_p7##x,_n2##y,z,c)), \
|
|
(I[566] = (T)(img)(_p7##x,_n3##y,z,c)), \
|
|
(I[597] = (T)(img)(_p7##x,_n4##y,z,c)), \
|
|
(I[628] = (T)(img)(_p7##x,_n5##y,z,c)), \
|
|
(I[659] = (T)(img)(_p7##x,_n6##y,z,c)), \
|
|
(I[690] = (T)(img)(_p7##x,_n7##y,z,c)), \
|
|
(I[721] = (T)(img)(_p7##x,_n8##y,z,c)), \
|
|
(I[752] = (T)(img)(_p7##x,_n9##y,z,c)), \
|
|
(I[783] = (T)(img)(_p7##x,_n10##y,z,c)), \
|
|
(I[814] = (T)(img)(_p7##x,_n11##y,z,c)), \
|
|
(I[845] = (T)(img)(_p7##x,_n12##y,z,c)), \
|
|
(I[876] = (T)(img)(_p7##x,_n13##y,z,c)), \
|
|
(I[907] = (T)(img)(_p7##x,_n14##y,z,c)), \
|
|
(I[938] = (T)(img)(_p7##x,_n15##y,z,c)), \
|
|
(I[9] = (T)(img)(_p6##x,_p15##y,z,c)), \
|
|
(I[40] = (T)(img)(_p6##x,_p14##y,z,c)), \
|
|
(I[71] = (T)(img)(_p6##x,_p13##y,z,c)), \
|
|
(I[102] = (T)(img)(_p6##x,_p12##y,z,c)), \
|
|
(I[133] = (T)(img)(_p6##x,_p11##y,z,c)), \
|
|
(I[164] = (T)(img)(_p6##x,_p10##y,z,c)), \
|
|
(I[195] = (T)(img)(_p6##x,_p9##y,z,c)), \
|
|
(I[226] = (T)(img)(_p6##x,_p8##y,z,c)), \
|
|
(I[257] = (T)(img)(_p6##x,_p7##y,z,c)), \
|
|
(I[288] = (T)(img)(_p6##x,_p6##y,z,c)), \
|
|
(I[319] = (T)(img)(_p6##x,_p5##y,z,c)), \
|
|
(I[350] = (T)(img)(_p6##x,_p4##y,z,c)), \
|
|
(I[381] = (T)(img)(_p6##x,_p3##y,z,c)), \
|
|
(I[412] = (T)(img)(_p6##x,_p2##y,z,c)), \
|
|
(I[443] = (T)(img)(_p6##x,_p1##y,z,c)), \
|
|
(I[474] = (T)(img)(_p6##x,y,z,c)), \
|
|
(I[505] = (T)(img)(_p6##x,_n1##y,z,c)), \
|
|
(I[536] = (T)(img)(_p6##x,_n2##y,z,c)), \
|
|
(I[567] = (T)(img)(_p6##x,_n3##y,z,c)), \
|
|
(I[598] = (T)(img)(_p6##x,_n4##y,z,c)), \
|
|
(I[629] = (T)(img)(_p6##x,_n5##y,z,c)), \
|
|
(I[660] = (T)(img)(_p6##x,_n6##y,z,c)), \
|
|
(I[691] = (T)(img)(_p6##x,_n7##y,z,c)), \
|
|
(I[722] = (T)(img)(_p6##x,_n8##y,z,c)), \
|
|
(I[753] = (T)(img)(_p6##x,_n9##y,z,c)), \
|
|
(I[784] = (T)(img)(_p6##x,_n10##y,z,c)), \
|
|
(I[815] = (T)(img)(_p6##x,_n11##y,z,c)), \
|
|
(I[846] = (T)(img)(_p6##x,_n12##y,z,c)), \
|
|
(I[877] = (T)(img)(_p6##x,_n13##y,z,c)), \
|
|
(I[908] = (T)(img)(_p6##x,_n14##y,z,c)), \
|
|
(I[939] = (T)(img)(_p6##x,_n15##y,z,c)), \
|
|
(I[10] = (T)(img)(_p5##x,_p15##y,z,c)), \
|
|
(I[41] = (T)(img)(_p5##x,_p14##y,z,c)), \
|
|
(I[72] = (T)(img)(_p5##x,_p13##y,z,c)), \
|
|
(I[103] = (T)(img)(_p5##x,_p12##y,z,c)), \
|
|
(I[134] = (T)(img)(_p5##x,_p11##y,z,c)), \
|
|
(I[165] = (T)(img)(_p5##x,_p10##y,z,c)), \
|
|
(I[196] = (T)(img)(_p5##x,_p9##y,z,c)), \
|
|
(I[227] = (T)(img)(_p5##x,_p8##y,z,c)), \
|
|
(I[258] = (T)(img)(_p5##x,_p7##y,z,c)), \
|
|
(I[289] = (T)(img)(_p5##x,_p6##y,z,c)), \
|
|
(I[320] = (T)(img)(_p5##x,_p5##y,z,c)), \
|
|
(I[351] = (T)(img)(_p5##x,_p4##y,z,c)), \
|
|
(I[382] = (T)(img)(_p5##x,_p3##y,z,c)), \
|
|
(I[413] = (T)(img)(_p5##x,_p2##y,z,c)), \
|
|
(I[444] = (T)(img)(_p5##x,_p1##y,z,c)), \
|
|
(I[475] = (T)(img)(_p5##x,y,z,c)), \
|
|
(I[506] = (T)(img)(_p5##x,_n1##y,z,c)), \
|
|
(I[537] = (T)(img)(_p5##x,_n2##y,z,c)), \
|
|
(I[568] = (T)(img)(_p5##x,_n3##y,z,c)), \
|
|
(I[599] = (T)(img)(_p5##x,_n4##y,z,c)), \
|
|
(I[630] = (T)(img)(_p5##x,_n5##y,z,c)), \
|
|
(I[661] = (T)(img)(_p5##x,_n6##y,z,c)), \
|
|
(I[692] = (T)(img)(_p5##x,_n7##y,z,c)), \
|
|
(I[723] = (T)(img)(_p5##x,_n8##y,z,c)), \
|
|
(I[754] = (T)(img)(_p5##x,_n9##y,z,c)), \
|
|
(I[785] = (T)(img)(_p5##x,_n10##y,z,c)), \
|
|
(I[816] = (T)(img)(_p5##x,_n11##y,z,c)), \
|
|
(I[847] = (T)(img)(_p5##x,_n12##y,z,c)), \
|
|
(I[878] = (T)(img)(_p5##x,_n13##y,z,c)), \
|
|
(I[909] = (T)(img)(_p5##x,_n14##y,z,c)), \
|
|
(I[940] = (T)(img)(_p5##x,_n15##y,z,c)), \
|
|
(I[11] = (T)(img)(_p4##x,_p15##y,z,c)), \
|
|
(I[42] = (T)(img)(_p4##x,_p14##y,z,c)), \
|
|
(I[73] = (T)(img)(_p4##x,_p13##y,z,c)), \
|
|
(I[104] = (T)(img)(_p4##x,_p12##y,z,c)), \
|
|
(I[135] = (T)(img)(_p4##x,_p11##y,z,c)), \
|
|
(I[166] = (T)(img)(_p4##x,_p10##y,z,c)), \
|
|
(I[197] = (T)(img)(_p4##x,_p9##y,z,c)), \
|
|
(I[228] = (T)(img)(_p4##x,_p8##y,z,c)), \
|
|
(I[259] = (T)(img)(_p4##x,_p7##y,z,c)), \
|
|
(I[290] = (T)(img)(_p4##x,_p6##y,z,c)), \
|
|
(I[321] = (T)(img)(_p4##x,_p5##y,z,c)), \
|
|
(I[352] = (T)(img)(_p4##x,_p4##y,z,c)), \
|
|
(I[383] = (T)(img)(_p4##x,_p3##y,z,c)), \
|
|
(I[414] = (T)(img)(_p4##x,_p2##y,z,c)), \
|
|
(I[445] = (T)(img)(_p4##x,_p1##y,z,c)), \
|
|
(I[476] = (T)(img)(_p4##x,y,z,c)), \
|
|
(I[507] = (T)(img)(_p4##x,_n1##y,z,c)), \
|
|
(I[538] = (T)(img)(_p4##x,_n2##y,z,c)), \
|
|
(I[569] = (T)(img)(_p4##x,_n3##y,z,c)), \
|
|
(I[600] = (T)(img)(_p4##x,_n4##y,z,c)), \
|
|
(I[631] = (T)(img)(_p4##x,_n5##y,z,c)), \
|
|
(I[662] = (T)(img)(_p4##x,_n6##y,z,c)), \
|
|
(I[693] = (T)(img)(_p4##x,_n7##y,z,c)), \
|
|
(I[724] = (T)(img)(_p4##x,_n8##y,z,c)), \
|
|
(I[755] = (T)(img)(_p4##x,_n9##y,z,c)), \
|
|
(I[786] = (T)(img)(_p4##x,_n10##y,z,c)), \
|
|
(I[817] = (T)(img)(_p4##x,_n11##y,z,c)), \
|
|
(I[848] = (T)(img)(_p4##x,_n12##y,z,c)), \
|
|
(I[879] = (T)(img)(_p4##x,_n13##y,z,c)), \
|
|
(I[910] = (T)(img)(_p4##x,_n14##y,z,c)), \
|
|
(I[941] = (T)(img)(_p4##x,_n15##y,z,c)), \
|
|
(I[12] = (T)(img)(_p3##x,_p15##y,z,c)), \
|
|
(I[43] = (T)(img)(_p3##x,_p14##y,z,c)), \
|
|
(I[74] = (T)(img)(_p3##x,_p13##y,z,c)), \
|
|
(I[105] = (T)(img)(_p3##x,_p12##y,z,c)), \
|
|
(I[136] = (T)(img)(_p3##x,_p11##y,z,c)), \
|
|
(I[167] = (T)(img)(_p3##x,_p10##y,z,c)), \
|
|
(I[198] = (T)(img)(_p3##x,_p9##y,z,c)), \
|
|
(I[229] = (T)(img)(_p3##x,_p8##y,z,c)), \
|
|
(I[260] = (T)(img)(_p3##x,_p7##y,z,c)), \
|
|
(I[291] = (T)(img)(_p3##x,_p6##y,z,c)), \
|
|
(I[322] = (T)(img)(_p3##x,_p5##y,z,c)), \
|
|
(I[353] = (T)(img)(_p3##x,_p4##y,z,c)), \
|
|
(I[384] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[415] = (T)(img)(_p3##x,_p2##y,z,c)), \
|
|
(I[446] = (T)(img)(_p3##x,_p1##y,z,c)), \
|
|
(I[477] = (T)(img)(_p3##x,y,z,c)), \
|
|
(I[508] = (T)(img)(_p3##x,_n1##y,z,c)), \
|
|
(I[539] = (T)(img)(_p3##x,_n2##y,z,c)), \
|
|
(I[570] = (T)(img)(_p3##x,_n3##y,z,c)), \
|
|
(I[601] = (T)(img)(_p3##x,_n4##y,z,c)), \
|
|
(I[632] = (T)(img)(_p3##x,_n5##y,z,c)), \
|
|
(I[663] = (T)(img)(_p3##x,_n6##y,z,c)), \
|
|
(I[694] = (T)(img)(_p3##x,_n7##y,z,c)), \
|
|
(I[725] = (T)(img)(_p3##x,_n8##y,z,c)), \
|
|
(I[756] = (T)(img)(_p3##x,_n9##y,z,c)), \
|
|
(I[787] = (T)(img)(_p3##x,_n10##y,z,c)), \
|
|
(I[818] = (T)(img)(_p3##x,_n11##y,z,c)), \
|
|
(I[849] = (T)(img)(_p3##x,_n12##y,z,c)), \
|
|
(I[880] = (T)(img)(_p3##x,_n13##y,z,c)), \
|
|
(I[911] = (T)(img)(_p3##x,_n14##y,z,c)), \
|
|
(I[942] = (T)(img)(_p3##x,_n15##y,z,c)), \
|
|
(I[13] = (T)(img)(_p2##x,_p15##y,z,c)), \
|
|
(I[44] = (T)(img)(_p2##x,_p14##y,z,c)), \
|
|
(I[75] = (T)(img)(_p2##x,_p13##y,z,c)), \
|
|
(I[106] = (T)(img)(_p2##x,_p12##y,z,c)), \
|
|
(I[137] = (T)(img)(_p2##x,_p11##y,z,c)), \
|
|
(I[168] = (T)(img)(_p2##x,_p10##y,z,c)), \
|
|
(I[199] = (T)(img)(_p2##x,_p9##y,z,c)), \
|
|
(I[230] = (T)(img)(_p2##x,_p8##y,z,c)), \
|
|
(I[261] = (T)(img)(_p2##x,_p7##y,z,c)), \
|
|
(I[292] = (T)(img)(_p2##x,_p6##y,z,c)), \
|
|
(I[323] = (T)(img)(_p2##x,_p5##y,z,c)), \
|
|
(I[354] = (T)(img)(_p2##x,_p4##y,z,c)), \
|
|
(I[385] = (T)(img)(_p2##x,_p3##y,z,c)), \
|
|
(I[416] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[447] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[478] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[509] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[540] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[571] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[602] = (T)(img)(_p2##x,_n4##y,z,c)), \
|
|
(I[633] = (T)(img)(_p2##x,_n5##y,z,c)), \
|
|
(I[664] = (T)(img)(_p2##x,_n6##y,z,c)), \
|
|
(I[695] = (T)(img)(_p2##x,_n7##y,z,c)), \
|
|
(I[726] = (T)(img)(_p2##x,_n8##y,z,c)), \
|
|
(I[757] = (T)(img)(_p2##x,_n9##y,z,c)), \
|
|
(I[788] = (T)(img)(_p2##x,_n10##y,z,c)), \
|
|
(I[819] = (T)(img)(_p2##x,_n11##y,z,c)), \
|
|
(I[850] = (T)(img)(_p2##x,_n12##y,z,c)), \
|
|
(I[881] = (T)(img)(_p2##x,_n13##y,z,c)), \
|
|
(I[912] = (T)(img)(_p2##x,_n14##y,z,c)), \
|
|
(I[943] = (T)(img)(_p2##x,_n15##y,z,c)), \
|
|
(I[14] = (T)(img)(_p1##x,_p15##y,z,c)), \
|
|
(I[45] = (T)(img)(_p1##x,_p14##y,z,c)), \
|
|
(I[76] = (T)(img)(_p1##x,_p13##y,z,c)), \
|
|
(I[107] = (T)(img)(_p1##x,_p12##y,z,c)), \
|
|
(I[138] = (T)(img)(_p1##x,_p11##y,z,c)), \
|
|
(I[169] = (T)(img)(_p1##x,_p10##y,z,c)), \
|
|
(I[200] = (T)(img)(_p1##x,_p9##y,z,c)), \
|
|
(I[231] = (T)(img)(_p1##x,_p8##y,z,c)), \
|
|
(I[262] = (T)(img)(_p1##x,_p7##y,z,c)), \
|
|
(I[293] = (T)(img)(_p1##x,_p6##y,z,c)), \
|
|
(I[324] = (T)(img)(_p1##x,_p5##y,z,c)), \
|
|
(I[355] = (T)(img)(_p1##x,_p4##y,z,c)), \
|
|
(I[386] = (T)(img)(_p1##x,_p3##y,z,c)), \
|
|
(I[417] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[448] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[479] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[510] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[541] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[572] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[603] = (T)(img)(_p1##x,_n4##y,z,c)), \
|
|
(I[634] = (T)(img)(_p1##x,_n5##y,z,c)), \
|
|
(I[665] = (T)(img)(_p1##x,_n6##y,z,c)), \
|
|
(I[696] = (T)(img)(_p1##x,_n7##y,z,c)), \
|
|
(I[727] = (T)(img)(_p1##x,_n8##y,z,c)), \
|
|
(I[758] = (T)(img)(_p1##x,_n9##y,z,c)), \
|
|
(I[789] = (T)(img)(_p1##x,_n10##y,z,c)), \
|
|
(I[820] = (T)(img)(_p1##x,_n11##y,z,c)), \
|
|
(I[851] = (T)(img)(_p1##x,_n12##y,z,c)), \
|
|
(I[882] = (T)(img)(_p1##x,_n13##y,z,c)), \
|
|
(I[913] = (T)(img)(_p1##x,_n14##y,z,c)), \
|
|
(I[944] = (T)(img)(_p1##x,_n15##y,z,c)), \
|
|
(I[15] = (T)(img)(x,_p15##y,z,c)), \
|
|
(I[46] = (T)(img)(x,_p14##y,z,c)), \
|
|
(I[77] = (T)(img)(x,_p13##y,z,c)), \
|
|
(I[108] = (T)(img)(x,_p12##y,z,c)), \
|
|
(I[139] = (T)(img)(x,_p11##y,z,c)), \
|
|
(I[170] = (T)(img)(x,_p10##y,z,c)), \
|
|
(I[201] = (T)(img)(x,_p9##y,z,c)), \
|
|
(I[232] = (T)(img)(x,_p8##y,z,c)), \
|
|
(I[263] = (T)(img)(x,_p7##y,z,c)), \
|
|
(I[294] = (T)(img)(x,_p6##y,z,c)), \
|
|
(I[325] = (T)(img)(x,_p5##y,z,c)), \
|
|
(I[356] = (T)(img)(x,_p4##y,z,c)), \
|
|
(I[387] = (T)(img)(x,_p3##y,z,c)), \
|
|
(I[418] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[449] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[480] = (T)(img)(x,y,z,c)), \
|
|
(I[511] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[542] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[573] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[604] = (T)(img)(x,_n4##y,z,c)), \
|
|
(I[635] = (T)(img)(x,_n5##y,z,c)), \
|
|
(I[666] = (T)(img)(x,_n6##y,z,c)), \
|
|
(I[697] = (T)(img)(x,_n7##y,z,c)), \
|
|
(I[728] = (T)(img)(x,_n8##y,z,c)), \
|
|
(I[759] = (T)(img)(x,_n9##y,z,c)), \
|
|
(I[790] = (T)(img)(x,_n10##y,z,c)), \
|
|
(I[821] = (T)(img)(x,_n11##y,z,c)), \
|
|
(I[852] = (T)(img)(x,_n12##y,z,c)), \
|
|
(I[883] = (T)(img)(x,_n13##y,z,c)), \
|
|
(I[914] = (T)(img)(x,_n14##y,z,c)), \
|
|
(I[945] = (T)(img)(x,_n15##y,z,c)), \
|
|
(I[16] = (T)(img)(_n1##x,_p15##y,z,c)), \
|
|
(I[47] = (T)(img)(_n1##x,_p14##y,z,c)), \
|
|
(I[78] = (T)(img)(_n1##x,_p13##y,z,c)), \
|
|
(I[109] = (T)(img)(_n1##x,_p12##y,z,c)), \
|
|
(I[140] = (T)(img)(_n1##x,_p11##y,z,c)), \
|
|
(I[171] = (T)(img)(_n1##x,_p10##y,z,c)), \
|
|
(I[202] = (T)(img)(_n1##x,_p9##y,z,c)), \
|
|
(I[233] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[264] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[295] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[326] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[357] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[388] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[419] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[450] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[481] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[512] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[543] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[574] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[605] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[636] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[667] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[698] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[729] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[760] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[791] = (T)(img)(_n1##x,_n10##y,z,c)), \
|
|
(I[822] = (T)(img)(_n1##x,_n11##y,z,c)), \
|
|
(I[853] = (T)(img)(_n1##x,_n12##y,z,c)), \
|
|
(I[884] = (T)(img)(_n1##x,_n13##y,z,c)), \
|
|
(I[915] = (T)(img)(_n1##x,_n14##y,z,c)), \
|
|
(I[946] = (T)(img)(_n1##x,_n15##y,z,c)), \
|
|
(I[17] = (T)(img)(_n2##x,_p15##y,z,c)), \
|
|
(I[48] = (T)(img)(_n2##x,_p14##y,z,c)), \
|
|
(I[79] = (T)(img)(_n2##x,_p13##y,z,c)), \
|
|
(I[110] = (T)(img)(_n2##x,_p12##y,z,c)), \
|
|
(I[141] = (T)(img)(_n2##x,_p11##y,z,c)), \
|
|
(I[172] = (T)(img)(_n2##x,_p10##y,z,c)), \
|
|
(I[203] = (T)(img)(_n2##x,_p9##y,z,c)), \
|
|
(I[234] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[265] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[296] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[327] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[358] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[389] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[420] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[451] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[482] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[513] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[544] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[575] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[606] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[637] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[668] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[699] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[730] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[761] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[792] = (T)(img)(_n2##x,_n10##y,z,c)), \
|
|
(I[823] = (T)(img)(_n2##x,_n11##y,z,c)), \
|
|
(I[854] = (T)(img)(_n2##x,_n12##y,z,c)), \
|
|
(I[885] = (T)(img)(_n2##x,_n13##y,z,c)), \
|
|
(I[916] = (T)(img)(_n2##x,_n14##y,z,c)), \
|
|
(I[947] = (T)(img)(_n2##x,_n15##y,z,c)), \
|
|
(I[18] = (T)(img)(_n3##x,_p15##y,z,c)), \
|
|
(I[49] = (T)(img)(_n3##x,_p14##y,z,c)), \
|
|
(I[80] = (T)(img)(_n3##x,_p13##y,z,c)), \
|
|
(I[111] = (T)(img)(_n3##x,_p12##y,z,c)), \
|
|
(I[142] = (T)(img)(_n3##x,_p11##y,z,c)), \
|
|
(I[173] = (T)(img)(_n3##x,_p10##y,z,c)), \
|
|
(I[204] = (T)(img)(_n3##x,_p9##y,z,c)), \
|
|
(I[235] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[266] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[297] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[328] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[359] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[390] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[421] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[452] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[483] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[514] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[545] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[576] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[607] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[638] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[669] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[700] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[731] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[762] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[793] = (T)(img)(_n3##x,_n10##y,z,c)), \
|
|
(I[824] = (T)(img)(_n3##x,_n11##y,z,c)), \
|
|
(I[855] = (T)(img)(_n3##x,_n12##y,z,c)), \
|
|
(I[886] = (T)(img)(_n3##x,_n13##y,z,c)), \
|
|
(I[917] = (T)(img)(_n3##x,_n14##y,z,c)), \
|
|
(I[948] = (T)(img)(_n3##x,_n15##y,z,c)), \
|
|
(I[19] = (T)(img)(_n4##x,_p15##y,z,c)), \
|
|
(I[50] = (T)(img)(_n4##x,_p14##y,z,c)), \
|
|
(I[81] = (T)(img)(_n4##x,_p13##y,z,c)), \
|
|
(I[112] = (T)(img)(_n4##x,_p12##y,z,c)), \
|
|
(I[143] = (T)(img)(_n4##x,_p11##y,z,c)), \
|
|
(I[174] = (T)(img)(_n4##x,_p10##y,z,c)), \
|
|
(I[205] = (T)(img)(_n4##x,_p9##y,z,c)), \
|
|
(I[236] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[267] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[298] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[329] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[360] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[391] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[422] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[453] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[484] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[515] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[546] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[577] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[608] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[639] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[670] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[701] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[732] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[763] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[794] = (T)(img)(_n4##x,_n10##y,z,c)), \
|
|
(I[825] = (T)(img)(_n4##x,_n11##y,z,c)), \
|
|
(I[856] = (T)(img)(_n4##x,_n12##y,z,c)), \
|
|
(I[887] = (T)(img)(_n4##x,_n13##y,z,c)), \
|
|
(I[918] = (T)(img)(_n4##x,_n14##y,z,c)), \
|
|
(I[949] = (T)(img)(_n4##x,_n15##y,z,c)), \
|
|
(I[20] = (T)(img)(_n5##x,_p15##y,z,c)), \
|
|
(I[51] = (T)(img)(_n5##x,_p14##y,z,c)), \
|
|
(I[82] = (T)(img)(_n5##x,_p13##y,z,c)), \
|
|
(I[113] = (T)(img)(_n5##x,_p12##y,z,c)), \
|
|
(I[144] = (T)(img)(_n5##x,_p11##y,z,c)), \
|
|
(I[175] = (T)(img)(_n5##x,_p10##y,z,c)), \
|
|
(I[206] = (T)(img)(_n5##x,_p9##y,z,c)), \
|
|
(I[237] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[268] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[299] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[330] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[361] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[392] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[423] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[454] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[485] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[516] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[547] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[578] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[609] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[640] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[671] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[702] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[733] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[764] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[795] = (T)(img)(_n5##x,_n10##y,z,c)), \
|
|
(I[826] = (T)(img)(_n5##x,_n11##y,z,c)), \
|
|
(I[857] = (T)(img)(_n5##x,_n12##y,z,c)), \
|
|
(I[888] = (T)(img)(_n5##x,_n13##y,z,c)), \
|
|
(I[919] = (T)(img)(_n5##x,_n14##y,z,c)), \
|
|
(I[950] = (T)(img)(_n5##x,_n15##y,z,c)), \
|
|
(I[21] = (T)(img)(_n6##x,_p15##y,z,c)), \
|
|
(I[52] = (T)(img)(_n6##x,_p14##y,z,c)), \
|
|
(I[83] = (T)(img)(_n6##x,_p13##y,z,c)), \
|
|
(I[114] = (T)(img)(_n6##x,_p12##y,z,c)), \
|
|
(I[145] = (T)(img)(_n6##x,_p11##y,z,c)), \
|
|
(I[176] = (T)(img)(_n6##x,_p10##y,z,c)), \
|
|
(I[207] = (T)(img)(_n6##x,_p9##y,z,c)), \
|
|
(I[238] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[269] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[300] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[331] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[362] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[393] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[424] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[455] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[486] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[517] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[548] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[579] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[610] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[641] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[672] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[703] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[734] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[765] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[796] = (T)(img)(_n6##x,_n10##y,z,c)), \
|
|
(I[827] = (T)(img)(_n6##x,_n11##y,z,c)), \
|
|
(I[858] = (T)(img)(_n6##x,_n12##y,z,c)), \
|
|
(I[889] = (T)(img)(_n6##x,_n13##y,z,c)), \
|
|
(I[920] = (T)(img)(_n6##x,_n14##y,z,c)), \
|
|
(I[951] = (T)(img)(_n6##x,_n15##y,z,c)), \
|
|
(I[22] = (T)(img)(_n7##x,_p15##y,z,c)), \
|
|
(I[53] = (T)(img)(_n7##x,_p14##y,z,c)), \
|
|
(I[84] = (T)(img)(_n7##x,_p13##y,z,c)), \
|
|
(I[115] = (T)(img)(_n7##x,_p12##y,z,c)), \
|
|
(I[146] = (T)(img)(_n7##x,_p11##y,z,c)), \
|
|
(I[177] = (T)(img)(_n7##x,_p10##y,z,c)), \
|
|
(I[208] = (T)(img)(_n7##x,_p9##y,z,c)), \
|
|
(I[239] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[270] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[301] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[332] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[363] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[394] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[425] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[456] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[487] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[518] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[549] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[580] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[611] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[642] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[673] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[704] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[735] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[766] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[797] = (T)(img)(_n7##x,_n10##y,z,c)), \
|
|
(I[828] = (T)(img)(_n7##x,_n11##y,z,c)), \
|
|
(I[859] = (T)(img)(_n7##x,_n12##y,z,c)), \
|
|
(I[890] = (T)(img)(_n7##x,_n13##y,z,c)), \
|
|
(I[921] = (T)(img)(_n7##x,_n14##y,z,c)), \
|
|
(I[952] = (T)(img)(_n7##x,_n15##y,z,c)), \
|
|
(I[23] = (T)(img)(_n8##x,_p15##y,z,c)), \
|
|
(I[54] = (T)(img)(_n8##x,_p14##y,z,c)), \
|
|
(I[85] = (T)(img)(_n8##x,_p13##y,z,c)), \
|
|
(I[116] = (T)(img)(_n8##x,_p12##y,z,c)), \
|
|
(I[147] = (T)(img)(_n8##x,_p11##y,z,c)), \
|
|
(I[178] = (T)(img)(_n8##x,_p10##y,z,c)), \
|
|
(I[209] = (T)(img)(_n8##x,_p9##y,z,c)), \
|
|
(I[240] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[271] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[302] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[333] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[364] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[395] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[426] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[457] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[488] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[519] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[550] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[581] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[612] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[643] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[674] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[705] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[736] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[767] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
(I[798] = (T)(img)(_n8##x,_n10##y,z,c)), \
|
|
(I[829] = (T)(img)(_n8##x,_n11##y,z,c)), \
|
|
(I[860] = (T)(img)(_n8##x,_n12##y,z,c)), \
|
|
(I[891] = (T)(img)(_n8##x,_n13##y,z,c)), \
|
|
(I[922] = (T)(img)(_n8##x,_n14##y,z,c)), \
|
|
(I[953] = (T)(img)(_n8##x,_n15##y,z,c)), \
|
|
(I[24] = (T)(img)(_n9##x,_p15##y,z,c)), \
|
|
(I[55] = (T)(img)(_n9##x,_p14##y,z,c)), \
|
|
(I[86] = (T)(img)(_n9##x,_p13##y,z,c)), \
|
|
(I[117] = (T)(img)(_n9##x,_p12##y,z,c)), \
|
|
(I[148] = (T)(img)(_n9##x,_p11##y,z,c)), \
|
|
(I[179] = (T)(img)(_n9##x,_p10##y,z,c)), \
|
|
(I[210] = (T)(img)(_n9##x,_p9##y,z,c)), \
|
|
(I[241] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[272] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[303] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[334] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[365] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[396] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[427] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[458] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[489] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[520] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[551] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[582] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[613] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[644] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[675] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[706] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[737] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[768] = (T)(img)(_n9##x,_n9##y,z,c)), \
|
|
(I[799] = (T)(img)(_n9##x,_n10##y,z,c)), \
|
|
(I[830] = (T)(img)(_n9##x,_n11##y,z,c)), \
|
|
(I[861] = (T)(img)(_n9##x,_n12##y,z,c)), \
|
|
(I[892] = (T)(img)(_n9##x,_n13##y,z,c)), \
|
|
(I[923] = (T)(img)(_n9##x,_n14##y,z,c)), \
|
|
(I[954] = (T)(img)(_n9##x,_n15##y,z,c)), \
|
|
(I[25] = (T)(img)(_n10##x,_p15##y,z,c)), \
|
|
(I[56] = (T)(img)(_n10##x,_p14##y,z,c)), \
|
|
(I[87] = (T)(img)(_n10##x,_p13##y,z,c)), \
|
|
(I[118] = (T)(img)(_n10##x,_p12##y,z,c)), \
|
|
(I[149] = (T)(img)(_n10##x,_p11##y,z,c)), \
|
|
(I[180] = (T)(img)(_n10##x,_p10##y,z,c)), \
|
|
(I[211] = (T)(img)(_n10##x,_p9##y,z,c)), \
|
|
(I[242] = (T)(img)(_n10##x,_p8##y,z,c)), \
|
|
(I[273] = (T)(img)(_n10##x,_p7##y,z,c)), \
|
|
(I[304] = (T)(img)(_n10##x,_p6##y,z,c)), \
|
|
(I[335] = (T)(img)(_n10##x,_p5##y,z,c)), \
|
|
(I[366] = (T)(img)(_n10##x,_p4##y,z,c)), \
|
|
(I[397] = (T)(img)(_n10##x,_p3##y,z,c)), \
|
|
(I[428] = (T)(img)(_n10##x,_p2##y,z,c)), \
|
|
(I[459] = (T)(img)(_n10##x,_p1##y,z,c)), \
|
|
(I[490] = (T)(img)(_n10##x,y,z,c)), \
|
|
(I[521] = (T)(img)(_n10##x,_n1##y,z,c)), \
|
|
(I[552] = (T)(img)(_n10##x,_n2##y,z,c)), \
|
|
(I[583] = (T)(img)(_n10##x,_n3##y,z,c)), \
|
|
(I[614] = (T)(img)(_n10##x,_n4##y,z,c)), \
|
|
(I[645] = (T)(img)(_n10##x,_n5##y,z,c)), \
|
|
(I[676] = (T)(img)(_n10##x,_n6##y,z,c)), \
|
|
(I[707] = (T)(img)(_n10##x,_n7##y,z,c)), \
|
|
(I[738] = (T)(img)(_n10##x,_n8##y,z,c)), \
|
|
(I[769] = (T)(img)(_n10##x,_n9##y,z,c)), \
|
|
(I[800] = (T)(img)(_n10##x,_n10##y,z,c)), \
|
|
(I[831] = (T)(img)(_n10##x,_n11##y,z,c)), \
|
|
(I[862] = (T)(img)(_n10##x,_n12##y,z,c)), \
|
|
(I[893] = (T)(img)(_n10##x,_n13##y,z,c)), \
|
|
(I[924] = (T)(img)(_n10##x,_n14##y,z,c)), \
|
|
(I[955] = (T)(img)(_n10##x,_n15##y,z,c)), \
|
|
(I[26] = (T)(img)(_n11##x,_p15##y,z,c)), \
|
|
(I[57] = (T)(img)(_n11##x,_p14##y,z,c)), \
|
|
(I[88] = (T)(img)(_n11##x,_p13##y,z,c)), \
|
|
(I[119] = (T)(img)(_n11##x,_p12##y,z,c)), \
|
|
(I[150] = (T)(img)(_n11##x,_p11##y,z,c)), \
|
|
(I[181] = (T)(img)(_n11##x,_p10##y,z,c)), \
|
|
(I[212] = (T)(img)(_n11##x,_p9##y,z,c)), \
|
|
(I[243] = (T)(img)(_n11##x,_p8##y,z,c)), \
|
|
(I[274] = (T)(img)(_n11##x,_p7##y,z,c)), \
|
|
(I[305] = (T)(img)(_n11##x,_p6##y,z,c)), \
|
|
(I[336] = (T)(img)(_n11##x,_p5##y,z,c)), \
|
|
(I[367] = (T)(img)(_n11##x,_p4##y,z,c)), \
|
|
(I[398] = (T)(img)(_n11##x,_p3##y,z,c)), \
|
|
(I[429] = (T)(img)(_n11##x,_p2##y,z,c)), \
|
|
(I[460] = (T)(img)(_n11##x,_p1##y,z,c)), \
|
|
(I[491] = (T)(img)(_n11##x,y,z,c)), \
|
|
(I[522] = (T)(img)(_n11##x,_n1##y,z,c)), \
|
|
(I[553] = (T)(img)(_n11##x,_n2##y,z,c)), \
|
|
(I[584] = (T)(img)(_n11##x,_n3##y,z,c)), \
|
|
(I[615] = (T)(img)(_n11##x,_n4##y,z,c)), \
|
|
(I[646] = (T)(img)(_n11##x,_n5##y,z,c)), \
|
|
(I[677] = (T)(img)(_n11##x,_n6##y,z,c)), \
|
|
(I[708] = (T)(img)(_n11##x,_n7##y,z,c)), \
|
|
(I[739] = (T)(img)(_n11##x,_n8##y,z,c)), \
|
|
(I[770] = (T)(img)(_n11##x,_n9##y,z,c)), \
|
|
(I[801] = (T)(img)(_n11##x,_n10##y,z,c)), \
|
|
(I[832] = (T)(img)(_n11##x,_n11##y,z,c)), \
|
|
(I[863] = (T)(img)(_n11##x,_n12##y,z,c)), \
|
|
(I[894] = (T)(img)(_n11##x,_n13##y,z,c)), \
|
|
(I[925] = (T)(img)(_n11##x,_n14##y,z,c)), \
|
|
(I[956] = (T)(img)(_n11##x,_n15##y,z,c)), \
|
|
(I[27] = (T)(img)(_n12##x,_p15##y,z,c)), \
|
|
(I[58] = (T)(img)(_n12##x,_p14##y,z,c)), \
|
|
(I[89] = (T)(img)(_n12##x,_p13##y,z,c)), \
|
|
(I[120] = (T)(img)(_n12##x,_p12##y,z,c)), \
|
|
(I[151] = (T)(img)(_n12##x,_p11##y,z,c)), \
|
|
(I[182] = (T)(img)(_n12##x,_p10##y,z,c)), \
|
|
(I[213] = (T)(img)(_n12##x,_p9##y,z,c)), \
|
|
(I[244] = (T)(img)(_n12##x,_p8##y,z,c)), \
|
|
(I[275] = (T)(img)(_n12##x,_p7##y,z,c)), \
|
|
(I[306] = (T)(img)(_n12##x,_p6##y,z,c)), \
|
|
(I[337] = (T)(img)(_n12##x,_p5##y,z,c)), \
|
|
(I[368] = (T)(img)(_n12##x,_p4##y,z,c)), \
|
|
(I[399] = (T)(img)(_n12##x,_p3##y,z,c)), \
|
|
(I[430] = (T)(img)(_n12##x,_p2##y,z,c)), \
|
|
(I[461] = (T)(img)(_n12##x,_p1##y,z,c)), \
|
|
(I[492] = (T)(img)(_n12##x,y,z,c)), \
|
|
(I[523] = (T)(img)(_n12##x,_n1##y,z,c)), \
|
|
(I[554] = (T)(img)(_n12##x,_n2##y,z,c)), \
|
|
(I[585] = (T)(img)(_n12##x,_n3##y,z,c)), \
|
|
(I[616] = (T)(img)(_n12##x,_n4##y,z,c)), \
|
|
(I[647] = (T)(img)(_n12##x,_n5##y,z,c)), \
|
|
(I[678] = (T)(img)(_n12##x,_n6##y,z,c)), \
|
|
(I[709] = (T)(img)(_n12##x,_n7##y,z,c)), \
|
|
(I[740] = (T)(img)(_n12##x,_n8##y,z,c)), \
|
|
(I[771] = (T)(img)(_n12##x,_n9##y,z,c)), \
|
|
(I[802] = (T)(img)(_n12##x,_n10##y,z,c)), \
|
|
(I[833] = (T)(img)(_n12##x,_n11##y,z,c)), \
|
|
(I[864] = (T)(img)(_n12##x,_n12##y,z,c)), \
|
|
(I[895] = (T)(img)(_n12##x,_n13##y,z,c)), \
|
|
(I[926] = (T)(img)(_n12##x,_n14##y,z,c)), \
|
|
(I[957] = (T)(img)(_n12##x,_n15##y,z,c)), \
|
|
(I[28] = (T)(img)(_n13##x,_p15##y,z,c)), \
|
|
(I[59] = (T)(img)(_n13##x,_p14##y,z,c)), \
|
|
(I[90] = (T)(img)(_n13##x,_p13##y,z,c)), \
|
|
(I[121] = (T)(img)(_n13##x,_p12##y,z,c)), \
|
|
(I[152] = (T)(img)(_n13##x,_p11##y,z,c)), \
|
|
(I[183] = (T)(img)(_n13##x,_p10##y,z,c)), \
|
|
(I[214] = (T)(img)(_n13##x,_p9##y,z,c)), \
|
|
(I[245] = (T)(img)(_n13##x,_p8##y,z,c)), \
|
|
(I[276] = (T)(img)(_n13##x,_p7##y,z,c)), \
|
|
(I[307] = (T)(img)(_n13##x,_p6##y,z,c)), \
|
|
(I[338] = (T)(img)(_n13##x,_p5##y,z,c)), \
|
|
(I[369] = (T)(img)(_n13##x,_p4##y,z,c)), \
|
|
(I[400] = (T)(img)(_n13##x,_p3##y,z,c)), \
|
|
(I[431] = (T)(img)(_n13##x,_p2##y,z,c)), \
|
|
(I[462] = (T)(img)(_n13##x,_p1##y,z,c)), \
|
|
(I[493] = (T)(img)(_n13##x,y,z,c)), \
|
|
(I[524] = (T)(img)(_n13##x,_n1##y,z,c)), \
|
|
(I[555] = (T)(img)(_n13##x,_n2##y,z,c)), \
|
|
(I[586] = (T)(img)(_n13##x,_n3##y,z,c)), \
|
|
(I[617] = (T)(img)(_n13##x,_n4##y,z,c)), \
|
|
(I[648] = (T)(img)(_n13##x,_n5##y,z,c)), \
|
|
(I[679] = (T)(img)(_n13##x,_n6##y,z,c)), \
|
|
(I[710] = (T)(img)(_n13##x,_n7##y,z,c)), \
|
|
(I[741] = (T)(img)(_n13##x,_n8##y,z,c)), \
|
|
(I[772] = (T)(img)(_n13##x,_n9##y,z,c)), \
|
|
(I[803] = (T)(img)(_n13##x,_n10##y,z,c)), \
|
|
(I[834] = (T)(img)(_n13##x,_n11##y,z,c)), \
|
|
(I[865] = (T)(img)(_n13##x,_n12##y,z,c)), \
|
|
(I[896] = (T)(img)(_n13##x,_n13##y,z,c)), \
|
|
(I[927] = (T)(img)(_n13##x,_n14##y,z,c)), \
|
|
(I[958] = (T)(img)(_n13##x,_n15##y,z,c)), \
|
|
(I[29] = (T)(img)(_n14##x,_p15##y,z,c)), \
|
|
(I[60] = (T)(img)(_n14##x,_p14##y,z,c)), \
|
|
(I[91] = (T)(img)(_n14##x,_p13##y,z,c)), \
|
|
(I[122] = (T)(img)(_n14##x,_p12##y,z,c)), \
|
|
(I[153] = (T)(img)(_n14##x,_p11##y,z,c)), \
|
|
(I[184] = (T)(img)(_n14##x,_p10##y,z,c)), \
|
|
(I[215] = (T)(img)(_n14##x,_p9##y,z,c)), \
|
|
(I[246] = (T)(img)(_n14##x,_p8##y,z,c)), \
|
|
(I[277] = (T)(img)(_n14##x,_p7##y,z,c)), \
|
|
(I[308] = (T)(img)(_n14##x,_p6##y,z,c)), \
|
|
(I[339] = (T)(img)(_n14##x,_p5##y,z,c)), \
|
|
(I[370] = (T)(img)(_n14##x,_p4##y,z,c)), \
|
|
(I[401] = (T)(img)(_n14##x,_p3##y,z,c)), \
|
|
(I[432] = (T)(img)(_n14##x,_p2##y,z,c)), \
|
|
(I[463] = (T)(img)(_n14##x,_p1##y,z,c)), \
|
|
(I[494] = (T)(img)(_n14##x,y,z,c)), \
|
|
(I[525] = (T)(img)(_n14##x,_n1##y,z,c)), \
|
|
(I[556] = (T)(img)(_n14##x,_n2##y,z,c)), \
|
|
(I[587] = (T)(img)(_n14##x,_n3##y,z,c)), \
|
|
(I[618] = (T)(img)(_n14##x,_n4##y,z,c)), \
|
|
(I[649] = (T)(img)(_n14##x,_n5##y,z,c)), \
|
|
(I[680] = (T)(img)(_n14##x,_n6##y,z,c)), \
|
|
(I[711] = (T)(img)(_n14##x,_n7##y,z,c)), \
|
|
(I[742] = (T)(img)(_n14##x,_n8##y,z,c)), \
|
|
(I[773] = (T)(img)(_n14##x,_n9##y,z,c)), \
|
|
(I[804] = (T)(img)(_n14##x,_n10##y,z,c)), \
|
|
(I[835] = (T)(img)(_n14##x,_n11##y,z,c)), \
|
|
(I[866] = (T)(img)(_n14##x,_n12##y,z,c)), \
|
|
(I[897] = (T)(img)(_n14##x,_n13##y,z,c)), \
|
|
(I[928] = (T)(img)(_n14##x,_n14##y,z,c)), \
|
|
(I[959] = (T)(img)(_n14##x,_n15##y,z,c)), \
|
|
x + 15>=(img).width()?(img).width() - 1:x + 15); \
|
|
x<=(int)(x1) && ((_n15##x<(img).width() && ( \
|
|
(I[30] = (T)(img)(_n15##x,_p15##y,z,c)), \
|
|
(I[61] = (T)(img)(_n15##x,_p14##y,z,c)), \
|
|
(I[92] = (T)(img)(_n15##x,_p13##y,z,c)), \
|
|
(I[123] = (T)(img)(_n15##x,_p12##y,z,c)), \
|
|
(I[154] = (T)(img)(_n15##x,_p11##y,z,c)), \
|
|
(I[185] = (T)(img)(_n15##x,_p10##y,z,c)), \
|
|
(I[216] = (T)(img)(_n15##x,_p9##y,z,c)), \
|
|
(I[247] = (T)(img)(_n15##x,_p8##y,z,c)), \
|
|
(I[278] = (T)(img)(_n15##x,_p7##y,z,c)), \
|
|
(I[309] = (T)(img)(_n15##x,_p6##y,z,c)), \
|
|
(I[340] = (T)(img)(_n15##x,_p5##y,z,c)), \
|
|
(I[371] = (T)(img)(_n15##x,_p4##y,z,c)), \
|
|
(I[402] = (T)(img)(_n15##x,_p3##y,z,c)), \
|
|
(I[433] = (T)(img)(_n15##x,_p2##y,z,c)), \
|
|
(I[464] = (T)(img)(_n15##x,_p1##y,z,c)), \
|
|
(I[495] = (T)(img)(_n15##x,y,z,c)), \
|
|
(I[526] = (T)(img)(_n15##x,_n1##y,z,c)), \
|
|
(I[557] = (T)(img)(_n15##x,_n2##y,z,c)), \
|
|
(I[588] = (T)(img)(_n15##x,_n3##y,z,c)), \
|
|
(I[619] = (T)(img)(_n15##x,_n4##y,z,c)), \
|
|
(I[650] = (T)(img)(_n15##x,_n5##y,z,c)), \
|
|
(I[681] = (T)(img)(_n15##x,_n6##y,z,c)), \
|
|
(I[712] = (T)(img)(_n15##x,_n7##y,z,c)), \
|
|
(I[743] = (T)(img)(_n15##x,_n8##y,z,c)), \
|
|
(I[774] = (T)(img)(_n15##x,_n9##y,z,c)), \
|
|
(I[805] = (T)(img)(_n15##x,_n10##y,z,c)), \
|
|
(I[836] = (T)(img)(_n15##x,_n11##y,z,c)), \
|
|
(I[867] = (T)(img)(_n15##x,_n12##y,z,c)), \
|
|
(I[898] = (T)(img)(_n15##x,_n13##y,z,c)), \
|
|
(I[929] = (T)(img)(_n15##x,_n14##y,z,c)), \
|
|
(I[960] = (T)(img)(_n15##x,_n15##y,z,c)),1)) || \
|
|
_n14##x==--_n15##x || _n13##x==--_n14##x || _n12##x==--_n13##x || _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n15##x = _n14##x = _n13##x = _n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], \
|
|
I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], \
|
|
I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], \
|
|
I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], \
|
|
I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], \
|
|
I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], \
|
|
I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], \
|
|
I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], \
|
|
I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], \
|
|
I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], \
|
|
I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], \
|
|
I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], \
|
|
I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], \
|
|
I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], \
|
|
I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], \
|
|
I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], \
|
|
I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], \
|
|
I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], \
|
|
I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], I[575] = I[576], I[576] = I[577], I[577] = I[578], I[578] = I[579], I[579] = I[580], I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], I[587] = I[588], \
|
|
I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], I[593] = I[594], I[594] = I[595], I[595] = I[596], I[596] = I[597], I[597] = I[598], I[598] = I[599], I[599] = I[600], I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], I[607] = I[608], I[608] = I[609], I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], I[615] = I[616], I[616] = I[617], I[617] = I[618], I[618] = I[619], \
|
|
I[620] = I[621], I[621] = I[622], I[622] = I[623], I[623] = I[624], I[624] = I[625], I[625] = I[626], I[626] = I[627], I[627] = I[628], I[628] = I[629], I[629] = I[630], I[630] = I[631], I[631] = I[632], I[632] = I[633], I[633] = I[634], I[634] = I[635], I[635] = I[636], I[636] = I[637], I[637] = I[638], I[638] = I[639], I[639] = I[640], I[640] = I[641], I[641] = I[642], I[642] = I[643], I[643] = I[644], I[644] = I[645], I[645] = I[646], I[646] = I[647], I[647] = I[648], I[648] = I[649], I[649] = I[650], \
|
|
I[651] = I[652], I[652] = I[653], I[653] = I[654], I[654] = I[655], I[655] = I[656], I[656] = I[657], I[657] = I[658], I[658] = I[659], I[659] = I[660], I[660] = I[661], I[661] = I[662], I[662] = I[663], I[663] = I[664], I[664] = I[665], I[665] = I[666], I[666] = I[667], I[667] = I[668], I[668] = I[669], I[669] = I[670], I[670] = I[671], I[671] = I[672], I[672] = I[673], I[673] = I[674], I[674] = I[675], I[675] = I[676], I[676] = I[677], I[677] = I[678], I[678] = I[679], I[679] = I[680], I[680] = I[681], \
|
|
I[682] = I[683], I[683] = I[684], I[684] = I[685], I[685] = I[686], I[686] = I[687], I[687] = I[688], I[688] = I[689], I[689] = I[690], I[690] = I[691], I[691] = I[692], I[692] = I[693], I[693] = I[694], I[694] = I[695], I[695] = I[696], I[696] = I[697], I[697] = I[698], I[698] = I[699], I[699] = I[700], I[700] = I[701], I[701] = I[702], I[702] = I[703], I[703] = I[704], I[704] = I[705], I[705] = I[706], I[706] = I[707], I[707] = I[708], I[708] = I[709], I[709] = I[710], I[710] = I[711], I[711] = I[712], \
|
|
I[713] = I[714], I[714] = I[715], I[715] = I[716], I[716] = I[717], I[717] = I[718], I[718] = I[719], I[719] = I[720], I[720] = I[721], I[721] = I[722], I[722] = I[723], I[723] = I[724], I[724] = I[725], I[725] = I[726], I[726] = I[727], I[727] = I[728], I[728] = I[729], I[729] = I[730], I[730] = I[731], I[731] = I[732], I[732] = I[733], I[733] = I[734], I[734] = I[735], I[735] = I[736], I[736] = I[737], I[737] = I[738], I[738] = I[739], I[739] = I[740], I[740] = I[741], I[741] = I[742], I[742] = I[743], \
|
|
I[744] = I[745], I[745] = I[746], I[746] = I[747], I[747] = I[748], I[748] = I[749], I[749] = I[750], I[750] = I[751], I[751] = I[752], I[752] = I[753], I[753] = I[754], I[754] = I[755], I[755] = I[756], I[756] = I[757], I[757] = I[758], I[758] = I[759], I[759] = I[760], I[760] = I[761], I[761] = I[762], I[762] = I[763], I[763] = I[764], I[764] = I[765], I[765] = I[766], I[766] = I[767], I[767] = I[768], I[768] = I[769], I[769] = I[770], I[770] = I[771], I[771] = I[772], I[772] = I[773], I[773] = I[774], \
|
|
I[775] = I[776], I[776] = I[777], I[777] = I[778], I[778] = I[779], I[779] = I[780], I[780] = I[781], I[781] = I[782], I[782] = I[783], I[783] = I[784], I[784] = I[785], I[785] = I[786], I[786] = I[787], I[787] = I[788], I[788] = I[789], I[789] = I[790], I[790] = I[791], I[791] = I[792], I[792] = I[793], I[793] = I[794], I[794] = I[795], I[795] = I[796], I[796] = I[797], I[797] = I[798], I[798] = I[799], I[799] = I[800], I[800] = I[801], I[801] = I[802], I[802] = I[803], I[803] = I[804], I[804] = I[805], \
|
|
I[806] = I[807], I[807] = I[808], I[808] = I[809], I[809] = I[810], I[810] = I[811], I[811] = I[812], I[812] = I[813], I[813] = I[814], I[814] = I[815], I[815] = I[816], I[816] = I[817], I[817] = I[818], I[818] = I[819], I[819] = I[820], I[820] = I[821], I[821] = I[822], I[822] = I[823], I[823] = I[824], I[824] = I[825], I[825] = I[826], I[826] = I[827], I[827] = I[828], I[828] = I[829], I[829] = I[830], I[830] = I[831], I[831] = I[832], I[832] = I[833], I[833] = I[834], I[834] = I[835], I[835] = I[836], \
|
|
I[837] = I[838], I[838] = I[839], I[839] = I[840], I[840] = I[841], I[841] = I[842], I[842] = I[843], I[843] = I[844], I[844] = I[845], I[845] = I[846], I[846] = I[847], I[847] = I[848], I[848] = I[849], I[849] = I[850], I[850] = I[851], I[851] = I[852], I[852] = I[853], I[853] = I[854], I[854] = I[855], I[855] = I[856], I[856] = I[857], I[857] = I[858], I[858] = I[859], I[859] = I[860], I[860] = I[861], I[861] = I[862], I[862] = I[863], I[863] = I[864], I[864] = I[865], I[865] = I[866], I[866] = I[867], \
|
|
I[868] = I[869], I[869] = I[870], I[870] = I[871], I[871] = I[872], I[872] = I[873], I[873] = I[874], I[874] = I[875], I[875] = I[876], I[876] = I[877], I[877] = I[878], I[878] = I[879], I[879] = I[880], I[880] = I[881], I[881] = I[882], I[882] = I[883], I[883] = I[884], I[884] = I[885], I[885] = I[886], I[886] = I[887], I[887] = I[888], I[888] = I[889], I[889] = I[890], I[890] = I[891], I[891] = I[892], I[892] = I[893], I[893] = I[894], I[894] = I[895], I[895] = I[896], I[896] = I[897], I[897] = I[898], \
|
|
I[899] = I[900], I[900] = I[901], I[901] = I[902], I[902] = I[903], I[903] = I[904], I[904] = I[905], I[905] = I[906], I[906] = I[907], I[907] = I[908], I[908] = I[909], I[909] = I[910], I[910] = I[911], I[911] = I[912], I[912] = I[913], I[913] = I[914], I[914] = I[915], I[915] = I[916], I[916] = I[917], I[917] = I[918], I[918] = I[919], I[919] = I[920], I[920] = I[921], I[921] = I[922], I[922] = I[923], I[923] = I[924], I[924] = I[925], I[925] = I[926], I[926] = I[927], I[927] = I[928], I[928] = I[929], \
|
|
I[930] = I[931], I[931] = I[932], I[932] = I[933], I[933] = I[934], I[934] = I[935], I[935] = I[936], I[936] = I[937], I[937] = I[938], I[938] = I[939], I[939] = I[940], I[940] = I[941], I[941] = I[942], I[942] = I[943], I[943] = I[944], I[944] = I[945], I[945] = I[946], I[946] = I[947], I[947] = I[948], I[948] = I[949], I[949] = I[950], I[950] = I[951], I[951] = I[952], I[952] = I[953], I[953] = I[954], I[954] = I[955], I[955] = I[956], I[956] = I[957], I[957] = I[958], I[958] = I[959], I[959] = I[960], \
|
|
_p15##x = _p14##x, _p14##x = _p13##x, _p13##x = _p12##x, _p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x, ++_n13##x, ++_n14##x, ++_n15##x)
|
|
|
|
#define cimg_get31x31(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p15##x,_p15##y,z,c), I[1] = (T)(img)(_p14##x,_p15##y,z,c), I[2] = (T)(img)(_p13##x,_p15##y,z,c), I[3] = (T)(img)(_p12##x,_p15##y,z,c), I[4] = (T)(img)(_p11##x,_p15##y,z,c), I[5] = (T)(img)(_p10##x,_p15##y,z,c), I[6] = (T)(img)(_p9##x,_p15##y,z,c), I[7] = (T)(img)(_p8##x,_p15##y,z,c), I[8] = (T)(img)(_p7##x,_p15##y,z,c), I[9] = (T)(img)(_p6##x,_p15##y,z,c), I[10] = (T)(img)(_p5##x,_p15##y,z,c), I[11] = (T)(img)(_p4##x,_p15##y,z,c), I[12] = (T)(img)(_p3##x,_p15##y,z,c), I[13] = (T)(img)(_p2##x,_p15##y,z,c), I[14] = (T)(img)(_p1##x,_p15##y,z,c), I[15] = (T)(img)(x,_p15##y,z,c), I[16] = (T)(img)(_n1##x,_p15##y,z,c), I[17] = (T)(img)(_n2##x,_p15##y,z,c), I[18] = (T)(img)(_n3##x,_p15##y,z,c), I[19] = (T)(img)(_n4##x,_p15##y,z,c), I[20] = (T)(img)(_n5##x,_p15##y,z,c), I[21] = (T)(img)(_n6##x,_p15##y,z,c), I[22] = (T)(img)(_n7##x,_p15##y,z,c), I[23] = (T)(img)(_n8##x,_p15##y,z,c), I[24] = (T)(img)(_n9##x,_p15##y,z,c), I[25] = (T)(img)(_n10##x,_p15##y,z,c), I[26] = (T)(img)(_n11##x,_p15##y,z,c), I[27] = (T)(img)(_n12##x,_p15##y,z,c), I[28] = (T)(img)(_n13##x,_p15##y,z,c), I[29] = (T)(img)(_n14##x,_p15##y,z,c), I[30] = (T)(img)(_n15##x,_p15##y,z,c), \
|
|
I[31] = (T)(img)(_p15##x,_p14##y,z,c), I[32] = (T)(img)(_p14##x,_p14##y,z,c), I[33] = (T)(img)(_p13##x,_p14##y,z,c), I[34] = (T)(img)(_p12##x,_p14##y,z,c), I[35] = (T)(img)(_p11##x,_p14##y,z,c), I[36] = (T)(img)(_p10##x,_p14##y,z,c), I[37] = (T)(img)(_p9##x,_p14##y,z,c), I[38] = (T)(img)(_p8##x,_p14##y,z,c), I[39] = (T)(img)(_p7##x,_p14##y,z,c), I[40] = (T)(img)(_p6##x,_p14##y,z,c), I[41] = (T)(img)(_p5##x,_p14##y,z,c), I[42] = (T)(img)(_p4##x,_p14##y,z,c), I[43] = (T)(img)(_p3##x,_p14##y,z,c), I[44] = (T)(img)(_p2##x,_p14##y,z,c), I[45] = (T)(img)(_p1##x,_p14##y,z,c), I[46] = (T)(img)(x,_p14##y,z,c), I[47] = (T)(img)(_n1##x,_p14##y,z,c), I[48] = (T)(img)(_n2##x,_p14##y,z,c), I[49] = (T)(img)(_n3##x,_p14##y,z,c), I[50] = (T)(img)(_n4##x,_p14##y,z,c), I[51] = (T)(img)(_n5##x,_p14##y,z,c), I[52] = (T)(img)(_n6##x,_p14##y,z,c), I[53] = (T)(img)(_n7##x,_p14##y,z,c), I[54] = (T)(img)(_n8##x,_p14##y,z,c), I[55] = (T)(img)(_n9##x,_p14##y,z,c), I[56] = (T)(img)(_n10##x,_p14##y,z,c), I[57] = (T)(img)(_n11##x,_p14##y,z,c), I[58] = (T)(img)(_n12##x,_p14##y,z,c), I[59] = (T)(img)(_n13##x,_p14##y,z,c), I[60] = (T)(img)(_n14##x,_p14##y,z,c), I[61] = (T)(img)(_n15##x,_p14##y,z,c), \
|
|
I[62] = (T)(img)(_p15##x,_p13##y,z,c), I[63] = (T)(img)(_p14##x,_p13##y,z,c), I[64] = (T)(img)(_p13##x,_p13##y,z,c), I[65] = (T)(img)(_p12##x,_p13##y,z,c), I[66] = (T)(img)(_p11##x,_p13##y,z,c), I[67] = (T)(img)(_p10##x,_p13##y,z,c), I[68] = (T)(img)(_p9##x,_p13##y,z,c), I[69] = (T)(img)(_p8##x,_p13##y,z,c), I[70] = (T)(img)(_p7##x,_p13##y,z,c), I[71] = (T)(img)(_p6##x,_p13##y,z,c), I[72] = (T)(img)(_p5##x,_p13##y,z,c), I[73] = (T)(img)(_p4##x,_p13##y,z,c), I[74] = (T)(img)(_p3##x,_p13##y,z,c), I[75] = (T)(img)(_p2##x,_p13##y,z,c), I[76] = (T)(img)(_p1##x,_p13##y,z,c), I[77] = (T)(img)(x,_p13##y,z,c), I[78] = (T)(img)(_n1##x,_p13##y,z,c), I[79] = (T)(img)(_n2##x,_p13##y,z,c), I[80] = (T)(img)(_n3##x,_p13##y,z,c), I[81] = (T)(img)(_n4##x,_p13##y,z,c), I[82] = (T)(img)(_n5##x,_p13##y,z,c), I[83] = (T)(img)(_n6##x,_p13##y,z,c), I[84] = (T)(img)(_n7##x,_p13##y,z,c), I[85] = (T)(img)(_n8##x,_p13##y,z,c), I[86] = (T)(img)(_n9##x,_p13##y,z,c), I[87] = (T)(img)(_n10##x,_p13##y,z,c), I[88] = (T)(img)(_n11##x,_p13##y,z,c), I[89] = (T)(img)(_n12##x,_p13##y,z,c), I[90] = (T)(img)(_n13##x,_p13##y,z,c), I[91] = (T)(img)(_n14##x,_p13##y,z,c), I[92] = (T)(img)(_n15##x,_p13##y,z,c), \
|
|
I[93] = (T)(img)(_p15##x,_p12##y,z,c), I[94] = (T)(img)(_p14##x,_p12##y,z,c), I[95] = (T)(img)(_p13##x,_p12##y,z,c), I[96] = (T)(img)(_p12##x,_p12##y,z,c), I[97] = (T)(img)(_p11##x,_p12##y,z,c), I[98] = (T)(img)(_p10##x,_p12##y,z,c), I[99] = (T)(img)(_p9##x,_p12##y,z,c), I[100] = (T)(img)(_p8##x,_p12##y,z,c), I[101] = (T)(img)(_p7##x,_p12##y,z,c), I[102] = (T)(img)(_p6##x,_p12##y,z,c), I[103] = (T)(img)(_p5##x,_p12##y,z,c), I[104] = (T)(img)(_p4##x,_p12##y,z,c), I[105] = (T)(img)(_p3##x,_p12##y,z,c), I[106] = (T)(img)(_p2##x,_p12##y,z,c), I[107] = (T)(img)(_p1##x,_p12##y,z,c), I[108] = (T)(img)(x,_p12##y,z,c), I[109] = (T)(img)(_n1##x,_p12##y,z,c), I[110] = (T)(img)(_n2##x,_p12##y,z,c), I[111] = (T)(img)(_n3##x,_p12##y,z,c), I[112] = (T)(img)(_n4##x,_p12##y,z,c), I[113] = (T)(img)(_n5##x,_p12##y,z,c), I[114] = (T)(img)(_n6##x,_p12##y,z,c), I[115] = (T)(img)(_n7##x,_p12##y,z,c), I[116] = (T)(img)(_n8##x,_p12##y,z,c), I[117] = (T)(img)(_n9##x,_p12##y,z,c), I[118] = (T)(img)(_n10##x,_p12##y,z,c), I[119] = (T)(img)(_n11##x,_p12##y,z,c), I[120] = (T)(img)(_n12##x,_p12##y,z,c), I[121] = (T)(img)(_n13##x,_p12##y,z,c), I[122] = (T)(img)(_n14##x,_p12##y,z,c), I[123] = (T)(img)(_n15##x,_p12##y,z,c), \
|
|
I[124] = (T)(img)(_p15##x,_p11##y,z,c), I[125] = (T)(img)(_p14##x,_p11##y,z,c), I[126] = (T)(img)(_p13##x,_p11##y,z,c), I[127] = (T)(img)(_p12##x,_p11##y,z,c), I[128] = (T)(img)(_p11##x,_p11##y,z,c), I[129] = (T)(img)(_p10##x,_p11##y,z,c), I[130] = (T)(img)(_p9##x,_p11##y,z,c), I[131] = (T)(img)(_p8##x,_p11##y,z,c), I[132] = (T)(img)(_p7##x,_p11##y,z,c), I[133] = (T)(img)(_p6##x,_p11##y,z,c), I[134] = (T)(img)(_p5##x,_p11##y,z,c), I[135] = (T)(img)(_p4##x,_p11##y,z,c), I[136] = (T)(img)(_p3##x,_p11##y,z,c), I[137] = (T)(img)(_p2##x,_p11##y,z,c), I[138] = (T)(img)(_p1##x,_p11##y,z,c), I[139] = (T)(img)(x,_p11##y,z,c), I[140] = (T)(img)(_n1##x,_p11##y,z,c), I[141] = (T)(img)(_n2##x,_p11##y,z,c), I[142] = (T)(img)(_n3##x,_p11##y,z,c), I[143] = (T)(img)(_n4##x,_p11##y,z,c), I[144] = (T)(img)(_n5##x,_p11##y,z,c), I[145] = (T)(img)(_n6##x,_p11##y,z,c), I[146] = (T)(img)(_n7##x,_p11##y,z,c), I[147] = (T)(img)(_n8##x,_p11##y,z,c), I[148] = (T)(img)(_n9##x,_p11##y,z,c), I[149] = (T)(img)(_n10##x,_p11##y,z,c), I[150] = (T)(img)(_n11##x,_p11##y,z,c), I[151] = (T)(img)(_n12##x,_p11##y,z,c), I[152] = (T)(img)(_n13##x,_p11##y,z,c), I[153] = (T)(img)(_n14##x,_p11##y,z,c), I[154] = (T)(img)(_n15##x,_p11##y,z,c), \
|
|
I[155] = (T)(img)(_p15##x,_p10##y,z,c), I[156] = (T)(img)(_p14##x,_p10##y,z,c), I[157] = (T)(img)(_p13##x,_p10##y,z,c), I[158] = (T)(img)(_p12##x,_p10##y,z,c), I[159] = (T)(img)(_p11##x,_p10##y,z,c), I[160] = (T)(img)(_p10##x,_p10##y,z,c), I[161] = (T)(img)(_p9##x,_p10##y,z,c), I[162] = (T)(img)(_p8##x,_p10##y,z,c), I[163] = (T)(img)(_p7##x,_p10##y,z,c), I[164] = (T)(img)(_p6##x,_p10##y,z,c), I[165] = (T)(img)(_p5##x,_p10##y,z,c), I[166] = (T)(img)(_p4##x,_p10##y,z,c), I[167] = (T)(img)(_p3##x,_p10##y,z,c), I[168] = (T)(img)(_p2##x,_p10##y,z,c), I[169] = (T)(img)(_p1##x,_p10##y,z,c), I[170] = (T)(img)(x,_p10##y,z,c), I[171] = (T)(img)(_n1##x,_p10##y,z,c), I[172] = (T)(img)(_n2##x,_p10##y,z,c), I[173] = (T)(img)(_n3##x,_p10##y,z,c), I[174] = (T)(img)(_n4##x,_p10##y,z,c), I[175] = (T)(img)(_n5##x,_p10##y,z,c), I[176] = (T)(img)(_n6##x,_p10##y,z,c), I[177] = (T)(img)(_n7##x,_p10##y,z,c), I[178] = (T)(img)(_n8##x,_p10##y,z,c), I[179] = (T)(img)(_n9##x,_p10##y,z,c), I[180] = (T)(img)(_n10##x,_p10##y,z,c), I[181] = (T)(img)(_n11##x,_p10##y,z,c), I[182] = (T)(img)(_n12##x,_p10##y,z,c), I[183] = (T)(img)(_n13##x,_p10##y,z,c), I[184] = (T)(img)(_n14##x,_p10##y,z,c), I[185] = (T)(img)(_n15##x,_p10##y,z,c), \
|
|
I[186] = (T)(img)(_p15##x,_p9##y,z,c), I[187] = (T)(img)(_p14##x,_p9##y,z,c), I[188] = (T)(img)(_p13##x,_p9##y,z,c), I[189] = (T)(img)(_p12##x,_p9##y,z,c), I[190] = (T)(img)(_p11##x,_p9##y,z,c), I[191] = (T)(img)(_p10##x,_p9##y,z,c), I[192] = (T)(img)(_p9##x,_p9##y,z,c), I[193] = (T)(img)(_p8##x,_p9##y,z,c), I[194] = (T)(img)(_p7##x,_p9##y,z,c), I[195] = (T)(img)(_p6##x,_p9##y,z,c), I[196] = (T)(img)(_p5##x,_p9##y,z,c), I[197] = (T)(img)(_p4##x,_p9##y,z,c), I[198] = (T)(img)(_p3##x,_p9##y,z,c), I[199] = (T)(img)(_p2##x,_p9##y,z,c), I[200] = (T)(img)(_p1##x,_p9##y,z,c), I[201] = (T)(img)(x,_p9##y,z,c), I[202] = (T)(img)(_n1##x,_p9##y,z,c), I[203] = (T)(img)(_n2##x,_p9##y,z,c), I[204] = (T)(img)(_n3##x,_p9##y,z,c), I[205] = (T)(img)(_n4##x,_p9##y,z,c), I[206] = (T)(img)(_n5##x,_p9##y,z,c), I[207] = (T)(img)(_n6##x,_p9##y,z,c), I[208] = (T)(img)(_n7##x,_p9##y,z,c), I[209] = (T)(img)(_n8##x,_p9##y,z,c), I[210] = (T)(img)(_n9##x,_p9##y,z,c), I[211] = (T)(img)(_n10##x,_p9##y,z,c), I[212] = (T)(img)(_n11##x,_p9##y,z,c), I[213] = (T)(img)(_n12##x,_p9##y,z,c), I[214] = (T)(img)(_n13##x,_p9##y,z,c), I[215] = (T)(img)(_n14##x,_p9##y,z,c), I[216] = (T)(img)(_n15##x,_p9##y,z,c), \
|
|
I[217] = (T)(img)(_p15##x,_p8##y,z,c), I[218] = (T)(img)(_p14##x,_p8##y,z,c), I[219] = (T)(img)(_p13##x,_p8##y,z,c), I[220] = (T)(img)(_p12##x,_p8##y,z,c), I[221] = (T)(img)(_p11##x,_p8##y,z,c), I[222] = (T)(img)(_p10##x,_p8##y,z,c), I[223] = (T)(img)(_p9##x,_p8##y,z,c), I[224] = (T)(img)(_p8##x,_p8##y,z,c), I[225] = (T)(img)(_p7##x,_p8##y,z,c), I[226] = (T)(img)(_p6##x,_p8##y,z,c), I[227] = (T)(img)(_p5##x,_p8##y,z,c), I[228] = (T)(img)(_p4##x,_p8##y,z,c), I[229] = (T)(img)(_p3##x,_p8##y,z,c), I[230] = (T)(img)(_p2##x,_p8##y,z,c), I[231] = (T)(img)(_p1##x,_p8##y,z,c), I[232] = (T)(img)(x,_p8##y,z,c), I[233] = (T)(img)(_n1##x,_p8##y,z,c), I[234] = (T)(img)(_n2##x,_p8##y,z,c), I[235] = (T)(img)(_n3##x,_p8##y,z,c), I[236] = (T)(img)(_n4##x,_p8##y,z,c), I[237] = (T)(img)(_n5##x,_p8##y,z,c), I[238] = (T)(img)(_n6##x,_p8##y,z,c), I[239] = (T)(img)(_n7##x,_p8##y,z,c), I[240] = (T)(img)(_n8##x,_p8##y,z,c), I[241] = (T)(img)(_n9##x,_p8##y,z,c), I[242] = (T)(img)(_n10##x,_p8##y,z,c), I[243] = (T)(img)(_n11##x,_p8##y,z,c), I[244] = (T)(img)(_n12##x,_p8##y,z,c), I[245] = (T)(img)(_n13##x,_p8##y,z,c), I[246] = (T)(img)(_n14##x,_p8##y,z,c), I[247] = (T)(img)(_n15##x,_p8##y,z,c), \
|
|
I[248] = (T)(img)(_p15##x,_p7##y,z,c), I[249] = (T)(img)(_p14##x,_p7##y,z,c), I[250] = (T)(img)(_p13##x,_p7##y,z,c), I[251] = (T)(img)(_p12##x,_p7##y,z,c), I[252] = (T)(img)(_p11##x,_p7##y,z,c), I[253] = (T)(img)(_p10##x,_p7##y,z,c), I[254] = (T)(img)(_p9##x,_p7##y,z,c), I[255] = (T)(img)(_p8##x,_p7##y,z,c), I[256] = (T)(img)(_p7##x,_p7##y,z,c), I[257] = (T)(img)(_p6##x,_p7##y,z,c), I[258] = (T)(img)(_p5##x,_p7##y,z,c), I[259] = (T)(img)(_p4##x,_p7##y,z,c), I[260] = (T)(img)(_p3##x,_p7##y,z,c), I[261] = (T)(img)(_p2##x,_p7##y,z,c), I[262] = (T)(img)(_p1##x,_p7##y,z,c), I[263] = (T)(img)(x,_p7##y,z,c), I[264] = (T)(img)(_n1##x,_p7##y,z,c), I[265] = (T)(img)(_n2##x,_p7##y,z,c), I[266] = (T)(img)(_n3##x,_p7##y,z,c), I[267] = (T)(img)(_n4##x,_p7##y,z,c), I[268] = (T)(img)(_n5##x,_p7##y,z,c), I[269] = (T)(img)(_n6##x,_p7##y,z,c), I[270] = (T)(img)(_n7##x,_p7##y,z,c), I[271] = (T)(img)(_n8##x,_p7##y,z,c), I[272] = (T)(img)(_n9##x,_p7##y,z,c), I[273] = (T)(img)(_n10##x,_p7##y,z,c), I[274] = (T)(img)(_n11##x,_p7##y,z,c), I[275] = (T)(img)(_n12##x,_p7##y,z,c), I[276] = (T)(img)(_n13##x,_p7##y,z,c), I[277] = (T)(img)(_n14##x,_p7##y,z,c), I[278] = (T)(img)(_n15##x,_p7##y,z,c), \
|
|
I[279] = (T)(img)(_p15##x,_p6##y,z,c), I[280] = (T)(img)(_p14##x,_p6##y,z,c), I[281] = (T)(img)(_p13##x,_p6##y,z,c), I[282] = (T)(img)(_p12##x,_p6##y,z,c), I[283] = (T)(img)(_p11##x,_p6##y,z,c), I[284] = (T)(img)(_p10##x,_p6##y,z,c), I[285] = (T)(img)(_p9##x,_p6##y,z,c), I[286] = (T)(img)(_p8##x,_p6##y,z,c), I[287] = (T)(img)(_p7##x,_p6##y,z,c), I[288] = (T)(img)(_p6##x,_p6##y,z,c), I[289] = (T)(img)(_p5##x,_p6##y,z,c), I[290] = (T)(img)(_p4##x,_p6##y,z,c), I[291] = (T)(img)(_p3##x,_p6##y,z,c), I[292] = (T)(img)(_p2##x,_p6##y,z,c), I[293] = (T)(img)(_p1##x,_p6##y,z,c), I[294] = (T)(img)(x,_p6##y,z,c), I[295] = (T)(img)(_n1##x,_p6##y,z,c), I[296] = (T)(img)(_n2##x,_p6##y,z,c), I[297] = (T)(img)(_n3##x,_p6##y,z,c), I[298] = (T)(img)(_n4##x,_p6##y,z,c), I[299] = (T)(img)(_n5##x,_p6##y,z,c), I[300] = (T)(img)(_n6##x,_p6##y,z,c), I[301] = (T)(img)(_n7##x,_p6##y,z,c), I[302] = (T)(img)(_n8##x,_p6##y,z,c), I[303] = (T)(img)(_n9##x,_p6##y,z,c), I[304] = (T)(img)(_n10##x,_p6##y,z,c), I[305] = (T)(img)(_n11##x,_p6##y,z,c), I[306] = (T)(img)(_n12##x,_p6##y,z,c), I[307] = (T)(img)(_n13##x,_p6##y,z,c), I[308] = (T)(img)(_n14##x,_p6##y,z,c), I[309] = (T)(img)(_n15##x,_p6##y,z,c), \
|
|
I[310] = (T)(img)(_p15##x,_p5##y,z,c), I[311] = (T)(img)(_p14##x,_p5##y,z,c), I[312] = (T)(img)(_p13##x,_p5##y,z,c), I[313] = (T)(img)(_p12##x,_p5##y,z,c), I[314] = (T)(img)(_p11##x,_p5##y,z,c), I[315] = (T)(img)(_p10##x,_p5##y,z,c), I[316] = (T)(img)(_p9##x,_p5##y,z,c), I[317] = (T)(img)(_p8##x,_p5##y,z,c), I[318] = (T)(img)(_p7##x,_p5##y,z,c), I[319] = (T)(img)(_p6##x,_p5##y,z,c), I[320] = (T)(img)(_p5##x,_p5##y,z,c), I[321] = (T)(img)(_p4##x,_p5##y,z,c), I[322] = (T)(img)(_p3##x,_p5##y,z,c), I[323] = (T)(img)(_p2##x,_p5##y,z,c), I[324] = (T)(img)(_p1##x,_p5##y,z,c), I[325] = (T)(img)(x,_p5##y,z,c), I[326] = (T)(img)(_n1##x,_p5##y,z,c), I[327] = (T)(img)(_n2##x,_p5##y,z,c), I[328] = (T)(img)(_n3##x,_p5##y,z,c), I[329] = (T)(img)(_n4##x,_p5##y,z,c), I[330] = (T)(img)(_n5##x,_p5##y,z,c), I[331] = (T)(img)(_n6##x,_p5##y,z,c), I[332] = (T)(img)(_n7##x,_p5##y,z,c), I[333] = (T)(img)(_n8##x,_p5##y,z,c), I[334] = (T)(img)(_n9##x,_p5##y,z,c), I[335] = (T)(img)(_n10##x,_p5##y,z,c), I[336] = (T)(img)(_n11##x,_p5##y,z,c), I[337] = (T)(img)(_n12##x,_p5##y,z,c), I[338] = (T)(img)(_n13##x,_p5##y,z,c), I[339] = (T)(img)(_n14##x,_p5##y,z,c), I[340] = (T)(img)(_n15##x,_p5##y,z,c), \
|
|
I[341] = (T)(img)(_p15##x,_p4##y,z,c), I[342] = (T)(img)(_p14##x,_p4##y,z,c), I[343] = (T)(img)(_p13##x,_p4##y,z,c), I[344] = (T)(img)(_p12##x,_p4##y,z,c), I[345] = (T)(img)(_p11##x,_p4##y,z,c), I[346] = (T)(img)(_p10##x,_p4##y,z,c), I[347] = (T)(img)(_p9##x,_p4##y,z,c), I[348] = (T)(img)(_p8##x,_p4##y,z,c), I[349] = (T)(img)(_p7##x,_p4##y,z,c), I[350] = (T)(img)(_p6##x,_p4##y,z,c), I[351] = (T)(img)(_p5##x,_p4##y,z,c), I[352] = (T)(img)(_p4##x,_p4##y,z,c), I[353] = (T)(img)(_p3##x,_p4##y,z,c), I[354] = (T)(img)(_p2##x,_p4##y,z,c), I[355] = (T)(img)(_p1##x,_p4##y,z,c), I[356] = (T)(img)(x,_p4##y,z,c), I[357] = (T)(img)(_n1##x,_p4##y,z,c), I[358] = (T)(img)(_n2##x,_p4##y,z,c), I[359] = (T)(img)(_n3##x,_p4##y,z,c), I[360] = (T)(img)(_n4##x,_p4##y,z,c), I[361] = (T)(img)(_n5##x,_p4##y,z,c), I[362] = (T)(img)(_n6##x,_p4##y,z,c), I[363] = (T)(img)(_n7##x,_p4##y,z,c), I[364] = (T)(img)(_n8##x,_p4##y,z,c), I[365] = (T)(img)(_n9##x,_p4##y,z,c), I[366] = (T)(img)(_n10##x,_p4##y,z,c), I[367] = (T)(img)(_n11##x,_p4##y,z,c), I[368] = (T)(img)(_n12##x,_p4##y,z,c), I[369] = (T)(img)(_n13##x,_p4##y,z,c), I[370] = (T)(img)(_n14##x,_p4##y,z,c), I[371] = (T)(img)(_n15##x,_p4##y,z,c), \
|
|
I[372] = (T)(img)(_p15##x,_p3##y,z,c), I[373] = (T)(img)(_p14##x,_p3##y,z,c), I[374] = (T)(img)(_p13##x,_p3##y,z,c), I[375] = (T)(img)(_p12##x,_p3##y,z,c), I[376] = (T)(img)(_p11##x,_p3##y,z,c), I[377] = (T)(img)(_p10##x,_p3##y,z,c), I[378] = (T)(img)(_p9##x,_p3##y,z,c), I[379] = (T)(img)(_p8##x,_p3##y,z,c), I[380] = (T)(img)(_p7##x,_p3##y,z,c), I[381] = (T)(img)(_p6##x,_p3##y,z,c), I[382] = (T)(img)(_p5##x,_p3##y,z,c), I[383] = (T)(img)(_p4##x,_p3##y,z,c), I[384] = (T)(img)(_p3##x,_p3##y,z,c), I[385] = (T)(img)(_p2##x,_p3##y,z,c), I[386] = (T)(img)(_p1##x,_p3##y,z,c), I[387] = (T)(img)(x,_p3##y,z,c), I[388] = (T)(img)(_n1##x,_p3##y,z,c), I[389] = (T)(img)(_n2##x,_p3##y,z,c), I[390] = (T)(img)(_n3##x,_p3##y,z,c), I[391] = (T)(img)(_n4##x,_p3##y,z,c), I[392] = (T)(img)(_n5##x,_p3##y,z,c), I[393] = (T)(img)(_n6##x,_p3##y,z,c), I[394] = (T)(img)(_n7##x,_p3##y,z,c), I[395] = (T)(img)(_n8##x,_p3##y,z,c), I[396] = (T)(img)(_n9##x,_p3##y,z,c), I[397] = (T)(img)(_n10##x,_p3##y,z,c), I[398] = (T)(img)(_n11##x,_p3##y,z,c), I[399] = (T)(img)(_n12##x,_p3##y,z,c), I[400] = (T)(img)(_n13##x,_p3##y,z,c), I[401] = (T)(img)(_n14##x,_p3##y,z,c), I[402] = (T)(img)(_n15##x,_p3##y,z,c), \
|
|
I[403] = (T)(img)(_p15##x,_p2##y,z,c), I[404] = (T)(img)(_p14##x,_p2##y,z,c), I[405] = (T)(img)(_p13##x,_p2##y,z,c), I[406] = (T)(img)(_p12##x,_p2##y,z,c), I[407] = (T)(img)(_p11##x,_p2##y,z,c), I[408] = (T)(img)(_p10##x,_p2##y,z,c), I[409] = (T)(img)(_p9##x,_p2##y,z,c), I[410] = (T)(img)(_p8##x,_p2##y,z,c), I[411] = (T)(img)(_p7##x,_p2##y,z,c), I[412] = (T)(img)(_p6##x,_p2##y,z,c), I[413] = (T)(img)(_p5##x,_p2##y,z,c), I[414] = (T)(img)(_p4##x,_p2##y,z,c), I[415] = (T)(img)(_p3##x,_p2##y,z,c), I[416] = (T)(img)(_p2##x,_p2##y,z,c), I[417] = (T)(img)(_p1##x,_p2##y,z,c), I[418] = (T)(img)(x,_p2##y,z,c), I[419] = (T)(img)(_n1##x,_p2##y,z,c), I[420] = (T)(img)(_n2##x,_p2##y,z,c), I[421] = (T)(img)(_n3##x,_p2##y,z,c), I[422] = (T)(img)(_n4##x,_p2##y,z,c), I[423] = (T)(img)(_n5##x,_p2##y,z,c), I[424] = (T)(img)(_n6##x,_p2##y,z,c), I[425] = (T)(img)(_n7##x,_p2##y,z,c), I[426] = (T)(img)(_n8##x,_p2##y,z,c), I[427] = (T)(img)(_n9##x,_p2##y,z,c), I[428] = (T)(img)(_n10##x,_p2##y,z,c), I[429] = (T)(img)(_n11##x,_p2##y,z,c), I[430] = (T)(img)(_n12##x,_p2##y,z,c), I[431] = (T)(img)(_n13##x,_p2##y,z,c), I[432] = (T)(img)(_n14##x,_p2##y,z,c), I[433] = (T)(img)(_n15##x,_p2##y,z,c), \
|
|
I[434] = (T)(img)(_p15##x,_p1##y,z,c), I[435] = (T)(img)(_p14##x,_p1##y,z,c), I[436] = (T)(img)(_p13##x,_p1##y,z,c), I[437] = (T)(img)(_p12##x,_p1##y,z,c), I[438] = (T)(img)(_p11##x,_p1##y,z,c), I[439] = (T)(img)(_p10##x,_p1##y,z,c), I[440] = (T)(img)(_p9##x,_p1##y,z,c), I[441] = (T)(img)(_p8##x,_p1##y,z,c), I[442] = (T)(img)(_p7##x,_p1##y,z,c), I[443] = (T)(img)(_p6##x,_p1##y,z,c), I[444] = (T)(img)(_p5##x,_p1##y,z,c), I[445] = (T)(img)(_p4##x,_p1##y,z,c), I[446] = (T)(img)(_p3##x,_p1##y,z,c), I[447] = (T)(img)(_p2##x,_p1##y,z,c), I[448] = (T)(img)(_p1##x,_p1##y,z,c), I[449] = (T)(img)(x,_p1##y,z,c), I[450] = (T)(img)(_n1##x,_p1##y,z,c), I[451] = (T)(img)(_n2##x,_p1##y,z,c), I[452] = (T)(img)(_n3##x,_p1##y,z,c), I[453] = (T)(img)(_n4##x,_p1##y,z,c), I[454] = (T)(img)(_n5##x,_p1##y,z,c), I[455] = (T)(img)(_n6##x,_p1##y,z,c), I[456] = (T)(img)(_n7##x,_p1##y,z,c), I[457] = (T)(img)(_n8##x,_p1##y,z,c), I[458] = (T)(img)(_n9##x,_p1##y,z,c), I[459] = (T)(img)(_n10##x,_p1##y,z,c), I[460] = (T)(img)(_n11##x,_p1##y,z,c), I[461] = (T)(img)(_n12##x,_p1##y,z,c), I[462] = (T)(img)(_n13##x,_p1##y,z,c), I[463] = (T)(img)(_n14##x,_p1##y,z,c), I[464] = (T)(img)(_n15##x,_p1##y,z,c), \
|
|
I[465] = (T)(img)(_p15##x,y,z,c), I[466] = (T)(img)(_p14##x,y,z,c), I[467] = (T)(img)(_p13##x,y,z,c), I[468] = (T)(img)(_p12##x,y,z,c), I[469] = (T)(img)(_p11##x,y,z,c), I[470] = (T)(img)(_p10##x,y,z,c), I[471] = (T)(img)(_p9##x,y,z,c), I[472] = (T)(img)(_p8##x,y,z,c), I[473] = (T)(img)(_p7##x,y,z,c), I[474] = (T)(img)(_p6##x,y,z,c), I[475] = (T)(img)(_p5##x,y,z,c), I[476] = (T)(img)(_p4##x,y,z,c), I[477] = (T)(img)(_p3##x,y,z,c), I[478] = (T)(img)(_p2##x,y,z,c), I[479] = (T)(img)(_p1##x,y,z,c), I[480] = (T)(img)(x,y,z,c), I[481] = (T)(img)(_n1##x,y,z,c), I[482] = (T)(img)(_n2##x,y,z,c), I[483] = (T)(img)(_n3##x,y,z,c), I[484] = (T)(img)(_n4##x,y,z,c), I[485] = (T)(img)(_n5##x,y,z,c), I[486] = (T)(img)(_n6##x,y,z,c), I[487] = (T)(img)(_n7##x,y,z,c), I[488] = (T)(img)(_n8##x,y,z,c), I[489] = (T)(img)(_n9##x,y,z,c), I[490] = (T)(img)(_n10##x,y,z,c), I[491] = (T)(img)(_n11##x,y,z,c), I[492] = (T)(img)(_n12##x,y,z,c), I[493] = (T)(img)(_n13##x,y,z,c), I[494] = (T)(img)(_n14##x,y,z,c), I[495] = (T)(img)(_n15##x,y,z,c), \
|
|
I[496] = (T)(img)(_p15##x,_n1##y,z,c), I[497] = (T)(img)(_p14##x,_n1##y,z,c), I[498] = (T)(img)(_p13##x,_n1##y,z,c), I[499] = (T)(img)(_p12##x,_n1##y,z,c), I[500] = (T)(img)(_p11##x,_n1##y,z,c), I[501] = (T)(img)(_p10##x,_n1##y,z,c), I[502] = (T)(img)(_p9##x,_n1##y,z,c), I[503] = (T)(img)(_p8##x,_n1##y,z,c), I[504] = (T)(img)(_p7##x,_n1##y,z,c), I[505] = (T)(img)(_p6##x,_n1##y,z,c), I[506] = (T)(img)(_p5##x,_n1##y,z,c), I[507] = (T)(img)(_p4##x,_n1##y,z,c), I[508] = (T)(img)(_p3##x,_n1##y,z,c), I[509] = (T)(img)(_p2##x,_n1##y,z,c), I[510] = (T)(img)(_p1##x,_n1##y,z,c), I[511] = (T)(img)(x,_n1##y,z,c), I[512] = (T)(img)(_n1##x,_n1##y,z,c), I[513] = (T)(img)(_n2##x,_n1##y,z,c), I[514] = (T)(img)(_n3##x,_n1##y,z,c), I[515] = (T)(img)(_n4##x,_n1##y,z,c), I[516] = (T)(img)(_n5##x,_n1##y,z,c), I[517] = (T)(img)(_n6##x,_n1##y,z,c), I[518] = (T)(img)(_n7##x,_n1##y,z,c), I[519] = (T)(img)(_n8##x,_n1##y,z,c), I[520] = (T)(img)(_n9##x,_n1##y,z,c), I[521] = (T)(img)(_n10##x,_n1##y,z,c), I[522] = (T)(img)(_n11##x,_n1##y,z,c), I[523] = (T)(img)(_n12##x,_n1##y,z,c), I[524] = (T)(img)(_n13##x,_n1##y,z,c), I[525] = (T)(img)(_n14##x,_n1##y,z,c), I[526] = (T)(img)(_n15##x,_n1##y,z,c), \
|
|
I[527] = (T)(img)(_p15##x,_n2##y,z,c), I[528] = (T)(img)(_p14##x,_n2##y,z,c), I[529] = (T)(img)(_p13##x,_n2##y,z,c), I[530] = (T)(img)(_p12##x,_n2##y,z,c), I[531] = (T)(img)(_p11##x,_n2##y,z,c), I[532] = (T)(img)(_p10##x,_n2##y,z,c), I[533] = (T)(img)(_p9##x,_n2##y,z,c), I[534] = (T)(img)(_p8##x,_n2##y,z,c), I[535] = (T)(img)(_p7##x,_n2##y,z,c), I[536] = (T)(img)(_p6##x,_n2##y,z,c), I[537] = (T)(img)(_p5##x,_n2##y,z,c), I[538] = (T)(img)(_p4##x,_n2##y,z,c), I[539] = (T)(img)(_p3##x,_n2##y,z,c), I[540] = (T)(img)(_p2##x,_n2##y,z,c), I[541] = (T)(img)(_p1##x,_n2##y,z,c), I[542] = (T)(img)(x,_n2##y,z,c), I[543] = (T)(img)(_n1##x,_n2##y,z,c), I[544] = (T)(img)(_n2##x,_n2##y,z,c), I[545] = (T)(img)(_n3##x,_n2##y,z,c), I[546] = (T)(img)(_n4##x,_n2##y,z,c), I[547] = (T)(img)(_n5##x,_n2##y,z,c), I[548] = (T)(img)(_n6##x,_n2##y,z,c), I[549] = (T)(img)(_n7##x,_n2##y,z,c), I[550] = (T)(img)(_n8##x,_n2##y,z,c), I[551] = (T)(img)(_n9##x,_n2##y,z,c), I[552] = (T)(img)(_n10##x,_n2##y,z,c), I[553] = (T)(img)(_n11##x,_n2##y,z,c), I[554] = (T)(img)(_n12##x,_n2##y,z,c), I[555] = (T)(img)(_n13##x,_n2##y,z,c), I[556] = (T)(img)(_n14##x,_n2##y,z,c), I[557] = (T)(img)(_n15##x,_n2##y,z,c), \
|
|
I[558] = (T)(img)(_p15##x,_n3##y,z,c), I[559] = (T)(img)(_p14##x,_n3##y,z,c), I[560] = (T)(img)(_p13##x,_n3##y,z,c), I[561] = (T)(img)(_p12##x,_n3##y,z,c), I[562] = (T)(img)(_p11##x,_n3##y,z,c), I[563] = (T)(img)(_p10##x,_n3##y,z,c), I[564] = (T)(img)(_p9##x,_n3##y,z,c), I[565] = (T)(img)(_p8##x,_n3##y,z,c), I[566] = (T)(img)(_p7##x,_n3##y,z,c), I[567] = (T)(img)(_p6##x,_n3##y,z,c), I[568] = (T)(img)(_p5##x,_n3##y,z,c), I[569] = (T)(img)(_p4##x,_n3##y,z,c), I[570] = (T)(img)(_p3##x,_n3##y,z,c), I[571] = (T)(img)(_p2##x,_n3##y,z,c), I[572] = (T)(img)(_p1##x,_n3##y,z,c), I[573] = (T)(img)(x,_n3##y,z,c), I[574] = (T)(img)(_n1##x,_n3##y,z,c), I[575] = (T)(img)(_n2##x,_n3##y,z,c), I[576] = (T)(img)(_n3##x,_n3##y,z,c), I[577] = (T)(img)(_n4##x,_n3##y,z,c), I[578] = (T)(img)(_n5##x,_n3##y,z,c), I[579] = (T)(img)(_n6##x,_n3##y,z,c), I[580] = (T)(img)(_n7##x,_n3##y,z,c), I[581] = (T)(img)(_n8##x,_n3##y,z,c), I[582] = (T)(img)(_n9##x,_n3##y,z,c), I[583] = (T)(img)(_n10##x,_n3##y,z,c), I[584] = (T)(img)(_n11##x,_n3##y,z,c), I[585] = (T)(img)(_n12##x,_n3##y,z,c), I[586] = (T)(img)(_n13##x,_n3##y,z,c), I[587] = (T)(img)(_n14##x,_n3##y,z,c), I[588] = (T)(img)(_n15##x,_n3##y,z,c), \
|
|
I[589] = (T)(img)(_p15##x,_n4##y,z,c), I[590] = (T)(img)(_p14##x,_n4##y,z,c), I[591] = (T)(img)(_p13##x,_n4##y,z,c), I[592] = (T)(img)(_p12##x,_n4##y,z,c), I[593] = (T)(img)(_p11##x,_n4##y,z,c), I[594] = (T)(img)(_p10##x,_n4##y,z,c), I[595] = (T)(img)(_p9##x,_n4##y,z,c), I[596] = (T)(img)(_p8##x,_n4##y,z,c), I[597] = (T)(img)(_p7##x,_n4##y,z,c), I[598] = (T)(img)(_p6##x,_n4##y,z,c), I[599] = (T)(img)(_p5##x,_n4##y,z,c), I[600] = (T)(img)(_p4##x,_n4##y,z,c), I[601] = (T)(img)(_p3##x,_n4##y,z,c), I[602] = (T)(img)(_p2##x,_n4##y,z,c), I[603] = (T)(img)(_p1##x,_n4##y,z,c), I[604] = (T)(img)(x,_n4##y,z,c), I[605] = (T)(img)(_n1##x,_n4##y,z,c), I[606] = (T)(img)(_n2##x,_n4##y,z,c), I[607] = (T)(img)(_n3##x,_n4##y,z,c), I[608] = (T)(img)(_n4##x,_n4##y,z,c), I[609] = (T)(img)(_n5##x,_n4##y,z,c), I[610] = (T)(img)(_n6##x,_n4##y,z,c), I[611] = (T)(img)(_n7##x,_n4##y,z,c), I[612] = (T)(img)(_n8##x,_n4##y,z,c), I[613] = (T)(img)(_n9##x,_n4##y,z,c), I[614] = (T)(img)(_n10##x,_n4##y,z,c), I[615] = (T)(img)(_n11##x,_n4##y,z,c), I[616] = (T)(img)(_n12##x,_n4##y,z,c), I[617] = (T)(img)(_n13##x,_n4##y,z,c), I[618] = (T)(img)(_n14##x,_n4##y,z,c), I[619] = (T)(img)(_n15##x,_n4##y,z,c), \
|
|
I[620] = (T)(img)(_p15##x,_n5##y,z,c), I[621] = (T)(img)(_p14##x,_n5##y,z,c), I[622] = (T)(img)(_p13##x,_n5##y,z,c), I[623] = (T)(img)(_p12##x,_n5##y,z,c), I[624] = (T)(img)(_p11##x,_n5##y,z,c), I[625] = (T)(img)(_p10##x,_n5##y,z,c), I[626] = (T)(img)(_p9##x,_n5##y,z,c), I[627] = (T)(img)(_p8##x,_n5##y,z,c), I[628] = (T)(img)(_p7##x,_n5##y,z,c), I[629] = (T)(img)(_p6##x,_n5##y,z,c), I[630] = (T)(img)(_p5##x,_n5##y,z,c), I[631] = (T)(img)(_p4##x,_n5##y,z,c), I[632] = (T)(img)(_p3##x,_n5##y,z,c), I[633] = (T)(img)(_p2##x,_n5##y,z,c), I[634] = (T)(img)(_p1##x,_n5##y,z,c), I[635] = (T)(img)(x,_n5##y,z,c), I[636] = (T)(img)(_n1##x,_n5##y,z,c), I[637] = (T)(img)(_n2##x,_n5##y,z,c), I[638] = (T)(img)(_n3##x,_n5##y,z,c), I[639] = (T)(img)(_n4##x,_n5##y,z,c), I[640] = (T)(img)(_n5##x,_n5##y,z,c), I[641] = (T)(img)(_n6##x,_n5##y,z,c), I[642] = (T)(img)(_n7##x,_n5##y,z,c), I[643] = (T)(img)(_n8##x,_n5##y,z,c), I[644] = (T)(img)(_n9##x,_n5##y,z,c), I[645] = (T)(img)(_n10##x,_n5##y,z,c), I[646] = (T)(img)(_n11##x,_n5##y,z,c), I[647] = (T)(img)(_n12##x,_n5##y,z,c), I[648] = (T)(img)(_n13##x,_n5##y,z,c), I[649] = (T)(img)(_n14##x,_n5##y,z,c), I[650] = (T)(img)(_n15##x,_n5##y,z,c), \
|
|
I[651] = (T)(img)(_p15##x,_n6##y,z,c), I[652] = (T)(img)(_p14##x,_n6##y,z,c), I[653] = (T)(img)(_p13##x,_n6##y,z,c), I[654] = (T)(img)(_p12##x,_n6##y,z,c), I[655] = (T)(img)(_p11##x,_n6##y,z,c), I[656] = (T)(img)(_p10##x,_n6##y,z,c), I[657] = (T)(img)(_p9##x,_n6##y,z,c), I[658] = (T)(img)(_p8##x,_n6##y,z,c), I[659] = (T)(img)(_p7##x,_n6##y,z,c), I[660] = (T)(img)(_p6##x,_n6##y,z,c), I[661] = (T)(img)(_p5##x,_n6##y,z,c), I[662] = (T)(img)(_p4##x,_n6##y,z,c), I[663] = (T)(img)(_p3##x,_n6##y,z,c), I[664] = (T)(img)(_p2##x,_n6##y,z,c), I[665] = (T)(img)(_p1##x,_n6##y,z,c), I[666] = (T)(img)(x,_n6##y,z,c), I[667] = (T)(img)(_n1##x,_n6##y,z,c), I[668] = (T)(img)(_n2##x,_n6##y,z,c), I[669] = (T)(img)(_n3##x,_n6##y,z,c), I[670] = (T)(img)(_n4##x,_n6##y,z,c), I[671] = (T)(img)(_n5##x,_n6##y,z,c), I[672] = (T)(img)(_n6##x,_n6##y,z,c), I[673] = (T)(img)(_n7##x,_n6##y,z,c), I[674] = (T)(img)(_n8##x,_n6##y,z,c), I[675] = (T)(img)(_n9##x,_n6##y,z,c), I[676] = (T)(img)(_n10##x,_n6##y,z,c), I[677] = (T)(img)(_n11##x,_n6##y,z,c), I[678] = (T)(img)(_n12##x,_n6##y,z,c), I[679] = (T)(img)(_n13##x,_n6##y,z,c), I[680] = (T)(img)(_n14##x,_n6##y,z,c), I[681] = (T)(img)(_n15##x,_n6##y,z,c), \
|
|
I[682] = (T)(img)(_p15##x,_n7##y,z,c), I[683] = (T)(img)(_p14##x,_n7##y,z,c), I[684] = (T)(img)(_p13##x,_n7##y,z,c), I[685] = (T)(img)(_p12##x,_n7##y,z,c), I[686] = (T)(img)(_p11##x,_n7##y,z,c), I[687] = (T)(img)(_p10##x,_n7##y,z,c), I[688] = (T)(img)(_p9##x,_n7##y,z,c), I[689] = (T)(img)(_p8##x,_n7##y,z,c), I[690] = (T)(img)(_p7##x,_n7##y,z,c), I[691] = (T)(img)(_p6##x,_n7##y,z,c), I[692] = (T)(img)(_p5##x,_n7##y,z,c), I[693] = (T)(img)(_p4##x,_n7##y,z,c), I[694] = (T)(img)(_p3##x,_n7##y,z,c), I[695] = (T)(img)(_p2##x,_n7##y,z,c), I[696] = (T)(img)(_p1##x,_n7##y,z,c), I[697] = (T)(img)(x,_n7##y,z,c), I[698] = (T)(img)(_n1##x,_n7##y,z,c), I[699] = (T)(img)(_n2##x,_n7##y,z,c), I[700] = (T)(img)(_n3##x,_n7##y,z,c), I[701] = (T)(img)(_n4##x,_n7##y,z,c), I[702] = (T)(img)(_n5##x,_n7##y,z,c), I[703] = (T)(img)(_n6##x,_n7##y,z,c), I[704] = (T)(img)(_n7##x,_n7##y,z,c), I[705] = (T)(img)(_n8##x,_n7##y,z,c), I[706] = (T)(img)(_n9##x,_n7##y,z,c), I[707] = (T)(img)(_n10##x,_n7##y,z,c), I[708] = (T)(img)(_n11##x,_n7##y,z,c), I[709] = (T)(img)(_n12##x,_n7##y,z,c), I[710] = (T)(img)(_n13##x,_n7##y,z,c), I[711] = (T)(img)(_n14##x,_n7##y,z,c), I[712] = (T)(img)(_n15##x,_n7##y,z,c), \
|
|
I[713] = (T)(img)(_p15##x,_n8##y,z,c), I[714] = (T)(img)(_p14##x,_n8##y,z,c), I[715] = (T)(img)(_p13##x,_n8##y,z,c), I[716] = (T)(img)(_p12##x,_n8##y,z,c), I[717] = (T)(img)(_p11##x,_n8##y,z,c), I[718] = (T)(img)(_p10##x,_n8##y,z,c), I[719] = (T)(img)(_p9##x,_n8##y,z,c), I[720] = (T)(img)(_p8##x,_n8##y,z,c), I[721] = (T)(img)(_p7##x,_n8##y,z,c), I[722] = (T)(img)(_p6##x,_n8##y,z,c), I[723] = (T)(img)(_p5##x,_n8##y,z,c), I[724] = (T)(img)(_p4##x,_n8##y,z,c), I[725] = (T)(img)(_p3##x,_n8##y,z,c), I[726] = (T)(img)(_p2##x,_n8##y,z,c), I[727] = (T)(img)(_p1##x,_n8##y,z,c), I[728] = (T)(img)(x,_n8##y,z,c), I[729] = (T)(img)(_n1##x,_n8##y,z,c), I[730] = (T)(img)(_n2##x,_n8##y,z,c), I[731] = (T)(img)(_n3##x,_n8##y,z,c), I[732] = (T)(img)(_n4##x,_n8##y,z,c), I[733] = (T)(img)(_n5##x,_n8##y,z,c), I[734] = (T)(img)(_n6##x,_n8##y,z,c), I[735] = (T)(img)(_n7##x,_n8##y,z,c), I[736] = (T)(img)(_n8##x,_n8##y,z,c), I[737] = (T)(img)(_n9##x,_n8##y,z,c), I[738] = (T)(img)(_n10##x,_n8##y,z,c), I[739] = (T)(img)(_n11##x,_n8##y,z,c), I[740] = (T)(img)(_n12##x,_n8##y,z,c), I[741] = (T)(img)(_n13##x,_n8##y,z,c), I[742] = (T)(img)(_n14##x,_n8##y,z,c), I[743] = (T)(img)(_n15##x,_n8##y,z,c), \
|
|
I[744] = (T)(img)(_p15##x,_n9##y,z,c), I[745] = (T)(img)(_p14##x,_n9##y,z,c), I[746] = (T)(img)(_p13##x,_n9##y,z,c), I[747] = (T)(img)(_p12##x,_n9##y,z,c), I[748] = (T)(img)(_p11##x,_n9##y,z,c), I[749] = (T)(img)(_p10##x,_n9##y,z,c), I[750] = (T)(img)(_p9##x,_n9##y,z,c), I[751] = (T)(img)(_p8##x,_n9##y,z,c), I[752] = (T)(img)(_p7##x,_n9##y,z,c), I[753] = (T)(img)(_p6##x,_n9##y,z,c), I[754] = (T)(img)(_p5##x,_n9##y,z,c), I[755] = (T)(img)(_p4##x,_n9##y,z,c), I[756] = (T)(img)(_p3##x,_n9##y,z,c), I[757] = (T)(img)(_p2##x,_n9##y,z,c), I[758] = (T)(img)(_p1##x,_n9##y,z,c), I[759] = (T)(img)(x,_n9##y,z,c), I[760] = (T)(img)(_n1##x,_n9##y,z,c), I[761] = (T)(img)(_n2##x,_n9##y,z,c), I[762] = (T)(img)(_n3##x,_n9##y,z,c), I[763] = (T)(img)(_n4##x,_n9##y,z,c), I[764] = (T)(img)(_n5##x,_n9##y,z,c), I[765] = (T)(img)(_n6##x,_n9##y,z,c), I[766] = (T)(img)(_n7##x,_n9##y,z,c), I[767] = (T)(img)(_n8##x,_n9##y,z,c), I[768] = (T)(img)(_n9##x,_n9##y,z,c), I[769] = (T)(img)(_n10##x,_n9##y,z,c), I[770] = (T)(img)(_n11##x,_n9##y,z,c), I[771] = (T)(img)(_n12##x,_n9##y,z,c), I[772] = (T)(img)(_n13##x,_n9##y,z,c), I[773] = (T)(img)(_n14##x,_n9##y,z,c), I[774] = (T)(img)(_n15##x,_n9##y,z,c), \
|
|
I[775] = (T)(img)(_p15##x,_n10##y,z,c), I[776] = (T)(img)(_p14##x,_n10##y,z,c), I[777] = (T)(img)(_p13##x,_n10##y,z,c), I[778] = (T)(img)(_p12##x,_n10##y,z,c), I[779] = (T)(img)(_p11##x,_n10##y,z,c), I[780] = (T)(img)(_p10##x,_n10##y,z,c), I[781] = (T)(img)(_p9##x,_n10##y,z,c), I[782] = (T)(img)(_p8##x,_n10##y,z,c), I[783] = (T)(img)(_p7##x,_n10##y,z,c), I[784] = (T)(img)(_p6##x,_n10##y,z,c), I[785] = (T)(img)(_p5##x,_n10##y,z,c), I[786] = (T)(img)(_p4##x,_n10##y,z,c), I[787] = (T)(img)(_p3##x,_n10##y,z,c), I[788] = (T)(img)(_p2##x,_n10##y,z,c), I[789] = (T)(img)(_p1##x,_n10##y,z,c), I[790] = (T)(img)(x,_n10##y,z,c), I[791] = (T)(img)(_n1##x,_n10##y,z,c), I[792] = (T)(img)(_n2##x,_n10##y,z,c), I[793] = (T)(img)(_n3##x,_n10##y,z,c), I[794] = (T)(img)(_n4##x,_n10##y,z,c), I[795] = (T)(img)(_n5##x,_n10##y,z,c), I[796] = (T)(img)(_n6##x,_n10##y,z,c), I[797] = (T)(img)(_n7##x,_n10##y,z,c), I[798] = (T)(img)(_n8##x,_n10##y,z,c), I[799] = (T)(img)(_n9##x,_n10##y,z,c), I[800] = (T)(img)(_n10##x,_n10##y,z,c), I[801] = (T)(img)(_n11##x,_n10##y,z,c), I[802] = (T)(img)(_n12##x,_n10##y,z,c), I[803] = (T)(img)(_n13##x,_n10##y,z,c), I[804] = (T)(img)(_n14##x,_n10##y,z,c), I[805] = (T)(img)(_n15##x,_n10##y,z,c), \
|
|
I[806] = (T)(img)(_p15##x,_n11##y,z,c), I[807] = (T)(img)(_p14##x,_n11##y,z,c), I[808] = (T)(img)(_p13##x,_n11##y,z,c), I[809] = (T)(img)(_p12##x,_n11##y,z,c), I[810] = (T)(img)(_p11##x,_n11##y,z,c), I[811] = (T)(img)(_p10##x,_n11##y,z,c), I[812] = (T)(img)(_p9##x,_n11##y,z,c), I[813] = (T)(img)(_p8##x,_n11##y,z,c), I[814] = (T)(img)(_p7##x,_n11##y,z,c), I[815] = (T)(img)(_p6##x,_n11##y,z,c), I[816] = (T)(img)(_p5##x,_n11##y,z,c), I[817] = (T)(img)(_p4##x,_n11##y,z,c), I[818] = (T)(img)(_p3##x,_n11##y,z,c), I[819] = (T)(img)(_p2##x,_n11##y,z,c), I[820] = (T)(img)(_p1##x,_n11##y,z,c), I[821] = (T)(img)(x,_n11##y,z,c), I[822] = (T)(img)(_n1##x,_n11##y,z,c), I[823] = (T)(img)(_n2##x,_n11##y,z,c), I[824] = (T)(img)(_n3##x,_n11##y,z,c), I[825] = (T)(img)(_n4##x,_n11##y,z,c), I[826] = (T)(img)(_n5##x,_n11##y,z,c), I[827] = (T)(img)(_n6##x,_n11##y,z,c), I[828] = (T)(img)(_n7##x,_n11##y,z,c), I[829] = (T)(img)(_n8##x,_n11##y,z,c), I[830] = (T)(img)(_n9##x,_n11##y,z,c), I[831] = (T)(img)(_n10##x,_n11##y,z,c), I[832] = (T)(img)(_n11##x,_n11##y,z,c), I[833] = (T)(img)(_n12##x,_n11##y,z,c), I[834] = (T)(img)(_n13##x,_n11##y,z,c), I[835] = (T)(img)(_n14##x,_n11##y,z,c), I[836] = (T)(img)(_n15##x,_n11##y,z,c), \
|
|
I[837] = (T)(img)(_p15##x,_n12##y,z,c), I[838] = (T)(img)(_p14##x,_n12##y,z,c), I[839] = (T)(img)(_p13##x,_n12##y,z,c), I[840] = (T)(img)(_p12##x,_n12##y,z,c), I[841] = (T)(img)(_p11##x,_n12##y,z,c), I[842] = (T)(img)(_p10##x,_n12##y,z,c), I[843] = (T)(img)(_p9##x,_n12##y,z,c), I[844] = (T)(img)(_p8##x,_n12##y,z,c), I[845] = (T)(img)(_p7##x,_n12##y,z,c), I[846] = (T)(img)(_p6##x,_n12##y,z,c), I[847] = (T)(img)(_p5##x,_n12##y,z,c), I[848] = (T)(img)(_p4##x,_n12##y,z,c), I[849] = (T)(img)(_p3##x,_n12##y,z,c), I[850] = (T)(img)(_p2##x,_n12##y,z,c), I[851] = (T)(img)(_p1##x,_n12##y,z,c), I[852] = (T)(img)(x,_n12##y,z,c), I[853] = (T)(img)(_n1##x,_n12##y,z,c), I[854] = (T)(img)(_n2##x,_n12##y,z,c), I[855] = (T)(img)(_n3##x,_n12##y,z,c), I[856] = (T)(img)(_n4##x,_n12##y,z,c), I[857] = (T)(img)(_n5##x,_n12##y,z,c), I[858] = (T)(img)(_n6##x,_n12##y,z,c), I[859] = (T)(img)(_n7##x,_n12##y,z,c), I[860] = (T)(img)(_n8##x,_n12##y,z,c), I[861] = (T)(img)(_n9##x,_n12##y,z,c), I[862] = (T)(img)(_n10##x,_n12##y,z,c), I[863] = (T)(img)(_n11##x,_n12##y,z,c), I[864] = (T)(img)(_n12##x,_n12##y,z,c), I[865] = (T)(img)(_n13##x,_n12##y,z,c), I[866] = (T)(img)(_n14##x,_n12##y,z,c), I[867] = (T)(img)(_n15##x,_n12##y,z,c), \
|
|
I[868] = (T)(img)(_p15##x,_n13##y,z,c), I[869] = (T)(img)(_p14##x,_n13##y,z,c), I[870] = (T)(img)(_p13##x,_n13##y,z,c), I[871] = (T)(img)(_p12##x,_n13##y,z,c), I[872] = (T)(img)(_p11##x,_n13##y,z,c), I[873] = (T)(img)(_p10##x,_n13##y,z,c), I[874] = (T)(img)(_p9##x,_n13##y,z,c), I[875] = (T)(img)(_p8##x,_n13##y,z,c), I[876] = (T)(img)(_p7##x,_n13##y,z,c), I[877] = (T)(img)(_p6##x,_n13##y,z,c), I[878] = (T)(img)(_p5##x,_n13##y,z,c), I[879] = (T)(img)(_p4##x,_n13##y,z,c), I[880] = (T)(img)(_p3##x,_n13##y,z,c), I[881] = (T)(img)(_p2##x,_n13##y,z,c), I[882] = (T)(img)(_p1##x,_n13##y,z,c), I[883] = (T)(img)(x,_n13##y,z,c), I[884] = (T)(img)(_n1##x,_n13##y,z,c), I[885] = (T)(img)(_n2##x,_n13##y,z,c), I[886] = (T)(img)(_n3##x,_n13##y,z,c), I[887] = (T)(img)(_n4##x,_n13##y,z,c), I[888] = (T)(img)(_n5##x,_n13##y,z,c), I[889] = (T)(img)(_n6##x,_n13##y,z,c), I[890] = (T)(img)(_n7##x,_n13##y,z,c), I[891] = (T)(img)(_n8##x,_n13##y,z,c), I[892] = (T)(img)(_n9##x,_n13##y,z,c), I[893] = (T)(img)(_n10##x,_n13##y,z,c), I[894] = (T)(img)(_n11##x,_n13##y,z,c), I[895] = (T)(img)(_n12##x,_n13##y,z,c), I[896] = (T)(img)(_n13##x,_n13##y,z,c), I[897] = (T)(img)(_n14##x,_n13##y,z,c), I[898] = (T)(img)(_n15##x,_n13##y,z,c), \
|
|
I[899] = (T)(img)(_p15##x,_n14##y,z,c), I[900] = (T)(img)(_p14##x,_n14##y,z,c), I[901] = (T)(img)(_p13##x,_n14##y,z,c), I[902] = (T)(img)(_p12##x,_n14##y,z,c), I[903] = (T)(img)(_p11##x,_n14##y,z,c), I[904] = (T)(img)(_p10##x,_n14##y,z,c), I[905] = (T)(img)(_p9##x,_n14##y,z,c), I[906] = (T)(img)(_p8##x,_n14##y,z,c), I[907] = (T)(img)(_p7##x,_n14##y,z,c), I[908] = (T)(img)(_p6##x,_n14##y,z,c), I[909] = (T)(img)(_p5##x,_n14##y,z,c), I[910] = (T)(img)(_p4##x,_n14##y,z,c), I[911] = (T)(img)(_p3##x,_n14##y,z,c), I[912] = (T)(img)(_p2##x,_n14##y,z,c), I[913] = (T)(img)(_p1##x,_n14##y,z,c), I[914] = (T)(img)(x,_n14##y,z,c), I[915] = (T)(img)(_n1##x,_n14##y,z,c), I[916] = (T)(img)(_n2##x,_n14##y,z,c), I[917] = (T)(img)(_n3##x,_n14##y,z,c), I[918] = (T)(img)(_n4##x,_n14##y,z,c), I[919] = (T)(img)(_n5##x,_n14##y,z,c), I[920] = (T)(img)(_n6##x,_n14##y,z,c), I[921] = (T)(img)(_n7##x,_n14##y,z,c), I[922] = (T)(img)(_n8##x,_n14##y,z,c), I[923] = (T)(img)(_n9##x,_n14##y,z,c), I[924] = (T)(img)(_n10##x,_n14##y,z,c), I[925] = (T)(img)(_n11##x,_n14##y,z,c), I[926] = (T)(img)(_n12##x,_n14##y,z,c), I[927] = (T)(img)(_n13##x,_n14##y,z,c), I[928] = (T)(img)(_n14##x,_n14##y,z,c), I[929] = (T)(img)(_n15##x,_n14##y,z,c), \
|
|
I[930] = (T)(img)(_p15##x,_n15##y,z,c), I[931] = (T)(img)(_p14##x,_n15##y,z,c), I[932] = (T)(img)(_p13##x,_n15##y,z,c), I[933] = (T)(img)(_p12##x,_n15##y,z,c), I[934] = (T)(img)(_p11##x,_n15##y,z,c), I[935] = (T)(img)(_p10##x,_n15##y,z,c), I[936] = (T)(img)(_p9##x,_n15##y,z,c), I[937] = (T)(img)(_p8##x,_n15##y,z,c), I[938] = (T)(img)(_p7##x,_n15##y,z,c), I[939] = (T)(img)(_p6##x,_n15##y,z,c), I[940] = (T)(img)(_p5##x,_n15##y,z,c), I[941] = (T)(img)(_p4##x,_n15##y,z,c), I[942] = (T)(img)(_p3##x,_n15##y,z,c), I[943] = (T)(img)(_p2##x,_n15##y,z,c), I[944] = (T)(img)(_p1##x,_n15##y,z,c), I[945] = (T)(img)(x,_n15##y,z,c), I[946] = (T)(img)(_n1##x,_n15##y,z,c), I[947] = (T)(img)(_n2##x,_n15##y,z,c), I[948] = (T)(img)(_n3##x,_n15##y,z,c), I[949] = (T)(img)(_n4##x,_n15##y,z,c), I[950] = (T)(img)(_n5##x,_n15##y,z,c), I[951] = (T)(img)(_n6##x,_n15##y,z,c), I[952] = (T)(img)(_n7##x,_n15##y,z,c), I[953] = (T)(img)(_n8##x,_n15##y,z,c), I[954] = (T)(img)(_n9##x,_n15##y,z,c), I[955] = (T)(img)(_n10##x,_n15##y,z,c), I[956] = (T)(img)(_n11##x,_n15##y,z,c), I[957] = (T)(img)(_n12##x,_n15##y,z,c), I[958] = (T)(img)(_n13##x,_n15##y,z,c), I[959] = (T)(img)(_n14##x,_n15##y,z,c), I[960] = (T)(img)(_n15##x,_n15##y,z,c);
|
|
|
|
// Define 32x32 loop macros
|
|
//-------------------------
|
|
#define cimg_for32(bound,i) for (int i = 0, \
|
|
_p15##i = 0, _p14##i = 0, _p13##i = 0, _p12##i = 0, _p11##i = 0, _p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
|
|
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
|
|
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
|
|
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
|
|
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
|
|
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
|
|
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
|
|
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
|
|
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
|
|
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9, \
|
|
_n10##i = 10>=(int)(bound)?(int)(bound) - 1:10, \
|
|
_n11##i = 11>=(int)(bound)?(int)(bound) - 1:11, \
|
|
_n12##i = 12>=(int)(bound)?(int)(bound) - 1:12, \
|
|
_n13##i = 13>=(int)(bound)?(int)(bound) - 1:13, \
|
|
_n14##i = 14>=(int)(bound)?(int)(bound) - 1:14, \
|
|
_n15##i = 15>=(int)(bound)?(int)(bound) - 1:15, \
|
|
_n16##i = 16>=(int)(bound)?(int)(bound) - 1:16; \
|
|
_n16##i<(int)(bound) || _n15##i==--_n16##i || _n14##i==--_n15##i || _n13##i==--_n14##i || _n12##i==--_n13##i || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n16##i = _n15##i = _n14##i = _n13##i = _n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
|
|
_p15##i = _p14##i, _p14##i = _p13##i, _p13##i = _p12##i, _p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i, ++_n13##i, ++_n14##i, ++_n15##i, ++_n16##i)
|
|
|
|
#define cimg_for32X(img,x) cimg_for32((img)._width,x)
|
|
#define cimg_for32Y(img,y) cimg_for32((img)._height,y)
|
|
#define cimg_for32Z(img,z) cimg_for32((img)._depth,z)
|
|
#define cimg_for32C(img,c) cimg_for32((img)._spectrum,c)
|
|
#define cimg_for32XY(img,x,y) cimg_for32Y(img,y) cimg_for32X(img,x)
|
|
#define cimg_for32XZ(img,x,z) cimg_for32Z(img,z) cimg_for32X(img,x)
|
|
#define cimg_for32XC(img,x,c) cimg_for32C(img,c) cimg_for32X(img,x)
|
|
#define cimg_for32YZ(img,y,z) cimg_for32Z(img,z) cimg_for32Y(img,y)
|
|
#define cimg_for32YC(img,y,c) cimg_for32C(img,c) cimg_for32Y(img,y)
|
|
#define cimg_for32ZC(img,z,c) cimg_for32C(img,c) cimg_for32Z(img,z)
|
|
#define cimg_for32XYZ(img,x,y,z) cimg_for32Z(img,z) cimg_for32XY(img,x,y)
|
|
#define cimg_for32XZC(img,x,z,c) cimg_for32C(img,c) cimg_for32XZ(img,x,z)
|
|
#define cimg_for32YZC(img,y,z,c) cimg_for32C(img,c) cimg_for32YZ(img,y,z)
|
|
#define cimg_for32XYZC(img,x,y,z,c) cimg_for32C(img,c) cimg_for32XYZ(img,x,y,z)
|
|
|
|
#define cimg_for_in32(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
|
|
_p15##i = i - 15<0?0:i - 15, \
|
|
_p14##i = i - 14<0?0:i - 14, \
|
|
_p13##i = i - 13<0?0:i - 13, \
|
|
_p12##i = i - 12<0?0:i - 12, \
|
|
_p11##i = i - 11<0?0:i - 11, \
|
|
_p10##i = i - 10<0?0:i - 10, \
|
|
_p9##i = i - 9<0?0:i - 9, \
|
|
_p8##i = i - 8<0?0:i - 8, \
|
|
_p7##i = i - 7<0?0:i - 7, \
|
|
_p6##i = i - 6<0?0:i - 6, \
|
|
_p5##i = i - 5<0?0:i - 5, \
|
|
_p4##i = i - 4<0?0:i - 4, \
|
|
_p3##i = i - 3<0?0:i - 3, \
|
|
_p2##i = i - 2<0?0:i - 2, \
|
|
_p1##i = i - 1<0?0:i - 1, \
|
|
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
|
|
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
|
|
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
|
|
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
|
|
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
|
|
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
|
|
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
|
|
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
|
|
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9, \
|
|
_n10##i = i + 10>=(int)(bound)?(int)(bound) - 1:i + 10, \
|
|
_n11##i = i + 11>=(int)(bound)?(int)(bound) - 1:i + 11, \
|
|
_n12##i = i + 12>=(int)(bound)?(int)(bound) - 1:i + 12, \
|
|
_n13##i = i + 13>=(int)(bound)?(int)(bound) - 1:i + 13, \
|
|
_n14##i = i + 14>=(int)(bound)?(int)(bound) - 1:i + 14, \
|
|
_n15##i = i + 15>=(int)(bound)?(int)(bound) - 1:i + 15, \
|
|
_n16##i = i + 16>=(int)(bound)?(int)(bound) - 1:i + 16; \
|
|
i<=(int)(i1) && (_n16##i<(int)(bound) || _n15##i==--_n16##i || _n14##i==--_n15##i || _n13##i==--_n14##i || _n12##i==--_n13##i || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
|
|
i==(_n16##i = _n15##i = _n14##i = _n13##i = _n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
|
|
_p15##i = _p14##i, _p14##i = _p13##i, _p13##i = _p12##i, _p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
|
|
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i, ++_n13##i, ++_n14##i, ++_n15##i, ++_n16##i)
|
|
|
|
#define cimg_for_in32X(img,x0,x1,x) cimg_for_in32((img)._width,x0,x1,x)
|
|
#define cimg_for_in32Y(img,y0,y1,y) cimg_for_in32((img)._height,y0,y1,y)
|
|
#define cimg_for_in32Z(img,z0,z1,z) cimg_for_in32((img)._depth,z0,z1,z)
|
|
#define cimg_for_in32C(img,c0,c1,c) cimg_for_in32((img)._spectrum,c0,c1,c)
|
|
#define cimg_for_in32XY(img,x0,y0,x1,y1,x,y) cimg_for_in32Y(img,y0,y1,y) cimg_for_in32X(img,x0,x1,x)
|
|
#define cimg_for_in32XZ(img,x0,z0,x1,z1,x,z) cimg_for_in32Z(img,z0,z1,z) cimg_for_in32X(img,x0,x1,x)
|
|
#define cimg_for_in32XC(img,x0,c0,x1,c1,x,c) cimg_for_in32C(img,c0,c1,c) cimg_for_in32X(img,x0,x1,x)
|
|
#define cimg_for_in32YZ(img,y0,z0,y1,z1,y,z) cimg_for_in32Z(img,z0,z1,z) cimg_for_in32Y(img,y0,y1,y)
|
|
#define cimg_for_in32YC(img,y0,c0,y1,c1,y,c) cimg_for_in32C(img,c0,c1,c) cimg_for_in32Y(img,y0,y1,y)
|
|
#define cimg_for_in32ZC(img,z0,c0,z1,c1,z,c) cimg_for_in32C(img,c0,c1,c) cimg_for_in32Z(img,z0,z1,z)
|
|
#define cimg_for_in32XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in32Z(img,z0,z1,z) cimg_for_in32XY(img,x0,y0,x1,y1,x,y)
|
|
#define cimg_for_in32XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in32C(img,c0,c1,c) cimg_for_in32XZ(img,x0,y0,x1,y1,x,z)
|
|
#define cimg_for_in32YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in32C(img,c0,c1,c) cimg_for_in32YZ(img,y0,z0,y1,z1,y,z)
|
|
#define cimg_for_in32XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in32C(img,c0,c1,c) cimg_for_in32XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
|
|
|
|
#define cimg_for32x32(img,x,y,z,c,I,T) \
|
|
cimg_for32((img)._height,y) for (int x = 0, \
|
|
_p15##x = 0, _p14##x = 0, _p13##x = 0, _p12##x = 0, _p11##x = 0, _p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
|
|
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
|
|
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
|
|
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
|
|
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
|
|
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
|
|
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
|
|
_n9##x = 9>=((img)._width)?(img).width() - 1:9, \
|
|
_n10##x = 10>=((img)._width)?(img).width() - 1:10, \
|
|
_n11##x = 11>=((img)._width)?(img).width() - 1:11, \
|
|
_n12##x = 12>=((img)._width)?(img).width() - 1:12, \
|
|
_n13##x = 13>=((img)._width)?(img).width() - 1:13, \
|
|
_n14##x = 14>=((img)._width)?(img).width() - 1:14, \
|
|
_n15##x = 15>=((img)._width)?(img).width() - 1:15, \
|
|
_n16##x = (int)( \
|
|
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = I[11] = I[12] = I[13] = I[14] = I[15] = (T)(img)(0,_p15##y,z,c)), \
|
|
(I[32] = I[33] = I[34] = I[35] = I[36] = I[37] = I[38] = I[39] = I[40] = I[41] = I[42] = I[43] = I[44] = I[45] = I[46] = I[47] = (T)(img)(0,_p14##y,z,c)), \
|
|
(I[64] = I[65] = I[66] = I[67] = I[68] = I[69] = I[70] = I[71] = I[72] = I[73] = I[74] = I[75] = I[76] = I[77] = I[78] = I[79] = (T)(img)(0,_p13##y,z,c)), \
|
|
(I[96] = I[97] = I[98] = I[99] = I[100] = I[101] = I[102] = I[103] = I[104] = I[105] = I[106] = I[107] = I[108] = I[109] = I[110] = I[111] = (T)(img)(0,_p12##y,z,c)), \
|
|
(I[128] = I[129] = I[130] = I[131] = I[132] = I[133] = I[134] = I[135] = I[136] = I[137] = I[138] = I[139] = I[140] = I[141] = I[142] = I[143] = (T)(img)(0,_p11##y,z,c)), \
|
|
(I[160] = I[161] = I[162] = I[163] = I[164] = I[165] = I[166] = I[167] = I[168] = I[169] = I[170] = I[171] = I[172] = I[173] = I[174] = I[175] = (T)(img)(0,_p10##y,z,c)), \
|
|
(I[192] = I[193] = I[194] = I[195] = I[196] = I[197] = I[198] = I[199] = I[200] = I[201] = I[202] = I[203] = I[204] = I[205] = I[206] = I[207] = (T)(img)(0,_p9##y,z,c)), \
|
|
(I[224] = I[225] = I[226] = I[227] = I[228] = I[229] = I[230] = I[231] = I[232] = I[233] = I[234] = I[235] = I[236] = I[237] = I[238] = I[239] = (T)(img)(0,_p8##y,z,c)), \
|
|
(I[256] = I[257] = I[258] = I[259] = I[260] = I[261] = I[262] = I[263] = I[264] = I[265] = I[266] = I[267] = I[268] = I[269] = I[270] = I[271] = (T)(img)(0,_p7##y,z,c)), \
|
|
(I[288] = I[289] = I[290] = I[291] = I[292] = I[293] = I[294] = I[295] = I[296] = I[297] = I[298] = I[299] = I[300] = I[301] = I[302] = I[303] = (T)(img)(0,_p6##y,z,c)), \
|
|
(I[320] = I[321] = I[322] = I[323] = I[324] = I[325] = I[326] = I[327] = I[328] = I[329] = I[330] = I[331] = I[332] = I[333] = I[334] = I[335] = (T)(img)(0,_p5##y,z,c)), \
|
|
(I[352] = I[353] = I[354] = I[355] = I[356] = I[357] = I[358] = I[359] = I[360] = I[361] = I[362] = I[363] = I[364] = I[365] = I[366] = I[367] = (T)(img)(0,_p4##y,z,c)), \
|
|
(I[384] = I[385] = I[386] = I[387] = I[388] = I[389] = I[390] = I[391] = I[392] = I[393] = I[394] = I[395] = I[396] = I[397] = I[398] = I[399] = (T)(img)(0,_p3##y,z,c)), \
|
|
(I[416] = I[417] = I[418] = I[419] = I[420] = I[421] = I[422] = I[423] = I[424] = I[425] = I[426] = I[427] = I[428] = I[429] = I[430] = I[431] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[448] = I[449] = I[450] = I[451] = I[452] = I[453] = I[454] = I[455] = I[456] = I[457] = I[458] = I[459] = I[460] = I[461] = I[462] = I[463] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[480] = I[481] = I[482] = I[483] = I[484] = I[485] = I[486] = I[487] = I[488] = I[489] = I[490] = I[491] = I[492] = I[493] = I[494] = I[495] = (T)(img)(0,y,z,c)), \
|
|
(I[512] = I[513] = I[514] = I[515] = I[516] = I[517] = I[518] = I[519] = I[520] = I[521] = I[522] = I[523] = I[524] = I[525] = I[526] = I[527] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[544] = I[545] = I[546] = I[547] = I[548] = I[549] = I[550] = I[551] = I[552] = I[553] = I[554] = I[555] = I[556] = I[557] = I[558] = I[559] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[576] = I[577] = I[578] = I[579] = I[580] = I[581] = I[582] = I[583] = I[584] = I[585] = I[586] = I[587] = I[588] = I[589] = I[590] = I[591] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[608] = I[609] = I[610] = I[611] = I[612] = I[613] = I[614] = I[615] = I[616] = I[617] = I[618] = I[619] = I[620] = I[621] = I[622] = I[623] = (T)(img)(0,_n4##y,z,c)), \
|
|
(I[640] = I[641] = I[642] = I[643] = I[644] = I[645] = I[646] = I[647] = I[648] = I[649] = I[650] = I[651] = I[652] = I[653] = I[654] = I[655] = (T)(img)(0,_n5##y,z,c)), \
|
|
(I[672] = I[673] = I[674] = I[675] = I[676] = I[677] = I[678] = I[679] = I[680] = I[681] = I[682] = I[683] = I[684] = I[685] = I[686] = I[687] = (T)(img)(0,_n6##y,z,c)), \
|
|
(I[704] = I[705] = I[706] = I[707] = I[708] = I[709] = I[710] = I[711] = I[712] = I[713] = I[714] = I[715] = I[716] = I[717] = I[718] = I[719] = (T)(img)(0,_n7##y,z,c)), \
|
|
(I[736] = I[737] = I[738] = I[739] = I[740] = I[741] = I[742] = I[743] = I[744] = I[745] = I[746] = I[747] = I[748] = I[749] = I[750] = I[751] = (T)(img)(0,_n8##y,z,c)), \
|
|
(I[768] = I[769] = I[770] = I[771] = I[772] = I[773] = I[774] = I[775] = I[776] = I[777] = I[778] = I[779] = I[780] = I[781] = I[782] = I[783] = (T)(img)(0,_n9##y,z,c)), \
|
|
(I[800] = I[801] = I[802] = I[803] = I[804] = I[805] = I[806] = I[807] = I[808] = I[809] = I[810] = I[811] = I[812] = I[813] = I[814] = I[815] = (T)(img)(0,_n10##y,z,c)), \
|
|
(I[832] = I[833] = I[834] = I[835] = I[836] = I[837] = I[838] = I[839] = I[840] = I[841] = I[842] = I[843] = I[844] = I[845] = I[846] = I[847] = (T)(img)(0,_n11##y,z,c)), \
|
|
(I[864] = I[865] = I[866] = I[867] = I[868] = I[869] = I[870] = I[871] = I[872] = I[873] = I[874] = I[875] = I[876] = I[877] = I[878] = I[879] = (T)(img)(0,_n12##y,z,c)), \
|
|
(I[896] = I[897] = I[898] = I[899] = I[900] = I[901] = I[902] = I[903] = I[904] = I[905] = I[906] = I[907] = I[908] = I[909] = I[910] = I[911] = (T)(img)(0,_n13##y,z,c)), \
|
|
(I[928] = I[929] = I[930] = I[931] = I[932] = I[933] = I[934] = I[935] = I[936] = I[937] = I[938] = I[939] = I[940] = I[941] = I[942] = I[943] = (T)(img)(0,_n14##y,z,c)), \
|
|
(I[960] = I[961] = I[962] = I[963] = I[964] = I[965] = I[966] = I[967] = I[968] = I[969] = I[970] = I[971] = I[972] = I[973] = I[974] = I[975] = (T)(img)(0,_n15##y,z,c)), \
|
|
(I[992] = I[993] = I[994] = I[995] = I[996] = I[997] = I[998] = I[999] = I[1000] = I[1001] = I[1002] = I[1003] = I[1004] = I[1005] = I[1006] = I[1007] = (T)(img)(0,_n16##y,z,c)), \
|
|
(I[16] = (T)(img)(_n1##x,_p15##y,z,c)), \
|
|
(I[48] = (T)(img)(_n1##x,_p14##y,z,c)), \
|
|
(I[80] = (T)(img)(_n1##x,_p13##y,z,c)), \
|
|
(I[112] = (T)(img)(_n1##x,_p12##y,z,c)), \
|
|
(I[144] = (T)(img)(_n1##x,_p11##y,z,c)), \
|
|
(I[176] = (T)(img)(_n1##x,_p10##y,z,c)), \
|
|
(I[208] = (T)(img)(_n1##x,_p9##y,z,c)), \
|
|
(I[240] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[272] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[304] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[336] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[368] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[400] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[432] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[464] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[496] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[528] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[560] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[592] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[624] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[656] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[688] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[720] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[752] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[784] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[816] = (T)(img)(_n1##x,_n10##y,z,c)), \
|
|
(I[848] = (T)(img)(_n1##x,_n11##y,z,c)), \
|
|
(I[880] = (T)(img)(_n1##x,_n12##y,z,c)), \
|
|
(I[912] = (T)(img)(_n1##x,_n13##y,z,c)), \
|
|
(I[944] = (T)(img)(_n1##x,_n14##y,z,c)), \
|
|
(I[976] = (T)(img)(_n1##x,_n15##y,z,c)), \
|
|
(I[1008] = (T)(img)(_n1##x,_n16##y,z,c)), \
|
|
(I[17] = (T)(img)(_n2##x,_p15##y,z,c)), \
|
|
(I[49] = (T)(img)(_n2##x,_p14##y,z,c)), \
|
|
(I[81] = (T)(img)(_n2##x,_p13##y,z,c)), \
|
|
(I[113] = (T)(img)(_n2##x,_p12##y,z,c)), \
|
|
(I[145] = (T)(img)(_n2##x,_p11##y,z,c)), \
|
|
(I[177] = (T)(img)(_n2##x,_p10##y,z,c)), \
|
|
(I[209] = (T)(img)(_n2##x,_p9##y,z,c)), \
|
|
(I[241] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[273] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[305] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[337] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[369] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[401] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[433] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[465] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[497] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[529] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[561] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[593] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[625] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[657] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[689] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[721] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[753] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[785] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[817] = (T)(img)(_n2##x,_n10##y,z,c)), \
|
|
(I[849] = (T)(img)(_n2##x,_n11##y,z,c)), \
|
|
(I[881] = (T)(img)(_n2##x,_n12##y,z,c)), \
|
|
(I[913] = (T)(img)(_n2##x,_n13##y,z,c)), \
|
|
(I[945] = (T)(img)(_n2##x,_n14##y,z,c)), \
|
|
(I[977] = (T)(img)(_n2##x,_n15##y,z,c)), \
|
|
(I[1009] = (T)(img)(_n2##x,_n16##y,z,c)), \
|
|
(I[18] = (T)(img)(_n3##x,_p15##y,z,c)), \
|
|
(I[50] = (T)(img)(_n3##x,_p14##y,z,c)), \
|
|
(I[82] = (T)(img)(_n3##x,_p13##y,z,c)), \
|
|
(I[114] = (T)(img)(_n3##x,_p12##y,z,c)), \
|
|
(I[146] = (T)(img)(_n3##x,_p11##y,z,c)), \
|
|
(I[178] = (T)(img)(_n3##x,_p10##y,z,c)), \
|
|
(I[210] = (T)(img)(_n3##x,_p9##y,z,c)), \
|
|
(I[242] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[274] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[306] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[338] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[370] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[402] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[434] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[466] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[498] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[530] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[562] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[594] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[626] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[658] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[690] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[722] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[754] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[786] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[818] = (T)(img)(_n3##x,_n10##y,z,c)), \
|
|
(I[850] = (T)(img)(_n3##x,_n11##y,z,c)), \
|
|
(I[882] = (T)(img)(_n3##x,_n12##y,z,c)), \
|
|
(I[914] = (T)(img)(_n3##x,_n13##y,z,c)), \
|
|
(I[946] = (T)(img)(_n3##x,_n14##y,z,c)), \
|
|
(I[978] = (T)(img)(_n3##x,_n15##y,z,c)), \
|
|
(I[1010] = (T)(img)(_n3##x,_n16##y,z,c)), \
|
|
(I[19] = (T)(img)(_n4##x,_p15##y,z,c)), \
|
|
(I[51] = (T)(img)(_n4##x,_p14##y,z,c)), \
|
|
(I[83] = (T)(img)(_n4##x,_p13##y,z,c)), \
|
|
(I[115] = (T)(img)(_n4##x,_p12##y,z,c)), \
|
|
(I[147] = (T)(img)(_n4##x,_p11##y,z,c)), \
|
|
(I[179] = (T)(img)(_n4##x,_p10##y,z,c)), \
|
|
(I[211] = (T)(img)(_n4##x,_p9##y,z,c)), \
|
|
(I[243] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[275] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[307] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[339] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[371] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[403] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[435] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[467] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[499] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[531] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[563] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[595] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[627] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[659] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[691] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[723] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[755] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[787] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[819] = (T)(img)(_n4##x,_n10##y,z,c)), \
|
|
(I[851] = (T)(img)(_n4##x,_n11##y,z,c)), \
|
|
(I[883] = (T)(img)(_n4##x,_n12##y,z,c)), \
|
|
(I[915] = (T)(img)(_n4##x,_n13##y,z,c)), \
|
|
(I[947] = (T)(img)(_n4##x,_n14##y,z,c)), \
|
|
(I[979] = (T)(img)(_n4##x,_n15##y,z,c)), \
|
|
(I[1011] = (T)(img)(_n4##x,_n16##y,z,c)), \
|
|
(I[20] = (T)(img)(_n5##x,_p15##y,z,c)), \
|
|
(I[52] = (T)(img)(_n5##x,_p14##y,z,c)), \
|
|
(I[84] = (T)(img)(_n5##x,_p13##y,z,c)), \
|
|
(I[116] = (T)(img)(_n5##x,_p12##y,z,c)), \
|
|
(I[148] = (T)(img)(_n5##x,_p11##y,z,c)), \
|
|
(I[180] = (T)(img)(_n5##x,_p10##y,z,c)), \
|
|
(I[212] = (T)(img)(_n5##x,_p9##y,z,c)), \
|
|
(I[244] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[276] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[308] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[340] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[372] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[404] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[436] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[468] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[500] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[532] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[564] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[596] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[628] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[660] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[692] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[724] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[756] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[788] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[820] = (T)(img)(_n5##x,_n10##y,z,c)), \
|
|
(I[852] = (T)(img)(_n5##x,_n11##y,z,c)), \
|
|
(I[884] = (T)(img)(_n5##x,_n12##y,z,c)), \
|
|
(I[916] = (T)(img)(_n5##x,_n13##y,z,c)), \
|
|
(I[948] = (T)(img)(_n5##x,_n14##y,z,c)), \
|
|
(I[980] = (T)(img)(_n5##x,_n15##y,z,c)), \
|
|
(I[1012] = (T)(img)(_n5##x,_n16##y,z,c)), \
|
|
(I[21] = (T)(img)(_n6##x,_p15##y,z,c)), \
|
|
(I[53] = (T)(img)(_n6##x,_p14##y,z,c)), \
|
|
(I[85] = (T)(img)(_n6##x,_p13##y,z,c)), \
|
|
(I[117] = (T)(img)(_n6##x,_p12##y,z,c)), \
|
|
(I[149] = (T)(img)(_n6##x,_p11##y,z,c)), \
|
|
(I[181] = (T)(img)(_n6##x,_p10##y,z,c)), \
|
|
(I[213] = (T)(img)(_n6##x,_p9##y,z,c)), \
|
|
(I[245] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[277] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[309] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[341] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[373] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[405] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[437] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[469] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[501] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[533] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[565] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[597] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[629] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[661] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[693] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[725] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[757] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[789] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[821] = (T)(img)(_n6##x,_n10##y,z,c)), \
|
|
(I[853] = (T)(img)(_n6##x,_n11##y,z,c)), \
|
|
(I[885] = (T)(img)(_n6##x,_n12##y,z,c)), \
|
|
(I[917] = (T)(img)(_n6##x,_n13##y,z,c)), \
|
|
(I[949] = (T)(img)(_n6##x,_n14##y,z,c)), \
|
|
(I[981] = (T)(img)(_n6##x,_n15##y,z,c)), \
|
|
(I[1013] = (T)(img)(_n6##x,_n16##y,z,c)), \
|
|
(I[22] = (T)(img)(_n7##x,_p15##y,z,c)), \
|
|
(I[54] = (T)(img)(_n7##x,_p14##y,z,c)), \
|
|
(I[86] = (T)(img)(_n7##x,_p13##y,z,c)), \
|
|
(I[118] = (T)(img)(_n7##x,_p12##y,z,c)), \
|
|
(I[150] = (T)(img)(_n7##x,_p11##y,z,c)), \
|
|
(I[182] = (T)(img)(_n7##x,_p10##y,z,c)), \
|
|
(I[214] = (T)(img)(_n7##x,_p9##y,z,c)), \
|
|
(I[246] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[278] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[310] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[342] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[374] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[406] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[438] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[470] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[502] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[534] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[566] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[598] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[630] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[662] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[694] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[726] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[758] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[790] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[822] = (T)(img)(_n7##x,_n10##y,z,c)), \
|
|
(I[854] = (T)(img)(_n7##x,_n11##y,z,c)), \
|
|
(I[886] = (T)(img)(_n7##x,_n12##y,z,c)), \
|
|
(I[918] = (T)(img)(_n7##x,_n13##y,z,c)), \
|
|
(I[950] = (T)(img)(_n7##x,_n14##y,z,c)), \
|
|
(I[982] = (T)(img)(_n7##x,_n15##y,z,c)), \
|
|
(I[1014] = (T)(img)(_n7##x,_n16##y,z,c)), \
|
|
(I[23] = (T)(img)(_n8##x,_p15##y,z,c)), \
|
|
(I[55] = (T)(img)(_n8##x,_p14##y,z,c)), \
|
|
(I[87] = (T)(img)(_n8##x,_p13##y,z,c)), \
|
|
(I[119] = (T)(img)(_n8##x,_p12##y,z,c)), \
|
|
(I[151] = (T)(img)(_n8##x,_p11##y,z,c)), \
|
|
(I[183] = (T)(img)(_n8##x,_p10##y,z,c)), \
|
|
(I[215] = (T)(img)(_n8##x,_p9##y,z,c)), \
|
|
(I[247] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[279] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[311] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[343] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[375] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[407] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[439] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[471] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[503] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[535] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[567] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[599] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[631] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[663] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[695] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[727] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[759] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[791] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
(I[823] = (T)(img)(_n8##x,_n10##y,z,c)), \
|
|
(I[855] = (T)(img)(_n8##x,_n11##y,z,c)), \
|
|
(I[887] = (T)(img)(_n8##x,_n12##y,z,c)), \
|
|
(I[919] = (T)(img)(_n8##x,_n13##y,z,c)), \
|
|
(I[951] = (T)(img)(_n8##x,_n14##y,z,c)), \
|
|
(I[983] = (T)(img)(_n8##x,_n15##y,z,c)), \
|
|
(I[1015] = (T)(img)(_n8##x,_n16##y,z,c)), \
|
|
(I[24] = (T)(img)(_n9##x,_p15##y,z,c)), \
|
|
(I[56] = (T)(img)(_n9##x,_p14##y,z,c)), \
|
|
(I[88] = (T)(img)(_n9##x,_p13##y,z,c)), \
|
|
(I[120] = (T)(img)(_n9##x,_p12##y,z,c)), \
|
|
(I[152] = (T)(img)(_n9##x,_p11##y,z,c)), \
|
|
(I[184] = (T)(img)(_n9##x,_p10##y,z,c)), \
|
|
(I[216] = (T)(img)(_n9##x,_p9##y,z,c)), \
|
|
(I[248] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[280] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[312] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[344] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[376] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[408] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[440] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[472] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[504] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[536] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[568] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[600] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[632] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[664] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[696] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[728] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[760] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[792] = (T)(img)(_n9##x,_n9##y,z,c)), \
|
|
(I[824] = (T)(img)(_n9##x,_n10##y,z,c)), \
|
|
(I[856] = (T)(img)(_n9##x,_n11##y,z,c)), \
|
|
(I[888] = (T)(img)(_n9##x,_n12##y,z,c)), \
|
|
(I[920] = (T)(img)(_n9##x,_n13##y,z,c)), \
|
|
(I[952] = (T)(img)(_n9##x,_n14##y,z,c)), \
|
|
(I[984] = (T)(img)(_n9##x,_n15##y,z,c)), \
|
|
(I[1016] = (T)(img)(_n9##x,_n16##y,z,c)), \
|
|
(I[25] = (T)(img)(_n10##x,_p15##y,z,c)), \
|
|
(I[57] = (T)(img)(_n10##x,_p14##y,z,c)), \
|
|
(I[89] = (T)(img)(_n10##x,_p13##y,z,c)), \
|
|
(I[121] = (T)(img)(_n10##x,_p12##y,z,c)), \
|
|
(I[153] = (T)(img)(_n10##x,_p11##y,z,c)), \
|
|
(I[185] = (T)(img)(_n10##x,_p10##y,z,c)), \
|
|
(I[217] = (T)(img)(_n10##x,_p9##y,z,c)), \
|
|
(I[249] = (T)(img)(_n10##x,_p8##y,z,c)), \
|
|
(I[281] = (T)(img)(_n10##x,_p7##y,z,c)), \
|
|
(I[313] = (T)(img)(_n10##x,_p6##y,z,c)), \
|
|
(I[345] = (T)(img)(_n10##x,_p5##y,z,c)), \
|
|
(I[377] = (T)(img)(_n10##x,_p4##y,z,c)), \
|
|
(I[409] = (T)(img)(_n10##x,_p3##y,z,c)), \
|
|
(I[441] = (T)(img)(_n10##x,_p2##y,z,c)), \
|
|
(I[473] = (T)(img)(_n10##x,_p1##y,z,c)), \
|
|
(I[505] = (T)(img)(_n10##x,y,z,c)), \
|
|
(I[537] = (T)(img)(_n10##x,_n1##y,z,c)), \
|
|
(I[569] = (T)(img)(_n10##x,_n2##y,z,c)), \
|
|
(I[601] = (T)(img)(_n10##x,_n3##y,z,c)), \
|
|
(I[633] = (T)(img)(_n10##x,_n4##y,z,c)), \
|
|
(I[665] = (T)(img)(_n10##x,_n5##y,z,c)), \
|
|
(I[697] = (T)(img)(_n10##x,_n6##y,z,c)), \
|
|
(I[729] = (T)(img)(_n10##x,_n7##y,z,c)), \
|
|
(I[761] = (T)(img)(_n10##x,_n8##y,z,c)), \
|
|
(I[793] = (T)(img)(_n10##x,_n9##y,z,c)), \
|
|
(I[825] = (T)(img)(_n10##x,_n10##y,z,c)), \
|
|
(I[857] = (T)(img)(_n10##x,_n11##y,z,c)), \
|
|
(I[889] = (T)(img)(_n10##x,_n12##y,z,c)), \
|
|
(I[921] = (T)(img)(_n10##x,_n13##y,z,c)), \
|
|
(I[953] = (T)(img)(_n10##x,_n14##y,z,c)), \
|
|
(I[985] = (T)(img)(_n10##x,_n15##y,z,c)), \
|
|
(I[1017] = (T)(img)(_n10##x,_n16##y,z,c)), \
|
|
(I[26] = (T)(img)(_n11##x,_p15##y,z,c)), \
|
|
(I[58] = (T)(img)(_n11##x,_p14##y,z,c)), \
|
|
(I[90] = (T)(img)(_n11##x,_p13##y,z,c)), \
|
|
(I[122] = (T)(img)(_n11##x,_p12##y,z,c)), \
|
|
(I[154] = (T)(img)(_n11##x,_p11##y,z,c)), \
|
|
(I[186] = (T)(img)(_n11##x,_p10##y,z,c)), \
|
|
(I[218] = (T)(img)(_n11##x,_p9##y,z,c)), \
|
|
(I[250] = (T)(img)(_n11##x,_p8##y,z,c)), \
|
|
(I[282] = (T)(img)(_n11##x,_p7##y,z,c)), \
|
|
(I[314] = (T)(img)(_n11##x,_p6##y,z,c)), \
|
|
(I[346] = (T)(img)(_n11##x,_p5##y,z,c)), \
|
|
(I[378] = (T)(img)(_n11##x,_p4##y,z,c)), \
|
|
(I[410] = (T)(img)(_n11##x,_p3##y,z,c)), \
|
|
(I[442] = (T)(img)(_n11##x,_p2##y,z,c)), \
|
|
(I[474] = (T)(img)(_n11##x,_p1##y,z,c)), \
|
|
(I[506] = (T)(img)(_n11##x,y,z,c)), \
|
|
(I[538] = (T)(img)(_n11##x,_n1##y,z,c)), \
|
|
(I[570] = (T)(img)(_n11##x,_n2##y,z,c)), \
|
|
(I[602] = (T)(img)(_n11##x,_n3##y,z,c)), \
|
|
(I[634] = (T)(img)(_n11##x,_n4##y,z,c)), \
|
|
(I[666] = (T)(img)(_n11##x,_n5##y,z,c)), \
|
|
(I[698] = (T)(img)(_n11##x,_n6##y,z,c)), \
|
|
(I[730] = (T)(img)(_n11##x,_n7##y,z,c)), \
|
|
(I[762] = (T)(img)(_n11##x,_n8##y,z,c)), \
|
|
(I[794] = (T)(img)(_n11##x,_n9##y,z,c)), \
|
|
(I[826] = (T)(img)(_n11##x,_n10##y,z,c)), \
|
|
(I[858] = (T)(img)(_n11##x,_n11##y,z,c)), \
|
|
(I[890] = (T)(img)(_n11##x,_n12##y,z,c)), \
|
|
(I[922] = (T)(img)(_n11##x,_n13##y,z,c)), \
|
|
(I[954] = (T)(img)(_n11##x,_n14##y,z,c)), \
|
|
(I[986] = (T)(img)(_n11##x,_n15##y,z,c)), \
|
|
(I[1018] = (T)(img)(_n11##x,_n16##y,z,c)), \
|
|
(I[27] = (T)(img)(_n12##x,_p15##y,z,c)), \
|
|
(I[59] = (T)(img)(_n12##x,_p14##y,z,c)), \
|
|
(I[91] = (T)(img)(_n12##x,_p13##y,z,c)), \
|
|
(I[123] = (T)(img)(_n12##x,_p12##y,z,c)), \
|
|
(I[155] = (T)(img)(_n12##x,_p11##y,z,c)), \
|
|
(I[187] = (T)(img)(_n12##x,_p10##y,z,c)), \
|
|
(I[219] = (T)(img)(_n12##x,_p9##y,z,c)), \
|
|
(I[251] = (T)(img)(_n12##x,_p8##y,z,c)), \
|
|
(I[283] = (T)(img)(_n12##x,_p7##y,z,c)), \
|
|
(I[315] = (T)(img)(_n12##x,_p6##y,z,c)), \
|
|
(I[347] = (T)(img)(_n12##x,_p5##y,z,c)), \
|
|
(I[379] = (T)(img)(_n12##x,_p4##y,z,c)), \
|
|
(I[411] = (T)(img)(_n12##x,_p3##y,z,c)), \
|
|
(I[443] = (T)(img)(_n12##x,_p2##y,z,c)), \
|
|
(I[475] = (T)(img)(_n12##x,_p1##y,z,c)), \
|
|
(I[507] = (T)(img)(_n12##x,y,z,c)), \
|
|
(I[539] = (T)(img)(_n12##x,_n1##y,z,c)), \
|
|
(I[571] = (T)(img)(_n12##x,_n2##y,z,c)), \
|
|
(I[603] = (T)(img)(_n12##x,_n3##y,z,c)), \
|
|
(I[635] = (T)(img)(_n12##x,_n4##y,z,c)), \
|
|
(I[667] = (T)(img)(_n12##x,_n5##y,z,c)), \
|
|
(I[699] = (T)(img)(_n12##x,_n6##y,z,c)), \
|
|
(I[731] = (T)(img)(_n12##x,_n7##y,z,c)), \
|
|
(I[763] = (T)(img)(_n12##x,_n8##y,z,c)), \
|
|
(I[795] = (T)(img)(_n12##x,_n9##y,z,c)), \
|
|
(I[827] = (T)(img)(_n12##x,_n10##y,z,c)), \
|
|
(I[859] = (T)(img)(_n12##x,_n11##y,z,c)), \
|
|
(I[891] = (T)(img)(_n12##x,_n12##y,z,c)), \
|
|
(I[923] = (T)(img)(_n12##x,_n13##y,z,c)), \
|
|
(I[955] = (T)(img)(_n12##x,_n14##y,z,c)), \
|
|
(I[987] = (T)(img)(_n12##x,_n15##y,z,c)), \
|
|
(I[1019] = (T)(img)(_n12##x,_n16##y,z,c)), \
|
|
(I[28] = (T)(img)(_n13##x,_p15##y,z,c)), \
|
|
(I[60] = (T)(img)(_n13##x,_p14##y,z,c)), \
|
|
(I[92] = (T)(img)(_n13##x,_p13##y,z,c)), \
|
|
(I[124] = (T)(img)(_n13##x,_p12##y,z,c)), \
|
|
(I[156] = (T)(img)(_n13##x,_p11##y,z,c)), \
|
|
(I[188] = (T)(img)(_n13##x,_p10##y,z,c)), \
|
|
(I[220] = (T)(img)(_n13##x,_p9##y,z,c)), \
|
|
(I[252] = (T)(img)(_n13##x,_p8##y,z,c)), \
|
|
(I[284] = (T)(img)(_n13##x,_p7##y,z,c)), \
|
|
(I[316] = (T)(img)(_n13##x,_p6##y,z,c)), \
|
|
(I[348] = (T)(img)(_n13##x,_p5##y,z,c)), \
|
|
(I[380] = (T)(img)(_n13##x,_p4##y,z,c)), \
|
|
(I[412] = (T)(img)(_n13##x,_p3##y,z,c)), \
|
|
(I[444] = (T)(img)(_n13##x,_p2##y,z,c)), \
|
|
(I[476] = (T)(img)(_n13##x,_p1##y,z,c)), \
|
|
(I[508] = (T)(img)(_n13##x,y,z,c)), \
|
|
(I[540] = (T)(img)(_n13##x,_n1##y,z,c)), \
|
|
(I[572] = (T)(img)(_n13##x,_n2##y,z,c)), \
|
|
(I[604] = (T)(img)(_n13##x,_n3##y,z,c)), \
|
|
(I[636] = (T)(img)(_n13##x,_n4##y,z,c)), \
|
|
(I[668] = (T)(img)(_n13##x,_n5##y,z,c)), \
|
|
(I[700] = (T)(img)(_n13##x,_n6##y,z,c)), \
|
|
(I[732] = (T)(img)(_n13##x,_n7##y,z,c)), \
|
|
(I[764] = (T)(img)(_n13##x,_n8##y,z,c)), \
|
|
(I[796] = (T)(img)(_n13##x,_n9##y,z,c)), \
|
|
(I[828] = (T)(img)(_n13##x,_n10##y,z,c)), \
|
|
(I[860] = (T)(img)(_n13##x,_n11##y,z,c)), \
|
|
(I[892] = (T)(img)(_n13##x,_n12##y,z,c)), \
|
|
(I[924] = (T)(img)(_n13##x,_n13##y,z,c)), \
|
|
(I[956] = (T)(img)(_n13##x,_n14##y,z,c)), \
|
|
(I[988] = (T)(img)(_n13##x,_n15##y,z,c)), \
|
|
(I[1020] = (T)(img)(_n13##x,_n16##y,z,c)), \
|
|
(I[29] = (T)(img)(_n14##x,_p15##y,z,c)), \
|
|
(I[61] = (T)(img)(_n14##x,_p14##y,z,c)), \
|
|
(I[93] = (T)(img)(_n14##x,_p13##y,z,c)), \
|
|
(I[125] = (T)(img)(_n14##x,_p12##y,z,c)), \
|
|
(I[157] = (T)(img)(_n14##x,_p11##y,z,c)), \
|
|
(I[189] = (T)(img)(_n14##x,_p10##y,z,c)), \
|
|
(I[221] = (T)(img)(_n14##x,_p9##y,z,c)), \
|
|
(I[253] = (T)(img)(_n14##x,_p8##y,z,c)), \
|
|
(I[285] = (T)(img)(_n14##x,_p7##y,z,c)), \
|
|
(I[317] = (T)(img)(_n14##x,_p6##y,z,c)), \
|
|
(I[349] = (T)(img)(_n14##x,_p5##y,z,c)), \
|
|
(I[381] = (T)(img)(_n14##x,_p4##y,z,c)), \
|
|
(I[413] = (T)(img)(_n14##x,_p3##y,z,c)), \
|
|
(I[445] = (T)(img)(_n14##x,_p2##y,z,c)), \
|
|
(I[477] = (T)(img)(_n14##x,_p1##y,z,c)), \
|
|
(I[509] = (T)(img)(_n14##x,y,z,c)), \
|
|
(I[541] = (T)(img)(_n14##x,_n1##y,z,c)), \
|
|
(I[573] = (T)(img)(_n14##x,_n2##y,z,c)), \
|
|
(I[605] = (T)(img)(_n14##x,_n3##y,z,c)), \
|
|
(I[637] = (T)(img)(_n14##x,_n4##y,z,c)), \
|
|
(I[669] = (T)(img)(_n14##x,_n5##y,z,c)), \
|
|
(I[701] = (T)(img)(_n14##x,_n6##y,z,c)), \
|
|
(I[733] = (T)(img)(_n14##x,_n7##y,z,c)), \
|
|
(I[765] = (T)(img)(_n14##x,_n8##y,z,c)), \
|
|
(I[797] = (T)(img)(_n14##x,_n9##y,z,c)), \
|
|
(I[829] = (T)(img)(_n14##x,_n10##y,z,c)), \
|
|
(I[861] = (T)(img)(_n14##x,_n11##y,z,c)), \
|
|
(I[893] = (T)(img)(_n14##x,_n12##y,z,c)), \
|
|
(I[925] = (T)(img)(_n14##x,_n13##y,z,c)), \
|
|
(I[957] = (T)(img)(_n14##x,_n14##y,z,c)), \
|
|
(I[989] = (T)(img)(_n14##x,_n15##y,z,c)), \
|
|
(I[1021] = (T)(img)(_n14##x,_n16##y,z,c)), \
|
|
(I[30] = (T)(img)(_n15##x,_p15##y,z,c)), \
|
|
(I[62] = (T)(img)(_n15##x,_p14##y,z,c)), \
|
|
(I[94] = (T)(img)(_n15##x,_p13##y,z,c)), \
|
|
(I[126] = (T)(img)(_n15##x,_p12##y,z,c)), \
|
|
(I[158] = (T)(img)(_n15##x,_p11##y,z,c)), \
|
|
(I[190] = (T)(img)(_n15##x,_p10##y,z,c)), \
|
|
(I[222] = (T)(img)(_n15##x,_p9##y,z,c)), \
|
|
(I[254] = (T)(img)(_n15##x,_p8##y,z,c)), \
|
|
(I[286] = (T)(img)(_n15##x,_p7##y,z,c)), \
|
|
(I[318] = (T)(img)(_n15##x,_p6##y,z,c)), \
|
|
(I[350] = (T)(img)(_n15##x,_p5##y,z,c)), \
|
|
(I[382] = (T)(img)(_n15##x,_p4##y,z,c)), \
|
|
(I[414] = (T)(img)(_n15##x,_p3##y,z,c)), \
|
|
(I[446] = (T)(img)(_n15##x,_p2##y,z,c)), \
|
|
(I[478] = (T)(img)(_n15##x,_p1##y,z,c)), \
|
|
(I[510] = (T)(img)(_n15##x,y,z,c)), \
|
|
(I[542] = (T)(img)(_n15##x,_n1##y,z,c)), \
|
|
(I[574] = (T)(img)(_n15##x,_n2##y,z,c)), \
|
|
(I[606] = (T)(img)(_n15##x,_n3##y,z,c)), \
|
|
(I[638] = (T)(img)(_n15##x,_n4##y,z,c)), \
|
|
(I[670] = (T)(img)(_n15##x,_n5##y,z,c)), \
|
|
(I[702] = (T)(img)(_n15##x,_n6##y,z,c)), \
|
|
(I[734] = (T)(img)(_n15##x,_n7##y,z,c)), \
|
|
(I[766] = (T)(img)(_n15##x,_n8##y,z,c)), \
|
|
(I[798] = (T)(img)(_n15##x,_n9##y,z,c)), \
|
|
(I[830] = (T)(img)(_n15##x,_n10##y,z,c)), \
|
|
(I[862] = (T)(img)(_n15##x,_n11##y,z,c)), \
|
|
(I[894] = (T)(img)(_n15##x,_n12##y,z,c)), \
|
|
(I[926] = (T)(img)(_n15##x,_n13##y,z,c)), \
|
|
(I[958] = (T)(img)(_n15##x,_n14##y,z,c)), \
|
|
(I[990] = (T)(img)(_n15##x,_n15##y,z,c)), \
|
|
(I[1022] = (T)(img)(_n15##x,_n16##y,z,c)), \
|
|
16>=((img)._width)?(img).width() - 1:16); \
|
|
(_n16##x<(img).width() && ( \
|
|
(I[31] = (T)(img)(_n16##x,_p15##y,z,c)), \
|
|
(I[63] = (T)(img)(_n16##x,_p14##y,z,c)), \
|
|
(I[95] = (T)(img)(_n16##x,_p13##y,z,c)), \
|
|
(I[127] = (T)(img)(_n16##x,_p12##y,z,c)), \
|
|
(I[159] = (T)(img)(_n16##x,_p11##y,z,c)), \
|
|
(I[191] = (T)(img)(_n16##x,_p10##y,z,c)), \
|
|
(I[223] = (T)(img)(_n16##x,_p9##y,z,c)), \
|
|
(I[255] = (T)(img)(_n16##x,_p8##y,z,c)), \
|
|
(I[287] = (T)(img)(_n16##x,_p7##y,z,c)), \
|
|
(I[319] = (T)(img)(_n16##x,_p6##y,z,c)), \
|
|
(I[351] = (T)(img)(_n16##x,_p5##y,z,c)), \
|
|
(I[383] = (T)(img)(_n16##x,_p4##y,z,c)), \
|
|
(I[415] = (T)(img)(_n16##x,_p3##y,z,c)), \
|
|
(I[447] = (T)(img)(_n16##x,_p2##y,z,c)), \
|
|
(I[479] = (T)(img)(_n16##x,_p1##y,z,c)), \
|
|
(I[511] = (T)(img)(_n16##x,y,z,c)), \
|
|
(I[543] = (T)(img)(_n16##x,_n1##y,z,c)), \
|
|
(I[575] = (T)(img)(_n16##x,_n2##y,z,c)), \
|
|
(I[607] = (T)(img)(_n16##x,_n3##y,z,c)), \
|
|
(I[639] = (T)(img)(_n16##x,_n4##y,z,c)), \
|
|
(I[671] = (T)(img)(_n16##x,_n5##y,z,c)), \
|
|
(I[703] = (T)(img)(_n16##x,_n6##y,z,c)), \
|
|
(I[735] = (T)(img)(_n16##x,_n7##y,z,c)), \
|
|
(I[767] = (T)(img)(_n16##x,_n8##y,z,c)), \
|
|
(I[799] = (T)(img)(_n16##x,_n9##y,z,c)), \
|
|
(I[831] = (T)(img)(_n16##x,_n10##y,z,c)), \
|
|
(I[863] = (T)(img)(_n16##x,_n11##y,z,c)), \
|
|
(I[895] = (T)(img)(_n16##x,_n12##y,z,c)), \
|
|
(I[927] = (T)(img)(_n16##x,_n13##y,z,c)), \
|
|
(I[959] = (T)(img)(_n16##x,_n14##y,z,c)), \
|
|
(I[991] = (T)(img)(_n16##x,_n15##y,z,c)), \
|
|
(I[1023] = (T)(img)(_n16##x,_n16##y,z,c)),1)) || \
|
|
_n15##x==--_n16##x || _n14##x==--_n15##x || _n13##x==--_n14##x || _n12##x==--_n13##x || _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n16##x = _n15##x = _n14##x = _n13##x = _n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \
|
|
I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], \
|
|
I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
|
|
I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], \
|
|
I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], \
|
|
I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \
|
|
I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \
|
|
I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], \
|
|
I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], \
|
|
I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], \
|
|
I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], \
|
|
I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], \
|
|
I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], \
|
|
I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], \
|
|
I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], \
|
|
I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], \
|
|
I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], \
|
|
I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], \
|
|
I[576] = I[577], I[577] = I[578], I[578] = I[579], I[579] = I[580], I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], I[587] = I[588], I[588] = I[589], I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], I[593] = I[594], I[594] = I[595], I[595] = I[596], I[596] = I[597], I[597] = I[598], I[598] = I[599], I[599] = I[600], I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], \
|
|
I[608] = I[609], I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], I[615] = I[616], I[616] = I[617], I[617] = I[618], I[618] = I[619], I[619] = I[620], I[620] = I[621], I[621] = I[622], I[622] = I[623], I[623] = I[624], I[624] = I[625], I[625] = I[626], I[626] = I[627], I[627] = I[628], I[628] = I[629], I[629] = I[630], I[630] = I[631], I[631] = I[632], I[632] = I[633], I[633] = I[634], I[634] = I[635], I[635] = I[636], I[636] = I[637], I[637] = I[638], I[638] = I[639], \
|
|
I[640] = I[641], I[641] = I[642], I[642] = I[643], I[643] = I[644], I[644] = I[645], I[645] = I[646], I[646] = I[647], I[647] = I[648], I[648] = I[649], I[649] = I[650], I[650] = I[651], I[651] = I[652], I[652] = I[653], I[653] = I[654], I[654] = I[655], I[655] = I[656], I[656] = I[657], I[657] = I[658], I[658] = I[659], I[659] = I[660], I[660] = I[661], I[661] = I[662], I[662] = I[663], I[663] = I[664], I[664] = I[665], I[665] = I[666], I[666] = I[667], I[667] = I[668], I[668] = I[669], I[669] = I[670], I[670] = I[671], \
|
|
I[672] = I[673], I[673] = I[674], I[674] = I[675], I[675] = I[676], I[676] = I[677], I[677] = I[678], I[678] = I[679], I[679] = I[680], I[680] = I[681], I[681] = I[682], I[682] = I[683], I[683] = I[684], I[684] = I[685], I[685] = I[686], I[686] = I[687], I[687] = I[688], I[688] = I[689], I[689] = I[690], I[690] = I[691], I[691] = I[692], I[692] = I[693], I[693] = I[694], I[694] = I[695], I[695] = I[696], I[696] = I[697], I[697] = I[698], I[698] = I[699], I[699] = I[700], I[700] = I[701], I[701] = I[702], I[702] = I[703], \
|
|
I[704] = I[705], I[705] = I[706], I[706] = I[707], I[707] = I[708], I[708] = I[709], I[709] = I[710], I[710] = I[711], I[711] = I[712], I[712] = I[713], I[713] = I[714], I[714] = I[715], I[715] = I[716], I[716] = I[717], I[717] = I[718], I[718] = I[719], I[719] = I[720], I[720] = I[721], I[721] = I[722], I[722] = I[723], I[723] = I[724], I[724] = I[725], I[725] = I[726], I[726] = I[727], I[727] = I[728], I[728] = I[729], I[729] = I[730], I[730] = I[731], I[731] = I[732], I[732] = I[733], I[733] = I[734], I[734] = I[735], \
|
|
I[736] = I[737], I[737] = I[738], I[738] = I[739], I[739] = I[740], I[740] = I[741], I[741] = I[742], I[742] = I[743], I[743] = I[744], I[744] = I[745], I[745] = I[746], I[746] = I[747], I[747] = I[748], I[748] = I[749], I[749] = I[750], I[750] = I[751], I[751] = I[752], I[752] = I[753], I[753] = I[754], I[754] = I[755], I[755] = I[756], I[756] = I[757], I[757] = I[758], I[758] = I[759], I[759] = I[760], I[760] = I[761], I[761] = I[762], I[762] = I[763], I[763] = I[764], I[764] = I[765], I[765] = I[766], I[766] = I[767], \
|
|
I[768] = I[769], I[769] = I[770], I[770] = I[771], I[771] = I[772], I[772] = I[773], I[773] = I[774], I[774] = I[775], I[775] = I[776], I[776] = I[777], I[777] = I[778], I[778] = I[779], I[779] = I[780], I[780] = I[781], I[781] = I[782], I[782] = I[783], I[783] = I[784], I[784] = I[785], I[785] = I[786], I[786] = I[787], I[787] = I[788], I[788] = I[789], I[789] = I[790], I[790] = I[791], I[791] = I[792], I[792] = I[793], I[793] = I[794], I[794] = I[795], I[795] = I[796], I[796] = I[797], I[797] = I[798], I[798] = I[799], \
|
|
I[800] = I[801], I[801] = I[802], I[802] = I[803], I[803] = I[804], I[804] = I[805], I[805] = I[806], I[806] = I[807], I[807] = I[808], I[808] = I[809], I[809] = I[810], I[810] = I[811], I[811] = I[812], I[812] = I[813], I[813] = I[814], I[814] = I[815], I[815] = I[816], I[816] = I[817], I[817] = I[818], I[818] = I[819], I[819] = I[820], I[820] = I[821], I[821] = I[822], I[822] = I[823], I[823] = I[824], I[824] = I[825], I[825] = I[826], I[826] = I[827], I[827] = I[828], I[828] = I[829], I[829] = I[830], I[830] = I[831], \
|
|
I[832] = I[833], I[833] = I[834], I[834] = I[835], I[835] = I[836], I[836] = I[837], I[837] = I[838], I[838] = I[839], I[839] = I[840], I[840] = I[841], I[841] = I[842], I[842] = I[843], I[843] = I[844], I[844] = I[845], I[845] = I[846], I[846] = I[847], I[847] = I[848], I[848] = I[849], I[849] = I[850], I[850] = I[851], I[851] = I[852], I[852] = I[853], I[853] = I[854], I[854] = I[855], I[855] = I[856], I[856] = I[857], I[857] = I[858], I[858] = I[859], I[859] = I[860], I[860] = I[861], I[861] = I[862], I[862] = I[863], \
|
|
I[864] = I[865], I[865] = I[866], I[866] = I[867], I[867] = I[868], I[868] = I[869], I[869] = I[870], I[870] = I[871], I[871] = I[872], I[872] = I[873], I[873] = I[874], I[874] = I[875], I[875] = I[876], I[876] = I[877], I[877] = I[878], I[878] = I[879], I[879] = I[880], I[880] = I[881], I[881] = I[882], I[882] = I[883], I[883] = I[884], I[884] = I[885], I[885] = I[886], I[886] = I[887], I[887] = I[888], I[888] = I[889], I[889] = I[890], I[890] = I[891], I[891] = I[892], I[892] = I[893], I[893] = I[894], I[894] = I[895], \
|
|
I[896] = I[897], I[897] = I[898], I[898] = I[899], I[899] = I[900], I[900] = I[901], I[901] = I[902], I[902] = I[903], I[903] = I[904], I[904] = I[905], I[905] = I[906], I[906] = I[907], I[907] = I[908], I[908] = I[909], I[909] = I[910], I[910] = I[911], I[911] = I[912], I[912] = I[913], I[913] = I[914], I[914] = I[915], I[915] = I[916], I[916] = I[917], I[917] = I[918], I[918] = I[919], I[919] = I[920], I[920] = I[921], I[921] = I[922], I[922] = I[923], I[923] = I[924], I[924] = I[925], I[925] = I[926], I[926] = I[927], \
|
|
I[928] = I[929], I[929] = I[930], I[930] = I[931], I[931] = I[932], I[932] = I[933], I[933] = I[934], I[934] = I[935], I[935] = I[936], I[936] = I[937], I[937] = I[938], I[938] = I[939], I[939] = I[940], I[940] = I[941], I[941] = I[942], I[942] = I[943], I[943] = I[944], I[944] = I[945], I[945] = I[946], I[946] = I[947], I[947] = I[948], I[948] = I[949], I[949] = I[950], I[950] = I[951], I[951] = I[952], I[952] = I[953], I[953] = I[954], I[954] = I[955], I[955] = I[956], I[956] = I[957], I[957] = I[958], I[958] = I[959], \
|
|
I[960] = I[961], I[961] = I[962], I[962] = I[963], I[963] = I[964], I[964] = I[965], I[965] = I[966], I[966] = I[967], I[967] = I[968], I[968] = I[969], I[969] = I[970], I[970] = I[971], I[971] = I[972], I[972] = I[973], I[973] = I[974], I[974] = I[975], I[975] = I[976], I[976] = I[977], I[977] = I[978], I[978] = I[979], I[979] = I[980], I[980] = I[981], I[981] = I[982], I[982] = I[983], I[983] = I[984], I[984] = I[985], I[985] = I[986], I[986] = I[987], I[987] = I[988], I[988] = I[989], I[989] = I[990], I[990] = I[991], \
|
|
I[992] = I[993], I[993] = I[994], I[994] = I[995], I[995] = I[996], I[996] = I[997], I[997] = I[998], I[998] = I[999], I[999] = I[1000], I[1000] = I[1001], I[1001] = I[1002], I[1002] = I[1003], I[1003] = I[1004], I[1004] = I[1005], I[1005] = I[1006], I[1006] = I[1007], I[1007] = I[1008], I[1008] = I[1009], I[1009] = I[1010], I[1010] = I[1011], I[1011] = I[1012], I[1012] = I[1013], I[1013] = I[1014], I[1014] = I[1015], I[1015] = I[1016], I[1016] = I[1017], I[1017] = I[1018], I[1018] = I[1019], I[1019] = I[1020], I[1020] = I[1021], I[1021] = I[1022], I[1022] = I[1023], \
|
|
_p15##x = _p14##x, _p14##x = _p13##x, _p13##x = _p12##x, _p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x, ++_n13##x, ++_n14##x, ++_n15##x, ++_n16##x)
|
|
|
|
#define cimg_for_in32x32(img,x0,y0,x1,y1,x,y,z,c,I,T) \
|
|
cimg_for_in32((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p15##x = x - 15<0?0:x - 15, \
|
|
_p14##x = x - 14<0?0:x - 14, \
|
|
_p13##x = x - 13<0?0:x - 13, \
|
|
_p12##x = x - 12<0?0:x - 12, \
|
|
_p11##x = x - 11<0?0:x - 11, \
|
|
_p10##x = x - 10<0?0:x - 10, \
|
|
_p9##x = x - 9<0?0:x - 9, \
|
|
_p8##x = x - 8<0?0:x - 8, \
|
|
_p7##x = x - 7<0?0:x - 7, \
|
|
_p6##x = x - 6<0?0:x - 6, \
|
|
_p5##x = x - 5<0?0:x - 5, \
|
|
_p4##x = x - 4<0?0:x - 4, \
|
|
_p3##x = x - 3<0?0:x - 3, \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
|
|
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
|
|
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
|
|
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
|
|
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
|
|
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
|
|
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
|
|
_n9##x = x + 9>=(img).width()?(img).width() - 1:x + 9, \
|
|
_n10##x = x + 10>=(img).width()?(img).width() - 1:x + 10, \
|
|
_n11##x = x + 11>=(img).width()?(img).width() - 1:x + 11, \
|
|
_n12##x = x + 12>=(img).width()?(img).width() - 1:x + 12, \
|
|
_n13##x = x + 13>=(img).width()?(img).width() - 1:x + 13, \
|
|
_n14##x = x + 14>=(img).width()?(img).width() - 1:x + 14, \
|
|
_n15##x = x + 15>=(img).width()?(img).width() - 1:x + 15, \
|
|
_n16##x = (int)( \
|
|
(I[0] = (T)(img)(_p15##x,_p15##y,z,c)), \
|
|
(I[32] = (T)(img)(_p15##x,_p14##y,z,c)), \
|
|
(I[64] = (T)(img)(_p15##x,_p13##y,z,c)), \
|
|
(I[96] = (T)(img)(_p15##x,_p12##y,z,c)), \
|
|
(I[128] = (T)(img)(_p15##x,_p11##y,z,c)), \
|
|
(I[160] = (T)(img)(_p15##x,_p10##y,z,c)), \
|
|
(I[192] = (T)(img)(_p15##x,_p9##y,z,c)), \
|
|
(I[224] = (T)(img)(_p15##x,_p8##y,z,c)), \
|
|
(I[256] = (T)(img)(_p15##x,_p7##y,z,c)), \
|
|
(I[288] = (T)(img)(_p15##x,_p6##y,z,c)), \
|
|
(I[320] = (T)(img)(_p15##x,_p5##y,z,c)), \
|
|
(I[352] = (T)(img)(_p15##x,_p4##y,z,c)), \
|
|
(I[384] = (T)(img)(_p15##x,_p3##y,z,c)), \
|
|
(I[416] = (T)(img)(_p15##x,_p2##y,z,c)), \
|
|
(I[448] = (T)(img)(_p15##x,_p1##y,z,c)), \
|
|
(I[480] = (T)(img)(_p15##x,y,z,c)), \
|
|
(I[512] = (T)(img)(_p15##x,_n1##y,z,c)), \
|
|
(I[544] = (T)(img)(_p15##x,_n2##y,z,c)), \
|
|
(I[576] = (T)(img)(_p15##x,_n3##y,z,c)), \
|
|
(I[608] = (T)(img)(_p15##x,_n4##y,z,c)), \
|
|
(I[640] = (T)(img)(_p15##x,_n5##y,z,c)), \
|
|
(I[672] = (T)(img)(_p15##x,_n6##y,z,c)), \
|
|
(I[704] = (T)(img)(_p15##x,_n7##y,z,c)), \
|
|
(I[736] = (T)(img)(_p15##x,_n8##y,z,c)), \
|
|
(I[768] = (T)(img)(_p15##x,_n9##y,z,c)), \
|
|
(I[800] = (T)(img)(_p15##x,_n10##y,z,c)), \
|
|
(I[832] = (T)(img)(_p15##x,_n11##y,z,c)), \
|
|
(I[864] = (T)(img)(_p15##x,_n12##y,z,c)), \
|
|
(I[896] = (T)(img)(_p15##x,_n13##y,z,c)), \
|
|
(I[928] = (T)(img)(_p15##x,_n14##y,z,c)), \
|
|
(I[960] = (T)(img)(_p15##x,_n15##y,z,c)), \
|
|
(I[992] = (T)(img)(_p15##x,_n16##y,z,c)), \
|
|
(I[1] = (T)(img)(_p14##x,_p15##y,z,c)), \
|
|
(I[33] = (T)(img)(_p14##x,_p14##y,z,c)), \
|
|
(I[65] = (T)(img)(_p14##x,_p13##y,z,c)), \
|
|
(I[97] = (T)(img)(_p14##x,_p12##y,z,c)), \
|
|
(I[129] = (T)(img)(_p14##x,_p11##y,z,c)), \
|
|
(I[161] = (T)(img)(_p14##x,_p10##y,z,c)), \
|
|
(I[193] = (T)(img)(_p14##x,_p9##y,z,c)), \
|
|
(I[225] = (T)(img)(_p14##x,_p8##y,z,c)), \
|
|
(I[257] = (T)(img)(_p14##x,_p7##y,z,c)), \
|
|
(I[289] = (T)(img)(_p14##x,_p6##y,z,c)), \
|
|
(I[321] = (T)(img)(_p14##x,_p5##y,z,c)), \
|
|
(I[353] = (T)(img)(_p14##x,_p4##y,z,c)), \
|
|
(I[385] = (T)(img)(_p14##x,_p3##y,z,c)), \
|
|
(I[417] = (T)(img)(_p14##x,_p2##y,z,c)), \
|
|
(I[449] = (T)(img)(_p14##x,_p1##y,z,c)), \
|
|
(I[481] = (T)(img)(_p14##x,y,z,c)), \
|
|
(I[513] = (T)(img)(_p14##x,_n1##y,z,c)), \
|
|
(I[545] = (T)(img)(_p14##x,_n2##y,z,c)), \
|
|
(I[577] = (T)(img)(_p14##x,_n3##y,z,c)), \
|
|
(I[609] = (T)(img)(_p14##x,_n4##y,z,c)), \
|
|
(I[641] = (T)(img)(_p14##x,_n5##y,z,c)), \
|
|
(I[673] = (T)(img)(_p14##x,_n6##y,z,c)), \
|
|
(I[705] = (T)(img)(_p14##x,_n7##y,z,c)), \
|
|
(I[737] = (T)(img)(_p14##x,_n8##y,z,c)), \
|
|
(I[769] = (T)(img)(_p14##x,_n9##y,z,c)), \
|
|
(I[801] = (T)(img)(_p14##x,_n10##y,z,c)), \
|
|
(I[833] = (T)(img)(_p14##x,_n11##y,z,c)), \
|
|
(I[865] = (T)(img)(_p14##x,_n12##y,z,c)), \
|
|
(I[897] = (T)(img)(_p14##x,_n13##y,z,c)), \
|
|
(I[929] = (T)(img)(_p14##x,_n14##y,z,c)), \
|
|
(I[961] = (T)(img)(_p14##x,_n15##y,z,c)), \
|
|
(I[993] = (T)(img)(_p14##x,_n16##y,z,c)), \
|
|
(I[2] = (T)(img)(_p13##x,_p15##y,z,c)), \
|
|
(I[34] = (T)(img)(_p13##x,_p14##y,z,c)), \
|
|
(I[66] = (T)(img)(_p13##x,_p13##y,z,c)), \
|
|
(I[98] = (T)(img)(_p13##x,_p12##y,z,c)), \
|
|
(I[130] = (T)(img)(_p13##x,_p11##y,z,c)), \
|
|
(I[162] = (T)(img)(_p13##x,_p10##y,z,c)), \
|
|
(I[194] = (T)(img)(_p13##x,_p9##y,z,c)), \
|
|
(I[226] = (T)(img)(_p13##x,_p8##y,z,c)), \
|
|
(I[258] = (T)(img)(_p13##x,_p7##y,z,c)), \
|
|
(I[290] = (T)(img)(_p13##x,_p6##y,z,c)), \
|
|
(I[322] = (T)(img)(_p13##x,_p5##y,z,c)), \
|
|
(I[354] = (T)(img)(_p13##x,_p4##y,z,c)), \
|
|
(I[386] = (T)(img)(_p13##x,_p3##y,z,c)), \
|
|
(I[418] = (T)(img)(_p13##x,_p2##y,z,c)), \
|
|
(I[450] = (T)(img)(_p13##x,_p1##y,z,c)), \
|
|
(I[482] = (T)(img)(_p13##x,y,z,c)), \
|
|
(I[514] = (T)(img)(_p13##x,_n1##y,z,c)), \
|
|
(I[546] = (T)(img)(_p13##x,_n2##y,z,c)), \
|
|
(I[578] = (T)(img)(_p13##x,_n3##y,z,c)), \
|
|
(I[610] = (T)(img)(_p13##x,_n4##y,z,c)), \
|
|
(I[642] = (T)(img)(_p13##x,_n5##y,z,c)), \
|
|
(I[674] = (T)(img)(_p13##x,_n6##y,z,c)), \
|
|
(I[706] = (T)(img)(_p13##x,_n7##y,z,c)), \
|
|
(I[738] = (T)(img)(_p13##x,_n8##y,z,c)), \
|
|
(I[770] = (T)(img)(_p13##x,_n9##y,z,c)), \
|
|
(I[802] = (T)(img)(_p13##x,_n10##y,z,c)), \
|
|
(I[834] = (T)(img)(_p13##x,_n11##y,z,c)), \
|
|
(I[866] = (T)(img)(_p13##x,_n12##y,z,c)), \
|
|
(I[898] = (T)(img)(_p13##x,_n13##y,z,c)), \
|
|
(I[930] = (T)(img)(_p13##x,_n14##y,z,c)), \
|
|
(I[962] = (T)(img)(_p13##x,_n15##y,z,c)), \
|
|
(I[994] = (T)(img)(_p13##x,_n16##y,z,c)), \
|
|
(I[3] = (T)(img)(_p12##x,_p15##y,z,c)), \
|
|
(I[35] = (T)(img)(_p12##x,_p14##y,z,c)), \
|
|
(I[67] = (T)(img)(_p12##x,_p13##y,z,c)), \
|
|
(I[99] = (T)(img)(_p12##x,_p12##y,z,c)), \
|
|
(I[131] = (T)(img)(_p12##x,_p11##y,z,c)), \
|
|
(I[163] = (T)(img)(_p12##x,_p10##y,z,c)), \
|
|
(I[195] = (T)(img)(_p12##x,_p9##y,z,c)), \
|
|
(I[227] = (T)(img)(_p12##x,_p8##y,z,c)), \
|
|
(I[259] = (T)(img)(_p12##x,_p7##y,z,c)), \
|
|
(I[291] = (T)(img)(_p12##x,_p6##y,z,c)), \
|
|
(I[323] = (T)(img)(_p12##x,_p5##y,z,c)), \
|
|
(I[355] = (T)(img)(_p12##x,_p4##y,z,c)), \
|
|
(I[387] = (T)(img)(_p12##x,_p3##y,z,c)), \
|
|
(I[419] = (T)(img)(_p12##x,_p2##y,z,c)), \
|
|
(I[451] = (T)(img)(_p12##x,_p1##y,z,c)), \
|
|
(I[483] = (T)(img)(_p12##x,y,z,c)), \
|
|
(I[515] = (T)(img)(_p12##x,_n1##y,z,c)), \
|
|
(I[547] = (T)(img)(_p12##x,_n2##y,z,c)), \
|
|
(I[579] = (T)(img)(_p12##x,_n3##y,z,c)), \
|
|
(I[611] = (T)(img)(_p12##x,_n4##y,z,c)), \
|
|
(I[643] = (T)(img)(_p12##x,_n5##y,z,c)), \
|
|
(I[675] = (T)(img)(_p12##x,_n6##y,z,c)), \
|
|
(I[707] = (T)(img)(_p12##x,_n7##y,z,c)), \
|
|
(I[739] = (T)(img)(_p12##x,_n8##y,z,c)), \
|
|
(I[771] = (T)(img)(_p12##x,_n9##y,z,c)), \
|
|
(I[803] = (T)(img)(_p12##x,_n10##y,z,c)), \
|
|
(I[835] = (T)(img)(_p12##x,_n11##y,z,c)), \
|
|
(I[867] = (T)(img)(_p12##x,_n12##y,z,c)), \
|
|
(I[899] = (T)(img)(_p12##x,_n13##y,z,c)), \
|
|
(I[931] = (T)(img)(_p12##x,_n14##y,z,c)), \
|
|
(I[963] = (T)(img)(_p12##x,_n15##y,z,c)), \
|
|
(I[995] = (T)(img)(_p12##x,_n16##y,z,c)), \
|
|
(I[4] = (T)(img)(_p11##x,_p15##y,z,c)), \
|
|
(I[36] = (T)(img)(_p11##x,_p14##y,z,c)), \
|
|
(I[68] = (T)(img)(_p11##x,_p13##y,z,c)), \
|
|
(I[100] = (T)(img)(_p11##x,_p12##y,z,c)), \
|
|
(I[132] = (T)(img)(_p11##x,_p11##y,z,c)), \
|
|
(I[164] = (T)(img)(_p11##x,_p10##y,z,c)), \
|
|
(I[196] = (T)(img)(_p11##x,_p9##y,z,c)), \
|
|
(I[228] = (T)(img)(_p11##x,_p8##y,z,c)), \
|
|
(I[260] = (T)(img)(_p11##x,_p7##y,z,c)), \
|
|
(I[292] = (T)(img)(_p11##x,_p6##y,z,c)), \
|
|
(I[324] = (T)(img)(_p11##x,_p5##y,z,c)), \
|
|
(I[356] = (T)(img)(_p11##x,_p4##y,z,c)), \
|
|
(I[388] = (T)(img)(_p11##x,_p3##y,z,c)), \
|
|
(I[420] = (T)(img)(_p11##x,_p2##y,z,c)), \
|
|
(I[452] = (T)(img)(_p11##x,_p1##y,z,c)), \
|
|
(I[484] = (T)(img)(_p11##x,y,z,c)), \
|
|
(I[516] = (T)(img)(_p11##x,_n1##y,z,c)), \
|
|
(I[548] = (T)(img)(_p11##x,_n2##y,z,c)), \
|
|
(I[580] = (T)(img)(_p11##x,_n3##y,z,c)), \
|
|
(I[612] = (T)(img)(_p11##x,_n4##y,z,c)), \
|
|
(I[644] = (T)(img)(_p11##x,_n5##y,z,c)), \
|
|
(I[676] = (T)(img)(_p11##x,_n6##y,z,c)), \
|
|
(I[708] = (T)(img)(_p11##x,_n7##y,z,c)), \
|
|
(I[740] = (T)(img)(_p11##x,_n8##y,z,c)), \
|
|
(I[772] = (T)(img)(_p11##x,_n9##y,z,c)), \
|
|
(I[804] = (T)(img)(_p11##x,_n10##y,z,c)), \
|
|
(I[836] = (T)(img)(_p11##x,_n11##y,z,c)), \
|
|
(I[868] = (T)(img)(_p11##x,_n12##y,z,c)), \
|
|
(I[900] = (T)(img)(_p11##x,_n13##y,z,c)), \
|
|
(I[932] = (T)(img)(_p11##x,_n14##y,z,c)), \
|
|
(I[964] = (T)(img)(_p11##x,_n15##y,z,c)), \
|
|
(I[996] = (T)(img)(_p11##x,_n16##y,z,c)), \
|
|
(I[5] = (T)(img)(_p10##x,_p15##y,z,c)), \
|
|
(I[37] = (T)(img)(_p10##x,_p14##y,z,c)), \
|
|
(I[69] = (T)(img)(_p10##x,_p13##y,z,c)), \
|
|
(I[101] = (T)(img)(_p10##x,_p12##y,z,c)), \
|
|
(I[133] = (T)(img)(_p10##x,_p11##y,z,c)), \
|
|
(I[165] = (T)(img)(_p10##x,_p10##y,z,c)), \
|
|
(I[197] = (T)(img)(_p10##x,_p9##y,z,c)), \
|
|
(I[229] = (T)(img)(_p10##x,_p8##y,z,c)), \
|
|
(I[261] = (T)(img)(_p10##x,_p7##y,z,c)), \
|
|
(I[293] = (T)(img)(_p10##x,_p6##y,z,c)), \
|
|
(I[325] = (T)(img)(_p10##x,_p5##y,z,c)), \
|
|
(I[357] = (T)(img)(_p10##x,_p4##y,z,c)), \
|
|
(I[389] = (T)(img)(_p10##x,_p3##y,z,c)), \
|
|
(I[421] = (T)(img)(_p10##x,_p2##y,z,c)), \
|
|
(I[453] = (T)(img)(_p10##x,_p1##y,z,c)), \
|
|
(I[485] = (T)(img)(_p10##x,y,z,c)), \
|
|
(I[517] = (T)(img)(_p10##x,_n1##y,z,c)), \
|
|
(I[549] = (T)(img)(_p10##x,_n2##y,z,c)), \
|
|
(I[581] = (T)(img)(_p10##x,_n3##y,z,c)), \
|
|
(I[613] = (T)(img)(_p10##x,_n4##y,z,c)), \
|
|
(I[645] = (T)(img)(_p10##x,_n5##y,z,c)), \
|
|
(I[677] = (T)(img)(_p10##x,_n6##y,z,c)), \
|
|
(I[709] = (T)(img)(_p10##x,_n7##y,z,c)), \
|
|
(I[741] = (T)(img)(_p10##x,_n8##y,z,c)), \
|
|
(I[773] = (T)(img)(_p10##x,_n9##y,z,c)), \
|
|
(I[805] = (T)(img)(_p10##x,_n10##y,z,c)), \
|
|
(I[837] = (T)(img)(_p10##x,_n11##y,z,c)), \
|
|
(I[869] = (T)(img)(_p10##x,_n12##y,z,c)), \
|
|
(I[901] = (T)(img)(_p10##x,_n13##y,z,c)), \
|
|
(I[933] = (T)(img)(_p10##x,_n14##y,z,c)), \
|
|
(I[965] = (T)(img)(_p10##x,_n15##y,z,c)), \
|
|
(I[997] = (T)(img)(_p10##x,_n16##y,z,c)), \
|
|
(I[6] = (T)(img)(_p9##x,_p15##y,z,c)), \
|
|
(I[38] = (T)(img)(_p9##x,_p14##y,z,c)), \
|
|
(I[70] = (T)(img)(_p9##x,_p13##y,z,c)), \
|
|
(I[102] = (T)(img)(_p9##x,_p12##y,z,c)), \
|
|
(I[134] = (T)(img)(_p9##x,_p11##y,z,c)), \
|
|
(I[166] = (T)(img)(_p9##x,_p10##y,z,c)), \
|
|
(I[198] = (T)(img)(_p9##x,_p9##y,z,c)), \
|
|
(I[230] = (T)(img)(_p9##x,_p8##y,z,c)), \
|
|
(I[262] = (T)(img)(_p9##x,_p7##y,z,c)), \
|
|
(I[294] = (T)(img)(_p9##x,_p6##y,z,c)), \
|
|
(I[326] = (T)(img)(_p9##x,_p5##y,z,c)), \
|
|
(I[358] = (T)(img)(_p9##x,_p4##y,z,c)), \
|
|
(I[390] = (T)(img)(_p9##x,_p3##y,z,c)), \
|
|
(I[422] = (T)(img)(_p9##x,_p2##y,z,c)), \
|
|
(I[454] = (T)(img)(_p9##x,_p1##y,z,c)), \
|
|
(I[486] = (T)(img)(_p9##x,y,z,c)), \
|
|
(I[518] = (T)(img)(_p9##x,_n1##y,z,c)), \
|
|
(I[550] = (T)(img)(_p9##x,_n2##y,z,c)), \
|
|
(I[582] = (T)(img)(_p9##x,_n3##y,z,c)), \
|
|
(I[614] = (T)(img)(_p9##x,_n4##y,z,c)), \
|
|
(I[646] = (T)(img)(_p9##x,_n5##y,z,c)), \
|
|
(I[678] = (T)(img)(_p9##x,_n6##y,z,c)), \
|
|
(I[710] = (T)(img)(_p9##x,_n7##y,z,c)), \
|
|
(I[742] = (T)(img)(_p9##x,_n8##y,z,c)), \
|
|
(I[774] = (T)(img)(_p9##x,_n9##y,z,c)), \
|
|
(I[806] = (T)(img)(_p9##x,_n10##y,z,c)), \
|
|
(I[838] = (T)(img)(_p9##x,_n11##y,z,c)), \
|
|
(I[870] = (T)(img)(_p9##x,_n12##y,z,c)), \
|
|
(I[902] = (T)(img)(_p9##x,_n13##y,z,c)), \
|
|
(I[934] = (T)(img)(_p9##x,_n14##y,z,c)), \
|
|
(I[966] = (T)(img)(_p9##x,_n15##y,z,c)), \
|
|
(I[998] = (T)(img)(_p9##x,_n16##y,z,c)), \
|
|
(I[7] = (T)(img)(_p8##x,_p15##y,z,c)), \
|
|
(I[39] = (T)(img)(_p8##x,_p14##y,z,c)), \
|
|
(I[71] = (T)(img)(_p8##x,_p13##y,z,c)), \
|
|
(I[103] = (T)(img)(_p8##x,_p12##y,z,c)), \
|
|
(I[135] = (T)(img)(_p8##x,_p11##y,z,c)), \
|
|
(I[167] = (T)(img)(_p8##x,_p10##y,z,c)), \
|
|
(I[199] = (T)(img)(_p8##x,_p9##y,z,c)), \
|
|
(I[231] = (T)(img)(_p8##x,_p8##y,z,c)), \
|
|
(I[263] = (T)(img)(_p8##x,_p7##y,z,c)), \
|
|
(I[295] = (T)(img)(_p8##x,_p6##y,z,c)), \
|
|
(I[327] = (T)(img)(_p8##x,_p5##y,z,c)), \
|
|
(I[359] = (T)(img)(_p8##x,_p4##y,z,c)), \
|
|
(I[391] = (T)(img)(_p8##x,_p3##y,z,c)), \
|
|
(I[423] = (T)(img)(_p8##x,_p2##y,z,c)), \
|
|
(I[455] = (T)(img)(_p8##x,_p1##y,z,c)), \
|
|
(I[487] = (T)(img)(_p8##x,y,z,c)), \
|
|
(I[519] = (T)(img)(_p8##x,_n1##y,z,c)), \
|
|
(I[551] = (T)(img)(_p8##x,_n2##y,z,c)), \
|
|
(I[583] = (T)(img)(_p8##x,_n3##y,z,c)), \
|
|
(I[615] = (T)(img)(_p8##x,_n4##y,z,c)), \
|
|
(I[647] = (T)(img)(_p8##x,_n5##y,z,c)), \
|
|
(I[679] = (T)(img)(_p8##x,_n6##y,z,c)), \
|
|
(I[711] = (T)(img)(_p8##x,_n7##y,z,c)), \
|
|
(I[743] = (T)(img)(_p8##x,_n8##y,z,c)), \
|
|
(I[775] = (T)(img)(_p8##x,_n9##y,z,c)), \
|
|
(I[807] = (T)(img)(_p8##x,_n10##y,z,c)), \
|
|
(I[839] = (T)(img)(_p8##x,_n11##y,z,c)), \
|
|
(I[871] = (T)(img)(_p8##x,_n12##y,z,c)), \
|
|
(I[903] = (T)(img)(_p8##x,_n13##y,z,c)), \
|
|
(I[935] = (T)(img)(_p8##x,_n14##y,z,c)), \
|
|
(I[967] = (T)(img)(_p8##x,_n15##y,z,c)), \
|
|
(I[999] = (T)(img)(_p8##x,_n16##y,z,c)), \
|
|
(I[8] = (T)(img)(_p7##x,_p15##y,z,c)), \
|
|
(I[40] = (T)(img)(_p7##x,_p14##y,z,c)), \
|
|
(I[72] = (T)(img)(_p7##x,_p13##y,z,c)), \
|
|
(I[104] = (T)(img)(_p7##x,_p12##y,z,c)), \
|
|
(I[136] = (T)(img)(_p7##x,_p11##y,z,c)), \
|
|
(I[168] = (T)(img)(_p7##x,_p10##y,z,c)), \
|
|
(I[200] = (T)(img)(_p7##x,_p9##y,z,c)), \
|
|
(I[232] = (T)(img)(_p7##x,_p8##y,z,c)), \
|
|
(I[264] = (T)(img)(_p7##x,_p7##y,z,c)), \
|
|
(I[296] = (T)(img)(_p7##x,_p6##y,z,c)), \
|
|
(I[328] = (T)(img)(_p7##x,_p5##y,z,c)), \
|
|
(I[360] = (T)(img)(_p7##x,_p4##y,z,c)), \
|
|
(I[392] = (T)(img)(_p7##x,_p3##y,z,c)), \
|
|
(I[424] = (T)(img)(_p7##x,_p2##y,z,c)), \
|
|
(I[456] = (T)(img)(_p7##x,_p1##y,z,c)), \
|
|
(I[488] = (T)(img)(_p7##x,y,z,c)), \
|
|
(I[520] = (T)(img)(_p7##x,_n1##y,z,c)), \
|
|
(I[552] = (T)(img)(_p7##x,_n2##y,z,c)), \
|
|
(I[584] = (T)(img)(_p7##x,_n3##y,z,c)), \
|
|
(I[616] = (T)(img)(_p7##x,_n4##y,z,c)), \
|
|
(I[648] = (T)(img)(_p7##x,_n5##y,z,c)), \
|
|
(I[680] = (T)(img)(_p7##x,_n6##y,z,c)), \
|
|
(I[712] = (T)(img)(_p7##x,_n7##y,z,c)), \
|
|
(I[744] = (T)(img)(_p7##x,_n8##y,z,c)), \
|
|
(I[776] = (T)(img)(_p7##x,_n9##y,z,c)), \
|
|
(I[808] = (T)(img)(_p7##x,_n10##y,z,c)), \
|
|
(I[840] = (T)(img)(_p7##x,_n11##y,z,c)), \
|
|
(I[872] = (T)(img)(_p7##x,_n12##y,z,c)), \
|
|
(I[904] = (T)(img)(_p7##x,_n13##y,z,c)), \
|
|
(I[936] = (T)(img)(_p7##x,_n14##y,z,c)), \
|
|
(I[968] = (T)(img)(_p7##x,_n15##y,z,c)), \
|
|
(I[1000] = (T)(img)(_p7##x,_n16##y,z,c)), \
|
|
(I[9] = (T)(img)(_p6##x,_p15##y,z,c)), \
|
|
(I[41] = (T)(img)(_p6##x,_p14##y,z,c)), \
|
|
(I[73] = (T)(img)(_p6##x,_p13##y,z,c)), \
|
|
(I[105] = (T)(img)(_p6##x,_p12##y,z,c)), \
|
|
(I[137] = (T)(img)(_p6##x,_p11##y,z,c)), \
|
|
(I[169] = (T)(img)(_p6##x,_p10##y,z,c)), \
|
|
(I[201] = (T)(img)(_p6##x,_p9##y,z,c)), \
|
|
(I[233] = (T)(img)(_p6##x,_p8##y,z,c)), \
|
|
(I[265] = (T)(img)(_p6##x,_p7##y,z,c)), \
|
|
(I[297] = (T)(img)(_p6##x,_p6##y,z,c)), \
|
|
(I[329] = (T)(img)(_p6##x,_p5##y,z,c)), \
|
|
(I[361] = (T)(img)(_p6##x,_p4##y,z,c)), \
|
|
(I[393] = (T)(img)(_p6##x,_p3##y,z,c)), \
|
|
(I[425] = (T)(img)(_p6##x,_p2##y,z,c)), \
|
|
(I[457] = (T)(img)(_p6##x,_p1##y,z,c)), \
|
|
(I[489] = (T)(img)(_p6##x,y,z,c)), \
|
|
(I[521] = (T)(img)(_p6##x,_n1##y,z,c)), \
|
|
(I[553] = (T)(img)(_p6##x,_n2##y,z,c)), \
|
|
(I[585] = (T)(img)(_p6##x,_n3##y,z,c)), \
|
|
(I[617] = (T)(img)(_p6##x,_n4##y,z,c)), \
|
|
(I[649] = (T)(img)(_p6##x,_n5##y,z,c)), \
|
|
(I[681] = (T)(img)(_p6##x,_n6##y,z,c)), \
|
|
(I[713] = (T)(img)(_p6##x,_n7##y,z,c)), \
|
|
(I[745] = (T)(img)(_p6##x,_n8##y,z,c)), \
|
|
(I[777] = (T)(img)(_p6##x,_n9##y,z,c)), \
|
|
(I[809] = (T)(img)(_p6##x,_n10##y,z,c)), \
|
|
(I[841] = (T)(img)(_p6##x,_n11##y,z,c)), \
|
|
(I[873] = (T)(img)(_p6##x,_n12##y,z,c)), \
|
|
(I[905] = (T)(img)(_p6##x,_n13##y,z,c)), \
|
|
(I[937] = (T)(img)(_p6##x,_n14##y,z,c)), \
|
|
(I[969] = (T)(img)(_p6##x,_n15##y,z,c)), \
|
|
(I[1001] = (T)(img)(_p6##x,_n16##y,z,c)), \
|
|
(I[10] = (T)(img)(_p5##x,_p15##y,z,c)), \
|
|
(I[42] = (T)(img)(_p5##x,_p14##y,z,c)), \
|
|
(I[74] = (T)(img)(_p5##x,_p13##y,z,c)), \
|
|
(I[106] = (T)(img)(_p5##x,_p12##y,z,c)), \
|
|
(I[138] = (T)(img)(_p5##x,_p11##y,z,c)), \
|
|
(I[170] = (T)(img)(_p5##x,_p10##y,z,c)), \
|
|
(I[202] = (T)(img)(_p5##x,_p9##y,z,c)), \
|
|
(I[234] = (T)(img)(_p5##x,_p8##y,z,c)), \
|
|
(I[266] = (T)(img)(_p5##x,_p7##y,z,c)), \
|
|
(I[298] = (T)(img)(_p5##x,_p6##y,z,c)), \
|
|
(I[330] = (T)(img)(_p5##x,_p5##y,z,c)), \
|
|
(I[362] = (T)(img)(_p5##x,_p4##y,z,c)), \
|
|
(I[394] = (T)(img)(_p5##x,_p3##y,z,c)), \
|
|
(I[426] = (T)(img)(_p5##x,_p2##y,z,c)), \
|
|
(I[458] = (T)(img)(_p5##x,_p1##y,z,c)), \
|
|
(I[490] = (T)(img)(_p5##x,y,z,c)), \
|
|
(I[522] = (T)(img)(_p5##x,_n1##y,z,c)), \
|
|
(I[554] = (T)(img)(_p5##x,_n2##y,z,c)), \
|
|
(I[586] = (T)(img)(_p5##x,_n3##y,z,c)), \
|
|
(I[618] = (T)(img)(_p5##x,_n4##y,z,c)), \
|
|
(I[650] = (T)(img)(_p5##x,_n5##y,z,c)), \
|
|
(I[682] = (T)(img)(_p5##x,_n6##y,z,c)), \
|
|
(I[714] = (T)(img)(_p5##x,_n7##y,z,c)), \
|
|
(I[746] = (T)(img)(_p5##x,_n8##y,z,c)), \
|
|
(I[778] = (T)(img)(_p5##x,_n9##y,z,c)), \
|
|
(I[810] = (T)(img)(_p5##x,_n10##y,z,c)), \
|
|
(I[842] = (T)(img)(_p5##x,_n11##y,z,c)), \
|
|
(I[874] = (T)(img)(_p5##x,_n12##y,z,c)), \
|
|
(I[906] = (T)(img)(_p5##x,_n13##y,z,c)), \
|
|
(I[938] = (T)(img)(_p5##x,_n14##y,z,c)), \
|
|
(I[970] = (T)(img)(_p5##x,_n15##y,z,c)), \
|
|
(I[1002] = (T)(img)(_p5##x,_n16##y,z,c)), \
|
|
(I[11] = (T)(img)(_p4##x,_p15##y,z,c)), \
|
|
(I[43] = (T)(img)(_p4##x,_p14##y,z,c)), \
|
|
(I[75] = (T)(img)(_p4##x,_p13##y,z,c)), \
|
|
(I[107] = (T)(img)(_p4##x,_p12##y,z,c)), \
|
|
(I[139] = (T)(img)(_p4##x,_p11##y,z,c)), \
|
|
(I[171] = (T)(img)(_p4##x,_p10##y,z,c)), \
|
|
(I[203] = (T)(img)(_p4##x,_p9##y,z,c)), \
|
|
(I[235] = (T)(img)(_p4##x,_p8##y,z,c)), \
|
|
(I[267] = (T)(img)(_p4##x,_p7##y,z,c)), \
|
|
(I[299] = (T)(img)(_p4##x,_p6##y,z,c)), \
|
|
(I[331] = (T)(img)(_p4##x,_p5##y,z,c)), \
|
|
(I[363] = (T)(img)(_p4##x,_p4##y,z,c)), \
|
|
(I[395] = (T)(img)(_p4##x,_p3##y,z,c)), \
|
|
(I[427] = (T)(img)(_p4##x,_p2##y,z,c)), \
|
|
(I[459] = (T)(img)(_p4##x,_p1##y,z,c)), \
|
|
(I[491] = (T)(img)(_p4##x,y,z,c)), \
|
|
(I[523] = (T)(img)(_p4##x,_n1##y,z,c)), \
|
|
(I[555] = (T)(img)(_p4##x,_n2##y,z,c)), \
|
|
(I[587] = (T)(img)(_p4##x,_n3##y,z,c)), \
|
|
(I[619] = (T)(img)(_p4##x,_n4##y,z,c)), \
|
|
(I[651] = (T)(img)(_p4##x,_n5##y,z,c)), \
|
|
(I[683] = (T)(img)(_p4##x,_n6##y,z,c)), \
|
|
(I[715] = (T)(img)(_p4##x,_n7##y,z,c)), \
|
|
(I[747] = (T)(img)(_p4##x,_n8##y,z,c)), \
|
|
(I[779] = (T)(img)(_p4##x,_n9##y,z,c)), \
|
|
(I[811] = (T)(img)(_p4##x,_n10##y,z,c)), \
|
|
(I[843] = (T)(img)(_p4##x,_n11##y,z,c)), \
|
|
(I[875] = (T)(img)(_p4##x,_n12##y,z,c)), \
|
|
(I[907] = (T)(img)(_p4##x,_n13##y,z,c)), \
|
|
(I[939] = (T)(img)(_p4##x,_n14##y,z,c)), \
|
|
(I[971] = (T)(img)(_p4##x,_n15##y,z,c)), \
|
|
(I[1003] = (T)(img)(_p4##x,_n16##y,z,c)), \
|
|
(I[12] = (T)(img)(_p3##x,_p15##y,z,c)), \
|
|
(I[44] = (T)(img)(_p3##x,_p14##y,z,c)), \
|
|
(I[76] = (T)(img)(_p3##x,_p13##y,z,c)), \
|
|
(I[108] = (T)(img)(_p3##x,_p12##y,z,c)), \
|
|
(I[140] = (T)(img)(_p3##x,_p11##y,z,c)), \
|
|
(I[172] = (T)(img)(_p3##x,_p10##y,z,c)), \
|
|
(I[204] = (T)(img)(_p3##x,_p9##y,z,c)), \
|
|
(I[236] = (T)(img)(_p3##x,_p8##y,z,c)), \
|
|
(I[268] = (T)(img)(_p3##x,_p7##y,z,c)), \
|
|
(I[300] = (T)(img)(_p3##x,_p6##y,z,c)), \
|
|
(I[332] = (T)(img)(_p3##x,_p5##y,z,c)), \
|
|
(I[364] = (T)(img)(_p3##x,_p4##y,z,c)), \
|
|
(I[396] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[428] = (T)(img)(_p3##x,_p2##y,z,c)), \
|
|
(I[460] = (T)(img)(_p3##x,_p1##y,z,c)), \
|
|
(I[492] = (T)(img)(_p3##x,y,z,c)), \
|
|
(I[524] = (T)(img)(_p3##x,_n1##y,z,c)), \
|
|
(I[556] = (T)(img)(_p3##x,_n2##y,z,c)), \
|
|
(I[588] = (T)(img)(_p3##x,_n3##y,z,c)), \
|
|
(I[620] = (T)(img)(_p3##x,_n4##y,z,c)), \
|
|
(I[652] = (T)(img)(_p3##x,_n5##y,z,c)), \
|
|
(I[684] = (T)(img)(_p3##x,_n6##y,z,c)), \
|
|
(I[716] = (T)(img)(_p3##x,_n7##y,z,c)), \
|
|
(I[748] = (T)(img)(_p3##x,_n8##y,z,c)), \
|
|
(I[780] = (T)(img)(_p3##x,_n9##y,z,c)), \
|
|
(I[812] = (T)(img)(_p3##x,_n10##y,z,c)), \
|
|
(I[844] = (T)(img)(_p3##x,_n11##y,z,c)), \
|
|
(I[876] = (T)(img)(_p3##x,_n12##y,z,c)), \
|
|
(I[908] = (T)(img)(_p3##x,_n13##y,z,c)), \
|
|
(I[940] = (T)(img)(_p3##x,_n14##y,z,c)), \
|
|
(I[972] = (T)(img)(_p3##x,_n15##y,z,c)), \
|
|
(I[1004] = (T)(img)(_p3##x,_n16##y,z,c)), \
|
|
(I[13] = (T)(img)(_p2##x,_p15##y,z,c)), \
|
|
(I[45] = (T)(img)(_p2##x,_p14##y,z,c)), \
|
|
(I[77] = (T)(img)(_p2##x,_p13##y,z,c)), \
|
|
(I[109] = (T)(img)(_p2##x,_p12##y,z,c)), \
|
|
(I[141] = (T)(img)(_p2##x,_p11##y,z,c)), \
|
|
(I[173] = (T)(img)(_p2##x,_p10##y,z,c)), \
|
|
(I[205] = (T)(img)(_p2##x,_p9##y,z,c)), \
|
|
(I[237] = (T)(img)(_p2##x,_p8##y,z,c)), \
|
|
(I[269] = (T)(img)(_p2##x,_p7##y,z,c)), \
|
|
(I[301] = (T)(img)(_p2##x,_p6##y,z,c)), \
|
|
(I[333] = (T)(img)(_p2##x,_p5##y,z,c)), \
|
|
(I[365] = (T)(img)(_p2##x,_p4##y,z,c)), \
|
|
(I[397] = (T)(img)(_p2##x,_p3##y,z,c)), \
|
|
(I[429] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[461] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[493] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[525] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[557] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[589] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[621] = (T)(img)(_p2##x,_n4##y,z,c)), \
|
|
(I[653] = (T)(img)(_p2##x,_n5##y,z,c)), \
|
|
(I[685] = (T)(img)(_p2##x,_n6##y,z,c)), \
|
|
(I[717] = (T)(img)(_p2##x,_n7##y,z,c)), \
|
|
(I[749] = (T)(img)(_p2##x,_n8##y,z,c)), \
|
|
(I[781] = (T)(img)(_p2##x,_n9##y,z,c)), \
|
|
(I[813] = (T)(img)(_p2##x,_n10##y,z,c)), \
|
|
(I[845] = (T)(img)(_p2##x,_n11##y,z,c)), \
|
|
(I[877] = (T)(img)(_p2##x,_n12##y,z,c)), \
|
|
(I[909] = (T)(img)(_p2##x,_n13##y,z,c)), \
|
|
(I[941] = (T)(img)(_p2##x,_n14##y,z,c)), \
|
|
(I[973] = (T)(img)(_p2##x,_n15##y,z,c)), \
|
|
(I[1005] = (T)(img)(_p2##x,_n16##y,z,c)), \
|
|
(I[14] = (T)(img)(_p1##x,_p15##y,z,c)), \
|
|
(I[46] = (T)(img)(_p1##x,_p14##y,z,c)), \
|
|
(I[78] = (T)(img)(_p1##x,_p13##y,z,c)), \
|
|
(I[110] = (T)(img)(_p1##x,_p12##y,z,c)), \
|
|
(I[142] = (T)(img)(_p1##x,_p11##y,z,c)), \
|
|
(I[174] = (T)(img)(_p1##x,_p10##y,z,c)), \
|
|
(I[206] = (T)(img)(_p1##x,_p9##y,z,c)), \
|
|
(I[238] = (T)(img)(_p1##x,_p8##y,z,c)), \
|
|
(I[270] = (T)(img)(_p1##x,_p7##y,z,c)), \
|
|
(I[302] = (T)(img)(_p1##x,_p6##y,z,c)), \
|
|
(I[334] = (T)(img)(_p1##x,_p5##y,z,c)), \
|
|
(I[366] = (T)(img)(_p1##x,_p4##y,z,c)), \
|
|
(I[398] = (T)(img)(_p1##x,_p3##y,z,c)), \
|
|
(I[430] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[462] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[494] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[526] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[558] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[590] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[622] = (T)(img)(_p1##x,_n4##y,z,c)), \
|
|
(I[654] = (T)(img)(_p1##x,_n5##y,z,c)), \
|
|
(I[686] = (T)(img)(_p1##x,_n6##y,z,c)), \
|
|
(I[718] = (T)(img)(_p1##x,_n7##y,z,c)), \
|
|
(I[750] = (T)(img)(_p1##x,_n8##y,z,c)), \
|
|
(I[782] = (T)(img)(_p1##x,_n9##y,z,c)), \
|
|
(I[814] = (T)(img)(_p1##x,_n10##y,z,c)), \
|
|
(I[846] = (T)(img)(_p1##x,_n11##y,z,c)), \
|
|
(I[878] = (T)(img)(_p1##x,_n12##y,z,c)), \
|
|
(I[910] = (T)(img)(_p1##x,_n13##y,z,c)), \
|
|
(I[942] = (T)(img)(_p1##x,_n14##y,z,c)), \
|
|
(I[974] = (T)(img)(_p1##x,_n15##y,z,c)), \
|
|
(I[1006] = (T)(img)(_p1##x,_n16##y,z,c)), \
|
|
(I[15] = (T)(img)(x,_p15##y,z,c)), \
|
|
(I[47] = (T)(img)(x,_p14##y,z,c)), \
|
|
(I[79] = (T)(img)(x,_p13##y,z,c)), \
|
|
(I[111] = (T)(img)(x,_p12##y,z,c)), \
|
|
(I[143] = (T)(img)(x,_p11##y,z,c)), \
|
|
(I[175] = (T)(img)(x,_p10##y,z,c)), \
|
|
(I[207] = (T)(img)(x,_p9##y,z,c)), \
|
|
(I[239] = (T)(img)(x,_p8##y,z,c)), \
|
|
(I[271] = (T)(img)(x,_p7##y,z,c)), \
|
|
(I[303] = (T)(img)(x,_p6##y,z,c)), \
|
|
(I[335] = (T)(img)(x,_p5##y,z,c)), \
|
|
(I[367] = (T)(img)(x,_p4##y,z,c)), \
|
|
(I[399] = (T)(img)(x,_p3##y,z,c)), \
|
|
(I[431] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[463] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[495] = (T)(img)(x,y,z,c)), \
|
|
(I[527] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[559] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[591] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[623] = (T)(img)(x,_n4##y,z,c)), \
|
|
(I[655] = (T)(img)(x,_n5##y,z,c)), \
|
|
(I[687] = (T)(img)(x,_n6##y,z,c)), \
|
|
(I[719] = (T)(img)(x,_n7##y,z,c)), \
|
|
(I[751] = (T)(img)(x,_n8##y,z,c)), \
|
|
(I[783] = (T)(img)(x,_n9##y,z,c)), \
|
|
(I[815] = (T)(img)(x,_n10##y,z,c)), \
|
|
(I[847] = (T)(img)(x,_n11##y,z,c)), \
|
|
(I[879] = (T)(img)(x,_n12##y,z,c)), \
|
|
(I[911] = (T)(img)(x,_n13##y,z,c)), \
|
|
(I[943] = (T)(img)(x,_n14##y,z,c)), \
|
|
(I[975] = (T)(img)(x,_n15##y,z,c)), \
|
|
(I[1007] = (T)(img)(x,_n16##y,z,c)), \
|
|
(I[16] = (T)(img)(_n1##x,_p15##y,z,c)), \
|
|
(I[48] = (T)(img)(_n1##x,_p14##y,z,c)), \
|
|
(I[80] = (T)(img)(_n1##x,_p13##y,z,c)), \
|
|
(I[112] = (T)(img)(_n1##x,_p12##y,z,c)), \
|
|
(I[144] = (T)(img)(_n1##x,_p11##y,z,c)), \
|
|
(I[176] = (T)(img)(_n1##x,_p10##y,z,c)), \
|
|
(I[208] = (T)(img)(_n1##x,_p9##y,z,c)), \
|
|
(I[240] = (T)(img)(_n1##x,_p8##y,z,c)), \
|
|
(I[272] = (T)(img)(_n1##x,_p7##y,z,c)), \
|
|
(I[304] = (T)(img)(_n1##x,_p6##y,z,c)), \
|
|
(I[336] = (T)(img)(_n1##x,_p5##y,z,c)), \
|
|
(I[368] = (T)(img)(_n1##x,_p4##y,z,c)), \
|
|
(I[400] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[432] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[464] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[496] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[528] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[560] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[592] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[624] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[656] = (T)(img)(_n1##x,_n5##y,z,c)), \
|
|
(I[688] = (T)(img)(_n1##x,_n6##y,z,c)), \
|
|
(I[720] = (T)(img)(_n1##x,_n7##y,z,c)), \
|
|
(I[752] = (T)(img)(_n1##x,_n8##y,z,c)), \
|
|
(I[784] = (T)(img)(_n1##x,_n9##y,z,c)), \
|
|
(I[816] = (T)(img)(_n1##x,_n10##y,z,c)), \
|
|
(I[848] = (T)(img)(_n1##x,_n11##y,z,c)), \
|
|
(I[880] = (T)(img)(_n1##x,_n12##y,z,c)), \
|
|
(I[912] = (T)(img)(_n1##x,_n13##y,z,c)), \
|
|
(I[944] = (T)(img)(_n1##x,_n14##y,z,c)), \
|
|
(I[976] = (T)(img)(_n1##x,_n15##y,z,c)), \
|
|
(I[1008] = (T)(img)(_n1##x,_n16##y,z,c)), \
|
|
(I[17] = (T)(img)(_n2##x,_p15##y,z,c)), \
|
|
(I[49] = (T)(img)(_n2##x,_p14##y,z,c)), \
|
|
(I[81] = (T)(img)(_n2##x,_p13##y,z,c)), \
|
|
(I[113] = (T)(img)(_n2##x,_p12##y,z,c)), \
|
|
(I[145] = (T)(img)(_n2##x,_p11##y,z,c)), \
|
|
(I[177] = (T)(img)(_n2##x,_p10##y,z,c)), \
|
|
(I[209] = (T)(img)(_n2##x,_p9##y,z,c)), \
|
|
(I[241] = (T)(img)(_n2##x,_p8##y,z,c)), \
|
|
(I[273] = (T)(img)(_n2##x,_p7##y,z,c)), \
|
|
(I[305] = (T)(img)(_n2##x,_p6##y,z,c)), \
|
|
(I[337] = (T)(img)(_n2##x,_p5##y,z,c)), \
|
|
(I[369] = (T)(img)(_n2##x,_p4##y,z,c)), \
|
|
(I[401] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[433] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[465] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[497] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[529] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[561] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[593] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[625] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[657] = (T)(img)(_n2##x,_n5##y,z,c)), \
|
|
(I[689] = (T)(img)(_n2##x,_n6##y,z,c)), \
|
|
(I[721] = (T)(img)(_n2##x,_n7##y,z,c)), \
|
|
(I[753] = (T)(img)(_n2##x,_n8##y,z,c)), \
|
|
(I[785] = (T)(img)(_n2##x,_n9##y,z,c)), \
|
|
(I[817] = (T)(img)(_n2##x,_n10##y,z,c)), \
|
|
(I[849] = (T)(img)(_n2##x,_n11##y,z,c)), \
|
|
(I[881] = (T)(img)(_n2##x,_n12##y,z,c)), \
|
|
(I[913] = (T)(img)(_n2##x,_n13##y,z,c)), \
|
|
(I[945] = (T)(img)(_n2##x,_n14##y,z,c)), \
|
|
(I[977] = (T)(img)(_n2##x,_n15##y,z,c)), \
|
|
(I[1009] = (T)(img)(_n2##x,_n16##y,z,c)), \
|
|
(I[18] = (T)(img)(_n3##x,_p15##y,z,c)), \
|
|
(I[50] = (T)(img)(_n3##x,_p14##y,z,c)), \
|
|
(I[82] = (T)(img)(_n3##x,_p13##y,z,c)), \
|
|
(I[114] = (T)(img)(_n3##x,_p12##y,z,c)), \
|
|
(I[146] = (T)(img)(_n3##x,_p11##y,z,c)), \
|
|
(I[178] = (T)(img)(_n3##x,_p10##y,z,c)), \
|
|
(I[210] = (T)(img)(_n3##x,_p9##y,z,c)), \
|
|
(I[242] = (T)(img)(_n3##x,_p8##y,z,c)), \
|
|
(I[274] = (T)(img)(_n3##x,_p7##y,z,c)), \
|
|
(I[306] = (T)(img)(_n3##x,_p6##y,z,c)), \
|
|
(I[338] = (T)(img)(_n3##x,_p5##y,z,c)), \
|
|
(I[370] = (T)(img)(_n3##x,_p4##y,z,c)), \
|
|
(I[402] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[434] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[466] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[498] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[530] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[562] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[594] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[626] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[658] = (T)(img)(_n3##x,_n5##y,z,c)), \
|
|
(I[690] = (T)(img)(_n3##x,_n6##y,z,c)), \
|
|
(I[722] = (T)(img)(_n3##x,_n7##y,z,c)), \
|
|
(I[754] = (T)(img)(_n3##x,_n8##y,z,c)), \
|
|
(I[786] = (T)(img)(_n3##x,_n9##y,z,c)), \
|
|
(I[818] = (T)(img)(_n3##x,_n10##y,z,c)), \
|
|
(I[850] = (T)(img)(_n3##x,_n11##y,z,c)), \
|
|
(I[882] = (T)(img)(_n3##x,_n12##y,z,c)), \
|
|
(I[914] = (T)(img)(_n3##x,_n13##y,z,c)), \
|
|
(I[946] = (T)(img)(_n3##x,_n14##y,z,c)), \
|
|
(I[978] = (T)(img)(_n3##x,_n15##y,z,c)), \
|
|
(I[1010] = (T)(img)(_n3##x,_n16##y,z,c)), \
|
|
(I[19] = (T)(img)(_n4##x,_p15##y,z,c)), \
|
|
(I[51] = (T)(img)(_n4##x,_p14##y,z,c)), \
|
|
(I[83] = (T)(img)(_n4##x,_p13##y,z,c)), \
|
|
(I[115] = (T)(img)(_n4##x,_p12##y,z,c)), \
|
|
(I[147] = (T)(img)(_n4##x,_p11##y,z,c)), \
|
|
(I[179] = (T)(img)(_n4##x,_p10##y,z,c)), \
|
|
(I[211] = (T)(img)(_n4##x,_p9##y,z,c)), \
|
|
(I[243] = (T)(img)(_n4##x,_p8##y,z,c)), \
|
|
(I[275] = (T)(img)(_n4##x,_p7##y,z,c)), \
|
|
(I[307] = (T)(img)(_n4##x,_p6##y,z,c)), \
|
|
(I[339] = (T)(img)(_n4##x,_p5##y,z,c)), \
|
|
(I[371] = (T)(img)(_n4##x,_p4##y,z,c)), \
|
|
(I[403] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[435] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[467] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[499] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[531] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[563] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[595] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[627] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[659] = (T)(img)(_n4##x,_n5##y,z,c)), \
|
|
(I[691] = (T)(img)(_n4##x,_n6##y,z,c)), \
|
|
(I[723] = (T)(img)(_n4##x,_n7##y,z,c)), \
|
|
(I[755] = (T)(img)(_n4##x,_n8##y,z,c)), \
|
|
(I[787] = (T)(img)(_n4##x,_n9##y,z,c)), \
|
|
(I[819] = (T)(img)(_n4##x,_n10##y,z,c)), \
|
|
(I[851] = (T)(img)(_n4##x,_n11##y,z,c)), \
|
|
(I[883] = (T)(img)(_n4##x,_n12##y,z,c)), \
|
|
(I[915] = (T)(img)(_n4##x,_n13##y,z,c)), \
|
|
(I[947] = (T)(img)(_n4##x,_n14##y,z,c)), \
|
|
(I[979] = (T)(img)(_n4##x,_n15##y,z,c)), \
|
|
(I[1011] = (T)(img)(_n4##x,_n16##y,z,c)), \
|
|
(I[20] = (T)(img)(_n5##x,_p15##y,z,c)), \
|
|
(I[52] = (T)(img)(_n5##x,_p14##y,z,c)), \
|
|
(I[84] = (T)(img)(_n5##x,_p13##y,z,c)), \
|
|
(I[116] = (T)(img)(_n5##x,_p12##y,z,c)), \
|
|
(I[148] = (T)(img)(_n5##x,_p11##y,z,c)), \
|
|
(I[180] = (T)(img)(_n5##x,_p10##y,z,c)), \
|
|
(I[212] = (T)(img)(_n5##x,_p9##y,z,c)), \
|
|
(I[244] = (T)(img)(_n5##x,_p8##y,z,c)), \
|
|
(I[276] = (T)(img)(_n5##x,_p7##y,z,c)), \
|
|
(I[308] = (T)(img)(_n5##x,_p6##y,z,c)), \
|
|
(I[340] = (T)(img)(_n5##x,_p5##y,z,c)), \
|
|
(I[372] = (T)(img)(_n5##x,_p4##y,z,c)), \
|
|
(I[404] = (T)(img)(_n5##x,_p3##y,z,c)), \
|
|
(I[436] = (T)(img)(_n5##x,_p2##y,z,c)), \
|
|
(I[468] = (T)(img)(_n5##x,_p1##y,z,c)), \
|
|
(I[500] = (T)(img)(_n5##x,y,z,c)), \
|
|
(I[532] = (T)(img)(_n5##x,_n1##y,z,c)), \
|
|
(I[564] = (T)(img)(_n5##x,_n2##y,z,c)), \
|
|
(I[596] = (T)(img)(_n5##x,_n3##y,z,c)), \
|
|
(I[628] = (T)(img)(_n5##x,_n4##y,z,c)), \
|
|
(I[660] = (T)(img)(_n5##x,_n5##y,z,c)), \
|
|
(I[692] = (T)(img)(_n5##x,_n6##y,z,c)), \
|
|
(I[724] = (T)(img)(_n5##x,_n7##y,z,c)), \
|
|
(I[756] = (T)(img)(_n5##x,_n8##y,z,c)), \
|
|
(I[788] = (T)(img)(_n5##x,_n9##y,z,c)), \
|
|
(I[820] = (T)(img)(_n5##x,_n10##y,z,c)), \
|
|
(I[852] = (T)(img)(_n5##x,_n11##y,z,c)), \
|
|
(I[884] = (T)(img)(_n5##x,_n12##y,z,c)), \
|
|
(I[916] = (T)(img)(_n5##x,_n13##y,z,c)), \
|
|
(I[948] = (T)(img)(_n5##x,_n14##y,z,c)), \
|
|
(I[980] = (T)(img)(_n5##x,_n15##y,z,c)), \
|
|
(I[1012] = (T)(img)(_n5##x,_n16##y,z,c)), \
|
|
(I[21] = (T)(img)(_n6##x,_p15##y,z,c)), \
|
|
(I[53] = (T)(img)(_n6##x,_p14##y,z,c)), \
|
|
(I[85] = (T)(img)(_n6##x,_p13##y,z,c)), \
|
|
(I[117] = (T)(img)(_n6##x,_p12##y,z,c)), \
|
|
(I[149] = (T)(img)(_n6##x,_p11##y,z,c)), \
|
|
(I[181] = (T)(img)(_n6##x,_p10##y,z,c)), \
|
|
(I[213] = (T)(img)(_n6##x,_p9##y,z,c)), \
|
|
(I[245] = (T)(img)(_n6##x,_p8##y,z,c)), \
|
|
(I[277] = (T)(img)(_n6##x,_p7##y,z,c)), \
|
|
(I[309] = (T)(img)(_n6##x,_p6##y,z,c)), \
|
|
(I[341] = (T)(img)(_n6##x,_p5##y,z,c)), \
|
|
(I[373] = (T)(img)(_n6##x,_p4##y,z,c)), \
|
|
(I[405] = (T)(img)(_n6##x,_p3##y,z,c)), \
|
|
(I[437] = (T)(img)(_n6##x,_p2##y,z,c)), \
|
|
(I[469] = (T)(img)(_n6##x,_p1##y,z,c)), \
|
|
(I[501] = (T)(img)(_n6##x,y,z,c)), \
|
|
(I[533] = (T)(img)(_n6##x,_n1##y,z,c)), \
|
|
(I[565] = (T)(img)(_n6##x,_n2##y,z,c)), \
|
|
(I[597] = (T)(img)(_n6##x,_n3##y,z,c)), \
|
|
(I[629] = (T)(img)(_n6##x,_n4##y,z,c)), \
|
|
(I[661] = (T)(img)(_n6##x,_n5##y,z,c)), \
|
|
(I[693] = (T)(img)(_n6##x,_n6##y,z,c)), \
|
|
(I[725] = (T)(img)(_n6##x,_n7##y,z,c)), \
|
|
(I[757] = (T)(img)(_n6##x,_n8##y,z,c)), \
|
|
(I[789] = (T)(img)(_n6##x,_n9##y,z,c)), \
|
|
(I[821] = (T)(img)(_n6##x,_n10##y,z,c)), \
|
|
(I[853] = (T)(img)(_n6##x,_n11##y,z,c)), \
|
|
(I[885] = (T)(img)(_n6##x,_n12##y,z,c)), \
|
|
(I[917] = (T)(img)(_n6##x,_n13##y,z,c)), \
|
|
(I[949] = (T)(img)(_n6##x,_n14##y,z,c)), \
|
|
(I[981] = (T)(img)(_n6##x,_n15##y,z,c)), \
|
|
(I[1013] = (T)(img)(_n6##x,_n16##y,z,c)), \
|
|
(I[22] = (T)(img)(_n7##x,_p15##y,z,c)), \
|
|
(I[54] = (T)(img)(_n7##x,_p14##y,z,c)), \
|
|
(I[86] = (T)(img)(_n7##x,_p13##y,z,c)), \
|
|
(I[118] = (T)(img)(_n7##x,_p12##y,z,c)), \
|
|
(I[150] = (T)(img)(_n7##x,_p11##y,z,c)), \
|
|
(I[182] = (T)(img)(_n7##x,_p10##y,z,c)), \
|
|
(I[214] = (T)(img)(_n7##x,_p9##y,z,c)), \
|
|
(I[246] = (T)(img)(_n7##x,_p8##y,z,c)), \
|
|
(I[278] = (T)(img)(_n7##x,_p7##y,z,c)), \
|
|
(I[310] = (T)(img)(_n7##x,_p6##y,z,c)), \
|
|
(I[342] = (T)(img)(_n7##x,_p5##y,z,c)), \
|
|
(I[374] = (T)(img)(_n7##x,_p4##y,z,c)), \
|
|
(I[406] = (T)(img)(_n7##x,_p3##y,z,c)), \
|
|
(I[438] = (T)(img)(_n7##x,_p2##y,z,c)), \
|
|
(I[470] = (T)(img)(_n7##x,_p1##y,z,c)), \
|
|
(I[502] = (T)(img)(_n7##x,y,z,c)), \
|
|
(I[534] = (T)(img)(_n7##x,_n1##y,z,c)), \
|
|
(I[566] = (T)(img)(_n7##x,_n2##y,z,c)), \
|
|
(I[598] = (T)(img)(_n7##x,_n3##y,z,c)), \
|
|
(I[630] = (T)(img)(_n7##x,_n4##y,z,c)), \
|
|
(I[662] = (T)(img)(_n7##x,_n5##y,z,c)), \
|
|
(I[694] = (T)(img)(_n7##x,_n6##y,z,c)), \
|
|
(I[726] = (T)(img)(_n7##x,_n7##y,z,c)), \
|
|
(I[758] = (T)(img)(_n7##x,_n8##y,z,c)), \
|
|
(I[790] = (T)(img)(_n7##x,_n9##y,z,c)), \
|
|
(I[822] = (T)(img)(_n7##x,_n10##y,z,c)), \
|
|
(I[854] = (T)(img)(_n7##x,_n11##y,z,c)), \
|
|
(I[886] = (T)(img)(_n7##x,_n12##y,z,c)), \
|
|
(I[918] = (T)(img)(_n7##x,_n13##y,z,c)), \
|
|
(I[950] = (T)(img)(_n7##x,_n14##y,z,c)), \
|
|
(I[982] = (T)(img)(_n7##x,_n15##y,z,c)), \
|
|
(I[1014] = (T)(img)(_n7##x,_n16##y,z,c)), \
|
|
(I[23] = (T)(img)(_n8##x,_p15##y,z,c)), \
|
|
(I[55] = (T)(img)(_n8##x,_p14##y,z,c)), \
|
|
(I[87] = (T)(img)(_n8##x,_p13##y,z,c)), \
|
|
(I[119] = (T)(img)(_n8##x,_p12##y,z,c)), \
|
|
(I[151] = (T)(img)(_n8##x,_p11##y,z,c)), \
|
|
(I[183] = (T)(img)(_n8##x,_p10##y,z,c)), \
|
|
(I[215] = (T)(img)(_n8##x,_p9##y,z,c)), \
|
|
(I[247] = (T)(img)(_n8##x,_p8##y,z,c)), \
|
|
(I[279] = (T)(img)(_n8##x,_p7##y,z,c)), \
|
|
(I[311] = (T)(img)(_n8##x,_p6##y,z,c)), \
|
|
(I[343] = (T)(img)(_n8##x,_p5##y,z,c)), \
|
|
(I[375] = (T)(img)(_n8##x,_p4##y,z,c)), \
|
|
(I[407] = (T)(img)(_n8##x,_p3##y,z,c)), \
|
|
(I[439] = (T)(img)(_n8##x,_p2##y,z,c)), \
|
|
(I[471] = (T)(img)(_n8##x,_p1##y,z,c)), \
|
|
(I[503] = (T)(img)(_n8##x,y,z,c)), \
|
|
(I[535] = (T)(img)(_n8##x,_n1##y,z,c)), \
|
|
(I[567] = (T)(img)(_n8##x,_n2##y,z,c)), \
|
|
(I[599] = (T)(img)(_n8##x,_n3##y,z,c)), \
|
|
(I[631] = (T)(img)(_n8##x,_n4##y,z,c)), \
|
|
(I[663] = (T)(img)(_n8##x,_n5##y,z,c)), \
|
|
(I[695] = (T)(img)(_n8##x,_n6##y,z,c)), \
|
|
(I[727] = (T)(img)(_n8##x,_n7##y,z,c)), \
|
|
(I[759] = (T)(img)(_n8##x,_n8##y,z,c)), \
|
|
(I[791] = (T)(img)(_n8##x,_n9##y,z,c)), \
|
|
(I[823] = (T)(img)(_n8##x,_n10##y,z,c)), \
|
|
(I[855] = (T)(img)(_n8##x,_n11##y,z,c)), \
|
|
(I[887] = (T)(img)(_n8##x,_n12##y,z,c)), \
|
|
(I[919] = (T)(img)(_n8##x,_n13##y,z,c)), \
|
|
(I[951] = (T)(img)(_n8##x,_n14##y,z,c)), \
|
|
(I[983] = (T)(img)(_n8##x,_n15##y,z,c)), \
|
|
(I[1015] = (T)(img)(_n8##x,_n16##y,z,c)), \
|
|
(I[24] = (T)(img)(_n9##x,_p15##y,z,c)), \
|
|
(I[56] = (T)(img)(_n9##x,_p14##y,z,c)), \
|
|
(I[88] = (T)(img)(_n9##x,_p13##y,z,c)), \
|
|
(I[120] = (T)(img)(_n9##x,_p12##y,z,c)), \
|
|
(I[152] = (T)(img)(_n9##x,_p11##y,z,c)), \
|
|
(I[184] = (T)(img)(_n9##x,_p10##y,z,c)), \
|
|
(I[216] = (T)(img)(_n9##x,_p9##y,z,c)), \
|
|
(I[248] = (T)(img)(_n9##x,_p8##y,z,c)), \
|
|
(I[280] = (T)(img)(_n9##x,_p7##y,z,c)), \
|
|
(I[312] = (T)(img)(_n9##x,_p6##y,z,c)), \
|
|
(I[344] = (T)(img)(_n9##x,_p5##y,z,c)), \
|
|
(I[376] = (T)(img)(_n9##x,_p4##y,z,c)), \
|
|
(I[408] = (T)(img)(_n9##x,_p3##y,z,c)), \
|
|
(I[440] = (T)(img)(_n9##x,_p2##y,z,c)), \
|
|
(I[472] = (T)(img)(_n9##x,_p1##y,z,c)), \
|
|
(I[504] = (T)(img)(_n9##x,y,z,c)), \
|
|
(I[536] = (T)(img)(_n9##x,_n1##y,z,c)), \
|
|
(I[568] = (T)(img)(_n9##x,_n2##y,z,c)), \
|
|
(I[600] = (T)(img)(_n9##x,_n3##y,z,c)), \
|
|
(I[632] = (T)(img)(_n9##x,_n4##y,z,c)), \
|
|
(I[664] = (T)(img)(_n9##x,_n5##y,z,c)), \
|
|
(I[696] = (T)(img)(_n9##x,_n6##y,z,c)), \
|
|
(I[728] = (T)(img)(_n9##x,_n7##y,z,c)), \
|
|
(I[760] = (T)(img)(_n9##x,_n8##y,z,c)), \
|
|
(I[792] = (T)(img)(_n9##x,_n9##y,z,c)), \
|
|
(I[824] = (T)(img)(_n9##x,_n10##y,z,c)), \
|
|
(I[856] = (T)(img)(_n9##x,_n11##y,z,c)), \
|
|
(I[888] = (T)(img)(_n9##x,_n12##y,z,c)), \
|
|
(I[920] = (T)(img)(_n9##x,_n13##y,z,c)), \
|
|
(I[952] = (T)(img)(_n9##x,_n14##y,z,c)), \
|
|
(I[984] = (T)(img)(_n9##x,_n15##y,z,c)), \
|
|
(I[1016] = (T)(img)(_n9##x,_n16##y,z,c)), \
|
|
(I[25] = (T)(img)(_n10##x,_p15##y,z,c)), \
|
|
(I[57] = (T)(img)(_n10##x,_p14##y,z,c)), \
|
|
(I[89] = (T)(img)(_n10##x,_p13##y,z,c)), \
|
|
(I[121] = (T)(img)(_n10##x,_p12##y,z,c)), \
|
|
(I[153] = (T)(img)(_n10##x,_p11##y,z,c)), \
|
|
(I[185] = (T)(img)(_n10##x,_p10##y,z,c)), \
|
|
(I[217] = (T)(img)(_n10##x,_p9##y,z,c)), \
|
|
(I[249] = (T)(img)(_n10##x,_p8##y,z,c)), \
|
|
(I[281] = (T)(img)(_n10##x,_p7##y,z,c)), \
|
|
(I[313] = (T)(img)(_n10##x,_p6##y,z,c)), \
|
|
(I[345] = (T)(img)(_n10##x,_p5##y,z,c)), \
|
|
(I[377] = (T)(img)(_n10##x,_p4##y,z,c)), \
|
|
(I[409] = (T)(img)(_n10##x,_p3##y,z,c)), \
|
|
(I[441] = (T)(img)(_n10##x,_p2##y,z,c)), \
|
|
(I[473] = (T)(img)(_n10##x,_p1##y,z,c)), \
|
|
(I[505] = (T)(img)(_n10##x,y,z,c)), \
|
|
(I[537] = (T)(img)(_n10##x,_n1##y,z,c)), \
|
|
(I[569] = (T)(img)(_n10##x,_n2##y,z,c)), \
|
|
(I[601] = (T)(img)(_n10##x,_n3##y,z,c)), \
|
|
(I[633] = (T)(img)(_n10##x,_n4##y,z,c)), \
|
|
(I[665] = (T)(img)(_n10##x,_n5##y,z,c)), \
|
|
(I[697] = (T)(img)(_n10##x,_n6##y,z,c)), \
|
|
(I[729] = (T)(img)(_n10##x,_n7##y,z,c)), \
|
|
(I[761] = (T)(img)(_n10##x,_n8##y,z,c)), \
|
|
(I[793] = (T)(img)(_n10##x,_n9##y,z,c)), \
|
|
(I[825] = (T)(img)(_n10##x,_n10##y,z,c)), \
|
|
(I[857] = (T)(img)(_n10##x,_n11##y,z,c)), \
|
|
(I[889] = (T)(img)(_n10##x,_n12##y,z,c)), \
|
|
(I[921] = (T)(img)(_n10##x,_n13##y,z,c)), \
|
|
(I[953] = (T)(img)(_n10##x,_n14##y,z,c)), \
|
|
(I[985] = (T)(img)(_n10##x,_n15##y,z,c)), \
|
|
(I[1017] = (T)(img)(_n10##x,_n16##y,z,c)), \
|
|
(I[26] = (T)(img)(_n11##x,_p15##y,z,c)), \
|
|
(I[58] = (T)(img)(_n11##x,_p14##y,z,c)), \
|
|
(I[90] = (T)(img)(_n11##x,_p13##y,z,c)), \
|
|
(I[122] = (T)(img)(_n11##x,_p12##y,z,c)), \
|
|
(I[154] = (T)(img)(_n11##x,_p11##y,z,c)), \
|
|
(I[186] = (T)(img)(_n11##x,_p10##y,z,c)), \
|
|
(I[218] = (T)(img)(_n11##x,_p9##y,z,c)), \
|
|
(I[250] = (T)(img)(_n11##x,_p8##y,z,c)), \
|
|
(I[282] = (T)(img)(_n11##x,_p7##y,z,c)), \
|
|
(I[314] = (T)(img)(_n11##x,_p6##y,z,c)), \
|
|
(I[346] = (T)(img)(_n11##x,_p5##y,z,c)), \
|
|
(I[378] = (T)(img)(_n11##x,_p4##y,z,c)), \
|
|
(I[410] = (T)(img)(_n11##x,_p3##y,z,c)), \
|
|
(I[442] = (T)(img)(_n11##x,_p2##y,z,c)), \
|
|
(I[474] = (T)(img)(_n11##x,_p1##y,z,c)), \
|
|
(I[506] = (T)(img)(_n11##x,y,z,c)), \
|
|
(I[538] = (T)(img)(_n11##x,_n1##y,z,c)), \
|
|
(I[570] = (T)(img)(_n11##x,_n2##y,z,c)), \
|
|
(I[602] = (T)(img)(_n11##x,_n3##y,z,c)), \
|
|
(I[634] = (T)(img)(_n11##x,_n4##y,z,c)), \
|
|
(I[666] = (T)(img)(_n11##x,_n5##y,z,c)), \
|
|
(I[698] = (T)(img)(_n11##x,_n6##y,z,c)), \
|
|
(I[730] = (T)(img)(_n11##x,_n7##y,z,c)), \
|
|
(I[762] = (T)(img)(_n11##x,_n8##y,z,c)), \
|
|
(I[794] = (T)(img)(_n11##x,_n9##y,z,c)), \
|
|
(I[826] = (T)(img)(_n11##x,_n10##y,z,c)), \
|
|
(I[858] = (T)(img)(_n11##x,_n11##y,z,c)), \
|
|
(I[890] = (T)(img)(_n11##x,_n12##y,z,c)), \
|
|
(I[922] = (T)(img)(_n11##x,_n13##y,z,c)), \
|
|
(I[954] = (T)(img)(_n11##x,_n14##y,z,c)), \
|
|
(I[986] = (T)(img)(_n11##x,_n15##y,z,c)), \
|
|
(I[1018] = (T)(img)(_n11##x,_n16##y,z,c)), \
|
|
(I[27] = (T)(img)(_n12##x,_p15##y,z,c)), \
|
|
(I[59] = (T)(img)(_n12##x,_p14##y,z,c)), \
|
|
(I[91] = (T)(img)(_n12##x,_p13##y,z,c)), \
|
|
(I[123] = (T)(img)(_n12##x,_p12##y,z,c)), \
|
|
(I[155] = (T)(img)(_n12##x,_p11##y,z,c)), \
|
|
(I[187] = (T)(img)(_n12##x,_p10##y,z,c)), \
|
|
(I[219] = (T)(img)(_n12##x,_p9##y,z,c)), \
|
|
(I[251] = (T)(img)(_n12##x,_p8##y,z,c)), \
|
|
(I[283] = (T)(img)(_n12##x,_p7##y,z,c)), \
|
|
(I[315] = (T)(img)(_n12##x,_p6##y,z,c)), \
|
|
(I[347] = (T)(img)(_n12##x,_p5##y,z,c)), \
|
|
(I[379] = (T)(img)(_n12##x,_p4##y,z,c)), \
|
|
(I[411] = (T)(img)(_n12##x,_p3##y,z,c)), \
|
|
(I[443] = (T)(img)(_n12##x,_p2##y,z,c)), \
|
|
(I[475] = (T)(img)(_n12##x,_p1##y,z,c)), \
|
|
(I[507] = (T)(img)(_n12##x,y,z,c)), \
|
|
(I[539] = (T)(img)(_n12##x,_n1##y,z,c)), \
|
|
(I[571] = (T)(img)(_n12##x,_n2##y,z,c)), \
|
|
(I[603] = (T)(img)(_n12##x,_n3##y,z,c)), \
|
|
(I[635] = (T)(img)(_n12##x,_n4##y,z,c)), \
|
|
(I[667] = (T)(img)(_n12##x,_n5##y,z,c)), \
|
|
(I[699] = (T)(img)(_n12##x,_n6##y,z,c)), \
|
|
(I[731] = (T)(img)(_n12##x,_n7##y,z,c)), \
|
|
(I[763] = (T)(img)(_n12##x,_n8##y,z,c)), \
|
|
(I[795] = (T)(img)(_n12##x,_n9##y,z,c)), \
|
|
(I[827] = (T)(img)(_n12##x,_n10##y,z,c)), \
|
|
(I[859] = (T)(img)(_n12##x,_n11##y,z,c)), \
|
|
(I[891] = (T)(img)(_n12##x,_n12##y,z,c)), \
|
|
(I[923] = (T)(img)(_n12##x,_n13##y,z,c)), \
|
|
(I[955] = (T)(img)(_n12##x,_n14##y,z,c)), \
|
|
(I[987] = (T)(img)(_n12##x,_n15##y,z,c)), \
|
|
(I[1019] = (T)(img)(_n12##x,_n16##y,z,c)), \
|
|
(I[28] = (T)(img)(_n13##x,_p15##y,z,c)), \
|
|
(I[60] = (T)(img)(_n13##x,_p14##y,z,c)), \
|
|
(I[92] = (T)(img)(_n13##x,_p13##y,z,c)), \
|
|
(I[124] = (T)(img)(_n13##x,_p12##y,z,c)), \
|
|
(I[156] = (T)(img)(_n13##x,_p11##y,z,c)), \
|
|
(I[188] = (T)(img)(_n13##x,_p10##y,z,c)), \
|
|
(I[220] = (T)(img)(_n13##x,_p9##y,z,c)), \
|
|
(I[252] = (T)(img)(_n13##x,_p8##y,z,c)), \
|
|
(I[284] = (T)(img)(_n13##x,_p7##y,z,c)), \
|
|
(I[316] = (T)(img)(_n13##x,_p6##y,z,c)), \
|
|
(I[348] = (T)(img)(_n13##x,_p5##y,z,c)), \
|
|
(I[380] = (T)(img)(_n13##x,_p4##y,z,c)), \
|
|
(I[412] = (T)(img)(_n13##x,_p3##y,z,c)), \
|
|
(I[444] = (T)(img)(_n13##x,_p2##y,z,c)), \
|
|
(I[476] = (T)(img)(_n13##x,_p1##y,z,c)), \
|
|
(I[508] = (T)(img)(_n13##x,y,z,c)), \
|
|
(I[540] = (T)(img)(_n13##x,_n1##y,z,c)), \
|
|
(I[572] = (T)(img)(_n13##x,_n2##y,z,c)), \
|
|
(I[604] = (T)(img)(_n13##x,_n3##y,z,c)), \
|
|
(I[636] = (T)(img)(_n13##x,_n4##y,z,c)), \
|
|
(I[668] = (T)(img)(_n13##x,_n5##y,z,c)), \
|
|
(I[700] = (T)(img)(_n13##x,_n6##y,z,c)), \
|
|
(I[732] = (T)(img)(_n13##x,_n7##y,z,c)), \
|
|
(I[764] = (T)(img)(_n13##x,_n8##y,z,c)), \
|
|
(I[796] = (T)(img)(_n13##x,_n9##y,z,c)), \
|
|
(I[828] = (T)(img)(_n13##x,_n10##y,z,c)), \
|
|
(I[860] = (T)(img)(_n13##x,_n11##y,z,c)), \
|
|
(I[892] = (T)(img)(_n13##x,_n12##y,z,c)), \
|
|
(I[924] = (T)(img)(_n13##x,_n13##y,z,c)), \
|
|
(I[956] = (T)(img)(_n13##x,_n14##y,z,c)), \
|
|
(I[988] = (T)(img)(_n13##x,_n15##y,z,c)), \
|
|
(I[1020] = (T)(img)(_n13##x,_n16##y,z,c)), \
|
|
(I[29] = (T)(img)(_n14##x,_p15##y,z,c)), \
|
|
(I[61] = (T)(img)(_n14##x,_p14##y,z,c)), \
|
|
(I[93] = (T)(img)(_n14##x,_p13##y,z,c)), \
|
|
(I[125] = (T)(img)(_n14##x,_p12##y,z,c)), \
|
|
(I[157] = (T)(img)(_n14##x,_p11##y,z,c)), \
|
|
(I[189] = (T)(img)(_n14##x,_p10##y,z,c)), \
|
|
(I[221] = (T)(img)(_n14##x,_p9##y,z,c)), \
|
|
(I[253] = (T)(img)(_n14##x,_p8##y,z,c)), \
|
|
(I[285] = (T)(img)(_n14##x,_p7##y,z,c)), \
|
|
(I[317] = (T)(img)(_n14##x,_p6##y,z,c)), \
|
|
(I[349] = (T)(img)(_n14##x,_p5##y,z,c)), \
|
|
(I[381] = (T)(img)(_n14##x,_p4##y,z,c)), \
|
|
(I[413] = (T)(img)(_n14##x,_p3##y,z,c)), \
|
|
(I[445] = (T)(img)(_n14##x,_p2##y,z,c)), \
|
|
(I[477] = (T)(img)(_n14##x,_p1##y,z,c)), \
|
|
(I[509] = (T)(img)(_n14##x,y,z,c)), \
|
|
(I[541] = (T)(img)(_n14##x,_n1##y,z,c)), \
|
|
(I[573] = (T)(img)(_n14##x,_n2##y,z,c)), \
|
|
(I[605] = (T)(img)(_n14##x,_n3##y,z,c)), \
|
|
(I[637] = (T)(img)(_n14##x,_n4##y,z,c)), \
|
|
(I[669] = (T)(img)(_n14##x,_n5##y,z,c)), \
|
|
(I[701] = (T)(img)(_n14##x,_n6##y,z,c)), \
|
|
(I[733] = (T)(img)(_n14##x,_n7##y,z,c)), \
|
|
(I[765] = (T)(img)(_n14##x,_n8##y,z,c)), \
|
|
(I[797] = (T)(img)(_n14##x,_n9##y,z,c)), \
|
|
(I[829] = (T)(img)(_n14##x,_n10##y,z,c)), \
|
|
(I[861] = (T)(img)(_n14##x,_n11##y,z,c)), \
|
|
(I[893] = (T)(img)(_n14##x,_n12##y,z,c)), \
|
|
(I[925] = (T)(img)(_n14##x,_n13##y,z,c)), \
|
|
(I[957] = (T)(img)(_n14##x,_n14##y,z,c)), \
|
|
(I[989] = (T)(img)(_n14##x,_n15##y,z,c)), \
|
|
(I[1021] = (T)(img)(_n14##x,_n16##y,z,c)), \
|
|
(I[30] = (T)(img)(_n15##x,_p15##y,z,c)), \
|
|
(I[62] = (T)(img)(_n15##x,_p14##y,z,c)), \
|
|
(I[94] = (T)(img)(_n15##x,_p13##y,z,c)), \
|
|
(I[126] = (T)(img)(_n15##x,_p12##y,z,c)), \
|
|
(I[158] = (T)(img)(_n15##x,_p11##y,z,c)), \
|
|
(I[190] = (T)(img)(_n15##x,_p10##y,z,c)), \
|
|
(I[222] = (T)(img)(_n15##x,_p9##y,z,c)), \
|
|
(I[254] = (T)(img)(_n15##x,_p8##y,z,c)), \
|
|
(I[286] = (T)(img)(_n15##x,_p7##y,z,c)), \
|
|
(I[318] = (T)(img)(_n15##x,_p6##y,z,c)), \
|
|
(I[350] = (T)(img)(_n15##x,_p5##y,z,c)), \
|
|
(I[382] = (T)(img)(_n15##x,_p4##y,z,c)), \
|
|
(I[414] = (T)(img)(_n15##x,_p3##y,z,c)), \
|
|
(I[446] = (T)(img)(_n15##x,_p2##y,z,c)), \
|
|
(I[478] = (T)(img)(_n15##x,_p1##y,z,c)), \
|
|
(I[510] = (T)(img)(_n15##x,y,z,c)), \
|
|
(I[542] = (T)(img)(_n15##x,_n1##y,z,c)), \
|
|
(I[574] = (T)(img)(_n15##x,_n2##y,z,c)), \
|
|
(I[606] = (T)(img)(_n15##x,_n3##y,z,c)), \
|
|
(I[638] = (T)(img)(_n15##x,_n4##y,z,c)), \
|
|
(I[670] = (T)(img)(_n15##x,_n5##y,z,c)), \
|
|
(I[702] = (T)(img)(_n15##x,_n6##y,z,c)), \
|
|
(I[734] = (T)(img)(_n15##x,_n7##y,z,c)), \
|
|
(I[766] = (T)(img)(_n15##x,_n8##y,z,c)), \
|
|
(I[798] = (T)(img)(_n15##x,_n9##y,z,c)), \
|
|
(I[830] = (T)(img)(_n15##x,_n10##y,z,c)), \
|
|
(I[862] = (T)(img)(_n15##x,_n11##y,z,c)), \
|
|
(I[894] = (T)(img)(_n15##x,_n12##y,z,c)), \
|
|
(I[926] = (T)(img)(_n15##x,_n13##y,z,c)), \
|
|
(I[958] = (T)(img)(_n15##x,_n14##y,z,c)), \
|
|
(I[990] = (T)(img)(_n15##x,_n15##y,z,c)), \
|
|
(I[1022] = (T)(img)(_n15##x,_n16##y,z,c)), \
|
|
x + 16>=(img).width()?(img).width() - 1:x + 16); \
|
|
x<=(int)(x1) && ((_n16##x<(img).width() && ( \
|
|
(I[31] = (T)(img)(_n16##x,_p15##y,z,c)), \
|
|
(I[63] = (T)(img)(_n16##x,_p14##y,z,c)), \
|
|
(I[95] = (T)(img)(_n16##x,_p13##y,z,c)), \
|
|
(I[127] = (T)(img)(_n16##x,_p12##y,z,c)), \
|
|
(I[159] = (T)(img)(_n16##x,_p11##y,z,c)), \
|
|
(I[191] = (T)(img)(_n16##x,_p10##y,z,c)), \
|
|
(I[223] = (T)(img)(_n16##x,_p9##y,z,c)), \
|
|
(I[255] = (T)(img)(_n16##x,_p8##y,z,c)), \
|
|
(I[287] = (T)(img)(_n16##x,_p7##y,z,c)), \
|
|
(I[319] = (T)(img)(_n16##x,_p6##y,z,c)), \
|
|
(I[351] = (T)(img)(_n16##x,_p5##y,z,c)), \
|
|
(I[383] = (T)(img)(_n16##x,_p4##y,z,c)), \
|
|
(I[415] = (T)(img)(_n16##x,_p3##y,z,c)), \
|
|
(I[447] = (T)(img)(_n16##x,_p2##y,z,c)), \
|
|
(I[479] = (T)(img)(_n16##x,_p1##y,z,c)), \
|
|
(I[511] = (T)(img)(_n16##x,y,z,c)), \
|
|
(I[543] = (T)(img)(_n16##x,_n1##y,z,c)), \
|
|
(I[575] = (T)(img)(_n16##x,_n2##y,z,c)), \
|
|
(I[607] = (T)(img)(_n16##x,_n3##y,z,c)), \
|
|
(I[639] = (T)(img)(_n16##x,_n4##y,z,c)), \
|
|
(I[671] = (T)(img)(_n16##x,_n5##y,z,c)), \
|
|
(I[703] = (T)(img)(_n16##x,_n6##y,z,c)), \
|
|
(I[735] = (T)(img)(_n16##x,_n7##y,z,c)), \
|
|
(I[767] = (T)(img)(_n16##x,_n8##y,z,c)), \
|
|
(I[799] = (T)(img)(_n16##x,_n9##y,z,c)), \
|
|
(I[831] = (T)(img)(_n16##x,_n10##y,z,c)), \
|
|
(I[863] = (T)(img)(_n16##x,_n11##y,z,c)), \
|
|
(I[895] = (T)(img)(_n16##x,_n12##y,z,c)), \
|
|
(I[927] = (T)(img)(_n16##x,_n13##y,z,c)), \
|
|
(I[959] = (T)(img)(_n16##x,_n14##y,z,c)), \
|
|
(I[991] = (T)(img)(_n16##x,_n15##y,z,c)), \
|
|
(I[1023] = (T)(img)(_n16##x,_n16##y,z,c)),1)) || \
|
|
_n15##x==--_n16##x || _n14##x==--_n15##x || _n13##x==--_n14##x || _n12##x==--_n13##x || _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n16##x = _n15##x = _n14##x = _n13##x = _n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \
|
|
I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], \
|
|
I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
|
|
I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], \
|
|
I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], \
|
|
I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \
|
|
I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \
|
|
I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], \
|
|
I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], \
|
|
I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], \
|
|
I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], \
|
|
I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], \
|
|
I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], \
|
|
I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], \
|
|
I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], \
|
|
I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], \
|
|
I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], \
|
|
I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], \
|
|
I[576] = I[577], I[577] = I[578], I[578] = I[579], I[579] = I[580], I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], I[587] = I[588], I[588] = I[589], I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], I[593] = I[594], I[594] = I[595], I[595] = I[596], I[596] = I[597], I[597] = I[598], I[598] = I[599], I[599] = I[600], I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], \
|
|
I[608] = I[609], I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], I[615] = I[616], I[616] = I[617], I[617] = I[618], I[618] = I[619], I[619] = I[620], I[620] = I[621], I[621] = I[622], I[622] = I[623], I[623] = I[624], I[624] = I[625], I[625] = I[626], I[626] = I[627], I[627] = I[628], I[628] = I[629], I[629] = I[630], I[630] = I[631], I[631] = I[632], I[632] = I[633], I[633] = I[634], I[634] = I[635], I[635] = I[636], I[636] = I[637], I[637] = I[638], I[638] = I[639], \
|
|
I[640] = I[641], I[641] = I[642], I[642] = I[643], I[643] = I[644], I[644] = I[645], I[645] = I[646], I[646] = I[647], I[647] = I[648], I[648] = I[649], I[649] = I[650], I[650] = I[651], I[651] = I[652], I[652] = I[653], I[653] = I[654], I[654] = I[655], I[655] = I[656], I[656] = I[657], I[657] = I[658], I[658] = I[659], I[659] = I[660], I[660] = I[661], I[661] = I[662], I[662] = I[663], I[663] = I[664], I[664] = I[665], I[665] = I[666], I[666] = I[667], I[667] = I[668], I[668] = I[669], I[669] = I[670], I[670] = I[671], \
|
|
I[672] = I[673], I[673] = I[674], I[674] = I[675], I[675] = I[676], I[676] = I[677], I[677] = I[678], I[678] = I[679], I[679] = I[680], I[680] = I[681], I[681] = I[682], I[682] = I[683], I[683] = I[684], I[684] = I[685], I[685] = I[686], I[686] = I[687], I[687] = I[688], I[688] = I[689], I[689] = I[690], I[690] = I[691], I[691] = I[692], I[692] = I[693], I[693] = I[694], I[694] = I[695], I[695] = I[696], I[696] = I[697], I[697] = I[698], I[698] = I[699], I[699] = I[700], I[700] = I[701], I[701] = I[702], I[702] = I[703], \
|
|
I[704] = I[705], I[705] = I[706], I[706] = I[707], I[707] = I[708], I[708] = I[709], I[709] = I[710], I[710] = I[711], I[711] = I[712], I[712] = I[713], I[713] = I[714], I[714] = I[715], I[715] = I[716], I[716] = I[717], I[717] = I[718], I[718] = I[719], I[719] = I[720], I[720] = I[721], I[721] = I[722], I[722] = I[723], I[723] = I[724], I[724] = I[725], I[725] = I[726], I[726] = I[727], I[727] = I[728], I[728] = I[729], I[729] = I[730], I[730] = I[731], I[731] = I[732], I[732] = I[733], I[733] = I[734], I[734] = I[735], \
|
|
I[736] = I[737], I[737] = I[738], I[738] = I[739], I[739] = I[740], I[740] = I[741], I[741] = I[742], I[742] = I[743], I[743] = I[744], I[744] = I[745], I[745] = I[746], I[746] = I[747], I[747] = I[748], I[748] = I[749], I[749] = I[750], I[750] = I[751], I[751] = I[752], I[752] = I[753], I[753] = I[754], I[754] = I[755], I[755] = I[756], I[756] = I[757], I[757] = I[758], I[758] = I[759], I[759] = I[760], I[760] = I[761], I[761] = I[762], I[762] = I[763], I[763] = I[764], I[764] = I[765], I[765] = I[766], I[766] = I[767], \
|
|
I[768] = I[769], I[769] = I[770], I[770] = I[771], I[771] = I[772], I[772] = I[773], I[773] = I[774], I[774] = I[775], I[775] = I[776], I[776] = I[777], I[777] = I[778], I[778] = I[779], I[779] = I[780], I[780] = I[781], I[781] = I[782], I[782] = I[783], I[783] = I[784], I[784] = I[785], I[785] = I[786], I[786] = I[787], I[787] = I[788], I[788] = I[789], I[789] = I[790], I[790] = I[791], I[791] = I[792], I[792] = I[793], I[793] = I[794], I[794] = I[795], I[795] = I[796], I[796] = I[797], I[797] = I[798], I[798] = I[799], \
|
|
I[800] = I[801], I[801] = I[802], I[802] = I[803], I[803] = I[804], I[804] = I[805], I[805] = I[806], I[806] = I[807], I[807] = I[808], I[808] = I[809], I[809] = I[810], I[810] = I[811], I[811] = I[812], I[812] = I[813], I[813] = I[814], I[814] = I[815], I[815] = I[816], I[816] = I[817], I[817] = I[818], I[818] = I[819], I[819] = I[820], I[820] = I[821], I[821] = I[822], I[822] = I[823], I[823] = I[824], I[824] = I[825], I[825] = I[826], I[826] = I[827], I[827] = I[828], I[828] = I[829], I[829] = I[830], I[830] = I[831], \
|
|
I[832] = I[833], I[833] = I[834], I[834] = I[835], I[835] = I[836], I[836] = I[837], I[837] = I[838], I[838] = I[839], I[839] = I[840], I[840] = I[841], I[841] = I[842], I[842] = I[843], I[843] = I[844], I[844] = I[845], I[845] = I[846], I[846] = I[847], I[847] = I[848], I[848] = I[849], I[849] = I[850], I[850] = I[851], I[851] = I[852], I[852] = I[853], I[853] = I[854], I[854] = I[855], I[855] = I[856], I[856] = I[857], I[857] = I[858], I[858] = I[859], I[859] = I[860], I[860] = I[861], I[861] = I[862], I[862] = I[863], \
|
|
I[864] = I[865], I[865] = I[866], I[866] = I[867], I[867] = I[868], I[868] = I[869], I[869] = I[870], I[870] = I[871], I[871] = I[872], I[872] = I[873], I[873] = I[874], I[874] = I[875], I[875] = I[876], I[876] = I[877], I[877] = I[878], I[878] = I[879], I[879] = I[880], I[880] = I[881], I[881] = I[882], I[882] = I[883], I[883] = I[884], I[884] = I[885], I[885] = I[886], I[886] = I[887], I[887] = I[888], I[888] = I[889], I[889] = I[890], I[890] = I[891], I[891] = I[892], I[892] = I[893], I[893] = I[894], I[894] = I[895], \
|
|
I[896] = I[897], I[897] = I[898], I[898] = I[899], I[899] = I[900], I[900] = I[901], I[901] = I[902], I[902] = I[903], I[903] = I[904], I[904] = I[905], I[905] = I[906], I[906] = I[907], I[907] = I[908], I[908] = I[909], I[909] = I[910], I[910] = I[911], I[911] = I[912], I[912] = I[913], I[913] = I[914], I[914] = I[915], I[915] = I[916], I[916] = I[917], I[917] = I[918], I[918] = I[919], I[919] = I[920], I[920] = I[921], I[921] = I[922], I[922] = I[923], I[923] = I[924], I[924] = I[925], I[925] = I[926], I[926] = I[927], \
|
|
I[928] = I[929], I[929] = I[930], I[930] = I[931], I[931] = I[932], I[932] = I[933], I[933] = I[934], I[934] = I[935], I[935] = I[936], I[936] = I[937], I[937] = I[938], I[938] = I[939], I[939] = I[940], I[940] = I[941], I[941] = I[942], I[942] = I[943], I[943] = I[944], I[944] = I[945], I[945] = I[946], I[946] = I[947], I[947] = I[948], I[948] = I[949], I[949] = I[950], I[950] = I[951], I[951] = I[952], I[952] = I[953], I[953] = I[954], I[954] = I[955], I[955] = I[956], I[956] = I[957], I[957] = I[958], I[958] = I[959], \
|
|
I[960] = I[961], I[961] = I[962], I[962] = I[963], I[963] = I[964], I[964] = I[965], I[965] = I[966], I[966] = I[967], I[967] = I[968], I[968] = I[969], I[969] = I[970], I[970] = I[971], I[971] = I[972], I[972] = I[973], I[973] = I[974], I[974] = I[975], I[975] = I[976], I[976] = I[977], I[977] = I[978], I[978] = I[979], I[979] = I[980], I[980] = I[981], I[981] = I[982], I[982] = I[983], I[983] = I[984], I[984] = I[985], I[985] = I[986], I[986] = I[987], I[987] = I[988], I[988] = I[989], I[989] = I[990], I[990] = I[991], \
|
|
I[992] = I[993], I[993] = I[994], I[994] = I[995], I[995] = I[996], I[996] = I[997], I[997] = I[998], I[998] = I[999], I[999] = I[1000], I[1000] = I[1001], I[1001] = I[1002], I[1002] = I[1003], I[1003] = I[1004], I[1004] = I[1005], I[1005] = I[1006], I[1006] = I[1007], I[1007] = I[1008], I[1008] = I[1009], I[1009] = I[1010], I[1010] = I[1011], I[1011] = I[1012], I[1012] = I[1013], I[1013] = I[1014], I[1014] = I[1015], I[1015] = I[1016], I[1016] = I[1017], I[1017] = I[1018], I[1018] = I[1019], I[1019] = I[1020], I[1020] = I[1021], I[1021] = I[1022], I[1022] = I[1023], \
|
|
_p15##x = _p14##x, _p14##x = _p13##x, _p13##x = _p12##x, _p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x, ++_n13##x, ++_n14##x, ++_n15##x, ++_n16##x)
|
|
|
|
#define cimg_get32x32(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p15##x,_p15##y,z,c), I[1] = (T)(img)(_p14##x,_p15##y,z,c), I[2] = (T)(img)(_p13##x,_p15##y,z,c), I[3] = (T)(img)(_p12##x,_p15##y,z,c), I[4] = (T)(img)(_p11##x,_p15##y,z,c), I[5] = (T)(img)(_p10##x,_p15##y,z,c), I[6] = (T)(img)(_p9##x,_p15##y,z,c), I[7] = (T)(img)(_p8##x,_p15##y,z,c), I[8] = (T)(img)(_p7##x,_p15##y,z,c), I[9] = (T)(img)(_p6##x,_p15##y,z,c), I[10] = (T)(img)(_p5##x,_p15##y,z,c), I[11] = (T)(img)(_p4##x,_p15##y,z,c), I[12] = (T)(img)(_p3##x,_p15##y,z,c), I[13] = (T)(img)(_p2##x,_p15##y,z,c), I[14] = (T)(img)(_p1##x,_p15##y,z,c), I[15] = (T)(img)(x,_p15##y,z,c), I[16] = (T)(img)(_n1##x,_p15##y,z,c), I[17] = (T)(img)(_n2##x,_p15##y,z,c), I[18] = (T)(img)(_n3##x,_p15##y,z,c), I[19] = (T)(img)(_n4##x,_p15##y,z,c), I[20] = (T)(img)(_n5##x,_p15##y,z,c), I[21] = (T)(img)(_n6##x,_p15##y,z,c), I[22] = (T)(img)(_n7##x,_p15##y,z,c), I[23] = (T)(img)(_n8##x,_p15##y,z,c), I[24] = (T)(img)(_n9##x,_p15##y,z,c), I[25] = (T)(img)(_n10##x,_p15##y,z,c), I[26] = (T)(img)(_n11##x,_p15##y,z,c), I[27] = (T)(img)(_n12##x,_p15##y,z,c), I[28] = (T)(img)(_n13##x,_p15##y,z,c), I[29] = (T)(img)(_n14##x,_p15##y,z,c), I[30] = (T)(img)(_n15##x,_p15##y,z,c), I[31] = (T)(img)(_n16##x,_p15##y,z,c), \
|
|
I[32] = (T)(img)(_p15##x,_p14##y,z,c), I[33] = (T)(img)(_p14##x,_p14##y,z,c), I[34] = (T)(img)(_p13##x,_p14##y,z,c), I[35] = (T)(img)(_p12##x,_p14##y,z,c), I[36] = (T)(img)(_p11##x,_p14##y,z,c), I[37] = (T)(img)(_p10##x,_p14##y,z,c), I[38] = (T)(img)(_p9##x,_p14##y,z,c), I[39] = (T)(img)(_p8##x,_p14##y,z,c), I[40] = (T)(img)(_p7##x,_p14##y,z,c), I[41] = (T)(img)(_p6##x,_p14##y,z,c), I[42] = (T)(img)(_p5##x,_p14##y,z,c), I[43] = (T)(img)(_p4##x,_p14##y,z,c), I[44] = (T)(img)(_p3##x,_p14##y,z,c), I[45] = (T)(img)(_p2##x,_p14##y,z,c), I[46] = (T)(img)(_p1##x,_p14##y,z,c), I[47] = (T)(img)(x,_p14##y,z,c), I[48] = (T)(img)(_n1##x,_p14##y,z,c), I[49] = (T)(img)(_n2##x,_p14##y,z,c), I[50] = (T)(img)(_n3##x,_p14##y,z,c), I[51] = (T)(img)(_n4##x,_p14##y,z,c), I[52] = (T)(img)(_n5##x,_p14##y,z,c), I[53] = (T)(img)(_n6##x,_p14##y,z,c), I[54] = (T)(img)(_n7##x,_p14##y,z,c), I[55] = (T)(img)(_n8##x,_p14##y,z,c), I[56] = (T)(img)(_n9##x,_p14##y,z,c), I[57] = (T)(img)(_n10##x,_p14##y,z,c), I[58] = (T)(img)(_n11##x,_p14##y,z,c), I[59] = (T)(img)(_n12##x,_p14##y,z,c), I[60] = (T)(img)(_n13##x,_p14##y,z,c), I[61] = (T)(img)(_n14##x,_p14##y,z,c), I[62] = (T)(img)(_n15##x,_p14##y,z,c), I[63] = (T)(img)(_n16##x,_p14##y,z,c), \
|
|
I[64] = (T)(img)(_p15##x,_p13##y,z,c), I[65] = (T)(img)(_p14##x,_p13##y,z,c), I[66] = (T)(img)(_p13##x,_p13##y,z,c), I[67] = (T)(img)(_p12##x,_p13##y,z,c), I[68] = (T)(img)(_p11##x,_p13##y,z,c), I[69] = (T)(img)(_p10##x,_p13##y,z,c), I[70] = (T)(img)(_p9##x,_p13##y,z,c), I[71] = (T)(img)(_p8##x,_p13##y,z,c), I[72] = (T)(img)(_p7##x,_p13##y,z,c), I[73] = (T)(img)(_p6##x,_p13##y,z,c), I[74] = (T)(img)(_p5##x,_p13##y,z,c), I[75] = (T)(img)(_p4##x,_p13##y,z,c), I[76] = (T)(img)(_p3##x,_p13##y,z,c), I[77] = (T)(img)(_p2##x,_p13##y,z,c), I[78] = (T)(img)(_p1##x,_p13##y,z,c), I[79] = (T)(img)(x,_p13##y,z,c), I[80] = (T)(img)(_n1##x,_p13##y,z,c), I[81] = (T)(img)(_n2##x,_p13##y,z,c), I[82] = (T)(img)(_n3##x,_p13##y,z,c), I[83] = (T)(img)(_n4##x,_p13##y,z,c), I[84] = (T)(img)(_n5##x,_p13##y,z,c), I[85] = (T)(img)(_n6##x,_p13##y,z,c), I[86] = (T)(img)(_n7##x,_p13##y,z,c), I[87] = (T)(img)(_n8##x,_p13##y,z,c), I[88] = (T)(img)(_n9##x,_p13##y,z,c), I[89] = (T)(img)(_n10##x,_p13##y,z,c), I[90] = (T)(img)(_n11##x,_p13##y,z,c), I[91] = (T)(img)(_n12##x,_p13##y,z,c), I[92] = (T)(img)(_n13##x,_p13##y,z,c), I[93] = (T)(img)(_n14##x,_p13##y,z,c), I[94] = (T)(img)(_n15##x,_p13##y,z,c), I[95] = (T)(img)(_n16##x,_p13##y,z,c), \
|
|
I[96] = (T)(img)(_p15##x,_p12##y,z,c), I[97] = (T)(img)(_p14##x,_p12##y,z,c), I[98] = (T)(img)(_p13##x,_p12##y,z,c), I[99] = (T)(img)(_p12##x,_p12##y,z,c), I[100] = (T)(img)(_p11##x,_p12##y,z,c), I[101] = (T)(img)(_p10##x,_p12##y,z,c), I[102] = (T)(img)(_p9##x,_p12##y,z,c), I[103] = (T)(img)(_p8##x,_p12##y,z,c), I[104] = (T)(img)(_p7##x,_p12##y,z,c), I[105] = (T)(img)(_p6##x,_p12##y,z,c), I[106] = (T)(img)(_p5##x,_p12##y,z,c), I[107] = (T)(img)(_p4##x,_p12##y,z,c), I[108] = (T)(img)(_p3##x,_p12##y,z,c), I[109] = (T)(img)(_p2##x,_p12##y,z,c), I[110] = (T)(img)(_p1##x,_p12##y,z,c), I[111] = (T)(img)(x,_p12##y,z,c), I[112] = (T)(img)(_n1##x,_p12##y,z,c), I[113] = (T)(img)(_n2##x,_p12##y,z,c), I[114] = (T)(img)(_n3##x,_p12##y,z,c), I[115] = (T)(img)(_n4##x,_p12##y,z,c), I[116] = (T)(img)(_n5##x,_p12##y,z,c), I[117] = (T)(img)(_n6##x,_p12##y,z,c), I[118] = (T)(img)(_n7##x,_p12##y,z,c), I[119] = (T)(img)(_n8##x,_p12##y,z,c), I[120] = (T)(img)(_n9##x,_p12##y,z,c), I[121] = (T)(img)(_n10##x,_p12##y,z,c), I[122] = (T)(img)(_n11##x,_p12##y,z,c), I[123] = (T)(img)(_n12##x,_p12##y,z,c), I[124] = (T)(img)(_n13##x,_p12##y,z,c), I[125] = (T)(img)(_n14##x,_p12##y,z,c), I[126] = (T)(img)(_n15##x,_p12##y,z,c), I[127] = (T)(img)(_n16##x,_p12##y,z,c), \
|
|
I[128] = (T)(img)(_p15##x,_p11##y,z,c), I[129] = (T)(img)(_p14##x,_p11##y,z,c), I[130] = (T)(img)(_p13##x,_p11##y,z,c), I[131] = (T)(img)(_p12##x,_p11##y,z,c), I[132] = (T)(img)(_p11##x,_p11##y,z,c), I[133] = (T)(img)(_p10##x,_p11##y,z,c), I[134] = (T)(img)(_p9##x,_p11##y,z,c), I[135] = (T)(img)(_p8##x,_p11##y,z,c), I[136] = (T)(img)(_p7##x,_p11##y,z,c), I[137] = (T)(img)(_p6##x,_p11##y,z,c), I[138] = (T)(img)(_p5##x,_p11##y,z,c), I[139] = (T)(img)(_p4##x,_p11##y,z,c), I[140] = (T)(img)(_p3##x,_p11##y,z,c), I[141] = (T)(img)(_p2##x,_p11##y,z,c), I[142] = (T)(img)(_p1##x,_p11##y,z,c), I[143] = (T)(img)(x,_p11##y,z,c), I[144] = (T)(img)(_n1##x,_p11##y,z,c), I[145] = (T)(img)(_n2##x,_p11##y,z,c), I[146] = (T)(img)(_n3##x,_p11##y,z,c), I[147] = (T)(img)(_n4##x,_p11##y,z,c), I[148] = (T)(img)(_n5##x,_p11##y,z,c), I[149] = (T)(img)(_n6##x,_p11##y,z,c), I[150] = (T)(img)(_n7##x,_p11##y,z,c), I[151] = (T)(img)(_n8##x,_p11##y,z,c), I[152] = (T)(img)(_n9##x,_p11##y,z,c), I[153] = (T)(img)(_n10##x,_p11##y,z,c), I[154] = (T)(img)(_n11##x,_p11##y,z,c), I[155] = (T)(img)(_n12##x,_p11##y,z,c), I[156] = (T)(img)(_n13##x,_p11##y,z,c), I[157] = (T)(img)(_n14##x,_p11##y,z,c), I[158] = (T)(img)(_n15##x,_p11##y,z,c), I[159] = (T)(img)(_n16##x,_p11##y,z,c), \
|
|
I[160] = (T)(img)(_p15##x,_p10##y,z,c), I[161] = (T)(img)(_p14##x,_p10##y,z,c), I[162] = (T)(img)(_p13##x,_p10##y,z,c), I[163] = (T)(img)(_p12##x,_p10##y,z,c), I[164] = (T)(img)(_p11##x,_p10##y,z,c), I[165] = (T)(img)(_p10##x,_p10##y,z,c), I[166] = (T)(img)(_p9##x,_p10##y,z,c), I[167] = (T)(img)(_p8##x,_p10##y,z,c), I[168] = (T)(img)(_p7##x,_p10##y,z,c), I[169] = (T)(img)(_p6##x,_p10##y,z,c), I[170] = (T)(img)(_p5##x,_p10##y,z,c), I[171] = (T)(img)(_p4##x,_p10##y,z,c), I[172] = (T)(img)(_p3##x,_p10##y,z,c), I[173] = (T)(img)(_p2##x,_p10##y,z,c), I[174] = (T)(img)(_p1##x,_p10##y,z,c), I[175] = (T)(img)(x,_p10##y,z,c), I[176] = (T)(img)(_n1##x,_p10##y,z,c), I[177] = (T)(img)(_n2##x,_p10##y,z,c), I[178] = (T)(img)(_n3##x,_p10##y,z,c), I[179] = (T)(img)(_n4##x,_p10##y,z,c), I[180] = (T)(img)(_n5##x,_p10##y,z,c), I[181] = (T)(img)(_n6##x,_p10##y,z,c), I[182] = (T)(img)(_n7##x,_p10##y,z,c), I[183] = (T)(img)(_n8##x,_p10##y,z,c), I[184] = (T)(img)(_n9##x,_p10##y,z,c), I[185] = (T)(img)(_n10##x,_p10##y,z,c), I[186] = (T)(img)(_n11##x,_p10##y,z,c), I[187] = (T)(img)(_n12##x,_p10##y,z,c), I[188] = (T)(img)(_n13##x,_p10##y,z,c), I[189] = (T)(img)(_n14##x,_p10##y,z,c), I[190] = (T)(img)(_n15##x,_p10##y,z,c), I[191] = (T)(img)(_n16##x,_p10##y,z,c), \
|
|
I[192] = (T)(img)(_p15##x,_p9##y,z,c), I[193] = (T)(img)(_p14##x,_p9##y,z,c), I[194] = (T)(img)(_p13##x,_p9##y,z,c), I[195] = (T)(img)(_p12##x,_p9##y,z,c), I[196] = (T)(img)(_p11##x,_p9##y,z,c), I[197] = (T)(img)(_p10##x,_p9##y,z,c), I[198] = (T)(img)(_p9##x,_p9##y,z,c), I[199] = (T)(img)(_p8##x,_p9##y,z,c), I[200] = (T)(img)(_p7##x,_p9##y,z,c), I[201] = (T)(img)(_p6##x,_p9##y,z,c), I[202] = (T)(img)(_p5##x,_p9##y,z,c), I[203] = (T)(img)(_p4##x,_p9##y,z,c), I[204] = (T)(img)(_p3##x,_p9##y,z,c), I[205] = (T)(img)(_p2##x,_p9##y,z,c), I[206] = (T)(img)(_p1##x,_p9##y,z,c), I[207] = (T)(img)(x,_p9##y,z,c), I[208] = (T)(img)(_n1##x,_p9##y,z,c), I[209] = (T)(img)(_n2##x,_p9##y,z,c), I[210] = (T)(img)(_n3##x,_p9##y,z,c), I[211] = (T)(img)(_n4##x,_p9##y,z,c), I[212] = (T)(img)(_n5##x,_p9##y,z,c), I[213] = (T)(img)(_n6##x,_p9##y,z,c), I[214] = (T)(img)(_n7##x,_p9##y,z,c), I[215] = (T)(img)(_n8##x,_p9##y,z,c), I[216] = (T)(img)(_n9##x,_p9##y,z,c), I[217] = (T)(img)(_n10##x,_p9##y,z,c), I[218] = (T)(img)(_n11##x,_p9##y,z,c), I[219] = (T)(img)(_n12##x,_p9##y,z,c), I[220] = (T)(img)(_n13##x,_p9##y,z,c), I[221] = (T)(img)(_n14##x,_p9##y,z,c), I[222] = (T)(img)(_n15##x,_p9##y,z,c), I[223] = (T)(img)(_n16##x,_p9##y,z,c), \
|
|
I[224] = (T)(img)(_p15##x,_p8##y,z,c), I[225] = (T)(img)(_p14##x,_p8##y,z,c), I[226] = (T)(img)(_p13##x,_p8##y,z,c), I[227] = (T)(img)(_p12##x,_p8##y,z,c), I[228] = (T)(img)(_p11##x,_p8##y,z,c), I[229] = (T)(img)(_p10##x,_p8##y,z,c), I[230] = (T)(img)(_p9##x,_p8##y,z,c), I[231] = (T)(img)(_p8##x,_p8##y,z,c), I[232] = (T)(img)(_p7##x,_p8##y,z,c), I[233] = (T)(img)(_p6##x,_p8##y,z,c), I[234] = (T)(img)(_p5##x,_p8##y,z,c), I[235] = (T)(img)(_p4##x,_p8##y,z,c), I[236] = (T)(img)(_p3##x,_p8##y,z,c), I[237] = (T)(img)(_p2##x,_p8##y,z,c), I[238] = (T)(img)(_p1##x,_p8##y,z,c), I[239] = (T)(img)(x,_p8##y,z,c), I[240] = (T)(img)(_n1##x,_p8##y,z,c), I[241] = (T)(img)(_n2##x,_p8##y,z,c), I[242] = (T)(img)(_n3##x,_p8##y,z,c), I[243] = (T)(img)(_n4##x,_p8##y,z,c), I[244] = (T)(img)(_n5##x,_p8##y,z,c), I[245] = (T)(img)(_n6##x,_p8##y,z,c), I[246] = (T)(img)(_n7##x,_p8##y,z,c), I[247] = (T)(img)(_n8##x,_p8##y,z,c), I[248] = (T)(img)(_n9##x,_p8##y,z,c), I[249] = (T)(img)(_n10##x,_p8##y,z,c), I[250] = (T)(img)(_n11##x,_p8##y,z,c), I[251] = (T)(img)(_n12##x,_p8##y,z,c), I[252] = (T)(img)(_n13##x,_p8##y,z,c), I[253] = (T)(img)(_n14##x,_p8##y,z,c), I[254] = (T)(img)(_n15##x,_p8##y,z,c), I[255] = (T)(img)(_n16##x,_p8##y,z,c), \
|
|
I[256] = (T)(img)(_p15##x,_p7##y,z,c), I[257] = (T)(img)(_p14##x,_p7##y,z,c), I[258] = (T)(img)(_p13##x,_p7##y,z,c), I[259] = (T)(img)(_p12##x,_p7##y,z,c), I[260] = (T)(img)(_p11##x,_p7##y,z,c), I[261] = (T)(img)(_p10##x,_p7##y,z,c), I[262] = (T)(img)(_p9##x,_p7##y,z,c), I[263] = (T)(img)(_p8##x,_p7##y,z,c), I[264] = (T)(img)(_p7##x,_p7##y,z,c), I[265] = (T)(img)(_p6##x,_p7##y,z,c), I[266] = (T)(img)(_p5##x,_p7##y,z,c), I[267] = (T)(img)(_p4##x,_p7##y,z,c), I[268] = (T)(img)(_p3##x,_p7##y,z,c), I[269] = (T)(img)(_p2##x,_p7##y,z,c), I[270] = (T)(img)(_p1##x,_p7##y,z,c), I[271] = (T)(img)(x,_p7##y,z,c), I[272] = (T)(img)(_n1##x,_p7##y,z,c), I[273] = (T)(img)(_n2##x,_p7##y,z,c), I[274] = (T)(img)(_n3##x,_p7##y,z,c), I[275] = (T)(img)(_n4##x,_p7##y,z,c), I[276] = (T)(img)(_n5##x,_p7##y,z,c), I[277] = (T)(img)(_n6##x,_p7##y,z,c), I[278] = (T)(img)(_n7##x,_p7##y,z,c), I[279] = (T)(img)(_n8##x,_p7##y,z,c), I[280] = (T)(img)(_n9##x,_p7##y,z,c), I[281] = (T)(img)(_n10##x,_p7##y,z,c), I[282] = (T)(img)(_n11##x,_p7##y,z,c), I[283] = (T)(img)(_n12##x,_p7##y,z,c), I[284] = (T)(img)(_n13##x,_p7##y,z,c), I[285] = (T)(img)(_n14##x,_p7##y,z,c), I[286] = (T)(img)(_n15##x,_p7##y,z,c), I[287] = (T)(img)(_n16##x,_p7##y,z,c), \
|
|
I[288] = (T)(img)(_p15##x,_p6##y,z,c), I[289] = (T)(img)(_p14##x,_p6##y,z,c), I[290] = (T)(img)(_p13##x,_p6##y,z,c), I[291] = (T)(img)(_p12##x,_p6##y,z,c), I[292] = (T)(img)(_p11##x,_p6##y,z,c), I[293] = (T)(img)(_p10##x,_p6##y,z,c), I[294] = (T)(img)(_p9##x,_p6##y,z,c), I[295] = (T)(img)(_p8##x,_p6##y,z,c), I[296] = (T)(img)(_p7##x,_p6##y,z,c), I[297] = (T)(img)(_p6##x,_p6##y,z,c), I[298] = (T)(img)(_p5##x,_p6##y,z,c), I[299] = (T)(img)(_p4##x,_p6##y,z,c), I[300] = (T)(img)(_p3##x,_p6##y,z,c), I[301] = (T)(img)(_p2##x,_p6##y,z,c), I[302] = (T)(img)(_p1##x,_p6##y,z,c), I[303] = (T)(img)(x,_p6##y,z,c), I[304] = (T)(img)(_n1##x,_p6##y,z,c), I[305] = (T)(img)(_n2##x,_p6##y,z,c), I[306] = (T)(img)(_n3##x,_p6##y,z,c), I[307] = (T)(img)(_n4##x,_p6##y,z,c), I[308] = (T)(img)(_n5##x,_p6##y,z,c), I[309] = (T)(img)(_n6##x,_p6##y,z,c), I[310] = (T)(img)(_n7##x,_p6##y,z,c), I[311] = (T)(img)(_n8##x,_p6##y,z,c), I[312] = (T)(img)(_n9##x,_p6##y,z,c), I[313] = (T)(img)(_n10##x,_p6##y,z,c), I[314] = (T)(img)(_n11##x,_p6##y,z,c), I[315] = (T)(img)(_n12##x,_p6##y,z,c), I[316] = (T)(img)(_n13##x,_p6##y,z,c), I[317] = (T)(img)(_n14##x,_p6##y,z,c), I[318] = (T)(img)(_n15##x,_p6##y,z,c), I[319] = (T)(img)(_n16##x,_p6##y,z,c), \
|
|
I[320] = (T)(img)(_p15##x,_p5##y,z,c), I[321] = (T)(img)(_p14##x,_p5##y,z,c), I[322] = (T)(img)(_p13##x,_p5##y,z,c), I[323] = (T)(img)(_p12##x,_p5##y,z,c), I[324] = (T)(img)(_p11##x,_p5##y,z,c), I[325] = (T)(img)(_p10##x,_p5##y,z,c), I[326] = (T)(img)(_p9##x,_p5##y,z,c), I[327] = (T)(img)(_p8##x,_p5##y,z,c), I[328] = (T)(img)(_p7##x,_p5##y,z,c), I[329] = (T)(img)(_p6##x,_p5##y,z,c), I[330] = (T)(img)(_p5##x,_p5##y,z,c), I[331] = (T)(img)(_p4##x,_p5##y,z,c), I[332] = (T)(img)(_p3##x,_p5##y,z,c), I[333] = (T)(img)(_p2##x,_p5##y,z,c), I[334] = (T)(img)(_p1##x,_p5##y,z,c), I[335] = (T)(img)(x,_p5##y,z,c), I[336] = (T)(img)(_n1##x,_p5##y,z,c), I[337] = (T)(img)(_n2##x,_p5##y,z,c), I[338] = (T)(img)(_n3##x,_p5##y,z,c), I[339] = (T)(img)(_n4##x,_p5##y,z,c), I[340] = (T)(img)(_n5##x,_p5##y,z,c), I[341] = (T)(img)(_n6##x,_p5##y,z,c), I[342] = (T)(img)(_n7##x,_p5##y,z,c), I[343] = (T)(img)(_n8##x,_p5##y,z,c), I[344] = (T)(img)(_n9##x,_p5##y,z,c), I[345] = (T)(img)(_n10##x,_p5##y,z,c), I[346] = (T)(img)(_n11##x,_p5##y,z,c), I[347] = (T)(img)(_n12##x,_p5##y,z,c), I[348] = (T)(img)(_n13##x,_p5##y,z,c), I[349] = (T)(img)(_n14##x,_p5##y,z,c), I[350] = (T)(img)(_n15##x,_p5##y,z,c), I[351] = (T)(img)(_n16##x,_p5##y,z,c), \
|
|
I[352] = (T)(img)(_p15##x,_p4##y,z,c), I[353] = (T)(img)(_p14##x,_p4##y,z,c), I[354] = (T)(img)(_p13##x,_p4##y,z,c), I[355] = (T)(img)(_p12##x,_p4##y,z,c), I[356] = (T)(img)(_p11##x,_p4##y,z,c), I[357] = (T)(img)(_p10##x,_p4##y,z,c), I[358] = (T)(img)(_p9##x,_p4##y,z,c), I[359] = (T)(img)(_p8##x,_p4##y,z,c), I[360] = (T)(img)(_p7##x,_p4##y,z,c), I[361] = (T)(img)(_p6##x,_p4##y,z,c), I[362] = (T)(img)(_p5##x,_p4##y,z,c), I[363] = (T)(img)(_p4##x,_p4##y,z,c), I[364] = (T)(img)(_p3##x,_p4##y,z,c), I[365] = (T)(img)(_p2##x,_p4##y,z,c), I[366] = (T)(img)(_p1##x,_p4##y,z,c), I[367] = (T)(img)(x,_p4##y,z,c), I[368] = (T)(img)(_n1##x,_p4##y,z,c), I[369] = (T)(img)(_n2##x,_p4##y,z,c), I[370] = (T)(img)(_n3##x,_p4##y,z,c), I[371] = (T)(img)(_n4##x,_p4##y,z,c), I[372] = (T)(img)(_n5##x,_p4##y,z,c), I[373] = (T)(img)(_n6##x,_p4##y,z,c), I[374] = (T)(img)(_n7##x,_p4##y,z,c), I[375] = (T)(img)(_n8##x,_p4##y,z,c), I[376] = (T)(img)(_n9##x,_p4##y,z,c), I[377] = (T)(img)(_n10##x,_p4##y,z,c), I[378] = (T)(img)(_n11##x,_p4##y,z,c), I[379] = (T)(img)(_n12##x,_p4##y,z,c), I[380] = (T)(img)(_n13##x,_p4##y,z,c), I[381] = (T)(img)(_n14##x,_p4##y,z,c), I[382] = (T)(img)(_n15##x,_p4##y,z,c), I[383] = (T)(img)(_n16##x,_p4##y,z,c), \
|
|
I[384] = (T)(img)(_p15##x,_p3##y,z,c), I[385] = (T)(img)(_p14##x,_p3##y,z,c), I[386] = (T)(img)(_p13##x,_p3##y,z,c), I[387] = (T)(img)(_p12##x,_p3##y,z,c), I[388] = (T)(img)(_p11##x,_p3##y,z,c), I[389] = (T)(img)(_p10##x,_p3##y,z,c), I[390] = (T)(img)(_p9##x,_p3##y,z,c), I[391] = (T)(img)(_p8##x,_p3##y,z,c), I[392] = (T)(img)(_p7##x,_p3##y,z,c), I[393] = (T)(img)(_p6##x,_p3##y,z,c), I[394] = (T)(img)(_p5##x,_p3##y,z,c), I[395] = (T)(img)(_p4##x,_p3##y,z,c), I[396] = (T)(img)(_p3##x,_p3##y,z,c), I[397] = (T)(img)(_p2##x,_p3##y,z,c), I[398] = (T)(img)(_p1##x,_p3##y,z,c), I[399] = (T)(img)(x,_p3##y,z,c), I[400] = (T)(img)(_n1##x,_p3##y,z,c), I[401] = (T)(img)(_n2##x,_p3##y,z,c), I[402] = (T)(img)(_n3##x,_p3##y,z,c), I[403] = (T)(img)(_n4##x,_p3##y,z,c), I[404] = (T)(img)(_n5##x,_p3##y,z,c), I[405] = (T)(img)(_n6##x,_p3##y,z,c), I[406] = (T)(img)(_n7##x,_p3##y,z,c), I[407] = (T)(img)(_n8##x,_p3##y,z,c), I[408] = (T)(img)(_n9##x,_p3##y,z,c), I[409] = (T)(img)(_n10##x,_p3##y,z,c), I[410] = (T)(img)(_n11##x,_p3##y,z,c), I[411] = (T)(img)(_n12##x,_p3##y,z,c), I[412] = (T)(img)(_n13##x,_p3##y,z,c), I[413] = (T)(img)(_n14##x,_p3##y,z,c), I[414] = (T)(img)(_n15##x,_p3##y,z,c), I[415] = (T)(img)(_n16##x,_p3##y,z,c), \
|
|
I[416] = (T)(img)(_p15##x,_p2##y,z,c), I[417] = (T)(img)(_p14##x,_p2##y,z,c), I[418] = (T)(img)(_p13##x,_p2##y,z,c), I[419] = (T)(img)(_p12##x,_p2##y,z,c), I[420] = (T)(img)(_p11##x,_p2##y,z,c), I[421] = (T)(img)(_p10##x,_p2##y,z,c), I[422] = (T)(img)(_p9##x,_p2##y,z,c), I[423] = (T)(img)(_p8##x,_p2##y,z,c), I[424] = (T)(img)(_p7##x,_p2##y,z,c), I[425] = (T)(img)(_p6##x,_p2##y,z,c), I[426] = (T)(img)(_p5##x,_p2##y,z,c), I[427] = (T)(img)(_p4##x,_p2##y,z,c), I[428] = (T)(img)(_p3##x,_p2##y,z,c), I[429] = (T)(img)(_p2##x,_p2##y,z,c), I[430] = (T)(img)(_p1##x,_p2##y,z,c), I[431] = (T)(img)(x,_p2##y,z,c), I[432] = (T)(img)(_n1##x,_p2##y,z,c), I[433] = (T)(img)(_n2##x,_p2##y,z,c), I[434] = (T)(img)(_n3##x,_p2##y,z,c), I[435] = (T)(img)(_n4##x,_p2##y,z,c), I[436] = (T)(img)(_n5##x,_p2##y,z,c), I[437] = (T)(img)(_n6##x,_p2##y,z,c), I[438] = (T)(img)(_n7##x,_p2##y,z,c), I[439] = (T)(img)(_n8##x,_p2##y,z,c), I[440] = (T)(img)(_n9##x,_p2##y,z,c), I[441] = (T)(img)(_n10##x,_p2##y,z,c), I[442] = (T)(img)(_n11##x,_p2##y,z,c), I[443] = (T)(img)(_n12##x,_p2##y,z,c), I[444] = (T)(img)(_n13##x,_p2##y,z,c), I[445] = (T)(img)(_n14##x,_p2##y,z,c), I[446] = (T)(img)(_n15##x,_p2##y,z,c), I[447] = (T)(img)(_n16##x,_p2##y,z,c), \
|
|
I[448] = (T)(img)(_p15##x,_p1##y,z,c), I[449] = (T)(img)(_p14##x,_p1##y,z,c), I[450] = (T)(img)(_p13##x,_p1##y,z,c), I[451] = (T)(img)(_p12##x,_p1##y,z,c), I[452] = (T)(img)(_p11##x,_p1##y,z,c), I[453] = (T)(img)(_p10##x,_p1##y,z,c), I[454] = (T)(img)(_p9##x,_p1##y,z,c), I[455] = (T)(img)(_p8##x,_p1##y,z,c), I[456] = (T)(img)(_p7##x,_p1##y,z,c), I[457] = (T)(img)(_p6##x,_p1##y,z,c), I[458] = (T)(img)(_p5##x,_p1##y,z,c), I[459] = (T)(img)(_p4##x,_p1##y,z,c), I[460] = (T)(img)(_p3##x,_p1##y,z,c), I[461] = (T)(img)(_p2##x,_p1##y,z,c), I[462] = (T)(img)(_p1##x,_p1##y,z,c), I[463] = (T)(img)(x,_p1##y,z,c), I[464] = (T)(img)(_n1##x,_p1##y,z,c), I[465] = (T)(img)(_n2##x,_p1##y,z,c), I[466] = (T)(img)(_n3##x,_p1##y,z,c), I[467] = (T)(img)(_n4##x,_p1##y,z,c), I[468] = (T)(img)(_n5##x,_p1##y,z,c), I[469] = (T)(img)(_n6##x,_p1##y,z,c), I[470] = (T)(img)(_n7##x,_p1##y,z,c), I[471] = (T)(img)(_n8##x,_p1##y,z,c), I[472] = (T)(img)(_n9##x,_p1##y,z,c), I[473] = (T)(img)(_n10##x,_p1##y,z,c), I[474] = (T)(img)(_n11##x,_p1##y,z,c), I[475] = (T)(img)(_n12##x,_p1##y,z,c), I[476] = (T)(img)(_n13##x,_p1##y,z,c), I[477] = (T)(img)(_n14##x,_p1##y,z,c), I[478] = (T)(img)(_n15##x,_p1##y,z,c), I[479] = (T)(img)(_n16##x,_p1##y,z,c), \
|
|
I[480] = (T)(img)(_p15##x,y,z,c), I[481] = (T)(img)(_p14##x,y,z,c), I[482] = (T)(img)(_p13##x,y,z,c), I[483] = (T)(img)(_p12##x,y,z,c), I[484] = (T)(img)(_p11##x,y,z,c), I[485] = (T)(img)(_p10##x,y,z,c), I[486] = (T)(img)(_p9##x,y,z,c), I[487] = (T)(img)(_p8##x,y,z,c), I[488] = (T)(img)(_p7##x,y,z,c), I[489] = (T)(img)(_p6##x,y,z,c), I[490] = (T)(img)(_p5##x,y,z,c), I[491] = (T)(img)(_p4##x,y,z,c), I[492] = (T)(img)(_p3##x,y,z,c), I[493] = (T)(img)(_p2##x,y,z,c), I[494] = (T)(img)(_p1##x,y,z,c), I[495] = (T)(img)(x,y,z,c), I[496] = (T)(img)(_n1##x,y,z,c), I[497] = (T)(img)(_n2##x,y,z,c), I[498] = (T)(img)(_n3##x,y,z,c), I[499] = (T)(img)(_n4##x,y,z,c), I[500] = (T)(img)(_n5##x,y,z,c), I[501] = (T)(img)(_n6##x,y,z,c), I[502] = (T)(img)(_n7##x,y,z,c), I[503] = (T)(img)(_n8##x,y,z,c), I[504] = (T)(img)(_n9##x,y,z,c), I[505] = (T)(img)(_n10##x,y,z,c), I[506] = (T)(img)(_n11##x,y,z,c), I[507] = (T)(img)(_n12##x,y,z,c), I[508] = (T)(img)(_n13##x,y,z,c), I[509] = (T)(img)(_n14##x,y,z,c), I[510] = (T)(img)(_n15##x,y,z,c), I[511] = (T)(img)(_n16##x,y,z,c), \
|
|
I[512] = (T)(img)(_p15##x,_n1##y,z,c), I[513] = (T)(img)(_p14##x,_n1##y,z,c), I[514] = (T)(img)(_p13##x,_n1##y,z,c), I[515] = (T)(img)(_p12##x,_n1##y,z,c), I[516] = (T)(img)(_p11##x,_n1##y,z,c), I[517] = (T)(img)(_p10##x,_n1##y,z,c), I[518] = (T)(img)(_p9##x,_n1##y,z,c), I[519] = (T)(img)(_p8##x,_n1##y,z,c), I[520] = (T)(img)(_p7##x,_n1##y,z,c), I[521] = (T)(img)(_p6##x,_n1##y,z,c), I[522] = (T)(img)(_p5##x,_n1##y,z,c), I[523] = (T)(img)(_p4##x,_n1##y,z,c), I[524] = (T)(img)(_p3##x,_n1##y,z,c), I[525] = (T)(img)(_p2##x,_n1##y,z,c), I[526] = (T)(img)(_p1##x,_n1##y,z,c), I[527] = (T)(img)(x,_n1##y,z,c), I[528] = (T)(img)(_n1##x,_n1##y,z,c), I[529] = (T)(img)(_n2##x,_n1##y,z,c), I[530] = (T)(img)(_n3##x,_n1##y,z,c), I[531] = (T)(img)(_n4##x,_n1##y,z,c), I[532] = (T)(img)(_n5##x,_n1##y,z,c), I[533] = (T)(img)(_n6##x,_n1##y,z,c), I[534] = (T)(img)(_n7##x,_n1##y,z,c), I[535] = (T)(img)(_n8##x,_n1##y,z,c), I[536] = (T)(img)(_n9##x,_n1##y,z,c), I[537] = (T)(img)(_n10##x,_n1##y,z,c), I[538] = (T)(img)(_n11##x,_n1##y,z,c), I[539] = (T)(img)(_n12##x,_n1##y,z,c), I[540] = (T)(img)(_n13##x,_n1##y,z,c), I[541] = (T)(img)(_n14##x,_n1##y,z,c), I[542] = (T)(img)(_n15##x,_n1##y,z,c), I[543] = (T)(img)(_n16##x,_n1##y,z,c), \
|
|
I[544] = (T)(img)(_p15##x,_n2##y,z,c), I[545] = (T)(img)(_p14##x,_n2##y,z,c), I[546] = (T)(img)(_p13##x,_n2##y,z,c), I[547] = (T)(img)(_p12##x,_n2##y,z,c), I[548] = (T)(img)(_p11##x,_n2##y,z,c), I[549] = (T)(img)(_p10##x,_n2##y,z,c), I[550] = (T)(img)(_p9##x,_n2##y,z,c), I[551] = (T)(img)(_p8##x,_n2##y,z,c), I[552] = (T)(img)(_p7##x,_n2##y,z,c), I[553] = (T)(img)(_p6##x,_n2##y,z,c), I[554] = (T)(img)(_p5##x,_n2##y,z,c), I[555] = (T)(img)(_p4##x,_n2##y,z,c), I[556] = (T)(img)(_p3##x,_n2##y,z,c), I[557] = (T)(img)(_p2##x,_n2##y,z,c), I[558] = (T)(img)(_p1##x,_n2##y,z,c), I[559] = (T)(img)(x,_n2##y,z,c), I[560] = (T)(img)(_n1##x,_n2##y,z,c), I[561] = (T)(img)(_n2##x,_n2##y,z,c), I[562] = (T)(img)(_n3##x,_n2##y,z,c), I[563] = (T)(img)(_n4##x,_n2##y,z,c), I[564] = (T)(img)(_n5##x,_n2##y,z,c), I[565] = (T)(img)(_n6##x,_n2##y,z,c), I[566] = (T)(img)(_n7##x,_n2##y,z,c), I[567] = (T)(img)(_n8##x,_n2##y,z,c), I[568] = (T)(img)(_n9##x,_n2##y,z,c), I[569] = (T)(img)(_n10##x,_n2##y,z,c), I[570] = (T)(img)(_n11##x,_n2##y,z,c), I[571] = (T)(img)(_n12##x,_n2##y,z,c), I[572] = (T)(img)(_n13##x,_n2##y,z,c), I[573] = (T)(img)(_n14##x,_n2##y,z,c), I[574] = (T)(img)(_n15##x,_n2##y,z,c), I[575] = (T)(img)(_n16##x,_n2##y,z,c), \
|
|
I[576] = (T)(img)(_p15##x,_n3##y,z,c), I[577] = (T)(img)(_p14##x,_n3##y,z,c), I[578] = (T)(img)(_p13##x,_n3##y,z,c), I[579] = (T)(img)(_p12##x,_n3##y,z,c), I[580] = (T)(img)(_p11##x,_n3##y,z,c), I[581] = (T)(img)(_p10##x,_n3##y,z,c), I[582] = (T)(img)(_p9##x,_n3##y,z,c), I[583] = (T)(img)(_p8##x,_n3##y,z,c), I[584] = (T)(img)(_p7##x,_n3##y,z,c), I[585] = (T)(img)(_p6##x,_n3##y,z,c), I[586] = (T)(img)(_p5##x,_n3##y,z,c), I[587] = (T)(img)(_p4##x,_n3##y,z,c), I[588] = (T)(img)(_p3##x,_n3##y,z,c), I[589] = (T)(img)(_p2##x,_n3##y,z,c), I[590] = (T)(img)(_p1##x,_n3##y,z,c), I[591] = (T)(img)(x,_n3##y,z,c), I[592] = (T)(img)(_n1##x,_n3##y,z,c), I[593] = (T)(img)(_n2##x,_n3##y,z,c), I[594] = (T)(img)(_n3##x,_n3##y,z,c), I[595] = (T)(img)(_n4##x,_n3##y,z,c), I[596] = (T)(img)(_n5##x,_n3##y,z,c), I[597] = (T)(img)(_n6##x,_n3##y,z,c), I[598] = (T)(img)(_n7##x,_n3##y,z,c), I[599] = (T)(img)(_n8##x,_n3##y,z,c), I[600] = (T)(img)(_n9##x,_n3##y,z,c), I[601] = (T)(img)(_n10##x,_n3##y,z,c), I[602] = (T)(img)(_n11##x,_n3##y,z,c), I[603] = (T)(img)(_n12##x,_n3##y,z,c), I[604] = (T)(img)(_n13##x,_n3##y,z,c), I[605] = (T)(img)(_n14##x,_n3##y,z,c), I[606] = (T)(img)(_n15##x,_n3##y,z,c), I[607] = (T)(img)(_n16##x,_n3##y,z,c), \
|
|
I[608] = (T)(img)(_p15##x,_n4##y,z,c), I[609] = (T)(img)(_p14##x,_n4##y,z,c), I[610] = (T)(img)(_p13##x,_n4##y,z,c), I[611] = (T)(img)(_p12##x,_n4##y,z,c), I[612] = (T)(img)(_p11##x,_n4##y,z,c), I[613] = (T)(img)(_p10##x,_n4##y,z,c), I[614] = (T)(img)(_p9##x,_n4##y,z,c), I[615] = (T)(img)(_p8##x,_n4##y,z,c), I[616] = (T)(img)(_p7##x,_n4##y,z,c), I[617] = (T)(img)(_p6##x,_n4##y,z,c), I[618] = (T)(img)(_p5##x,_n4##y,z,c), I[619] = (T)(img)(_p4##x,_n4##y,z,c), I[620] = (T)(img)(_p3##x,_n4##y,z,c), I[621] = (T)(img)(_p2##x,_n4##y,z,c), I[622] = (T)(img)(_p1##x,_n4##y,z,c), I[623] = (T)(img)(x,_n4##y,z,c), I[624] = (T)(img)(_n1##x,_n4##y,z,c), I[625] = (T)(img)(_n2##x,_n4##y,z,c), I[626] = (T)(img)(_n3##x,_n4##y,z,c), I[627] = (T)(img)(_n4##x,_n4##y,z,c), I[628] = (T)(img)(_n5##x,_n4##y,z,c), I[629] = (T)(img)(_n6##x,_n4##y,z,c), I[630] = (T)(img)(_n7##x,_n4##y,z,c), I[631] = (T)(img)(_n8##x,_n4##y,z,c), I[632] = (T)(img)(_n9##x,_n4##y,z,c), I[633] = (T)(img)(_n10##x,_n4##y,z,c), I[634] = (T)(img)(_n11##x,_n4##y,z,c), I[635] = (T)(img)(_n12##x,_n4##y,z,c), I[636] = (T)(img)(_n13##x,_n4##y,z,c), I[637] = (T)(img)(_n14##x,_n4##y,z,c), I[638] = (T)(img)(_n15##x,_n4##y,z,c), I[639] = (T)(img)(_n16##x,_n4##y,z,c), \
|
|
I[640] = (T)(img)(_p15##x,_n5##y,z,c), I[641] = (T)(img)(_p14##x,_n5##y,z,c), I[642] = (T)(img)(_p13##x,_n5##y,z,c), I[643] = (T)(img)(_p12##x,_n5##y,z,c), I[644] = (T)(img)(_p11##x,_n5##y,z,c), I[645] = (T)(img)(_p10##x,_n5##y,z,c), I[646] = (T)(img)(_p9##x,_n5##y,z,c), I[647] = (T)(img)(_p8##x,_n5##y,z,c), I[648] = (T)(img)(_p7##x,_n5##y,z,c), I[649] = (T)(img)(_p6##x,_n5##y,z,c), I[650] = (T)(img)(_p5##x,_n5##y,z,c), I[651] = (T)(img)(_p4##x,_n5##y,z,c), I[652] = (T)(img)(_p3##x,_n5##y,z,c), I[653] = (T)(img)(_p2##x,_n5##y,z,c), I[654] = (T)(img)(_p1##x,_n5##y,z,c), I[655] = (T)(img)(x,_n5##y,z,c), I[656] = (T)(img)(_n1##x,_n5##y,z,c), I[657] = (T)(img)(_n2##x,_n5##y,z,c), I[658] = (T)(img)(_n3##x,_n5##y,z,c), I[659] = (T)(img)(_n4##x,_n5##y,z,c), I[660] = (T)(img)(_n5##x,_n5##y,z,c), I[661] = (T)(img)(_n6##x,_n5##y,z,c), I[662] = (T)(img)(_n7##x,_n5##y,z,c), I[663] = (T)(img)(_n8##x,_n5##y,z,c), I[664] = (T)(img)(_n9##x,_n5##y,z,c), I[665] = (T)(img)(_n10##x,_n5##y,z,c), I[666] = (T)(img)(_n11##x,_n5##y,z,c), I[667] = (T)(img)(_n12##x,_n5##y,z,c), I[668] = (T)(img)(_n13##x,_n5##y,z,c), I[669] = (T)(img)(_n14##x,_n5##y,z,c), I[670] = (T)(img)(_n15##x,_n5##y,z,c), I[671] = (T)(img)(_n16##x,_n5##y,z,c), \
|
|
I[672] = (T)(img)(_p15##x,_n6##y,z,c), I[673] = (T)(img)(_p14##x,_n6##y,z,c), I[674] = (T)(img)(_p13##x,_n6##y,z,c), I[675] = (T)(img)(_p12##x,_n6##y,z,c), I[676] = (T)(img)(_p11##x,_n6##y,z,c), I[677] = (T)(img)(_p10##x,_n6##y,z,c), I[678] = (T)(img)(_p9##x,_n6##y,z,c), I[679] = (T)(img)(_p8##x,_n6##y,z,c), I[680] = (T)(img)(_p7##x,_n6##y,z,c), I[681] = (T)(img)(_p6##x,_n6##y,z,c), I[682] = (T)(img)(_p5##x,_n6##y,z,c), I[683] = (T)(img)(_p4##x,_n6##y,z,c), I[684] = (T)(img)(_p3##x,_n6##y,z,c), I[685] = (T)(img)(_p2##x,_n6##y,z,c), I[686] = (T)(img)(_p1##x,_n6##y,z,c), I[687] = (T)(img)(x,_n6##y,z,c), I[688] = (T)(img)(_n1##x,_n6##y,z,c), I[689] = (T)(img)(_n2##x,_n6##y,z,c), I[690] = (T)(img)(_n3##x,_n6##y,z,c), I[691] = (T)(img)(_n4##x,_n6##y,z,c), I[692] = (T)(img)(_n5##x,_n6##y,z,c), I[693] = (T)(img)(_n6##x,_n6##y,z,c), I[694] = (T)(img)(_n7##x,_n6##y,z,c), I[695] = (T)(img)(_n8##x,_n6##y,z,c), I[696] = (T)(img)(_n9##x,_n6##y,z,c), I[697] = (T)(img)(_n10##x,_n6##y,z,c), I[698] = (T)(img)(_n11##x,_n6##y,z,c), I[699] = (T)(img)(_n12##x,_n6##y,z,c), I[700] = (T)(img)(_n13##x,_n6##y,z,c), I[701] = (T)(img)(_n14##x,_n6##y,z,c), I[702] = (T)(img)(_n15##x,_n6##y,z,c), I[703] = (T)(img)(_n16##x,_n6##y,z,c), \
|
|
I[704] = (T)(img)(_p15##x,_n7##y,z,c), I[705] = (T)(img)(_p14##x,_n7##y,z,c), I[706] = (T)(img)(_p13##x,_n7##y,z,c), I[707] = (T)(img)(_p12##x,_n7##y,z,c), I[708] = (T)(img)(_p11##x,_n7##y,z,c), I[709] = (T)(img)(_p10##x,_n7##y,z,c), I[710] = (T)(img)(_p9##x,_n7##y,z,c), I[711] = (T)(img)(_p8##x,_n7##y,z,c), I[712] = (T)(img)(_p7##x,_n7##y,z,c), I[713] = (T)(img)(_p6##x,_n7##y,z,c), I[714] = (T)(img)(_p5##x,_n7##y,z,c), I[715] = (T)(img)(_p4##x,_n7##y,z,c), I[716] = (T)(img)(_p3##x,_n7##y,z,c), I[717] = (T)(img)(_p2##x,_n7##y,z,c), I[718] = (T)(img)(_p1##x,_n7##y,z,c), I[719] = (T)(img)(x,_n7##y,z,c), I[720] = (T)(img)(_n1##x,_n7##y,z,c), I[721] = (T)(img)(_n2##x,_n7##y,z,c), I[722] = (T)(img)(_n3##x,_n7##y,z,c), I[723] = (T)(img)(_n4##x,_n7##y,z,c), I[724] = (T)(img)(_n5##x,_n7##y,z,c), I[725] = (T)(img)(_n6##x,_n7##y,z,c), I[726] = (T)(img)(_n7##x,_n7##y,z,c), I[727] = (T)(img)(_n8##x,_n7##y,z,c), I[728] = (T)(img)(_n9##x,_n7##y,z,c), I[729] = (T)(img)(_n10##x,_n7##y,z,c), I[730] = (T)(img)(_n11##x,_n7##y,z,c), I[731] = (T)(img)(_n12##x,_n7##y,z,c), I[732] = (T)(img)(_n13##x,_n7##y,z,c), I[733] = (T)(img)(_n14##x,_n7##y,z,c), I[734] = (T)(img)(_n15##x,_n7##y,z,c), I[735] = (T)(img)(_n16##x,_n7##y,z,c), \
|
|
I[736] = (T)(img)(_p15##x,_n8##y,z,c), I[737] = (T)(img)(_p14##x,_n8##y,z,c), I[738] = (T)(img)(_p13##x,_n8##y,z,c), I[739] = (T)(img)(_p12##x,_n8##y,z,c), I[740] = (T)(img)(_p11##x,_n8##y,z,c), I[741] = (T)(img)(_p10##x,_n8##y,z,c), I[742] = (T)(img)(_p9##x,_n8##y,z,c), I[743] = (T)(img)(_p8##x,_n8##y,z,c), I[744] = (T)(img)(_p7##x,_n8##y,z,c), I[745] = (T)(img)(_p6##x,_n8##y,z,c), I[746] = (T)(img)(_p5##x,_n8##y,z,c), I[747] = (T)(img)(_p4##x,_n8##y,z,c), I[748] = (T)(img)(_p3##x,_n8##y,z,c), I[749] = (T)(img)(_p2##x,_n8##y,z,c), I[750] = (T)(img)(_p1##x,_n8##y,z,c), I[751] = (T)(img)(x,_n8##y,z,c), I[752] = (T)(img)(_n1##x,_n8##y,z,c), I[753] = (T)(img)(_n2##x,_n8##y,z,c), I[754] = (T)(img)(_n3##x,_n8##y,z,c), I[755] = (T)(img)(_n4##x,_n8##y,z,c), I[756] = (T)(img)(_n5##x,_n8##y,z,c), I[757] = (T)(img)(_n6##x,_n8##y,z,c), I[758] = (T)(img)(_n7##x,_n8##y,z,c), I[759] = (T)(img)(_n8##x,_n8##y,z,c), I[760] = (T)(img)(_n9##x,_n8##y,z,c), I[761] = (T)(img)(_n10##x,_n8##y,z,c), I[762] = (T)(img)(_n11##x,_n8##y,z,c), I[763] = (T)(img)(_n12##x,_n8##y,z,c), I[764] = (T)(img)(_n13##x,_n8##y,z,c), I[765] = (T)(img)(_n14##x,_n8##y,z,c), I[766] = (T)(img)(_n15##x,_n8##y,z,c), I[767] = (T)(img)(_n16##x,_n8##y,z,c), \
|
|
I[768] = (T)(img)(_p15##x,_n9##y,z,c), I[769] = (T)(img)(_p14##x,_n9##y,z,c), I[770] = (T)(img)(_p13##x,_n9##y,z,c), I[771] = (T)(img)(_p12##x,_n9##y,z,c), I[772] = (T)(img)(_p11##x,_n9##y,z,c), I[773] = (T)(img)(_p10##x,_n9##y,z,c), I[774] = (T)(img)(_p9##x,_n9##y,z,c), I[775] = (T)(img)(_p8##x,_n9##y,z,c), I[776] = (T)(img)(_p7##x,_n9##y,z,c), I[777] = (T)(img)(_p6##x,_n9##y,z,c), I[778] = (T)(img)(_p5##x,_n9##y,z,c), I[779] = (T)(img)(_p4##x,_n9##y,z,c), I[780] = (T)(img)(_p3##x,_n9##y,z,c), I[781] = (T)(img)(_p2##x,_n9##y,z,c), I[782] = (T)(img)(_p1##x,_n9##y,z,c), I[783] = (T)(img)(x,_n9##y,z,c), I[784] = (T)(img)(_n1##x,_n9##y,z,c), I[785] = (T)(img)(_n2##x,_n9##y,z,c), I[786] = (T)(img)(_n3##x,_n9##y,z,c), I[787] = (T)(img)(_n4##x,_n9##y,z,c), I[788] = (T)(img)(_n5##x,_n9##y,z,c), I[789] = (T)(img)(_n6##x,_n9##y,z,c), I[790] = (T)(img)(_n7##x,_n9##y,z,c), I[791] = (T)(img)(_n8##x,_n9##y,z,c), I[792] = (T)(img)(_n9##x,_n9##y,z,c), I[793] = (T)(img)(_n10##x,_n9##y,z,c), I[794] = (T)(img)(_n11##x,_n9##y,z,c), I[795] = (T)(img)(_n12##x,_n9##y,z,c), I[796] = (T)(img)(_n13##x,_n9##y,z,c), I[797] = (T)(img)(_n14##x,_n9##y,z,c), I[798] = (T)(img)(_n15##x,_n9##y,z,c), I[799] = (T)(img)(_n16##x,_n9##y,z,c), \
|
|
I[800] = (T)(img)(_p15##x,_n10##y,z,c), I[801] = (T)(img)(_p14##x,_n10##y,z,c), I[802] = (T)(img)(_p13##x,_n10##y,z,c), I[803] = (T)(img)(_p12##x,_n10##y,z,c), I[804] = (T)(img)(_p11##x,_n10##y,z,c), I[805] = (T)(img)(_p10##x,_n10##y,z,c), I[806] = (T)(img)(_p9##x,_n10##y,z,c), I[807] = (T)(img)(_p8##x,_n10##y,z,c), I[808] = (T)(img)(_p7##x,_n10##y,z,c), I[809] = (T)(img)(_p6##x,_n10##y,z,c), I[810] = (T)(img)(_p5##x,_n10##y,z,c), I[811] = (T)(img)(_p4##x,_n10##y,z,c), I[812] = (T)(img)(_p3##x,_n10##y,z,c), I[813] = (T)(img)(_p2##x,_n10##y,z,c), I[814] = (T)(img)(_p1##x,_n10##y,z,c), I[815] = (T)(img)(x,_n10##y,z,c), I[816] = (T)(img)(_n1##x,_n10##y,z,c), I[817] = (T)(img)(_n2##x,_n10##y,z,c), I[818] = (T)(img)(_n3##x,_n10##y,z,c), I[819] = (T)(img)(_n4##x,_n10##y,z,c), I[820] = (T)(img)(_n5##x,_n10##y,z,c), I[821] = (T)(img)(_n6##x,_n10##y,z,c), I[822] = (T)(img)(_n7##x,_n10##y,z,c), I[823] = (T)(img)(_n8##x,_n10##y,z,c), I[824] = (T)(img)(_n9##x,_n10##y,z,c), I[825] = (T)(img)(_n10##x,_n10##y,z,c), I[826] = (T)(img)(_n11##x,_n10##y,z,c), I[827] = (T)(img)(_n12##x,_n10##y,z,c), I[828] = (T)(img)(_n13##x,_n10##y,z,c), I[829] = (T)(img)(_n14##x,_n10##y,z,c), I[830] = (T)(img)(_n15##x,_n10##y,z,c), I[831] = (T)(img)(_n16##x,_n10##y,z,c), \
|
|
I[832] = (T)(img)(_p15##x,_n11##y,z,c), I[833] = (T)(img)(_p14##x,_n11##y,z,c), I[834] = (T)(img)(_p13##x,_n11##y,z,c), I[835] = (T)(img)(_p12##x,_n11##y,z,c), I[836] = (T)(img)(_p11##x,_n11##y,z,c), I[837] = (T)(img)(_p10##x,_n11##y,z,c), I[838] = (T)(img)(_p9##x,_n11##y,z,c), I[839] = (T)(img)(_p8##x,_n11##y,z,c), I[840] = (T)(img)(_p7##x,_n11##y,z,c), I[841] = (T)(img)(_p6##x,_n11##y,z,c), I[842] = (T)(img)(_p5##x,_n11##y,z,c), I[843] = (T)(img)(_p4##x,_n11##y,z,c), I[844] = (T)(img)(_p3##x,_n11##y,z,c), I[845] = (T)(img)(_p2##x,_n11##y,z,c), I[846] = (T)(img)(_p1##x,_n11##y,z,c), I[847] = (T)(img)(x,_n11##y,z,c), I[848] = (T)(img)(_n1##x,_n11##y,z,c), I[849] = (T)(img)(_n2##x,_n11##y,z,c), I[850] = (T)(img)(_n3##x,_n11##y,z,c), I[851] = (T)(img)(_n4##x,_n11##y,z,c), I[852] = (T)(img)(_n5##x,_n11##y,z,c), I[853] = (T)(img)(_n6##x,_n11##y,z,c), I[854] = (T)(img)(_n7##x,_n11##y,z,c), I[855] = (T)(img)(_n8##x,_n11##y,z,c), I[856] = (T)(img)(_n9##x,_n11##y,z,c), I[857] = (T)(img)(_n10##x,_n11##y,z,c), I[858] = (T)(img)(_n11##x,_n11##y,z,c), I[859] = (T)(img)(_n12##x,_n11##y,z,c), I[860] = (T)(img)(_n13##x,_n11##y,z,c), I[861] = (T)(img)(_n14##x,_n11##y,z,c), I[862] = (T)(img)(_n15##x,_n11##y,z,c), I[863] = (T)(img)(_n16##x,_n11##y,z,c), \
|
|
I[864] = (T)(img)(_p15##x,_n12##y,z,c), I[865] = (T)(img)(_p14##x,_n12##y,z,c), I[866] = (T)(img)(_p13##x,_n12##y,z,c), I[867] = (T)(img)(_p12##x,_n12##y,z,c), I[868] = (T)(img)(_p11##x,_n12##y,z,c), I[869] = (T)(img)(_p10##x,_n12##y,z,c), I[870] = (T)(img)(_p9##x,_n12##y,z,c), I[871] = (T)(img)(_p8##x,_n12##y,z,c), I[872] = (T)(img)(_p7##x,_n12##y,z,c), I[873] = (T)(img)(_p6##x,_n12##y,z,c), I[874] = (T)(img)(_p5##x,_n12##y,z,c), I[875] = (T)(img)(_p4##x,_n12##y,z,c), I[876] = (T)(img)(_p3##x,_n12##y,z,c), I[877] = (T)(img)(_p2##x,_n12##y,z,c), I[878] = (T)(img)(_p1##x,_n12##y,z,c), I[879] = (T)(img)(x,_n12##y,z,c), I[880] = (T)(img)(_n1##x,_n12##y,z,c), I[881] = (T)(img)(_n2##x,_n12##y,z,c), I[882] = (T)(img)(_n3##x,_n12##y,z,c), I[883] = (T)(img)(_n4##x,_n12##y,z,c), I[884] = (T)(img)(_n5##x,_n12##y,z,c), I[885] = (T)(img)(_n6##x,_n12##y,z,c), I[886] = (T)(img)(_n7##x,_n12##y,z,c), I[887] = (T)(img)(_n8##x,_n12##y,z,c), I[888] = (T)(img)(_n9##x,_n12##y,z,c), I[889] = (T)(img)(_n10##x,_n12##y,z,c), I[890] = (T)(img)(_n11##x,_n12##y,z,c), I[891] = (T)(img)(_n12##x,_n12##y,z,c), I[892] = (T)(img)(_n13##x,_n12##y,z,c), I[893] = (T)(img)(_n14##x,_n12##y,z,c), I[894] = (T)(img)(_n15##x,_n12##y,z,c), I[895] = (T)(img)(_n16##x,_n12##y,z,c), \
|
|
I[896] = (T)(img)(_p15##x,_n13##y,z,c), I[897] = (T)(img)(_p14##x,_n13##y,z,c), I[898] = (T)(img)(_p13##x,_n13##y,z,c), I[899] = (T)(img)(_p12##x,_n13##y,z,c), I[900] = (T)(img)(_p11##x,_n13##y,z,c), I[901] = (T)(img)(_p10##x,_n13##y,z,c), I[902] = (T)(img)(_p9##x,_n13##y,z,c), I[903] = (T)(img)(_p8##x,_n13##y,z,c), I[904] = (T)(img)(_p7##x,_n13##y,z,c), I[905] = (T)(img)(_p6##x,_n13##y,z,c), I[906] = (T)(img)(_p5##x,_n13##y,z,c), I[907] = (T)(img)(_p4##x,_n13##y,z,c), I[908] = (T)(img)(_p3##x,_n13##y,z,c), I[909] = (T)(img)(_p2##x,_n13##y,z,c), I[910] = (T)(img)(_p1##x,_n13##y,z,c), I[911] = (T)(img)(x,_n13##y,z,c), I[912] = (T)(img)(_n1##x,_n13##y,z,c), I[913] = (T)(img)(_n2##x,_n13##y,z,c), I[914] = (T)(img)(_n3##x,_n13##y,z,c), I[915] = (T)(img)(_n4##x,_n13##y,z,c), I[916] = (T)(img)(_n5##x,_n13##y,z,c), I[917] = (T)(img)(_n6##x,_n13##y,z,c), I[918] = (T)(img)(_n7##x,_n13##y,z,c), I[919] = (T)(img)(_n8##x,_n13##y,z,c), I[920] = (T)(img)(_n9##x,_n13##y,z,c), I[921] = (T)(img)(_n10##x,_n13##y,z,c), I[922] = (T)(img)(_n11##x,_n13##y,z,c), I[923] = (T)(img)(_n12##x,_n13##y,z,c), I[924] = (T)(img)(_n13##x,_n13##y,z,c), I[925] = (T)(img)(_n14##x,_n13##y,z,c), I[926] = (T)(img)(_n15##x,_n13##y,z,c), I[927] = (T)(img)(_n16##x,_n13##y,z,c), \
|
|
I[928] = (T)(img)(_p15##x,_n14##y,z,c), I[929] = (T)(img)(_p14##x,_n14##y,z,c), I[930] = (T)(img)(_p13##x,_n14##y,z,c), I[931] = (T)(img)(_p12##x,_n14##y,z,c), I[932] = (T)(img)(_p11##x,_n14##y,z,c), I[933] = (T)(img)(_p10##x,_n14##y,z,c), I[934] = (T)(img)(_p9##x,_n14##y,z,c), I[935] = (T)(img)(_p8##x,_n14##y,z,c), I[936] = (T)(img)(_p7##x,_n14##y,z,c), I[937] = (T)(img)(_p6##x,_n14##y,z,c), I[938] = (T)(img)(_p5##x,_n14##y,z,c), I[939] = (T)(img)(_p4##x,_n14##y,z,c), I[940] = (T)(img)(_p3##x,_n14##y,z,c), I[941] = (T)(img)(_p2##x,_n14##y,z,c), I[942] = (T)(img)(_p1##x,_n14##y,z,c), I[943] = (T)(img)(x,_n14##y,z,c), I[944] = (T)(img)(_n1##x,_n14##y,z,c), I[945] = (T)(img)(_n2##x,_n14##y,z,c), I[946] = (T)(img)(_n3##x,_n14##y,z,c), I[947] = (T)(img)(_n4##x,_n14##y,z,c), I[948] = (T)(img)(_n5##x,_n14##y,z,c), I[949] = (T)(img)(_n6##x,_n14##y,z,c), I[950] = (T)(img)(_n7##x,_n14##y,z,c), I[951] = (T)(img)(_n8##x,_n14##y,z,c), I[952] = (T)(img)(_n9##x,_n14##y,z,c), I[953] = (T)(img)(_n10##x,_n14##y,z,c), I[954] = (T)(img)(_n11##x,_n14##y,z,c), I[955] = (T)(img)(_n12##x,_n14##y,z,c), I[956] = (T)(img)(_n13##x,_n14##y,z,c), I[957] = (T)(img)(_n14##x,_n14##y,z,c), I[958] = (T)(img)(_n15##x,_n14##y,z,c), I[959] = (T)(img)(_n16##x,_n14##y,z,c), \
|
|
I[960] = (T)(img)(_p15##x,_n15##y,z,c), I[961] = (T)(img)(_p14##x,_n15##y,z,c), I[962] = (T)(img)(_p13##x,_n15##y,z,c), I[963] = (T)(img)(_p12##x,_n15##y,z,c), I[964] = (T)(img)(_p11##x,_n15##y,z,c), I[965] = (T)(img)(_p10##x,_n15##y,z,c), I[966] = (T)(img)(_p9##x,_n15##y,z,c), I[967] = (T)(img)(_p8##x,_n15##y,z,c), I[968] = (T)(img)(_p7##x,_n15##y,z,c), I[969] = (T)(img)(_p6##x,_n15##y,z,c), I[970] = (T)(img)(_p5##x,_n15##y,z,c), I[971] = (T)(img)(_p4##x,_n15##y,z,c), I[972] = (T)(img)(_p3##x,_n15##y,z,c), I[973] = (T)(img)(_p2##x,_n15##y,z,c), I[974] = (T)(img)(_p1##x,_n15##y,z,c), I[975] = (T)(img)(x,_n15##y,z,c), I[976] = (T)(img)(_n1##x,_n15##y,z,c), I[977] = (T)(img)(_n2##x,_n15##y,z,c), I[978] = (T)(img)(_n3##x,_n15##y,z,c), I[979] = (T)(img)(_n4##x,_n15##y,z,c), I[980] = (T)(img)(_n5##x,_n15##y,z,c), I[981] = (T)(img)(_n6##x,_n15##y,z,c), I[982] = (T)(img)(_n7##x,_n15##y,z,c), I[983] = (T)(img)(_n8##x,_n15##y,z,c), I[984] = (T)(img)(_n9##x,_n15##y,z,c), I[985] = (T)(img)(_n10##x,_n15##y,z,c), I[986] = (T)(img)(_n11##x,_n15##y,z,c), I[987] = (T)(img)(_n12##x,_n15##y,z,c), I[988] = (T)(img)(_n13##x,_n15##y,z,c), I[989] = (T)(img)(_n14##x,_n15##y,z,c), I[990] = (T)(img)(_n15##x,_n15##y,z,c), I[991] = (T)(img)(_n16##x,_n15##y,z,c), \
|
|
I[992] = (T)(img)(_p15##x,_n16##y,z,c), I[993] = (T)(img)(_p14##x,_n16##y,z,c), I[994] = (T)(img)(_p13##x,_n16##y,z,c), I[995] = (T)(img)(_p12##x,_n16##y,z,c), I[996] = (T)(img)(_p11##x,_n16##y,z,c), I[997] = (T)(img)(_p10##x,_n16##y,z,c), I[998] = (T)(img)(_p9##x,_n16##y,z,c), I[999] = (T)(img)(_p8##x,_n16##y,z,c), I[1000] = (T)(img)(_p7##x,_n16##y,z,c), I[1001] = (T)(img)(_p6##x,_n16##y,z,c), I[1002] = (T)(img)(_p5##x,_n16##y,z,c), I[1003] = (T)(img)(_p4##x,_n16##y,z,c), I[1004] = (T)(img)(_p3##x,_n16##y,z,c), I[1005] = (T)(img)(_p2##x,_n16##y,z,c), I[1006] = (T)(img)(_p1##x,_n16##y,z,c), I[1007] = (T)(img)(x,_n16##y,z,c), I[1008] = (T)(img)(_n1##x,_n16##y,z,c), I[1009] = (T)(img)(_n2##x,_n16##y,z,c), I[1010] = (T)(img)(_n3##x,_n16##y,z,c), I[1011] = (T)(img)(_n4##x,_n16##y,z,c), I[1012] = (T)(img)(_n5##x,_n16##y,z,c), I[1013] = (T)(img)(_n6##x,_n16##y,z,c), I[1014] = (T)(img)(_n7##x,_n16##y,z,c), I[1015] = (T)(img)(_n8##x,_n16##y,z,c), I[1016] = (T)(img)(_n9##x,_n16##y,z,c), I[1017] = (T)(img)(_n10##x,_n16##y,z,c), I[1018] = (T)(img)(_n11##x,_n16##y,z,c), I[1019] = (T)(img)(_n12##x,_n16##y,z,c), I[1020] = (T)(img)(_n13##x,_n16##y,z,c), I[1021] = (T)(img)(_n14##x,_n16##y,z,c), I[1022] = (T)(img)(_n15##x,_n16##y,z,c), I[1023] = (T)(img)(_n16##x,_n16##y,z,c);
|
|
|
|
// Define 4x4x4 loop macros
|
|
//----------------------------
|
|
#define cimg_for4x4x4(img,x,y,z,c,I,T) \
|
|
cimg_for4((img)._depth,z) cimg_for4((img)._height,y) for (int x = 0, \
|
|
_p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = (int)( \
|
|
(I[0] = I[1] = (T)(img)(0,_p1##y,_p1##z,c)), \
|
|
(I[4] = I[5] = (T)(img)(0,y,_p1##z,c)), \
|
|
(I[8] = I[9] = (T)(img)(0,_n1##y,_p1##z,c)), \
|
|
(I[12] = I[13] = (T)(img)(0,_n2##y,_p1##z,c)), \
|
|
(I[16] = I[17] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[20] = I[21] = (T)(img)(0,y,z,c)), \
|
|
(I[24] = I[25] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[28] = I[29] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[32] = I[33] = (T)(img)(0,_p1##y,_n1##z,c)), \
|
|
(I[36] = I[37] = (T)(img)(0,y,_n1##z,c)), \
|
|
(I[40] = I[41] = (T)(img)(0,_n1##y,_n1##z,c)), \
|
|
(I[44] = I[45] = (T)(img)(0,_n2##y,_n1##z,c)), \
|
|
(I[48] = I[49] = (T)(img)(0,_p1##y,_n2##z,c)), \
|
|
(I[52] = I[53] = (T)(img)(0,y,_n2##z,c)), \
|
|
(I[56] = I[57] = (T)(img)(0,_n1##y,_n2##z,c)), \
|
|
(I[60] = I[61] = (T)(img)(0,_n2##y,_n2##z,c)), \
|
|
(I[2] = (T)(img)(_n1##x,_p1##y,_p1##z,c)), \
|
|
(I[6] = (T)(img)(_n1##x,y,_p1##z,c)), \
|
|
(I[10] = (T)(img)(_n1##x,_n1##y,_p1##z,c)), \
|
|
(I[14] = (T)(img)(_n1##x,_n2##y,_p1##z,c)), \
|
|
(I[18] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[22] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[26] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[30] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[34] = (T)(img)(_n1##x,_p1##y,_n1##z,c)), \
|
|
(I[38] = (T)(img)(_n1##x,y,_n1##z,c)), \
|
|
(I[42] = (T)(img)(_n1##x,_n1##y,_n1##z,c)), \
|
|
(I[46] = (T)(img)(_n1##x,_n2##y,_n1##z,c)), \
|
|
(I[50] = (T)(img)(_n1##x,_p1##y,_n2##z,c)), \
|
|
(I[54] = (T)(img)(_n1##x,y,_n2##z,c)), \
|
|
(I[58] = (T)(img)(_n1##x,_n1##y,_n2##z,c)), \
|
|
(I[62] = (T)(img)(_n1##x,_n2##y,_n2##z,c)), \
|
|
2>=((img)._width)?(img).width() - 1:2); \
|
|
(_n2##x<(img).width() && ( \
|
|
(I[3] = (T)(img)(_n2##x,_p1##y,_p1##z,c)), \
|
|
(I[7] = (T)(img)(_n2##x,y,_p1##z,c)), \
|
|
(I[11] = (T)(img)(_n2##x,_n1##y,_p1##z,c)), \
|
|
(I[15] = (T)(img)(_n2##x,_n2##y,_p1##z,c)), \
|
|
(I[19] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[23] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[27] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[31] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[35] = (T)(img)(_n2##x,_p1##y,_n1##z,c)), \
|
|
(I[39] = (T)(img)(_n2##x,y,_n1##z,c)), \
|
|
(I[43] = (T)(img)(_n2##x,_n1##y,_n1##z,c)), \
|
|
(I[47] = (T)(img)(_n2##x,_n2##y,_n1##z,c)), \
|
|
(I[51] = (T)(img)(_n2##x,_p1##y,_n2##z,c)), \
|
|
(I[55] = (T)(img)(_n2##x,y,_n2##z,c)), \
|
|
(I[59] = (T)(img)(_n2##x,_n1##y,_n2##z,c)), \
|
|
(I[63] = (T)(img)(_n2##x,_n2##y,_n2##z,c)),1)) || \
|
|
_n1##x==--_n2##x || x==(_n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], \
|
|
I[4] = I[5], I[5] = I[6], I[6] = I[7], \
|
|
I[8] = I[9], I[9] = I[10], I[10] = I[11], \
|
|
I[12] = I[13], I[13] = I[14], I[14] = I[15], \
|
|
I[16] = I[17], I[17] = I[18], I[18] = I[19], \
|
|
I[20] = I[21], I[21] = I[22], I[22] = I[23], \
|
|
I[24] = I[25], I[25] = I[26], I[26] = I[27], \
|
|
I[28] = I[29], I[29] = I[30], I[30] = I[31], \
|
|
I[32] = I[33], I[33] = I[34], I[34] = I[35], \
|
|
I[36] = I[37], I[37] = I[38], I[38] = I[39], \
|
|
I[40] = I[41], I[41] = I[42], I[42] = I[43], \
|
|
I[44] = I[45], I[45] = I[46], I[46] = I[47], \
|
|
I[48] = I[49], I[49] = I[50], I[50] = I[51], \
|
|
I[52] = I[53], I[53] = I[54], I[54] = I[55], \
|
|
I[56] = I[57], I[57] = I[58], I[58] = I[59], \
|
|
I[60] = I[61], I[61] = I[62], I[62] = I[63], \
|
|
_p1##x = x++, ++_n1##x, ++_n2##x)
|
|
|
|
#define cimg_for_in4x4x4(img,x0,y0,z0,x1,y1,z1,x,y,z,c,I,T) \
|
|
cimg_for_in4((img)._depth,z0,z1,z) cimg_for_in4((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = (int)( \
|
|
(I[0] = (T)(img)(_p1##x,_p1##y,_p1##z,c)), \
|
|
(I[4] = (T)(img)(_p1##x,y,_p1##z,c)), \
|
|
(I[8] = (T)(img)(_p1##x,_n1##y,_p1##z,c)), \
|
|
(I[12] = (T)(img)(_p1##x,_n2##y,_p1##z,c)), \
|
|
(I[16] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[20] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[24] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[28] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[32] = (T)(img)(_p1##x,_p1##y,_n1##z,c)), \
|
|
(I[36] = (T)(img)(_p1##x,y,_n1##z,c)), \
|
|
(I[40] = (T)(img)(_p1##x,_n1##y,_n1##z,c)), \
|
|
(I[44] = (T)(img)(_p1##x,_n2##y,_n1##z,c)), \
|
|
(I[48] = (T)(img)(_p1##x,_p1##y,_n2##z,c)), \
|
|
(I[52] = (T)(img)(_p1##x,y,_n2##z,c)), \
|
|
(I[56] = (T)(img)(_p1##x,_n1##y,_n2##z,c)), \
|
|
(I[60] = (T)(img)(_p1##x,_n2##y,_n2##z,c)), \
|
|
(I[1] = (T)(img)(x,_p1##y,_p1##z,c)), \
|
|
(I[5] = (T)(img)(x,y,_p1##z,c)), \
|
|
(I[9] = (T)(img)(x,_n1##y,_p1##z,c)), \
|
|
(I[13] = (T)(img)(x,_n2##y,_p1##z,c)), \
|
|
(I[17] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[21] = (T)(img)(x,y,z,c)), \
|
|
(I[25] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[29] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[33] = (T)(img)(x,_p1##y,_n1##z,c)), \
|
|
(I[37] = (T)(img)(x,y,_n1##z,c)), \
|
|
(I[41] = (T)(img)(x,_n1##y,_n1##z,c)), \
|
|
(I[45] = (T)(img)(x,_n2##y,_n1##z,c)), \
|
|
(I[49] = (T)(img)(x,_p1##y,_n2##z,c)), \
|
|
(I[53] = (T)(img)(x,y,_n2##z,c)), \
|
|
(I[57] = (T)(img)(x,_n1##y,_n2##z,c)), \
|
|
(I[61] = (T)(img)(x,_n2##y,_n2##z,c)), \
|
|
(I[2] = (T)(img)(_n1##x,_p1##y,_p1##z,c)), \
|
|
(I[6] = (T)(img)(_n1##x,y,_p1##z,c)), \
|
|
(I[10] = (T)(img)(_n1##x,_n1##y,_p1##z,c)), \
|
|
(I[14] = (T)(img)(_n1##x,_n2##y,_p1##z,c)), \
|
|
(I[18] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[22] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[26] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[30] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[34] = (T)(img)(_n1##x,_p1##y,_n1##z,c)), \
|
|
(I[38] = (T)(img)(_n1##x,y,_n1##z,c)), \
|
|
(I[42] = (T)(img)(_n1##x,_n1##y,_n1##z,c)), \
|
|
(I[46] = (T)(img)(_n1##x,_n2##y,_n1##z,c)), \
|
|
(I[50] = (T)(img)(_n1##x,_p1##y,_n2##z,c)), \
|
|
(I[54] = (T)(img)(_n1##x,y,_n2##z,c)), \
|
|
(I[58] = (T)(img)(_n1##x,_n1##y,_n2##z,c)), \
|
|
(I[62] = (T)(img)(_n1##x,_n2##y,_n2##z,c)), \
|
|
x + 2>=(img).width()?(img).width() - 1:x + 2); \
|
|
x<=(int)(x1) && ((_n2##x<(img).width() && ( \
|
|
(I[3] = (T)(img)(_n2##x,_p1##y,_p1##z,c)), \
|
|
(I[7] = (T)(img)(_n2##x,y,_p1##z,c)), \
|
|
(I[11] = (T)(img)(_n2##x,_n1##y,_p1##z,c)), \
|
|
(I[15] = (T)(img)(_n2##x,_n2##y,_p1##z,c)), \
|
|
(I[19] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[23] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[27] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[31] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[35] = (T)(img)(_n2##x,_p1##y,_n1##z,c)), \
|
|
(I[39] = (T)(img)(_n2##x,y,_n1##z,c)), \
|
|
(I[43] = (T)(img)(_n2##x,_n1##y,_n1##z,c)), \
|
|
(I[47] = (T)(img)(_n2##x,_n2##y,_n1##z,c)), \
|
|
(I[51] = (T)(img)(_n2##x,_p1##y,_n2##z,c)), \
|
|
(I[55] = (T)(img)(_n2##x,y,_n2##z,c)), \
|
|
(I[59] = (T)(img)(_n2##x,_n1##y,_n2##z,c)), \
|
|
(I[63] = (T)(img)(_n2##x,_n2##y,_n2##z,c)),1)) || \
|
|
_n1##x==--_n2##x || x==(_n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], \
|
|
I[4] = I[5], I[5] = I[6], I[6] = I[7], \
|
|
I[8] = I[9], I[9] = I[10], I[10] = I[11], \
|
|
I[12] = I[13], I[13] = I[14], I[14] = I[15], \
|
|
I[16] = I[17], I[17] = I[18], I[18] = I[19], \
|
|
I[20] = I[21], I[21] = I[22], I[22] = I[23], \
|
|
I[24] = I[25], I[25] = I[26], I[26] = I[27], \
|
|
I[28] = I[29], I[29] = I[30], I[30] = I[31], \
|
|
I[32] = I[33], I[33] = I[34], I[34] = I[35], \
|
|
I[36] = I[37], I[37] = I[38], I[38] = I[39], \
|
|
I[40] = I[41], I[41] = I[42], I[42] = I[43], \
|
|
I[44] = I[45], I[45] = I[46], I[46] = I[47], \
|
|
I[48] = I[49], I[49] = I[50], I[50] = I[51], \
|
|
I[52] = I[53], I[53] = I[54], I[54] = I[55], \
|
|
I[56] = I[57], I[57] = I[58], I[58] = I[59], \
|
|
I[60] = I[61], I[61] = I[62], I[62] = I[63], \
|
|
_p1##x = x++, ++_n1##x, ++_n2##x)
|
|
|
|
#define cimg_get4x4x4(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p1##x,_p1##y,_p1##z,c), I[1] = (T)(img)(x,_p1##y,_p1##z,c), I[2] = (T)(img)(_n1##x,_p1##y,_p1##z,c), I[3] = (T)(img)(_n2##x,_p1##y,_p1##z,c), \
|
|
I[4] = (T)(img)(_p1##x,y,_p1##z,c), I[5] = (T)(img)(x,y,_p1##z,c), I[6] = (T)(img)(_n1##x,y,_p1##z,c), I[7] = (T)(img)(_n2##x,y,_p1##z,c), \
|
|
I[8] = (T)(img)(_p1##x,_n1##y,_p1##z,c), I[9] = (T)(img)(x,_n1##y,_p1##z,c), I[10] = (T)(img)(_n1##x,_n1##y,_p1##z,c), I[11] = (T)(img)(_n2##x,_n1##y,_p1##z,c), \
|
|
I[12] = (T)(img)(_p1##x,_n2##y,_p1##z,c), I[13] = (T)(img)(x,_n2##y,_p1##z,c), I[14] = (T)(img)(_n1##x,_n2##y,_p1##z,c), I[15] = (T)(img)(_n2##x,_n2##y,_p1##z,c), \
|
|
I[16] = (T)(img)(_p1##x,_p1##y,z,c), I[17] = (T)(img)(x,_p1##y,z,c), I[18] = (T)(img)(_n1##x,_p1##y,z,c), I[19] = (T)(img)(_n2##x,_p1##y,z,c), \
|
|
I[20] = (T)(img)(_p1##x,y,z,c), I[21] = (T)(img)(x,y,z,c), I[22] = (T)(img)(_n1##x,y,z,c), I[23] = (T)(img)(_n2##x,y,z,c), \
|
|
I[24] = (T)(img)(_p1##x,_n1##y,z,c), I[25] = (T)(img)(x,_n1##y,z,c), I[26] = (T)(img)(_n1##x,_n1##y,z,c), I[27] = (T)(img)(_n2##x,_n1##y,z,c), \
|
|
I[28] = (T)(img)(_p1##x,_n2##y,z,c), I[29] = (T)(img)(x,_n2##y,z,c), I[30] = (T)(img)(_n1##x,_n2##y,z,c), I[31] = (T)(img)(_n2##x,_n2##y,z,c), \
|
|
I[32] = (T)(img)(_p1##x,_p1##y,_n1##z,c), I[33] = (T)(img)(x,_p1##y,_n1##z,c), I[34] = (T)(img)(_n1##x,_p1##y,_n1##z,c), I[35] = (T)(img)(_n2##x,_p1##y,_n1##z,c), \
|
|
I[36] = (T)(img)(_p1##x,y,_n1##z,c), I[37] = (T)(img)(x,y,_n1##z,c), I[38] = (T)(img)(_n1##x,y,_n1##z,c), I[39] = (T)(img)(_n2##x,y,_n1##z,c), \
|
|
I[40] = (T)(img)(_p1##x,_n1##y,_n1##z,c), I[41] = (T)(img)(x,_n1##y,_n1##z,c), I[42] = (T)(img)(_n1##x,_n1##y,_n1##z,c), I[43] = (T)(img)(_n2##x,_n1##y,_n1##z,c), \
|
|
I[44] = (T)(img)(_p1##x,_n2##y,_n1##z,c), I[45] = (T)(img)(x,_n2##y,_n1##z,c), I[46] = (T)(img)(_n1##x,_n2##y,_n1##z,c), I[47] = (T)(img)(_n2##x,_n2##y,_n1##z,c), \
|
|
I[48] = (T)(img)(_p1##x,_p1##y,_n2##z,c), I[49] = (T)(img)(x,_p1##y,_n2##z,c), I[50] = (T)(img)(_n1##x,_p1##y,_n2##z,c), I[51] = (T)(img)(_n2##x,_p1##y,_n2##z,c), \
|
|
I[52] = (T)(img)(_p1##x,y,_n2##z,c), I[53] = (T)(img)(x,y,_n2##z,c), I[54] = (T)(img)(_n1##x,y,_n2##z,c), I[55] = (T)(img)(_n2##x,y,_n2##z,c), \
|
|
I[56] = (T)(img)(_p1##x,_n1##y,_n2##z,c), I[57] = (T)(img)(x,_n1##y,_n2##z,c), I[58] = (T)(img)(_n1##x,_n1##y,_n2##z,c), I[59] = (T)(img)(_n2##x,_n1##y,_n2##z,c), \
|
|
I[60] = (T)(img)(_p1##x,_n2##y,_n2##z,c), I[61] = (T)(img)(x,_n2##y,_n2##z,c), I[62] = (T)(img)(_n1##x,_n2##y,_n2##z,c), I[63] = (T)(img)(_n2##x,_n2##y,_n2##z,c);
|
|
|
|
// Define 5x5x5 loop macros
|
|
//----------------------------
|
|
#define cimg_for5x5x5(img,x,y,z,c,I,T) \
|
|
cimg_for5((img)._depth,z) cimg_for5((img)._height,y) for (int x = 0, \
|
|
_p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = (int)( \
|
|
(I[0] = I[1] = I[2] = (T)(img)(0,_p2##y,_p2##z,c)), \
|
|
(I[5] = I[6] = I[7] = (T)(img)(0,_p1##y,_p2##z,c)), \
|
|
(I[10] = I[11] = I[12] = (T)(img)(0,y,_p2##z,c)), \
|
|
(I[15] = I[16] = I[17] = (T)(img)(0,_n1##y,_p2##z,c)), \
|
|
(I[20] = I[21] = I[22] = (T)(img)(0,_n2##y,_p2##z,c)), \
|
|
(I[25] = I[26] = I[27] = (T)(img)(0,_p2##y,_p1##z,c)), \
|
|
(I[30] = I[31] = I[32] = (T)(img)(0,_p1##y,_p1##z,c)), \
|
|
(I[35] = I[36] = I[37] = (T)(img)(0,y,_p1##z,c)), \
|
|
(I[40] = I[41] = I[42] = (T)(img)(0,_n1##y,_p1##z,c)), \
|
|
(I[45] = I[46] = I[47] = (T)(img)(0,_n2##y,_p1##z,c)), \
|
|
(I[50] = I[51] = I[52] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[55] = I[56] = I[57] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[60] = I[61] = I[62] = (T)(img)(0,y,z,c)), \
|
|
(I[65] = I[66] = I[67] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[70] = I[71] = I[72] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[75] = I[76] = I[77] = (T)(img)(0,_p2##y,_n1##z,c)), \
|
|
(I[80] = I[81] = I[82] = (T)(img)(0,_p1##y,_n1##z,c)), \
|
|
(I[85] = I[86] = I[87] = (T)(img)(0,y,_n1##z,c)), \
|
|
(I[90] = I[91] = I[92] = (T)(img)(0,_n1##y,_n1##z,c)), \
|
|
(I[95] = I[96] = I[97] = (T)(img)(0,_n2##y,_n1##z,c)), \
|
|
(I[100] = I[101] = I[102] = (T)(img)(0,_p2##y,_n2##z,c)), \
|
|
(I[105] = I[106] = I[107] = (T)(img)(0,_p1##y,_n2##z,c)), \
|
|
(I[110] = I[111] = I[112] = (T)(img)(0,y,_n2##z,c)), \
|
|
(I[115] = I[116] = I[117] = (T)(img)(0,_n1##y,_n2##z,c)), \
|
|
(I[120] = I[121] = I[122] = (T)(img)(0,_n2##y,_n2##z,c)), \
|
|
(I[3] = (T)(img)(_n1##x,_p2##y,_p2##z,c)), \
|
|
(I[8] = (T)(img)(_n1##x,_p1##y,_p2##z,c)), \
|
|
(I[13] = (T)(img)(_n1##x,y,_p2##z,c)), \
|
|
(I[18] = (T)(img)(_n1##x,_n1##y,_p2##z,c)), \
|
|
(I[23] = (T)(img)(_n1##x,_n2##y,_p2##z,c)), \
|
|
(I[28] = (T)(img)(_n1##x,_p2##y,_p1##z,c)), \
|
|
(I[33] = (T)(img)(_n1##x,_p1##y,_p1##z,c)), \
|
|
(I[38] = (T)(img)(_n1##x,y,_p1##z,c)), \
|
|
(I[43] = (T)(img)(_n1##x,_n1##y,_p1##z,c)), \
|
|
(I[48] = (T)(img)(_n1##x,_n2##y,_p1##z,c)), \
|
|
(I[53] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[58] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[63] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[68] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[73] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[78] = (T)(img)(_n1##x,_p2##y,_n1##z,c)), \
|
|
(I[83] = (T)(img)(_n1##x,_p1##y,_n1##z,c)), \
|
|
(I[88] = (T)(img)(_n1##x,y,_n1##z,c)), \
|
|
(I[93] = (T)(img)(_n1##x,_n1##y,_n1##z,c)), \
|
|
(I[98] = (T)(img)(_n1##x,_n2##y,_n1##z,c)), \
|
|
(I[103] = (T)(img)(_n1##x,_p2##y,_n2##z,c)), \
|
|
(I[108] = (T)(img)(_n1##x,_p1##y,_n2##z,c)), \
|
|
(I[113] = (T)(img)(_n1##x,y,_n2##z,c)), \
|
|
(I[118] = (T)(img)(_n1##x,_n1##y,_n2##z,c)), \
|
|
(I[123] = (T)(img)(_n1##x,_n2##y,_n2##z,c)), \
|
|
2>=((img)._width)?(img).width() - 1:2); \
|
|
(_n2##x<(img).width() && ( \
|
|
(I[4] = (T)(img)(_n2##x,_p2##y,_p2##z,c)), \
|
|
(I[9] = (T)(img)(_n2##x,_p1##y,_p2##z,c)), \
|
|
(I[14] = (T)(img)(_n2##x,y,_p2##z,c)), \
|
|
(I[19] = (T)(img)(_n2##x,_n1##y,_p2##z,c)), \
|
|
(I[24] = (T)(img)(_n2##x,_n2##y,_p2##z,c)), \
|
|
(I[29] = (T)(img)(_n2##x,_p2##y,_p1##z,c)), \
|
|
(I[34] = (T)(img)(_n2##x,_p1##y,_p1##z,c)), \
|
|
(I[39] = (T)(img)(_n2##x,y,_p1##z,c)), \
|
|
(I[44] = (T)(img)(_n2##x,_n1##y,_p1##z,c)), \
|
|
(I[49] = (T)(img)(_n2##x,_n2##y,_p1##z,c)), \
|
|
(I[54] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[59] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[64] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[69] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[74] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[79] = (T)(img)(_n2##x,_p2##y,_n1##z,c)), \
|
|
(I[84] = (T)(img)(_n2##x,_p1##y,_n1##z,c)), \
|
|
(I[89] = (T)(img)(_n2##x,y,_n1##z,c)), \
|
|
(I[94] = (T)(img)(_n2##x,_n1##y,_n1##z,c)), \
|
|
(I[99] = (T)(img)(_n2##x,_n2##y,_n1##z,c)), \
|
|
(I[104] = (T)(img)(_n2##x,_p2##y,_n2##z,c)), \
|
|
(I[109] = (T)(img)(_n2##x,_p1##y,_n2##z,c)), \
|
|
(I[114] = (T)(img)(_n2##x,y,_n2##z,c)), \
|
|
(I[119] = (T)(img)(_n2##x,_n1##y,_n2##z,c)), \
|
|
(I[124] = (T)(img)(_n2##x,_n2##y,_n2##z,c)),1)) || \
|
|
_n1##x==--_n2##x || x==(_n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], \
|
|
I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], \
|
|
I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], \
|
|
I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \
|
|
I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], \
|
|
I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
|
|
I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], \
|
|
I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \
|
|
I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], \
|
|
I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], \
|
|
I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], \
|
|
I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
|
|
I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], \
|
|
I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \
|
|
I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], \
|
|
I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
|
|
I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], \
|
|
I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
|
|
I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], \
|
|
I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], \
|
|
I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \
|
|
I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], \
|
|
I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], \
|
|
I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
|
|
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], \
|
|
_p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x)
|
|
|
|
#define cimg_for_in5x5x5(img,x0,y0,z0,x1,y1,z1,x,y,z,c,I,T) \
|
|
cimg_for_in5((img)._depth,z0,z1,z) cimg_for_in5((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = (int)( \
|
|
(I[0] = (T)(img)(_p2##x,_p2##y,_p2##z,c)), \
|
|
(I[5] = (T)(img)(_p2##x,_p1##y,_p2##z,c)), \
|
|
(I[10] = (T)(img)(_p2##x,y,_p2##z,c)), \
|
|
(I[15] = (T)(img)(_p2##x,_n1##y,_p2##z,c)), \
|
|
(I[20] = (T)(img)(_p2##x,_n2##y,_p2##z,c)), \
|
|
(I[25] = (T)(img)(_p2##x,_p2##y,_p1##z,c)), \
|
|
(I[30] = (T)(img)(_p2##x,_p1##y,_p1##z,c)), \
|
|
(I[35] = (T)(img)(_p2##x,y,_p1##z,c)), \
|
|
(I[40] = (T)(img)(_p2##x,_n1##y,_p1##z,c)), \
|
|
(I[45] = (T)(img)(_p2##x,_n2##y,_p1##z,c)), \
|
|
(I[50] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[55] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[60] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[65] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[70] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[75] = (T)(img)(_p2##x,_p2##y,_n1##z,c)), \
|
|
(I[80] = (T)(img)(_p2##x,_p1##y,_n1##z,c)), \
|
|
(I[85] = (T)(img)(_p2##x,y,_n1##z,c)), \
|
|
(I[90] = (T)(img)(_p2##x,_n1##y,_n1##z,c)), \
|
|
(I[95] = (T)(img)(_p2##x,_n2##y,_n1##z,c)), \
|
|
(I[100] = (T)(img)(_p2##x,_p2##y,_n2##z,c)), \
|
|
(I[105] = (T)(img)(_p2##x,_p1##y,_n2##z,c)), \
|
|
(I[110] = (T)(img)(_p2##x,y,_n2##z,c)), \
|
|
(I[115] = (T)(img)(_p2##x,_n1##y,_n2##z,c)), \
|
|
(I[120] = (T)(img)(_p2##x,_n2##y,_n2##z,c)), \
|
|
(I[1] = (T)(img)(_p1##x,_p2##y,_p2##z,c)), \
|
|
(I[6] = (T)(img)(_p1##x,_p1##y,_p2##z,c)), \
|
|
(I[11] = (T)(img)(_p1##x,y,_p2##z,c)), \
|
|
(I[16] = (T)(img)(_p1##x,_n1##y,_p2##z,c)), \
|
|
(I[21] = (T)(img)(_p1##x,_n2##y,_p2##z,c)), \
|
|
(I[26] = (T)(img)(_p1##x,_p2##y,_p1##z,c)), \
|
|
(I[31] = (T)(img)(_p1##x,_p1##y,_p1##z,c)), \
|
|
(I[36] = (T)(img)(_p1##x,y,_p1##z,c)), \
|
|
(I[41] = (T)(img)(_p1##x,_n1##y,_p1##z,c)), \
|
|
(I[46] = (T)(img)(_p1##x,_n2##y,_p1##z,c)), \
|
|
(I[51] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[56] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[61] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[66] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[71] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[76] = (T)(img)(_p1##x,_p2##y,_n1##z,c)), \
|
|
(I[81] = (T)(img)(_p1##x,_p1##y,_n1##z,c)), \
|
|
(I[86] = (T)(img)(_p1##x,y,_n1##z,c)), \
|
|
(I[91] = (T)(img)(_p1##x,_n1##y,_n1##z,c)), \
|
|
(I[96] = (T)(img)(_p1##x,_n2##y,_n1##z,c)), \
|
|
(I[101] = (T)(img)(_p1##x,_p2##y,_n2##z,c)), \
|
|
(I[106] = (T)(img)(_p1##x,_p1##y,_n2##z,c)), \
|
|
(I[111] = (T)(img)(_p1##x,y,_n2##z,c)), \
|
|
(I[116] = (T)(img)(_p1##x,_n1##y,_n2##z,c)), \
|
|
(I[121] = (T)(img)(_p1##x,_n2##y,_n2##z,c)), \
|
|
(I[2] = (T)(img)(x,_p2##y,_p2##z,c)), \
|
|
(I[7] = (T)(img)(x,_p1##y,_p2##z,c)), \
|
|
(I[12] = (T)(img)(x,y,_p2##z,c)), \
|
|
(I[17] = (T)(img)(x,_n1##y,_p2##z,c)), \
|
|
(I[22] = (T)(img)(x,_n2##y,_p2##z,c)), \
|
|
(I[27] = (T)(img)(x,_p2##y,_p1##z,c)), \
|
|
(I[32] = (T)(img)(x,_p1##y,_p1##z,c)), \
|
|
(I[37] = (T)(img)(x,y,_p1##z,c)), \
|
|
(I[42] = (T)(img)(x,_n1##y,_p1##z,c)), \
|
|
(I[47] = (T)(img)(x,_n2##y,_p1##z,c)), \
|
|
(I[52] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[57] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[62] = (T)(img)(x,y,z,c)), \
|
|
(I[67] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[72] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[77] = (T)(img)(x,_p2##y,_n1##z,c)), \
|
|
(I[82] = (T)(img)(x,_p1##y,_n1##z,c)), \
|
|
(I[87] = (T)(img)(x,y,_n1##z,c)), \
|
|
(I[92] = (T)(img)(x,_n1##y,_n1##z,c)), \
|
|
(I[97] = (T)(img)(x,_n2##y,_n1##z,c)), \
|
|
(I[102] = (T)(img)(x,_p2##y,_n2##z,c)), \
|
|
(I[107] = (T)(img)(x,_p1##y,_n2##z,c)), \
|
|
(I[112] = (T)(img)(x,y,_n2##z,c)), \
|
|
(I[117] = (T)(img)(x,_n1##y,_n2##z,c)), \
|
|
(I[122] = (T)(img)(x,_n2##y,_n2##z,c)), \
|
|
(I[3] = (T)(img)(_n1##x,_p2##y,_p2##z,c)), \
|
|
(I[8] = (T)(img)(_n1##x,_p1##y,_p2##z,c)), \
|
|
(I[13] = (T)(img)(_n1##x,y,_p2##z,c)), \
|
|
(I[18] = (T)(img)(_n1##x,_n1##y,_p2##z,c)), \
|
|
(I[23] = (T)(img)(_n1##x,_n2##y,_p2##z,c)), \
|
|
(I[28] = (T)(img)(_n1##x,_p2##y,_p1##z,c)), \
|
|
(I[33] = (T)(img)(_n1##x,_p1##y,_p1##z,c)), \
|
|
(I[38] = (T)(img)(_n1##x,y,_p1##z,c)), \
|
|
(I[43] = (T)(img)(_n1##x,_n1##y,_p1##z,c)), \
|
|
(I[48] = (T)(img)(_n1##x,_n2##y,_p1##z,c)), \
|
|
(I[53] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[58] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[63] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[68] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[73] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[78] = (T)(img)(_n1##x,_p2##y,_n1##z,c)), \
|
|
(I[83] = (T)(img)(_n1##x,_p1##y,_n1##z,c)), \
|
|
(I[88] = (T)(img)(_n1##x,y,_n1##z,c)), \
|
|
(I[93] = (T)(img)(_n1##x,_n1##y,_n1##z,c)), \
|
|
(I[98] = (T)(img)(_n1##x,_n2##y,_n1##z,c)), \
|
|
(I[103] = (T)(img)(_n1##x,_p2##y,_n2##z,c)), \
|
|
(I[108] = (T)(img)(_n1##x,_p1##y,_n2##z,c)), \
|
|
(I[113] = (T)(img)(_n1##x,y,_n2##z,c)), \
|
|
(I[118] = (T)(img)(_n1##x,_n1##y,_n2##z,c)), \
|
|
(I[123] = (T)(img)(_n1##x,_n2##y,_n2##z,c)), \
|
|
x + 2>=(img).width()?(img).width() - 1:x + 2); \
|
|
x<=(int)(x1) && ((_n2##x<(img).width() && ( \
|
|
(I[4] = (T)(img)(_n2##x,_p2##y,_p2##z,c)), \
|
|
(I[9] = (T)(img)(_n2##x,_p1##y,_p2##z,c)), \
|
|
(I[14] = (T)(img)(_n2##x,y,_p2##z,c)), \
|
|
(I[19] = (T)(img)(_n2##x,_n1##y,_p2##z,c)), \
|
|
(I[24] = (T)(img)(_n2##x,_n2##y,_p2##z,c)), \
|
|
(I[29] = (T)(img)(_n2##x,_p2##y,_p1##z,c)), \
|
|
(I[34] = (T)(img)(_n2##x,_p1##y,_p1##z,c)), \
|
|
(I[39] = (T)(img)(_n2##x,y,_p1##z,c)), \
|
|
(I[44] = (T)(img)(_n2##x,_n1##y,_p1##z,c)), \
|
|
(I[49] = (T)(img)(_n2##x,_n2##y,_p1##z,c)), \
|
|
(I[54] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[59] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[64] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[69] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[74] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[79] = (T)(img)(_n2##x,_p2##y,_n1##z,c)), \
|
|
(I[84] = (T)(img)(_n2##x,_p1##y,_n1##z,c)), \
|
|
(I[89] = (T)(img)(_n2##x,y,_n1##z,c)), \
|
|
(I[94] = (T)(img)(_n2##x,_n1##y,_n1##z,c)), \
|
|
(I[99] = (T)(img)(_n2##x,_n2##y,_n1##z,c)), \
|
|
(I[104] = (T)(img)(_n2##x,_p2##y,_n2##z,c)), \
|
|
(I[109] = (T)(img)(_n2##x,_p1##y,_n2##z,c)), \
|
|
(I[114] = (T)(img)(_n2##x,y,_n2##z,c)), \
|
|
(I[119] = (T)(img)(_n2##x,_n1##y,_n2##z,c)), \
|
|
(I[124] = (T)(img)(_n2##x,_n2##y,_n2##z,c)),1)) || \
|
|
_n1##x==--_n2##x || x==(_n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], \
|
|
I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], \
|
|
I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], \
|
|
I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \
|
|
I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], \
|
|
I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
|
|
I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], \
|
|
I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \
|
|
I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], \
|
|
I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], \
|
|
I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], \
|
|
I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
|
|
I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], \
|
|
I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \
|
|
I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], \
|
|
I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
|
|
I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], \
|
|
I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
|
|
I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], \
|
|
I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], \
|
|
I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \
|
|
I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], \
|
|
I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], \
|
|
I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
|
|
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], \
|
|
_p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x)
|
|
|
|
#define cimg_get5x5x5(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p2##x,_p2##y,_p2##z,c), I[1] = (T)(img)(_p1##x,_p2##y,_p2##z,c), I[2] = (T)(img)(x,_p2##y,_p2##z,c), I[3] = (T)(img)(_n1##x,_p2##y,_p2##z,c), I[4] = (T)(img)(_n2##x,_p2##y,_p2##z,c), \
|
|
I[5] = (T)(img)(_p2##x,_p1##y,_p2##z,c), I[6] = (T)(img)(_p1##x,_p1##y,_p2##z,c), I[7] = (T)(img)(x,_p1##y,_p2##z,c), I[8] = (T)(img)(_n1##x,_p1##y,_p2##z,c), I[9] = (T)(img)(_n2##x,_p1##y,_p2##z,c), \
|
|
I[10] = (T)(img)(_p2##x,y,_p2##z,c), I[11] = (T)(img)(_p1##x,y,_p2##z,c), I[12] = (T)(img)(x,y,_p2##z,c), I[13] = (T)(img)(_n1##x,y,_p2##z,c), I[14] = (T)(img)(_n2##x,y,_p2##z,c), \
|
|
I[15] = (T)(img)(_p2##x,_n1##y,_p2##z,c), I[16] = (T)(img)(_p1##x,_n1##y,_p2##z,c), I[17] = (T)(img)(x,_n1##y,_p2##z,c), I[18] = (T)(img)(_n1##x,_n1##y,_p2##z,c), I[19] = (T)(img)(_n2##x,_n1##y,_p2##z,c), \
|
|
I[20] = (T)(img)(_p2##x,_n2##y,_p2##z,c), I[21] = (T)(img)(_p1##x,_n2##y,_p2##z,c), I[22] = (T)(img)(x,_n2##y,_p2##z,c), I[23] = (T)(img)(_n1##x,_n2##y,_p2##z,c), I[24] = (T)(img)(_n2##x,_n2##y,_p2##z,c), \
|
|
I[25] = (T)(img)(_p2##x,_p2##y,_p1##z,c), I[26] = (T)(img)(_p1##x,_p2##y,_p1##z,c), I[27] = (T)(img)(x,_p2##y,_p1##z,c), I[28] = (T)(img)(_n1##x,_p2##y,_p1##z,c), I[29] = (T)(img)(_n2##x,_p2##y,_p1##z,c), \
|
|
I[30] = (T)(img)(_p2##x,_p1##y,_p1##z,c), I[31] = (T)(img)(_p1##x,_p1##y,_p1##z,c), I[32] = (T)(img)(x,_p1##y,_p1##z,c), I[33] = (T)(img)(_n1##x,_p1##y,_p1##z,c), I[34] = (T)(img)(_n2##x,_p1##y,_p1##z,c), \
|
|
I[35] = (T)(img)(_p2##x,y,_p1##z,c), I[36] = (T)(img)(_p1##x,y,_p1##z,c), I[37] = (T)(img)(x,y,_p1##z,c), I[38] = (T)(img)(_n1##x,y,_p1##z,c), I[39] = (T)(img)(_n2##x,y,_p1##z,c), \
|
|
I[40] = (T)(img)(_p2##x,_n1##y,_p1##z,c), I[41] = (T)(img)(_p1##x,_n1##y,_p1##z,c), I[42] = (T)(img)(x,_n1##y,_p1##z,c), I[43] = (T)(img)(_n1##x,_n1##y,_p1##z,c), I[44] = (T)(img)(_n2##x,_n1##y,_p1##z,c), \
|
|
I[45] = (T)(img)(_p2##x,_n2##y,_p1##z,c), I[46] = (T)(img)(_p1##x,_n2##y,_p1##z,c), I[47] = (T)(img)(x,_n2##y,_p1##z,c), I[48] = (T)(img)(_n1##x,_n2##y,_p1##z,c), I[49] = (T)(img)(_n2##x,_n2##y,_p1##z,c), \
|
|
I[50] = (T)(img)(_p2##x,_p2##y,z,c), I[51] = (T)(img)(_p1##x,_p2##y,z,c), I[52] = (T)(img)(x,_p2##y,z,c), I[53] = (T)(img)(_n1##x,_p2##y,z,c), I[54] = (T)(img)(_n2##x,_p2##y,z,c), \
|
|
I[55] = (T)(img)(_p2##x,_p1##y,z,c), I[56] = (T)(img)(_p1##x,_p1##y,z,c), I[57] = (T)(img)(x,_p1##y,z,c), I[58] = (T)(img)(_n1##x,_p1##y,z,c), I[59] = (T)(img)(_n2##x,_p1##y,z,c), \
|
|
I[60] = (T)(img)(_p2##x,y,z,c), I[61] = (T)(img)(_p1##x,y,z,c), I[62] = (T)(img)(x,y,z,c), I[63] = (T)(img)(_n1##x,y,z,c), I[64] = (T)(img)(_n2##x,y,z,c), \
|
|
I[65] = (T)(img)(_p2##x,_n1##y,z,c), I[66] = (T)(img)(_p1##x,_n1##y,z,c), I[67] = (T)(img)(x,_n1##y,z,c), I[68] = (T)(img)(_n1##x,_n1##y,z,c), I[69] = (T)(img)(_n2##x,_n1##y,z,c), \
|
|
I[70] = (T)(img)(_p2##x,_n2##y,z,c), I[71] = (T)(img)(_p1##x,_n2##y,z,c), I[72] = (T)(img)(x,_n2##y,z,c), I[73] = (T)(img)(_n1##x,_n2##y,z,c), I[74] = (T)(img)(_n2##x,_n2##y,z,c), \
|
|
I[75] = (T)(img)(_p2##x,_p2##y,_n1##z,c), I[76] = (T)(img)(_p1##x,_p2##y,_n1##z,c), I[77] = (T)(img)(x,_p2##y,_n1##z,c), I[78] = (T)(img)(_n1##x,_p2##y,_n1##z,c), I[79] = (T)(img)(_n2##x,_p2##y,_n1##z,c), \
|
|
I[80] = (T)(img)(_p2##x,_p1##y,_n1##z,c), I[81] = (T)(img)(_p1##x,_p1##y,_n1##z,c), I[82] = (T)(img)(x,_p1##y,_n1##z,c), I[83] = (T)(img)(_n1##x,_p1##y,_n1##z,c), I[84] = (T)(img)(_n2##x,_p1##y,_n1##z,c), \
|
|
I[85] = (T)(img)(_p2##x,y,_n1##z,c), I[86] = (T)(img)(_p1##x,y,_n1##z,c), I[87] = (T)(img)(x,y,_n1##z,c), I[88] = (T)(img)(_n1##x,y,_n1##z,c), I[89] = (T)(img)(_n2##x,y,_n1##z,c), \
|
|
I[90] = (T)(img)(_p2##x,_n1##y,_n1##z,c), I[91] = (T)(img)(_p1##x,_n1##y,_n1##z,c), I[92] = (T)(img)(x,_n1##y,_n1##z,c), I[93] = (T)(img)(_n1##x,_n1##y,_n1##z,c), I[94] = (T)(img)(_n2##x,_n1##y,_n1##z,c), \
|
|
I[95] = (T)(img)(_p2##x,_n2##y,_n1##z,c), I[96] = (T)(img)(_p1##x,_n2##y,_n1##z,c), I[97] = (T)(img)(x,_n2##y,_n1##z,c), I[98] = (T)(img)(_n1##x,_n2##y,_n1##z,c), I[99] = (T)(img)(_n2##x,_n2##y,_n1##z,c), \
|
|
I[100] = (T)(img)(_p2##x,_p2##y,_n2##z,c), I[101] = (T)(img)(_p1##x,_p2##y,_n2##z,c), I[102] = (T)(img)(x,_p2##y,_n2##z,c), I[103] = (T)(img)(_n1##x,_p2##y,_n2##z,c), I[104] = (T)(img)(_n2##x,_p2##y,_n2##z,c), \
|
|
I[105] = (T)(img)(_p2##x,_p1##y,_n2##z,c), I[106] = (T)(img)(_p1##x,_p1##y,_n2##z,c), I[107] = (T)(img)(x,_p1##y,_n2##z,c), I[108] = (T)(img)(_n1##x,_p1##y,_n2##z,c), I[109] = (T)(img)(_n2##x,_p1##y,_n2##z,c), \
|
|
I[110] = (T)(img)(_p2##x,y,_n2##z,c), I[111] = (T)(img)(_p1##x,y,_n2##z,c), I[112] = (T)(img)(x,y,_n2##z,c), I[113] = (T)(img)(_n1##x,y,_n2##z,c), I[114] = (T)(img)(_n2##x,y,_n2##z,c), \
|
|
I[115] = (T)(img)(_p2##x,_n1##y,_n2##z,c), I[116] = (T)(img)(_p1##x,_n1##y,_n2##z,c), I[117] = (T)(img)(x,_n1##y,_n2##z,c), I[118] = (T)(img)(_n1##x,_n1##y,_n2##z,c), I[119] = (T)(img)(_n2##x,_n1##y,_n2##z,c), \
|
|
I[120] = (T)(img)(_p2##x,_n2##y,_n2##z,c), I[121] = (T)(img)(_p1##x,_n2##y,_n2##z,c), I[122] = (T)(img)(x,_n2##y,_n2##z,c), I[123] = (T)(img)(_n1##x,_n2##y,_n2##z,c), I[124] = (T)(img)(_n2##x,_n2##y,_n2##z,c);
|
|
|
|
// Define 6x6x6 loop macros
|
|
//----------------------------
|
|
#define cimg_for6x6x6(img,x,y,z,c,I,T) \
|
|
cimg_for6((img)._depth,z) cimg_for6((img)._height,y) for (int x = 0, \
|
|
_p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
|
|
_n3##x = (int)( \
|
|
(I[0] = I[1] = I[2] = (T)(img)(0,_p2##y,_p2##z,c)), \
|
|
(I[6] = I[7] = I[8] = (T)(img)(0,_p1##y,_p2##z,c)), \
|
|
(I[12] = I[13] = I[14] = (T)(img)(0,y,_p2##z,c)), \
|
|
(I[18] = I[19] = I[20] = (T)(img)(0,_n1##y,_p2##z,c)), \
|
|
(I[24] = I[25] = I[26] = (T)(img)(0,_n2##y,_p2##z,c)), \
|
|
(I[30] = I[31] = I[32] = (T)(img)(0,_n3##y,_p2##z,c)), \
|
|
(I[36] = I[37] = I[38] = (T)(img)(0,_p2##y,_p1##z,c)), \
|
|
(I[42] = I[43] = I[44] = (T)(img)(0,_p1##y,_p1##z,c)), \
|
|
(I[48] = I[49] = I[50] = (T)(img)(0,y,_p1##z,c)), \
|
|
(I[54] = I[55] = I[56] = (T)(img)(0,_n1##y,_p1##z,c)), \
|
|
(I[60] = I[61] = I[62] = (T)(img)(0,_n2##y,_p1##z,c)), \
|
|
(I[66] = I[67] = I[68] = (T)(img)(0,_n3##y,_p1##z,c)), \
|
|
(I[72] = I[73] = I[74] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[78] = I[79] = I[80] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[84] = I[85] = I[86] = (T)(img)(0,y,z,c)), \
|
|
(I[90] = I[91] = I[92] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[96] = I[97] = I[98] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[102] = I[103] = I[104] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[108] = I[109] = I[110] = (T)(img)(0,_p2##y,_n1##z,c)), \
|
|
(I[114] = I[115] = I[116] = (T)(img)(0,_p1##y,_n1##z,c)), \
|
|
(I[120] = I[121] = I[122] = (T)(img)(0,y,_n1##z,c)), \
|
|
(I[126] = I[127] = I[128] = (T)(img)(0,_n1##y,_n1##z,c)), \
|
|
(I[132] = I[133] = I[134] = (T)(img)(0,_n2##y,_n1##z,c)), \
|
|
(I[138] = I[139] = I[140] = (T)(img)(0,_n3##y,_n1##z,c)), \
|
|
(I[144] = I[145] = I[146] = (T)(img)(0,_p2##y,_n2##z,c)), \
|
|
(I[150] = I[151] = I[152] = (T)(img)(0,_p1##y,_n2##z,c)), \
|
|
(I[156] = I[157] = I[158] = (T)(img)(0,y,_n2##z,c)), \
|
|
(I[162] = I[163] = I[164] = (T)(img)(0,_n1##y,_n2##z,c)), \
|
|
(I[168] = I[169] = I[170] = (T)(img)(0,_n2##y,_n2##z,c)), \
|
|
(I[174] = I[175] = I[176] = (T)(img)(0,_n3##y,_n2##z,c)), \
|
|
(I[180] = I[181] = I[182] = (T)(img)(0,_p2##y,_n3##z,c)), \
|
|
(I[186] = I[187] = I[188] = (T)(img)(0,_p1##y,_n3##z,c)), \
|
|
(I[192] = I[193] = I[194] = (T)(img)(0,y,_n3##z,c)), \
|
|
(I[198] = I[199] = I[200] = (T)(img)(0,_n1##y,_n3##z,c)), \
|
|
(I[204] = I[205] = I[206] = (T)(img)(0,_n2##y,_n3##z,c)), \
|
|
(I[210] = I[211] = I[212] = (T)(img)(0,_n3##y,_n3##z,c)), \
|
|
(I[3] = (T)(img)(_n1##x,_p2##y,_p2##z,c)), \
|
|
(I[9] = (T)(img)(_n1##x,_p1##y,_p2##z,c)), \
|
|
(I[15] = (T)(img)(_n1##x,y,_p2##z,c)), \
|
|
(I[21] = (T)(img)(_n1##x,_n1##y,_p2##z,c)), \
|
|
(I[27] = (T)(img)(_n1##x,_n2##y,_p2##z,c)), \
|
|
(I[33] = (T)(img)(_n1##x,_n3##y,_p2##z,c)), \
|
|
(I[39] = (T)(img)(_n1##x,_p2##y,_p1##z,c)), \
|
|
(I[45] = (T)(img)(_n1##x,_p1##y,_p1##z,c)), \
|
|
(I[51] = (T)(img)(_n1##x,y,_p1##z,c)), \
|
|
(I[57] = (T)(img)(_n1##x,_n1##y,_p1##z,c)), \
|
|
(I[63] = (T)(img)(_n1##x,_n2##y,_p1##z,c)), \
|
|
(I[69] = (T)(img)(_n1##x,_n3##y,_p1##z,c)), \
|
|
(I[75] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[81] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[87] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[93] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[99] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[105] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[111] = (T)(img)(_n1##x,_p2##y,_n1##z,c)), \
|
|
(I[117] = (T)(img)(_n1##x,_p1##y,_n1##z,c)), \
|
|
(I[123] = (T)(img)(_n1##x,y,_n1##z,c)), \
|
|
(I[129] = (T)(img)(_n1##x,_n1##y,_n1##z,c)), \
|
|
(I[135] = (T)(img)(_n1##x,_n2##y,_n1##z,c)), \
|
|
(I[141] = (T)(img)(_n1##x,_n3##y,_n1##z,c)), \
|
|
(I[147] = (T)(img)(_n1##x,_p2##y,_n2##z,c)), \
|
|
(I[153] = (T)(img)(_n1##x,_p1##y,_n2##z,c)), \
|
|
(I[159] = (T)(img)(_n1##x,y,_n2##z,c)), \
|
|
(I[165] = (T)(img)(_n1##x,_n1##y,_n2##z,c)), \
|
|
(I[171] = (T)(img)(_n1##x,_n2##y,_n2##z,c)), \
|
|
(I[177] = (T)(img)(_n1##x,_n3##y,_n2##z,c)), \
|
|
(I[183] = (T)(img)(_n1##x,_p2##y,_n3##z,c)), \
|
|
(I[189] = (T)(img)(_n1##x,_p1##y,_n3##z,c)), \
|
|
(I[195] = (T)(img)(_n1##x,y,_n3##z,c)), \
|
|
(I[201] = (T)(img)(_n1##x,_n1##y,_n3##z,c)), \
|
|
(I[207] = (T)(img)(_n1##x,_n2##y,_n3##z,c)), \
|
|
(I[213] = (T)(img)(_n1##x,_n3##y,_n3##z,c)), \
|
|
(I[4] = (T)(img)(_n2##x,_p2##y,_p2##z,c)), \
|
|
(I[10] = (T)(img)(_n2##x,_p1##y,_p2##z,c)), \
|
|
(I[16] = (T)(img)(_n2##x,y,_p2##z,c)), \
|
|
(I[22] = (T)(img)(_n2##x,_n1##y,_p2##z,c)), \
|
|
(I[28] = (T)(img)(_n2##x,_n2##y,_p2##z,c)), \
|
|
(I[34] = (T)(img)(_n2##x,_n3##y,_p2##z,c)), \
|
|
(I[40] = (T)(img)(_n2##x,_p2##y,_p1##z,c)), \
|
|
(I[46] = (T)(img)(_n2##x,_p1##y,_p1##z,c)), \
|
|
(I[52] = (T)(img)(_n2##x,y,_p1##z,c)), \
|
|
(I[58] = (T)(img)(_n2##x,_n1##y,_p1##z,c)), \
|
|
(I[64] = (T)(img)(_n2##x,_n2##y,_p1##z,c)), \
|
|
(I[70] = (T)(img)(_n2##x,_n3##y,_p1##z,c)), \
|
|
(I[76] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[82] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[88] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[94] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[100] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[106] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[112] = (T)(img)(_n2##x,_p2##y,_n1##z,c)), \
|
|
(I[118] = (T)(img)(_n2##x,_p1##y,_n1##z,c)), \
|
|
(I[124] = (T)(img)(_n2##x,y,_n1##z,c)), \
|
|
(I[130] = (T)(img)(_n2##x,_n1##y,_n1##z,c)), \
|
|
(I[136] = (T)(img)(_n2##x,_n2##y,_n1##z,c)), \
|
|
(I[142] = (T)(img)(_n2##x,_n3##y,_n1##z,c)), \
|
|
(I[148] = (T)(img)(_n2##x,_p2##y,_n2##z,c)), \
|
|
(I[154] = (T)(img)(_n2##x,_p1##y,_n2##z,c)), \
|
|
(I[160] = (T)(img)(_n2##x,y,_n2##z,c)), \
|
|
(I[166] = (T)(img)(_n2##x,_n1##y,_n2##z,c)), \
|
|
(I[172] = (T)(img)(_n2##x,_n2##y,_n2##z,c)), \
|
|
(I[178] = (T)(img)(_n2##x,_n3##y,_n2##z,c)), \
|
|
(I[184] = (T)(img)(_n2##x,_p2##y,_n3##z,c)), \
|
|
(I[190] = (T)(img)(_n2##x,_p1##y,_n3##z,c)), \
|
|
(I[196] = (T)(img)(_n2##x,y,_n3##z,c)), \
|
|
(I[202] = (T)(img)(_n2##x,_n1##y,_n3##z,c)), \
|
|
(I[208] = (T)(img)(_n2##x,_n2##y,_n3##z,c)), \
|
|
(I[214] = (T)(img)(_n2##x,_n3##y,_n3##z,c)), \
|
|
3>=((img)._width)?(img).width() - 1:3); \
|
|
(_n3##x<(img).width() && ( \
|
|
(I[5] = (T)(img)(_n3##x,_p2##y,_p2##z,c)), \
|
|
(I[11] = (T)(img)(_n3##x,_p1##y,_p2##z,c)), \
|
|
(I[17] = (T)(img)(_n3##x,y,_p2##z,c)), \
|
|
(I[23] = (T)(img)(_n3##x,_n1##y,_p2##z,c)), \
|
|
(I[29] = (T)(img)(_n3##x,_n2##y,_p2##z,c)), \
|
|
(I[35] = (T)(img)(_n3##x,_n3##y,_p2##z,c)), \
|
|
(I[41] = (T)(img)(_n3##x,_p2##y,_p1##z,c)), \
|
|
(I[47] = (T)(img)(_n3##x,_p1##y,_p1##z,c)), \
|
|
(I[53] = (T)(img)(_n3##x,y,_p1##z,c)), \
|
|
(I[59] = (T)(img)(_n3##x,_n1##y,_p1##z,c)), \
|
|
(I[65] = (T)(img)(_n3##x,_n2##y,_p1##z,c)), \
|
|
(I[71] = (T)(img)(_n3##x,_n3##y,_p1##z,c)), \
|
|
(I[77] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[83] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[89] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[95] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[101] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[107] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[113] = (T)(img)(_n3##x,_p2##y,_n1##z,c)), \
|
|
(I[119] = (T)(img)(_n3##x,_p1##y,_n1##z,c)), \
|
|
(I[125] = (T)(img)(_n3##x,y,_n1##z,c)), \
|
|
(I[131] = (T)(img)(_n3##x,_n1##y,_n1##z,c)), \
|
|
(I[137] = (T)(img)(_n3##x,_n2##y,_n1##z,c)), \
|
|
(I[143] = (T)(img)(_n3##x,_n3##y,_n1##z,c)), \
|
|
(I[149] = (T)(img)(_n3##x,_p2##y,_n2##z,c)), \
|
|
(I[155] = (T)(img)(_n3##x,_p1##y,_n2##z,c)), \
|
|
(I[161] = (T)(img)(_n3##x,y,_n2##z,c)), \
|
|
(I[167] = (T)(img)(_n3##x,_n1##y,_n2##z,c)), \
|
|
(I[173] = (T)(img)(_n3##x,_n2##y,_n2##z,c)), \
|
|
(I[179] = (T)(img)(_n3##x,_n3##y,_n2##z,c)), \
|
|
(I[185] = (T)(img)(_n3##x,_p2##y,_n3##z,c)), \
|
|
(I[191] = (T)(img)(_n3##x,_p1##y,_n3##z,c)), \
|
|
(I[197] = (T)(img)(_n3##x,y,_n3##z,c)), \
|
|
(I[203] = (T)(img)(_n3##x,_n1##y,_n3##z,c)), \
|
|
(I[209] = (T)(img)(_n3##x,_n2##y,_n3##z,c)), \
|
|
(I[215] = (T)(img)(_n3##x,_n3##y,_n3##z,c)),1)) || \
|
|
_n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n3##x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], \
|
|
I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], \
|
|
I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], \
|
|
I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \
|
|
I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
|
|
I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \
|
|
I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \
|
|
I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
|
|
I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], \
|
|
I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
|
|
I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], \
|
|
I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
|
|
I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], \
|
|
I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
|
|
I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
|
|
I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
|
|
I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], \
|
|
I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], \
|
|
I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], \
|
|
I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
|
|
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
|
|
I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], \
|
|
I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], \
|
|
I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
|
|
I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], \
|
|
I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], \
|
|
I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], \
|
|
I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
|
|
I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], \
|
|
I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \
|
|
I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], \
|
|
I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \
|
|
I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], \
|
|
I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], \
|
|
I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \
|
|
I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \
|
|
_p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x)
|
|
|
|
#define cimg_for_in6x6x6(img,x0,y0,z0,x1,y1,z1,x,y,z,c,I,T) \
|
|
cimg_for_in6((img)._depth,z0,z1,z) cimg_for_in6((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
|
|
_n3##x = (int)( \
|
|
(I[0] = (T)(img)(_p2##x,_p2##y,_p2##z,c)), \
|
|
(I[6] = (T)(img)(_p2##x,_p1##y,_p2##z,c)), \
|
|
(I[12] = (T)(img)(_p2##x,y,_p2##z,c)), \
|
|
(I[18] = (T)(img)(_p2##x,_n1##y,_p2##z,c)), \
|
|
(I[24] = (T)(img)(_p2##x,_n2##y,_p2##z,c)), \
|
|
(I[30] = (T)(img)(_p2##x,_n3##y,_p2##z,c)), \
|
|
(I[36] = (T)(img)(_p2##x,_p2##y,_p1##z,c)), \
|
|
(I[42] = (T)(img)(_p2##x,_p1##y,_p1##z,c)), \
|
|
(I[48] = (T)(img)(_p2##x,y,_p1##z,c)), \
|
|
(I[54] = (T)(img)(_p2##x,_n1##y,_p1##z,c)), \
|
|
(I[60] = (T)(img)(_p2##x,_n2##y,_p1##z,c)), \
|
|
(I[66] = (T)(img)(_p2##x,_n3##y,_p1##z,c)), \
|
|
(I[72] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[78] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[84] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[90] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[96] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[102] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[108] = (T)(img)(_p2##x,_p2##y,_n1##z,c)), \
|
|
(I[114] = (T)(img)(_p2##x,_p1##y,_n1##z,c)), \
|
|
(I[120] = (T)(img)(_p2##x,y,_n1##z,c)), \
|
|
(I[126] = (T)(img)(_p2##x,_n1##y,_n1##z,c)), \
|
|
(I[132] = (T)(img)(_p2##x,_n2##y,_n1##z,c)), \
|
|
(I[138] = (T)(img)(_p2##x,_n3##y,_n1##z,c)), \
|
|
(I[144] = (T)(img)(_p2##x,_p2##y,_n2##z,c)), \
|
|
(I[150] = (T)(img)(_p2##x,_p1##y,_n2##z,c)), \
|
|
(I[156] = (T)(img)(_p2##x,y,_n2##z,c)), \
|
|
(I[162] = (T)(img)(_p2##x,_n1##y,_n2##z,c)), \
|
|
(I[168] = (T)(img)(_p2##x,_n2##y,_n2##z,c)), \
|
|
(I[174] = (T)(img)(_p2##x,_n3##y,_n2##z,c)), \
|
|
(I[180] = (T)(img)(_p2##x,_p2##y,_n3##z,c)), \
|
|
(I[186] = (T)(img)(_p2##x,_p1##y,_n3##z,c)), \
|
|
(I[192] = (T)(img)(_p2##x,y,_n3##z,c)), \
|
|
(I[198] = (T)(img)(_p2##x,_n1##y,_n3##z,c)), \
|
|
(I[204] = (T)(img)(_p2##x,_n2##y,_n3##z,c)), \
|
|
(I[210] = (T)(img)(_p2##x,_n3##y,_n3##z,c)), \
|
|
(I[1] = (T)(img)(_p1##x,_p2##y,_p2##z,c)), \
|
|
(I[7] = (T)(img)(_p1##x,_p1##y,_p2##z,c)), \
|
|
(I[13] = (T)(img)(_p1##x,y,_p2##z,c)), \
|
|
(I[19] = (T)(img)(_p1##x,_n1##y,_p2##z,c)), \
|
|
(I[25] = (T)(img)(_p1##x,_n2##y,_p2##z,c)), \
|
|
(I[31] = (T)(img)(_p1##x,_n3##y,_p2##z,c)), \
|
|
(I[37] = (T)(img)(_p1##x,_p2##y,_p1##z,c)), \
|
|
(I[43] = (T)(img)(_p1##x,_p1##y,_p1##z,c)), \
|
|
(I[49] = (T)(img)(_p1##x,y,_p1##z,c)), \
|
|
(I[55] = (T)(img)(_p1##x,_n1##y,_p1##z,c)), \
|
|
(I[61] = (T)(img)(_p1##x,_n2##y,_p1##z,c)), \
|
|
(I[67] = (T)(img)(_p1##x,_n3##y,_p1##z,c)), \
|
|
(I[73] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[79] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[85] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[91] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[97] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[103] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[109] = (T)(img)(_p1##x,_p2##y,_n1##z,c)), \
|
|
(I[115] = (T)(img)(_p1##x,_p1##y,_n1##z,c)), \
|
|
(I[121] = (T)(img)(_p1##x,y,_n1##z,c)), \
|
|
(I[127] = (T)(img)(_p1##x,_n1##y,_n1##z,c)), \
|
|
(I[133] = (T)(img)(_p1##x,_n2##y,_n1##z,c)), \
|
|
(I[139] = (T)(img)(_p1##x,_n3##y,_n1##z,c)), \
|
|
(I[145] = (T)(img)(_p1##x,_p2##y,_n2##z,c)), \
|
|
(I[151] = (T)(img)(_p1##x,_p1##y,_n2##z,c)), \
|
|
(I[157] = (T)(img)(_p1##x,y,_n2##z,c)), \
|
|
(I[163] = (T)(img)(_p1##x,_n1##y,_n2##z,c)), \
|
|
(I[169] = (T)(img)(_p1##x,_n2##y,_n2##z,c)), \
|
|
(I[175] = (T)(img)(_p1##x,_n3##y,_n2##z,c)), \
|
|
(I[181] = (T)(img)(_p1##x,_p2##y,_n3##z,c)), \
|
|
(I[187] = (T)(img)(_p1##x,_p1##y,_n3##z,c)), \
|
|
(I[193] = (T)(img)(_p1##x,y,_n3##z,c)), \
|
|
(I[199] = (T)(img)(_p1##x,_n1##y,_n3##z,c)), \
|
|
(I[205] = (T)(img)(_p1##x,_n2##y,_n3##z,c)), \
|
|
(I[211] = (T)(img)(_p1##x,_n3##y,_n3##z,c)), \
|
|
(I[2] = (T)(img)(x,_p2##y,_p2##z,c)), \
|
|
(I[8] = (T)(img)(x,_p1##y,_p2##z,c)), \
|
|
(I[14] = (T)(img)(x,y,_p2##z,c)), \
|
|
(I[20] = (T)(img)(x,_n1##y,_p2##z,c)), \
|
|
(I[26] = (T)(img)(x,_n2##y,_p2##z,c)), \
|
|
(I[32] = (T)(img)(x,_n3##y,_p2##z,c)), \
|
|
(I[38] = (T)(img)(x,_p2##y,_p1##z,c)), \
|
|
(I[44] = (T)(img)(x,_p1##y,_p1##z,c)), \
|
|
(I[50] = (T)(img)(x,y,_p1##z,c)), \
|
|
(I[56] = (T)(img)(x,_n1##y,_p1##z,c)), \
|
|
(I[62] = (T)(img)(x,_n2##y,_p1##z,c)), \
|
|
(I[68] = (T)(img)(x,_n3##y,_p1##z,c)), \
|
|
(I[74] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[80] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[86] = (T)(img)(x,y,z,c)), \
|
|
(I[92] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[98] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[104] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[110] = (T)(img)(x,_p2##y,_n1##z,c)), \
|
|
(I[116] = (T)(img)(x,_p1##y,_n1##z,c)), \
|
|
(I[122] = (T)(img)(x,y,_n1##z,c)), \
|
|
(I[128] = (T)(img)(x,_n1##y,_n1##z,c)), \
|
|
(I[134] = (T)(img)(x,_n2##y,_n1##z,c)), \
|
|
(I[140] = (T)(img)(x,_n3##y,_n1##z,c)), \
|
|
(I[146] = (T)(img)(x,_p2##y,_n2##z,c)), \
|
|
(I[152] = (T)(img)(x,_p1##y,_n2##z,c)), \
|
|
(I[158] = (T)(img)(x,y,_n2##z,c)), \
|
|
(I[164] = (T)(img)(x,_n1##y,_n2##z,c)), \
|
|
(I[170] = (T)(img)(x,_n2##y,_n2##z,c)), \
|
|
(I[176] = (T)(img)(x,_n3##y,_n2##z,c)), \
|
|
(I[182] = (T)(img)(x,_p2##y,_n3##z,c)), \
|
|
(I[188] = (T)(img)(x,_p1##y,_n3##z,c)), \
|
|
(I[194] = (T)(img)(x,y,_n3##z,c)), \
|
|
(I[200] = (T)(img)(x,_n1##y,_n3##z,c)), \
|
|
(I[206] = (T)(img)(x,_n2##y,_n3##z,c)), \
|
|
(I[212] = (T)(img)(x,_n3##y,_n3##z,c)), \
|
|
(I[3] = (T)(img)(_n1##x,_p2##y,_p2##z,c)), \
|
|
(I[9] = (T)(img)(_n1##x,_p1##y,_p2##z,c)), \
|
|
(I[15] = (T)(img)(_n1##x,y,_p2##z,c)), \
|
|
(I[21] = (T)(img)(_n1##x,_n1##y,_p2##z,c)), \
|
|
(I[27] = (T)(img)(_n1##x,_n2##y,_p2##z,c)), \
|
|
(I[33] = (T)(img)(_n1##x,_n3##y,_p2##z,c)), \
|
|
(I[39] = (T)(img)(_n1##x,_p2##y,_p1##z,c)), \
|
|
(I[45] = (T)(img)(_n1##x,_p1##y,_p1##z,c)), \
|
|
(I[51] = (T)(img)(_n1##x,y,_p1##z,c)), \
|
|
(I[57] = (T)(img)(_n1##x,_n1##y,_p1##z,c)), \
|
|
(I[63] = (T)(img)(_n1##x,_n2##y,_p1##z,c)), \
|
|
(I[69] = (T)(img)(_n1##x,_n3##y,_p1##z,c)), \
|
|
(I[75] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[81] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[87] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[93] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[99] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[105] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[111] = (T)(img)(_n1##x,_p2##y,_n1##z,c)), \
|
|
(I[117] = (T)(img)(_n1##x,_p1##y,_n1##z,c)), \
|
|
(I[123] = (T)(img)(_n1##x,y,_n1##z,c)), \
|
|
(I[129] = (T)(img)(_n1##x,_n1##y,_n1##z,c)), \
|
|
(I[135] = (T)(img)(_n1##x,_n2##y,_n1##z,c)), \
|
|
(I[141] = (T)(img)(_n1##x,_n3##y,_n1##z,c)), \
|
|
(I[147] = (T)(img)(_n1##x,_p2##y,_n2##z,c)), \
|
|
(I[153] = (T)(img)(_n1##x,_p1##y,_n2##z,c)), \
|
|
(I[159] = (T)(img)(_n1##x,y,_n2##z,c)), \
|
|
(I[165] = (T)(img)(_n1##x,_n1##y,_n2##z,c)), \
|
|
(I[171] = (T)(img)(_n1##x,_n2##y,_n2##z,c)), \
|
|
(I[177] = (T)(img)(_n1##x,_n3##y,_n2##z,c)), \
|
|
(I[183] = (T)(img)(_n1##x,_p2##y,_n3##z,c)), \
|
|
(I[189] = (T)(img)(_n1##x,_p1##y,_n3##z,c)), \
|
|
(I[195] = (T)(img)(_n1##x,y,_n3##z,c)), \
|
|
(I[201] = (T)(img)(_n1##x,_n1##y,_n3##z,c)), \
|
|
(I[207] = (T)(img)(_n1##x,_n2##y,_n3##z,c)), \
|
|
(I[213] = (T)(img)(_n1##x,_n3##y,_n3##z,c)), \
|
|
(I[4] = (T)(img)(_n2##x,_p2##y,_p2##z,c)), \
|
|
(I[10] = (T)(img)(_n2##x,_p1##y,_p2##z,c)), \
|
|
(I[16] = (T)(img)(_n2##x,y,_p2##z,c)), \
|
|
(I[22] = (T)(img)(_n2##x,_n1##y,_p2##z,c)), \
|
|
(I[28] = (T)(img)(_n2##x,_n2##y,_p2##z,c)), \
|
|
(I[34] = (T)(img)(_n2##x,_n3##y,_p2##z,c)), \
|
|
(I[40] = (T)(img)(_n2##x,_p2##y,_p1##z,c)), \
|
|
(I[46] = (T)(img)(_n2##x,_p1##y,_p1##z,c)), \
|
|
(I[52] = (T)(img)(_n2##x,y,_p1##z,c)), \
|
|
(I[58] = (T)(img)(_n2##x,_n1##y,_p1##z,c)), \
|
|
(I[64] = (T)(img)(_n2##x,_n2##y,_p1##z,c)), \
|
|
(I[70] = (T)(img)(_n2##x,_n3##y,_p1##z,c)), \
|
|
(I[76] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[82] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[88] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[94] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[100] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[106] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[112] = (T)(img)(_n2##x,_p2##y,_n1##z,c)), \
|
|
(I[118] = (T)(img)(_n2##x,_p1##y,_n1##z,c)), \
|
|
(I[124] = (T)(img)(_n2##x,y,_n1##z,c)), \
|
|
(I[130] = (T)(img)(_n2##x,_n1##y,_n1##z,c)), \
|
|
(I[136] = (T)(img)(_n2##x,_n2##y,_n1##z,c)), \
|
|
(I[142] = (T)(img)(_n2##x,_n3##y,_n1##z,c)), \
|
|
(I[148] = (T)(img)(_n2##x,_p2##y,_n2##z,c)), \
|
|
(I[154] = (T)(img)(_n2##x,_p1##y,_n2##z,c)), \
|
|
(I[160] = (T)(img)(_n2##x,y,_n2##z,c)), \
|
|
(I[166] = (T)(img)(_n2##x,_n1##y,_n2##z,c)), \
|
|
(I[172] = (T)(img)(_n2##x,_n2##y,_n2##z,c)), \
|
|
(I[178] = (T)(img)(_n2##x,_n3##y,_n2##z,c)), \
|
|
(I[184] = (T)(img)(_n2##x,_p2##y,_n3##z,c)), \
|
|
(I[190] = (T)(img)(_n2##x,_p1##y,_n3##z,c)), \
|
|
(I[196] = (T)(img)(_n2##x,y,_n3##z,c)), \
|
|
(I[202] = (T)(img)(_n2##x,_n1##y,_n3##z,c)), \
|
|
(I[208] = (T)(img)(_n2##x,_n2##y,_n3##z,c)), \
|
|
(I[214] = (T)(img)(_n2##x,_n3##y,_n3##z,c)), \
|
|
x + 3>=(img).width()?(img).width() - 1:x + 3); \
|
|
x<=(int)(x1) && ((_n3##x<(img).width() && ( \
|
|
(I[5] = (T)(img)(_n3##x,_p2##y,_p2##z,c)), \
|
|
(I[11] = (T)(img)(_n3##x,_p1##y,_p2##z,c)), \
|
|
(I[17] = (T)(img)(_n3##x,y,_p2##z,c)), \
|
|
(I[23] = (T)(img)(_n3##x,_n1##y,_p2##z,c)), \
|
|
(I[29] = (T)(img)(_n3##x,_n2##y,_p2##z,c)), \
|
|
(I[35] = (T)(img)(_n3##x,_n3##y,_p2##z,c)), \
|
|
(I[41] = (T)(img)(_n3##x,_p2##y,_p1##z,c)), \
|
|
(I[47] = (T)(img)(_n3##x,_p1##y,_p1##z,c)), \
|
|
(I[53] = (T)(img)(_n3##x,y,_p1##z,c)), \
|
|
(I[59] = (T)(img)(_n3##x,_n1##y,_p1##z,c)), \
|
|
(I[65] = (T)(img)(_n3##x,_n2##y,_p1##z,c)), \
|
|
(I[71] = (T)(img)(_n3##x,_n3##y,_p1##z,c)), \
|
|
(I[77] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[83] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[89] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[95] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[101] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[107] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[113] = (T)(img)(_n3##x,_p2##y,_n1##z,c)), \
|
|
(I[119] = (T)(img)(_n3##x,_p1##y,_n1##z,c)), \
|
|
(I[125] = (T)(img)(_n3##x,y,_n1##z,c)), \
|
|
(I[131] = (T)(img)(_n3##x,_n1##y,_n1##z,c)), \
|
|
(I[137] = (T)(img)(_n3##x,_n2##y,_n1##z,c)), \
|
|
(I[143] = (T)(img)(_n3##x,_n3##y,_n1##z,c)), \
|
|
(I[149] = (T)(img)(_n3##x,_p2##y,_n2##z,c)), \
|
|
(I[155] = (T)(img)(_n3##x,_p1##y,_n2##z,c)), \
|
|
(I[161] = (T)(img)(_n3##x,y,_n2##z,c)), \
|
|
(I[167] = (T)(img)(_n3##x,_n1##y,_n2##z,c)), \
|
|
(I[173] = (T)(img)(_n3##x,_n2##y,_n2##z,c)), \
|
|
(I[179] = (T)(img)(_n3##x,_n3##y,_n2##z,c)), \
|
|
(I[185] = (T)(img)(_n3##x,_p2##y,_n3##z,c)), \
|
|
(I[191] = (T)(img)(_n3##x,_p1##y,_n3##z,c)), \
|
|
(I[197] = (T)(img)(_n3##x,y,_n3##z,c)), \
|
|
(I[203] = (T)(img)(_n3##x,_n1##y,_n3##z,c)), \
|
|
(I[209] = (T)(img)(_n3##x,_n2##y,_n3##z,c)), \
|
|
(I[215] = (T)(img)(_n3##x,_n3##y,_n3##z,c)),1)) || \
|
|
_n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n3##x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], \
|
|
I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], \
|
|
I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], \
|
|
I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \
|
|
I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
|
|
I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \
|
|
I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \
|
|
I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
|
|
I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], \
|
|
I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
|
|
I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], \
|
|
I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
|
|
I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], \
|
|
I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
|
|
I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
|
|
I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
|
|
I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], \
|
|
I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], \
|
|
I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], \
|
|
I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
|
|
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
|
|
I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], \
|
|
I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], \
|
|
I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
|
|
I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], \
|
|
I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], \
|
|
I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], \
|
|
I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
|
|
I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], \
|
|
I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \
|
|
I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], \
|
|
I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \
|
|
I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], \
|
|
I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], \
|
|
I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \
|
|
I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \
|
|
_p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x)
|
|
|
|
#define cimg_get6x6x6(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p2##x,_p2##y,_p2##z,c), I[1] = (T)(img)(_p1##x,_p2##y,_p2##z,c), I[2] = (T)(img)(x,_p2##y,_p2##z,c), I[3] = (T)(img)(_n1##x,_p2##y,_p2##z,c), I[4] = (T)(img)(_n2##x,_p2##y,_p2##z,c), I[5] = (T)(img)(_n3##x,_p2##y,_p2##z,c), \
|
|
I[6] = (T)(img)(_p2##x,_p1##y,_p2##z,c), I[7] = (T)(img)(_p1##x,_p1##y,_p2##z,c), I[8] = (T)(img)(x,_p1##y,_p2##z,c), I[9] = (T)(img)(_n1##x,_p1##y,_p2##z,c), I[10] = (T)(img)(_n2##x,_p1##y,_p2##z,c), I[11] = (T)(img)(_n3##x,_p1##y,_p2##z,c), \
|
|
I[12] = (T)(img)(_p2##x,y,_p2##z,c), I[13] = (T)(img)(_p1##x,y,_p2##z,c), I[14] = (T)(img)(x,y,_p2##z,c), I[15] = (T)(img)(_n1##x,y,_p2##z,c), I[16] = (T)(img)(_n2##x,y,_p2##z,c), I[17] = (T)(img)(_n3##x,y,_p2##z,c), \
|
|
I[18] = (T)(img)(_p2##x,_n1##y,_p2##z,c), I[19] = (T)(img)(_p1##x,_n1##y,_p2##z,c), I[20] = (T)(img)(x,_n1##y,_p2##z,c), I[21] = (T)(img)(_n1##x,_n1##y,_p2##z,c), I[22] = (T)(img)(_n2##x,_n1##y,_p2##z,c), I[23] = (T)(img)(_n3##x,_n1##y,_p2##z,c), \
|
|
I[24] = (T)(img)(_p2##x,_n2##y,_p2##z,c), I[25] = (T)(img)(_p1##x,_n2##y,_p2##z,c), I[26] = (T)(img)(x,_n2##y,_p2##z,c), I[27] = (T)(img)(_n1##x,_n2##y,_p2##z,c), I[28] = (T)(img)(_n2##x,_n2##y,_p2##z,c), I[29] = (T)(img)(_n3##x,_n2##y,_p2##z,c), \
|
|
I[30] = (T)(img)(_p2##x,_n3##y,_p2##z,c), I[31] = (T)(img)(_p1##x,_n3##y,_p2##z,c), I[32] = (T)(img)(x,_n3##y,_p2##z,c), I[33] = (T)(img)(_n1##x,_n3##y,_p2##z,c), I[34] = (T)(img)(_n2##x,_n3##y,_p2##z,c), I[35] = (T)(img)(_n3##x,_n3##y,_p2##z,c), \
|
|
I[36] = (T)(img)(_p2##x,_p2##y,_p1##z,c), I[37] = (T)(img)(_p1##x,_p2##y,_p1##z,c), I[38] = (T)(img)(x,_p2##y,_p1##z,c), I[39] = (T)(img)(_n1##x,_p2##y,_p1##z,c), I[40] = (T)(img)(_n2##x,_p2##y,_p1##z,c), I[41] = (T)(img)(_n3##x,_p2##y,_p1##z,c), \
|
|
I[42] = (T)(img)(_p2##x,_p1##y,_p1##z,c), I[43] = (T)(img)(_p1##x,_p1##y,_p1##z,c), I[44] = (T)(img)(x,_p1##y,_p1##z,c), I[45] = (T)(img)(_n1##x,_p1##y,_p1##z,c), I[46] = (T)(img)(_n2##x,_p1##y,_p1##z,c), I[47] = (T)(img)(_n3##x,_p1##y,_p1##z,c), \
|
|
I[48] = (T)(img)(_p2##x,y,_p1##z,c), I[49] = (T)(img)(_p1##x,y,_p1##z,c), I[50] = (T)(img)(x,y,_p1##z,c), I[51] = (T)(img)(_n1##x,y,_p1##z,c), I[52] = (T)(img)(_n2##x,y,_p1##z,c), I[53] = (T)(img)(_n3##x,y,_p1##z,c), \
|
|
I[54] = (T)(img)(_p2##x,_n1##y,_p1##z,c), I[55] = (T)(img)(_p1##x,_n1##y,_p1##z,c), I[56] = (T)(img)(x,_n1##y,_p1##z,c), I[57] = (T)(img)(_n1##x,_n1##y,_p1##z,c), I[58] = (T)(img)(_n2##x,_n1##y,_p1##z,c), I[59] = (T)(img)(_n3##x,_n1##y,_p1##z,c), \
|
|
I[60] = (T)(img)(_p2##x,_n2##y,_p1##z,c), I[61] = (T)(img)(_p1##x,_n2##y,_p1##z,c), I[62] = (T)(img)(x,_n2##y,_p1##z,c), I[63] = (T)(img)(_n1##x,_n2##y,_p1##z,c), I[64] = (T)(img)(_n2##x,_n2##y,_p1##z,c), I[65] = (T)(img)(_n3##x,_n2##y,_p1##z,c), \
|
|
I[66] = (T)(img)(_p2##x,_n3##y,_p1##z,c), I[67] = (T)(img)(_p1##x,_n3##y,_p1##z,c), I[68] = (T)(img)(x,_n3##y,_p1##z,c), I[69] = (T)(img)(_n1##x,_n3##y,_p1##z,c), I[70] = (T)(img)(_n2##x,_n3##y,_p1##z,c), I[71] = (T)(img)(_n3##x,_n3##y,_p1##z,c), \
|
|
I[72] = (T)(img)(_p2##x,_p2##y,z,c), I[73] = (T)(img)(_p1##x,_p2##y,z,c), I[74] = (T)(img)(x,_p2##y,z,c), I[75] = (T)(img)(_n1##x,_p2##y,z,c), I[76] = (T)(img)(_n2##x,_p2##y,z,c), I[77] = (T)(img)(_n3##x,_p2##y,z,c), \
|
|
I[78] = (T)(img)(_p2##x,_p1##y,z,c), I[79] = (T)(img)(_p1##x,_p1##y,z,c), I[80] = (T)(img)(x,_p1##y,z,c), I[81] = (T)(img)(_n1##x,_p1##y,z,c), I[82] = (T)(img)(_n2##x,_p1##y,z,c), I[83] = (T)(img)(_n3##x,_p1##y,z,c), \
|
|
I[84] = (T)(img)(_p2##x,y,z,c), I[85] = (T)(img)(_p1##x,y,z,c), I[86] = (T)(img)(x,y,z,c), I[87] = (T)(img)(_n1##x,y,z,c), I[88] = (T)(img)(_n2##x,y,z,c), I[89] = (T)(img)(_n3##x,y,z,c), \
|
|
I[90] = (T)(img)(_p2##x,_n1##y,z,c), I[91] = (T)(img)(_p1##x,_n1##y,z,c), I[92] = (T)(img)(x,_n1##y,z,c), I[93] = (T)(img)(_n1##x,_n1##y,z,c), I[94] = (T)(img)(_n2##x,_n1##y,z,c), I[95] = (T)(img)(_n3##x,_n1##y,z,c), \
|
|
I[96] = (T)(img)(_p2##x,_n2##y,z,c), I[97] = (T)(img)(_p1##x,_n2##y,z,c), I[98] = (T)(img)(x,_n2##y,z,c), I[99] = (T)(img)(_n1##x,_n2##y,z,c), I[100] = (T)(img)(_n2##x,_n2##y,z,c), I[101] = (T)(img)(_n3##x,_n2##y,z,c), \
|
|
I[102] = (T)(img)(_p2##x,_n3##y,z,c), I[103] = (T)(img)(_p1##x,_n3##y,z,c), I[104] = (T)(img)(x,_n3##y,z,c), I[105] = (T)(img)(_n1##x,_n3##y,z,c), I[106] = (T)(img)(_n2##x,_n3##y,z,c), I[107] = (T)(img)(_n3##x,_n3##y,z,c), \
|
|
I[108] = (T)(img)(_p2##x,_p2##y,_n1##z,c), I[109] = (T)(img)(_p1##x,_p2##y,_n1##z,c), I[110] = (T)(img)(x,_p2##y,_n1##z,c), I[111] = (T)(img)(_n1##x,_p2##y,_n1##z,c), I[112] = (T)(img)(_n2##x,_p2##y,_n1##z,c), I[113] = (T)(img)(_n3##x,_p2##y,_n1##z,c), \
|
|
I[114] = (T)(img)(_p2##x,_p1##y,_n1##z,c), I[115] = (T)(img)(_p1##x,_p1##y,_n1##z,c), I[116] = (T)(img)(x,_p1##y,_n1##z,c), I[117] = (T)(img)(_n1##x,_p1##y,_n1##z,c), I[118] = (T)(img)(_n2##x,_p1##y,_n1##z,c), I[119] = (T)(img)(_n3##x,_p1##y,_n1##z,c), \
|
|
I[120] = (T)(img)(_p2##x,y,_n1##z,c), I[121] = (T)(img)(_p1##x,y,_n1##z,c), I[122] = (T)(img)(x,y,_n1##z,c), I[123] = (T)(img)(_n1##x,y,_n1##z,c), I[124] = (T)(img)(_n2##x,y,_n1##z,c), I[125] = (T)(img)(_n3##x,y,_n1##z,c), \
|
|
I[126] = (T)(img)(_p2##x,_n1##y,_n1##z,c), I[127] = (T)(img)(_p1##x,_n1##y,_n1##z,c), I[128] = (T)(img)(x,_n1##y,_n1##z,c), I[129] = (T)(img)(_n1##x,_n1##y,_n1##z,c), I[130] = (T)(img)(_n2##x,_n1##y,_n1##z,c), I[131] = (T)(img)(_n3##x,_n1##y,_n1##z,c), \
|
|
I[132] = (T)(img)(_p2##x,_n2##y,_n1##z,c), I[133] = (T)(img)(_p1##x,_n2##y,_n1##z,c), I[134] = (T)(img)(x,_n2##y,_n1##z,c), I[135] = (T)(img)(_n1##x,_n2##y,_n1##z,c), I[136] = (T)(img)(_n2##x,_n2##y,_n1##z,c), I[137] = (T)(img)(_n3##x,_n2##y,_n1##z,c), \
|
|
I[138] = (T)(img)(_p2##x,_n3##y,_n1##z,c), I[139] = (T)(img)(_p1##x,_n3##y,_n1##z,c), I[140] = (T)(img)(x,_n3##y,_n1##z,c), I[141] = (T)(img)(_n1##x,_n3##y,_n1##z,c), I[142] = (T)(img)(_n2##x,_n3##y,_n1##z,c), I[143] = (T)(img)(_n3##x,_n3##y,_n1##z,c), \
|
|
I[144] = (T)(img)(_p2##x,_p2##y,_n2##z,c), I[145] = (T)(img)(_p1##x,_p2##y,_n2##z,c), I[146] = (T)(img)(x,_p2##y,_n2##z,c), I[147] = (T)(img)(_n1##x,_p2##y,_n2##z,c), I[148] = (T)(img)(_n2##x,_p2##y,_n2##z,c), I[149] = (T)(img)(_n3##x,_p2##y,_n2##z,c), \
|
|
I[150] = (T)(img)(_p2##x,_p1##y,_n2##z,c), I[151] = (T)(img)(_p1##x,_p1##y,_n2##z,c), I[152] = (T)(img)(x,_p1##y,_n2##z,c), I[153] = (T)(img)(_n1##x,_p1##y,_n2##z,c), I[154] = (T)(img)(_n2##x,_p1##y,_n2##z,c), I[155] = (T)(img)(_n3##x,_p1##y,_n2##z,c), \
|
|
I[156] = (T)(img)(_p2##x,y,_n2##z,c), I[157] = (T)(img)(_p1##x,y,_n2##z,c), I[158] = (T)(img)(x,y,_n2##z,c), I[159] = (T)(img)(_n1##x,y,_n2##z,c), I[160] = (T)(img)(_n2##x,y,_n2##z,c), I[161] = (T)(img)(_n3##x,y,_n2##z,c), \
|
|
I[162] = (T)(img)(_p2##x,_n1##y,_n2##z,c), I[163] = (T)(img)(_p1##x,_n1##y,_n2##z,c), I[164] = (T)(img)(x,_n1##y,_n2##z,c), I[165] = (T)(img)(_n1##x,_n1##y,_n2##z,c), I[166] = (T)(img)(_n2##x,_n1##y,_n2##z,c), I[167] = (T)(img)(_n3##x,_n1##y,_n2##z,c), \
|
|
I[168] = (T)(img)(_p2##x,_n2##y,_n2##z,c), I[169] = (T)(img)(_p1##x,_n2##y,_n2##z,c), I[170] = (T)(img)(x,_n2##y,_n2##z,c), I[171] = (T)(img)(_n1##x,_n2##y,_n2##z,c), I[172] = (T)(img)(_n2##x,_n2##y,_n2##z,c), I[173] = (T)(img)(_n3##x,_n2##y,_n2##z,c), \
|
|
I[174] = (T)(img)(_p2##x,_n3##y,_n2##z,c), I[175] = (T)(img)(_p1##x,_n3##y,_n2##z,c), I[176] = (T)(img)(x,_n3##y,_n2##z,c), I[177] = (T)(img)(_n1##x,_n3##y,_n2##z,c), I[178] = (T)(img)(_n2##x,_n3##y,_n2##z,c), I[179] = (T)(img)(_n3##x,_n3##y,_n2##z,c), \
|
|
I[180] = (T)(img)(_p2##x,_p2##y,_n3##z,c), I[181] = (T)(img)(_p1##x,_p2##y,_n3##z,c), I[182] = (T)(img)(x,_p2##y,_n3##z,c), I[183] = (T)(img)(_n1##x,_p2##y,_n3##z,c), I[184] = (T)(img)(_n2##x,_p2##y,_n3##z,c), I[185] = (T)(img)(_n3##x,_p2##y,_n3##z,c), \
|
|
I[186] = (T)(img)(_p2##x,_p1##y,_n3##z,c), I[187] = (T)(img)(_p1##x,_p1##y,_n3##z,c), I[188] = (T)(img)(x,_p1##y,_n3##z,c), I[189] = (T)(img)(_n1##x,_p1##y,_n3##z,c), I[190] = (T)(img)(_n2##x,_p1##y,_n3##z,c), I[191] = (T)(img)(_n3##x,_p1##y,_n3##z,c), \
|
|
I[192] = (T)(img)(_p2##x,y,_n3##z,c), I[193] = (T)(img)(_p1##x,y,_n3##z,c), I[194] = (T)(img)(x,y,_n3##z,c), I[195] = (T)(img)(_n1##x,y,_n3##z,c), I[196] = (T)(img)(_n2##x,y,_n3##z,c), I[197] = (T)(img)(_n3##x,y,_n3##z,c), \
|
|
I[198] = (T)(img)(_p2##x,_n1##y,_n3##z,c), I[199] = (T)(img)(_p1##x,_n1##y,_n3##z,c), I[200] = (T)(img)(x,_n1##y,_n3##z,c), I[201] = (T)(img)(_n1##x,_n1##y,_n3##z,c), I[202] = (T)(img)(_n2##x,_n1##y,_n3##z,c), I[203] = (T)(img)(_n3##x,_n1##y,_n3##z,c), \
|
|
I[204] = (T)(img)(_p2##x,_n2##y,_n3##z,c), I[205] = (T)(img)(_p1##x,_n2##y,_n3##z,c), I[206] = (T)(img)(x,_n2##y,_n3##z,c), I[207] = (T)(img)(_n1##x,_n2##y,_n3##z,c), I[208] = (T)(img)(_n2##x,_n2##y,_n3##z,c), I[209] = (T)(img)(_n3##x,_n2##y,_n3##z,c), \
|
|
I[210] = (T)(img)(_p2##x,_n3##y,_n3##z,c), I[211] = (T)(img)(_p1##x,_n3##y,_n3##z,c), I[212] = (T)(img)(x,_n3##y,_n3##z,c), I[213] = (T)(img)(_n1##x,_n3##y,_n3##z,c), I[214] = (T)(img)(_n2##x,_n3##y,_n3##z,c), I[215] = (T)(img)(_n3##x,_n3##y,_n3##z,c);
|
|
|
|
// Define 7x7x7 loop macros
|
|
//----------------------------
|
|
#define cimg_for7x7x7(img,x,y,z,c,I,T) \
|
|
cimg_for7((img)._depth,z) cimg_for7((img)._height,y) for (int x = 0, \
|
|
_p3##x = 0, _p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
|
|
_n3##x = (int)( \
|
|
(I[0] = I[1] = I[2] = I[3] = (T)(img)(0,_p3##y,_p3##z,c)), \
|
|
(I[7] = I[8] = I[9] = I[10] = (T)(img)(0,_p2##y,_p3##z,c)), \
|
|
(I[14] = I[15] = I[16] = I[17] = (T)(img)(0,_p1##y,_p3##z,c)), \
|
|
(I[21] = I[22] = I[23] = I[24] = (T)(img)(0,y,_p3##z,c)), \
|
|
(I[28] = I[29] = I[30] = I[31] = (T)(img)(0,_n1##y,_p3##z,c)), \
|
|
(I[35] = I[36] = I[37] = I[38] = (T)(img)(0,_n2##y,_p3##z,c)), \
|
|
(I[42] = I[43] = I[44] = I[45] = (T)(img)(0,_n3##y,_p3##z,c)), \
|
|
(I[49] = I[50] = I[51] = I[52] = (T)(img)(0,_p3##y,_p2##z,c)), \
|
|
(I[56] = I[57] = I[58] = I[59] = (T)(img)(0,_p2##y,_p2##z,c)), \
|
|
(I[63] = I[64] = I[65] = I[66] = (T)(img)(0,_p1##y,_p2##z,c)), \
|
|
(I[70] = I[71] = I[72] = I[73] = (T)(img)(0,y,_p2##z,c)), \
|
|
(I[77] = I[78] = I[79] = I[80] = (T)(img)(0,_n1##y,_p2##z,c)), \
|
|
(I[84] = I[85] = I[86] = I[87] = (T)(img)(0,_n2##y,_p2##z,c)), \
|
|
(I[91] = I[92] = I[93] = I[94] = (T)(img)(0,_n3##y,_p2##z,c)), \
|
|
(I[98] = I[99] = I[100] = I[101] = (T)(img)(0,_p3##y,_p1##z,c)), \
|
|
(I[105] = I[106] = I[107] = I[108] = (T)(img)(0,_p2##y,_p1##z,c)), \
|
|
(I[112] = I[113] = I[114] = I[115] = (T)(img)(0,_p1##y,_p1##z,c)), \
|
|
(I[119] = I[120] = I[121] = I[122] = (T)(img)(0,y,_p1##z,c)), \
|
|
(I[126] = I[127] = I[128] = I[129] = (T)(img)(0,_n1##y,_p1##z,c)), \
|
|
(I[133] = I[134] = I[135] = I[136] = (T)(img)(0,_n2##y,_p1##z,c)), \
|
|
(I[140] = I[141] = I[142] = I[143] = (T)(img)(0,_n3##y,_p1##z,c)), \
|
|
(I[147] = I[148] = I[149] = I[150] = (T)(img)(0,_p3##y,z,c)), \
|
|
(I[154] = I[155] = I[156] = I[157] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[161] = I[162] = I[163] = I[164] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[168] = I[169] = I[170] = I[171] = (T)(img)(0,y,z,c)), \
|
|
(I[175] = I[176] = I[177] = I[178] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[182] = I[183] = I[184] = I[185] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[189] = I[190] = I[191] = I[192] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[196] = I[197] = I[198] = I[199] = (T)(img)(0,_p3##y,_n1##z,c)), \
|
|
(I[203] = I[204] = I[205] = I[206] = (T)(img)(0,_p2##y,_n1##z,c)), \
|
|
(I[210] = I[211] = I[212] = I[213] = (T)(img)(0,_p1##y,_n1##z,c)), \
|
|
(I[217] = I[218] = I[219] = I[220] = (T)(img)(0,y,_n1##z,c)), \
|
|
(I[224] = I[225] = I[226] = I[227] = (T)(img)(0,_n1##y,_n1##z,c)), \
|
|
(I[231] = I[232] = I[233] = I[234] = (T)(img)(0,_n2##y,_n1##z,c)), \
|
|
(I[238] = I[239] = I[240] = I[241] = (T)(img)(0,_n3##y,_n1##z,c)), \
|
|
(I[245] = I[246] = I[247] = I[248] = (T)(img)(0,_p3##y,_n2##z,c)), \
|
|
(I[252] = I[253] = I[254] = I[255] = (T)(img)(0,_p2##y,_n2##z,c)), \
|
|
(I[259] = I[260] = I[261] = I[262] = (T)(img)(0,_p1##y,_n2##z,c)), \
|
|
(I[266] = I[267] = I[268] = I[269] = (T)(img)(0,y,_n2##z,c)), \
|
|
(I[273] = I[274] = I[275] = I[276] = (T)(img)(0,_n1##y,_n2##z,c)), \
|
|
(I[280] = I[281] = I[282] = I[283] = (T)(img)(0,_n2##y,_n2##z,c)), \
|
|
(I[287] = I[288] = I[289] = I[290] = (T)(img)(0,_n3##y,_n2##z,c)), \
|
|
(I[294] = I[295] = I[296] = I[297] = (T)(img)(0,_p3##y,_n3##z,c)), \
|
|
(I[301] = I[302] = I[303] = I[304] = (T)(img)(0,_p2##y,_n3##z,c)), \
|
|
(I[308] = I[309] = I[310] = I[311] = (T)(img)(0,_p1##y,_n3##z,c)), \
|
|
(I[315] = I[316] = I[317] = I[318] = (T)(img)(0,y,_n3##z,c)), \
|
|
(I[322] = I[323] = I[324] = I[325] = (T)(img)(0,_n1##y,_n3##z,c)), \
|
|
(I[329] = I[330] = I[331] = I[332] = (T)(img)(0,_n2##y,_n3##z,c)), \
|
|
(I[336] = I[337] = I[338] = I[339] = (T)(img)(0,_n3##y,_n3##z,c)), \
|
|
(I[4] = (T)(img)(_n1##x,_p3##y,_p3##z,c)), \
|
|
(I[11] = (T)(img)(_n1##x,_p2##y,_p3##z,c)), \
|
|
(I[18] = (T)(img)(_n1##x,_p1##y,_p3##z,c)), \
|
|
(I[25] = (T)(img)(_n1##x,y,_p3##z,c)), \
|
|
(I[32] = (T)(img)(_n1##x,_n1##y,_p3##z,c)), \
|
|
(I[39] = (T)(img)(_n1##x,_n2##y,_p3##z,c)), \
|
|
(I[46] = (T)(img)(_n1##x,_n3##y,_p3##z,c)), \
|
|
(I[53] = (T)(img)(_n1##x,_p3##y,_p2##z,c)), \
|
|
(I[60] = (T)(img)(_n1##x,_p2##y,_p2##z,c)), \
|
|
(I[67] = (T)(img)(_n1##x,_p1##y,_p2##z,c)), \
|
|
(I[74] = (T)(img)(_n1##x,y,_p2##z,c)), \
|
|
(I[81] = (T)(img)(_n1##x,_n1##y,_p2##z,c)), \
|
|
(I[88] = (T)(img)(_n1##x,_n2##y,_p2##z,c)), \
|
|
(I[95] = (T)(img)(_n1##x,_n3##y,_p2##z,c)), \
|
|
(I[102] = (T)(img)(_n1##x,_p3##y,_p1##z,c)), \
|
|
(I[109] = (T)(img)(_n1##x,_p2##y,_p1##z,c)), \
|
|
(I[116] = (T)(img)(_n1##x,_p1##y,_p1##z,c)), \
|
|
(I[123] = (T)(img)(_n1##x,y,_p1##z,c)), \
|
|
(I[130] = (T)(img)(_n1##x,_n1##y,_p1##z,c)), \
|
|
(I[137] = (T)(img)(_n1##x,_n2##y,_p1##z,c)), \
|
|
(I[144] = (T)(img)(_n1##x,_n3##y,_p1##z,c)), \
|
|
(I[151] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[158] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[165] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[172] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[179] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[186] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[193] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[200] = (T)(img)(_n1##x,_p3##y,_n1##z,c)), \
|
|
(I[207] = (T)(img)(_n1##x,_p2##y,_n1##z,c)), \
|
|
(I[214] = (T)(img)(_n1##x,_p1##y,_n1##z,c)), \
|
|
(I[221] = (T)(img)(_n1##x,y,_n1##z,c)), \
|
|
(I[228] = (T)(img)(_n1##x,_n1##y,_n1##z,c)), \
|
|
(I[235] = (T)(img)(_n1##x,_n2##y,_n1##z,c)), \
|
|
(I[242] = (T)(img)(_n1##x,_n3##y,_n1##z,c)), \
|
|
(I[249] = (T)(img)(_n1##x,_p3##y,_n2##z,c)), \
|
|
(I[256] = (T)(img)(_n1##x,_p2##y,_n2##z,c)), \
|
|
(I[263] = (T)(img)(_n1##x,_p1##y,_n2##z,c)), \
|
|
(I[270] = (T)(img)(_n1##x,y,_n2##z,c)), \
|
|
(I[277] = (T)(img)(_n1##x,_n1##y,_n2##z,c)), \
|
|
(I[284] = (T)(img)(_n1##x,_n2##y,_n2##z,c)), \
|
|
(I[291] = (T)(img)(_n1##x,_n3##y,_n2##z,c)), \
|
|
(I[298] = (T)(img)(_n1##x,_p3##y,_n3##z,c)), \
|
|
(I[305] = (T)(img)(_n1##x,_p2##y,_n3##z,c)), \
|
|
(I[312] = (T)(img)(_n1##x,_p1##y,_n3##z,c)), \
|
|
(I[319] = (T)(img)(_n1##x,y,_n3##z,c)), \
|
|
(I[326] = (T)(img)(_n1##x,_n1##y,_n3##z,c)), \
|
|
(I[333] = (T)(img)(_n1##x,_n2##y,_n3##z,c)), \
|
|
(I[340] = (T)(img)(_n1##x,_n3##y,_n3##z,c)), \
|
|
(I[5] = (T)(img)(_n2##x,_p3##y,_p3##z,c)), \
|
|
(I[12] = (T)(img)(_n2##x,_p2##y,_p3##z,c)), \
|
|
(I[19] = (T)(img)(_n2##x,_p1##y,_p3##z,c)), \
|
|
(I[26] = (T)(img)(_n2##x,y,_p3##z,c)), \
|
|
(I[33] = (T)(img)(_n2##x,_n1##y,_p3##z,c)), \
|
|
(I[40] = (T)(img)(_n2##x,_n2##y,_p3##z,c)), \
|
|
(I[47] = (T)(img)(_n2##x,_n3##y,_p3##z,c)), \
|
|
(I[54] = (T)(img)(_n2##x,_p3##y,_p2##z,c)), \
|
|
(I[61] = (T)(img)(_n2##x,_p2##y,_p2##z,c)), \
|
|
(I[68] = (T)(img)(_n2##x,_p1##y,_p2##z,c)), \
|
|
(I[75] = (T)(img)(_n2##x,y,_p2##z,c)), \
|
|
(I[82] = (T)(img)(_n2##x,_n1##y,_p2##z,c)), \
|
|
(I[89] = (T)(img)(_n2##x,_n2##y,_p2##z,c)), \
|
|
(I[96] = (T)(img)(_n2##x,_n3##y,_p2##z,c)), \
|
|
(I[103] = (T)(img)(_n2##x,_p3##y,_p1##z,c)), \
|
|
(I[110] = (T)(img)(_n2##x,_p2##y,_p1##z,c)), \
|
|
(I[117] = (T)(img)(_n2##x,_p1##y,_p1##z,c)), \
|
|
(I[124] = (T)(img)(_n2##x,y,_p1##z,c)), \
|
|
(I[131] = (T)(img)(_n2##x,_n1##y,_p1##z,c)), \
|
|
(I[138] = (T)(img)(_n2##x,_n2##y,_p1##z,c)), \
|
|
(I[145] = (T)(img)(_n2##x,_n3##y,_p1##z,c)), \
|
|
(I[152] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[159] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[166] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[173] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[180] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[187] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[194] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[201] = (T)(img)(_n2##x,_p3##y,_n1##z,c)), \
|
|
(I[208] = (T)(img)(_n2##x,_p2##y,_n1##z,c)), \
|
|
(I[215] = (T)(img)(_n2##x,_p1##y,_n1##z,c)), \
|
|
(I[222] = (T)(img)(_n2##x,y,_n1##z,c)), \
|
|
(I[229] = (T)(img)(_n2##x,_n1##y,_n1##z,c)), \
|
|
(I[236] = (T)(img)(_n2##x,_n2##y,_n1##z,c)), \
|
|
(I[243] = (T)(img)(_n2##x,_n3##y,_n1##z,c)), \
|
|
(I[250] = (T)(img)(_n2##x,_p3##y,_n2##z,c)), \
|
|
(I[257] = (T)(img)(_n2##x,_p2##y,_n2##z,c)), \
|
|
(I[264] = (T)(img)(_n2##x,_p1##y,_n2##z,c)), \
|
|
(I[271] = (T)(img)(_n2##x,y,_n2##z,c)), \
|
|
(I[278] = (T)(img)(_n2##x,_n1##y,_n2##z,c)), \
|
|
(I[285] = (T)(img)(_n2##x,_n2##y,_n2##z,c)), \
|
|
(I[292] = (T)(img)(_n2##x,_n3##y,_n2##z,c)), \
|
|
(I[299] = (T)(img)(_n2##x,_p3##y,_n3##z,c)), \
|
|
(I[306] = (T)(img)(_n2##x,_p2##y,_n3##z,c)), \
|
|
(I[313] = (T)(img)(_n2##x,_p1##y,_n3##z,c)), \
|
|
(I[320] = (T)(img)(_n2##x,y,_n3##z,c)), \
|
|
(I[327] = (T)(img)(_n2##x,_n1##y,_n3##z,c)), \
|
|
(I[334] = (T)(img)(_n2##x,_n2##y,_n3##z,c)), \
|
|
(I[341] = (T)(img)(_n2##x,_n3##y,_n3##z,c)), \
|
|
3>=((img)._width)?(img).width() - 1:3); \
|
|
(_n3##x<(img).width() && ( \
|
|
(I[6] = (T)(img)(_n3##x,_p3##y,_p3##z,c)), \
|
|
(I[13] = (T)(img)(_n3##x,_p2##y,_p3##z,c)), \
|
|
(I[20] = (T)(img)(_n3##x,_p1##y,_p3##z,c)), \
|
|
(I[27] = (T)(img)(_n3##x,y,_p3##z,c)), \
|
|
(I[34] = (T)(img)(_n3##x,_n1##y,_p3##z,c)), \
|
|
(I[41] = (T)(img)(_n3##x,_n2##y,_p3##z,c)), \
|
|
(I[48] = (T)(img)(_n3##x,_n3##y,_p3##z,c)), \
|
|
(I[55] = (T)(img)(_n3##x,_p3##y,_p2##z,c)), \
|
|
(I[62] = (T)(img)(_n3##x,_p2##y,_p2##z,c)), \
|
|
(I[69] = (T)(img)(_n3##x,_p1##y,_p2##z,c)), \
|
|
(I[76] = (T)(img)(_n3##x,y,_p2##z,c)), \
|
|
(I[83] = (T)(img)(_n3##x,_n1##y,_p2##z,c)), \
|
|
(I[90] = (T)(img)(_n3##x,_n2##y,_p2##z,c)), \
|
|
(I[97] = (T)(img)(_n3##x,_n3##y,_p2##z,c)), \
|
|
(I[104] = (T)(img)(_n3##x,_p3##y,_p1##z,c)), \
|
|
(I[111] = (T)(img)(_n3##x,_p2##y,_p1##z,c)), \
|
|
(I[118] = (T)(img)(_n3##x,_p1##y,_p1##z,c)), \
|
|
(I[125] = (T)(img)(_n3##x,y,_p1##z,c)), \
|
|
(I[132] = (T)(img)(_n3##x,_n1##y,_p1##z,c)), \
|
|
(I[139] = (T)(img)(_n3##x,_n2##y,_p1##z,c)), \
|
|
(I[146] = (T)(img)(_n3##x,_n3##y,_p1##z,c)), \
|
|
(I[153] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[160] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[167] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[174] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[181] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[188] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[195] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[202] = (T)(img)(_n3##x,_p3##y,_n1##z,c)), \
|
|
(I[209] = (T)(img)(_n3##x,_p2##y,_n1##z,c)), \
|
|
(I[216] = (T)(img)(_n3##x,_p1##y,_n1##z,c)), \
|
|
(I[223] = (T)(img)(_n3##x,y,_n1##z,c)), \
|
|
(I[230] = (T)(img)(_n3##x,_n1##y,_n1##z,c)), \
|
|
(I[237] = (T)(img)(_n3##x,_n2##y,_n1##z,c)), \
|
|
(I[244] = (T)(img)(_n3##x,_n3##y,_n1##z,c)), \
|
|
(I[251] = (T)(img)(_n3##x,_p3##y,_n2##z,c)), \
|
|
(I[258] = (T)(img)(_n3##x,_p2##y,_n2##z,c)), \
|
|
(I[265] = (T)(img)(_n3##x,_p1##y,_n2##z,c)), \
|
|
(I[272] = (T)(img)(_n3##x,y,_n2##z,c)), \
|
|
(I[279] = (T)(img)(_n3##x,_n1##y,_n2##z,c)), \
|
|
(I[286] = (T)(img)(_n3##x,_n2##y,_n2##z,c)), \
|
|
(I[293] = (T)(img)(_n3##x,_n3##y,_n2##z,c)), \
|
|
(I[300] = (T)(img)(_n3##x,_p3##y,_n3##z,c)), \
|
|
(I[307] = (T)(img)(_n3##x,_p2##y,_n3##z,c)), \
|
|
(I[314] = (T)(img)(_n3##x,_p1##y,_n3##z,c)), \
|
|
(I[321] = (T)(img)(_n3##x,y,_n3##z,c)), \
|
|
(I[328] = (T)(img)(_n3##x,_n1##y,_n3##z,c)), \
|
|
(I[335] = (T)(img)(_n3##x,_n2##y,_n3##z,c)), \
|
|
(I[342] = (T)(img)(_n3##x,_n3##y,_n3##z,c)),1)) || \
|
|
_n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n3##x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], \
|
|
I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], \
|
|
I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], \
|
|
I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], \
|
|
I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], \
|
|
I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \
|
|
I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], \
|
|
I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \
|
|
I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], \
|
|
I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \
|
|
I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], \
|
|
I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
|
|
I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], \
|
|
I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], \
|
|
I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \
|
|
I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \
|
|
I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], \
|
|
I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
|
|
I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], \
|
|
I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], \
|
|
I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], \
|
|
I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], \
|
|
I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], \
|
|
I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
|
|
I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], \
|
|
I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], \
|
|
I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], \
|
|
I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], \
|
|
I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], \
|
|
I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \
|
|
I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], \
|
|
I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \
|
|
I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], \
|
|
I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], \
|
|
I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], \
|
|
I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], \
|
|
I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], \
|
|
I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], \
|
|
I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], \
|
|
I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], \
|
|
I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], \
|
|
I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], \
|
|
I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], \
|
|
I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], \
|
|
I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], \
|
|
I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], \
|
|
I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], \
|
|
I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \
|
|
I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], \
|
|
_p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x)
|
|
|
|
#define cimg_for_in7x7x7(img,x0,y0,z0,x1,y1,z1,x,y,z,c,I,T) \
|
|
cimg_for_in7((img)._depth,z0,z1,z) cimg_for_in7((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p3##x = x - 3<0?0:x - 3, \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
|
|
_n3##x = (int)( \
|
|
(I[0] = (T)(img)(_p3##x,_p3##y,_p3##z,c)), \
|
|
(I[7] = (T)(img)(_p3##x,_p2##y,_p3##z,c)), \
|
|
(I[14] = (T)(img)(_p3##x,_p1##y,_p3##z,c)), \
|
|
(I[21] = (T)(img)(_p3##x,y,_p3##z,c)), \
|
|
(I[28] = (T)(img)(_p3##x,_n1##y,_p3##z,c)), \
|
|
(I[35] = (T)(img)(_p3##x,_n2##y,_p3##z,c)), \
|
|
(I[42] = (T)(img)(_p3##x,_n3##y,_p3##z,c)), \
|
|
(I[49] = (T)(img)(_p3##x,_p3##y,_p2##z,c)), \
|
|
(I[56] = (T)(img)(_p3##x,_p2##y,_p2##z,c)), \
|
|
(I[63] = (T)(img)(_p3##x,_p1##y,_p2##z,c)), \
|
|
(I[70] = (T)(img)(_p3##x,y,_p2##z,c)), \
|
|
(I[77] = (T)(img)(_p3##x,_n1##y,_p2##z,c)), \
|
|
(I[84] = (T)(img)(_p3##x,_n2##y,_p2##z,c)), \
|
|
(I[91] = (T)(img)(_p3##x,_n3##y,_p2##z,c)), \
|
|
(I[98] = (T)(img)(_p3##x,_p3##y,_p1##z,c)), \
|
|
(I[105] = (T)(img)(_p3##x,_p2##y,_p1##z,c)), \
|
|
(I[112] = (T)(img)(_p3##x,_p1##y,_p1##z,c)), \
|
|
(I[119] = (T)(img)(_p3##x,y,_p1##z,c)), \
|
|
(I[126] = (T)(img)(_p3##x,_n1##y,_p1##z,c)), \
|
|
(I[133] = (T)(img)(_p3##x,_n2##y,_p1##z,c)), \
|
|
(I[140] = (T)(img)(_p3##x,_n3##y,_p1##z,c)), \
|
|
(I[147] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[154] = (T)(img)(_p3##x,_p2##y,z,c)), \
|
|
(I[161] = (T)(img)(_p3##x,_p1##y,z,c)), \
|
|
(I[168] = (T)(img)(_p3##x,y,z,c)), \
|
|
(I[175] = (T)(img)(_p3##x,_n1##y,z,c)), \
|
|
(I[182] = (T)(img)(_p3##x,_n2##y,z,c)), \
|
|
(I[189] = (T)(img)(_p3##x,_n3##y,z,c)), \
|
|
(I[196] = (T)(img)(_p3##x,_p3##y,_n1##z,c)), \
|
|
(I[203] = (T)(img)(_p3##x,_p2##y,_n1##z,c)), \
|
|
(I[210] = (T)(img)(_p3##x,_p1##y,_n1##z,c)), \
|
|
(I[217] = (T)(img)(_p3##x,y,_n1##z,c)), \
|
|
(I[224] = (T)(img)(_p3##x,_n1##y,_n1##z,c)), \
|
|
(I[231] = (T)(img)(_p3##x,_n2##y,_n1##z,c)), \
|
|
(I[238] = (T)(img)(_p3##x,_n3##y,_n1##z,c)), \
|
|
(I[245] = (T)(img)(_p3##x,_p3##y,_n2##z,c)), \
|
|
(I[252] = (T)(img)(_p3##x,_p2##y,_n2##z,c)), \
|
|
(I[259] = (T)(img)(_p3##x,_p1##y,_n2##z,c)), \
|
|
(I[266] = (T)(img)(_p3##x,y,_n2##z,c)), \
|
|
(I[273] = (T)(img)(_p3##x,_n1##y,_n2##z,c)), \
|
|
(I[280] = (T)(img)(_p3##x,_n2##y,_n2##z,c)), \
|
|
(I[287] = (T)(img)(_p3##x,_n3##y,_n2##z,c)), \
|
|
(I[294] = (T)(img)(_p3##x,_p3##y,_n3##z,c)), \
|
|
(I[301] = (T)(img)(_p3##x,_p2##y,_n3##z,c)), \
|
|
(I[308] = (T)(img)(_p3##x,_p1##y,_n3##z,c)), \
|
|
(I[315] = (T)(img)(_p3##x,y,_n3##z,c)), \
|
|
(I[322] = (T)(img)(_p3##x,_n1##y,_n3##z,c)), \
|
|
(I[329] = (T)(img)(_p3##x,_n2##y,_n3##z,c)), \
|
|
(I[336] = (T)(img)(_p3##x,_n3##y,_n3##z,c)), \
|
|
(I[1] = (T)(img)(_p2##x,_p3##y,_p3##z,c)), \
|
|
(I[8] = (T)(img)(_p2##x,_p2##y,_p3##z,c)), \
|
|
(I[15] = (T)(img)(_p2##x,_p1##y,_p3##z,c)), \
|
|
(I[22] = (T)(img)(_p2##x,y,_p3##z,c)), \
|
|
(I[29] = (T)(img)(_p2##x,_n1##y,_p3##z,c)), \
|
|
(I[36] = (T)(img)(_p2##x,_n2##y,_p3##z,c)), \
|
|
(I[43] = (T)(img)(_p2##x,_n3##y,_p3##z,c)), \
|
|
(I[50] = (T)(img)(_p2##x,_p3##y,_p2##z,c)), \
|
|
(I[57] = (T)(img)(_p2##x,_p2##y,_p2##z,c)), \
|
|
(I[64] = (T)(img)(_p2##x,_p1##y,_p2##z,c)), \
|
|
(I[71] = (T)(img)(_p2##x,y,_p2##z,c)), \
|
|
(I[78] = (T)(img)(_p2##x,_n1##y,_p2##z,c)), \
|
|
(I[85] = (T)(img)(_p2##x,_n2##y,_p2##z,c)), \
|
|
(I[92] = (T)(img)(_p2##x,_n3##y,_p2##z,c)), \
|
|
(I[99] = (T)(img)(_p2##x,_p3##y,_p1##z,c)), \
|
|
(I[106] = (T)(img)(_p2##x,_p2##y,_p1##z,c)), \
|
|
(I[113] = (T)(img)(_p2##x,_p1##y,_p1##z,c)), \
|
|
(I[120] = (T)(img)(_p2##x,y,_p1##z,c)), \
|
|
(I[127] = (T)(img)(_p2##x,_n1##y,_p1##z,c)), \
|
|
(I[134] = (T)(img)(_p2##x,_n2##y,_p1##z,c)), \
|
|
(I[141] = (T)(img)(_p2##x,_n3##y,_p1##z,c)), \
|
|
(I[148] = (T)(img)(_p2##x,_p3##y,z,c)), \
|
|
(I[155] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[162] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[169] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[176] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[183] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[190] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[197] = (T)(img)(_p2##x,_p3##y,_n1##z,c)), \
|
|
(I[204] = (T)(img)(_p2##x,_p2##y,_n1##z,c)), \
|
|
(I[211] = (T)(img)(_p2##x,_p1##y,_n1##z,c)), \
|
|
(I[218] = (T)(img)(_p2##x,y,_n1##z,c)), \
|
|
(I[225] = (T)(img)(_p2##x,_n1##y,_n1##z,c)), \
|
|
(I[232] = (T)(img)(_p2##x,_n2##y,_n1##z,c)), \
|
|
(I[239] = (T)(img)(_p2##x,_n3##y,_n1##z,c)), \
|
|
(I[246] = (T)(img)(_p2##x,_p3##y,_n2##z,c)), \
|
|
(I[253] = (T)(img)(_p2##x,_p2##y,_n2##z,c)), \
|
|
(I[260] = (T)(img)(_p2##x,_p1##y,_n2##z,c)), \
|
|
(I[267] = (T)(img)(_p2##x,y,_n2##z,c)), \
|
|
(I[274] = (T)(img)(_p2##x,_n1##y,_n2##z,c)), \
|
|
(I[281] = (T)(img)(_p2##x,_n2##y,_n2##z,c)), \
|
|
(I[288] = (T)(img)(_p2##x,_n3##y,_n2##z,c)), \
|
|
(I[295] = (T)(img)(_p2##x,_p3##y,_n3##z,c)), \
|
|
(I[302] = (T)(img)(_p2##x,_p2##y,_n3##z,c)), \
|
|
(I[309] = (T)(img)(_p2##x,_p1##y,_n3##z,c)), \
|
|
(I[316] = (T)(img)(_p2##x,y,_n3##z,c)), \
|
|
(I[323] = (T)(img)(_p2##x,_n1##y,_n3##z,c)), \
|
|
(I[330] = (T)(img)(_p2##x,_n2##y,_n3##z,c)), \
|
|
(I[337] = (T)(img)(_p2##x,_n3##y,_n3##z,c)), \
|
|
(I[2] = (T)(img)(_p1##x,_p3##y,_p3##z,c)), \
|
|
(I[9] = (T)(img)(_p1##x,_p2##y,_p3##z,c)), \
|
|
(I[16] = (T)(img)(_p1##x,_p1##y,_p3##z,c)), \
|
|
(I[23] = (T)(img)(_p1##x,y,_p3##z,c)), \
|
|
(I[30] = (T)(img)(_p1##x,_n1##y,_p3##z,c)), \
|
|
(I[37] = (T)(img)(_p1##x,_n2##y,_p3##z,c)), \
|
|
(I[44] = (T)(img)(_p1##x,_n3##y,_p3##z,c)), \
|
|
(I[51] = (T)(img)(_p1##x,_p3##y,_p2##z,c)), \
|
|
(I[58] = (T)(img)(_p1##x,_p2##y,_p2##z,c)), \
|
|
(I[65] = (T)(img)(_p1##x,_p1##y,_p2##z,c)), \
|
|
(I[72] = (T)(img)(_p1##x,y,_p2##z,c)), \
|
|
(I[79] = (T)(img)(_p1##x,_n1##y,_p2##z,c)), \
|
|
(I[86] = (T)(img)(_p1##x,_n2##y,_p2##z,c)), \
|
|
(I[93] = (T)(img)(_p1##x,_n3##y,_p2##z,c)), \
|
|
(I[100] = (T)(img)(_p1##x,_p3##y,_p1##z,c)), \
|
|
(I[107] = (T)(img)(_p1##x,_p2##y,_p1##z,c)), \
|
|
(I[114] = (T)(img)(_p1##x,_p1##y,_p1##z,c)), \
|
|
(I[121] = (T)(img)(_p1##x,y,_p1##z,c)), \
|
|
(I[128] = (T)(img)(_p1##x,_n1##y,_p1##z,c)), \
|
|
(I[135] = (T)(img)(_p1##x,_n2##y,_p1##z,c)), \
|
|
(I[142] = (T)(img)(_p1##x,_n3##y,_p1##z,c)), \
|
|
(I[149] = (T)(img)(_p1##x,_p3##y,z,c)), \
|
|
(I[156] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[163] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[170] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[177] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[184] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[191] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[198] = (T)(img)(_p1##x,_p3##y,_n1##z,c)), \
|
|
(I[205] = (T)(img)(_p1##x,_p2##y,_n1##z,c)), \
|
|
(I[212] = (T)(img)(_p1##x,_p1##y,_n1##z,c)), \
|
|
(I[219] = (T)(img)(_p1##x,y,_n1##z,c)), \
|
|
(I[226] = (T)(img)(_p1##x,_n1##y,_n1##z,c)), \
|
|
(I[233] = (T)(img)(_p1##x,_n2##y,_n1##z,c)), \
|
|
(I[240] = (T)(img)(_p1##x,_n3##y,_n1##z,c)), \
|
|
(I[247] = (T)(img)(_p1##x,_p3##y,_n2##z,c)), \
|
|
(I[254] = (T)(img)(_p1##x,_p2##y,_n2##z,c)), \
|
|
(I[261] = (T)(img)(_p1##x,_p1##y,_n2##z,c)), \
|
|
(I[268] = (T)(img)(_p1##x,y,_n2##z,c)), \
|
|
(I[275] = (T)(img)(_p1##x,_n1##y,_n2##z,c)), \
|
|
(I[282] = (T)(img)(_p1##x,_n2##y,_n2##z,c)), \
|
|
(I[289] = (T)(img)(_p1##x,_n3##y,_n2##z,c)), \
|
|
(I[296] = (T)(img)(_p1##x,_p3##y,_n3##z,c)), \
|
|
(I[303] = (T)(img)(_p1##x,_p2##y,_n3##z,c)), \
|
|
(I[310] = (T)(img)(_p1##x,_p1##y,_n3##z,c)), \
|
|
(I[317] = (T)(img)(_p1##x,y,_n3##z,c)), \
|
|
(I[324] = (T)(img)(_p1##x,_n1##y,_n3##z,c)), \
|
|
(I[331] = (T)(img)(_p1##x,_n2##y,_n3##z,c)), \
|
|
(I[338] = (T)(img)(_p1##x,_n3##y,_n3##z,c)), \
|
|
(I[3] = (T)(img)(x,_p3##y,_p3##z,c)), \
|
|
(I[10] = (T)(img)(x,_p2##y,_p3##z,c)), \
|
|
(I[17] = (T)(img)(x,_p1##y,_p3##z,c)), \
|
|
(I[24] = (T)(img)(x,y,_p3##z,c)), \
|
|
(I[31] = (T)(img)(x,_n1##y,_p3##z,c)), \
|
|
(I[38] = (T)(img)(x,_n2##y,_p3##z,c)), \
|
|
(I[45] = (T)(img)(x,_n3##y,_p3##z,c)), \
|
|
(I[52] = (T)(img)(x,_p3##y,_p2##z,c)), \
|
|
(I[59] = (T)(img)(x,_p2##y,_p2##z,c)), \
|
|
(I[66] = (T)(img)(x,_p1##y,_p2##z,c)), \
|
|
(I[73] = (T)(img)(x,y,_p2##z,c)), \
|
|
(I[80] = (T)(img)(x,_n1##y,_p2##z,c)), \
|
|
(I[87] = (T)(img)(x,_n2##y,_p2##z,c)), \
|
|
(I[94] = (T)(img)(x,_n3##y,_p2##z,c)), \
|
|
(I[101] = (T)(img)(x,_p3##y,_p1##z,c)), \
|
|
(I[108] = (T)(img)(x,_p2##y,_p1##z,c)), \
|
|
(I[115] = (T)(img)(x,_p1##y,_p1##z,c)), \
|
|
(I[122] = (T)(img)(x,y,_p1##z,c)), \
|
|
(I[129] = (T)(img)(x,_n1##y,_p1##z,c)), \
|
|
(I[136] = (T)(img)(x,_n2##y,_p1##z,c)), \
|
|
(I[143] = (T)(img)(x,_n3##y,_p1##z,c)), \
|
|
(I[150] = (T)(img)(x,_p3##y,z,c)), \
|
|
(I[157] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[164] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[171] = (T)(img)(x,y,z,c)), \
|
|
(I[178] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[185] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[192] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[199] = (T)(img)(x,_p3##y,_n1##z,c)), \
|
|
(I[206] = (T)(img)(x,_p2##y,_n1##z,c)), \
|
|
(I[213] = (T)(img)(x,_p1##y,_n1##z,c)), \
|
|
(I[220] = (T)(img)(x,y,_n1##z,c)), \
|
|
(I[227] = (T)(img)(x,_n1##y,_n1##z,c)), \
|
|
(I[234] = (T)(img)(x,_n2##y,_n1##z,c)), \
|
|
(I[241] = (T)(img)(x,_n3##y,_n1##z,c)), \
|
|
(I[248] = (T)(img)(x,_p3##y,_n2##z,c)), \
|
|
(I[255] = (T)(img)(x,_p2##y,_n2##z,c)), \
|
|
(I[262] = (T)(img)(x,_p1##y,_n2##z,c)), \
|
|
(I[269] = (T)(img)(x,y,_n2##z,c)), \
|
|
(I[276] = (T)(img)(x,_n1##y,_n2##z,c)), \
|
|
(I[283] = (T)(img)(x,_n2##y,_n2##z,c)), \
|
|
(I[290] = (T)(img)(x,_n3##y,_n2##z,c)), \
|
|
(I[297] = (T)(img)(x,_p3##y,_n3##z,c)), \
|
|
(I[304] = (T)(img)(x,_p2##y,_n3##z,c)), \
|
|
(I[311] = (T)(img)(x,_p1##y,_n3##z,c)), \
|
|
(I[318] = (T)(img)(x,y,_n3##z,c)), \
|
|
(I[325] = (T)(img)(x,_n1##y,_n3##z,c)), \
|
|
(I[332] = (T)(img)(x,_n2##y,_n3##z,c)), \
|
|
(I[339] = (T)(img)(x,_n3##y,_n3##z,c)), \
|
|
(I[4] = (T)(img)(_n1##x,_p3##y,_p3##z,c)), \
|
|
(I[11] = (T)(img)(_n1##x,_p2##y,_p3##z,c)), \
|
|
(I[18] = (T)(img)(_n1##x,_p1##y,_p3##z,c)), \
|
|
(I[25] = (T)(img)(_n1##x,y,_p3##z,c)), \
|
|
(I[32] = (T)(img)(_n1##x,_n1##y,_p3##z,c)), \
|
|
(I[39] = (T)(img)(_n1##x,_n2##y,_p3##z,c)), \
|
|
(I[46] = (T)(img)(_n1##x,_n3##y,_p3##z,c)), \
|
|
(I[53] = (T)(img)(_n1##x,_p3##y,_p2##z,c)), \
|
|
(I[60] = (T)(img)(_n1##x,_p2##y,_p2##z,c)), \
|
|
(I[67] = (T)(img)(_n1##x,_p1##y,_p2##z,c)), \
|
|
(I[74] = (T)(img)(_n1##x,y,_p2##z,c)), \
|
|
(I[81] = (T)(img)(_n1##x,_n1##y,_p2##z,c)), \
|
|
(I[88] = (T)(img)(_n1##x,_n2##y,_p2##z,c)), \
|
|
(I[95] = (T)(img)(_n1##x,_n3##y,_p2##z,c)), \
|
|
(I[102] = (T)(img)(_n1##x,_p3##y,_p1##z,c)), \
|
|
(I[109] = (T)(img)(_n1##x,_p2##y,_p1##z,c)), \
|
|
(I[116] = (T)(img)(_n1##x,_p1##y,_p1##z,c)), \
|
|
(I[123] = (T)(img)(_n1##x,y,_p1##z,c)), \
|
|
(I[130] = (T)(img)(_n1##x,_n1##y,_p1##z,c)), \
|
|
(I[137] = (T)(img)(_n1##x,_n2##y,_p1##z,c)), \
|
|
(I[144] = (T)(img)(_n1##x,_n3##y,_p1##z,c)), \
|
|
(I[151] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[158] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[165] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[172] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[179] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[186] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[193] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[200] = (T)(img)(_n1##x,_p3##y,_n1##z,c)), \
|
|
(I[207] = (T)(img)(_n1##x,_p2##y,_n1##z,c)), \
|
|
(I[214] = (T)(img)(_n1##x,_p1##y,_n1##z,c)), \
|
|
(I[221] = (T)(img)(_n1##x,y,_n1##z,c)), \
|
|
(I[228] = (T)(img)(_n1##x,_n1##y,_n1##z,c)), \
|
|
(I[235] = (T)(img)(_n1##x,_n2##y,_n1##z,c)), \
|
|
(I[242] = (T)(img)(_n1##x,_n3##y,_n1##z,c)), \
|
|
(I[249] = (T)(img)(_n1##x,_p3##y,_n2##z,c)), \
|
|
(I[256] = (T)(img)(_n1##x,_p2##y,_n2##z,c)), \
|
|
(I[263] = (T)(img)(_n1##x,_p1##y,_n2##z,c)), \
|
|
(I[270] = (T)(img)(_n1##x,y,_n2##z,c)), \
|
|
(I[277] = (T)(img)(_n1##x,_n1##y,_n2##z,c)), \
|
|
(I[284] = (T)(img)(_n1##x,_n2##y,_n2##z,c)), \
|
|
(I[291] = (T)(img)(_n1##x,_n3##y,_n2##z,c)), \
|
|
(I[298] = (T)(img)(_n1##x,_p3##y,_n3##z,c)), \
|
|
(I[305] = (T)(img)(_n1##x,_p2##y,_n3##z,c)), \
|
|
(I[312] = (T)(img)(_n1##x,_p1##y,_n3##z,c)), \
|
|
(I[319] = (T)(img)(_n1##x,y,_n3##z,c)), \
|
|
(I[326] = (T)(img)(_n1##x,_n1##y,_n3##z,c)), \
|
|
(I[333] = (T)(img)(_n1##x,_n2##y,_n3##z,c)), \
|
|
(I[340] = (T)(img)(_n1##x,_n3##y,_n3##z,c)), \
|
|
(I[5] = (T)(img)(_n2##x,_p3##y,_p3##z,c)), \
|
|
(I[12] = (T)(img)(_n2##x,_p2##y,_p3##z,c)), \
|
|
(I[19] = (T)(img)(_n2##x,_p1##y,_p3##z,c)), \
|
|
(I[26] = (T)(img)(_n2##x,y,_p3##z,c)), \
|
|
(I[33] = (T)(img)(_n2##x,_n1##y,_p3##z,c)), \
|
|
(I[40] = (T)(img)(_n2##x,_n2##y,_p3##z,c)), \
|
|
(I[47] = (T)(img)(_n2##x,_n3##y,_p3##z,c)), \
|
|
(I[54] = (T)(img)(_n2##x,_p3##y,_p2##z,c)), \
|
|
(I[61] = (T)(img)(_n2##x,_p2##y,_p2##z,c)), \
|
|
(I[68] = (T)(img)(_n2##x,_p1##y,_p2##z,c)), \
|
|
(I[75] = (T)(img)(_n2##x,y,_p2##z,c)), \
|
|
(I[82] = (T)(img)(_n2##x,_n1##y,_p2##z,c)), \
|
|
(I[89] = (T)(img)(_n2##x,_n2##y,_p2##z,c)), \
|
|
(I[96] = (T)(img)(_n2##x,_n3##y,_p2##z,c)), \
|
|
(I[103] = (T)(img)(_n2##x,_p3##y,_p1##z,c)), \
|
|
(I[110] = (T)(img)(_n2##x,_p2##y,_p1##z,c)), \
|
|
(I[117] = (T)(img)(_n2##x,_p1##y,_p1##z,c)), \
|
|
(I[124] = (T)(img)(_n2##x,y,_p1##z,c)), \
|
|
(I[131] = (T)(img)(_n2##x,_n1##y,_p1##z,c)), \
|
|
(I[138] = (T)(img)(_n2##x,_n2##y,_p1##z,c)), \
|
|
(I[145] = (T)(img)(_n2##x,_n3##y,_p1##z,c)), \
|
|
(I[152] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[159] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[166] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[173] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[180] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[187] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[194] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[201] = (T)(img)(_n2##x,_p3##y,_n1##z,c)), \
|
|
(I[208] = (T)(img)(_n2##x,_p2##y,_n1##z,c)), \
|
|
(I[215] = (T)(img)(_n2##x,_p1##y,_n1##z,c)), \
|
|
(I[222] = (T)(img)(_n2##x,y,_n1##z,c)), \
|
|
(I[229] = (T)(img)(_n2##x,_n1##y,_n1##z,c)), \
|
|
(I[236] = (T)(img)(_n2##x,_n2##y,_n1##z,c)), \
|
|
(I[243] = (T)(img)(_n2##x,_n3##y,_n1##z,c)), \
|
|
(I[250] = (T)(img)(_n2##x,_p3##y,_n2##z,c)), \
|
|
(I[257] = (T)(img)(_n2##x,_p2##y,_n2##z,c)), \
|
|
(I[264] = (T)(img)(_n2##x,_p1##y,_n2##z,c)), \
|
|
(I[271] = (T)(img)(_n2##x,y,_n2##z,c)), \
|
|
(I[278] = (T)(img)(_n2##x,_n1##y,_n2##z,c)), \
|
|
(I[285] = (T)(img)(_n2##x,_n2##y,_n2##z,c)), \
|
|
(I[292] = (T)(img)(_n2##x,_n3##y,_n2##z,c)), \
|
|
(I[299] = (T)(img)(_n2##x,_p3##y,_n3##z,c)), \
|
|
(I[306] = (T)(img)(_n2##x,_p2##y,_n3##z,c)), \
|
|
(I[313] = (T)(img)(_n2##x,_p1##y,_n3##z,c)), \
|
|
(I[320] = (T)(img)(_n2##x,y,_n3##z,c)), \
|
|
(I[327] = (T)(img)(_n2##x,_n1##y,_n3##z,c)), \
|
|
(I[334] = (T)(img)(_n2##x,_n2##y,_n3##z,c)), \
|
|
(I[341] = (T)(img)(_n2##x,_n3##y,_n3##z,c)), \
|
|
x + 3>=(img).width()?(img).width() - 1:x + 3); \
|
|
x<=(int)(x1) && ((_n3##x<(img).width() && ( \
|
|
(I[6] = (T)(img)(_n3##x,_p3##y,_p3##z,c)), \
|
|
(I[13] = (T)(img)(_n3##x,_p2##y,_p3##z,c)), \
|
|
(I[20] = (T)(img)(_n3##x,_p1##y,_p3##z,c)), \
|
|
(I[27] = (T)(img)(_n3##x,y,_p3##z,c)), \
|
|
(I[34] = (T)(img)(_n3##x,_n1##y,_p3##z,c)), \
|
|
(I[41] = (T)(img)(_n3##x,_n2##y,_p3##z,c)), \
|
|
(I[48] = (T)(img)(_n3##x,_n3##y,_p3##z,c)), \
|
|
(I[55] = (T)(img)(_n3##x,_p3##y,_p2##z,c)), \
|
|
(I[62] = (T)(img)(_n3##x,_p2##y,_p2##z,c)), \
|
|
(I[69] = (T)(img)(_n3##x,_p1##y,_p2##z,c)), \
|
|
(I[76] = (T)(img)(_n3##x,y,_p2##z,c)), \
|
|
(I[83] = (T)(img)(_n3##x,_n1##y,_p2##z,c)), \
|
|
(I[90] = (T)(img)(_n3##x,_n2##y,_p2##z,c)), \
|
|
(I[97] = (T)(img)(_n3##x,_n3##y,_p2##z,c)), \
|
|
(I[104] = (T)(img)(_n3##x,_p3##y,_p1##z,c)), \
|
|
(I[111] = (T)(img)(_n3##x,_p2##y,_p1##z,c)), \
|
|
(I[118] = (T)(img)(_n3##x,_p1##y,_p1##z,c)), \
|
|
(I[125] = (T)(img)(_n3##x,y,_p1##z,c)), \
|
|
(I[132] = (T)(img)(_n3##x,_n1##y,_p1##z,c)), \
|
|
(I[139] = (T)(img)(_n3##x,_n2##y,_p1##z,c)), \
|
|
(I[146] = (T)(img)(_n3##x,_n3##y,_p1##z,c)), \
|
|
(I[153] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[160] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[167] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[174] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[181] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[188] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[195] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[202] = (T)(img)(_n3##x,_p3##y,_n1##z,c)), \
|
|
(I[209] = (T)(img)(_n3##x,_p2##y,_n1##z,c)), \
|
|
(I[216] = (T)(img)(_n3##x,_p1##y,_n1##z,c)), \
|
|
(I[223] = (T)(img)(_n3##x,y,_n1##z,c)), \
|
|
(I[230] = (T)(img)(_n3##x,_n1##y,_n1##z,c)), \
|
|
(I[237] = (T)(img)(_n3##x,_n2##y,_n1##z,c)), \
|
|
(I[244] = (T)(img)(_n3##x,_n3##y,_n1##z,c)), \
|
|
(I[251] = (T)(img)(_n3##x,_p3##y,_n2##z,c)), \
|
|
(I[258] = (T)(img)(_n3##x,_p2##y,_n2##z,c)), \
|
|
(I[265] = (T)(img)(_n3##x,_p1##y,_n2##z,c)), \
|
|
(I[272] = (T)(img)(_n3##x,y,_n2##z,c)), \
|
|
(I[279] = (T)(img)(_n3##x,_n1##y,_n2##z,c)), \
|
|
(I[286] = (T)(img)(_n3##x,_n2##y,_n2##z,c)), \
|
|
(I[293] = (T)(img)(_n3##x,_n3##y,_n2##z,c)), \
|
|
(I[300] = (T)(img)(_n3##x,_p3##y,_n3##z,c)), \
|
|
(I[307] = (T)(img)(_n3##x,_p2##y,_n3##z,c)), \
|
|
(I[314] = (T)(img)(_n3##x,_p1##y,_n3##z,c)), \
|
|
(I[321] = (T)(img)(_n3##x,y,_n3##z,c)), \
|
|
(I[328] = (T)(img)(_n3##x,_n1##y,_n3##z,c)), \
|
|
(I[335] = (T)(img)(_n3##x,_n2##y,_n3##z,c)), \
|
|
(I[342] = (T)(img)(_n3##x,_n3##y,_n3##z,c)),1)) || \
|
|
_n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n3##x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], \
|
|
I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], \
|
|
I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], \
|
|
I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], \
|
|
I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], \
|
|
I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \
|
|
I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], \
|
|
I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \
|
|
I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], \
|
|
I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \
|
|
I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], \
|
|
I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
|
|
I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], \
|
|
I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], \
|
|
I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \
|
|
I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \
|
|
I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], \
|
|
I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
|
|
I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], \
|
|
I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], \
|
|
I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], \
|
|
I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], \
|
|
I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], \
|
|
I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
|
|
I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], \
|
|
I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], \
|
|
I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], \
|
|
I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], \
|
|
I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], \
|
|
I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \
|
|
I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], \
|
|
I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \
|
|
I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], \
|
|
I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], \
|
|
I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], \
|
|
I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], \
|
|
I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], \
|
|
I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], \
|
|
I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], \
|
|
I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], \
|
|
I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], \
|
|
I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], \
|
|
I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], \
|
|
I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], \
|
|
I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], \
|
|
I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], \
|
|
I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], \
|
|
I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \
|
|
I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], \
|
|
_p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x)
|
|
|
|
#define cimg_get7x7x7(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p3##x,_p3##y,_p3##z,c), I[1] = (T)(img)(_p2##x,_p3##y,_p3##z,c), I[2] = (T)(img)(_p1##x,_p3##y,_p3##z,c), I[3] = (T)(img)(x,_p3##y,_p3##z,c), I[4] = (T)(img)(_n1##x,_p3##y,_p3##z,c), I[5] = (T)(img)(_n2##x,_p3##y,_p3##z,c), I[6] = (T)(img)(_n3##x,_p3##y,_p3##z,c), \
|
|
I[7] = (T)(img)(_p3##x,_p2##y,_p3##z,c), I[8] = (T)(img)(_p2##x,_p2##y,_p3##z,c), I[9] = (T)(img)(_p1##x,_p2##y,_p3##z,c), I[10] = (T)(img)(x,_p2##y,_p3##z,c), I[11] = (T)(img)(_n1##x,_p2##y,_p3##z,c), I[12] = (T)(img)(_n2##x,_p2##y,_p3##z,c), I[13] = (T)(img)(_n3##x,_p2##y,_p3##z,c), \
|
|
I[14] = (T)(img)(_p3##x,_p1##y,_p3##z,c), I[15] = (T)(img)(_p2##x,_p1##y,_p3##z,c), I[16] = (T)(img)(_p1##x,_p1##y,_p3##z,c), I[17] = (T)(img)(x,_p1##y,_p3##z,c), I[18] = (T)(img)(_n1##x,_p1##y,_p3##z,c), I[19] = (T)(img)(_n2##x,_p1##y,_p3##z,c), I[20] = (T)(img)(_n3##x,_p1##y,_p3##z,c), \
|
|
I[21] = (T)(img)(_p3##x,y,_p3##z,c), I[22] = (T)(img)(_p2##x,y,_p3##z,c), I[23] = (T)(img)(_p1##x,y,_p3##z,c), I[24] = (T)(img)(x,y,_p3##z,c), I[25] = (T)(img)(_n1##x,y,_p3##z,c), I[26] = (T)(img)(_n2##x,y,_p3##z,c), I[27] = (T)(img)(_n3##x,y,_p3##z,c), \
|
|
I[28] = (T)(img)(_p3##x,_n1##y,_p3##z,c), I[29] = (T)(img)(_p2##x,_n1##y,_p3##z,c), I[30] = (T)(img)(_p1##x,_n1##y,_p3##z,c), I[31] = (T)(img)(x,_n1##y,_p3##z,c), I[32] = (T)(img)(_n1##x,_n1##y,_p3##z,c), I[33] = (T)(img)(_n2##x,_n1##y,_p3##z,c), I[34] = (T)(img)(_n3##x,_n1##y,_p3##z,c), \
|
|
I[35] = (T)(img)(_p3##x,_n2##y,_p3##z,c), I[36] = (T)(img)(_p2##x,_n2##y,_p3##z,c), I[37] = (T)(img)(_p1##x,_n2##y,_p3##z,c), I[38] = (T)(img)(x,_n2##y,_p3##z,c), I[39] = (T)(img)(_n1##x,_n2##y,_p3##z,c), I[40] = (T)(img)(_n2##x,_n2##y,_p3##z,c), I[41] = (T)(img)(_n3##x,_n2##y,_p3##z,c), \
|
|
I[42] = (T)(img)(_p3##x,_n3##y,_p3##z,c), I[43] = (T)(img)(_p2##x,_n3##y,_p3##z,c), I[44] = (T)(img)(_p1##x,_n3##y,_p3##z,c), I[45] = (T)(img)(x,_n3##y,_p3##z,c), I[46] = (T)(img)(_n1##x,_n3##y,_p3##z,c), I[47] = (T)(img)(_n2##x,_n3##y,_p3##z,c), I[48] = (T)(img)(_n3##x,_n3##y,_p3##z,c), \
|
|
I[49] = (T)(img)(_p3##x,_p3##y,_p2##z,c), I[50] = (T)(img)(_p2##x,_p3##y,_p2##z,c), I[51] = (T)(img)(_p1##x,_p3##y,_p2##z,c), I[52] = (T)(img)(x,_p3##y,_p2##z,c), I[53] = (T)(img)(_n1##x,_p3##y,_p2##z,c), I[54] = (T)(img)(_n2##x,_p3##y,_p2##z,c), I[55] = (T)(img)(_n3##x,_p3##y,_p2##z,c), \
|
|
I[56] = (T)(img)(_p3##x,_p2##y,_p2##z,c), I[57] = (T)(img)(_p2##x,_p2##y,_p2##z,c), I[58] = (T)(img)(_p1##x,_p2##y,_p2##z,c), I[59] = (T)(img)(x,_p2##y,_p2##z,c), I[60] = (T)(img)(_n1##x,_p2##y,_p2##z,c), I[61] = (T)(img)(_n2##x,_p2##y,_p2##z,c), I[62] = (T)(img)(_n3##x,_p2##y,_p2##z,c), \
|
|
I[63] = (T)(img)(_p3##x,_p1##y,_p2##z,c), I[64] = (T)(img)(_p2##x,_p1##y,_p2##z,c), I[65] = (T)(img)(_p1##x,_p1##y,_p2##z,c), I[66] = (T)(img)(x,_p1##y,_p2##z,c), I[67] = (T)(img)(_n1##x,_p1##y,_p2##z,c), I[68] = (T)(img)(_n2##x,_p1##y,_p2##z,c), I[69] = (T)(img)(_n3##x,_p1##y,_p2##z,c), \
|
|
I[70] = (T)(img)(_p3##x,y,_p2##z,c), I[71] = (T)(img)(_p2##x,y,_p2##z,c), I[72] = (T)(img)(_p1##x,y,_p2##z,c), I[73] = (T)(img)(x,y,_p2##z,c), I[74] = (T)(img)(_n1##x,y,_p2##z,c), I[75] = (T)(img)(_n2##x,y,_p2##z,c), I[76] = (T)(img)(_n3##x,y,_p2##z,c), \
|
|
I[77] = (T)(img)(_p3##x,_n1##y,_p2##z,c), I[78] = (T)(img)(_p2##x,_n1##y,_p2##z,c), I[79] = (T)(img)(_p1##x,_n1##y,_p2##z,c), I[80] = (T)(img)(x,_n1##y,_p2##z,c), I[81] = (T)(img)(_n1##x,_n1##y,_p2##z,c), I[82] = (T)(img)(_n2##x,_n1##y,_p2##z,c), I[83] = (T)(img)(_n3##x,_n1##y,_p2##z,c), \
|
|
I[84] = (T)(img)(_p3##x,_n2##y,_p2##z,c), I[85] = (T)(img)(_p2##x,_n2##y,_p2##z,c), I[86] = (T)(img)(_p1##x,_n2##y,_p2##z,c), I[87] = (T)(img)(x,_n2##y,_p2##z,c), I[88] = (T)(img)(_n1##x,_n2##y,_p2##z,c), I[89] = (T)(img)(_n2##x,_n2##y,_p2##z,c), I[90] = (T)(img)(_n3##x,_n2##y,_p2##z,c), \
|
|
I[91] = (T)(img)(_p3##x,_n3##y,_p2##z,c), I[92] = (T)(img)(_p2##x,_n3##y,_p2##z,c), I[93] = (T)(img)(_p1##x,_n3##y,_p2##z,c), I[94] = (T)(img)(x,_n3##y,_p2##z,c), I[95] = (T)(img)(_n1##x,_n3##y,_p2##z,c), I[96] = (T)(img)(_n2##x,_n3##y,_p2##z,c), I[97] = (T)(img)(_n3##x,_n3##y,_p2##z,c), \
|
|
I[98] = (T)(img)(_p3##x,_p3##y,_p1##z,c), I[99] = (T)(img)(_p2##x,_p3##y,_p1##z,c), I[100] = (T)(img)(_p1##x,_p3##y,_p1##z,c), I[101] = (T)(img)(x,_p3##y,_p1##z,c), I[102] = (T)(img)(_n1##x,_p3##y,_p1##z,c), I[103] = (T)(img)(_n2##x,_p3##y,_p1##z,c), I[104] = (T)(img)(_n3##x,_p3##y,_p1##z,c), \
|
|
I[105] = (T)(img)(_p3##x,_p2##y,_p1##z,c), I[106] = (T)(img)(_p2##x,_p2##y,_p1##z,c), I[107] = (T)(img)(_p1##x,_p2##y,_p1##z,c), I[108] = (T)(img)(x,_p2##y,_p1##z,c), I[109] = (T)(img)(_n1##x,_p2##y,_p1##z,c), I[110] = (T)(img)(_n2##x,_p2##y,_p1##z,c), I[111] = (T)(img)(_n3##x,_p2##y,_p1##z,c), \
|
|
I[112] = (T)(img)(_p3##x,_p1##y,_p1##z,c), I[113] = (T)(img)(_p2##x,_p1##y,_p1##z,c), I[114] = (T)(img)(_p1##x,_p1##y,_p1##z,c), I[115] = (T)(img)(x,_p1##y,_p1##z,c), I[116] = (T)(img)(_n1##x,_p1##y,_p1##z,c), I[117] = (T)(img)(_n2##x,_p1##y,_p1##z,c), I[118] = (T)(img)(_n3##x,_p1##y,_p1##z,c), \
|
|
I[119] = (T)(img)(_p3##x,y,_p1##z,c), I[120] = (T)(img)(_p2##x,y,_p1##z,c), I[121] = (T)(img)(_p1##x,y,_p1##z,c), I[122] = (T)(img)(x,y,_p1##z,c), I[123] = (T)(img)(_n1##x,y,_p1##z,c), I[124] = (T)(img)(_n2##x,y,_p1##z,c), I[125] = (T)(img)(_n3##x,y,_p1##z,c), \
|
|
I[126] = (T)(img)(_p3##x,_n1##y,_p1##z,c), I[127] = (T)(img)(_p2##x,_n1##y,_p1##z,c), I[128] = (T)(img)(_p1##x,_n1##y,_p1##z,c), I[129] = (T)(img)(x,_n1##y,_p1##z,c), I[130] = (T)(img)(_n1##x,_n1##y,_p1##z,c), I[131] = (T)(img)(_n2##x,_n1##y,_p1##z,c), I[132] = (T)(img)(_n3##x,_n1##y,_p1##z,c), \
|
|
I[133] = (T)(img)(_p3##x,_n2##y,_p1##z,c), I[134] = (T)(img)(_p2##x,_n2##y,_p1##z,c), I[135] = (T)(img)(_p1##x,_n2##y,_p1##z,c), I[136] = (T)(img)(x,_n2##y,_p1##z,c), I[137] = (T)(img)(_n1##x,_n2##y,_p1##z,c), I[138] = (T)(img)(_n2##x,_n2##y,_p1##z,c), I[139] = (T)(img)(_n3##x,_n2##y,_p1##z,c), \
|
|
I[140] = (T)(img)(_p3##x,_n3##y,_p1##z,c), I[141] = (T)(img)(_p2##x,_n3##y,_p1##z,c), I[142] = (T)(img)(_p1##x,_n3##y,_p1##z,c), I[143] = (T)(img)(x,_n3##y,_p1##z,c), I[144] = (T)(img)(_n1##x,_n3##y,_p1##z,c), I[145] = (T)(img)(_n2##x,_n3##y,_p1##z,c), I[146] = (T)(img)(_n3##x,_n3##y,_p1##z,c), \
|
|
I[147] = (T)(img)(_p3##x,_p3##y,z,c), I[148] = (T)(img)(_p2##x,_p3##y,z,c), I[149] = (T)(img)(_p1##x,_p3##y,z,c), I[150] = (T)(img)(x,_p3##y,z,c), I[151] = (T)(img)(_n1##x,_p3##y,z,c), I[152] = (T)(img)(_n2##x,_p3##y,z,c), I[153] = (T)(img)(_n3##x,_p3##y,z,c), \
|
|
I[154] = (T)(img)(_p3##x,_p2##y,z,c), I[155] = (T)(img)(_p2##x,_p2##y,z,c), I[156] = (T)(img)(_p1##x,_p2##y,z,c), I[157] = (T)(img)(x,_p2##y,z,c), I[158] = (T)(img)(_n1##x,_p2##y,z,c), I[159] = (T)(img)(_n2##x,_p2##y,z,c), I[160] = (T)(img)(_n3##x,_p2##y,z,c), \
|
|
I[161] = (T)(img)(_p3##x,_p1##y,z,c), I[162] = (T)(img)(_p2##x,_p1##y,z,c), I[163] = (T)(img)(_p1##x,_p1##y,z,c), I[164] = (T)(img)(x,_p1##y,z,c), I[165] = (T)(img)(_n1##x,_p1##y,z,c), I[166] = (T)(img)(_n2##x,_p1##y,z,c), I[167] = (T)(img)(_n3##x,_p1##y,z,c), \
|
|
I[168] = (T)(img)(_p3##x,y,z,c), I[169] = (T)(img)(_p2##x,y,z,c), I[170] = (T)(img)(_p1##x,y,z,c), I[171] = (T)(img)(x,y,z,c), I[172] = (T)(img)(_n1##x,y,z,c), I[173] = (T)(img)(_n2##x,y,z,c), I[174] = (T)(img)(_n3##x,y,z,c), \
|
|
I[175] = (T)(img)(_p3##x,_n1##y,z,c), I[176] = (T)(img)(_p2##x,_n1##y,z,c), I[177] = (T)(img)(_p1##x,_n1##y,z,c), I[178] = (T)(img)(x,_n1##y,z,c), I[179] = (T)(img)(_n1##x,_n1##y,z,c), I[180] = (T)(img)(_n2##x,_n1##y,z,c), I[181] = (T)(img)(_n3##x,_n1##y,z,c), \
|
|
I[182] = (T)(img)(_p3##x,_n2##y,z,c), I[183] = (T)(img)(_p2##x,_n2##y,z,c), I[184] = (T)(img)(_p1##x,_n2##y,z,c), I[185] = (T)(img)(x,_n2##y,z,c), I[186] = (T)(img)(_n1##x,_n2##y,z,c), I[187] = (T)(img)(_n2##x,_n2##y,z,c), I[188] = (T)(img)(_n3##x,_n2##y,z,c), \
|
|
I[189] = (T)(img)(_p3##x,_n3##y,z,c), I[190] = (T)(img)(_p2##x,_n3##y,z,c), I[191] = (T)(img)(_p1##x,_n3##y,z,c), I[192] = (T)(img)(x,_n3##y,z,c), I[193] = (T)(img)(_n1##x,_n3##y,z,c), I[194] = (T)(img)(_n2##x,_n3##y,z,c), I[195] = (T)(img)(_n3##x,_n3##y,z,c), \
|
|
I[196] = (T)(img)(_p3##x,_p3##y,_n1##z,c), I[197] = (T)(img)(_p2##x,_p3##y,_n1##z,c), I[198] = (T)(img)(_p1##x,_p3##y,_n1##z,c), I[199] = (T)(img)(x,_p3##y,_n1##z,c), I[200] = (T)(img)(_n1##x,_p3##y,_n1##z,c), I[201] = (T)(img)(_n2##x,_p3##y,_n1##z,c), I[202] = (T)(img)(_n3##x,_p3##y,_n1##z,c), \
|
|
I[203] = (T)(img)(_p3##x,_p2##y,_n1##z,c), I[204] = (T)(img)(_p2##x,_p2##y,_n1##z,c), I[205] = (T)(img)(_p1##x,_p2##y,_n1##z,c), I[206] = (T)(img)(x,_p2##y,_n1##z,c), I[207] = (T)(img)(_n1##x,_p2##y,_n1##z,c), I[208] = (T)(img)(_n2##x,_p2##y,_n1##z,c), I[209] = (T)(img)(_n3##x,_p2##y,_n1##z,c), \
|
|
I[210] = (T)(img)(_p3##x,_p1##y,_n1##z,c), I[211] = (T)(img)(_p2##x,_p1##y,_n1##z,c), I[212] = (T)(img)(_p1##x,_p1##y,_n1##z,c), I[213] = (T)(img)(x,_p1##y,_n1##z,c), I[214] = (T)(img)(_n1##x,_p1##y,_n1##z,c), I[215] = (T)(img)(_n2##x,_p1##y,_n1##z,c), I[216] = (T)(img)(_n3##x,_p1##y,_n1##z,c), \
|
|
I[217] = (T)(img)(_p3##x,y,_n1##z,c), I[218] = (T)(img)(_p2##x,y,_n1##z,c), I[219] = (T)(img)(_p1##x,y,_n1##z,c), I[220] = (T)(img)(x,y,_n1##z,c), I[221] = (T)(img)(_n1##x,y,_n1##z,c), I[222] = (T)(img)(_n2##x,y,_n1##z,c), I[223] = (T)(img)(_n3##x,y,_n1##z,c), \
|
|
I[224] = (T)(img)(_p3##x,_n1##y,_n1##z,c), I[225] = (T)(img)(_p2##x,_n1##y,_n1##z,c), I[226] = (T)(img)(_p1##x,_n1##y,_n1##z,c), I[227] = (T)(img)(x,_n1##y,_n1##z,c), I[228] = (T)(img)(_n1##x,_n1##y,_n1##z,c), I[229] = (T)(img)(_n2##x,_n1##y,_n1##z,c), I[230] = (T)(img)(_n3##x,_n1##y,_n1##z,c), \
|
|
I[231] = (T)(img)(_p3##x,_n2##y,_n1##z,c), I[232] = (T)(img)(_p2##x,_n2##y,_n1##z,c), I[233] = (T)(img)(_p1##x,_n2##y,_n1##z,c), I[234] = (T)(img)(x,_n2##y,_n1##z,c), I[235] = (T)(img)(_n1##x,_n2##y,_n1##z,c), I[236] = (T)(img)(_n2##x,_n2##y,_n1##z,c), I[237] = (T)(img)(_n3##x,_n2##y,_n1##z,c), \
|
|
I[238] = (T)(img)(_p3##x,_n3##y,_n1##z,c), I[239] = (T)(img)(_p2##x,_n3##y,_n1##z,c), I[240] = (T)(img)(_p1##x,_n3##y,_n1##z,c), I[241] = (T)(img)(x,_n3##y,_n1##z,c), I[242] = (T)(img)(_n1##x,_n3##y,_n1##z,c), I[243] = (T)(img)(_n2##x,_n3##y,_n1##z,c), I[244] = (T)(img)(_n3##x,_n3##y,_n1##z,c), \
|
|
I[245] = (T)(img)(_p3##x,_p3##y,_n2##z,c), I[246] = (T)(img)(_p2##x,_p3##y,_n2##z,c), I[247] = (T)(img)(_p1##x,_p3##y,_n2##z,c), I[248] = (T)(img)(x,_p3##y,_n2##z,c), I[249] = (T)(img)(_n1##x,_p3##y,_n2##z,c), I[250] = (T)(img)(_n2##x,_p3##y,_n2##z,c), I[251] = (T)(img)(_n3##x,_p3##y,_n2##z,c), \
|
|
I[252] = (T)(img)(_p3##x,_p2##y,_n2##z,c), I[253] = (T)(img)(_p2##x,_p2##y,_n2##z,c), I[254] = (T)(img)(_p1##x,_p2##y,_n2##z,c), I[255] = (T)(img)(x,_p2##y,_n2##z,c), I[256] = (T)(img)(_n1##x,_p2##y,_n2##z,c), I[257] = (T)(img)(_n2##x,_p2##y,_n2##z,c), I[258] = (T)(img)(_n3##x,_p2##y,_n2##z,c), \
|
|
I[259] = (T)(img)(_p3##x,_p1##y,_n2##z,c), I[260] = (T)(img)(_p2##x,_p1##y,_n2##z,c), I[261] = (T)(img)(_p1##x,_p1##y,_n2##z,c), I[262] = (T)(img)(x,_p1##y,_n2##z,c), I[263] = (T)(img)(_n1##x,_p1##y,_n2##z,c), I[264] = (T)(img)(_n2##x,_p1##y,_n2##z,c), I[265] = (T)(img)(_n3##x,_p1##y,_n2##z,c), \
|
|
I[266] = (T)(img)(_p3##x,y,_n2##z,c), I[267] = (T)(img)(_p2##x,y,_n2##z,c), I[268] = (T)(img)(_p1##x,y,_n2##z,c), I[269] = (T)(img)(x,y,_n2##z,c), I[270] = (T)(img)(_n1##x,y,_n2##z,c), I[271] = (T)(img)(_n2##x,y,_n2##z,c), I[272] = (T)(img)(_n3##x,y,_n2##z,c), \
|
|
I[273] = (T)(img)(_p3##x,_n1##y,_n2##z,c), I[274] = (T)(img)(_p2##x,_n1##y,_n2##z,c), I[275] = (T)(img)(_p1##x,_n1##y,_n2##z,c), I[276] = (T)(img)(x,_n1##y,_n2##z,c), I[277] = (T)(img)(_n1##x,_n1##y,_n2##z,c), I[278] = (T)(img)(_n2##x,_n1##y,_n2##z,c), I[279] = (T)(img)(_n3##x,_n1##y,_n2##z,c), \
|
|
I[280] = (T)(img)(_p3##x,_n2##y,_n2##z,c), I[281] = (T)(img)(_p2##x,_n2##y,_n2##z,c), I[282] = (T)(img)(_p1##x,_n2##y,_n2##z,c), I[283] = (T)(img)(x,_n2##y,_n2##z,c), I[284] = (T)(img)(_n1##x,_n2##y,_n2##z,c), I[285] = (T)(img)(_n2##x,_n2##y,_n2##z,c), I[286] = (T)(img)(_n3##x,_n2##y,_n2##z,c), \
|
|
I[287] = (T)(img)(_p3##x,_n3##y,_n2##z,c), I[288] = (T)(img)(_p2##x,_n3##y,_n2##z,c), I[289] = (T)(img)(_p1##x,_n3##y,_n2##z,c), I[290] = (T)(img)(x,_n3##y,_n2##z,c), I[291] = (T)(img)(_n1##x,_n3##y,_n2##z,c), I[292] = (T)(img)(_n2##x,_n3##y,_n2##z,c), I[293] = (T)(img)(_n3##x,_n3##y,_n2##z,c), \
|
|
I[294] = (T)(img)(_p3##x,_p3##y,_n3##z,c), I[295] = (T)(img)(_p2##x,_p3##y,_n3##z,c), I[296] = (T)(img)(_p1##x,_p3##y,_n3##z,c), I[297] = (T)(img)(x,_p3##y,_n3##z,c), I[298] = (T)(img)(_n1##x,_p3##y,_n3##z,c), I[299] = (T)(img)(_n2##x,_p3##y,_n3##z,c), I[300] = (T)(img)(_n3##x,_p3##y,_n3##z,c), \
|
|
I[301] = (T)(img)(_p3##x,_p2##y,_n3##z,c), I[302] = (T)(img)(_p2##x,_p2##y,_n3##z,c), I[303] = (T)(img)(_p1##x,_p2##y,_n3##z,c), I[304] = (T)(img)(x,_p2##y,_n3##z,c), I[305] = (T)(img)(_n1##x,_p2##y,_n3##z,c), I[306] = (T)(img)(_n2##x,_p2##y,_n3##z,c), I[307] = (T)(img)(_n3##x,_p2##y,_n3##z,c), \
|
|
I[308] = (T)(img)(_p3##x,_p1##y,_n3##z,c), I[309] = (T)(img)(_p2##x,_p1##y,_n3##z,c), I[310] = (T)(img)(_p1##x,_p1##y,_n3##z,c), I[311] = (T)(img)(x,_p1##y,_n3##z,c), I[312] = (T)(img)(_n1##x,_p1##y,_n3##z,c), I[313] = (T)(img)(_n2##x,_p1##y,_n3##z,c), I[314] = (T)(img)(_n3##x,_p1##y,_n3##z,c), \
|
|
I[315] = (T)(img)(_p3##x,y,_n3##z,c), I[316] = (T)(img)(_p2##x,y,_n3##z,c), I[317] = (T)(img)(_p1##x,y,_n3##z,c), I[318] = (T)(img)(x,y,_n3##z,c), I[319] = (T)(img)(_n1##x,y,_n3##z,c), I[320] = (T)(img)(_n2##x,y,_n3##z,c), I[321] = (T)(img)(_n3##x,y,_n3##z,c), \
|
|
I[322] = (T)(img)(_p3##x,_n1##y,_n3##z,c), I[323] = (T)(img)(_p2##x,_n1##y,_n3##z,c), I[324] = (T)(img)(_p1##x,_n1##y,_n3##z,c), I[325] = (T)(img)(x,_n1##y,_n3##z,c), I[326] = (T)(img)(_n1##x,_n1##y,_n3##z,c), I[327] = (T)(img)(_n2##x,_n1##y,_n3##z,c), I[328] = (T)(img)(_n3##x,_n1##y,_n3##z,c), \
|
|
I[329] = (T)(img)(_p3##x,_n2##y,_n3##z,c), I[330] = (T)(img)(_p2##x,_n2##y,_n3##z,c), I[331] = (T)(img)(_p1##x,_n2##y,_n3##z,c), I[332] = (T)(img)(x,_n2##y,_n3##z,c), I[333] = (T)(img)(_n1##x,_n2##y,_n3##z,c), I[334] = (T)(img)(_n2##x,_n2##y,_n3##z,c), I[335] = (T)(img)(_n3##x,_n2##y,_n3##z,c), \
|
|
I[336] = (T)(img)(_p3##x,_n3##y,_n3##z,c), I[337] = (T)(img)(_p2##x,_n3##y,_n3##z,c), I[338] = (T)(img)(_p1##x,_n3##y,_n3##z,c), I[339] = (T)(img)(x,_n3##y,_n3##z,c), I[340] = (T)(img)(_n1##x,_n3##y,_n3##z,c), I[341] = (T)(img)(_n2##x,_n3##y,_n3##z,c), I[342] = (T)(img)(_n3##x,_n3##y,_n3##z,c);
|
|
|
|
// Define 8x8x8 loop macros
|
|
//----------------------------
|
|
#define cimg_for8x8x8(img,x,y,z,c,I,T) \
|
|
cimg_for8((img)._depth,z) cimg_for8((img)._height,y) for (int x = 0, \
|
|
_p3##x = 0, _p2##x = 0, _p1##x = 0, \
|
|
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
|
|
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
|
|
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
|
|
_n4##x = (int)( \
|
|
(I[0] = I[1] = I[2] = I[3] = (T)(img)(0,_p3##y,_p3##z,c)), \
|
|
(I[8] = I[9] = I[10] = I[11] = (T)(img)(0,_p2##y,_p3##z,c)), \
|
|
(I[16] = I[17] = I[18] = I[19] = (T)(img)(0,_p1##y,_p3##z,c)), \
|
|
(I[24] = I[25] = I[26] = I[27] = (T)(img)(0,y,_p3##z,c)), \
|
|
(I[32] = I[33] = I[34] = I[35] = (T)(img)(0,_n1##y,_p3##z,c)), \
|
|
(I[40] = I[41] = I[42] = I[43] = (T)(img)(0,_n2##y,_p3##z,c)), \
|
|
(I[48] = I[49] = I[50] = I[51] = (T)(img)(0,_n3##y,_p3##z,c)), \
|
|
(I[56] = I[57] = I[58] = I[59] = (T)(img)(0,_n4##y,_p3##z,c)), \
|
|
(I[64] = I[65] = I[66] = I[67] = (T)(img)(0,_p3##y,_p2##z,c)), \
|
|
(I[72] = I[73] = I[74] = I[75] = (T)(img)(0,_p2##y,_p2##z,c)), \
|
|
(I[80] = I[81] = I[82] = I[83] = (T)(img)(0,_p1##y,_p2##z,c)), \
|
|
(I[88] = I[89] = I[90] = I[91] = (T)(img)(0,y,_p2##z,c)), \
|
|
(I[96] = I[97] = I[98] = I[99] = (T)(img)(0,_n1##y,_p2##z,c)), \
|
|
(I[104] = I[105] = I[106] = I[107] = (T)(img)(0,_n2##y,_p2##z,c)), \
|
|
(I[112] = I[113] = I[114] = I[115] = (T)(img)(0,_n3##y,_p2##z,c)), \
|
|
(I[120] = I[121] = I[122] = I[123] = (T)(img)(0,_n4##y,_p2##z,c)), \
|
|
(I[128] = I[129] = I[130] = I[131] = (T)(img)(0,_p3##y,_p1##z,c)), \
|
|
(I[136] = I[137] = I[138] = I[139] = (T)(img)(0,_p2##y,_p1##z,c)), \
|
|
(I[144] = I[145] = I[146] = I[147] = (T)(img)(0,_p1##y,_p1##z,c)), \
|
|
(I[152] = I[153] = I[154] = I[155] = (T)(img)(0,y,_p1##z,c)), \
|
|
(I[160] = I[161] = I[162] = I[163] = (T)(img)(0,_n1##y,_p1##z,c)), \
|
|
(I[168] = I[169] = I[170] = I[171] = (T)(img)(0,_n2##y,_p1##z,c)), \
|
|
(I[176] = I[177] = I[178] = I[179] = (T)(img)(0,_n3##y,_p1##z,c)), \
|
|
(I[184] = I[185] = I[186] = I[187] = (T)(img)(0,_n4##y,_p1##z,c)), \
|
|
(I[192] = I[193] = I[194] = I[195] = (T)(img)(0,_p3##y,z,c)), \
|
|
(I[200] = I[201] = I[202] = I[203] = (T)(img)(0,_p2##y,z,c)), \
|
|
(I[208] = I[209] = I[210] = I[211] = (T)(img)(0,_p1##y,z,c)), \
|
|
(I[216] = I[217] = I[218] = I[219] = (T)(img)(0,y,z,c)), \
|
|
(I[224] = I[225] = I[226] = I[227] = (T)(img)(0,_n1##y,z,c)), \
|
|
(I[232] = I[233] = I[234] = I[235] = (T)(img)(0,_n2##y,z,c)), \
|
|
(I[240] = I[241] = I[242] = I[243] = (T)(img)(0,_n3##y,z,c)), \
|
|
(I[248] = I[249] = I[250] = I[251] = (T)(img)(0,_n4##y,z,c)), \
|
|
(I[256] = I[257] = I[258] = I[259] = (T)(img)(0,_p3##y,_n1##z,c)), \
|
|
(I[264] = I[265] = I[266] = I[267] = (T)(img)(0,_p2##y,_n1##z,c)), \
|
|
(I[272] = I[273] = I[274] = I[275] = (T)(img)(0,_p1##y,_n1##z,c)), \
|
|
(I[280] = I[281] = I[282] = I[283] = (T)(img)(0,y,_n1##z,c)), \
|
|
(I[288] = I[289] = I[290] = I[291] = (T)(img)(0,_n1##y,_n1##z,c)), \
|
|
(I[296] = I[297] = I[298] = I[299] = (T)(img)(0,_n2##y,_n1##z,c)), \
|
|
(I[304] = I[305] = I[306] = I[307] = (T)(img)(0,_n3##y,_n1##z,c)), \
|
|
(I[312] = I[313] = I[314] = I[315] = (T)(img)(0,_n4##y,_n1##z,c)), \
|
|
(I[320] = I[321] = I[322] = I[323] = (T)(img)(0,_p3##y,_n2##z,c)), \
|
|
(I[328] = I[329] = I[330] = I[331] = (T)(img)(0,_p2##y,_n2##z,c)), \
|
|
(I[336] = I[337] = I[338] = I[339] = (T)(img)(0,_p1##y,_n2##z,c)), \
|
|
(I[344] = I[345] = I[346] = I[347] = (T)(img)(0,y,_n2##z,c)), \
|
|
(I[352] = I[353] = I[354] = I[355] = (T)(img)(0,_n1##y,_n2##z,c)), \
|
|
(I[360] = I[361] = I[362] = I[363] = (T)(img)(0,_n2##y,_n2##z,c)), \
|
|
(I[368] = I[369] = I[370] = I[371] = (T)(img)(0,_n3##y,_n2##z,c)), \
|
|
(I[376] = I[377] = I[378] = I[379] = (T)(img)(0,_n4##y,_n2##z,c)), \
|
|
(I[384] = I[385] = I[386] = I[387] = (T)(img)(0,_p3##y,_n3##z,c)), \
|
|
(I[392] = I[393] = I[394] = I[395] = (T)(img)(0,_p2##y,_n3##z,c)), \
|
|
(I[400] = I[401] = I[402] = I[403] = (T)(img)(0,_p1##y,_n3##z,c)), \
|
|
(I[408] = I[409] = I[410] = I[411] = (T)(img)(0,y,_n3##z,c)), \
|
|
(I[416] = I[417] = I[418] = I[419] = (T)(img)(0,_n1##y,_n3##z,c)), \
|
|
(I[424] = I[425] = I[426] = I[427] = (T)(img)(0,_n2##y,_n3##z,c)), \
|
|
(I[432] = I[433] = I[434] = I[435] = (T)(img)(0,_n3##y,_n3##z,c)), \
|
|
(I[440] = I[441] = I[442] = I[443] = (T)(img)(0,_n4##y,_n3##z,c)), \
|
|
(I[448] = I[449] = I[450] = I[451] = (T)(img)(0,_p3##y,_n4##z,c)), \
|
|
(I[456] = I[457] = I[458] = I[459] = (T)(img)(0,_p2##y,_n4##z,c)), \
|
|
(I[464] = I[465] = I[466] = I[467] = (T)(img)(0,_p1##y,_n4##z,c)), \
|
|
(I[472] = I[473] = I[474] = I[475] = (T)(img)(0,y,_n4##z,c)), \
|
|
(I[480] = I[481] = I[482] = I[483] = (T)(img)(0,_n1##y,_n4##z,c)), \
|
|
(I[488] = I[489] = I[490] = I[491] = (T)(img)(0,_n2##y,_n4##z,c)), \
|
|
(I[496] = I[497] = I[498] = I[499] = (T)(img)(0,_n3##y,_n4##z,c)), \
|
|
(I[504] = I[505] = I[506] = I[507] = (T)(img)(0,_n4##y,_n4##z,c)), \
|
|
(I[4] = (T)(img)(_n1##x,_p3##y,_p3##z,c)), \
|
|
(I[12] = (T)(img)(_n1##x,_p2##y,_p3##z,c)), \
|
|
(I[20] = (T)(img)(_n1##x,_p1##y,_p3##z,c)), \
|
|
(I[28] = (T)(img)(_n1##x,y,_p3##z,c)), \
|
|
(I[36] = (T)(img)(_n1##x,_n1##y,_p3##z,c)), \
|
|
(I[44] = (T)(img)(_n1##x,_n2##y,_p3##z,c)), \
|
|
(I[52] = (T)(img)(_n1##x,_n3##y,_p3##z,c)), \
|
|
(I[60] = (T)(img)(_n1##x,_n4##y,_p3##z,c)), \
|
|
(I[68] = (T)(img)(_n1##x,_p3##y,_p2##z,c)), \
|
|
(I[76] = (T)(img)(_n1##x,_p2##y,_p2##z,c)), \
|
|
(I[84] = (T)(img)(_n1##x,_p1##y,_p2##z,c)), \
|
|
(I[92] = (T)(img)(_n1##x,y,_p2##z,c)), \
|
|
(I[100] = (T)(img)(_n1##x,_n1##y,_p2##z,c)), \
|
|
(I[108] = (T)(img)(_n1##x,_n2##y,_p2##z,c)), \
|
|
(I[116] = (T)(img)(_n1##x,_n3##y,_p2##z,c)), \
|
|
(I[124] = (T)(img)(_n1##x,_n4##y,_p2##z,c)), \
|
|
(I[132] = (T)(img)(_n1##x,_p3##y,_p1##z,c)), \
|
|
(I[140] = (T)(img)(_n1##x,_p2##y,_p1##z,c)), \
|
|
(I[148] = (T)(img)(_n1##x,_p1##y,_p1##z,c)), \
|
|
(I[156] = (T)(img)(_n1##x,y,_p1##z,c)), \
|
|
(I[164] = (T)(img)(_n1##x,_n1##y,_p1##z,c)), \
|
|
(I[172] = (T)(img)(_n1##x,_n2##y,_p1##z,c)), \
|
|
(I[180] = (T)(img)(_n1##x,_n3##y,_p1##z,c)), \
|
|
(I[188] = (T)(img)(_n1##x,_n4##y,_p1##z,c)), \
|
|
(I[196] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[204] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[212] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[220] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[228] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[236] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[244] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[252] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[260] = (T)(img)(_n1##x,_p3##y,_n1##z,c)), \
|
|
(I[268] = (T)(img)(_n1##x,_p2##y,_n1##z,c)), \
|
|
(I[276] = (T)(img)(_n1##x,_p1##y,_n1##z,c)), \
|
|
(I[284] = (T)(img)(_n1##x,y,_n1##z,c)), \
|
|
(I[292] = (T)(img)(_n1##x,_n1##y,_n1##z,c)), \
|
|
(I[300] = (T)(img)(_n1##x,_n2##y,_n1##z,c)), \
|
|
(I[308] = (T)(img)(_n1##x,_n3##y,_n1##z,c)), \
|
|
(I[316] = (T)(img)(_n1##x,_n4##y,_n1##z,c)), \
|
|
(I[324] = (T)(img)(_n1##x,_p3##y,_n2##z,c)), \
|
|
(I[332] = (T)(img)(_n1##x,_p2##y,_n2##z,c)), \
|
|
(I[340] = (T)(img)(_n1##x,_p1##y,_n2##z,c)), \
|
|
(I[348] = (T)(img)(_n1##x,y,_n2##z,c)), \
|
|
(I[356] = (T)(img)(_n1##x,_n1##y,_n2##z,c)), \
|
|
(I[364] = (T)(img)(_n1##x,_n2##y,_n2##z,c)), \
|
|
(I[372] = (T)(img)(_n1##x,_n3##y,_n2##z,c)), \
|
|
(I[380] = (T)(img)(_n1##x,_n4##y,_n2##z,c)), \
|
|
(I[388] = (T)(img)(_n1##x,_p3##y,_n3##z,c)), \
|
|
(I[396] = (T)(img)(_n1##x,_p2##y,_n3##z,c)), \
|
|
(I[404] = (T)(img)(_n1##x,_p1##y,_n3##z,c)), \
|
|
(I[412] = (T)(img)(_n1##x,y,_n3##z,c)), \
|
|
(I[420] = (T)(img)(_n1##x,_n1##y,_n3##z,c)), \
|
|
(I[428] = (T)(img)(_n1##x,_n2##y,_n3##z,c)), \
|
|
(I[436] = (T)(img)(_n1##x,_n3##y,_n3##z,c)), \
|
|
(I[444] = (T)(img)(_n1##x,_n4##y,_n3##z,c)), \
|
|
(I[452] = (T)(img)(_n1##x,_p3##y,_n4##z,c)), \
|
|
(I[460] = (T)(img)(_n1##x,_p2##y,_n4##z,c)), \
|
|
(I[468] = (T)(img)(_n1##x,_p1##y,_n4##z,c)), \
|
|
(I[476] = (T)(img)(_n1##x,y,_n4##z,c)), \
|
|
(I[484] = (T)(img)(_n1##x,_n1##y,_n4##z,c)), \
|
|
(I[492] = (T)(img)(_n1##x,_n2##y,_n4##z,c)), \
|
|
(I[500] = (T)(img)(_n1##x,_n3##y,_n4##z,c)), \
|
|
(I[508] = (T)(img)(_n1##x,_n4##y,_n4##z,c)), \
|
|
(I[5] = (T)(img)(_n2##x,_p3##y,_p3##z,c)), \
|
|
(I[13] = (T)(img)(_n2##x,_p2##y,_p3##z,c)), \
|
|
(I[21] = (T)(img)(_n2##x,_p1##y,_p3##z,c)), \
|
|
(I[29] = (T)(img)(_n2##x,y,_p3##z,c)), \
|
|
(I[37] = (T)(img)(_n2##x,_n1##y,_p3##z,c)), \
|
|
(I[45] = (T)(img)(_n2##x,_n2##y,_p3##z,c)), \
|
|
(I[53] = (T)(img)(_n2##x,_n3##y,_p3##z,c)), \
|
|
(I[61] = (T)(img)(_n2##x,_n4##y,_p3##z,c)), \
|
|
(I[69] = (T)(img)(_n2##x,_p3##y,_p2##z,c)), \
|
|
(I[77] = (T)(img)(_n2##x,_p2##y,_p2##z,c)), \
|
|
(I[85] = (T)(img)(_n2##x,_p1##y,_p2##z,c)), \
|
|
(I[93] = (T)(img)(_n2##x,y,_p2##z,c)), \
|
|
(I[101] = (T)(img)(_n2##x,_n1##y,_p2##z,c)), \
|
|
(I[109] = (T)(img)(_n2##x,_n2##y,_p2##z,c)), \
|
|
(I[117] = (T)(img)(_n2##x,_n3##y,_p2##z,c)), \
|
|
(I[125] = (T)(img)(_n2##x,_n4##y,_p2##z,c)), \
|
|
(I[133] = (T)(img)(_n2##x,_p3##y,_p1##z,c)), \
|
|
(I[141] = (T)(img)(_n2##x,_p2##y,_p1##z,c)), \
|
|
(I[149] = (T)(img)(_n2##x,_p1##y,_p1##z,c)), \
|
|
(I[157] = (T)(img)(_n2##x,y,_p1##z,c)), \
|
|
(I[165] = (T)(img)(_n2##x,_n1##y,_p1##z,c)), \
|
|
(I[173] = (T)(img)(_n2##x,_n2##y,_p1##z,c)), \
|
|
(I[181] = (T)(img)(_n2##x,_n3##y,_p1##z,c)), \
|
|
(I[189] = (T)(img)(_n2##x,_n4##y,_p1##z,c)), \
|
|
(I[197] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[205] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[213] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[221] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[229] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[237] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[245] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[253] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[261] = (T)(img)(_n2##x,_p3##y,_n1##z,c)), \
|
|
(I[269] = (T)(img)(_n2##x,_p2##y,_n1##z,c)), \
|
|
(I[277] = (T)(img)(_n2##x,_p1##y,_n1##z,c)), \
|
|
(I[285] = (T)(img)(_n2##x,y,_n1##z,c)), \
|
|
(I[293] = (T)(img)(_n2##x,_n1##y,_n1##z,c)), \
|
|
(I[301] = (T)(img)(_n2##x,_n2##y,_n1##z,c)), \
|
|
(I[309] = (T)(img)(_n2##x,_n3##y,_n1##z,c)), \
|
|
(I[317] = (T)(img)(_n2##x,_n4##y,_n1##z,c)), \
|
|
(I[325] = (T)(img)(_n2##x,_p3##y,_n2##z,c)), \
|
|
(I[333] = (T)(img)(_n2##x,_p2##y,_n2##z,c)), \
|
|
(I[341] = (T)(img)(_n2##x,_p1##y,_n2##z,c)), \
|
|
(I[349] = (T)(img)(_n2##x,y,_n2##z,c)), \
|
|
(I[357] = (T)(img)(_n2##x,_n1##y,_n2##z,c)), \
|
|
(I[365] = (T)(img)(_n2##x,_n2##y,_n2##z,c)), \
|
|
(I[373] = (T)(img)(_n2##x,_n3##y,_n2##z,c)), \
|
|
(I[381] = (T)(img)(_n2##x,_n4##y,_n2##z,c)), \
|
|
(I[389] = (T)(img)(_n2##x,_p3##y,_n3##z,c)), \
|
|
(I[397] = (T)(img)(_n2##x,_p2##y,_n3##z,c)), \
|
|
(I[405] = (T)(img)(_n2##x,_p1##y,_n3##z,c)), \
|
|
(I[413] = (T)(img)(_n2##x,y,_n3##z,c)), \
|
|
(I[421] = (T)(img)(_n2##x,_n1##y,_n3##z,c)), \
|
|
(I[429] = (T)(img)(_n2##x,_n2##y,_n3##z,c)), \
|
|
(I[437] = (T)(img)(_n2##x,_n3##y,_n3##z,c)), \
|
|
(I[445] = (T)(img)(_n2##x,_n4##y,_n3##z,c)), \
|
|
(I[453] = (T)(img)(_n2##x,_p3##y,_n4##z,c)), \
|
|
(I[461] = (T)(img)(_n2##x,_p2##y,_n4##z,c)), \
|
|
(I[469] = (T)(img)(_n2##x,_p1##y,_n4##z,c)), \
|
|
(I[477] = (T)(img)(_n2##x,y,_n4##z,c)), \
|
|
(I[485] = (T)(img)(_n2##x,_n1##y,_n4##z,c)), \
|
|
(I[493] = (T)(img)(_n2##x,_n2##y,_n4##z,c)), \
|
|
(I[501] = (T)(img)(_n2##x,_n3##y,_n4##z,c)), \
|
|
(I[509] = (T)(img)(_n2##x,_n4##y,_n4##z,c)), \
|
|
(I[6] = (T)(img)(_n3##x,_p3##y,_p3##z,c)), \
|
|
(I[14] = (T)(img)(_n3##x,_p2##y,_p3##z,c)), \
|
|
(I[22] = (T)(img)(_n3##x,_p1##y,_p3##z,c)), \
|
|
(I[30] = (T)(img)(_n3##x,y,_p3##z,c)), \
|
|
(I[38] = (T)(img)(_n3##x,_n1##y,_p3##z,c)), \
|
|
(I[46] = (T)(img)(_n3##x,_n2##y,_p3##z,c)), \
|
|
(I[54] = (T)(img)(_n3##x,_n3##y,_p3##z,c)), \
|
|
(I[62] = (T)(img)(_n3##x,_n4##y,_p3##z,c)), \
|
|
(I[70] = (T)(img)(_n3##x,_p3##y,_p2##z,c)), \
|
|
(I[78] = (T)(img)(_n3##x,_p2##y,_p2##z,c)), \
|
|
(I[86] = (T)(img)(_n3##x,_p1##y,_p2##z,c)), \
|
|
(I[94] = (T)(img)(_n3##x,y,_p2##z,c)), \
|
|
(I[102] = (T)(img)(_n3##x,_n1##y,_p2##z,c)), \
|
|
(I[110] = (T)(img)(_n3##x,_n2##y,_p2##z,c)), \
|
|
(I[118] = (T)(img)(_n3##x,_n3##y,_p2##z,c)), \
|
|
(I[126] = (T)(img)(_n3##x,_n4##y,_p2##z,c)), \
|
|
(I[134] = (T)(img)(_n3##x,_p3##y,_p1##z,c)), \
|
|
(I[142] = (T)(img)(_n3##x,_p2##y,_p1##z,c)), \
|
|
(I[150] = (T)(img)(_n3##x,_p1##y,_p1##z,c)), \
|
|
(I[158] = (T)(img)(_n3##x,y,_p1##z,c)), \
|
|
(I[166] = (T)(img)(_n3##x,_n1##y,_p1##z,c)), \
|
|
(I[174] = (T)(img)(_n3##x,_n2##y,_p1##z,c)), \
|
|
(I[182] = (T)(img)(_n3##x,_n3##y,_p1##z,c)), \
|
|
(I[190] = (T)(img)(_n3##x,_n4##y,_p1##z,c)), \
|
|
(I[198] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[206] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[214] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[222] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[230] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[238] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[246] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[254] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[262] = (T)(img)(_n3##x,_p3##y,_n1##z,c)), \
|
|
(I[270] = (T)(img)(_n3##x,_p2##y,_n1##z,c)), \
|
|
(I[278] = (T)(img)(_n3##x,_p1##y,_n1##z,c)), \
|
|
(I[286] = (T)(img)(_n3##x,y,_n1##z,c)), \
|
|
(I[294] = (T)(img)(_n3##x,_n1##y,_n1##z,c)), \
|
|
(I[302] = (T)(img)(_n3##x,_n2##y,_n1##z,c)), \
|
|
(I[310] = (T)(img)(_n3##x,_n3##y,_n1##z,c)), \
|
|
(I[318] = (T)(img)(_n3##x,_n4##y,_n1##z,c)), \
|
|
(I[326] = (T)(img)(_n3##x,_p3##y,_n2##z,c)), \
|
|
(I[334] = (T)(img)(_n3##x,_p2##y,_n2##z,c)), \
|
|
(I[342] = (T)(img)(_n3##x,_p1##y,_n2##z,c)), \
|
|
(I[350] = (T)(img)(_n3##x,y,_n2##z,c)), \
|
|
(I[358] = (T)(img)(_n3##x,_n1##y,_n2##z,c)), \
|
|
(I[366] = (T)(img)(_n3##x,_n2##y,_n2##z,c)), \
|
|
(I[374] = (T)(img)(_n3##x,_n3##y,_n2##z,c)), \
|
|
(I[382] = (T)(img)(_n3##x,_n4##y,_n2##z,c)), \
|
|
(I[390] = (T)(img)(_n3##x,_p3##y,_n3##z,c)), \
|
|
(I[398] = (T)(img)(_n3##x,_p2##y,_n3##z,c)), \
|
|
(I[406] = (T)(img)(_n3##x,_p1##y,_n3##z,c)), \
|
|
(I[414] = (T)(img)(_n3##x,y,_n3##z,c)), \
|
|
(I[422] = (T)(img)(_n3##x,_n1##y,_n3##z,c)), \
|
|
(I[430] = (T)(img)(_n3##x,_n2##y,_n3##z,c)), \
|
|
(I[438] = (T)(img)(_n3##x,_n3##y,_n3##z,c)), \
|
|
(I[446] = (T)(img)(_n3##x,_n4##y,_n3##z,c)), \
|
|
(I[454] = (T)(img)(_n3##x,_p3##y,_n4##z,c)), \
|
|
(I[462] = (T)(img)(_n3##x,_p2##y,_n4##z,c)), \
|
|
(I[470] = (T)(img)(_n3##x,_p1##y,_n4##z,c)), \
|
|
(I[478] = (T)(img)(_n3##x,y,_n4##z,c)), \
|
|
(I[486] = (T)(img)(_n3##x,_n1##y,_n4##z,c)), \
|
|
(I[494] = (T)(img)(_n3##x,_n2##y,_n4##z,c)), \
|
|
(I[502] = (T)(img)(_n3##x,_n3##y,_n4##z,c)), \
|
|
(I[510] = (T)(img)(_n3##x,_n4##y,_n4##z,c)), \
|
|
4>=((img)._width)?(img).width() - 1:4); \
|
|
(_n4##x<(img).width() && ( \
|
|
(I[7] = (T)(img)(_n4##x,_p3##y,_p3##z,c)), \
|
|
(I[15] = (T)(img)(_n4##x,_p2##y,_p3##z,c)), \
|
|
(I[23] = (T)(img)(_n4##x,_p1##y,_p3##z,c)), \
|
|
(I[31] = (T)(img)(_n4##x,y,_p3##z,c)), \
|
|
(I[39] = (T)(img)(_n4##x,_n1##y,_p3##z,c)), \
|
|
(I[47] = (T)(img)(_n4##x,_n2##y,_p3##z,c)), \
|
|
(I[55] = (T)(img)(_n4##x,_n3##y,_p3##z,c)), \
|
|
(I[63] = (T)(img)(_n4##x,_n4##y,_p3##z,c)), \
|
|
(I[71] = (T)(img)(_n4##x,_p3##y,_p2##z,c)), \
|
|
(I[79] = (T)(img)(_n4##x,_p2##y,_p2##z,c)), \
|
|
(I[87] = (T)(img)(_n4##x,_p1##y,_p2##z,c)), \
|
|
(I[95] = (T)(img)(_n4##x,y,_p2##z,c)), \
|
|
(I[103] = (T)(img)(_n4##x,_n1##y,_p2##z,c)), \
|
|
(I[111] = (T)(img)(_n4##x,_n2##y,_p2##z,c)), \
|
|
(I[119] = (T)(img)(_n4##x,_n3##y,_p2##z,c)), \
|
|
(I[127] = (T)(img)(_n4##x,_n4##y,_p2##z,c)), \
|
|
(I[135] = (T)(img)(_n4##x,_p3##y,_p1##z,c)), \
|
|
(I[143] = (T)(img)(_n4##x,_p2##y,_p1##z,c)), \
|
|
(I[151] = (T)(img)(_n4##x,_p1##y,_p1##z,c)), \
|
|
(I[159] = (T)(img)(_n4##x,y,_p1##z,c)), \
|
|
(I[167] = (T)(img)(_n4##x,_n1##y,_p1##z,c)), \
|
|
(I[175] = (T)(img)(_n4##x,_n2##y,_p1##z,c)), \
|
|
(I[183] = (T)(img)(_n4##x,_n3##y,_p1##z,c)), \
|
|
(I[191] = (T)(img)(_n4##x,_n4##y,_p1##z,c)), \
|
|
(I[199] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[207] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[215] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[223] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[231] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[239] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[247] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[255] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[263] = (T)(img)(_n4##x,_p3##y,_n1##z,c)), \
|
|
(I[271] = (T)(img)(_n4##x,_p2##y,_n1##z,c)), \
|
|
(I[279] = (T)(img)(_n4##x,_p1##y,_n1##z,c)), \
|
|
(I[287] = (T)(img)(_n4##x,y,_n1##z,c)), \
|
|
(I[295] = (T)(img)(_n4##x,_n1##y,_n1##z,c)), \
|
|
(I[303] = (T)(img)(_n4##x,_n2##y,_n1##z,c)), \
|
|
(I[311] = (T)(img)(_n4##x,_n3##y,_n1##z,c)), \
|
|
(I[319] = (T)(img)(_n4##x,_n4##y,_n1##z,c)), \
|
|
(I[327] = (T)(img)(_n4##x,_p3##y,_n2##z,c)), \
|
|
(I[335] = (T)(img)(_n4##x,_p2##y,_n2##z,c)), \
|
|
(I[343] = (T)(img)(_n4##x,_p1##y,_n2##z,c)), \
|
|
(I[351] = (T)(img)(_n4##x,y,_n2##z,c)), \
|
|
(I[359] = (T)(img)(_n4##x,_n1##y,_n2##z,c)), \
|
|
(I[367] = (T)(img)(_n4##x,_n2##y,_n2##z,c)), \
|
|
(I[375] = (T)(img)(_n4##x,_n3##y,_n2##z,c)), \
|
|
(I[383] = (T)(img)(_n4##x,_n4##y,_n2##z,c)), \
|
|
(I[391] = (T)(img)(_n4##x,_p3##y,_n3##z,c)), \
|
|
(I[399] = (T)(img)(_n4##x,_p2##y,_n3##z,c)), \
|
|
(I[407] = (T)(img)(_n4##x,_p1##y,_n3##z,c)), \
|
|
(I[415] = (T)(img)(_n4##x,y,_n3##z,c)), \
|
|
(I[423] = (T)(img)(_n4##x,_n1##y,_n3##z,c)), \
|
|
(I[431] = (T)(img)(_n4##x,_n2##y,_n3##z,c)), \
|
|
(I[439] = (T)(img)(_n4##x,_n3##y,_n3##z,c)), \
|
|
(I[447] = (T)(img)(_n4##x,_n4##y,_n3##z,c)), \
|
|
(I[455] = (T)(img)(_n4##x,_p3##y,_n4##z,c)), \
|
|
(I[463] = (T)(img)(_n4##x,_p2##y,_n4##z,c)), \
|
|
(I[471] = (T)(img)(_n4##x,_p1##y,_n4##z,c)), \
|
|
(I[479] = (T)(img)(_n4##x,y,_n4##z,c)), \
|
|
(I[487] = (T)(img)(_n4##x,_n1##y,_n4##z,c)), \
|
|
(I[495] = (T)(img)(_n4##x,_n2##y,_n4##z,c)), \
|
|
(I[503] = (T)(img)(_n4##x,_n3##y,_n4##z,c)), \
|
|
(I[511] = (T)(img)(_n4##x,_n4##y,_n4##z,c)),1)) || \
|
|
_n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n4##x = _n3##x = _n2##x = --_n1##x); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], \
|
|
I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], \
|
|
I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \
|
|
I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \
|
|
I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \
|
|
I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
|
|
I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \
|
|
I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], \
|
|
I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
|
|
I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
|
|
I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], \
|
|
I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
|
|
I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], \
|
|
I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \
|
|
I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
|
|
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], \
|
|
I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], \
|
|
I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
|
|
I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], \
|
|
I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], \
|
|
I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
|
|
I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], \
|
|
I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], \
|
|
I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \
|
|
I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], \
|
|
I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], \
|
|
I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \
|
|
I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \
|
|
I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], \
|
|
I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \
|
|
I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], \
|
|
I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], \
|
|
I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], \
|
|
I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], \
|
|
I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], \
|
|
I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], \
|
|
I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], \
|
|
I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], \
|
|
I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], \
|
|
I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], \
|
|
I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], \
|
|
I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \
|
|
I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], \
|
|
I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], \
|
|
I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], \
|
|
I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], \
|
|
I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], \
|
|
I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], \
|
|
I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], \
|
|
I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], \
|
|
I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], \
|
|
I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], \
|
|
I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], \
|
|
I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], \
|
|
I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], \
|
|
I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], \
|
|
I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], \
|
|
I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], \
|
|
I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], \
|
|
I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], \
|
|
I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], \
|
|
I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], \
|
|
I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], \
|
|
I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], \
|
|
_p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x)
|
|
|
|
#define cimg_for_in8x8x8(img,x0,y0,z0,x1,y1,z1,x,y,z,c,I,T) \
|
|
cimg_for_in8((img)._depth,z0,z1,z) cimg_for_in8((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
|
|
_p3##x = x - 3<0?0:x - 3, \
|
|
_p2##x = x - 2<0?0:x - 2, \
|
|
_p1##x = x - 1<0?0:x - 1, \
|
|
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
|
|
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
|
|
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
|
|
_n4##x = (int)( \
|
|
(I[0] = (T)(img)(_p3##x,_p3##y,_p3##z,c)), \
|
|
(I[8] = (T)(img)(_p3##x,_p2##y,_p3##z,c)), \
|
|
(I[16] = (T)(img)(_p3##x,_p1##y,_p3##z,c)), \
|
|
(I[24] = (T)(img)(_p3##x,y,_p3##z,c)), \
|
|
(I[32] = (T)(img)(_p3##x,_n1##y,_p3##z,c)), \
|
|
(I[40] = (T)(img)(_p3##x,_n2##y,_p3##z,c)), \
|
|
(I[48] = (T)(img)(_p3##x,_n3##y,_p3##z,c)), \
|
|
(I[56] = (T)(img)(_p3##x,_n4##y,_p3##z,c)), \
|
|
(I[64] = (T)(img)(_p3##x,_p3##y,_p2##z,c)), \
|
|
(I[72] = (T)(img)(_p3##x,_p2##y,_p2##z,c)), \
|
|
(I[80] = (T)(img)(_p3##x,_p1##y,_p2##z,c)), \
|
|
(I[88] = (T)(img)(_p3##x,y,_p2##z,c)), \
|
|
(I[96] = (T)(img)(_p3##x,_n1##y,_p2##z,c)), \
|
|
(I[104] = (T)(img)(_p3##x,_n2##y,_p2##z,c)), \
|
|
(I[112] = (T)(img)(_p3##x,_n3##y,_p2##z,c)), \
|
|
(I[120] = (T)(img)(_p3##x,_n4##y,_p2##z,c)), \
|
|
(I[128] = (T)(img)(_p3##x,_p3##y,_p1##z,c)), \
|
|
(I[136] = (T)(img)(_p3##x,_p2##y,_p1##z,c)), \
|
|
(I[144] = (T)(img)(_p3##x,_p1##y,_p1##z,c)), \
|
|
(I[152] = (T)(img)(_p3##x,y,_p1##z,c)), \
|
|
(I[160] = (T)(img)(_p3##x,_n1##y,_p1##z,c)), \
|
|
(I[168] = (T)(img)(_p3##x,_n2##y,_p1##z,c)), \
|
|
(I[176] = (T)(img)(_p3##x,_n3##y,_p1##z,c)), \
|
|
(I[184] = (T)(img)(_p3##x,_n4##y,_p1##z,c)), \
|
|
(I[192] = (T)(img)(_p3##x,_p3##y,z,c)), \
|
|
(I[200] = (T)(img)(_p3##x,_p2##y,z,c)), \
|
|
(I[208] = (T)(img)(_p3##x,_p1##y,z,c)), \
|
|
(I[216] = (T)(img)(_p3##x,y,z,c)), \
|
|
(I[224] = (T)(img)(_p3##x,_n1##y,z,c)), \
|
|
(I[232] = (T)(img)(_p3##x,_n2##y,z,c)), \
|
|
(I[240] = (T)(img)(_p3##x,_n3##y,z,c)), \
|
|
(I[248] = (T)(img)(_p3##x,_n4##y,z,c)), \
|
|
(I[256] = (T)(img)(_p3##x,_p3##y,_n1##z,c)), \
|
|
(I[264] = (T)(img)(_p3##x,_p2##y,_n1##z,c)), \
|
|
(I[272] = (T)(img)(_p3##x,_p1##y,_n1##z,c)), \
|
|
(I[280] = (T)(img)(_p3##x,y,_n1##z,c)), \
|
|
(I[288] = (T)(img)(_p3##x,_n1##y,_n1##z,c)), \
|
|
(I[296] = (T)(img)(_p3##x,_n2##y,_n1##z,c)), \
|
|
(I[304] = (T)(img)(_p3##x,_n3##y,_n1##z,c)), \
|
|
(I[312] = (T)(img)(_p3##x,_n4##y,_n1##z,c)), \
|
|
(I[320] = (T)(img)(_p3##x,_p3##y,_n2##z,c)), \
|
|
(I[328] = (T)(img)(_p3##x,_p2##y,_n2##z,c)), \
|
|
(I[336] = (T)(img)(_p3##x,_p1##y,_n2##z,c)), \
|
|
(I[344] = (T)(img)(_p3##x,y,_n2##z,c)), \
|
|
(I[352] = (T)(img)(_p3##x,_n1##y,_n2##z,c)), \
|
|
(I[360] = (T)(img)(_p3##x,_n2##y,_n2##z,c)), \
|
|
(I[368] = (T)(img)(_p3##x,_n3##y,_n2##z,c)), \
|
|
(I[376] = (T)(img)(_p3##x,_n4##y,_n2##z,c)), \
|
|
(I[384] = (T)(img)(_p3##x,_p3##y,_n3##z,c)), \
|
|
(I[392] = (T)(img)(_p3##x,_p2##y,_n3##z,c)), \
|
|
(I[400] = (T)(img)(_p3##x,_p1##y,_n3##z,c)), \
|
|
(I[408] = (T)(img)(_p3##x,y,_n3##z,c)), \
|
|
(I[416] = (T)(img)(_p3##x,_n1##y,_n3##z,c)), \
|
|
(I[424] = (T)(img)(_p3##x,_n2##y,_n3##z,c)), \
|
|
(I[432] = (T)(img)(_p3##x,_n3##y,_n3##z,c)), \
|
|
(I[440] = (T)(img)(_p3##x,_n4##y,_n3##z,c)), \
|
|
(I[448] = (T)(img)(_p3##x,_p3##y,_n4##z,c)), \
|
|
(I[456] = (T)(img)(_p3##x,_p2##y,_n4##z,c)), \
|
|
(I[464] = (T)(img)(_p3##x,_p1##y,_n4##z,c)), \
|
|
(I[472] = (T)(img)(_p3##x,y,_n4##z,c)), \
|
|
(I[480] = (T)(img)(_p3##x,_n1##y,_n4##z,c)), \
|
|
(I[488] = (T)(img)(_p3##x,_n2##y,_n4##z,c)), \
|
|
(I[496] = (T)(img)(_p3##x,_n3##y,_n4##z,c)), \
|
|
(I[504] = (T)(img)(_p3##x,_n4##y,_n4##z,c)), \
|
|
(I[1] = (T)(img)(_p2##x,_p3##y,_p3##z,c)), \
|
|
(I[9] = (T)(img)(_p2##x,_p2##y,_p3##z,c)), \
|
|
(I[17] = (T)(img)(_p2##x,_p1##y,_p3##z,c)), \
|
|
(I[25] = (T)(img)(_p2##x,y,_p3##z,c)), \
|
|
(I[33] = (T)(img)(_p2##x,_n1##y,_p3##z,c)), \
|
|
(I[41] = (T)(img)(_p2##x,_n2##y,_p3##z,c)), \
|
|
(I[49] = (T)(img)(_p2##x,_n3##y,_p3##z,c)), \
|
|
(I[57] = (T)(img)(_p2##x,_n4##y,_p3##z,c)), \
|
|
(I[65] = (T)(img)(_p2##x,_p3##y,_p2##z,c)), \
|
|
(I[73] = (T)(img)(_p2##x,_p2##y,_p2##z,c)), \
|
|
(I[81] = (T)(img)(_p2##x,_p1##y,_p2##z,c)), \
|
|
(I[89] = (T)(img)(_p2##x,y,_p2##z,c)), \
|
|
(I[97] = (T)(img)(_p2##x,_n1##y,_p2##z,c)), \
|
|
(I[105] = (T)(img)(_p2##x,_n2##y,_p2##z,c)), \
|
|
(I[113] = (T)(img)(_p2##x,_n3##y,_p2##z,c)), \
|
|
(I[121] = (T)(img)(_p2##x,_n4##y,_p2##z,c)), \
|
|
(I[129] = (T)(img)(_p2##x,_p3##y,_p1##z,c)), \
|
|
(I[137] = (T)(img)(_p2##x,_p2##y,_p1##z,c)), \
|
|
(I[145] = (T)(img)(_p2##x,_p1##y,_p1##z,c)), \
|
|
(I[153] = (T)(img)(_p2##x,y,_p1##z,c)), \
|
|
(I[161] = (T)(img)(_p2##x,_n1##y,_p1##z,c)), \
|
|
(I[169] = (T)(img)(_p2##x,_n2##y,_p1##z,c)), \
|
|
(I[177] = (T)(img)(_p2##x,_n3##y,_p1##z,c)), \
|
|
(I[185] = (T)(img)(_p2##x,_n4##y,_p1##z,c)), \
|
|
(I[193] = (T)(img)(_p2##x,_p3##y,z,c)), \
|
|
(I[201] = (T)(img)(_p2##x,_p2##y,z,c)), \
|
|
(I[209] = (T)(img)(_p2##x,_p1##y,z,c)), \
|
|
(I[217] = (T)(img)(_p2##x,y,z,c)), \
|
|
(I[225] = (T)(img)(_p2##x,_n1##y,z,c)), \
|
|
(I[233] = (T)(img)(_p2##x,_n2##y,z,c)), \
|
|
(I[241] = (T)(img)(_p2##x,_n3##y,z,c)), \
|
|
(I[249] = (T)(img)(_p2##x,_n4##y,z,c)), \
|
|
(I[257] = (T)(img)(_p2##x,_p3##y,_n1##z,c)), \
|
|
(I[265] = (T)(img)(_p2##x,_p2##y,_n1##z,c)), \
|
|
(I[273] = (T)(img)(_p2##x,_p1##y,_n1##z,c)), \
|
|
(I[281] = (T)(img)(_p2##x,y,_n1##z,c)), \
|
|
(I[289] = (T)(img)(_p2##x,_n1##y,_n1##z,c)), \
|
|
(I[297] = (T)(img)(_p2##x,_n2##y,_n1##z,c)), \
|
|
(I[305] = (T)(img)(_p2##x,_n3##y,_n1##z,c)), \
|
|
(I[313] = (T)(img)(_p2##x,_n4##y,_n1##z,c)), \
|
|
(I[321] = (T)(img)(_p2##x,_p3##y,_n2##z,c)), \
|
|
(I[329] = (T)(img)(_p2##x,_p2##y,_n2##z,c)), \
|
|
(I[337] = (T)(img)(_p2##x,_p1##y,_n2##z,c)), \
|
|
(I[345] = (T)(img)(_p2##x,y,_n2##z,c)), \
|
|
(I[353] = (T)(img)(_p2##x,_n1##y,_n2##z,c)), \
|
|
(I[361] = (T)(img)(_p2##x,_n2##y,_n2##z,c)), \
|
|
(I[369] = (T)(img)(_p2##x,_n3##y,_n2##z,c)), \
|
|
(I[377] = (T)(img)(_p2##x,_n4##y,_n2##z,c)), \
|
|
(I[385] = (T)(img)(_p2##x,_p3##y,_n3##z,c)), \
|
|
(I[393] = (T)(img)(_p2##x,_p2##y,_n3##z,c)), \
|
|
(I[401] = (T)(img)(_p2##x,_p1##y,_n3##z,c)), \
|
|
(I[409] = (T)(img)(_p2##x,y,_n3##z,c)), \
|
|
(I[417] = (T)(img)(_p2##x,_n1##y,_n3##z,c)), \
|
|
(I[425] = (T)(img)(_p2##x,_n2##y,_n3##z,c)), \
|
|
(I[433] = (T)(img)(_p2##x,_n3##y,_n3##z,c)), \
|
|
(I[441] = (T)(img)(_p2##x,_n4##y,_n3##z,c)), \
|
|
(I[449] = (T)(img)(_p2##x,_p3##y,_n4##z,c)), \
|
|
(I[457] = (T)(img)(_p2##x,_p2##y,_n4##z,c)), \
|
|
(I[465] = (T)(img)(_p2##x,_p1##y,_n4##z,c)), \
|
|
(I[473] = (T)(img)(_p2##x,y,_n4##z,c)), \
|
|
(I[481] = (T)(img)(_p2##x,_n1##y,_n4##z,c)), \
|
|
(I[489] = (T)(img)(_p2##x,_n2##y,_n4##z,c)), \
|
|
(I[497] = (T)(img)(_p2##x,_n3##y,_n4##z,c)), \
|
|
(I[505] = (T)(img)(_p2##x,_n4##y,_n4##z,c)), \
|
|
(I[2] = (T)(img)(_p1##x,_p3##y,_p3##z,c)), \
|
|
(I[10] = (T)(img)(_p1##x,_p2##y,_p3##z,c)), \
|
|
(I[18] = (T)(img)(_p1##x,_p1##y,_p3##z,c)), \
|
|
(I[26] = (T)(img)(_p1##x,y,_p3##z,c)), \
|
|
(I[34] = (T)(img)(_p1##x,_n1##y,_p3##z,c)), \
|
|
(I[42] = (T)(img)(_p1##x,_n2##y,_p3##z,c)), \
|
|
(I[50] = (T)(img)(_p1##x,_n3##y,_p3##z,c)), \
|
|
(I[58] = (T)(img)(_p1##x,_n4##y,_p3##z,c)), \
|
|
(I[66] = (T)(img)(_p1##x,_p3##y,_p2##z,c)), \
|
|
(I[74] = (T)(img)(_p1##x,_p2##y,_p2##z,c)), \
|
|
(I[82] = (T)(img)(_p1##x,_p1##y,_p2##z,c)), \
|
|
(I[90] = (T)(img)(_p1##x,y,_p2##z,c)), \
|
|
(I[98] = (T)(img)(_p1##x,_n1##y,_p2##z,c)), \
|
|
(I[106] = (T)(img)(_p1##x,_n2##y,_p2##z,c)), \
|
|
(I[114] = (T)(img)(_p1##x,_n3##y,_p2##z,c)), \
|
|
(I[122] = (T)(img)(_p1##x,_n4##y,_p2##z,c)), \
|
|
(I[130] = (T)(img)(_p1##x,_p3##y,_p1##z,c)), \
|
|
(I[138] = (T)(img)(_p1##x,_p2##y,_p1##z,c)), \
|
|
(I[146] = (T)(img)(_p1##x,_p1##y,_p1##z,c)), \
|
|
(I[154] = (T)(img)(_p1##x,y,_p1##z,c)), \
|
|
(I[162] = (T)(img)(_p1##x,_n1##y,_p1##z,c)), \
|
|
(I[170] = (T)(img)(_p1##x,_n2##y,_p1##z,c)), \
|
|
(I[178] = (T)(img)(_p1##x,_n3##y,_p1##z,c)), \
|
|
(I[186] = (T)(img)(_p1##x,_n4##y,_p1##z,c)), \
|
|
(I[194] = (T)(img)(_p1##x,_p3##y,z,c)), \
|
|
(I[202] = (T)(img)(_p1##x,_p2##y,z,c)), \
|
|
(I[210] = (T)(img)(_p1##x,_p1##y,z,c)), \
|
|
(I[218] = (T)(img)(_p1##x,y,z,c)), \
|
|
(I[226] = (T)(img)(_p1##x,_n1##y,z,c)), \
|
|
(I[234] = (T)(img)(_p1##x,_n2##y,z,c)), \
|
|
(I[242] = (T)(img)(_p1##x,_n3##y,z,c)), \
|
|
(I[250] = (T)(img)(_p1##x,_n4##y,z,c)), \
|
|
(I[258] = (T)(img)(_p1##x,_p3##y,_n1##z,c)), \
|
|
(I[266] = (T)(img)(_p1##x,_p2##y,_n1##z,c)), \
|
|
(I[274] = (T)(img)(_p1##x,_p1##y,_n1##z,c)), \
|
|
(I[282] = (T)(img)(_p1##x,y,_n1##z,c)), \
|
|
(I[290] = (T)(img)(_p1##x,_n1##y,_n1##z,c)), \
|
|
(I[298] = (T)(img)(_p1##x,_n2##y,_n1##z,c)), \
|
|
(I[306] = (T)(img)(_p1##x,_n3##y,_n1##z,c)), \
|
|
(I[314] = (T)(img)(_p1##x,_n4##y,_n1##z,c)), \
|
|
(I[322] = (T)(img)(_p1##x,_p3##y,_n2##z,c)), \
|
|
(I[330] = (T)(img)(_p1##x,_p2##y,_n2##z,c)), \
|
|
(I[338] = (T)(img)(_p1##x,_p1##y,_n2##z,c)), \
|
|
(I[346] = (T)(img)(_p1##x,y,_n2##z,c)), \
|
|
(I[354] = (T)(img)(_p1##x,_n1##y,_n2##z,c)), \
|
|
(I[362] = (T)(img)(_p1##x,_n2##y,_n2##z,c)), \
|
|
(I[370] = (T)(img)(_p1##x,_n3##y,_n2##z,c)), \
|
|
(I[378] = (T)(img)(_p1##x,_n4##y,_n2##z,c)), \
|
|
(I[386] = (T)(img)(_p1##x,_p3##y,_n3##z,c)), \
|
|
(I[394] = (T)(img)(_p1##x,_p2##y,_n3##z,c)), \
|
|
(I[402] = (T)(img)(_p1##x,_p1##y,_n3##z,c)), \
|
|
(I[410] = (T)(img)(_p1##x,y,_n3##z,c)), \
|
|
(I[418] = (T)(img)(_p1##x,_n1##y,_n3##z,c)), \
|
|
(I[426] = (T)(img)(_p1##x,_n2##y,_n3##z,c)), \
|
|
(I[434] = (T)(img)(_p1##x,_n3##y,_n3##z,c)), \
|
|
(I[442] = (T)(img)(_p1##x,_n4##y,_n3##z,c)), \
|
|
(I[450] = (T)(img)(_p1##x,_p3##y,_n4##z,c)), \
|
|
(I[458] = (T)(img)(_p1##x,_p2##y,_n4##z,c)), \
|
|
(I[466] = (T)(img)(_p1##x,_p1##y,_n4##z,c)), \
|
|
(I[474] = (T)(img)(_p1##x,y,_n4##z,c)), \
|
|
(I[482] = (T)(img)(_p1##x,_n1##y,_n4##z,c)), \
|
|
(I[490] = (T)(img)(_p1##x,_n2##y,_n4##z,c)), \
|
|
(I[498] = (T)(img)(_p1##x,_n3##y,_n4##z,c)), \
|
|
(I[506] = (T)(img)(_p1##x,_n4##y,_n4##z,c)), \
|
|
(I[3] = (T)(img)(x,_p3##y,_p3##z,c)), \
|
|
(I[11] = (T)(img)(x,_p2##y,_p3##z,c)), \
|
|
(I[19] = (T)(img)(x,_p1##y,_p3##z,c)), \
|
|
(I[27] = (T)(img)(x,y,_p3##z,c)), \
|
|
(I[35] = (T)(img)(x,_n1##y,_p3##z,c)), \
|
|
(I[43] = (T)(img)(x,_n2##y,_p3##z,c)), \
|
|
(I[51] = (T)(img)(x,_n3##y,_p3##z,c)), \
|
|
(I[59] = (T)(img)(x,_n4##y,_p3##z,c)), \
|
|
(I[67] = (T)(img)(x,_p3##y,_p2##z,c)), \
|
|
(I[75] = (T)(img)(x,_p2##y,_p2##z,c)), \
|
|
(I[83] = (T)(img)(x,_p1##y,_p2##z,c)), \
|
|
(I[91] = (T)(img)(x,y,_p2##z,c)), \
|
|
(I[99] = (T)(img)(x,_n1##y,_p2##z,c)), \
|
|
(I[107] = (T)(img)(x,_n2##y,_p2##z,c)), \
|
|
(I[115] = (T)(img)(x,_n3##y,_p2##z,c)), \
|
|
(I[123] = (T)(img)(x,_n4##y,_p2##z,c)), \
|
|
(I[131] = (T)(img)(x,_p3##y,_p1##z,c)), \
|
|
(I[139] = (T)(img)(x,_p2##y,_p1##z,c)), \
|
|
(I[147] = (T)(img)(x,_p1##y,_p1##z,c)), \
|
|
(I[155] = (T)(img)(x,y,_p1##z,c)), \
|
|
(I[163] = (T)(img)(x,_n1##y,_p1##z,c)), \
|
|
(I[171] = (T)(img)(x,_n2##y,_p1##z,c)), \
|
|
(I[179] = (T)(img)(x,_n3##y,_p1##z,c)), \
|
|
(I[187] = (T)(img)(x,_n4##y,_p1##z,c)), \
|
|
(I[195] = (T)(img)(x,_p3##y,z,c)), \
|
|
(I[203] = (T)(img)(x,_p2##y,z,c)), \
|
|
(I[211] = (T)(img)(x,_p1##y,z,c)), \
|
|
(I[219] = (T)(img)(x,y,z,c)), \
|
|
(I[227] = (T)(img)(x,_n1##y,z,c)), \
|
|
(I[235] = (T)(img)(x,_n2##y,z,c)), \
|
|
(I[243] = (T)(img)(x,_n3##y,z,c)), \
|
|
(I[251] = (T)(img)(x,_n4##y,z,c)), \
|
|
(I[259] = (T)(img)(x,_p3##y,_n1##z,c)), \
|
|
(I[267] = (T)(img)(x,_p2##y,_n1##z,c)), \
|
|
(I[275] = (T)(img)(x,_p1##y,_n1##z,c)), \
|
|
(I[283] = (T)(img)(x,y,_n1##z,c)), \
|
|
(I[291] = (T)(img)(x,_n1##y,_n1##z,c)), \
|
|
(I[299] = (T)(img)(x,_n2##y,_n1##z,c)), \
|
|
(I[307] = (T)(img)(x,_n3##y,_n1##z,c)), \
|
|
(I[315] = (T)(img)(x,_n4##y,_n1##z,c)), \
|
|
(I[323] = (T)(img)(x,_p3##y,_n2##z,c)), \
|
|
(I[331] = (T)(img)(x,_p2##y,_n2##z,c)), \
|
|
(I[339] = (T)(img)(x,_p1##y,_n2##z,c)), \
|
|
(I[347] = (T)(img)(x,y,_n2##z,c)), \
|
|
(I[355] = (T)(img)(x,_n1##y,_n2##z,c)), \
|
|
(I[363] = (T)(img)(x,_n2##y,_n2##z,c)), \
|
|
(I[371] = (T)(img)(x,_n3##y,_n2##z,c)), \
|
|
(I[379] = (T)(img)(x,_n4##y,_n2##z,c)), \
|
|
(I[387] = (T)(img)(x,_p3##y,_n3##z,c)), \
|
|
(I[395] = (T)(img)(x,_p2##y,_n3##z,c)), \
|
|
(I[403] = (T)(img)(x,_p1##y,_n3##z,c)), \
|
|
(I[411] = (T)(img)(x,y,_n3##z,c)), \
|
|
(I[419] = (T)(img)(x,_n1##y,_n3##z,c)), \
|
|
(I[427] = (T)(img)(x,_n2##y,_n3##z,c)), \
|
|
(I[435] = (T)(img)(x,_n3##y,_n3##z,c)), \
|
|
(I[443] = (T)(img)(x,_n4##y,_n3##z,c)), \
|
|
(I[451] = (T)(img)(x,_p3##y,_n4##z,c)), \
|
|
(I[459] = (T)(img)(x,_p2##y,_n4##z,c)), \
|
|
(I[467] = (T)(img)(x,_p1##y,_n4##z,c)), \
|
|
(I[475] = (T)(img)(x,y,_n4##z,c)), \
|
|
(I[483] = (T)(img)(x,_n1##y,_n4##z,c)), \
|
|
(I[491] = (T)(img)(x,_n2##y,_n4##z,c)), \
|
|
(I[499] = (T)(img)(x,_n3##y,_n4##z,c)), \
|
|
(I[507] = (T)(img)(x,_n4##y,_n4##z,c)), \
|
|
(I[4] = (T)(img)(_n1##x,_p3##y,_p3##z,c)), \
|
|
(I[12] = (T)(img)(_n1##x,_p2##y,_p3##z,c)), \
|
|
(I[20] = (T)(img)(_n1##x,_p1##y,_p3##z,c)), \
|
|
(I[28] = (T)(img)(_n1##x,y,_p3##z,c)), \
|
|
(I[36] = (T)(img)(_n1##x,_n1##y,_p3##z,c)), \
|
|
(I[44] = (T)(img)(_n1##x,_n2##y,_p3##z,c)), \
|
|
(I[52] = (T)(img)(_n1##x,_n3##y,_p3##z,c)), \
|
|
(I[60] = (T)(img)(_n1##x,_n4##y,_p3##z,c)), \
|
|
(I[68] = (T)(img)(_n1##x,_p3##y,_p2##z,c)), \
|
|
(I[76] = (T)(img)(_n1##x,_p2##y,_p2##z,c)), \
|
|
(I[84] = (T)(img)(_n1##x,_p1##y,_p2##z,c)), \
|
|
(I[92] = (T)(img)(_n1##x,y,_p2##z,c)), \
|
|
(I[100] = (T)(img)(_n1##x,_n1##y,_p2##z,c)), \
|
|
(I[108] = (T)(img)(_n1##x,_n2##y,_p2##z,c)), \
|
|
(I[116] = (T)(img)(_n1##x,_n3##y,_p2##z,c)), \
|
|
(I[124] = (T)(img)(_n1##x,_n4##y,_p2##z,c)), \
|
|
(I[132] = (T)(img)(_n1##x,_p3##y,_p1##z,c)), \
|
|
(I[140] = (T)(img)(_n1##x,_p2##y,_p1##z,c)), \
|
|
(I[148] = (T)(img)(_n1##x,_p1##y,_p1##z,c)), \
|
|
(I[156] = (T)(img)(_n1##x,y,_p1##z,c)), \
|
|
(I[164] = (T)(img)(_n1##x,_n1##y,_p1##z,c)), \
|
|
(I[172] = (T)(img)(_n1##x,_n2##y,_p1##z,c)), \
|
|
(I[180] = (T)(img)(_n1##x,_n3##y,_p1##z,c)), \
|
|
(I[188] = (T)(img)(_n1##x,_n4##y,_p1##z,c)), \
|
|
(I[196] = (T)(img)(_n1##x,_p3##y,z,c)), \
|
|
(I[204] = (T)(img)(_n1##x,_p2##y,z,c)), \
|
|
(I[212] = (T)(img)(_n1##x,_p1##y,z,c)), \
|
|
(I[220] = (T)(img)(_n1##x,y,z,c)), \
|
|
(I[228] = (T)(img)(_n1##x,_n1##y,z,c)), \
|
|
(I[236] = (T)(img)(_n1##x,_n2##y,z,c)), \
|
|
(I[244] = (T)(img)(_n1##x,_n3##y,z,c)), \
|
|
(I[252] = (T)(img)(_n1##x,_n4##y,z,c)), \
|
|
(I[260] = (T)(img)(_n1##x,_p3##y,_n1##z,c)), \
|
|
(I[268] = (T)(img)(_n1##x,_p2##y,_n1##z,c)), \
|
|
(I[276] = (T)(img)(_n1##x,_p1##y,_n1##z,c)), \
|
|
(I[284] = (T)(img)(_n1##x,y,_n1##z,c)), \
|
|
(I[292] = (T)(img)(_n1##x,_n1##y,_n1##z,c)), \
|
|
(I[300] = (T)(img)(_n1##x,_n2##y,_n1##z,c)), \
|
|
(I[308] = (T)(img)(_n1##x,_n3##y,_n1##z,c)), \
|
|
(I[316] = (T)(img)(_n1##x,_n4##y,_n1##z,c)), \
|
|
(I[324] = (T)(img)(_n1##x,_p3##y,_n2##z,c)), \
|
|
(I[332] = (T)(img)(_n1##x,_p2##y,_n2##z,c)), \
|
|
(I[340] = (T)(img)(_n1##x,_p1##y,_n2##z,c)), \
|
|
(I[348] = (T)(img)(_n1##x,y,_n2##z,c)), \
|
|
(I[356] = (T)(img)(_n1##x,_n1##y,_n2##z,c)), \
|
|
(I[364] = (T)(img)(_n1##x,_n2##y,_n2##z,c)), \
|
|
(I[372] = (T)(img)(_n1##x,_n3##y,_n2##z,c)), \
|
|
(I[380] = (T)(img)(_n1##x,_n4##y,_n2##z,c)), \
|
|
(I[388] = (T)(img)(_n1##x,_p3##y,_n3##z,c)), \
|
|
(I[396] = (T)(img)(_n1##x,_p2##y,_n3##z,c)), \
|
|
(I[404] = (T)(img)(_n1##x,_p1##y,_n3##z,c)), \
|
|
(I[412] = (T)(img)(_n1##x,y,_n3##z,c)), \
|
|
(I[420] = (T)(img)(_n1##x,_n1##y,_n3##z,c)), \
|
|
(I[428] = (T)(img)(_n1##x,_n2##y,_n3##z,c)), \
|
|
(I[436] = (T)(img)(_n1##x,_n3##y,_n3##z,c)), \
|
|
(I[444] = (T)(img)(_n1##x,_n4##y,_n3##z,c)), \
|
|
(I[452] = (T)(img)(_n1##x,_p3##y,_n4##z,c)), \
|
|
(I[460] = (T)(img)(_n1##x,_p2##y,_n4##z,c)), \
|
|
(I[468] = (T)(img)(_n1##x,_p1##y,_n4##z,c)), \
|
|
(I[476] = (T)(img)(_n1##x,y,_n4##z,c)), \
|
|
(I[484] = (T)(img)(_n1##x,_n1##y,_n4##z,c)), \
|
|
(I[492] = (T)(img)(_n1##x,_n2##y,_n4##z,c)), \
|
|
(I[500] = (T)(img)(_n1##x,_n3##y,_n4##z,c)), \
|
|
(I[508] = (T)(img)(_n1##x,_n4##y,_n4##z,c)), \
|
|
(I[5] = (T)(img)(_n2##x,_p3##y,_p3##z,c)), \
|
|
(I[13] = (T)(img)(_n2##x,_p2##y,_p3##z,c)), \
|
|
(I[21] = (T)(img)(_n2##x,_p1##y,_p3##z,c)), \
|
|
(I[29] = (T)(img)(_n2##x,y,_p3##z,c)), \
|
|
(I[37] = (T)(img)(_n2##x,_n1##y,_p3##z,c)), \
|
|
(I[45] = (T)(img)(_n2##x,_n2##y,_p3##z,c)), \
|
|
(I[53] = (T)(img)(_n2##x,_n3##y,_p3##z,c)), \
|
|
(I[61] = (T)(img)(_n2##x,_n4##y,_p3##z,c)), \
|
|
(I[69] = (T)(img)(_n2##x,_p3##y,_p2##z,c)), \
|
|
(I[77] = (T)(img)(_n2##x,_p2##y,_p2##z,c)), \
|
|
(I[85] = (T)(img)(_n2##x,_p1##y,_p2##z,c)), \
|
|
(I[93] = (T)(img)(_n2##x,y,_p2##z,c)), \
|
|
(I[101] = (T)(img)(_n2##x,_n1##y,_p2##z,c)), \
|
|
(I[109] = (T)(img)(_n2##x,_n2##y,_p2##z,c)), \
|
|
(I[117] = (T)(img)(_n2##x,_n3##y,_p2##z,c)), \
|
|
(I[125] = (T)(img)(_n2##x,_n4##y,_p2##z,c)), \
|
|
(I[133] = (T)(img)(_n2##x,_p3##y,_p1##z,c)), \
|
|
(I[141] = (T)(img)(_n2##x,_p2##y,_p1##z,c)), \
|
|
(I[149] = (T)(img)(_n2##x,_p1##y,_p1##z,c)), \
|
|
(I[157] = (T)(img)(_n2##x,y,_p1##z,c)), \
|
|
(I[165] = (T)(img)(_n2##x,_n1##y,_p1##z,c)), \
|
|
(I[173] = (T)(img)(_n2##x,_n2##y,_p1##z,c)), \
|
|
(I[181] = (T)(img)(_n2##x,_n3##y,_p1##z,c)), \
|
|
(I[189] = (T)(img)(_n2##x,_n4##y,_p1##z,c)), \
|
|
(I[197] = (T)(img)(_n2##x,_p3##y,z,c)), \
|
|
(I[205] = (T)(img)(_n2##x,_p2##y,z,c)), \
|
|
(I[213] = (T)(img)(_n2##x,_p1##y,z,c)), \
|
|
(I[221] = (T)(img)(_n2##x,y,z,c)), \
|
|
(I[229] = (T)(img)(_n2##x,_n1##y,z,c)), \
|
|
(I[237] = (T)(img)(_n2##x,_n2##y,z,c)), \
|
|
(I[245] = (T)(img)(_n2##x,_n3##y,z,c)), \
|
|
(I[253] = (T)(img)(_n2##x,_n4##y,z,c)), \
|
|
(I[261] = (T)(img)(_n2##x,_p3##y,_n1##z,c)), \
|
|
(I[269] = (T)(img)(_n2##x,_p2##y,_n1##z,c)), \
|
|
(I[277] = (T)(img)(_n2##x,_p1##y,_n1##z,c)), \
|
|
(I[285] = (T)(img)(_n2##x,y,_n1##z,c)), \
|
|
(I[293] = (T)(img)(_n2##x,_n1##y,_n1##z,c)), \
|
|
(I[301] = (T)(img)(_n2##x,_n2##y,_n1##z,c)), \
|
|
(I[309] = (T)(img)(_n2##x,_n3##y,_n1##z,c)), \
|
|
(I[317] = (T)(img)(_n2##x,_n4##y,_n1##z,c)), \
|
|
(I[325] = (T)(img)(_n2##x,_p3##y,_n2##z,c)), \
|
|
(I[333] = (T)(img)(_n2##x,_p2##y,_n2##z,c)), \
|
|
(I[341] = (T)(img)(_n2##x,_p1##y,_n2##z,c)), \
|
|
(I[349] = (T)(img)(_n2##x,y,_n2##z,c)), \
|
|
(I[357] = (T)(img)(_n2##x,_n1##y,_n2##z,c)), \
|
|
(I[365] = (T)(img)(_n2##x,_n2##y,_n2##z,c)), \
|
|
(I[373] = (T)(img)(_n2##x,_n3##y,_n2##z,c)), \
|
|
(I[381] = (T)(img)(_n2##x,_n4##y,_n2##z,c)), \
|
|
(I[389] = (T)(img)(_n2##x,_p3##y,_n3##z,c)), \
|
|
(I[397] = (T)(img)(_n2##x,_p2##y,_n3##z,c)), \
|
|
(I[405] = (T)(img)(_n2##x,_p1##y,_n3##z,c)), \
|
|
(I[413] = (T)(img)(_n2##x,y,_n3##z,c)), \
|
|
(I[421] = (T)(img)(_n2##x,_n1##y,_n3##z,c)), \
|
|
(I[429] = (T)(img)(_n2##x,_n2##y,_n3##z,c)), \
|
|
(I[437] = (T)(img)(_n2##x,_n3##y,_n3##z,c)), \
|
|
(I[445] = (T)(img)(_n2##x,_n4##y,_n3##z,c)), \
|
|
(I[453] = (T)(img)(_n2##x,_p3##y,_n4##z,c)), \
|
|
(I[461] = (T)(img)(_n2##x,_p2##y,_n4##z,c)), \
|
|
(I[469] = (T)(img)(_n2##x,_p1##y,_n4##z,c)), \
|
|
(I[477] = (T)(img)(_n2##x,y,_n4##z,c)), \
|
|
(I[485] = (T)(img)(_n2##x,_n1##y,_n4##z,c)), \
|
|
(I[493] = (T)(img)(_n2##x,_n2##y,_n4##z,c)), \
|
|
(I[501] = (T)(img)(_n2##x,_n3##y,_n4##z,c)), \
|
|
(I[509] = (T)(img)(_n2##x,_n4##y,_n4##z,c)), \
|
|
(I[6] = (T)(img)(_n3##x,_p3##y,_p3##z,c)), \
|
|
(I[14] = (T)(img)(_n3##x,_p2##y,_p3##z,c)), \
|
|
(I[22] = (T)(img)(_n3##x,_p1##y,_p3##z,c)), \
|
|
(I[30] = (T)(img)(_n3##x,y,_p3##z,c)), \
|
|
(I[38] = (T)(img)(_n3##x,_n1##y,_p3##z,c)), \
|
|
(I[46] = (T)(img)(_n3##x,_n2##y,_p3##z,c)), \
|
|
(I[54] = (T)(img)(_n3##x,_n3##y,_p3##z,c)), \
|
|
(I[62] = (T)(img)(_n3##x,_n4##y,_p3##z,c)), \
|
|
(I[70] = (T)(img)(_n3##x,_p3##y,_p2##z,c)), \
|
|
(I[78] = (T)(img)(_n3##x,_p2##y,_p2##z,c)), \
|
|
(I[86] = (T)(img)(_n3##x,_p1##y,_p2##z,c)), \
|
|
(I[94] = (T)(img)(_n3##x,y,_p2##z,c)), \
|
|
(I[102] = (T)(img)(_n3##x,_n1##y,_p2##z,c)), \
|
|
(I[110] = (T)(img)(_n3##x,_n2##y,_p2##z,c)), \
|
|
(I[118] = (T)(img)(_n3##x,_n3##y,_p2##z,c)), \
|
|
(I[126] = (T)(img)(_n3##x,_n4##y,_p2##z,c)), \
|
|
(I[134] = (T)(img)(_n3##x,_p3##y,_p1##z,c)), \
|
|
(I[142] = (T)(img)(_n3##x,_p2##y,_p1##z,c)), \
|
|
(I[150] = (T)(img)(_n3##x,_p1##y,_p1##z,c)), \
|
|
(I[158] = (T)(img)(_n3##x,y,_p1##z,c)), \
|
|
(I[166] = (T)(img)(_n3##x,_n1##y,_p1##z,c)), \
|
|
(I[174] = (T)(img)(_n3##x,_n2##y,_p1##z,c)), \
|
|
(I[182] = (T)(img)(_n3##x,_n3##y,_p1##z,c)), \
|
|
(I[190] = (T)(img)(_n3##x,_n4##y,_p1##z,c)), \
|
|
(I[198] = (T)(img)(_n3##x,_p3##y,z,c)), \
|
|
(I[206] = (T)(img)(_n3##x,_p2##y,z,c)), \
|
|
(I[214] = (T)(img)(_n3##x,_p1##y,z,c)), \
|
|
(I[222] = (T)(img)(_n3##x,y,z,c)), \
|
|
(I[230] = (T)(img)(_n3##x,_n1##y,z,c)), \
|
|
(I[238] = (T)(img)(_n3##x,_n2##y,z,c)), \
|
|
(I[246] = (T)(img)(_n3##x,_n3##y,z,c)), \
|
|
(I[254] = (T)(img)(_n3##x,_n4##y,z,c)), \
|
|
(I[262] = (T)(img)(_n3##x,_p3##y,_n1##z,c)), \
|
|
(I[270] = (T)(img)(_n3##x,_p2##y,_n1##z,c)), \
|
|
(I[278] = (T)(img)(_n3##x,_p1##y,_n1##z,c)), \
|
|
(I[286] = (T)(img)(_n3##x,y,_n1##z,c)), \
|
|
(I[294] = (T)(img)(_n3##x,_n1##y,_n1##z,c)), \
|
|
(I[302] = (T)(img)(_n3##x,_n2##y,_n1##z,c)), \
|
|
(I[310] = (T)(img)(_n3##x,_n3##y,_n1##z,c)), \
|
|
(I[318] = (T)(img)(_n3##x,_n4##y,_n1##z,c)), \
|
|
(I[326] = (T)(img)(_n3##x,_p3##y,_n2##z,c)), \
|
|
(I[334] = (T)(img)(_n3##x,_p2##y,_n2##z,c)), \
|
|
(I[342] = (T)(img)(_n3##x,_p1##y,_n2##z,c)), \
|
|
(I[350] = (T)(img)(_n3##x,y,_n2##z,c)), \
|
|
(I[358] = (T)(img)(_n3##x,_n1##y,_n2##z,c)), \
|
|
(I[366] = (T)(img)(_n3##x,_n2##y,_n2##z,c)), \
|
|
(I[374] = (T)(img)(_n3##x,_n3##y,_n2##z,c)), \
|
|
(I[382] = (T)(img)(_n3##x,_n4##y,_n2##z,c)), \
|
|
(I[390] = (T)(img)(_n3##x,_p3##y,_n3##z,c)), \
|
|
(I[398] = (T)(img)(_n3##x,_p2##y,_n3##z,c)), \
|
|
(I[406] = (T)(img)(_n3##x,_p1##y,_n3##z,c)), \
|
|
(I[414] = (T)(img)(_n3##x,y,_n3##z,c)), \
|
|
(I[422] = (T)(img)(_n3##x,_n1##y,_n3##z,c)), \
|
|
(I[430] = (T)(img)(_n3##x,_n2##y,_n3##z,c)), \
|
|
(I[438] = (T)(img)(_n3##x,_n3##y,_n3##z,c)), \
|
|
(I[446] = (T)(img)(_n3##x,_n4##y,_n3##z,c)), \
|
|
(I[454] = (T)(img)(_n3##x,_p3##y,_n4##z,c)), \
|
|
(I[462] = (T)(img)(_n3##x,_p2##y,_n4##z,c)), \
|
|
(I[470] = (T)(img)(_n3##x,_p1##y,_n4##z,c)), \
|
|
(I[478] = (T)(img)(_n3##x,y,_n4##z,c)), \
|
|
(I[486] = (T)(img)(_n3##x,_n1##y,_n4##z,c)), \
|
|
(I[494] = (T)(img)(_n3##x,_n2##y,_n4##z,c)), \
|
|
(I[502] = (T)(img)(_n3##x,_n3##y,_n4##z,c)), \
|
|
(I[510] = (T)(img)(_n3##x,_n4##y,_n4##z,c)), \
|
|
x + 4>=(img).width()?(img).width() - 1:x + 4); \
|
|
x<=(int)(x1) && ((_n4##x<(img).width() && ( \
|
|
(I[7] = (T)(img)(_n4##x,_p3##y,_p3##z,c)), \
|
|
(I[15] = (T)(img)(_n4##x,_p2##y,_p3##z,c)), \
|
|
(I[23] = (T)(img)(_n4##x,_p1##y,_p3##z,c)), \
|
|
(I[31] = (T)(img)(_n4##x,y,_p3##z,c)), \
|
|
(I[39] = (T)(img)(_n4##x,_n1##y,_p3##z,c)), \
|
|
(I[47] = (T)(img)(_n4##x,_n2##y,_p3##z,c)), \
|
|
(I[55] = (T)(img)(_n4##x,_n3##y,_p3##z,c)), \
|
|
(I[63] = (T)(img)(_n4##x,_n4##y,_p3##z,c)), \
|
|
(I[71] = (T)(img)(_n4##x,_p3##y,_p2##z,c)), \
|
|
(I[79] = (T)(img)(_n4##x,_p2##y,_p2##z,c)), \
|
|
(I[87] = (T)(img)(_n4##x,_p1##y,_p2##z,c)), \
|
|
(I[95] = (T)(img)(_n4##x,y,_p2##z,c)), \
|
|
(I[103] = (T)(img)(_n4##x,_n1##y,_p2##z,c)), \
|
|
(I[111] = (T)(img)(_n4##x,_n2##y,_p2##z,c)), \
|
|
(I[119] = (T)(img)(_n4##x,_n3##y,_p2##z,c)), \
|
|
(I[127] = (T)(img)(_n4##x,_n4##y,_p2##z,c)), \
|
|
(I[135] = (T)(img)(_n4##x,_p3##y,_p1##z,c)), \
|
|
(I[143] = (T)(img)(_n4##x,_p2##y,_p1##z,c)), \
|
|
(I[151] = (T)(img)(_n4##x,_p1##y,_p1##z,c)), \
|
|
(I[159] = (T)(img)(_n4##x,y,_p1##z,c)), \
|
|
(I[167] = (T)(img)(_n4##x,_n1##y,_p1##z,c)), \
|
|
(I[175] = (T)(img)(_n4##x,_n2##y,_p1##z,c)), \
|
|
(I[183] = (T)(img)(_n4##x,_n3##y,_p1##z,c)), \
|
|
(I[191] = (T)(img)(_n4##x,_n4##y,_p1##z,c)), \
|
|
(I[199] = (T)(img)(_n4##x,_p3##y,z,c)), \
|
|
(I[207] = (T)(img)(_n4##x,_p2##y,z,c)), \
|
|
(I[215] = (T)(img)(_n4##x,_p1##y,z,c)), \
|
|
(I[223] = (T)(img)(_n4##x,y,z,c)), \
|
|
(I[231] = (T)(img)(_n4##x,_n1##y,z,c)), \
|
|
(I[239] = (T)(img)(_n4##x,_n2##y,z,c)), \
|
|
(I[247] = (T)(img)(_n4##x,_n3##y,z,c)), \
|
|
(I[255] = (T)(img)(_n4##x,_n4##y,z,c)), \
|
|
(I[263] = (T)(img)(_n4##x,_p3##y,_n1##z,c)), \
|
|
(I[271] = (T)(img)(_n4##x,_p2##y,_n1##z,c)), \
|
|
(I[279] = (T)(img)(_n4##x,_p1##y,_n1##z,c)), \
|
|
(I[287] = (T)(img)(_n4##x,y,_n1##z,c)), \
|
|
(I[295] = (T)(img)(_n4##x,_n1##y,_n1##z,c)), \
|
|
(I[303] = (T)(img)(_n4##x,_n2##y,_n1##z,c)), \
|
|
(I[311] = (T)(img)(_n4##x,_n3##y,_n1##z,c)), \
|
|
(I[319] = (T)(img)(_n4##x,_n4##y,_n1##z,c)), \
|
|
(I[327] = (T)(img)(_n4##x,_p3##y,_n2##z,c)), \
|
|
(I[335] = (T)(img)(_n4##x,_p2##y,_n2##z,c)), \
|
|
(I[343] = (T)(img)(_n4##x,_p1##y,_n2##z,c)), \
|
|
(I[351] = (T)(img)(_n4##x,y,_n2##z,c)), \
|
|
(I[359] = (T)(img)(_n4##x,_n1##y,_n2##z,c)), \
|
|
(I[367] = (T)(img)(_n4##x,_n2##y,_n2##z,c)), \
|
|
(I[375] = (T)(img)(_n4##x,_n3##y,_n2##z,c)), \
|
|
(I[383] = (T)(img)(_n4##x,_n4##y,_n2##z,c)), \
|
|
(I[391] = (T)(img)(_n4##x,_p3##y,_n3##z,c)), \
|
|
(I[399] = (T)(img)(_n4##x,_p2##y,_n3##z,c)), \
|
|
(I[407] = (T)(img)(_n4##x,_p1##y,_n3##z,c)), \
|
|
(I[415] = (T)(img)(_n4##x,y,_n3##z,c)), \
|
|
(I[423] = (T)(img)(_n4##x,_n1##y,_n3##z,c)), \
|
|
(I[431] = (T)(img)(_n4##x,_n2##y,_n3##z,c)), \
|
|
(I[439] = (T)(img)(_n4##x,_n3##y,_n3##z,c)), \
|
|
(I[447] = (T)(img)(_n4##x,_n4##y,_n3##z,c)), \
|
|
(I[455] = (T)(img)(_n4##x,_p3##y,_n4##z,c)), \
|
|
(I[463] = (T)(img)(_n4##x,_p2##y,_n4##z,c)), \
|
|
(I[471] = (T)(img)(_n4##x,_p1##y,_n4##z,c)), \
|
|
(I[479] = (T)(img)(_n4##x,y,_n4##z,c)), \
|
|
(I[487] = (T)(img)(_n4##x,_n1##y,_n4##z,c)), \
|
|
(I[495] = (T)(img)(_n4##x,_n2##y,_n4##z,c)), \
|
|
(I[503] = (T)(img)(_n4##x,_n3##y,_n4##z,c)), \
|
|
(I[511] = (T)(img)(_n4##x,_n4##y,_n4##z,c)),1)) || \
|
|
_n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n4##x = _n3##x = _n2##x = --_n1##x)); \
|
|
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], \
|
|
I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], \
|
|
I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \
|
|
I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \
|
|
I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \
|
|
I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
|
|
I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \
|
|
I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], \
|
|
I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
|
|
I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
|
|
I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], \
|
|
I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
|
|
I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], \
|
|
I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \
|
|
I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
|
|
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], \
|
|
I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], \
|
|
I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
|
|
I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], \
|
|
I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], \
|
|
I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
|
|
I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], \
|
|
I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], \
|
|
I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \
|
|
I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], \
|
|
I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], \
|
|
I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \
|
|
I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \
|
|
I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], \
|
|
I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \
|
|
I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], \
|
|
I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], \
|
|
I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], \
|
|
I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], \
|
|
I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], \
|
|
I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], \
|
|
I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], \
|
|
I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], \
|
|
I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], \
|
|
I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], \
|
|
I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], \
|
|
I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \
|
|
I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], \
|
|
I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], \
|
|
I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], \
|
|
I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], \
|
|
I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], \
|
|
I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], \
|
|
I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], \
|
|
I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], \
|
|
I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], \
|
|
I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], \
|
|
I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], \
|
|
I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], \
|
|
I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], \
|
|
I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], \
|
|
I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], \
|
|
I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], \
|
|
I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], \
|
|
I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], \
|
|
I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], \
|
|
I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], \
|
|
I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], \
|
|
I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], \
|
|
_p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x)
|
|
|
|
#define cimg_get8x8x8(img,x,y,z,c,I,T) \
|
|
I[0] = (T)(img)(_p3##x,_p3##y,_p3##z,c), I[1] = (T)(img)(_p2##x,_p3##y,_p3##z,c), I[2] = (T)(img)(_p1##x,_p3##y,_p3##z,c), I[3] = (T)(img)(x,_p3##y,_p3##z,c), I[4] = (T)(img)(_n1##x,_p3##y,_p3##z,c), I[5] = (T)(img)(_n2##x,_p3##y,_p3##z,c), I[6] = (T)(img)(_n3##x,_p3##y,_p3##z,c), I[7] = (T)(img)(_n4##x,_p3##y,_p3##z,c), \
|
|
I[8] = (T)(img)(_p3##x,_p2##y,_p3##z,c), I[9] = (T)(img)(_p2##x,_p2##y,_p3##z,c), I[10] = (T)(img)(_p1##x,_p2##y,_p3##z,c), I[11] = (T)(img)(x,_p2##y,_p3##z,c), I[12] = (T)(img)(_n1##x,_p2##y,_p3##z,c), I[13] = (T)(img)(_n2##x,_p2##y,_p3##z,c), I[14] = (T)(img)(_n3##x,_p2##y,_p3##z,c), I[15] = (T)(img)(_n4##x,_p2##y,_p3##z,c), \
|
|
I[16] = (T)(img)(_p3##x,_p1##y,_p3##z,c), I[17] = (T)(img)(_p2##x,_p1##y,_p3##z,c), I[18] = (T)(img)(_p1##x,_p1##y,_p3##z,c), I[19] = (T)(img)(x,_p1##y,_p3##z,c), I[20] = (T)(img)(_n1##x,_p1##y,_p3##z,c), I[21] = (T)(img)(_n2##x,_p1##y,_p3##z,c), I[22] = (T)(img)(_n3##x,_p1##y,_p3##z,c), I[23] = (T)(img)(_n4##x,_p1##y,_p3##z,c), \
|
|
I[24] = (T)(img)(_p3##x,y,_p3##z,c), I[25] = (T)(img)(_p2##x,y,_p3##z,c), I[26] = (T)(img)(_p1##x,y,_p3##z,c), I[27] = (T)(img)(x,y,_p3##z,c), I[28] = (T)(img)(_n1##x,y,_p3##z,c), I[29] = (T)(img)(_n2##x,y,_p3##z,c), I[30] = (T)(img)(_n3##x,y,_p3##z,c), I[31] = (T)(img)(_n4##x,y,_p3##z,c), \
|
|
I[32] = (T)(img)(_p3##x,_n1##y,_p3##z,c), I[33] = (T)(img)(_p2##x,_n1##y,_p3##z,c), I[34] = (T)(img)(_p1##x,_n1##y,_p3##z,c), I[35] = (T)(img)(x,_n1##y,_p3##z,c), I[36] = (T)(img)(_n1##x,_n1##y,_p3##z,c), I[37] = (T)(img)(_n2##x,_n1##y,_p3##z,c), I[38] = (T)(img)(_n3##x,_n1##y,_p3##z,c), I[39] = (T)(img)(_n4##x,_n1##y,_p3##z,c), \
|
|
I[40] = (T)(img)(_p3##x,_n2##y,_p3##z,c), I[41] = (T)(img)(_p2##x,_n2##y,_p3##z,c), I[42] = (T)(img)(_p1##x,_n2##y,_p3##z,c), I[43] = (T)(img)(x,_n2##y,_p3##z,c), I[44] = (T)(img)(_n1##x,_n2##y,_p3##z,c), I[45] = (T)(img)(_n2##x,_n2##y,_p3##z,c), I[46] = (T)(img)(_n3##x,_n2##y,_p3##z,c), I[47] = (T)(img)(_n4##x,_n2##y,_p3##z,c), \
|
|
I[48] = (T)(img)(_p3##x,_n3##y,_p3##z,c), I[49] = (T)(img)(_p2##x,_n3##y,_p3##z,c), I[50] = (T)(img)(_p1##x,_n3##y,_p3##z,c), I[51] = (T)(img)(x,_n3##y,_p3##z,c), I[52] = (T)(img)(_n1##x,_n3##y,_p3##z,c), I[53] = (T)(img)(_n2##x,_n3##y,_p3##z,c), I[54] = (T)(img)(_n3##x,_n3##y,_p3##z,c), I[55] = (T)(img)(_n4##x,_n3##y,_p3##z,c), \
|
|
I[56] = (T)(img)(_p3##x,_n4##y,_p3##z,c), I[57] = (T)(img)(_p2##x,_n4##y,_p3##z,c), I[58] = (T)(img)(_p1##x,_n4##y,_p3##z,c), I[59] = (T)(img)(x,_n4##y,_p3##z,c), I[60] = (T)(img)(_n1##x,_n4##y,_p3##z,c), I[61] = (T)(img)(_n2##x,_n4##y,_p3##z,c), I[62] = (T)(img)(_n3##x,_n4##y,_p3##z,c), I[63] = (T)(img)(_n4##x,_n4##y,_p3##z,c), \
|
|
I[64] = (T)(img)(_p3##x,_p3##y,_p2##z,c), I[65] = (T)(img)(_p2##x,_p3##y,_p2##z,c), I[66] = (T)(img)(_p1##x,_p3##y,_p2##z,c), I[67] = (T)(img)(x,_p3##y,_p2##z,c), I[68] = (T)(img)(_n1##x,_p3##y,_p2##z,c), I[69] = (T)(img)(_n2##x,_p3##y,_p2##z,c), I[70] = (T)(img)(_n3##x,_p3##y,_p2##z,c), I[71] = (T)(img)(_n4##x,_p3##y,_p2##z,c), \
|
|
I[72] = (T)(img)(_p3##x,_p2##y,_p2##z,c), I[73] = (T)(img)(_p2##x,_p2##y,_p2##z,c), I[74] = (T)(img)(_p1##x,_p2##y,_p2##z,c), I[75] = (T)(img)(x,_p2##y,_p2##z,c), I[76] = (T)(img)(_n1##x,_p2##y,_p2##z,c), I[77] = (T)(img)(_n2##x,_p2##y,_p2##z,c), I[78] = (T)(img)(_n3##x,_p2##y,_p2##z,c), I[79] = (T)(img)(_n4##x,_p2##y,_p2##z,c), \
|
|
I[80] = (T)(img)(_p3##x,_p1##y,_p2##z,c), I[81] = (T)(img)(_p2##x,_p1##y,_p2##z,c), I[82] = (T)(img)(_p1##x,_p1##y,_p2##z,c), I[83] = (T)(img)(x,_p1##y,_p2##z,c), I[84] = (T)(img)(_n1##x,_p1##y,_p2##z,c), I[85] = (T)(img)(_n2##x,_p1##y,_p2##z,c), I[86] = (T)(img)(_n3##x,_p1##y,_p2##z,c), I[87] = (T)(img)(_n4##x,_p1##y,_p2##z,c), \
|
|
I[88] = (T)(img)(_p3##x,y,_p2##z,c), I[89] = (T)(img)(_p2##x,y,_p2##z,c), I[90] = (T)(img)(_p1##x,y,_p2##z,c), I[91] = (T)(img)(x,y,_p2##z,c), I[92] = (T)(img)(_n1##x,y,_p2##z,c), I[93] = (T)(img)(_n2##x,y,_p2##z,c), I[94] = (T)(img)(_n3##x,y,_p2##z,c), I[95] = (T)(img)(_n4##x,y,_p2##z,c), \
|
|
I[96] = (T)(img)(_p3##x,_n1##y,_p2##z,c), I[97] = (T)(img)(_p2##x,_n1##y,_p2##z,c), I[98] = (T)(img)(_p1##x,_n1##y,_p2##z,c), I[99] = (T)(img)(x,_n1##y,_p2##z,c), I[100] = (T)(img)(_n1##x,_n1##y,_p2##z,c), I[101] = (T)(img)(_n2##x,_n1##y,_p2##z,c), I[102] = (T)(img)(_n3##x,_n1##y,_p2##z,c), I[103] = (T)(img)(_n4##x,_n1##y,_p2##z,c), \
|
|
I[104] = (T)(img)(_p3##x,_n2##y,_p2##z,c), I[105] = (T)(img)(_p2##x,_n2##y,_p2##z,c), I[106] = (T)(img)(_p1##x,_n2##y,_p2##z,c), I[107] = (T)(img)(x,_n2##y,_p2##z,c), I[108] = (T)(img)(_n1##x,_n2##y,_p2##z,c), I[109] = (T)(img)(_n2##x,_n2##y,_p2##z,c), I[110] = (T)(img)(_n3##x,_n2##y,_p2##z,c), I[111] = (T)(img)(_n4##x,_n2##y,_p2##z,c), \
|
|
I[112] = (T)(img)(_p3##x,_n3##y,_p2##z,c), I[113] = (T)(img)(_p2##x,_n3##y,_p2##z,c), I[114] = (T)(img)(_p1##x,_n3##y,_p2##z,c), I[115] = (T)(img)(x,_n3##y,_p2##z,c), I[116] = (T)(img)(_n1##x,_n3##y,_p2##z,c), I[117] = (T)(img)(_n2##x,_n3##y,_p2##z,c), I[118] = (T)(img)(_n3##x,_n3##y,_p2##z,c), I[119] = (T)(img)(_n4##x,_n3##y,_p2##z,c), \
|
|
I[120] = (T)(img)(_p3##x,_n4##y,_p2##z,c), I[121] = (T)(img)(_p2##x,_n4##y,_p2##z,c), I[122] = (T)(img)(_p1##x,_n4##y,_p2##z,c), I[123] = (T)(img)(x,_n4##y,_p2##z,c), I[124] = (T)(img)(_n1##x,_n4##y,_p2##z,c), I[125] = (T)(img)(_n2##x,_n4##y,_p2##z,c), I[126] = (T)(img)(_n3##x,_n4##y,_p2##z,c), I[127] = (T)(img)(_n4##x,_n4##y,_p2##z,c), \
|
|
I[128] = (T)(img)(_p3##x,_p3##y,_p1##z,c), I[129] = (T)(img)(_p2##x,_p3##y,_p1##z,c), I[130] = (T)(img)(_p1##x,_p3##y,_p1##z,c), I[131] = (T)(img)(x,_p3##y,_p1##z,c), I[132] = (T)(img)(_n1##x,_p3##y,_p1##z,c), I[133] = (T)(img)(_n2##x,_p3##y,_p1##z,c), I[134] = (T)(img)(_n3##x,_p3##y,_p1##z,c), I[135] = (T)(img)(_n4##x,_p3##y,_p1##z,c), \
|
|
I[136] = (T)(img)(_p3##x,_p2##y,_p1##z,c), I[137] = (T)(img)(_p2##x,_p2##y,_p1##z,c), I[138] = (T)(img)(_p1##x,_p2##y,_p1##z,c), I[139] = (T)(img)(x,_p2##y,_p1##z,c), I[140] = (T)(img)(_n1##x,_p2##y,_p1##z,c), I[141] = (T)(img)(_n2##x,_p2##y,_p1##z,c), I[142] = (T)(img)(_n3##x,_p2##y,_p1##z,c), I[143] = (T)(img)(_n4##x,_p2##y,_p1##z,c), \
|
|
I[144] = (T)(img)(_p3##x,_p1##y,_p1##z,c), I[145] = (T)(img)(_p2##x,_p1##y,_p1##z,c), I[146] = (T)(img)(_p1##x,_p1##y,_p1##z,c), I[147] = (T)(img)(x,_p1##y,_p1##z,c), I[148] = (T)(img)(_n1##x,_p1##y,_p1##z,c), I[149] = (T)(img)(_n2##x,_p1##y,_p1##z,c), I[150] = (T)(img)(_n3##x,_p1##y,_p1##z,c), I[151] = (T)(img)(_n4##x,_p1##y,_p1##z,c), \
|
|
I[152] = (T)(img)(_p3##x,y,_p1##z,c), I[153] = (T)(img)(_p2##x,y,_p1##z,c), I[154] = (T)(img)(_p1##x,y,_p1##z,c), I[155] = (T)(img)(x,y,_p1##z,c), I[156] = (T)(img)(_n1##x,y,_p1##z,c), I[157] = (T)(img)(_n2##x,y,_p1##z,c), I[158] = (T)(img)(_n3##x,y,_p1##z,c), I[159] = (T)(img)(_n4##x,y,_p1##z,c), \
|
|
I[160] = (T)(img)(_p3##x,_n1##y,_p1##z,c), I[161] = (T)(img)(_p2##x,_n1##y,_p1##z,c), I[162] = (T)(img)(_p1##x,_n1##y,_p1##z,c), I[163] = (T)(img)(x,_n1##y,_p1##z,c), I[164] = (T)(img)(_n1##x,_n1##y,_p1##z,c), I[165] = (T)(img)(_n2##x,_n1##y,_p1##z,c), I[166] = (T)(img)(_n3##x,_n1##y,_p1##z,c), I[167] = (T)(img)(_n4##x,_n1##y,_p1##z,c), \
|
|
I[168] = (T)(img)(_p3##x,_n2##y,_p1##z,c), I[169] = (T)(img)(_p2##x,_n2##y,_p1##z,c), I[170] = (T)(img)(_p1##x,_n2##y,_p1##z,c), I[171] = (T)(img)(x,_n2##y,_p1##z,c), I[172] = (T)(img)(_n1##x,_n2##y,_p1##z,c), I[173] = (T)(img)(_n2##x,_n2##y,_p1##z,c), I[174] = (T)(img)(_n3##x,_n2##y,_p1##z,c), I[175] = (T)(img)(_n4##x,_n2##y,_p1##z,c), \
|
|
I[176] = (T)(img)(_p3##x,_n3##y,_p1##z,c), I[177] = (T)(img)(_p2##x,_n3##y,_p1##z,c), I[178] = (T)(img)(_p1##x,_n3##y,_p1##z,c), I[179] = (T)(img)(x,_n3##y,_p1##z,c), I[180] = (T)(img)(_n1##x,_n3##y,_p1##z,c), I[181] = (T)(img)(_n2##x,_n3##y,_p1##z,c), I[182] = (T)(img)(_n3##x,_n3##y,_p1##z,c), I[183] = (T)(img)(_n4##x,_n3##y,_p1##z,c), \
|
|
I[184] = (T)(img)(_p3##x,_n4##y,_p1##z,c), I[185] = (T)(img)(_p2##x,_n4##y,_p1##z,c), I[186] = (T)(img)(_p1##x,_n4##y,_p1##z,c), I[187] = (T)(img)(x,_n4##y,_p1##z,c), I[188] = (T)(img)(_n1##x,_n4##y,_p1##z,c), I[189] = (T)(img)(_n2##x,_n4##y,_p1##z,c), I[190] = (T)(img)(_n3##x,_n4##y,_p1##z,c), I[191] = (T)(img)(_n4##x,_n4##y,_p1##z,c), \
|
|
I[192] = (T)(img)(_p3##x,_p3##y,z,c), I[193] = (T)(img)(_p2##x,_p3##y,z,c), I[194] = (T)(img)(_p1##x,_p3##y,z,c), I[195] = (T)(img)(x,_p3##y,z,c), I[196] = (T)(img)(_n1##x,_p3##y,z,c), I[197] = (T)(img)(_n2##x,_p3##y,z,c), I[198] = (T)(img)(_n3##x,_p3##y,z,c), I[199] = (T)(img)(_n4##x,_p3##y,z,c), \
|
|
I[200] = (T)(img)(_p3##x,_p2##y,z,c), I[201] = (T)(img)(_p2##x,_p2##y,z,c), I[202] = (T)(img)(_p1##x,_p2##y,z,c), I[203] = (T)(img)(x,_p2##y,z,c), I[204] = (T)(img)(_n1##x,_p2##y,z,c), I[205] = (T)(img)(_n2##x,_p2##y,z,c), I[206] = (T)(img)(_n3##x,_p2##y,z,c), I[207] = (T)(img)(_n4##x,_p2##y,z,c), \
|
|
I[208] = (T)(img)(_p3##x,_p1##y,z,c), I[209] = (T)(img)(_p2##x,_p1##y,z,c), I[210] = (T)(img)(_p1##x,_p1##y,z,c), I[211] = (T)(img)(x,_p1##y,z,c), I[212] = (T)(img)(_n1##x,_p1##y,z,c), I[213] = (T)(img)(_n2##x,_p1##y,z,c), I[214] = (T)(img)(_n3##x,_p1##y,z,c), I[215] = (T)(img)(_n4##x,_p1##y,z,c), \
|
|
I[216] = (T)(img)(_p3##x,y,z,c), I[217] = (T)(img)(_p2##x,y,z,c), I[218] = (T)(img)(_p1##x,y,z,c), I[219] = (T)(img)(x,y,z,c), I[220] = (T)(img)(_n1##x,y,z,c), I[221] = (T)(img)(_n2##x,y,z,c), I[222] = (T)(img)(_n3##x,y,z,c), I[223] = (T)(img)(_n4##x,y,z,c), \
|
|
I[224] = (T)(img)(_p3##x,_n1##y,z,c), I[225] = (T)(img)(_p2##x,_n1##y,z,c), I[226] = (T)(img)(_p1##x,_n1##y,z,c), I[227] = (T)(img)(x,_n1##y,z,c), I[228] = (T)(img)(_n1##x,_n1##y,z,c), I[229] = (T)(img)(_n2##x,_n1##y,z,c), I[230] = (T)(img)(_n3##x,_n1##y,z,c), I[231] = (T)(img)(_n4##x,_n1##y,z,c), \
|
|
I[232] = (T)(img)(_p3##x,_n2##y,z,c), I[233] = (T)(img)(_p2##x,_n2##y,z,c), I[234] = (T)(img)(_p1##x,_n2##y,z,c), I[235] = (T)(img)(x,_n2##y,z,c), I[236] = (T)(img)(_n1##x,_n2##y,z,c), I[237] = (T)(img)(_n2##x,_n2##y,z,c), I[238] = (T)(img)(_n3##x,_n2##y,z,c), I[239] = (T)(img)(_n4##x,_n2##y,z,c), \
|
|
I[240] = (T)(img)(_p3##x,_n3##y,z,c), I[241] = (T)(img)(_p2##x,_n3##y,z,c), I[242] = (T)(img)(_p1##x,_n3##y,z,c), I[243] = (T)(img)(x,_n3##y,z,c), I[244] = (T)(img)(_n1##x,_n3##y,z,c), I[245] = (T)(img)(_n2##x,_n3##y,z,c), I[246] = (T)(img)(_n3##x,_n3##y,z,c), I[247] = (T)(img)(_n4##x,_n3##y,z,c), \
|
|
I[248] = (T)(img)(_p3##x,_n4##y,z,c), I[249] = (T)(img)(_p2##x,_n4##y,z,c), I[250] = (T)(img)(_p1##x,_n4##y,z,c), I[251] = (T)(img)(x,_n4##y,z,c), I[252] = (T)(img)(_n1##x,_n4##y,z,c), I[253] = (T)(img)(_n2##x,_n4##y,z,c), I[254] = (T)(img)(_n3##x,_n4##y,z,c), I[255] = (T)(img)(_n4##x,_n4##y,z,c), \
|
|
I[256] = (T)(img)(_p3##x,_p3##y,_n1##z,c), I[257] = (T)(img)(_p2##x,_p3##y,_n1##z,c), I[258] = (T)(img)(_p1##x,_p3##y,_n1##z,c), I[259] = (T)(img)(x,_p3##y,_n1##z,c), I[260] = (T)(img)(_n1##x,_p3##y,_n1##z,c), I[261] = (T)(img)(_n2##x,_p3##y,_n1##z,c), I[262] = (T)(img)(_n3##x,_p3##y,_n1##z,c), I[263] = (T)(img)(_n4##x,_p3##y,_n1##z,c), \
|
|
I[264] = (T)(img)(_p3##x,_p2##y,_n1##z,c), I[265] = (T)(img)(_p2##x,_p2##y,_n1##z,c), I[266] = (T)(img)(_p1##x,_p2##y,_n1##z,c), I[267] = (T)(img)(x,_p2##y,_n1##z,c), I[268] = (T)(img)(_n1##x,_p2##y,_n1##z,c), I[269] = (T)(img)(_n2##x,_p2##y,_n1##z,c), I[270] = (T)(img)(_n3##x,_p2##y,_n1##z,c), I[271] = (T)(img)(_n4##x,_p2##y,_n1##z,c), \
|
|
I[272] = (T)(img)(_p3##x,_p1##y,_n1##z,c), I[273] = (T)(img)(_p2##x,_p1##y,_n1##z,c), I[274] = (T)(img)(_p1##x,_p1##y,_n1##z,c), I[275] = (T)(img)(x,_p1##y,_n1##z,c), I[276] = (T)(img)(_n1##x,_p1##y,_n1##z,c), I[277] = (T)(img)(_n2##x,_p1##y,_n1##z,c), I[278] = (T)(img)(_n3##x,_p1##y,_n1##z,c), I[279] = (T)(img)(_n4##x,_p1##y,_n1##z,c), \
|
|
I[280] = (T)(img)(_p3##x,y,_n1##z,c), I[281] = (T)(img)(_p2##x,y,_n1##z,c), I[282] = (T)(img)(_p1##x,y,_n1##z,c), I[283] = (T)(img)(x,y,_n1##z,c), I[284] = (T)(img)(_n1##x,y,_n1##z,c), I[285] = (T)(img)(_n2##x,y,_n1##z,c), I[286] = (T)(img)(_n3##x,y,_n1##z,c), I[287] = (T)(img)(_n4##x,y,_n1##z,c), \
|
|
I[288] = (T)(img)(_p3##x,_n1##y,_n1##z,c), I[289] = (T)(img)(_p2##x,_n1##y,_n1##z,c), I[290] = (T)(img)(_p1##x,_n1##y,_n1##z,c), I[291] = (T)(img)(x,_n1##y,_n1##z,c), I[292] = (T)(img)(_n1##x,_n1##y,_n1##z,c), I[293] = (T)(img)(_n2##x,_n1##y,_n1##z,c), I[294] = (T)(img)(_n3##x,_n1##y,_n1##z,c), I[295] = (T)(img)(_n4##x,_n1##y,_n1##z,c), \
|
|
I[296] = (T)(img)(_p3##x,_n2##y,_n1##z,c), I[297] = (T)(img)(_p2##x,_n2##y,_n1##z,c), I[298] = (T)(img)(_p1##x,_n2##y,_n1##z,c), I[299] = (T)(img)(x,_n2##y,_n1##z,c), I[300] = (T)(img)(_n1##x,_n2##y,_n1##z,c), I[301] = (T)(img)(_n2##x,_n2##y,_n1##z,c), I[302] = (T)(img)(_n3##x,_n2##y,_n1##z,c), I[303] = (T)(img)(_n4##x,_n2##y,_n1##z,c), \
|
|
I[304] = (T)(img)(_p3##x,_n3##y,_n1##z,c), I[305] = (T)(img)(_p2##x,_n3##y,_n1##z,c), I[306] = (T)(img)(_p1##x,_n3##y,_n1##z,c), I[307] = (T)(img)(x,_n3##y,_n1##z,c), I[308] = (T)(img)(_n1##x,_n3##y,_n1##z,c), I[309] = (T)(img)(_n2##x,_n3##y,_n1##z,c), I[310] = (T)(img)(_n3##x,_n3##y,_n1##z,c), I[311] = (T)(img)(_n4##x,_n3##y,_n1##z,c), \
|
|
I[312] = (T)(img)(_p3##x,_n4##y,_n1##z,c), I[313] = (T)(img)(_p2##x,_n4##y,_n1##z,c), I[314] = (T)(img)(_p1##x,_n4##y,_n1##z,c), I[315] = (T)(img)(x,_n4##y,_n1##z,c), I[316] = (T)(img)(_n1##x,_n4##y,_n1##z,c), I[317] = (T)(img)(_n2##x,_n4##y,_n1##z,c), I[318] = (T)(img)(_n3##x,_n4##y,_n1##z,c), I[319] = (T)(img)(_n4##x,_n4##y,_n1##z,c), \
|
|
I[320] = (T)(img)(_p3##x,_p3##y,_n2##z,c), I[321] = (T)(img)(_p2##x,_p3##y,_n2##z,c), I[322] = (T)(img)(_p1##x,_p3##y,_n2##z,c), I[323] = (T)(img)(x,_p3##y,_n2##z,c), I[324] = (T)(img)(_n1##x,_p3##y,_n2##z,c), I[325] = (T)(img)(_n2##x,_p3##y,_n2##z,c), I[326] = (T)(img)(_n3##x,_p3##y,_n2##z,c), I[327] = (T)(img)(_n4##x,_p3##y,_n2##z,c), \
|
|
I[328] = (T)(img)(_p3##x,_p2##y,_n2##z,c), I[329] = (T)(img)(_p2##x,_p2##y,_n2##z,c), I[330] = (T)(img)(_p1##x,_p2##y,_n2##z,c), I[331] = (T)(img)(x,_p2##y,_n2##z,c), I[332] = (T)(img)(_n1##x,_p2##y,_n2##z,c), I[333] = (T)(img)(_n2##x,_p2##y,_n2##z,c), I[334] = (T)(img)(_n3##x,_p2##y,_n2##z,c), I[335] = (T)(img)(_n4##x,_p2##y,_n2##z,c), \
|
|
I[336] = (T)(img)(_p3##x,_p1##y,_n2##z,c), I[337] = (T)(img)(_p2##x,_p1##y,_n2##z,c), I[338] = (T)(img)(_p1##x,_p1##y,_n2##z,c), I[339] = (T)(img)(x,_p1##y,_n2##z,c), I[340] = (T)(img)(_n1##x,_p1##y,_n2##z,c), I[341] = (T)(img)(_n2##x,_p1##y,_n2##z,c), I[342] = (T)(img)(_n3##x,_p1##y,_n2##z,c), I[343] = (T)(img)(_n4##x,_p1##y,_n2##z,c), \
|
|
I[344] = (T)(img)(_p3##x,y,_n2##z,c), I[345] = (T)(img)(_p2##x,y,_n2##z,c), I[346] = (T)(img)(_p1##x,y,_n2##z,c), I[347] = (T)(img)(x,y,_n2##z,c), I[348] = (T)(img)(_n1##x,y,_n2##z,c), I[349] = (T)(img)(_n2##x,y,_n2##z,c), I[350] = (T)(img)(_n3##x,y,_n2##z,c), I[351] = (T)(img)(_n4##x,y,_n2##z,c), \
|
|
I[352] = (T)(img)(_p3##x,_n1##y,_n2##z,c), I[353] = (T)(img)(_p2##x,_n1##y,_n2##z,c), I[354] = (T)(img)(_p1##x,_n1##y,_n2##z,c), I[355] = (T)(img)(x,_n1##y,_n2##z,c), I[356] = (T)(img)(_n1##x,_n1##y,_n2##z,c), I[357] = (T)(img)(_n2##x,_n1##y,_n2##z,c), I[358] = (T)(img)(_n3##x,_n1##y,_n2##z,c), I[359] = (T)(img)(_n4##x,_n1##y,_n2##z,c), \
|
|
I[360] = (T)(img)(_p3##x,_n2##y,_n2##z,c), I[361] = (T)(img)(_p2##x,_n2##y,_n2##z,c), I[362] = (T)(img)(_p1##x,_n2##y,_n2##z,c), I[363] = (T)(img)(x,_n2##y,_n2##z,c), I[364] = (T)(img)(_n1##x,_n2##y,_n2##z,c), I[365] = (T)(img)(_n2##x,_n2##y,_n2##z,c), I[366] = (T)(img)(_n3##x,_n2##y,_n2##z,c), I[367] = (T)(img)(_n4##x,_n2##y,_n2##z,c), \
|
|
I[368] = (T)(img)(_p3##x,_n3##y,_n2##z,c), I[369] = (T)(img)(_p2##x,_n3##y,_n2##z,c), I[370] = (T)(img)(_p1##x,_n3##y,_n2##z,c), I[371] = (T)(img)(x,_n3##y,_n2##z,c), I[372] = (T)(img)(_n1##x,_n3##y,_n2##z,c), I[373] = (T)(img)(_n2##x,_n3##y,_n2##z,c), I[374] = (T)(img)(_n3##x,_n3##y,_n2##z,c), I[375] = (T)(img)(_n4##x,_n3##y,_n2##z,c), \
|
|
I[376] = (T)(img)(_p3##x,_n4##y,_n2##z,c), I[377] = (T)(img)(_p2##x,_n4##y,_n2##z,c), I[378] = (T)(img)(_p1##x,_n4##y,_n2##z,c), I[379] = (T)(img)(x,_n4##y,_n2##z,c), I[380] = (T)(img)(_n1##x,_n4##y,_n2##z,c), I[381] = (T)(img)(_n2##x,_n4##y,_n2##z,c), I[382] = (T)(img)(_n3##x,_n4##y,_n2##z,c), I[383] = (T)(img)(_n4##x,_n4##y,_n2##z,c), \
|
|
I[384] = (T)(img)(_p3##x,_p3##y,_n3##z,c), I[385] = (T)(img)(_p2##x,_p3##y,_n3##z,c), I[386] = (T)(img)(_p1##x,_p3##y,_n3##z,c), I[387] = (T)(img)(x,_p3##y,_n3##z,c), I[388] = (T)(img)(_n1##x,_p3##y,_n3##z,c), I[389] = (T)(img)(_n2##x,_p3##y,_n3##z,c), I[390] = (T)(img)(_n3##x,_p3##y,_n3##z,c), I[391] = (T)(img)(_n4##x,_p3##y,_n3##z,c), \
|
|
I[392] = (T)(img)(_p3##x,_p2##y,_n3##z,c), I[393] = (T)(img)(_p2##x,_p2##y,_n3##z,c), I[394] = (T)(img)(_p1##x,_p2##y,_n3##z,c), I[395] = (T)(img)(x,_p2##y,_n3##z,c), I[396] = (T)(img)(_n1##x,_p2##y,_n3##z,c), I[397] = (T)(img)(_n2##x,_p2##y,_n3##z,c), I[398] = (T)(img)(_n3##x,_p2##y,_n3##z,c), I[399] = (T)(img)(_n4##x,_p2##y,_n3##z,c), \
|
|
I[400] = (T)(img)(_p3##x,_p1##y,_n3##z,c), I[401] = (T)(img)(_p2##x,_p1##y,_n3##z,c), I[402] = (T)(img)(_p1##x,_p1##y,_n3##z,c), I[403] = (T)(img)(x,_p1##y,_n3##z,c), I[404] = (T)(img)(_n1##x,_p1##y,_n3##z,c), I[405] = (T)(img)(_n2##x,_p1##y,_n3##z,c), I[406] = (T)(img)(_n3##x,_p1##y,_n3##z,c), I[407] = (T)(img)(_n4##x,_p1##y,_n3##z,c), \
|
|
I[408] = (T)(img)(_p3##x,y,_n3##z,c), I[409] = (T)(img)(_p2##x,y,_n3##z,c), I[410] = (T)(img)(_p1##x,y,_n3##z,c), I[411] = (T)(img)(x,y,_n3##z,c), I[412] = (T)(img)(_n1##x,y,_n3##z,c), I[413] = (T)(img)(_n2##x,y,_n3##z,c), I[414] = (T)(img)(_n3##x,y,_n3##z,c), I[415] = (T)(img)(_n4##x,y,_n3##z,c), \
|
|
I[416] = (T)(img)(_p3##x,_n1##y,_n3##z,c), I[417] = (T)(img)(_p2##x,_n1##y,_n3##z,c), I[418] = (T)(img)(_p1##x,_n1##y,_n3##z,c), I[419] = (T)(img)(x,_n1##y,_n3##z,c), I[420] = (T)(img)(_n1##x,_n1##y,_n3##z,c), I[421] = (T)(img)(_n2##x,_n1##y,_n3##z,c), I[422] = (T)(img)(_n3##x,_n1##y,_n3##z,c), I[423] = (T)(img)(_n4##x,_n1##y,_n3##z,c), \
|
|
I[424] = (T)(img)(_p3##x,_n2##y,_n3##z,c), I[425] = (T)(img)(_p2##x,_n2##y,_n3##z,c), I[426] = (T)(img)(_p1##x,_n2##y,_n3##z,c), I[427] = (T)(img)(x,_n2##y,_n3##z,c), I[428] = (T)(img)(_n1##x,_n2##y,_n3##z,c), I[429] = (T)(img)(_n2##x,_n2##y,_n3##z,c), I[430] = (T)(img)(_n3##x,_n2##y,_n3##z,c), I[431] = (T)(img)(_n4##x,_n2##y,_n3##z,c), \
|
|
I[432] = (T)(img)(_p3##x,_n3##y,_n3##z,c), I[433] = (T)(img)(_p2##x,_n3##y,_n3##z,c), I[434] = (T)(img)(_p1##x,_n3##y,_n3##z,c), I[435] = (T)(img)(x,_n3##y,_n3##z,c), I[436] = (T)(img)(_n1##x,_n3##y,_n3##z,c), I[437] = (T)(img)(_n2##x,_n3##y,_n3##z,c), I[438] = (T)(img)(_n3##x,_n3##y,_n3##z,c), I[439] = (T)(img)(_n4##x,_n3##y,_n3##z,c), \
|
|
I[440] = (T)(img)(_p3##x,_n4##y,_n3##z,c), I[441] = (T)(img)(_p2##x,_n4##y,_n3##z,c), I[442] = (T)(img)(_p1##x,_n4##y,_n3##z,c), I[443] = (T)(img)(x,_n4##y,_n3##z,c), I[444] = (T)(img)(_n1##x,_n4##y,_n3##z,c), I[445] = (T)(img)(_n2##x,_n4##y,_n3##z,c), I[446] = (T)(img)(_n3##x,_n4##y,_n3##z,c), I[447] = (T)(img)(_n4##x,_n4##y,_n3##z,c), \
|
|
I[448] = (T)(img)(_p3##x,_p3##y,_n4##z,c), I[449] = (T)(img)(_p2##x,_p3##y,_n4##z,c), I[450] = (T)(img)(_p1##x,_p3##y,_n4##z,c), I[451] = (T)(img)(x,_p3##y,_n4##z,c), I[452] = (T)(img)(_n1##x,_p3##y,_n4##z,c), I[453] = (T)(img)(_n2##x,_p3##y,_n4##z,c), I[454] = (T)(img)(_n3##x,_p3##y,_n4##z,c), I[455] = (T)(img)(_n4##x,_p3##y,_n4##z,c), \
|
|
I[456] = (T)(img)(_p3##x,_p2##y,_n4##z,c), I[457] = (T)(img)(_p2##x,_p2##y,_n4##z,c), I[458] = (T)(img)(_p1##x,_p2##y,_n4##z,c), I[459] = (T)(img)(x,_p2##y,_n4##z,c), I[460] = (T)(img)(_n1##x,_p2##y,_n4##z,c), I[461] = (T)(img)(_n2##x,_p2##y,_n4##z,c), I[462] = (T)(img)(_n3##x,_p2##y,_n4##z,c), I[463] = (T)(img)(_n4##x,_p2##y,_n4##z,c), \
|
|
I[464] = (T)(img)(_p3##x,_p1##y,_n4##z,c), I[465] = (T)(img)(_p2##x,_p1##y,_n4##z,c), I[466] = (T)(img)(_p1##x,_p1##y,_n4##z,c), I[467] = (T)(img)(x,_p1##y,_n4##z,c), I[468] = (T)(img)(_n1##x,_p1##y,_n4##z,c), I[469] = (T)(img)(_n2##x,_p1##y,_n4##z,c), I[470] = (T)(img)(_n3##x,_p1##y,_n4##z,c), I[471] = (T)(img)(_n4##x,_p1##y,_n4##z,c), \
|
|
I[472] = (T)(img)(_p3##x,y,_n4##z,c), I[473] = (T)(img)(_p2##x,y,_n4##z,c), I[474] = (T)(img)(_p1##x,y,_n4##z,c), I[475] = (T)(img)(x,y,_n4##z,c), I[476] = (T)(img)(_n1##x,y,_n4##z,c), I[477] = (T)(img)(_n2##x,y,_n4##z,c), I[478] = (T)(img)(_n3##x,y,_n4##z,c), I[479] = (T)(img)(_n4##x,y,_n4##z,c), \
|
|
I[480] = (T)(img)(_p3##x,_n1##y,_n4##z,c), I[481] = (T)(img)(_p2##x,_n1##y,_n4##z,c), I[482] = (T)(img)(_p1##x,_n1##y,_n4##z,c), I[483] = (T)(img)(x,_n1##y,_n4##z,c), I[484] = (T)(img)(_n1##x,_n1##y,_n4##z,c), I[485] = (T)(img)(_n2##x,_n1##y,_n4##z,c), I[486] = (T)(img)(_n3##x,_n1##y,_n4##z,c), I[487] = (T)(img)(_n4##x,_n1##y,_n4##z,c), \
|
|
I[488] = (T)(img)(_p3##x,_n2##y,_n4##z,c), I[489] = (T)(img)(_p2##x,_n2##y,_n4##z,c), I[490] = (T)(img)(_p1##x,_n2##y,_n4##z,c), I[491] = (T)(img)(x,_n2##y,_n4##z,c), I[492] = (T)(img)(_n1##x,_n2##y,_n4##z,c), I[493] = (T)(img)(_n2##x,_n2##y,_n4##z,c), I[494] = (T)(img)(_n3##x,_n2##y,_n4##z,c), I[495] = (T)(img)(_n4##x,_n2##y,_n4##z,c), \
|
|
I[496] = (T)(img)(_p3##x,_n3##y,_n4##z,c), I[497] = (T)(img)(_p2##x,_n3##y,_n4##z,c), I[498] = (T)(img)(_p1##x,_n3##y,_n4##z,c), I[499] = (T)(img)(x,_n3##y,_n4##z,c), I[500] = (T)(img)(_n1##x,_n3##y,_n4##z,c), I[501] = (T)(img)(_n2##x,_n3##y,_n4##z,c), I[502] = (T)(img)(_n3##x,_n3##y,_n4##z,c), I[503] = (T)(img)(_n4##x,_n3##y,_n4##z,c), \
|
|
I[504] = (T)(img)(_p3##x,_n4##y,_n4##z,c), I[505] = (T)(img)(_p2##x,_n4##y,_n4##z,c), I[506] = (T)(img)(_p1##x,_n4##y,_n4##z,c), I[507] = (T)(img)(x,_n4##y,_n4##z,c), I[508] = (T)(img)(_n1##x,_n4##y,_n4##z,c), I[509] = (T)(img)(_n2##x,_n4##y,_n4##z,c), I[510] = (T)(img)(_n3##x,_n4##y,_n4##z,c), I[511] = (T)(img)(_n4##x,_n4##y,_n4##z,c);
|
|
|
|
// End of the plug-in
|
|
#endif /* cimg_plugin_loop_macros */
|