mirror of
				https://github.com/RetroDECK/ES-DE.git
				synced 2025-04-10 19:15:13 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			232 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			232 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  #
 | |
|  #  File        : pde_TschumperleDeriche2d.cpp
 | |
|  #                ( C++ source file )
 | |
|  #
 | |
|  #  Description : Implementation of the Tschumperlé-Deriche's Regularization
 | |
|  #                PDE, for 2D multivalued images, as described in the articles below.
 | |
|  #                This file is a part of the CImg Library project.
 | |
|  #                ( http://cimg.eu )
 | |
|  #
 | |
|  #  (1) PDE-Based Regularization of Multivalued Images and Applications.
 | |
|  #               (D. Tschumperlé). PhD Thesis. University of Nice-Sophia Antipolis, December 2002.
 | |
|  #  (2) Diffusion PDE's on Vector-valued Images : Local Approach and Geometric Viewpoint.
 | |
|  #               (D. Tschumperlé and R. Deriche). IEEE Signal Processing Magazine, October 2002.
 | |
|  #  (3) Vector-Valued Image Regularization with PDE's : A Common Framework for Different Applications.
 | |
|  #               (D. Tschumperlé and R. Deriche). CVPR'2003, Computer Vision and Pattern Recognition,
 | |
|  #                                                Madison, United States, June 2003.
 | |
|  #
 | |
|  #  This code can be used to perform image restoration, inpainting, magnification or flow visualization.
 | |
|  #
 | |
|  #  Copyright   : David Tschumperlé
 | |
|  #                ( http://tschumperle.users.greyc.fr/ )
 | |
|  #
 | |
|  #  License     : CeCILL v2.0
 | |
|  #                ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
 | |
|  #
 | |
|  #  This software is governed by the CeCILL  license under French law and
 | |
|  #  abiding by the rules of distribution of free software.  You can  use,
 | |
|  #  modify and/ or redistribute the software under the terms of the CeCILL
 | |
|  #  license as circulated by CEA, CNRS and INRIA at the following URL
 | |
|  #  "http://www.cecill.info".
 | |
|  #
 | |
|  #  As a counterpart to the access to the source code and  rights to copy,
 | |
|  #  modify and redistribute granted by the license, users are provided only
 | |
|  #  with a limited warranty  and the software's author,  the holder of the
 | |
|  #  economic rights,  and the successive licensors  have only  limited
 | |
|  #  liability.
 | |
|  #
 | |
|  #  In this respect, the user's attention is drawn to the risks associated
 | |
|  #  with loading,  using,  modifying and/or developing or reproducing the
 | |
|  #  software by the user in light of its specific status of free software,
 | |
|  #  that may mean  that it is complicated to manipulate,  and  that  also
 | |
|  #  therefore means  that it is reserved for developers  and  experienced
 | |
|  #  professionals having in-depth computer knowledge. Users are therefore
 | |
|  #  encouraged to load and test the software's suitability as regards their
 | |
|  #  requirements in conditions enabling the security of their systems and/or
 | |
|  #  data to be ensured and,  more generally, to use and operate it in the
 | |
|  #  same conditions as regards security.
 | |
|  #
 | |
|  #  The fact that you are presently reading this means that you have had
 | |
|  #  knowledge of the CeCILL license and that you accept its terms.
 | |
|  #
 | |
| */
 | |
| 
 | |
| #include "CImg.h"
 | |
| using namespace cimg_library;
 | |
| #ifndef cimg_imagepath
 | |
| #define cimg_imagepath "img/"
 | |
| #endif
 | |
| #undef min
 | |
| #undef max
 | |
| 
 | |
| // Main procedure
 | |
| //----------------
 | |
| int main(int argc,char **argv) {
 | |
| 
 | |
|   // Read command line arguments
 | |
|   //-----------------------------
 | |
|   cimg_usage("Tschumperlé-Deriche's flow for 2D Image Restoration, Inpainting, Magnification or Flow visualization");
 | |
|   const char *file_i  = cimg_option("-i",cimg_imagepath "milla.bmp","Input image");
 | |
|   const char *file_m  = cimg_option("-m",(char*)NULL,"Mask image (if Inpainting)");
 | |
|   const char *file_f  = cimg_option("-f",(char*)NULL,"Flow image (if Flow visualization)");
 | |
|   const char *file_o  = cimg_option("-o",(char*)NULL,"Output file");
 | |
|   const double zoom   = cimg_option("-zoom",1.0,"Image magnification");
 | |
| 
 | |
|   const unsigned int nb_iter  = cimg_option("-iter",100000,"Number of iterations");
 | |
|   const double dt     = cimg_option("-dt",20.0,"Adapting time step");
 | |
|   const double alpha  = cimg_option("-alpha",0.0,"Gradient smoothing");
 | |
|   const double sigma  = cimg_option("-sigma",0.5,"Structure tensor smoothing");
 | |
|   const float a1      = cimg_option("-a1",0.5f,"Diffusion limiter along minimal variations");
 | |
|   const float a2      = cimg_option("-a2",0.9f,"Diffusion limiter along maximal variations");
 | |
|   const double noiseg = cimg_option("-ng",0.0,"Add gauss noise before aplying the algorithm");
 | |
|   const double noiseu = cimg_option("-nu",0.0,"Add uniform noise before applying the algorithm");
 | |
|   const double noises = cimg_option("-ns",0.0,"Add salt&pepper noise before applying the algorithm");
 | |
|   const bool stflag   = cimg_option("-stats",false,"Display image statistics at each iteration");
 | |
|   const unsigned int save = cimg_option("-save",0,"Iteration saving step");
 | |
|   const unsigned int visu = cimg_option("-visu",10,"Visualization step (0=no visualization)");
 | |
|   const unsigned int init = cimg_option("-init",3,"Inpainting initialization (0=black, 1=white, 2=noise, 3=unchanged)");
 | |
|   const unsigned int skip = cimg_option("-skip",1,"Step of image geometry computation");
 | |
|   bool view_t         = cimg_option("-d",false,"View tensor directions (useful for debug)");
 | |
|   double xdt = 0;
 | |
| 
 | |
|   // Variable initialization
 | |
|   //-------------------------
 | |
|   CImg<> img, flow;
 | |
|   CImg<int> mask;
 | |
| 
 | |
|   if (file_i) {
 | |
|     img = CImg<>(file_i).resize(-100,-100,1,-100);
 | |
|     if (file_m) mask = CImg<unsigned char>(file_m).resize(img.width(),img.height(),1,1);
 | |
|     else if (zoom>1) {
 | |
|       mask = CImg<int>(img.width(),img.height(),1,1,-1).
 | |
|         resize((int)(img.width()*zoom),(int)(img.height()*zoom),1,1,4) + 1;
 | |
|       img.resize((int)(img.width()*zoom),(int)(img.height()*zoom),1,-100,3);
 | |
|     }
 | |
|   } else {
 | |
|     if (file_f) {
 | |
|       flow = CImg<>(file_f);
 | |
|       img = CImg<>((int)(flow.width()*zoom),(int)(flow.height()*zoom),1,1,0).noise(100,2);
 | |
|       flow.resize(img.width(),img.height(),1,2,3);
 | |
|     } else
 | |
|       throw CImgException("You need to specify at least one input image (option -i), or one flow image (option -f)");
 | |
|   }
 | |
|   img.noise(noiseg,0).noise(noiseu,1).noise(noises,2);
 | |
|   float initial_min, initial_max = img.max_min(initial_min);
 | |
|   if (mask && init!=3)
 | |
|     cimg_forXYC(img,x,y,k) if (mask(x,y))
 | |
|       img(x,y,k) = (float)((init?
 | |
|                             (init==1?initial_max:((initial_max - initial_min)*cimg::rand())):
 | |
|                             initial_min));
 | |
| 
 | |
|   CImgDisplay disp;
 | |
|   if (visu) disp.assign(img,"Iterated Image");
 | |
|   CImg<> G(img.width(),img.height(),1,3,0), T(G), veloc(img), val(2), vec(2,2);
 | |
| 
 | |
|   // PDE main iteration loop
 | |
|   //-------------------------
 | |
|   for (unsigned int iter = 0; iter<nb_iter &&
 | |
|          (!disp || (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC())); ++iter) {
 | |
|     std::printf("\riter %u , xdt = %g               ",iter,xdt); std::fflush(stdout);
 | |
|     if (stflag) img.print();
 | |
|     if (disp && disp.is_keySPACE()) { view_t = !view_t; disp.set_key(); }
 | |
| 
 | |
|     if (!(iter%skip)) {
 | |
| 
 | |
|       // Compute the tensor field T, used to drive the diffusion
 | |
|       //---------------------------------------------------------
 | |
| 
 | |
|       // When using PDE for flow visualization
 | |
|       if (flow) cimg_forXY(flow,x,y) {
 | |
|         const float
 | |
|           u = flow(x,y,0,0),
 | |
|           v = flow(x,y,0,1),
 | |
|           n = (float)std::sqrt((double)(u*u + v*v)),
 | |
|           nn = (n!=0)?n:1;
 | |
|         T(x,y,0) = u*u/nn;
 | |
|         T(x,y,1) = u*v/nn;
 | |
|         T(x,y,2) = v*v/nn;
 | |
|       } else {
 | |
| 
 | |
|         // Compute structure tensor field G
 | |
|         CImgList<> grad = img.get_gradient();
 | |
|         if (alpha!=0) cimglist_for(grad,l) grad[l].blur((float)alpha);
 | |
|         G.fill(0);
 | |
|         cimg_forXYC(img,x,y,k) {
 | |
|           const float ix = grad[0](x,y,k), iy = grad[1](x,y,k);
 | |
|           G(x,y,0) += ix*ix;
 | |
|           G(x,y,1) += ix*iy;
 | |
|           G(x,y,2) += iy*iy;
 | |
|         }
 | |
|         if (sigma!=0) G.blur((float)sigma);
 | |
| 
 | |
|         // When using PDE for image restoration, inpainting or zooming
 | |
|         T.fill(0);
 | |
|         if (!mask) cimg_forXY(G,x,y) {
 | |
|           G.get_tensor_at(x,y).symmetric_eigen(val,vec);
 | |
|           const float
 | |
|             l1 = (float)std::pow(1.0f + val[0] + val[1],-a1),
 | |
|             l2 = (float)std::pow(1.0f + val[0] + val[1],-a2),
 | |
|             ux = vec(1,0),
 | |
|             uy = vec(1,1);
 | |
|           T(x,y,0) = l1*ux*ux + l2*uy*uy;
 | |
|           T(x,y,1) = l1*ux*uy - l2*ux*uy;
 | |
|           T(x,y,2) = l1*uy*uy + l2*ux*ux;
 | |
|         }
 | |
|         else cimg_forXY(G,x,y) if (mask(x,y)) {
 | |
|           G.get_tensor_at(x,y).symmetric_eigen(val,vec);
 | |
|           const float
 | |
|             ux = vec(1,0),
 | |
|             uy = vec(1,1);
 | |
|           T(x,y,0) = ux*ux;
 | |
|           T(x,y,1) = ux*uy;
 | |
|           T(x,y,2) = uy*uy;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Compute the PDE velocity and update the iterated image
 | |
|     //--------------------------------------------------------
 | |
|     CImg_3x3(I,float);
 | |
|     veloc.fill(0);
 | |
|     cimg_forC(img,k) cimg_for3x3(img,x,y,0,k,I,float) {
 | |
|       const float
 | |
|         a = T(x,y,0),
 | |
|         b = T(x,y,1),
 | |
|         c = T(x,y,2),
 | |
|         ixx = Inc + Ipc - 2*Icc,
 | |
|         iyy = Icn + Icp - 2*Icc,
 | |
|         ixy = 0.25f*(Ipp + Inn - Ipn - Inp);
 | |
|       veloc(x,y,k) = a*ixx + 2*b*ixy + c*iyy;
 | |
|     }
 | |
|     if (dt>0) {
 | |
|       float m, M = veloc.max_min(m);
 | |
|       xdt = dt/std::max(cimg::abs(m),cimg::abs(M));
 | |
|     } else xdt=-dt;
 | |
|     img+=veloc*xdt;
 | |
|     img.cut((float)initial_min,(float)initial_max);
 | |
| 
 | |
|     // Display and save iterations
 | |
|     if (disp && !(iter%visu)) {
 | |
|       if (!view_t) img.display(disp);
 | |
|       else {
 | |
|         const unsigned char white[3] = {255,255,255};
 | |
|         CImg<unsigned char> nvisu = img.get_resize(disp.width(),disp.height()).normalize(0,255);
 | |
|         CImg<> isophotes(img.width(),img.height(),1,2,0);
 | |
|         cimg_forXY(img,x,y) if (!mask || mask(x,y)) {
 | |
|           T.get_tensor_at(x,y).symmetric_eigen(val,vec);
 | |
|           isophotes(x,y,0) = vec(0,0);
 | |
|           isophotes(x,y,1) = vec(0,1);
 | |
|         }
 | |
|         nvisu.draw_quiver(isophotes,white,0.5f,10,9,0).display(disp);
 | |
|       }
 | |
|     }
 | |
|     if (save && file_o && !(iter%save)) img.save(file_o,iter);
 | |
|     if (disp) disp.resize().display(img);
 | |
|   }
 | |
| 
 | |
|   // Save result and exit.
 | |
|   if (file_o) img.save(file_o);
 | |
|   return 0;
 | |
| }
 | 
