mirror of
				https://github.com/RetroDECK/ES-DE.git
				synced 2025-04-10 19:15:13 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			380 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			380 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  #
 | |
|  #  File        : radon_transform2d.cpp
 | |
|  #                ( C++ source file )
 | |
|  #
 | |
|  #  Description : An implementation of the Radon Transform.
 | |
|  #                This file is a part of the CImg Library project.
 | |
|  #                ( http://cimg.eu )
 | |
|  #
 | |
|  #  Copyright   : David G. Starkweather
 | |
|  #                ( starkdg@sourceforge.net - starkweatherd@cox.net )
 | |
|  #
 | |
|  #  License     : CeCILL v2.0
 | |
|  #                ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
 | |
|  #
 | |
|  #  This software is governed by the CeCILL  license under French law and
 | |
|  #  abiding by the rules of distribution of free software.  You can  use,
 | |
|  #  modify and/ or redistribute the software under the terms of the CeCILL
 | |
|  #  license as circulated by CEA, CNRS and INRIA at the following URL
 | |
|  #  "http://www.cecill.info".
 | |
|  #
 | |
|  #  As a counterpart to the access to the source code and  rights to copy,
 | |
|  #  modify and redistribute granted by the license, users are provided only
 | |
|  #  with a limited warranty  and the software's author,  the holder of the
 | |
|  #  economic rights,  and the successive licensors  have only  limited
 | |
|  #  liability.
 | |
|  #
 | |
|  #  In this respect, the user's attention is drawn to the risks associated
 | |
|  #  with loading,  using,  modifying and/or developing or reproducing the
 | |
|  #  software by the user in light of its specific status of free software,
 | |
|  #  that may mean  that it is complicated to manipulate,  and  that  also
 | |
|  #  therefore means  that it is reserved for developers  and  experienced
 | |
|  #  professionals having in-depth computer knowledge. Users are therefore
 | |
|  #  encouraged to load and test the software's suitability as regards their
 | |
|  #  requirements in conditions enabling the security of their systems and/or
 | |
|  #  data to be ensured and,  more generally, to use and operate it in the
 | |
|  #  same conditions as regards security.
 | |
|  #
 | |
|  #  The fact that you are presently reading this means that you have had
 | |
|  #  knowledge of the CeCILL license and that you accept its terms.
 | |
|  #
 | |
| */
 | |
| 
 | |
| #include "CImg.h"
 | |
| using namespace cimg_library;
 | |
| #ifndef cimg_imagepath
 | |
| #define cimg_imagepath "img/"
 | |
| #endif
 | |
| 
 | |
| #define ROUNDING_FACTOR(x) (((x) >= 0) ? 0.5 : -0.5)
 | |
| 
 | |
| CImg<double> GaussianKernel(double rho);
 | |
| CImg<float> ApplyGaussian(CImg<unsigned char> im,double rho);
 | |
| CImg<unsigned char> RGBtoGrayScale(CImg<unsigned char> &im);
 | |
| int GetAngle(int dy,int dx);
 | |
| CImg<unsigned char> CannyEdges(CImg<float> im, double T1, double T2,bool doHysteresis);
 | |
| CImg<> RadonTransform(CImg<unsigned char> im,int N);
 | |
| 
 | |
| // Main procedure
 | |
| //----------------
 | |
| int main(int argc,char **argv) {
 | |
|   cimg_usage("Illustration of the Radon Transform");
 | |
| 
 | |
|   const char *file = cimg_option("-f",cimg_imagepath "parrot.ppm","path and file name");
 | |
|   const double sigma = cimg_option("-r",1.0,"blur coefficient for gaussian low pass filter (lpf)"),
 | |
|     thresh1 = cimg_option("-t1",0.50,"lower threshold for canny edge detector"),
 | |
|     thresh2 = cimg_option("-t2",1.25,"upper threshold for canny edge detector");;
 | |
|   const int N = cimg_option("-n",64,"number of angles to consider in the Radon transform - should be a power of 2");
 | |
| 
 | |
|   //color to draw lines
 | |
|   const unsigned char green[] = {0,255,0};
 | |
|   CImg<unsigned char> src(file);
 | |
| 
 | |
|   int rhomax = (int)std::sqrt((double)(src.width()*src.width() + src.height()*src.height()))/2;
 | |
| 
 | |
|   if (cimg::dialog(cimg::basename(argv[0]),
 | |
|                    "Instructions:\n"
 | |
|                    "Click on space bar or Enter key to display Radon transform of given image\n"
 | |
|                    "Click on anywhere in the transform window to display a \n"
 | |
|                    "corresponding green line in the original image\n",
 | |
|                    "Start", "Quit",0,0,0,0,
 | |
|                    src.get_resize(100,100,1,3),true)) std::exit(0);
 | |
| 
 | |
|   //retrieve a grayscale from the image
 | |
|   CImg<unsigned char> grayScaleIm;
 | |
|   if ((src.spectrum() == 3) && (src.width() > 0) && (src.height() > 0) && (src.depth() == 1))
 | |
|     grayScaleIm = (CImg<unsigned char>)src.get_norm(0).quantize(255,false);
 | |
|   else if ((src.spectrum() == 1)&&(src.width() > 0) && (src.height() > 0) && (src.depth() == 1))
 | |
|     grayScaleIm = src;
 | |
|   else { // image in wrong format
 | |
|     if (cimg::dialog(cimg::basename("wrong file format"),
 | |
|                      "Incorrect file format\n","OK",0,0,0,0,0,
 | |
|                      src.get_resize(100,100,1,3),true)) std::exit(0);
 | |
|   }
 | |
| 
 | |
|   //blur the image with a Gaussian lpf to remove spurious edges (e.g. noise)
 | |
|   CImg<float> blurredIm = ApplyGaussian(grayScaleIm,sigma);
 | |
| 
 | |
|   //use canny edge detection algorithm to get edge map of the image
 | |
|   //- the threshold values are used to perform hysteresis in the edge detection process
 | |
|   CImg<unsigned char> cannyEdgeMap = CannyEdges(blurredIm,thresh1,thresh2,false);
 | |
|   CImg<unsigned char> radonImage(500,400,1,1,0);
 | |
| 
 | |
|   //display the two windows
 | |
|   CImgDisplay dispImage(src,"original image");
 | |
|   dispImage.move(CImgDisplay::screen_width()/8,CImgDisplay::screen_height()/8);
 | |
|   CImgDisplay dispRadon(radonImage,"Radon Transform");
 | |
|   dispRadon.move(CImgDisplay::screen_width()/4,CImgDisplay::screen_height()/4);
 | |
|   CImgDisplay dispCanny(cannyEdgeMap,"canny edges");
 | |
|   //start main display loop
 | |
|   while (!dispImage.is_closed() && !dispRadon.is_closed() &&
 | |
|          !dispImage.is_keyQ() && !dispRadon.is_keyQ() &&
 | |
|          !dispImage.is_keyESC() && !dispRadon.is_keyESC()) {
 | |
| 
 | |
|     CImgDisplay::wait(dispImage,dispRadon);
 | |
| 
 | |
|     if (dispImage.is_keySPACE() || dispRadon.is_keySPACE()) {
 | |
|       radonImage = (CImg<unsigned char>)RadonTransform(cannyEdgeMap,N).quantize(255,false).resize(500,400);
 | |
|       radonImage.display(dispRadon);
 | |
|     }
 | |
| 
 | |
|     //when clicking on dispRadon window, draw line in original image window
 | |
|     if (dispRadon.button())
 | |
|       {
 | |
|         const double rho = dispRadon.mouse_y()*rhomax/dispRadon.height(),
 | |
|           theta = (dispRadon.mouse_x()*N/dispRadon.width())*2*cimg::PI/N,
 | |
|           x = src.width()/2 + rho*std::cos(theta),
 | |
|           y = src.height()/2 + rho*std::sin(theta);
 | |
|         const int x0 = (int)(x + 1000*std::cos(theta + cimg::PI/2)),
 | |
|           y0 = (int)(y + 1000*std::sin(theta + cimg::PI/2)),
 | |
|           x1 = (int)(x - 1000*std::cos(theta + cimg::PI/2)),
 | |
|           y1 = (int)(y - 1000*std::sin(theta + cimg::PI/2));
 | |
|         src.draw_line(x0,y0,x1,y1,green,1.0f,0xF0F0F0F0).display(dispImage);
 | |
|       }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| /**
 | |
|  * PURPOSE: create a 5x5 gaussian kernel matrix
 | |
|  * PARAM rho - gaussiam equation parameter (default = 1.0)
 | |
|  * RETURN CImg<double> the gaussian kernel
 | |
|  **/
 | |
| 
 | |
| CImg<double> GaussianKernel(double sigma = 1.0)
 | |
| {
 | |
|   CImg<double> resultIm(5,5,1,1,0);
 | |
|   int midX = 3, midY = 3;
 | |
|   cimg_forXY(resultIm,X,Y) {
 | |
|     resultIm(X,Y) = std::ceil(256.0*(std::exp(-(midX*midX + midY*midY)/(2*sigma*sigma)))/(2*cimg::PI*sigma*sigma));
 | |
|   }
 | |
|   return resultIm;
 | |
| }
 | |
| /*
 | |
|  * PURPOSE: convolve a given image with the gaussian kernel
 | |
|  * PARAM CImg<unsigned char> im - image to be convolved upon
 | |
|  * PARAM double sigma - gaussian equation parameter
 | |
|  * RETURN CImg<float> image resulting from the convolution
 | |
|  * */
 | |
| CImg<float> ApplyGaussian(CImg<unsigned char> im,double sigma)
 | |
| {
 | |
|   CImg<float> smoothIm(im.width(),im.height(),1,1,0);
 | |
| 
 | |
|   //make gaussian kernel
 | |
|   CImg<float> gk = GaussianKernel(sigma);
 | |
|   //apply gaussian
 | |
| 
 | |
|   CImg_5x5(I,int);
 | |
|   cimg_for5x5(im,X,Y,0,0,I,int) {
 | |
|     float sum = 0;
 | |
|     sum += gk(0,0)*Ibb + gk(0,1)*Ibp + gk(0,2)*Ibc + gk(0,3)*Ibn + gk(0,4)*Iba;
 | |
|     sum += gk(1,0)*Ipb + gk(1,1)*Ipp + gk(1,2)*Ipc + gk(1,3)*Ipn + gk(1,4)*Ipa;
 | |
|     sum += gk(2,0)*Icb + gk(2,1)*Icp + gk(2,2)*Icc + gk(2,3)*Icn + gk(2,4)*Ica;
 | |
|     sum += gk(3,0)*Inb + gk(3,1)*Inp + gk(3,2)*Inc + gk(3,3)*Inn + gk(3,4)*Ina;
 | |
|     sum += gk(4,0)*Iab + gk(4,1)*Iap + gk(4,2)*Iac + gk(4,3)*Ian + gk(4,4)*Iaa;
 | |
|     smoothIm(X,Y) = sum/256;
 | |
|   }
 | |
|   return smoothIm;
 | |
| }
 | |
| /**
 | |
|  * PURPOSE: convert a given rgb image to a MxNX1 single vector grayscale image
 | |
|  * PARAM: CImg<unsigned char> im - rgb image to convert
 | |
|  * RETURN: CImg<unsigned char> grayscale image with MxNx1x1 dimensions
 | |
|  **/
 | |
| 
 | |
| CImg<unsigned char> RGBtoGrayScale(CImg<unsigned char> &im)
 | |
| {
 | |
|   CImg<unsigned char> grayImage(im.width(),im.height(),im.depth(),1,0);
 | |
|   if (im.spectrum() == 3) {
 | |
|     cimg_forXYZ(im,X,Y,Z) {
 | |
|       grayImage(X,Y,Z,0) = (unsigned char)(0.299*im(X,Y,Z,0) + 0.587*im(X,Y,Z,1) + 0.114*im(X,Y,Z,2));
 | |
|     }
 | |
|   }
 | |
|   grayImage.quantize(255,false);
 | |
|   return grayImage;
 | |
| }
 | |
| /**
 | |
|  * PURPOSE: aux. function used by CannyEdges to quantize an angle theta given by gradients, dx and dy
 | |
|  *  into 0 - 7
 | |
|  * PARAM: dx,dy - gradient magnitudes
 | |
|  * RETURN int value between 0 and 7
 | |
|  **/
 | |
| int GetAngle(int dy,int dx)
 | |
| {
 | |
|   double angle = cimg::abs(std::atan2((double)dy,(double)dx));
 | |
|   if ((angle >= -cimg::PI/8)&&(angle <= cimg::PI/8))//-pi/8 to pi/8 => 0
 | |
|     return 0;
 | |
|   else if ((angle >= cimg::PI/8)&&(angle <= 3*cimg::PI/8))//pi/8 to 3pi/8 => pi/4
 | |
|     return 1;
 | |
|   else if ((angle > 3*cimg::PI/8)&&(angle <= 5*cimg::PI/8))//3pi/8 to 5pi/8 => pi/2
 | |
|     return 2;
 | |
|   else if ((angle > 5*cimg::PI/8)&&(angle <= 7*cimg::PI/8))//5pi/8 to 7pi/8 => 3pi/4
 | |
|     return 3;
 | |
|   else if (((angle > 7*cimg::PI/8) && (angle <= cimg::PI)) ||
 | |
|            ((angle <= -7*cimg::PI/8)&&(angle >= -cimg::PI))) //-7pi/8 to -pi OR 7pi/8 to pi => pi
 | |
|     return 4;
 | |
|   else return 0;
 | |
| }
 | |
| /**
 | |
|  * PURPOSE: create an edge map of the given image with hysteresis using thresholds T1 and T2
 | |
|  * PARAMS: CImg<float> im the image to perform edge detection on
 | |
|  * 		   T1 lower threshold
 | |
|  *         T2 upper threshold
 | |
|  * RETURN CImg<unsigned char> edge map
 | |
|  **/
 | |
| CImg<unsigned char> CannyEdges(CImg<float> im, double T1, double T2, bool doHysteresis=false)
 | |
| {
 | |
|   CImg<unsigned char> edges(im);
 | |
|   CImg<float> secDerivs(im);
 | |
|   secDerivs.fill(0);
 | |
|   edges.fill(0);
 | |
|   CImgList<float> gradients = im.get_gradient("xy",1);
 | |
|   int image_width = im.width();
 | |
|   int image_height = im.height();
 | |
| 
 | |
|   cimg_forXY(im,X,Y) {
 | |
|     double Gr = std::sqrt(std::pow((double)gradients[0](X,Y),2.0) + std::pow((double)gradients[1](X,Y),2.0));
 | |
|     double theta = GetAngle(Y,X);
 | |
|     //if Gradient magnitude is positive and X,Y within the image
 | |
|     //take the 2nd deriv in the appropriate direction
 | |
|     if ((Gr > 0)&&(X < image_width - 2)&&(Y < image_height - 2)) {
 | |
|       if (theta == 0)
 | |
|         secDerivs(X,Y) = im(X + 2,Y) - 2*im(X + 1,Y) + im(X,Y);
 | |
|       else if (theta == 1)
 | |
|         secDerivs(X,Y) = im(X + 2,Y + 2) - 2*im(X + 1,Y + 1) + im(X,Y);
 | |
|       else if (theta == 2)
 | |
|         secDerivs(X,Y) = im(X,Y + 2) - 2*im(X,Y + 1) + im(X,Y);
 | |
|       else if (theta == 3)
 | |
|         secDerivs(X,Y) = im(X + 2,Y + 2) - 2*im(X + 1,Y + 1) + im(X,Y);
 | |
|       else if (theta == 4)
 | |
|         secDerivs(X,Y) = im(X + 2,Y) - 2*im(X + 1,Y) + im(X,Y);
 | |
|     }
 | |
|   }
 | |
|   //for each 2nd deriv that crosses a zero point and magnitude passes the upper threshold.
 | |
|   //Perform hysteresis in the direction of the gradient, rechecking the gradient
 | |
|   //angle for each pixel that meets the threshold requirement.  Stop checking when
 | |
|   //the lower threshold is not reached.
 | |
|   CImg_5x5(I,float);
 | |
|   cimg_for5x5(secDerivs,X,Y,0,0,I,float) {
 | |
|     if (   (Ipp*Ibb < 0) ||
 | |
|            (Ipc*Ibc < 0)||
 | |
|            (Icp*Icb < 0)   ) {
 | |
|       double Gr = std::sqrt(std::pow((double)gradients[0](X,Y),2.0) + std::pow((double)gradients[1](X,Y),2.0));
 | |
|       int dir = GetAngle(Y,X);
 | |
|       int Xt = X, Yt = Y, delta_x = 0, delta_y=0;
 | |
|       double GRt = Gr;
 | |
|       if (Gr >= T2)
 | |
|         edges(X,Y) = 255;
 | |
|       //work along the gradient in one direction
 | |
|       if (doHysteresis) {
 | |
|         while ((Xt > 0) && (Xt < image_width - 1) && (Yt > 0) && (Yt < image_height - 1)) {
 | |
|           switch (dir){
 | |
|           case 0 : delta_x=0;delta_y=1;break;
 | |
|           case 1 : delta_x=1;delta_y=1;break;
 | |
|           case 2 : delta_x=1;delta_y=0;break;
 | |
|           case 3 : delta_x=1;delta_y=-1;break;
 | |
|           case 4 : delta_x=0;delta_y=1;break;
 | |
|           }
 | |
|           Xt += delta_x;
 | |
|           Yt += delta_y;
 | |
|           GRt = std::sqrt(std::pow((double)gradients[0](Xt,Yt),2.0) + std::pow((double)gradients[1](Xt,Yt),2.0));
 | |
|           dir = GetAngle(Yt,Xt);
 | |
|           if (GRt >= T1)
 | |
|             edges(Xt,Yt) = 255;
 | |
|         }
 | |
|         //work along gradient in other direction
 | |
|         Xt = X; Yt = Y;
 | |
|         while ((Xt > 0) && (Xt < image_width - 1) && (Yt > 0) && (Yt < image_height - 1)) {
 | |
|           switch (dir){
 | |
|           case 0 : delta_x=0;delta_y=1;break;
 | |
|           case 1 : delta_x=1;delta_y=1;break;
 | |
|           case 2 : delta_x=1;delta_y=0;break;
 | |
|           case 3 : delta_x=1;delta_y=-1;break;
 | |
|           case 4 : delta_x=0;delta_y=1;break;
 | |
|           }
 | |
|           Xt -= delta_x;
 | |
|           Yt -= delta_y;
 | |
|           GRt = std::sqrt(std::pow((double)gradients[0](Xt,Yt),2.0) + std::pow((double)gradients[1](Xt,Yt),2.0));
 | |
|           dir = GetAngle(Yt,Xt);
 | |
|           if (GRt >= T1)
 | |
|             edges(Xt,Yt) = 255;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return edges;
 | |
| }
 | |
| /**
 | |
|  * PURPOSE: perform radon transform of given image
 | |
|  * PARAM: CImg<unsigned char> im - image to detect lines
 | |
|  * 		  int N - number of angles to consider (should be a power of 2)
 | |
|  *                (the values of N will be spread over 0 to 2PI)
 | |
|  * RETURN CImg<unsigned char> - transform of given image of size, N x D
 | |
|  *                              D = rhomax = sqrt(dimx*dimx + dimy*dimy)/2
 | |
|  **/
 | |
| CImg<> RadonTransform(CImg<unsigned char> im,int N) {
 | |
|   int image_width = im.width();
 | |
|   int image_height = im.height();
 | |
| 
 | |
|   //calc offsets to center the image
 | |
|   float xofftemp = image_width/2.0f - 1;
 | |
|   float yofftemp = image_height/2.0f - 1;
 | |
|   int xoffset = (int)std::floor(xofftemp + ROUNDING_FACTOR(xofftemp));
 | |
|   int yoffset = (int)std::floor(yofftemp + ROUNDING_FACTOR(yofftemp));
 | |
|   float dtemp = (float)std::sqrt((double)(xoffset*xoffset + yoffset*yoffset));
 | |
|   int D = (int)std::floor(dtemp + ROUNDING_FACTOR(dtemp));
 | |
| 
 | |
|   CImg<> imRadon(N,D,1,1,0);
 | |
| 
 | |
|   //for each angle k to consider
 | |
|   for (int k= 0 ; k < N; k++) {
 | |
|     //only consider from PI/8 to 3PI/8 and 5PI/8 to 7PI/8
 | |
|     //to avoid computational complexity of a steep angle
 | |
|     if (k == 0){k = N/8;continue;}
 | |
|     else if (k == (3*N/8 + 1)){	k = 5*N/8;continue;}
 | |
|     else if (k == 7*N/8 + 1){k = N;	continue;}
 | |
| 
 | |
|     //for each rho length, determine linear equation and sum the line
 | |
|     //sum is to sum the values along the line at angle k2pi/N
 | |
|     //sum2 is to sum the values along the line at angle k2pi/N + N/4
 | |
|     //The sum2 is performed merely by swapping the x,y axis as if the image were rotated 90 degrees.
 | |
|     for (int d=0; d < D; d++) {
 | |
|       double theta = 2*k*cimg::PI/N;//calculate actual theta
 | |
|       double alpha = std::tan(theta + cimg::PI/2);//calculate the slope
 | |
|       double beta_temp = -alpha*d*std::cos(theta) + d*std::sin(theta);//y-axis intercept for the line
 | |
|       int beta = (int)std::floor(beta_temp + ROUNDING_FACTOR(beta_temp));
 | |
|       //for each value of m along x-axis, calculate y
 | |
|       //if the x,y location is within the boundary for the respective image orientations, add to the sum
 | |
|       unsigned int sum1 = 0,
 | |
|         sum2 = 0;
 | |
|       int M = (image_width >= image_height) ? image_width : image_height;
 | |
|       for (int m=0;m < M; m++) {
 | |
|         //interpolate in-between values using nearest-neighbor approximation
 | |
|         //using m,n as x,y indices into image
 | |
|         double n_temp = alpha*(m - xoffset) + beta;
 | |
|         int n = (int)std::floor(n_temp + ROUNDING_FACTOR(n_temp));
 | |
|         if ((m < image_width) && (n + yoffset >= 0) && (n + yoffset < image_height))
 | |
|           {
 | |
|             sum1 += im(m, n + yoffset);
 | |
|           }
 | |
|         n_temp = alpha*(m - yoffset) + beta;
 | |
|         n = (int)std::floor(n_temp + ROUNDING_FACTOR(n_temp));
 | |
|         if ((m < image_height)&&(n + xoffset >= 0)&&(n + xoffset < image_width))
 | |
|           {
 | |
|             sum2 += im(-(n + xoffset) + image_width - 1, m);
 | |
|           }
 | |
|       }
 | |
|       //assign the sums into the result matrix
 | |
|       imRadon(k,d) = (float)sum1;
 | |
|       //assign sum2 to angle position for theta + PI/4
 | |
|       imRadon(((k + N/4)%N),d) = (float)sum2;
 | |
|     }
 | |
|   }
 | |
|   return imRadon;
 | |
| }
 | |
| /* references:
 | |
|  * 1. See Peter Toft's thesis on the Radon transform: http://petertoft.dk/PhD/index.html
 | |
|  * While I changed his basic algorithm, the main idea is still the same and provides an excellent explanation.
 | |
|  *
 | |
|  * */
 | 
