mirror of
				https://github.com/RetroDECK/ES-DE.git
				synced 2025-04-10 19:15:13 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			346 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			346 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include <glm/gtc/constants.hpp>
 | ||
| #include <glm/gtc/quaternion.hpp>
 | ||
| #include <glm/gtc/matrix_transform.hpp>
 | ||
| #include <glm/ext/matrix_relational.hpp>
 | ||
| #include <glm/ext/vector_relational.hpp>
 | ||
| #include <glm/ext/scalar_relational.hpp>
 | ||
| #include <glm/glm.hpp>
 | ||
| #include <vector>
 | ||
| 
 | ||
| int test_quat_angle()
 | ||
| {
 | ||
| 	int Error = 0;
 | ||
| 
 | ||
| 	{
 | ||
| 		glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
 | ||
| 		glm::quat N = glm::normalize(Q);
 | ||
| 		float L = glm::length(N);
 | ||
| 		Error += glm::equal(L, 1.0f, 0.01f) ? 0 : 1;
 | ||
| 		float A = glm::angle(N);
 | ||
| 		Error += glm::equal(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1;
 | ||
| 	}
 | ||
| 	{
 | ||
| 		glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::normalize(glm::vec3(0, 1, 1)));
 | ||
| 		glm::quat N = glm::normalize(Q);
 | ||
| 		float L = glm::length(N);
 | ||
| 		Error += glm::equal(L, 1.0f, 0.01f) ? 0 : 1;
 | ||
| 		float A = glm::angle(N);
 | ||
| 		Error += glm::equal(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1;
 | ||
| 	}
 | ||
| 	{
 | ||
| 		glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::normalize(glm::vec3(1, 2, 3)));
 | ||
| 		glm::quat N = glm::normalize(Q);
 | ||
| 		float L = glm::length(N);
 | ||
| 		Error += glm::equal(L, 1.0f, 0.01f) ? 0 : 1;
 | ||
| 		float A = glm::angle(N);
 | ||
| 		Error += glm::equal(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1;
 | ||
| 	}
 | ||
| 
 | ||
| 	return Error;
 | ||
| }
 | ||
| 
 | ||
| int test_quat_angleAxis()
 | ||
| {
 | ||
| 	int Error = 0;
 | ||
| 
 | ||
| 	glm::quat A = glm::angleAxis(0.f, glm::vec3(0.f, 0.f, 1.f));
 | ||
| 	glm::quat B = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1));
 | ||
| 	glm::quat C = glm::mix(A, B, 0.5f);
 | ||
| 	glm::quat D = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
 | ||
| 
 | ||
| 	Error += glm::equal(C.x, D.x, 0.01f) ? 0 : 1;
 | ||
| 	Error += glm::equal(C.y, D.y, 0.01f) ? 0 : 1;
 | ||
| 	Error += glm::equal(C.z, D.z, 0.01f) ? 0 : 1;
 | ||
| 	Error += glm::equal(C.w, D.w, 0.01f) ? 0 : 1;
 | ||
| 
 | ||
| 	return Error;
 | ||
| }
 | ||
| 
 | ||
| int test_quat_mix()
 | ||
| {
 | ||
| 	int Error = 0;
 | ||
| 
 | ||
| 	glm::quat A = glm::angleAxis(0.f, glm::vec3(0.f, 0.f, 1.f));
 | ||
| 	glm::quat B = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1));
 | ||
| 	glm::quat C = glm::mix(A, B, 0.5f);
 | ||
| 	glm::quat D = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
 | ||
| 
 | ||
| 	Error += glm::equal(C.x, D.x, 0.01f) ? 0 : 1;
 | ||
| 	Error += glm::equal(C.y, D.y, 0.01f) ? 0 : 1;
 | ||
| 	Error += glm::equal(C.z, D.z, 0.01f) ? 0 : 1;
 | ||
| 	Error += glm::equal(C.w, D.w, 0.01f) ? 0 : 1;
 | ||
| 
 | ||
| 	return Error;
 | ||
| }
 | ||
| 
 | ||
| int test_quat_normalize()
 | ||
| {
 | ||
| 	int Error(0);
 | ||
| 
 | ||
| 	{
 | ||
| 		glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
 | ||
| 		glm::quat N = glm::normalize(Q);
 | ||
| 		float L = glm::length(N);
 | ||
| 		Error += glm::equal(L, 1.0f, 0.000001f) ? 0 : 1;
 | ||
| 	}
 | ||
| 	{
 | ||
| 		glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 2));
 | ||
| 		glm::quat N = glm::normalize(Q);
 | ||
| 		float L = glm::length(N);
 | ||
| 		Error += glm::equal(L, 1.0f, 0.000001f) ? 0 : 1;
 | ||
| 	}
 | ||
| 	{
 | ||
| 		glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(1, 2, 3));
 | ||
| 		glm::quat N = glm::normalize(Q);
 | ||
| 		float L = glm::length(N);
 | ||
| 		Error += glm::equal(L, 1.0f, 0.000001f) ? 0 : 1;
 | ||
| 	}
 | ||
| 
 | ||
| 	return Error;
 | ||
| }
 | ||
| 
 | ||
| int test_quat_euler()
 | ||
| {
 | ||
| 	int Error = 0;
 | ||
| 
 | ||
| 	{
 | ||
| 		glm::quat q(1.0f, 0.0f, 0.0f, 1.0f);
 | ||
| 		float Roll = glm::roll(q);
 | ||
| 		float Pitch = glm::pitch(q);
 | ||
| 		float Yaw = glm::yaw(q);
 | ||
| 		glm::vec3 Angles = glm::eulerAngles(q);
 | ||
| 		Error += glm::all(glm::equal(Angles, glm::vec3(Pitch, Yaw, Roll), 0.000001f)) ? 0 : 1;
 | ||
| 	}
 | ||
| 
 | ||
| 	{
 | ||
| 		glm::dquat q(1.0, 0.0, 0.0, 1.0);
 | ||
| 		double Roll = glm::roll(q);
 | ||
| 		double Pitch = glm::pitch(q);
 | ||
| 		double Yaw = glm::yaw(q);
 | ||
| 		glm::dvec3 Angles = glm::eulerAngles(q);
 | ||
| 		Error += glm::all(glm::equal(Angles, glm::dvec3(Pitch, Yaw, Roll), 0.000001)) ? 0 : 1;
 | ||
| 	}
 | ||
| 
 | ||
| 	return Error;
 | ||
| }
 | ||
| 
 | ||
| int test_quat_slerp()
 | ||
| {
 | ||
| 	int Error = 0;
 | ||
| 
 | ||
| 	float const Epsilon = 0.0001f;//glm::epsilon<float>();
 | ||
| 
 | ||
| 	float sqrt2 = std::sqrt(2.0f)/2.0f;
 | ||
| 	glm::quat id(static_cast<float>(1), static_cast<float>(0), static_cast<float>(0), static_cast<float>(0));
 | ||
| 	glm::quat Y90rot(sqrt2, 0.0f, sqrt2, 0.0f);
 | ||
| 	glm::quat Y180rot(0.0f, 0.0f, 1.0f, 0.0f);
 | ||
| 
 | ||
| 	// Testing a == 0
 | ||
| 	// Must be id
 | ||
| 	glm::quat id2 = glm::slerp(id, Y90rot, 0.0f);
 | ||
| 	Error += glm::all(glm::equal(id, id2, Epsilon)) ? 0 : 1;
 | ||
| 
 | ||
| 	// Testing a == 1
 | ||
| 	// Must be 90<39> rotation on Y : 0 0.7 0 0.7
 | ||
| 	glm::quat Y90rot2 = glm::slerp(id, Y90rot, 1.0f);
 | ||
| 	Error += glm::all(glm::equal(Y90rot, Y90rot2, Epsilon)) ? 0 : 1;
 | ||
| 
 | ||
| 	// Testing standard, easy case
 | ||
| 	// Must be 45<34> rotation on Y : 0 0.38 0 0.92
 | ||
| 	glm::quat Y45rot1 = glm::slerp(id, Y90rot, 0.5f);
 | ||
| 
 | ||
| 	// Testing reverse case
 | ||
| 	// Must be 45<34> rotation on Y : 0 0.38 0 0.92
 | ||
| 	glm::quat Ym45rot2 = glm::slerp(Y90rot, id, 0.5f);
 | ||
| 
 | ||
| 	// Testing against full circle around the sphere instead of shortest path
 | ||
| 	// Must be 45<34> rotation on Y
 | ||
| 	// certainly not a 135<33> rotation
 | ||
| 	glm::quat Y45rot3 = glm::slerp(id , -Y90rot, 0.5f);
 | ||
| 	float Y45angle3 = glm::angle(Y45rot3);
 | ||
| 	Error += glm::equal(Y45angle3, glm::pi<float>() * 0.25f, Epsilon) ? 0 : 1;
 | ||
| 	Error += glm::all(glm::equal(Ym45rot2, Y45rot3, Epsilon)) ? 0 : 1;
 | ||
| 
 | ||
| 	// Same, but inverted
 | ||
| 	// Must also be 45<34> rotation on Y :  0 0.38 0 0.92
 | ||
| 	// -0 -0.38 -0 -0.92 is ok too
 | ||
| 	glm::quat Y45rot4 = glm::slerp(-Y90rot, id, 0.5f);
 | ||
| 	Error += glm::all(glm::equal(Ym45rot2, -Y45rot4, Epsilon)) ? 0 : 1;
 | ||
| 
 | ||
| 	// Testing q1 = q2
 | ||
| 	// Must be 90<39> rotation on Y : 0 0.7 0 0.7
 | ||
| 	glm::quat Y90rot3 = glm::slerp(Y90rot, Y90rot, 0.5f);
 | ||
| 	Error += glm::all(glm::equal(Y90rot, Y90rot3, Epsilon)) ? 0 : 1;
 | ||
| 
 | ||
| 	// Testing 180<38> rotation
 | ||
| 	// Must be 90<39> rotation on almost any axis that is on the XZ plane
 | ||
| 	glm::quat XZ90rot = glm::slerp(id, -Y90rot, 0.5f);
 | ||
| 	float XZ90angle = glm::angle(XZ90rot); // Must be PI/4 = 0.78;
 | ||
| 	Error += glm::equal(XZ90angle, glm::pi<float>() * 0.25f, Epsilon) ? 0 : 1;
 | ||
| 
 | ||
| 	// Testing almost equal quaternions (this test should pass through the linear interpolation)
 | ||
| 	// Must be 0 0.00X 0 0.99999
 | ||
| 	glm::quat almostid = glm::slerp(id, glm::angleAxis(0.1f, glm::vec3(0.0f, 1.0f, 0.0f)), 0.5f);
 | ||
| 
 | ||
| 	// Testing quaternions with opposite sign
 | ||
| 	{
 | ||
| 		glm::quat a(-1, 0, 0, 0);
 | ||
| 
 | ||
| 		glm::quat result = glm::slerp(a, id, 0.5f);
 | ||
| 
 | ||
| 		Error += glm::equal(glm::pow(glm::dot(id, result), 2.f), 1.f, 0.01f) ? 0 : 1;
 | ||
| 	}
 | ||
| 
 | ||
| 	return Error;
 | ||
| }
 | ||
| 
 | ||
| int test_quat_slerp_spins()
 | ||
| {
 | ||
|     int Error = 0;
 | ||
| 
 | ||
|     float const Epsilon = 0.0001f;//glm::epsilon<float>();
 | ||
| 
 | ||
|     float sqrt2 = std::sqrt(2.0f) / 2.0f;
 | ||
|     glm::quat id(static_cast<float>(1), static_cast<float>(0), static_cast<float>(0), static_cast<float>(0));
 | ||
|     glm::quat Y90rot(sqrt2, 0.0f, sqrt2, 0.0f);
 | ||
|     glm::quat Y180rot(0.0f, 0.0f, 1.0f, 0.0f);
 | ||
| 
 | ||
|     // Testing a == 0, k == 1
 | ||
|     // Must be id
 | ||
|     glm::quat id2 = glm::slerp(id, id, 1.0f, 1);
 | ||
|     Error += glm::all(glm::equal(id, id2, Epsilon)) ? 0 : 1;
 | ||
| 
 | ||
|     // Testing a == 1, k == 2
 | ||
|     // Must be id
 | ||
|     glm::quat id3 = glm::slerp(id, id, 1.0f, 2);
 | ||
|     Error += glm::all(glm::equal(id, id3, Epsilon)) ? 0 : 1;
 | ||
| 
 | ||
|     // Testing a == 1, k == 1
 | ||
|     // Must be 90<39> rotation on Y : 0 0.7 0 0.7
 | ||
|     // Negative quaternion is representing same orientation
 | ||
|     glm::quat Y90rot2 = glm::slerp(id, Y90rot, 1.0f, 1);
 | ||
|     Error += glm::all(glm::equal(Y90rot, -Y90rot2, Epsilon)) ? 0 : 1;
 | ||
| 
 | ||
|     // Testing a == 1, k == 2
 | ||
|     // Must be id
 | ||
|     glm::quat Y90rot3 = glm::slerp(id, Y90rot, 8.0f / 9.0f, 2);
 | ||
|     Error += glm::all(glm::equal(id, Y90rot3, Epsilon)) ? 0 : 1;
 | ||
| 
 | ||
|     // Testing a == 1, k == 1
 | ||
|     // Must be 90<39> rotation on Y : 0 0.7 0 0.7
 | ||
|     glm::quat Y90rot4 = glm::slerp(id, Y90rot, 0.2f, 1);
 | ||
|     Error += glm::all(glm::equal(Y90rot, Y90rot4, Epsilon)) ? 0 : 1;
 | ||
| 
 | ||
|     // Testing reverse case
 | ||
|     // Must be 45<34> rotation on Y : 0 0.38 0 0.92
 | ||
|     // Negative quaternion is representing same orientation
 | ||
|     glm::quat Ym45rot2 = glm::slerp(Y90rot, id, 0.9f, 1);
 | ||
|     glm::quat Ym45rot3 = glm::slerp(Y90rot, id, 0.5f);
 | ||
|     Error += glm::all(glm::equal(-Ym45rot2, Ym45rot3, Epsilon)) ? 0 : 1;
 | ||
| 
 | ||
|     // Testing against full circle around the sphere instead of shortest path
 | ||
|     // Must be 45<34> rotation on Y
 | ||
|     // certainly not a 135<33> rotation
 | ||
|     glm::quat Y45rot3 = glm::slerp(id, -Y90rot, 0.5f, 0);
 | ||
|     float Y45angle3 = glm::angle(Y45rot3);
 | ||
|     Error += glm::equal(Y45angle3, glm::pi<float>() * 0.25f, Epsilon) ? 0 : 1;
 | ||
|     Error += glm::all(glm::equal(Ym45rot3, Y45rot3, Epsilon)) ? 0 : 1;
 | ||
| 
 | ||
|     // Same, but inverted
 | ||
|     // Must also be 45<34> rotation on Y :  0 0.38 0 0.92
 | ||
|     // -0 -0.38 -0 -0.92 is ok too
 | ||
|     glm::quat Y45rot4 = glm::slerp(-Y90rot, id, 0.5f, 0);
 | ||
|     Error += glm::all(glm::equal(Ym45rot2, Y45rot4, Epsilon)) ? 0 : 1;
 | ||
| 
 | ||
|     // Testing q1 = q2 k == 2
 | ||
|     // Must be 90<39> rotation on Y : 0 0.7 0 0.7
 | ||
|     glm::quat Y90rot5 = glm::slerp(Y90rot, Y90rot, 0.5f, 2);
 | ||
|     Error += glm::all(glm::equal(Y90rot, Y90rot5, Epsilon)) ? 0 : 1;
 | ||
| 
 | ||
|     // Testing 180<38> rotation
 | ||
|     // Must be 90<39> rotation on almost any axis that is on the XZ plane
 | ||
|     glm::quat XZ90rot = glm::slerp(id, -Y90rot, 0.5f, 1);
 | ||
|     float XZ90angle = glm::angle(XZ90rot); // Must be PI/4 = 0.78;
 | ||
|     Error += glm::equal(XZ90angle, glm::pi<float>() * 1.25f, Epsilon) ? 0 : 1;
 | ||
| 
 | ||
|     // Testing rotation over long arc
 | ||
|     // Distance from id to 90<39> is 270<37>, so 2/3 of it should be 180<38>
 | ||
|     // Negative quaternion is representing same orientation
 | ||
|     glm::quat Neg90rot = glm::slerp(id, Y90rot, 2.0f / 3.0f, -1);
 | ||
|     Error += glm::all(glm::equal(Y180rot, -Neg90rot, Epsilon)) ? 0 : 1;
 | ||
| 
 | ||
|     return Error;
 | ||
| }
 | ||
| 
 | ||
| static int test_quat_mul_vec()
 | ||
| {
 | ||
| 	int Error(0);
 | ||
| 
 | ||
| 	glm::quat q = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1));
 | ||
| 	glm::vec3 v(1, 0, 0);
 | ||
| 	glm::vec3 u(q * v);
 | ||
| 	glm::vec3 w(u * q);
 | ||
| 
 | ||
| 	Error += glm::all(glm::equal(v, w, 0.01f)) ? 0 : 1;
 | ||
| 
 | ||
| 	return Error;
 | ||
| }
 | ||
| 
 | ||
| static int test_mul()
 | ||
| {
 | ||
| 	int Error = 0;
 | ||
| 
 | ||
| 	glm::quat temp1 = glm::normalize(glm::quat(1.0f, glm::vec3(0.0, 1.0, 0.0)));
 | ||
| 	glm::quat temp2 = glm::normalize(glm::quat(0.5f, glm::vec3(1.0, 0.0, 0.0)));
 | ||
| 
 | ||
| 	glm::vec3 transformed0 = (temp1 * glm::vec3(0.0, 1.0, 0.0) * glm::inverse(temp1));
 | ||
| 	glm::vec3 temp4 = temp2 * transformed0 * glm::inverse(temp2);
 | ||
| 
 | ||
| 	glm::quat temp5 = glm::normalize(temp1 * temp2);
 | ||
| 	glm::vec3 temp6 = temp5 * glm::vec3(0.0, 1.0, 0.0) * glm::inverse(temp5);
 | ||
| 
 | ||
| 	glm::quat temp7(1.0f, glm::vec3(0.0, 1.0, 0.0));
 | ||
| 
 | ||
| 	temp7 *= temp5;
 | ||
| 	temp7 *= glm::inverse(temp5);
 | ||
| 
 | ||
| 	Error += glm::any(glm::notEqual(temp7, glm::quat(1.0f, glm::vec3(0.0, 1.0, 0.0)), glm::epsilon<float>())) ? 1 : 0;
 | ||
| 
 | ||
| 	return Error;
 | ||
| }
 | ||
| 
 | ||
| int test_identity()
 | ||
| {
 | ||
| 	int Error = 0;
 | ||
| 
 | ||
| 	glm::quat const Q = glm::identity<glm::quat>();
 | ||
| 
 | ||
| 	Error += glm::all(glm::equal(Q, glm::quat(1, 0, 0, 0), 0.0001f)) ? 0 : 1;
 | ||
| 	Error += glm::any(glm::notEqual(Q, glm::quat(1, 0, 0, 0), 0.0001f)) ? 1 : 0;
 | ||
| 
 | ||
| 	glm::mat4 const M = glm::identity<glm::mat4x4>();
 | ||
| 	glm::mat4 const N(1.0f);
 | ||
| 
 | ||
| 	Error += glm::all(glm::equal(M, N, 0.0001f)) ? 0 : 1;
 | ||
| 
 | ||
| 	return Error;
 | ||
| }
 | ||
| 
 | ||
| int main()
 | ||
| {
 | ||
| 	int Error = 0;
 | ||
| 
 | ||
| 	Error += test_mul();
 | ||
| 	Error += test_quat_mul_vec();
 | ||
| 	Error += test_quat_angle();
 | ||
| 	Error += test_quat_angleAxis();
 | ||
| 	Error += test_quat_mix();
 | ||
| 	Error += test_quat_normalize();
 | ||
| 	Error += test_quat_euler();
 | ||
| 	Error += test_quat_slerp();
 | ||
|     Error += test_quat_slerp_spins();
 | ||
| 	Error += test_identity();
 | ||
| 
 | ||
| 	return Error;
 | ||
| }
 | 
