mirror of
https://github.com/RetroDECK/ES-DE.git
synced 2024-12-12 15:35:39 +00:00
687 lines
15 KiB
C++
687 lines
15 KiB
C++
#include <glm/ext/scalar_integer.hpp>
|
|
#include <glm/ext/scalar_int_sized.hpp>
|
|
#include <glm/ext/scalar_uint_sized.hpp>
|
|
#include <vector>
|
|
#include <ctime>
|
|
#include <cstdio>
|
|
|
|
#if GLM_LANG & GLM_LANG_CXX11_FLAG
|
|
#include <chrono>
|
|
|
|
namespace isPowerOfTwo
|
|
{
|
|
template<typename genType>
|
|
struct type
|
|
{
|
|
genType Value;
|
|
bool Return;
|
|
};
|
|
|
|
int test_int16()
|
|
{
|
|
type<glm::int16> const Data[] =
|
|
{
|
|
{0x0001, true},
|
|
{0x0002, true},
|
|
{0x0004, true},
|
|
{0x0080, true},
|
|
{0x0000, true},
|
|
{0x0003, false}
|
|
};
|
|
|
|
int Error = 0;
|
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int16>); i < n; ++i)
|
|
{
|
|
bool Result = glm::isPowerOfTwo(Data[i].Value);
|
|
Error += Data[i].Return == Result ? 0 : 1;
|
|
}
|
|
|
|
return Error;
|
|
}
|
|
|
|
int test_uint16()
|
|
{
|
|
type<glm::uint16> const Data[] =
|
|
{
|
|
{0x0001, true},
|
|
{0x0002, true},
|
|
{0x0004, true},
|
|
{0x0000, true},
|
|
{0x0000, true},
|
|
{0x0003, false}
|
|
};
|
|
|
|
int Error = 0;
|
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint16>); i < n; ++i)
|
|
{
|
|
bool Result = glm::isPowerOfTwo(Data[i].Value);
|
|
Error += Data[i].Return == Result ? 0 : 1;
|
|
}
|
|
|
|
return Error;
|
|
}
|
|
|
|
int test_int32()
|
|
{
|
|
type<int> const Data[] =
|
|
{
|
|
{0x00000001, true},
|
|
{0x00000002, true},
|
|
{0x00000004, true},
|
|
{0x0000000f, false},
|
|
{0x00000000, true},
|
|
{0x00000003, false}
|
|
};
|
|
|
|
int Error = 0;
|
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i)
|
|
{
|
|
bool Result = glm::isPowerOfTwo(Data[i].Value);
|
|
Error += Data[i].Return == Result ? 0 : 1;
|
|
}
|
|
|
|
return Error;
|
|
}
|
|
|
|
int test_uint32()
|
|
{
|
|
type<glm::uint> const Data[] =
|
|
{
|
|
{0x00000001, true},
|
|
{0x00000002, true},
|
|
{0x00000004, true},
|
|
{0x80000000, true},
|
|
{0x00000000, true},
|
|
{0x00000003, false}
|
|
};
|
|
|
|
int Error = 0;
|
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint>); i < n; ++i)
|
|
{
|
|
bool Result = glm::isPowerOfTwo(Data[i].Value);
|
|
Error += Data[i].Return == Result ? 0 : 1;
|
|
}
|
|
|
|
return Error;
|
|
}
|
|
|
|
int test()
|
|
{
|
|
int Error = 0;
|
|
|
|
Error += test_int16();
|
|
Error += test_uint16();
|
|
Error += test_int32();
|
|
Error += test_uint32();
|
|
|
|
return Error;
|
|
}
|
|
}//isPowerOfTwo
|
|
|
|
namespace nextPowerOfTwo_advanced
|
|
{
|
|
template<typename genIUType>
|
|
GLM_FUNC_QUALIFIER genIUType highestBitValue(genIUType Value)
|
|
{
|
|
genIUType tmp = Value;
|
|
genIUType result = genIUType(0);
|
|
while(tmp)
|
|
{
|
|
result = (tmp & (~tmp + 1)); // grab lowest bit
|
|
tmp &= ~result; // clear lowest bit
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template<typename genType>
|
|
GLM_FUNC_QUALIFIER genType nextPowerOfTwo_loop(genType value)
|
|
{
|
|
return glm::isPowerOfTwo(value) ? value : highestBitValue(value) << 1;
|
|
}
|
|
|
|
template<typename genType>
|
|
struct type
|
|
{
|
|
genType Value;
|
|
genType Return;
|
|
};
|
|
|
|
int test_int32()
|
|
{
|
|
type<glm::int32> const Data[] =
|
|
{
|
|
{0x0000ffff, 0x00010000},
|
|
{-3, -4},
|
|
{-8, -8},
|
|
{0x00000001, 0x00000001},
|
|
{0x00000002, 0x00000002},
|
|
{0x00000004, 0x00000004},
|
|
{0x00000007, 0x00000008},
|
|
{0x0000fff0, 0x00010000},
|
|
{0x0000f000, 0x00010000},
|
|
{0x08000000, 0x08000000},
|
|
{0x00000000, 0x00000000},
|
|
{0x00000003, 0x00000004}
|
|
};
|
|
|
|
int Error(0);
|
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int32>); i < n; ++i)
|
|
{
|
|
glm::int32 Result = glm::nextPowerOfTwo(Data[i].Value);
|
|
Error += Data[i].Return == Result ? 0 : 1;
|
|
}
|
|
|
|
return Error;
|
|
}
|
|
|
|
int test_uint32()
|
|
{
|
|
type<glm::uint32> const Data[] =
|
|
{
|
|
{0x00000001, 0x00000001},
|
|
{0x00000002, 0x00000002},
|
|
{0x00000004, 0x00000004},
|
|
{0x00000007, 0x00000008},
|
|
{0x0000ffff, 0x00010000},
|
|
{0x0000fff0, 0x00010000},
|
|
{0x0000f000, 0x00010000},
|
|
{0x80000000, 0x80000000},
|
|
{0x00000000, 0x00000000},
|
|
{0x00000003, 0x00000004}
|
|
};
|
|
|
|
int Error(0);
|
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint32>); i < n; ++i)
|
|
{
|
|
glm::uint32 Result = glm::nextPowerOfTwo(Data[i].Value);
|
|
Error += Data[i].Return == Result ? 0 : 1;
|
|
}
|
|
|
|
return Error;
|
|
}
|
|
|
|
int perf()
|
|
{
|
|
int Error(0);
|
|
|
|
std::vector<glm::uint> v;
|
|
v.resize(100000000);
|
|
|
|
std::clock_t Timestramp0 = std::clock();
|
|
|
|
for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i)
|
|
v[i] = nextPowerOfTwo_loop(i);
|
|
|
|
std::clock_t Timestramp1 = std::clock();
|
|
|
|
for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i)
|
|
v[i] = glm::nextPowerOfTwo(i);
|
|
|
|
std::clock_t Timestramp2 = std::clock();
|
|
|
|
std::printf("nextPowerOfTwo_loop: %d clocks\n", static_cast<int>(Timestramp1 - Timestramp0));
|
|
std::printf("glm::nextPowerOfTwo: %d clocks\n", static_cast<int>(Timestramp2 - Timestramp1));
|
|
|
|
return Error;
|
|
}
|
|
|
|
int test()
|
|
{
|
|
int Error(0);
|
|
|
|
Error += test_int32();
|
|
Error += test_uint32();
|
|
|
|
return Error;
|
|
}
|
|
}//namespace nextPowerOfTwo_advanced
|
|
|
|
namespace prevPowerOfTwo
|
|
{
|
|
template <typename T>
|
|
int run()
|
|
{
|
|
int Error = 0;
|
|
|
|
T const A = glm::prevPowerOfTwo(static_cast<T>(7));
|
|
Error += A == static_cast<T>(4) ? 0 : 1;
|
|
|
|
T const B = glm::prevPowerOfTwo(static_cast<T>(15));
|
|
Error += B == static_cast<T>(8) ? 0 : 1;
|
|
|
|
T const C = glm::prevPowerOfTwo(static_cast<T>(31));
|
|
Error += C == static_cast<T>(16) ? 0 : 1;
|
|
|
|
T const D = glm::prevPowerOfTwo(static_cast<T>(32));
|
|
Error += D == static_cast<T>(32) ? 0 : 1;
|
|
|
|
return Error;
|
|
}
|
|
|
|
int test()
|
|
{
|
|
int Error = 0;
|
|
|
|
Error += run<glm::int8>();
|
|
Error += run<glm::int16>();
|
|
Error += run<glm::int32>();
|
|
Error += run<glm::int64>();
|
|
|
|
Error += run<glm::uint8>();
|
|
Error += run<glm::uint16>();
|
|
Error += run<glm::uint32>();
|
|
Error += run<glm::uint64>();
|
|
|
|
return Error;
|
|
}
|
|
}//namespace prevPowerOfTwo
|
|
|
|
namespace nextPowerOfTwo
|
|
{
|
|
template <typename T>
|
|
int run()
|
|
{
|
|
int Error = 0;
|
|
|
|
T const A = glm::nextPowerOfTwo(static_cast<T>(7));
|
|
Error += A == static_cast<T>(8) ? 0 : 1;
|
|
|
|
T const B = glm::nextPowerOfTwo(static_cast<T>(15));
|
|
Error += B == static_cast<T>(16) ? 0 : 1;
|
|
|
|
T const C = glm::nextPowerOfTwo(static_cast<T>(31));
|
|
Error += C == static_cast<T>(32) ? 0 : 1;
|
|
|
|
T const D = glm::nextPowerOfTwo(static_cast<T>(32));
|
|
Error += D == static_cast<T>(32) ? 0 : 1;
|
|
|
|
return Error;
|
|
}
|
|
|
|
int test()
|
|
{
|
|
int Error = 0;
|
|
|
|
Error += run<glm::int8>();
|
|
Error += run<glm::int16>();
|
|
Error += run<glm::int32>();
|
|
Error += run<glm::int64>();
|
|
|
|
Error += run<glm::uint8>();
|
|
Error += run<glm::uint16>();
|
|
Error += run<glm::uint32>();
|
|
Error += run<glm::uint64>();
|
|
|
|
return Error;
|
|
}
|
|
}//namespace nextPowerOfTwo
|
|
|
|
namespace prevMultiple
|
|
{
|
|
template<typename genIUType>
|
|
struct type
|
|
{
|
|
genIUType Source;
|
|
genIUType Multiple;
|
|
genIUType Return;
|
|
};
|
|
|
|
template <typename T>
|
|
int run()
|
|
{
|
|
type<T> const Data[] =
|
|
{
|
|
{8, 3, 6},
|
|
{7, 7, 7}
|
|
};
|
|
|
|
int Error = 0;
|
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i)
|
|
{
|
|
T const Result = glm::prevMultiple(Data[i].Source, Data[i].Multiple);
|
|
Error += Data[i].Return == Result ? 0 : 1;
|
|
}
|
|
|
|
return Error;
|
|
}
|
|
|
|
int test()
|
|
{
|
|
int Error = 0;
|
|
|
|
Error += run<glm::int8>();
|
|
Error += run<glm::int16>();
|
|
Error += run<glm::int32>();
|
|
Error += run<glm::int64>();
|
|
|
|
Error += run<glm::uint8>();
|
|
Error += run<glm::uint16>();
|
|
Error += run<glm::uint32>();
|
|
Error += run<glm::uint64>();
|
|
|
|
return Error;
|
|
}
|
|
}//namespace prevMultiple
|
|
|
|
namespace nextMultiple
|
|
{
|
|
static glm::uint const Multiples = 128;
|
|
|
|
int perf_nextMultiple(glm::uint Samples)
|
|
{
|
|
std::vector<glm::uint> Results(Samples * Multiples);
|
|
|
|
std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now();
|
|
|
|
for(glm::uint Source = 0; Source < Samples; ++Source)
|
|
for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple)
|
|
{
|
|
Results[Source * Multiples + Multiple] = glm::nextMultiple(Source, Multiples);
|
|
}
|
|
|
|
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now();
|
|
|
|
std::printf("- glm::nextMultiple Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count()));
|
|
|
|
glm::uint Result = 0;
|
|
for(std::size_t i = 0, n = Results.size(); i < n; ++i)
|
|
Result += Results[i];
|
|
|
|
return Result > 0 ? 0 : 1;
|
|
}
|
|
|
|
template <typename T>
|
|
GLM_FUNC_QUALIFIER T nextMultipleMod(T Source, T Multiple)
|
|
{
|
|
T const Tmp = Source - static_cast<T>(1);
|
|
return Tmp + (Multiple - (Tmp % Multiple));
|
|
}
|
|
|
|
int perf_nextMultipleMod(glm::uint Samples)
|
|
{
|
|
std::vector<glm::uint> Results(Samples * Multiples);
|
|
|
|
std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now();
|
|
|
|
for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple)
|
|
for (glm::uint Source = 0; Source < Samples; ++Source)
|
|
{
|
|
Results[Source * Multiples + Multiple] = nextMultipleMod(Source, Multiples);
|
|
}
|
|
|
|
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now();
|
|
|
|
std::printf("- nextMultipleMod Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count()));
|
|
|
|
glm::uint Result = 0;
|
|
for(std::size_t i = 0, n = Results.size(); i < n; ++i)
|
|
Result += Results[i];
|
|
|
|
return Result > 0 ? 0 : 1;
|
|
}
|
|
|
|
template <typename T>
|
|
GLM_FUNC_QUALIFIER T nextMultipleNeg(T Source, T Multiple)
|
|
{
|
|
if(Source > static_cast<T>(0))
|
|
{
|
|
T const Tmp = Source - static_cast<T>(1);
|
|
return Tmp + (Multiple - (Tmp % Multiple));
|
|
}
|
|
else
|
|
return Source + (-Source % Multiple);
|
|
}
|
|
|
|
int perf_nextMultipleNeg(glm::uint Samples)
|
|
{
|
|
std::vector<glm::uint> Results(Samples * Multiples);
|
|
|
|
std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now();
|
|
|
|
for(glm::uint Source = 0; Source < Samples; ++Source)
|
|
for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple)
|
|
{
|
|
Results[Source * Multiples + Multiple] = nextMultipleNeg(Source, Multiples);
|
|
}
|
|
|
|
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now();
|
|
|
|
std::printf("- nextMultipleNeg Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count()));
|
|
|
|
glm::uint Result = 0;
|
|
for (std::size_t i = 0, n = Results.size(); i < n; ++i)
|
|
Result += Results[i];
|
|
|
|
return Result > 0 ? 0 : 1;
|
|
}
|
|
|
|
template <typename T>
|
|
GLM_FUNC_QUALIFIER T nextMultipleUFloat(T Source, T Multiple)
|
|
{
|
|
return Source + (Multiple - std::fmod(Source, Multiple));
|
|
}
|
|
|
|
int perf_nextMultipleUFloat(glm::uint Samples)
|
|
{
|
|
std::vector<float> Results(Samples * Multiples);
|
|
|
|
std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now();
|
|
|
|
for(glm::uint Source = 0; Source < Samples; ++Source)
|
|
for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple)
|
|
{
|
|
Results[Source * Multiples + Multiple] = nextMultipleUFloat(static_cast<float>(Source), static_cast<float>(Multiples));
|
|
}
|
|
|
|
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now();
|
|
|
|
std::printf("- nextMultipleUFloat Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count()));
|
|
|
|
float Result = 0;
|
|
for (std::size_t i = 0, n = Results.size(); i < n; ++i)
|
|
Result += Results[i];
|
|
|
|
return Result > 0.0f ? 0 : 1;
|
|
}
|
|
|
|
template <typename T>
|
|
GLM_FUNC_QUALIFIER T nextMultipleFloat(T Source, T Multiple)
|
|
{
|
|
if(Source > static_cast<float>(0))
|
|
return Source + (Multiple - std::fmod(Source, Multiple));
|
|
else
|
|
return Source + std::fmod(-Source, Multiple);
|
|
}
|
|
|
|
int perf_nextMultipleFloat(glm::uint Samples)
|
|
{
|
|
std::vector<float> Results(Samples * Multiples);
|
|
|
|
std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now();
|
|
|
|
for(glm::uint Source = 0; Source < Samples; ++Source)
|
|
for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple)
|
|
{
|
|
Results[Source * Multiples + Multiple] = nextMultipleFloat(static_cast<float>(Source), static_cast<float>(Multiples));
|
|
}
|
|
|
|
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now();
|
|
|
|
std::printf("- nextMultipleFloat Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count()));
|
|
|
|
float Result = 0;
|
|
for (std::size_t i = 0, n = Results.size(); i < n; ++i)
|
|
Result += Results[i];
|
|
|
|
return Result > 0.0f ? 0 : 1;
|
|
}
|
|
|
|
template<typename genIUType>
|
|
struct type
|
|
{
|
|
genIUType Source;
|
|
genIUType Multiple;
|
|
genIUType Return;
|
|
};
|
|
|
|
template <typename T>
|
|
int test_uint()
|
|
{
|
|
type<T> const Data[] =
|
|
{
|
|
{ 3, 4, 4 },
|
|
{ 6, 3, 6 },
|
|
{ 5, 3, 6 },
|
|
{ 7, 7, 7 },
|
|
{ 0, 1, 0 },
|
|
{ 8, 3, 9 }
|
|
};
|
|
|
|
int Error = 0;
|
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i)
|
|
{
|
|
T const Result0 = glm::nextMultiple(Data[i].Source, Data[i].Multiple);
|
|
Error += Data[i].Return == Result0 ? 0 : 1;
|
|
assert(!Error);
|
|
|
|
T const Result1 = nextMultipleMod(Data[i].Source, Data[i].Multiple);
|
|
Error += Data[i].Return == Result1 ? 0 : 1;
|
|
assert(!Error);
|
|
}
|
|
|
|
return Error;
|
|
}
|
|
|
|
int perf()
|
|
{
|
|
int Error = 0;
|
|
|
|
glm::uint const Samples = 10000;
|
|
|
|
for(int i = 0; i < 4; ++i)
|
|
{
|
|
std::printf("Run %d :\n", i);
|
|
Error += perf_nextMultiple(Samples);
|
|
Error += perf_nextMultipleMod(Samples);
|
|
Error += perf_nextMultipleNeg(Samples);
|
|
Error += perf_nextMultipleUFloat(Samples);
|
|
Error += perf_nextMultipleFloat(Samples);
|
|
std::printf("\n");
|
|
}
|
|
|
|
return Error;
|
|
}
|
|
|
|
int test()
|
|
{
|
|
int Error = 0;
|
|
|
|
Error += test_uint<glm::int8>();
|
|
Error += test_uint<glm::int16>();
|
|
Error += test_uint<glm::int32>();
|
|
Error += test_uint<glm::int64>();
|
|
|
|
Error += test_uint<glm::uint8>();
|
|
Error += test_uint<glm::uint16>();
|
|
Error += test_uint<glm::uint32>();
|
|
Error += test_uint<glm::uint64>();
|
|
|
|
return Error;
|
|
}
|
|
}//namespace nextMultiple
|
|
|
|
namespace findNSB
|
|
{
|
|
template<typename T>
|
|
struct type
|
|
{
|
|
T Source;
|
|
int SignificantBitCount;
|
|
int Return;
|
|
};
|
|
|
|
template <typename T>
|
|
int run()
|
|
{
|
|
type<T> const Data[] =
|
|
{
|
|
{ 0x00, 1,-1 },
|
|
{ 0x01, 2,-1 },
|
|
{ 0x02, 2,-1 },
|
|
{ 0x06, 3,-1 },
|
|
{ 0x01, 1, 0 },
|
|
{ 0x03, 1, 0 },
|
|
{ 0x03, 2, 1 },
|
|
{ 0x07, 2, 1 },
|
|
{ 0x05, 2, 2 },
|
|
{ 0x0D, 2, 2 }
|
|
};
|
|
|
|
int Error = 0;
|
|
|
|
for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i)
|
|
{
|
|
int const Result0 = glm::findNSB(Data[i].Source, Data[i].SignificantBitCount);
|
|
Error += Data[i].Return == Result0 ? 0 : 1;
|
|
assert(!Error);
|
|
}
|
|
|
|
return Error;
|
|
}
|
|
|
|
int test()
|
|
{
|
|
int Error = 0;
|
|
|
|
Error += run<glm::uint8>();
|
|
Error += run<glm::uint16>();
|
|
Error += run<glm::uint32>();
|
|
Error += run<glm::uint64>();
|
|
|
|
Error += run<glm::int8>();
|
|
Error += run<glm::int16>();
|
|
Error += run<glm::int32>();
|
|
Error += run<glm::int64>();
|
|
|
|
return Error;
|
|
}
|
|
}//namespace findNSB
|
|
|
|
int main()
|
|
{
|
|
int Error = 0;
|
|
|
|
Error += findNSB::test();
|
|
|
|
Error += isPowerOfTwo::test();
|
|
Error += prevPowerOfTwo::test();
|
|
Error += nextPowerOfTwo::test();
|
|
Error += nextPowerOfTwo_advanced::test();
|
|
Error += prevMultiple::test();
|
|
Error += nextMultiple::test();
|
|
|
|
# ifdef NDEBUG
|
|
Error += nextPowerOfTwo_advanced::perf();
|
|
Error += nextMultiple::perf();
|
|
# endif//NDEBUG
|
|
|
|
return Error;
|
|
}
|
|
|
|
#else
|
|
|
|
int main()
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif
|