Supermodel/Src/Graphics/New3D/R3DShaderTriangles.h

415 lines
12 KiB
C
Raw Normal View History

#ifndef _R3DSHADERTRIANGLES_H_
#define _R3DSHADERTRIANGLES_H_
static const char *vertexShaderR3D = R"glsl(
#version 120
// uniforms
uniform float modelScale;
uniform mat4 modelMat;
uniform mat4 projMat;
// attributes
attribute vec4 inVertex;
attribute vec3 inNormal;
attribute vec2 inTexCoord;
attribute vec4 inColour;
attribute vec3 inFaceNormal; // used to emulate r3d culling
attribute float inFixedShade;
// outputs to fragment shader
varying vec3 fsViewVertex;
varying vec3 fsViewNormal; // per vertex normal vector
varying vec2 fsTexCoord;
varying vec4 fsColor;
varying float fsDiscard; // can't have varying bool (glsl spec)
varying float fsFixedShade;
float CalcBackFace(in vec3 viewVertex)
{
vec3 vt = viewVertex - vec3(0.0);
vec3 vn = (mat3(modelMat) * inFaceNormal);
// dot product of face normal with view direction
return dot(vt, vn);
}
void main(void)
{
fsViewVertex = vec3(modelMat * inVertex);
fsViewNormal = (mat3(modelMat) * inNormal) / modelScale;
fsDiscard = CalcBackFace(fsViewVertex);
fsColor = inColour;
fsTexCoord = inTexCoord;
fsFixedShade = inFixedShade;
gl_Position = projMat * modelMat * inVertex;
}
)glsl";
static const char *fragmentShaderR3D = R"glsl(
#version 120
uniform sampler2D tex1; // base tex
uniform sampler2D tex2; // micro tex (optional)
// texturing
uniform bool textureEnabled;
uniform bool microTexture;
uniform float microTextureScale;
uniform vec2 baseTexSize;
uniform bool textureInverted;
uniform bool textureAlpha;
uniform bool alphaTest;
uniform bool discardAlpha;
uniform ivec2 textureWrapMode;
// general
uniform vec3 fogColour;
uniform vec4 spotEllipse; // spotlight ellipse position: .x=X position (screen coordinates), .y=Y position, .z=half-width, .w=half-height)
uniform vec2 spotRange; // spotlight Z range: .x=start (viewspace coordinates), .y=limit
uniform vec3 spotColor; // spotlight RGB color
uniform vec3 spotFogColor; // spotlight RGB color on fog
uniform vec3 lighting[2]; // lighting state (lighting[0] = sun direction, lighting[1].x,y = diffuse, ambient intensities from 0-1.0)
uniform bool lightEnabled; // lighting enabled (1.0) or luminous (0.0), drawn at full intensity
uniform bool sunClamp; // not used by daytona and la machine guns
uniform bool intensityClamp; // some games such as daytona and
uniform bool specularEnabled; // specular enabled
uniform float specularValue; // specular coefficient
uniform float shininess; // specular shininess
uniform float fogIntensity;
uniform float fogDensity;
uniform float fogStart;
uniform float fogAttenuation;
uniform float fogAmbient;
uniform bool fixedShading;
uniform int hardwareStep;
//interpolated inputs from vertex shader
varying vec3 fsViewVertex;
varying vec3 fsViewNormal; // per vertex normal vector
varying vec4 fsColor;
varying vec2 fsTexCoord;
varying float fsDiscard;
varying float fsFixedShade;
float mip_map_level(in vec2 texture_coordinate) // in texel units
{
vec2 dx_vtc = dFdx(texture_coordinate);
vec2 dy_vtc = dFdy(texture_coordinate);
float delta_max_sqr = max(dot(dx_vtc, dx_vtc), dot(dy_vtc, dy_vtc));
float mml = 0.5 * log2(delta_max_sqr);
return max( 0, mml );
}
float LinearTexLocations(int wrapMode, float size, float u, out float u0, out float u1)
{
float texelSize = 1.0 / size;
float halfTexelSize = 0.5 / size;
if(wrapMode==0) { // repeat
u = (u * size) - 0.5;
u0 = (floor(u) + 0.5) / size; // + 0.5 offset added to push us into the centre of a pixel, without we'll get rounding errors
u0 = fract(u0);
u1 = u0 + texelSize;
u1 = fract(u1);
return fract(u); // return weight
}
else if(wrapMode==1) { // repeat + clamp
u = fract(u); // must force into 0-1 to start
u = (u * size) - 0.5;
u0 = (floor(u) + 0.5) / size; // + 0.5 offset added to push us into the centre of a pixel, without we'll get rounding errors
u1 = u0 + texelSize;
if(u0 < 0.0) u0 = 0.0;
if(u1 >= 1.0) u1 = 1.0 - halfTexelSize;
return fract(u); // return weight
}
else { // mirror + mirror clamp - both are the same since the edge pixels are repeated anyway
float odd = floor(mod(u, 2.0)); // odd values are mirrored
if(odd > 0.0) {
u = 1.0 - fract(u);
}
else {
u = fract(u);
}
u = (u * size) - 0.5;
u0 = (floor(u) + 0.5) / size; // + 0.5 offset added to push us into the centre of a pixel, without we'll get rounding errors
u1 = u0 + texelSize;
if(u0 < 0.0) u0 = 0.0;
if(u1 >= 1.0) u1 = 1.0 - halfTexelSize;
return fract(u); // return weight
}
}
vec4 texBiLinear(sampler2D texSampler, float level, ivec2 wrapMode, vec2 texSize, vec2 texCoord)
{
float tx[2], ty[2];
float a = LinearTexLocations(wrapMode.s, texSize.x, texCoord.x, tx[0], tx[1]);
float b = LinearTexLocations(wrapMode.t, texSize.y, texCoord.y, ty[0], ty[1]);
vec4 p0q0 = texture2DLod(texSampler, vec2(tx[0],ty[0]), level);
vec4 p1q0 = texture2DLod(texSampler, vec2(tx[1],ty[0]), level);
vec4 p0q1 = texture2DLod(texSampler, vec2(tx[0],ty[1]), level);
vec4 p1q1 = texture2DLod(texSampler, vec2(tx[1],ty[1]), level);
if(alphaTest) {
if(p0q0.a > p1q0.a) { p1q0.rgb = p0q0.rgb; }
if(p0q0.a > p0q1.a) { p0q1.rgb = p0q0.rgb; }
if(p1q0.a > p0q0.a) { p0q0.rgb = p1q0.rgb; }
if(p1q0.a > p1q1.a) { p1q1.rgb = p1q0.rgb; }
if(p0q1.a > p0q0.a) { p0q0.rgb = p0q1.rgb; }
if(p0q1.a > p1q1.a) { p1q1.rgb = p0q1.rgb; }
if(p1q1.a > p0q1.a) { p0q1.rgb = p1q1.rgb; }
if(p1q1.a > p1q0.a) { p1q0.rgb = p1q1.rgb; }
}
// Interpolation in X direction.
vec4 pInterp_q0 = mix( p0q0, p1q0, a ); // Interpolates top row in X direction.
vec4 pInterp_q1 = mix( p0q1, p1q1, a ); // Interpolates bottom row in X direction.
return mix( pInterp_q0, pInterp_q1, b ); // Interpolate in Y direction.
}
vec4 textureR3D(sampler2D texSampler, ivec2 wrapMode, vec2 texSize, vec2 texCoord)
{
float numLevels = floor(log2(min(texSize.x, texSize.y))); // r3d only generates down to 1:1 for square textures, otherwise its the min dimension
float fLevel = min(mip_map_level(texCoord * texSize), numLevels);
if(alphaTest) fLevel *= 0.5;
else fLevel *= 0.8;
float iLevel = floor(fLevel); // value as an 'int'
vec2 texSize0 = texSize / pow(2, iLevel);
vec2 texSize1 = texSize / pow(2, iLevel+1.0);
vec4 texLevel0 = texBiLinear(texSampler, iLevel, wrapMode, texSize0, texCoord);
vec4 texLevel1 = texBiLinear(texSampler, iLevel+1.0, wrapMode, texSize1, texCoord);
return mix(texLevel0, texLevel1, fract(fLevel)); // linear blend between our mipmap levels
}
vec4 GetTextureValue()
{
vec4 tex1Data = textureR3D(tex1, textureWrapMode, baseTexSize, fsTexCoord);
if(textureInverted) {
tex1Data.rgb = vec3(1.0) - vec3(tex1Data.rgb);
}
if (microTexture) {
vec2 scale = (baseTexSize / 128.0) * microTextureScale;
vec4 tex2Data = textureR3D( tex2, ivec2(0), vec2(128.0), fsTexCoord * scale);
float lod = mip_map_level(fsTexCoord * scale * vec2(128.0));
float blendFactor = max(lod - 1.5, 0.0); // bias -1.5
blendFactor = min(blendFactor, 1.0); // clamp to max value 1
blendFactor = (blendFactor + 1.0) / 2.0; // 0.5 - 1 range
tex1Data = mix(tex2Data, tex1Data, blendFactor);
}
if (alphaTest) {
if (tex1Data.a < (32.0/255.0)) {
discard;
}
}
if(textureAlpha) {
if(discardAlpha) { // opaque 1st pass
if (tex1Data.a < 1.0) {
discard;
}
}
else { // transparent 2nd pass
if ((tex1Data.a * fsColor.a) >= 1.0) {
discard;
}
}
}
if (textureAlpha == false) {
tex1Data.a = 1.0;
}
return tex1Data;
}
void Step15Luminous(inout vec4 colour)
{
// luminous polys seem to behave very differently on step 1.5 hardware
// when fixed shading is enabled the colour is modulated by the vp ambient + fixed shade value
// when disabled it appears to be multiplied by 1.5, presumably to allow a higher range
if(hardwareStep==0x15) {
if(!lightEnabled && textureEnabled) {
if(fixedShading) {
colour.rgb *= 1.0 + fsFixedShade + lighting[1].y;
}
else {
colour.rgb *= vec3(1.5);
}
}
}
}
float CalcFog()
{
float z = -fsViewVertex.z;
float fog = fogIntensity * clamp(fogStart + z * fogDensity, 0.0, 1.0);
return fog;
}
void main()
{
vec4 tex1Data;
vec4 colData;
vec4 finalData;
vec4 fogData;
if(fsDiscard > 0) {
discard; //emulate back face culling here
}
fogData = vec4(fogColour.rgb * fogAmbient, CalcFog());
tex1Data = vec4(1.0, 1.0, 1.0, 1.0);
if(textureEnabled) {
tex1Data = GetTextureValue();
}
colData = fsColor;
Step15Luminous(colData); // no-op for step 2.0+
finalData = tex1Data * colData;
if (finalData.a < (1.0/16.0)) { // basically chuck out any totally transparent pixels value = 1/16 the smallest transparency level h/w supports
discard;
}
float ellipse;
ellipse = length((gl_FragCoord.xy - spotEllipse.xy) / spotEllipse.zw);
ellipse = pow(ellipse, 2.0); // decay rate = square of distance from center
ellipse = 1.0 - ellipse; // invert
ellipse = max(0.0, ellipse); // clamp
// Compute spotlight and apply lighting
float enable, absExtent, d, inv_r, range;
// start of spotlight
enable = step(spotRange.x, -fsViewVertex.z);
if (spotRange.y == 0.0) {
range = 0.0;
}
else {
absExtent = abs(spotRange.y);
d = spotRange.x + absExtent + fsViewVertex.z;
d = min(d, 0.0);
// slope of decay function
inv_r = 1.0 / (1.0 + absExtent);
// inverse-linear falloff
// Reference: https://imdoingitwrong.wordpress.com/2011/01/31/light-attenuation/
// y = 1 / (d/r + 1)^2
range = 1.0 / pow(d * inv_r - 1.0, 2.0);
range *= enable;
}
float lobeEffect = range * ellipse;
float lobeFogEffect = enable * ellipse;
if (lightEnabled) {
vec3 lightIntensity;
vec3 sunVector; // sun lighting vector (as reflecting away from vertex)
float sunFactor; // sun light projection along vertex normal (0.0 to 1.0)
// Sun angle
sunVector = lighting[0];
// Compute diffuse factor for sunlight
if(fixedShading) {
sunFactor = fsFixedShade;
}
else {
sunFactor = dot(sunVector, fsViewNormal);
}
// Clamp ceil, fix for upscaled models without "modelScale" defined
sunFactor = clamp(sunFactor,-1.0,1.0);
// Optional clamping, value is allowed to be negative
if(sunClamp) {
sunFactor = max(sunFactor,0.0);
}
// Total light intensity: sum of all components
lightIntensity = vec3(sunFactor*lighting[1].x + lighting[1].y); // diffuse + ambient
lightIntensity.rgb += spotColor*lobeEffect;
// Upper clamp is optional, step 1.5+ games will drive brightness beyond 100%
if(intensityClamp) {
lightIntensity = min(lightIntensity,1.0);
}
finalData.rgb *= lightIntensity;
// for now assume fixed shading doesn't work with specular
if (specularEnabled) {
float exponent, NdotL, specularFactor;
vec4 biasIndex, expIndex, multIndex;
// Always clamp floor to zero, we don't want deep black areas
NdotL = max(0.0,sunFactor);
expIndex = vec4(8.0, 16.0, 32.0, 64.0);
multIndex = vec4(2.0, 2.0, 3.0, 4.0);
biasIndex = vec4(0.95, 0.95, 1.05, 1.0);
exponent = expIndex[int(shininess)] / biasIndex[int(shininess)];
specularFactor = pow(NdotL, exponent);
specularFactor *= multIndex[int(shininess)];
specularFactor *= biasIndex[int(shininess)];
specularFactor *= specularValue;
specularFactor *= lighting[1].x;
if (colData.a < 1.0) {
/// Specular hi-light affects translucent polygons alpha channel ///
finalData.a = max(finalData.a, specularFactor);
}
finalData.rgb += vec3(specularFactor);
}
}
// Final clamp: we need it for proper shading in dimmed light and dark ambients
finalData.rgb = min(finalData.rgb, vec3(1.0));
// Spotlight on fog
vec3 lSpotFogColor = spotFogColor * fogAttenuation * fogColour.rgb * lobeFogEffect;
// Fog & spotlight applied
finalData.rgb = mix(finalData.rgb, fogData.rgb + lSpotFogColor, fogData.a);
gl_FragColor = finalData;
}
)glsl";
#endif