Supermodel/Src/OSD/SDL/Audio.cpp

695 lines
26 KiB
C++
Raw Normal View History

/**
** Supermodel
** A Sega Model 3 Arcade Emulator.
** Copyright 2011 Bart Trzynadlowski, Nik Henson
**
** This file is part of Supermodel.
**
** Supermodel is free software: you can redistribute it and/or modify it under
2020-07-27 10:28:48 +00:00
** the terms of the GNU General Public License as published by the Free
** Software Foundation, either version 3 of the License, or (at your option)
** any later version.
**
** Supermodel is distributed in the hope that it will be useful, but WITHOUT
** ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
** FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
** more details.
**
** You should have received a copy of the GNU General Public License along
** with Supermodel. If not, see <http://www.gnu.org/licenses/>.
**/
2020-07-27 10:28:48 +00:00
/*
* Audio.cpp
*
* SDL audio playback. Implements the OSD audio interface.
*
* Buffer sizes and read/write positions must be sample-aligned. A sample is
* defined to encompass both channels so for, e.g., 16-bit audio as used here,
* a sample is 4 bytes. Static assertions are employed to ensure that the
* initial set up of the buffer is correct.
*
* Model 3 Audio is always 4 channels. SCSP1 is usually for each front
* channels (on CN8 connector) and SCSP2 for rear channels (on CN7).
* The downmix to 2 channels will be performed here in case supermodel audio
* subsystem does not allow such playback.
* The default DSB board is supposed to be plug and mixed with the front output
* channel. The rear channel is usually plugged to the gullbow speakers that
* are present in most model 3 racing cabinets, while front speakers are only
* present in Daytona2, Scud Race, Sega Rally 2.
* As each cabinet as its own wiring, with different mixing, the games.xml
* database will provide which can of mixing should be applied for each game.
*
* From twin uk cabinet diagrams, at least:
* - lemans24: only stereo on rear speakers (gullbox) on front channels SCSP1/CN8.
* - scud race: DSB mixed with SCSP2/CN7 for rear (gullbox) speakers, front
* connected to SCSP1/CN8.
* - daytona2: front on SCSP1/CN8, rear on SCSP2/CN7
* - srally2: SCSP2/CN7 gives left/right, and SCSP1/CN8 is split in 2 channels:
* mono front, mono rear. These two channels are them mixed with L/R to give
* the quad output.
* - oceanhun: SCSP1/CN8 and SCSP2/CN7 are mixed together for stereo output.
* Others are unknown so far, but it is expected that most Step 2.x games should
* have quad output.
*/
#include "Audio.h"
#include "Supermodel.h"
2020-07-27 10:28:48 +00:00
#include "SDLIncludes.h"
#include <cmath>
2016-03-22 11:34:32 +00:00
#include <algorithm>
// Model3 audio output is 44.1KHz 4-channel sound and frame rate is 60fps
#define SAMPLE_RATE_M3 (44100)
#define SUPERMODEL_FPS (60.0f)
#define MODEL3_FPS (57.53f)
#define MAX_SND_FREQ (75)
#define MIN_SND_FREQ (45)
#define MAX_LATENCY (100)
#define NUM_CHANNELS_M3 (4)
Game::AudioTypes AudioType;
int nbHostAudioChannels = NUM_CHANNELS_M3; // Number of channels on host
#define SAMPLES_PER_FRAME_M3 (INT32)(SAMPLE_RATE_M3 / MODEL3_FPS)
#define BYTES_PER_SAMPLE_M3 (NUM_CHANNELS_M3 * sizeof(INT16))
#define BYTES_PER_FRAME_M3 (SAMPLES_PER_FRAME_M3 * BYTES_PER_SAMPLE_M3)
static int samples_per_frame_host = SAMPLES_PER_FRAME_M3;
static int bytes_per_sample_host = BYTES_PER_SAMPLE_M3;
static int bytes_per_frame_host = BYTES_PER_FRAME_M3;
// Balance percents for mixer
float BalanceLeftRight = 0; // 0 mid balance, 100: left only, -100:right only
float BalanceFrontRear = 0; // 0 mid balance, 100: front only, -100:right only
// Mixer factor (depends on values above)
float balanceFactorFrontLeft = 1.0f;
float balanceFactorFrontRight = 1.0f;
float balanceFactorRearLeft = 1.0f;
float balanceFactorRearRight = 1.0f;
static bool enabled = true; // True if sound output is enabled
static constexpr unsigned latency = 20; // Audio latency to use (ie size of audio buffer) as percentage of max buffer size
static constexpr bool underRunLoop = true; // True if should loop back to beginning of buffer on under-run, otherwise sound is just skipped
static constexpr unsigned playSamples = 512; // Size (in samples) of callback play buffer
static UINT32 audioBufferSize = 0; // Size (in bytes) of audio buffer
static INT8* audioBuffer = NULL; // Audio buffer
static UINT32 writePos = 0; // Current position at which writing into buffer
static UINT32 playPos = 0; // Current position at which playing data in buffer via callback
static bool writeWrapped = false; // True if write position has wrapped around at end of buffer but play position has not done so yet
static unsigned underRuns = 0; // Number of buffer under-runs that have occured
static unsigned overRuns = 0; // Number of buffer over-runs that have occured
static AudioCallbackFPtr callback = NULL; // Pointer to audio callback that is called when audio buffer is less than half empty
static void* callbackData = NULL; // Pointer to data to be passed to audio callback when it is called
static const Util::Config::Node* s_config = 0;
void SetAudioCallback(AudioCallbackFPtr newCallback, void* newData)
{
// Lock audio whilst changing callback pointers
SDL_LockAudio();
callback = newCallback;
callbackData = newData;
SDL_UnlockAudio();
}
void SetAudioEnabled(bool newEnabled)
{
enabled = newEnabled;
}
/// <summary>
/// Set game audio mixing type
/// </summary>
/// <param name="type"></param>
void SetAudioType(Game::AudioTypes type)
{
AudioType = type;
}
static INT16 AddAndClampINT16(INT32 x, INT32 y)
{
INT32 sum = x + y;
if (sum > INT16_MAX) {
sum = INT16_MAX;
}
if (sum < INT16_MIN) {
sum = INT16_MIN;
}
return (INT16)sum;
}
static INT16 MixINT16(INT32 x, INT32 y)
{
INT32 sum = (x + y)>>1;
if (sum > INT16_MAX) {
sum = INT16_MAX;
}
if (sum < INT16_MIN) {
sum = INT16_MIN;
}
return (INT16)sum;
}
static void PlayCallback(void* data, Uint8* stream, int len)
{
//printf("PlayCallback(%d) [writePos = %u, writeWrapped = %s, playPos = %u, audioBufferSize = %u]\n",
// len, writePos, (writeWrapped ? "true" : "false"), playPos, audioBufferSize);
2020-07-27 10:28:48 +00:00
// Get current write position and adjust it if write has wrapped but play position has not
UINT32 adjWritePos = writePos;
if (writeWrapped)
adjWritePos += audioBufferSize;
// Check if play position overlaps write position (ie buffer under-run)
if (playPos + len > adjWritePos)
{
underRuns++;
//printf("Audio buffer under-run #%u in PlayCallback(%d) [writePos = %u, writeWrapped = %s, playPos = %u, audioBufferSize = %u]\n",
// underRuns, len, writePos, (writeWrapped ? "true" : "false"), playPos, audioBufferSize);
2020-07-27 10:28:48 +00:00
// See what action to take on under-run
if (underRunLoop)
{
// If loop, then move play position back to beginning of data in buffer
playPos = adjWritePos + bytes_per_frame_host;
// Check if play position has moved past end of buffer
if (playPos >= audioBufferSize)
// If so, wrap it around to beginning again (but keep write wrapped flag as before)
playPos -= audioBufferSize;
else
// Otherwise, set write wrapped flag as will now appear as if write has wrapped but play position has not
writeWrapped = true;
}
else
{
// Otherwise, just copy silence to audio output stream and exit
memset(stream, 0, len);
return;
}
}
INT8* src1;
INT8* src2;
UINT32 len1;
UINT32 len2;
// Check if play region extends past end of buffer
if (playPos + len > audioBufferSize)
{
// If so, split play region into two
src1 = audioBuffer + playPos;
src2 = audioBuffer;
len1 = audioBufferSize - playPos;
len2 = len - len1;
}
else
{
// Otherwise, just copy whole region
src1 = audioBuffer + playPos;
src2 = 0;
len1 = len;
len2 = 0;
}
// Check if audio is enabled
if (enabled)
{
// If so, copy play region into audio output stream
memcpy(stream, src1, len1);
2020-07-27 10:28:48 +00:00
// Also, if not looping on under-runs then blank region out
if (!underRunLoop)
memset(src1, 0, len1);
if (len2)
{
// If region was split into two, copy second half into audio output stream as well
memcpy(stream + len1, src2, len2);
// Also, if not looping on under-runs then blank region out
if (!underRunLoop)
memset(src2, 0, len2);
}
}
else
// Otherwise, just copy silence to audio output stream
memset(stream, 0, len);
// Move play position forward for next time
playPos += len;
bool bufferFull = adjWritePos + 2 * bytes_per_frame_host > playPos + audioBufferSize;
// Check if play position has moved past end of buffer
if (playPos >= audioBufferSize)
{
// If so, wrap it around to beginning again and reset write wrapped flag
playPos -= audioBufferSize;
writeWrapped = false;
}
// If buffer is not full then call audio callback
if (callback && !bufferFull)
callback(callbackData);
}
static void MixChannels(unsigned numSamples, INT16* leftFrontBuffer, INT16* rightFrontBuffer, INT16* leftRearBuffer, INT16* rightRearBuffer, void* dest, bool flipStereo)
{
INT16* p = (INT16*)dest;
if (nbHostAudioChannels == 1) {
for (unsigned i = 0; i < numSamples; i++) {
INT16 monovalue = MixINT16(
MixINT16((INT32)(leftFrontBuffer[i] * balanceFactorFrontLeft), (INT32)(rightFrontBuffer[i] * balanceFactorFrontRight)),
MixINT16((INT32)(leftRearBuffer[i] * balanceFactorRearLeft), (INT32)(rightRearBuffer[i] * balanceFactorRearRight)));
*p++ = monovalue;
}
} else {
// Flip again left/right if configured in audio
switch (AudioType) {
case Game::STEREO_RL:
case Game::QUAD_1_FRL_2_RRL:
case Game::QUAD_1_RRL_2_FRL:
flipStereo = !flipStereo;
break;
}
// Now order channels according to audio type
if (nbHostAudioChannels == 2) {
for (unsigned i = 0; i < numSamples; i++) {
INT16 leftvalue = MixINT16((INT32)(leftFrontBuffer[i] * balanceFactorFrontLeft), (INT32)(leftRearBuffer[i] * balanceFactorRearLeft));
INT16 rightvalue = MixINT16((INT32)(rightFrontBuffer[i]*balanceFactorFrontRight), (INT32)(rightRearBuffer[i]*balanceFactorRearRight));
if (flipStereo) // swap left and right channels
{
*p++ = rightvalue;
*p++ = leftvalue;
} else {
*p++ = leftvalue;
*p++ = rightvalue;
}
}
} else if (nbHostAudioChannels == 4) {
for (unsigned i = 0; i < numSamples; i++) {
INT16 frontLeftValue = (INT16)(leftFrontBuffer[i]*balanceFactorFrontLeft);
INT16 frontRightValue = (INT16)(rightFrontBuffer[i]*balanceFactorFrontRight);
INT16 rearLeftValue = (INT16)(leftRearBuffer[i]*balanceFactorRearLeft);
INT16 rearRightValue = (INT16)(rightRearBuffer[i]*balanceFactorRearRight);
// Check game audio type
switch (AudioType) {
case Game::MONO: {
INT16 monovalue = MixINT16(MixINT16(frontLeftValue, frontRightValue), MixINT16(rearLeftValue, rearRightValue));
*p++ = monovalue;
*p++ = monovalue;
*p++ = monovalue;
*p++ = monovalue;
} break;
case Game::STEREO_LR:
case Game::STEREO_RL: {
INT16 leftvalue = MixINT16(frontLeftValue, frontRightValue);
INT16 rightvalue = MixINT16(rearLeftValue, rearRightValue);
if (flipStereo) // swap left and right channels
{
*p++ = rightvalue;
*p++ = leftvalue;
*p++ = rightvalue;
*p++ = leftvalue;
} else {
*p++ = leftvalue;
*p++ = rightvalue;
*p++ = leftvalue;
*p++ = rightvalue;
}
} break;
case Game::QUAD_1_FLR_2_RLR:
case Game::QUAD_1_FRL_2_RRL: {
// Normal channels Front Left/Right then Rear Left/Right
if (flipStereo) // swap left and right channels
{
*p++ = frontRightValue;
*p++ = frontLeftValue;
*p++ = rearRightValue;
*p++ = rearLeftValue;
} else {
*p++ = frontLeftValue;
*p++ = frontRightValue;
*p++ = rearLeftValue;
*p++ = rearRightValue;
}
} break;
case Game::QUAD_1_RLR_2_FLR:
case Game::QUAD_1_RRL_2_FRL:
// Reversed channels Front/Rear Left then Front/Rear Right
if (flipStereo) // swap left and right channels
{
*p++ = rearRightValue;
*p++ = rearLeftValue;
*p++ = frontRightValue;
*p++ = frontLeftValue;
} else {
*p++ = rearLeftValue;
*p++ = rearRightValue;
*p++ = frontLeftValue;
*p++ = frontRightValue;
}
break;
case Game::QUAD_1_LR_2_FR_MIX:
// Split mix: one goes to left/right, other front/rear (mono)
// =>Remix all!
INT16 newfrontLeftValue = MixINT16(frontLeftValue, rearLeftValue);
INT16 newfrontRightValue = MixINT16(frontLeftValue, rearRightValue);
INT16 newrearLeftValue = MixINT16(frontRightValue, rearLeftValue);
INT16 newrearRightValue = MixINT16(frontRightValue, rearRightValue);
if (flipStereo) // swap left and right channels
{
*p++ = newfrontRightValue;
*p++ = newfrontLeftValue;
*p++ = newrearRightValue;
*p++ = newrearLeftValue;
} else {
*p++ = newfrontLeftValue;
*p++ = newfrontRightValue;
*p++ = newrearLeftValue;
*p++ = newrearRightValue;
}
break;
}
}
}
}
}
2020-04-19 08:34:58 +00:00
/*
static void LogAudioInfo(SDL_AudioSpec *fmt)
{
InfoLog("Audio device information:");
InfoLog(" Frequency: %d", fmt->freq);
InfoLog(" Channels: %d", fmt->channels);
InfoLog("Sample Format: %d", fmt->format);
InfoLog("");
}
2020-04-19 08:34:58 +00:00
*/
/// <summary>
/// Prepare audio subsystem on host.
/// The requested channels is deduced, and SDL will make sure it is compatible with this.
/// </summary>
/// <param name="config"></param>
/// <returns></returns>
bool OpenAudio(const Util::Config::Node& config)
{
s_config = &config;
// Initialize SDL audio sub-system
if (SDL_InitSubSystem(SDL_INIT_AUDIO) != 0)
return ErrorLog("Unable to initialize SDL audio sub-system: %s\n", SDL_GetError());
// Number of channels requested in config (default is 4)
nbHostAudioChannels = (int)s_config->Get("NbSoundChannels").ValueAs<int>();
// If game is only stereo or mono, enforce host to reduce number of channels
switch (AudioType) {
case Game::MONO:
nbHostAudioChannels = std::min(nbHostAudioChannels, 1);
break;
case Game::STEREO_LR:
case Game::STEREO_RL:
nbHostAudioChannels = std::min(nbHostAudioChannels, 2);
break;
}
// Mixer Balance
float balancelr = (float)s_config->Get("BalanceLeftRight").ValueAs<float>();
if (balancelr < -100.0f)
balancelr = -100.0f;
else if (balancelr > 100.0f)
balancelr = 100.0f;
balancelr *= 0.01f;
BalanceLeftRight = balancelr;
float balancefr = (float)s_config->Get("BalanceFrontRear").ValueAs<float>();
if (balancefr < -100.0f)
balancefr = -100.0f;
else if (balancefr > 100.0f)
balancefr = 100.0f;
balancefr *= 0.01f;
BalanceFrontRear = balancefr;
balanceFactorFrontLeft = (BalanceLeftRight < 0.f ? 1.f + BalanceLeftRight : 1.f) * (BalanceFrontRear < 0 ? 1.f + BalanceFrontRear : 1.f);
balanceFactorFrontRight = (BalanceLeftRight > 0.f ? 1.f - BalanceLeftRight : 1.f) * (BalanceFrontRear < 0 ? 1.f + BalanceFrontRear : 1.f);
balanceFactorRearLeft = (BalanceLeftRight < 0.f ? 1.f + BalanceLeftRight : 1.f) * (BalanceFrontRear > 0 ? 1.f - BalanceFrontRear : 1.f);
balanceFactorRearRight = (BalanceLeftRight > 0.f ? 1.f - BalanceLeftRight : 1.f) * (BalanceFrontRear > 0 ? 1.f - BalanceFrontRear : 1.f);
// Set up audio specification
SDL_AudioSpec desired;
memset(&desired, 0, sizeof(SDL_AudioSpec));
desired.freq = SAMPLE_RATE_M3;
// Number of host channels to use (choice limited to 1,2,4)
desired.channels = nbHostAudioChannels;
desired.format = AUDIO_S16SYS;
desired.samples = playSamples;
desired.callback = PlayCallback;
// Now force SDL to use the format we requested (nullptr); it will convert if necessary
if (SDL_OpenAudio(&desired, nullptr) < 0) {
if (desired.channels==2) {
return ErrorLog("Unable to open 44.1KHz 2-channel audio with SDL: %s\n", SDL_GetError());
} else if (desired.channels==4) {
return ErrorLog("Unable to open 44.1KHz 4-channel audio with SDL: %s\n", SDL_GetError());
} else {
return ErrorLog("Unable to open 44.1KHz channel audio with SDL: %s\n", SDL_GetError());
}
}
float soundFreq_Hz = (float)s_config->Get("SoundFreq").ValueAs<float>();
if (soundFreq_Hz>MAX_SND_FREQ)
soundFreq_Hz = MAX_SND_FREQ;
if (soundFreq_Hz<MIN_SND_FREQ)
soundFreq_Hz = MIN_SND_FREQ;
samples_per_frame_host = (INT32)(SAMPLE_RATE_M3 / soundFreq_Hz);
bytes_per_sample_host = (nbHostAudioChannels * sizeof(INT16));
bytes_per_frame_host = (samples_per_frame_host * bytes_per_sample_host);
// Create audio buffer
uint32_t bufferSize = ((SAMPLE_RATE_M3 * latency) / MAX_LATENCY) * bytes_per_sample_host;
if (!(bufferSize % bytes_per_sample_host == 0)) {
return ErrorLog("must be an integer multiple of the sample size\n");
}
audioBufferSize = bufferSize;
int minBufferSize = 3 * bytes_per_frame_host;
audioBufferSize = std::max<int>(minBufferSize, audioBufferSize);
audioBuffer = new(std::nothrow) INT8[audioBufferSize];
if (audioBuffer == NULL) {
float audioBufMB = (float)audioBufferSize / (float)0x100000;
return ErrorLog("Insufficient memory for audio latency buffer (need %1.1f MB).", audioBufMB);
}
memset(audioBuffer, 0, sizeof(INT8) * audioBufferSize);
// Set initial play position to be beginning of buffer and initial write position to be half-way into buffer
playPos = 0;
uint32_t endOfBuffer = bufferSize - bytes_per_frame_host;
uint32_t midpointAfterFirstFrameUnaligned = bytes_per_frame_host + (bufferSize - bytes_per_frame_host) / 2;
uint32_t extraPaddingNeeded = (bytes_per_frame_host - midpointAfterFirstFrameUnaligned % bytes_per_frame_host) % bytes_per_frame_host;
uint32_t midpointAfterFirstFrame = midpointAfterFirstFrameUnaligned + extraPaddingNeeded;
if (!((endOfBuffer % (nbHostAudioChannels*sizeof(INT16))) == 0)) {
return ErrorLog("must be an integer multiple of the sample size\n");
}
if (!((midpointAfterFirstFrame % nbHostAudioChannels*sizeof(INT16)) == 0)) {
return ErrorLog("must be an integer multiple of the sample size\n");
}
writePos = std::min<int>(endOfBuffer, midpointAfterFirstFrame);
writeWrapped = false;
// Reset counters
underRuns = 0;
overRuns = 0;
// Start audio playing
SDL_PauseAudio(0);
return OKAY;
}
bool OutputAudio(unsigned numSamples, INT16* leftFrontBuffer, INT16* rightFrontBuffer, INT16* leftRearBuffer, INT16* rightRearBuffer, bool flipStereo)
{
//printf("OutputAudio(%u) [writePos = %u, writeWrapped = %s, playPos = %u, audioBufferSize = %u]\n",
// numSamples, writePos, (writeWrapped ? "true" : "false"), playPos, audioBufferSize);
UINT32 bytesRemaining;
UINT32 bytesToCopy;
INT16* src;
// Number of samples should never be more than max number of samples per frame
if (numSamples > (unsigned)samples_per_frame_host)
numSamples = samples_per_frame_host;
// Mix together left and right channels into single chunk of data
INT16 mixBuffer[NUM_CHANNELS_M3 * (SAMPLE_RATE_M3 / MIN_SND_FREQ)];
MixChannels(numSamples, leftFrontBuffer, rightFrontBuffer, leftRearBuffer, rightRearBuffer, mixBuffer, flipStereo);
2020-07-27 10:28:48 +00:00
// Lock SDL audio callback so that it doesn't interfere with following code
SDL_LockAudio();
2020-07-27 10:28:48 +00:00
// Calculate number of bytes for current sound chunk
UINT32 numBytes = numSamples * bytes_per_sample_host;
2020-07-27 10:28:48 +00:00
// Get end of current play region (writing must occur past this point)
UINT32 playEndPos = playPos + bytes_per_frame_host;
2020-07-27 10:28:48 +00:00
// Undo any wrap-around of the write position that may have occured to create following ordering: playPos < playEndPos < writePos
if (playEndPos > writePos && writeWrapped)
writePos += audioBufferSize;
// Check if play region has caught up with write position and now overlaps it (ie buffer under-run)
if (playEndPos > writePos)
{
underRuns++;
//printf("Audio buffer under-run #%u in OutputAudio(%u) [writePos = %u, writeWrapped = %s, playPos = %u, audioBufferSize = %u, numBytes = %u]\n",
// underRuns, numSamples, writePos, (writeWrapped ? "true" : "false"), playPos, audioBufferSize, numBytes);
2020-07-27 10:28:48 +00:00
// See what action to take on under-run
if (underRunLoop)
{
// If loop, then move play position back to beginning of data in buffer
playPos = writePos + numBytes + bytes_per_frame_host;
2020-07-27 10:28:48 +00:00
// Check if play position has moved past end of buffer
if (playPos >= audioBufferSize)
// If so, wrap it around to beginning again (but keep write wrapped flag as before)
playPos -= audioBufferSize;
2020-07-27 10:28:48 +00:00
else
{
// Otherwise, set write wrapped flag as will now appear as if write has wrapped but play position has not
writeWrapped = true;
writePos += audioBufferSize;
}
}
else
{
// Otherwise, bump write position forward in chunks until it is past end of play region
do
{
writePos += numBytes;
}
while (playEndPos > writePos);
}
}
// Check if write position has caught up with play region and now overlaps it (ie buffer over-run)
bool overRun = writePos + numBytes > playPos + audioBufferSize;
2020-07-27 10:28:48 +00:00
bool bufferFull = writePos + 2 * bytes_per_frame_host > playPos + audioBufferSize;
// Move write position back to within buffer
if (writePos >= audioBufferSize)
writePos -= audioBufferSize;
// Handle buffer over-run
if (overRun)
{
overRuns++;
//printf("Audio buffer over-run #%u in OutputAudio(%u) [writePos = %u, writeWrapped = %s, playPos = %u, audioBufferSize = %u, numBytes = %u]\n",
// overRuns, numSamples, writePos, (writeWrapped ? "true" : "false"), playPos, audioBufferSize, numBytes);
2020-07-27 10:28:48 +00:00
bufferFull = true;
// Discard current chunk of data
goto Finish;
}
src = mixBuffer;
INT8* dst1;
INT8* dst2;
UINT32 len1;
UINT32 len2;
// Check if write region extends past end of buffer
if (writePos + numBytes > audioBufferSize)
{
// If so, split write region into two
dst1 = audioBuffer + writePos;
dst2 = audioBuffer;
len1 = audioBufferSize - writePos;
len2 = numBytes - len1;
}
else
{
// Otherwise, just copy whole region
dst1 = audioBuffer + writePos;
dst2 = 0;
len1 = numBytes;
len2 = 0;
}
// Copy chunk to write position in buffer
bytesRemaining = numBytes;
bytesToCopy = (bytesRemaining > len1 ? len1 : bytesRemaining);
memcpy(dst1, src, bytesToCopy);
// Adjust for number of bytes copied
bytesRemaining -= bytesToCopy;
src = (INT16*)((UINT8*)src + bytesToCopy);
if (bytesRemaining)
{
// If write region was split into two, copy second half of chunk into buffer as well
bytesToCopy = (bytesRemaining > len2 ? len2 : bytesRemaining);
memcpy(dst2, src, bytesToCopy);
}
// Move write position forward for next time
writePos += numBytes;
// Check if write position has moved past end of buffer
if (writePos >= audioBufferSize)
{
// If so, wrap it around to beginning again and set write wrapped flag
writePos -= audioBufferSize;
writeWrapped = true;
}
Finish:
// Unlock SDL audio callback
SDL_UnlockAudio();
// Return whether buffer is half full
return bufferFull;
}
void CloseAudio()
{
// Close SDL audio output
SDL_CloseAudio();
// Delete audio buffer
if (audioBuffer != NULL)
{
delete[] audioBuffer;
audioBuffer = NULL;
}
}