2011-04-24 01:14:00 +00:00
/**
* * Supermodel
* * A Sega Model 3 Arcade Emulator .
2020-12-20 18:17:34 +00:00
* * Copyright 2011 - 2012 Bart Trzynadlowski , Nik Henson
2011-04-24 01:14:00 +00:00
* *
* * This file is part of Supermodel .
* *
* * Supermodel is free software : you can redistribute it and / or modify it under
2020-12-20 18:17:34 +00:00
* * the terms of the GNU General Public License as published by the Free
2011-04-24 01:14:00 +00:00
* * Software Foundation , either version 3 of the License , or ( at your option )
* * any later version .
* *
* * Supermodel is distributed in the hope that it will be useful , but WITHOUT
* * ANY WARRANTY ; without even the implied warranty of MERCHANTABILITY or
* * FITNESS FOR A PARTICULAR PURPOSE . See the GNU General Public License for
* * more details .
* *
* * You should have received a copy of the GNU General Public License along
* * with Supermodel . If not , see < http : //www.gnu.org/licenses/>.
* */
2020-12-20 18:17:34 +00:00
2023-09-23 14:27:04 +00:00
/*
* Render2D . cpp
*
* Implementation of the CRender2D class : OpenGL tile generator graphics .
*
* To - Do List
* - - - - - - - - - -
* - Is there a universal solution to the ' ROLLING START ' scrolling bug ( Scud
* Race ) and the scrolling text during Magical Truck Adventure ' s attract
* mode ? To fix Scud Race , either the stencil mask or the h - scroll value must
* be shifted by 16 pixels . Magical Truck Adventure is similar but opposite .
* Perhaps this is a function of timing registers accessed via JTAG ?
* - Is there a better way to handle the overscan regions in wide screen mode ?
* Is clearing two thin viewports better than one big clear ?
* - Are v - scroll values 9 or 10 bits ? ( Does it matter ? ) Lost World seems to
* have some scrolling issues .
* - A proper shut - down function is needed ! OpenGL might not be available when
* the destructor for this class is called .
*
* Tile Generator Hardware Overview
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
*
* Model 3 ' s medium resolution tile generator hardware appears to be derived
* from the Model 2 and System 24 chipset , but is much simpler . It consists of
* four 64 x64 tile layers , comprised of 8 x8 pixel tiles , with configurable
* priorities . There may be additional features but so far , no known Model 3
* games use them .
*
* VRAM is comprised of 1 MB for tile data and an additional 128 KB for the
* palette ( each color occupies 32 bits ) . The four tilemap layers are referred
* to as : A ( 0 ) , A ' ( 1 ) , B ( 2 ) , and B ' ( 3 ) . Palette RAM may be located on a
* separate RAM IC .
*
* Registers
* - - - - - - - - -
0xF1180020 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ?
- - - - - - - - - - - - - - - - x - - - - - - - - - - - - - - - Layer 3 bitdepth ( 0 = 8 - bit , 1 = 4 - bit )
- - - - - - - - - - - - - - - - - x - - - - - - - - - - - - - - Layer 2 bitdepth ( 0 = 8 - bit , 1 = 4 - bit )
- - - - - - - - - - - - - - - - - - x - - - - - - - - - - - - - Layer 1 bitdepth ( 0 = 8 - bit , 1 = 4 - bit )
- - - - - - - - - - - - - - - - - - - x - - - - - - - - - - - - Layer 0 bitdepth ( 0 = 8 - bit , 1 = 4 - bit )
- - - - - - - - - - - - - - - - - - - - x - - - - - - - - - - - Layer 3 priority ( 0 = below 3 D , 1 = above 3 D )
- - - - - - - - - - - - - - - - - - - - - x - - - - - - - - - - Layer 2 priority ( 0 = below 3 D , 1 = above 3 D )
- - - - - - - - - - - - - - - - - - - - - - x - - - - - - - - - Layer 1 priority ( 0 = below 3 D , 1 = above 3 D )
- - - - - - - - - - - - - - - - - - - - - - - x - - - - - - - - Layer 0 priority ( 0 = below 3 D , 1 = above 3 D )
0xF1180040 : Foreground layer color modulation
- - - - - - - - xxxxxxxx - - - - - - - - - - - - - - - - Red component
- - - - - - - - - - - - - - - - xxxxxxxx - - - - - - - - Green component
- - - - - - - - - - - - - - - - - - - - - - - - xxxxxxxx Blue component
0xF1180044 : Background layer color modulation
- - - - - - - - xxxxxxxx - - - - - - - - - - - - - - - - Red component
- - - - - - - - - - - - - - - - xxxxxxxx - - - - - - - - Green component
- - - - - - - - - - - - - - - - - - - - - - - - xxxxxxxx Blue component
0xF1180060 : x - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Layer 0 enable
- - - - - - - x xxxxxxxx - - - - - - - - - - - - - - - - Layer 0 Y scroll position
- - - - - - - - - - - - - - - - x - - - - - - - - - - - - - - - Layer 0 X line scroll enable
- - - - - - - - - - - - - - - - - - - - - - - x xxxxxxxx Layer 0 X scroll position
0xF1180064 : x - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Layer 1 enable
- - - - - - - x xxxxxxxx - - - - - - - - - - - - - - - - Layer 1 Y scroll position
- - - - - - - - - - - - - - - - x - - - - - - - - - - - - - - - Layer 1 X line scroll enable
- - - - - - - - - - - - - - - - - - - - - - - x xxxxxxxx Layer 1 X scroll position
0xF1180068 : x - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Layer 2 enable
- - - - - - - x xxxxxxxx - - - - - - - - - - - - - - - - Layer 2 Y scroll position
- - - - - - - - - - - - - - - - x - - - - - - - - - - - - - - - Layer 2 X line scroll enable
- - - - - - - - - - - - - - - - - - - - - - - x xxxxxxxx Layer 2 X scroll position
0xF118006C : x - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Layer 3 enable
- - - - - - - x xxxxxxxx - - - - - - - - - - - - - - - - Layer 3 Y scroll position
- - - - - - - - - - - - - - - - x - - - - - - - - - - - - - - - Layer 3 X line scroll enable
- - - - - - - - - - - - - - - - - - - - - - - x xxxxxxxx Layer 3 X scroll position
*
* VRAM Memory Map
* - - - - - - - - - - - - - - -
*
* The lower 1 MB of VRAM is used for storing tiles , per - line horizontal scroll
* values , and the stencil mask , which determines which of each pair of layers
* is displayed on a given line and column .
*
* 00000 - F5FFF Tile pattern data
* F6000 - F63FF Layer A horizontal scroll table ( 512 lines )
* F6400 - F67FF Layer A ' horizontal scroll table
* F6800 - F6BFF Layer B horizontal scroll table
* F6C00 - F6FFF Layer B ' horizontal scroll table
* F7000 - F77FF Mask table ( assuming 4 bytes per line , 512 lines )
* F7800 - F7FFF ?
* F8000 - F9FFF Layer A name table
* FA000 - FBFFF Layer A ' name table
* FC000 - FDFFF Layer B name table
* FE000 - FFFFF Layer B ' name table
*
* Tiles may actually address the entire 1 MB space , although in practice ,
* that would conflict with the other fixed memory regions .
*
* Palette
* - - - - - - -
*
* The palette stores 32768 colors . Each entry is a little endian 32 - bit word .
* The upper 16 bits are unused and the lower 16 bits contain the color :
*
* 15 0
* tbbb bbgg gggr rrrr
*
* The ' t ' bit is for transparency . When set , pixels of that color are
* transparent , unless they are the bottom - most layer .
*
* Tile Name Table and Pattern Layout
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
*
* The name table is a 64 x64 array of 16 - bit words serving as indices for tile
* pattern data and the palette . The first 64 words correspond to the first
* row of tiles , the next 64 to the second row , etc . Although 64 x64 entries
* describes a 512 x512 pixel screen , only the upper - left 62 x48 tiles are
* visible when the vertical and horizontal scroll values are 0. Scrolling
* moves the 496 x384 pixel ' window ' around , with individual wrapping of the
* two axes .
*
* The data is actually arranged in 32 - bit chunks in little endian format , so
* that tiles 0 , 1 , 2 , and 3 will be stored as 1 , 0 , 3 , 2. Fetching two name
* table entries as a single 32 - bit word places the left tile in the high 16
* bits and the right tile in the low 16 bits .
*
* The format of a name table entry in 4 - bit color mode is :
*
* 15 0
* jkpp pppp pppp iiii
*
* The pattern index is ' 0 ppp pppp pppi iiij ' . Multiplying by 32 yields the
* offset in VRAM at which the tile pattern data is stored . Note that the MSB
* of the name table entry becomes the LSB of the pattern index . This allows
* for 32768 4 - bit tile patterns , each occupying 32 bytes , which means the
* whole 1 MB VRAM space can be addressed .
*
* The 4 - bit pattern data is stored as 8 32 - bit words . Each word stores a row
* of 8 pixels :
*
* 31 0
* aaaa bbbb cccc dddd eeee ffff gggg hhhh
*
* ' a ' is the left - most pixel data . These 4 - bit values are combined with bits
* from the name table to form a palette index , which determines the final
* color . For example , for pixel ' a ' , the 15 - bit color index is :
*
* 14 0
* kpp pppp pppp aaaa
*
* Note that index bits are re - used to form the palette index , meaning that
* the pattern address partly determines the color .
*
* In 8 - bit color mode , the name table entry looks like :
*
* 15 0
* ? ppp pppp iiii iiii
*
* The low 15 ' p ' and ' i ' bits together form the pattern index , which must be
* multiplied by 64 to get the offset . The pattern data now consists of 16 32 -
* bit words , each containing four 8 - bit pixels :
*
* 31 0
* aaaa aaaa bbbb bbbb cccc cccc dddd dddd
*
* ' a ' is the left - most pixel . Each line is therefore comprised of two 32 - bit
* words . The palette index for pixel ' a ' is now formed from :
*
* 14 0
* ppp pppp aaaa aaaa
*
* Stencil Mask
* - - - - - - - - - - - -
*
* For any pixel position , there are in fact only two visible layers , despite
* there being four defined layers . The layers are grouped in pairs : A ( the
* ' primary ' layer ) and A ' ( the ' alternate ' ) form one pair , and B and B ' form
* the other . Only one of the primary or alternate layers from each group may
* be visible at a given position . The ' stencil mask ' controls this .
*
* The mask table is a bit field organized into 512 ( or 384 ? ) lines with each
* bit controlling four columns ( 32 pixels ) . The mask does not appear to be
* affected by scrolling - - that is , it does not scroll with the underlying
* tiles , which do so independently . The mask remains fixed .
*
* Each mask entry is a little endian 32 - bit word . The high 16 bits control
* A / A ' and the low 16 bits control B / B ' . Each word controls an entire line
* ( 32 pixels per bit , 512 pixels per 16 - bit line mask , where the first 16
* pixels are allocated to the overscan region . ) If a bit is set to 1 , the
* pixel from the primary layer is used , otherwise the alternate layer is
* used when the mask is 0. It is important to remember that the layers may
* have been scrolled independently . The mask operates on the final resultant
* two pixels that are determined for each location .
*
* Example of a line mask :
*
* 31 15 0
* 0111 0000 0000 1111 0000 0000 1111 1111
*
* These settings would display layer A ' for the first 32 pixels of the line ,
* followed by layer A for the next 96 pixels , A ' for the subsequent 256
* pixels , and A for the final 128 pixels . The first 256 pixels of the line
* would display layer B ' and the second 256 pixels would be from layer B .
*
* The stencil mask does not affect layer priorities , which are managed
* separately regardless of mask settings .
*
* Scrolling
* - - - - - - - - -
*
* Each of the four layers can be scrolled independently . Vertical scroll
* values are stored in the appropriate scroll register and horizontal scroll
* values can be sourced either from the register ( in which case the entire
* layer will be scrolled uniformly ) or from a table in VRAM ( which contains
* independent values for each line ) .
*
* The scroll registers are laid out as :
*
* 31 0
* e ? ? ? ? ? ? y yyyy yyyy h ? ? ? ? ? xx xxxx xxxx
*
* The ' e ' bit enables the layer when set . The ' y ' bits comprise a vertical
* scroll value in pixels . The ' x ' bits form a horizontal scroll value . If ' h '
* is set , then the VRAM table ( line - by - line scrolling ) is used , otherwise the
* ' x ' values are applied to every line . It is also possible that the scroll
* values use more or less bits , but probably no more than 1.
*
* Each line must be wrapped back to the beginning of the same line . Likewise ,
* vertical scrolling wraps around back to the top of the tilemap .
*
* The horizontal scroll table is a series of 16 - bit little endian words , one
* for each line beginning at 0. It appears all the values can be used for
* scrolling ( no control bits have been observed ) . The number of bits actually
* used by the hardware is irrelevant - - wrapping has the effect of making
* higher order bits unimportant .
*
* Layer Priorities
* - - - - - - - - - - - - - - - -
*
* The layer control register ( 0x20 ) contains 4 bits that appear to control
* layer priorities . It is assumed that the 3 D graphics , output by the Real3D
* pixel processors independently of the tile generator , constitute their own
* ' layer ' and that the 2 D tilemaps appear in front or behind . There may be a
* specific function for each priority bit or the field may be interpreted as a
* single 4 - bit value denoting preset layer orders .
*
* Color Offsets
* - - - - - - - - - - - - -
*
* Color offsets can be applied to the final RGB color value of every pixel .
* This is used for effects such as fading to a certain color , lightning ( Lost
* World ) , etc . The current best guess is that the two registers control each
* pair ( A / A ' and B / B ' ) of layers . The format appears to be :
*
* 31 0
* ? ? ? ? ? ? ? ? rrrr rrrr gggg gggg bbbb bbbb
*
* Where ' r ' , ' g ' , and ' b ' appear to be signed 8 - bit color offsets . Because
* they exceed the color resolution of the palette , they must be scaled
* appropriately .
*
* Color offset registers are handled in TileGen . cpp . Two palettes are computed
* - - one for A / A ' and another for B / B ' . These are passed to the renderer .
*/
2011-04-24 01:14:00 +00:00
2021-11-22 17:15:06 +00:00
# include "Render2D.h"
# include "Supermodel.h"
# include "Shader.h"
# include "Shaders2D.h" // fragment and vertex shaders
2012-02-20 03:45:48 +00:00
# include <cstring>
2020-07-31 19:18:51 +00:00
# include <GL/glew.h>
2011-04-24 01:14:00 +00:00
/******************************************************************************
2023-09-23 14:27:04 +00:00
Frame Display Functions
2011-04-24 01:14:00 +00:00
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2023-09-23 14:27:04 +00:00
// Set up viewport and OpenGL state for 2D rendering (sets up blending function but disables blending)
void CRender2D : : Setup2D ( bool isBottom )
{
glBlendFunc ( GL_SRC_ALPHA , GL_ONE_MINUS_SRC_ALPHA ) ; // alpha of 1.0 is opaque, 0 is transparent
// Disable Z-buffering
glDisable ( GL_DEPTH_TEST ) ;
// Clear everything if requested or just overscan areas for wide screen mode
if ( isBottom )
{
glClearColor ( 0.0 , 0.0 , 0.0 , 0.0 ) ;
glViewport ( 0 , 0 , m_totalXPixels , m_totalYPixels ) ;
glDisable ( GL_SCISSOR_TEST ) ; // scissor is enabled to fix the 2d/3d miss match problem
glClear ( GL_COLOR_BUFFER_BIT ) ; // we want to clear outside the scissored areas so must disable it
glEnable ( GL_SCISSOR_TEST ) ;
}
// Set up the viewport and orthogonal projection
bool stretchBottom = m_config [ " WideBackground " ] . ValueAs < bool > ( ) & & isBottom ;
if ( ! stretchBottom )
{
glViewport ( m_xOffset - m_correction , m_yOffset + m_correction , m_xPixels , m_yPixels ) ; //Preserve aspect ratio of tile layer by constraining and centering viewport
}
}
2011-04-24 01:14:00 +00:00
2023-09-23 14:27:04 +00:00
void CRender2D : : DrawSurface ( GLuint textureID )
{
m_shader . EnableShader ( ) ;
2011-04-24 01:14:00 +00:00
2023-09-23 14:27:04 +00:00
glEnable ( GL_BLEND ) ;
glBindVertexArray ( m_vao ) ;
glActiveTexture ( GL_TEXTURE0 ) ; // texture unit 0
glBindTexture ( GL_TEXTURE_2D , textureID ) ;
glDrawArrays ( GL_TRIANGLE_STRIP , 0 , 4 ) ;
glBindVertexArray ( 0 ) ;
glDisable ( GL_BLEND ) ;
2016-05-07 21:54:03 +00:00
2023-09-23 14:27:04 +00:00
m_shader . DisableShader ( ) ;
}
2011-04-24 01:14:00 +00:00
2023-09-23 14:27:04 +00:00
float CRender2D : : LineToPercentStart ( int lineNumber )
2011-04-24 01:14:00 +00:00
{
2023-09-23 14:27:04 +00:00
return lineNumber / 384.0f ;
2011-04-24 01:14:00 +00:00
}
2023-09-23 14:27:04 +00:00
float CRender2D : : LineToPercentEnd ( int lineNumber )
2011-04-24 01:14:00 +00:00
{
2023-09-23 14:27:04 +00:00
return ( lineNumber + 1 ) / 384.0f ;
2012-01-27 05:52:59 +00:00
}
2023-09-23 14:27:04 +00:00
void CRender2D : : BeginFrame ( void )
2012-01-27 05:52:59 +00:00
{
2011-04-24 01:14:00 +00:00
}
2016-05-07 21:54:03 +00:00
2023-09-23 14:27:04 +00:00
void CRender2D : : PreRenderFrame ( void )
{
glDisable ( GL_SCISSOR_TEST ) ;
glViewport ( 0 , 0 , 496 , 384 ) ;
2011-04-24 01:14:00 +00:00
2023-09-23 14:27:04 +00:00
m_shaderTileGen . EnableShader ( ) ;
2011-04-24 01:14:00 +00:00
2023-09-23 14:27:04 +00:00
glActiveTexture ( GL_TEXTURE0 ) ; // texture unit 0
glBindTexture ( GL_TEXTURE_2D , m_vramTexID ) ;
glTexSubImage2D ( GL_TEXTURE_2D , 0 , 0 , 0 , 512 , 512 , GL_RED_INTEGER , GL_UNSIGNED_INT , m_vram ) ;
glActiveTexture ( GL_TEXTURE1 ) ; // texture unit 1
glBindTexture ( GL_TEXTURE_2D , m_paletteTexID ) ;
glTexSubImage2D ( GL_TEXTURE_2D , 0 , 0 , 0 , 128 , 256 , GL_RED_INTEGER , GL_UNSIGNED_INT , m_vram + 0x40000 ) ;
glActiveTexture ( GL_TEXTURE0 ) ; // texture unit 1
2022-11-07 21:33:01 +00:00
2023-09-23 14:27:04 +00:00
glUniform1uiv ( m_shaderTileGen . uniformLocMap [ " regs " ] , 32 , m_regs ) ;
2022-11-07 21:33:01 +00:00
2023-09-23 14:27:04 +00:00
glBindVertexArray ( m_vao ) ;
2022-11-07 21:33:01 +00:00
2023-09-23 14:27:04 +00:00
m_fboBottom . Set ( ) ;
2022-11-07 21:33:01 +00:00
2023-09-23 14:27:04 +00:00
glClearColor ( 0 , 0 , 0 , 0 ) ;
glClear ( GL_COLOR_BUFFER_BIT ) ;
glEnable ( GL_BLEND ) ;
2022-11-07 21:33:01 +00:00
2023-09-23 14:27:04 +00:00
// render bottom layer
for ( int i = 4 ; i - - > 0 ; ) {
2011-04-24 01:14:00 +00:00
2023-09-23 14:27:04 +00:00
if ( ! IsEnabled ( i ) ) {
continue ;
}
2011-04-24 01:14:00 +00:00
2023-09-23 14:27:04 +00:00
if ( Above3D ( i ) ) {
continue ;
}
2016-05-08 19:27:08 +00:00
2023-09-23 14:27:04 +00:00
glUniform1i ( m_shaderTileGen . uniformLocMap [ " layerNumber " ] , i ) ;
glDrawArrays ( GL_TRIANGLE_STRIP , 0 , 4 ) ;
}
m_fboTop . Set ( ) ;
glClear ( GL_COLOR_BUFFER_BIT ) ;
// render top layer
for ( int i = 4 ; i - - > 0 ; ) {
if ( ! IsEnabled ( i ) ) {
continue ;
}
if ( ! Above3D ( i ) ) {
continue ;
}
glUniform1i ( m_shaderTileGen . uniformLocMap [ " layerNumber " ] , i ) ;
glDrawArrays ( GL_TRIANGLE_STRIP , 0 , 4 ) ;
}
glBindVertexArray ( 0 ) ;
m_shaderTileGen . DisableShader ( ) ;
m_fboBottom . Disable ( ) ;
glDisable ( GL_BLEND ) ;
2016-05-08 19:27:08 +00:00
}
void CRender2D : : RenderFrameBottom ( void )
{
2023-09-23 14:27:04 +00:00
Setup2D ( true ) ;
DrawSurface ( m_fboBottom . GetTextureID ( ) ) ;
2011-04-24 01:14:00 +00:00
}
2016-05-08 19:27:08 +00:00
void CRender2D : : RenderFrameTop ( void )
{
2023-09-23 14:27:04 +00:00
Setup2D ( false ) ;
DrawSurface ( m_fboTop . GetTextureID ( ) ) ;
2016-05-08 19:27:08 +00:00
}
2011-04-24 01:14:00 +00:00
void CRender2D : : EndFrame ( void )
2016-03-21 04:10:14 +00:00
{
2011-04-24 01:14:00 +00:00
}
/******************************************************************************
Emulation Callbacks
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2016-03-22 12:30:23 +00:00
2012-02-23 00:12:46 +00:00
// Deprecated
2016-05-07 21:54:03 +00:00
void CRender2D : : WriteVRAM ( unsigned addr , uint32_t data )
2011-07-04 20:53:37 +00:00
{
}
2011-04-24 01:14:00 +00:00
/******************************************************************************
Configuration , Initialization , and Shutdown
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2023-09-23 14:27:04 +00:00
void CRender2D : : AttachRegisters ( const uint32_t * regPtr )
2011-04-24 01:14:00 +00:00
{
2023-09-23 14:27:04 +00:00
m_regs = regPtr ;
DebugLog ( " Render2D attached registers \n " ) ;
2011-04-24 01:14:00 +00:00
}
2023-09-23 14:27:04 +00:00
void CRender2D : : AttachPalette ( const uint32_t * palPtr [ 2 ] )
2012-01-16 23:21:14 +00:00
{
2023-09-23 14:27:04 +00:00
m_palette [ 0 ] = palPtr [ 0 ] ;
m_palette [ 1 ] = palPtr [ 1 ] ;
DebugLog ( " Render2D attached palette \n " ) ;
2012-01-16 23:21:14 +00:00
}
2023-09-23 14:27:04 +00:00
void CRender2D : : AttachVRAM ( const uint8_t * vramPtr )
2011-04-24 01:14:00 +00:00
{
2023-09-23 14:27:04 +00:00
m_vram = ( uint32_t * ) vramPtr ;
DebugLog ( " Render2D attached VRAM \n " ) ;
2011-04-24 01:14:00 +00:00
}
2012-02-10 19:53:51 +00:00
bool CRender2D : : Init ( unsigned xOffset , unsigned yOffset , unsigned xRes , unsigned yRes , unsigned totalXRes , unsigned totalYRes )
2011-04-24 01:14:00 +00:00
{
2023-09-23 14:27:04 +00:00
// Resolution
m_xPixels = xRes ;
m_yPixels = yRes ;
m_xOffset = xOffset ;
m_yOffset = yOffset ;
m_totalXPixels = totalXRes ;
m_totalYPixels = totalYRes ;
m_correction = ( UINT32 ) ( ( ( yRes / 384.f ) * 2 ) + 0.5f ) ; // for some reason the 2d layer is 2 pixels off the 3D
return OKAY ;
2022-11-07 21:33:01 +00:00
}
CRender2D : : CRender2D ( const Util : : Config : : Node & config )
2023-09-23 14:27:04 +00:00
: m_config ( config ) ,
m_vao ( 0 ) ,
m_vram ( nullptr ) ,
m_palette { nullptr } ,
m_regs ( nullptr )
2022-11-07 21:33:01 +00:00
{
2023-09-23 14:27:04 +00:00
DebugLog ( " Built Render2D \n " ) ;
m_shader . LoadShaders ( s_vertexShaderSource , s_fragmentShaderSource ) ;
m_shader . GetUniformLocationMap ( " tex1 " ) ;
m_shader . EnableShader ( ) ;
// update uniform memory
glUniform1i ( m_shader . uniformLocMap [ " tex1 " ] , 0 ) ; // texture unit zero
m_shader . DisableShader ( ) ;
m_shaderTileGen . LoadShaders ( s_vertexShaderTileGen , s_fragmentShaderTileGen ) ;
m_shaderTileGen . GetUniformLocationMap ( " vram " ) ;
m_shaderTileGen . GetUniformLocationMap ( " palette " ) ;
m_shaderTileGen . GetUniformLocationMap ( " regs " ) ;
m_shaderTileGen . GetUniformLocationMap ( " layerNumber " ) ;
m_shaderTileGen . GetUniformLocationMap ( " lineStart " ) ;
m_shaderTileGen . GetUniformLocationMap ( " lineEnd " ) ;
m_shaderTileGen . EnableShader ( ) ;
glUniform1i ( m_shaderTileGen . uniformLocMap [ " vram " ] , 0 ) ; // texture unit 0
glUniform1i ( m_shaderTileGen . uniformLocMap [ " palette " ] , 1 ) ; // texture unit 1
glUniform1f ( m_shaderTileGen . uniformLocMap [ " lineStart " ] , LineToPercentStart ( 0 ) ) ;
glUniform1f ( m_shaderTileGen . uniformLocMap [ " lineEnd " ] , LineToPercentEnd ( 383 ) ) ;
m_shaderTileGen . DisableShader ( ) ;
glGenVertexArrays ( 1 , & m_vao ) ;
glBindVertexArray ( m_vao ) ;
// no states needed since we do it in the shader
glBindVertexArray ( 0 ) ;
glGenTextures ( 1 , & m_vramTexID ) ;
glBindTexture ( GL_TEXTURE_2D , m_vramTexID ) ;
glTexParameteri ( GL_TEXTURE_2D , GL_TEXTURE_WRAP_S , GL_REPEAT ) ;
glTexParameteri ( GL_TEXTURE_2D , GL_TEXTURE_WRAP_T , GL_REPEAT ) ;
glTexParameteri ( GL_TEXTURE_2D , GL_TEXTURE_MAG_FILTER , GL_NEAREST ) ;
glTexParameteri ( GL_TEXTURE_2D , GL_TEXTURE_MIN_FILTER , GL_NEAREST ) ;
glTexImage2D ( GL_TEXTURE_2D , 0 , GL_R32UI , 512 , 512 , 0 , GL_RED_INTEGER , GL_UNSIGNED_INT , nullptr ) ;
glGenTextures ( 1 , & m_paletteTexID ) ;
glBindTexture ( GL_TEXTURE_2D , m_paletteTexID ) ;
glTexParameteri ( GL_TEXTURE_2D , GL_TEXTURE_WRAP_S , GL_REPEAT ) ;
glTexParameteri ( GL_TEXTURE_2D , GL_TEXTURE_WRAP_T , GL_REPEAT ) ;
glTexParameteri ( GL_TEXTURE_2D , GL_TEXTURE_MAG_FILTER , GL_NEAREST ) ;
glTexParameteri ( GL_TEXTURE_2D , GL_TEXTURE_MIN_FILTER , GL_NEAREST ) ;
glTexImage2D ( GL_TEXTURE_2D , 0 , GL_R32UI , 128 , 256 , 0 , GL_RED_INTEGER , GL_UNSIGNED_INT , nullptr ) ;
glBindTexture ( GL_TEXTURE_2D , 0 ) ;
m_fboBottom . Create ( 496 , 384 ) ;
m_fboTop . Create ( 496 , 384 ) ;
2011-04-24 01:14:00 +00:00
}
CRender2D : : ~ CRender2D ( void )
2016-03-22 12:30:23 +00:00
{
2023-09-23 14:27:04 +00:00
m_shader . UnloadShaders ( ) ;
m_shaderTileGen . UnloadShaders ( ) ;
if ( m_vramTexID ) {
glDeleteTextures ( 1 , & m_vramTexID ) ;
m_vramTexID = 0 ;
}
if ( m_paletteTexID ) {
glDeleteTextures ( 1 , & m_paletteTexID ) ;
m_paletteTexID = 0 ;
}
if ( m_vao ) {
glDeleteVertexArrays ( 1 , & m_vao ) ;
m_vao = 0 ;
}
2020-12-20 18:17:34 +00:00
2023-09-23 14:27:04 +00:00
m_fboBottom . Destroy ( ) ;
m_fboTop . Destroy ( ) ;
2022-11-07 21:33:01 +00:00
2023-09-23 14:27:04 +00:00
m_vram = nullptr ;
2020-12-20 18:17:34 +00:00
2023-09-23 14:27:04 +00:00
DebugLog ( " Destroyed Render2D \n " ) ;
}
2016-05-07 21:54:03 +00:00
2023-09-23 14:27:04 +00:00
bool CRender2D : : IsEnabled ( int layerNumber )
{
return ( m_regs [ 0x60 / 4 + layerNumber ] & 0x80000000 ) > 0 ;
}
bool CRender2D : : Above3D ( int layerNumber )
{
return ( m_regs [ 0x20 / 4 ] > > ( 8 + layerNumber ) ) & 0x1 ;
2011-04-24 01:14:00 +00:00
}