Supermodel/Src/Graphics/New3D/R3DShaderQuads.h

658 lines
17 KiB
C
Raw Normal View History

#ifndef _R3DSHADERQUADS_H_
#define _R3DSHADERQUADS_H_
static const char *vertexShaderR3DQuads = R"glsl(
#version 450 core
// uniforms
uniform float modelScale;
uniform mat4 modelMat;
uniform mat4 projMat;
uniform bool translatorMap;
// attributes
in vec4 inVertex;
in vec3 inNormal;
in vec2 inTexCoord;
in vec3 inFaceNormal; // used to emulate r3d culling
in float inFixedShade;
in vec4 inColour;
// outputs to geometry shader
out VS_OUT
{
vec3 viewVertex;
vec3 viewNormal; // per vertex normal vector
vec2 texCoord;
float fixedShade;
vec4 color;
float discardPoly; // can't have varying bool (glsl spec)
} vs_out;
vec4 GetColour(vec4 colour)
{
vec4 c = colour;
if(translatorMap) {
c.rgb *= 16.0;
}
return c;
}
float CalcBackFace(in vec3 viewVertex)
{
vec3 vt = viewVertex - vec3(0.0);
vec3 vn = (mat3(modelMat) * inFaceNormal);
// dot product of face normal with view direction
return dot(vt, vn);
}
void main(void)
{
vs_out.viewVertex = vec3(modelMat * inVertex);
vs_out.viewNormal = (mat3(modelMat) * inNormal) / modelScale;
vs_out.discardPoly = CalcBackFace(vs_out.viewVertex);
vs_out.color = GetColour(inColour);
vs_out.texCoord = inTexCoord;
vs_out.fixedShade = inFixedShade;
gl_Position = projMat * modelMat * inVertex;
}
)glsl";
static const char *geometryShaderR3DQuads = R"glsl(
#version 450 core
layout (lines_adjacency) in;
layout (triangle_strip, max_vertices = 4) out;
in VS_OUT
{
vec3 viewVertex;
vec3 viewNormal; // per vertex normal vector
vec2 texCoord;
float fixedShade;
vec4 color;
float discardPoly; // can't have varying bool (glsl spec)
} gs_in[4];
out GS_OUT
{
noperspective vec2 v[4];
noperspective float area[4];
flat float oneOverW[4];
//our regular attributes
flat vec3 viewVertex[4];
flat vec3 viewNormal[4]; // per vertex normal vector
flat vec2 texCoord[4];
flat float fixedShade[4];
flat vec4 color;
} gs_out;
double area(dvec2 a, dvec2 b)
{
return a.x*b.y - a.y*b.x;
}
void main(void)
{
if(gs_in[0].discardPoly > 0) {
return; //emulate back face culling here (all vertices in poly have same value)
}
int i, j, j_next;
vec2 v[4];
for (i=0; i<4; i++) {
float oneOverW = 1.0 / gl_in[i].gl_Position.w;
gs_out.oneOverW[i] = oneOverW;
v[i] = gl_in[i].gl_Position.xy * oneOverW;
// our regular vertex attribs
gs_out.viewVertex[i] = gs_in[i].viewVertex * oneOverW;
gs_out.viewNormal[i] = gs_in[i].viewNormal * oneOverW;
gs_out.texCoord[i] = gs_in[i].texCoord * oneOverW;
gs_out.fixedShade[i] = gs_in[i].fixedShade * oneOverW;
}
// flat attributes
gs_out.color = gs_in[0].color;
for (i=0; i<4; i++) {
// Mapping of polygon vertex order to triangle strip vertex order.
//
// Quad (lines adjacency) Triangle strip
// vertex order: vertex order:
//
// 1----2 1----3
// | | ===> | \ |
// | | | \ |
// 0----3 0----2
//
int reorder[4] = int[]( 1, 0, 2, 3 );
int ii = reorder[i];
dvec2 vector[4];
for (j=0; j<4; j++) {
vector[j] = dvec2(v[j]) - dvec2(v[ii]);
gs_out.v[j] = vec2(vector[j]);
}
for (j=0; j<4; j++) {
j_next = (j+1) % 4;
gs_out.area[j] = float(area(vector[j], vector[j_next]));
}
gl_Position = gl_in[ii].gl_Position;
EmitVertex();
}
}
)glsl";
static const char *fragmentShaderR3DQuads = R"glsl(
#version 450 core
uniform sampler2D tex1; // base tex
uniform sampler2D tex2; // micro tex (optional)
// texturing
uniform bool textureEnabled;
uniform bool microTexture;
uniform float microTextureScale;
uniform vec2 baseTexSize;
uniform bool textureInverted;
uniform bool textureAlpha;
uniform bool alphaTest;
uniform bool discardAlpha;
uniform ivec2 textureWrapMode;
// general
uniform vec3 fogColour;
uniform vec4 spotEllipse; // spotlight ellipse position: .x=X position (screen coordinates), .y=Y position, .z=half-width, .w=half-height)
uniform vec2 spotRange; // spotlight Z range: .x=start (viewspace coordinates), .y=limit
uniform vec3 spotColor; // spotlight RGB color
uniform vec3 spotFogColor; // spotlight RGB color on fog
uniform vec3 lighting[2]; // lighting state (lighting[0] = sun direction, lighting[1].x,y = diffuse, ambient intensities from 0-1.0)
uniform bool lightEnabled; // lighting enabled (1.0) or luminous (0.0), drawn at full intensity
uniform bool sunClamp; // not used by daytona and la machine guns
uniform bool intensityClamp; // some games such as daytona and
uniform bool specularEnabled; // specular enabled
uniform float specularValue; // specular coefficient
uniform float shininess; // specular shininess
uniform float fogIntensity;
uniform float fogDensity;
uniform float fogStart;
uniform float fogAttenuation;
uniform float fogAmbient;
uniform bool fixedShading;
uniform int hardwareStep;
// test
uniform mat4 projMat;
//interpolated inputs from geometry shader
in GS_OUT
{
noperspective vec2 v[4];
noperspective float area[4];
flat float oneOverW[4];
//our regular attributes
flat vec3 viewVertex[4];
flat vec3 viewNormal[4]; // per vertex normal vector
flat vec2 texCoord[4];
flat float fixedShade[4];
flat vec4 color;
} fs_in;
//our calculated vertex attributes from the above
vec3 fsViewVertex;
vec3 fsViewNormal;
vec2 fsTexCoord;
float fsFixedShade;
vec4 fsColor;
//outputs
out vec4 outColor;
void QuadraticInterpolation()
{
uint i, i_next, i_prev;
vec2 s[4];
float A[4];
for (i=0; i<4; i++) {
s[i] = fs_in.v[i];
A[i] = fs_in.area[i];
}
float D[4];
float r[4];
for (i=0; i<4; i++) {
i_next = (i+1)%4;
D[i] = dot(s[i], s[i_next]);
r[i] = length(s[i]);
if (fs_in.oneOverW[i] < 0) { // is w[i] negative?
r[i] = -r[i];
}
}
float t[4];
for (i=0; i<4; i++) {
i_next = (i+1)%4;
if(A[i]==0.0) t[i] = 0; // check for zero area + div by zero
else t[i] = (r[i]*r[i_next] - D[i]) / A[i];
}
float uSum = 0;
float u[4];
for (i=0; i<4; i++) {
i_prev = (i-1)%4;
u[i] = (t[i_prev] + t[i]) / r[i];
uSum += u[i];
}
float lambda[4];
for (i=0; i<4; i++) {
lambda[i] = u[i] / uSum;
}
/* Discard fragments when all the weights are neither all negative nor all positive. */
int lambdaSignCount = 0;
for (i=0; i<4; i++) {
if (fs_in.oneOverW[i] < 0) {
if (lambda[i] > 0) {
lambdaSignCount--;
} else {
lambdaSignCount++;
}
}
else {
if (lambda[i] < 0) {
lambdaSignCount--;
} else {
lambdaSignCount++;
}
}
}
if (lambdaSignCount != 4) {
if(!gl_HelperInvocation) {
discard;
}
}
float interp_oneOverW = 0;
fsViewVertex = vec3(0.0);
fsViewNormal = vec3(0.0);
fsTexCoord = vec2(0.0);
fsFixedShade = 0.0;
fsColor = fs_in.color;
for (i=0; i<4; i++) {
fsViewVertex += lambda[i] * fs_in.viewVertex[i];
fsViewNormal += lambda[i] * fs_in.viewNormal[i];
fsTexCoord += lambda[i] * fs_in.texCoord[i];
fsFixedShade += lambda[i] * fs_in.fixedShade[i];
interp_oneOverW += lambda[i] * fs_in.oneOverW[i];
}
fsViewVertex /= interp_oneOverW;
fsViewNormal /= interp_oneOverW;
fsTexCoord /= interp_oneOverW;
fsFixedShade /= interp_oneOverW;
vec4 vertex;
float depth;
// dirty hack for co-planar polys that really need 100% identical values to depth test correctly
// the reason we waste cycles and calcute depth value here is because we have run out of vertex attribs
if(fs_in.oneOverW[0]==fs_in.oneOverW[1] &&
fs_in.oneOverW[1]==fs_in.oneOverW[2] &&
fs_in.oneOverW[2]==fs_in.oneOverW[3]) {
fsViewVertex.z = fs_in.viewVertex[0].z / fs_in.oneOverW[0];
vertex = projMat * vec4(fsViewVertex,1.0);
depth = ((vertex.z / vertex.w) + 1.0) / 2.0;
}
else {
vertex.z = (projMat[2][2] * fsViewVertex.z) + projMat[3][2]; // standard projMat * vertex - but just using Z components
depth = ((vertex.z * interp_oneOverW) + 1.0) / 2.0;
}
gl_FragDepth = depth;
}
float mip_map_level(in vec2 texture_coordinate) // in texel units
{
vec2 dx_vtc = dFdx(texture_coordinate);
vec2 dy_vtc = dFdy(texture_coordinate);
float delta_max_sqr = max(dot(dx_vtc, dx_vtc), dot(dy_vtc, dy_vtc));
float mml = 0.5 * log2(delta_max_sqr);
return max( 0, mml );
}
float LinearTexLocations(int wrapMode, float size, float u, out float u0, out float u1)
{
float texelSize = 1.0 / size;
float halfTexelSize = 0.5 / size;
if(wrapMode==0) { // repeat
u = (u * size) - 0.5;
u0 = (floor(u) + 0.5) / size; // + 0.5 offset added to push us into the centre of a pixel, without we'll get rounding errors
u0 = fract(u0);
u1 = u0 + texelSize;
u1 = fract(u1);
return fract(u); // return weight
}
else if(wrapMode==1) { // repeat + clamp
u = fract(u); // must force into 0-1 to start
u = (u * size) - 0.5;
u0 = (floor(u) + 0.5) / size; // + 0.5 offset added to push us into the centre of a pixel, without we'll get rounding errors
u1 = u0 + texelSize;
if(u0 < 0.0) u0 = 0.0;
if(u1 >= 1.0) u1 = 1.0 - halfTexelSize;
return fract(u); // return weight
}
else { // mirror + mirror clamp - both are the same since the edge pixels are repeated anyway
float odd = floor(mod(u, 2.0)); // odd values are mirrored
if(odd > 0.0) {
u = 1.0 - fract(u);
}
else {
u = fract(u);
}
u = (u * size) - 0.5;
u0 = (floor(u) + 0.5) / size; // + 0.5 offset added to push us into the centre of a pixel, without we'll get rounding errors
u1 = u0 + texelSize;
if(u0 < 0.0) u0 = 0.0;
if(u1 >= 1.0) u1 = 1.0 - halfTexelSize;
return fract(u); // return weight
}
}
vec4 texBiLinear(sampler2D texSampler, float level, ivec2 wrapMode, vec2 texSize, vec2 texCoord)
{
float tx[2], ty[2];
float a = LinearTexLocations(wrapMode.s, texSize.x, texCoord.x, tx[0], tx[1]);
float b = LinearTexLocations(wrapMode.t, texSize.y, texCoord.y, ty[0], ty[1]);
vec4 p0q0 = textureLod(texSampler, vec2(tx[0],ty[0]), level);
vec4 p1q0 = textureLod(texSampler, vec2(tx[1],ty[0]), level);
vec4 p0q1 = textureLod(texSampler, vec2(tx[0],ty[1]), level);
vec4 p1q1 = textureLod(texSampler, vec2(tx[1],ty[1]), level);
if(alphaTest) {
if(p0q0.a > p1q0.a) { p1q0.rgb = p0q0.rgb; }
if(p0q0.a > p0q1.a) { p0q1.rgb = p0q0.rgb; }
if(p1q0.a > p0q0.a) { p0q0.rgb = p1q0.rgb; }
if(p1q0.a > p1q1.a) { p1q1.rgb = p1q0.rgb; }
if(p0q1.a > p0q0.a) { p0q0.rgb = p0q1.rgb; }
if(p0q1.a > p1q1.a) { p1q1.rgb = p0q1.rgb; }
if(p1q1.a > p0q1.a) { p0q1.rgb = p1q1.rgb; }
if(p1q1.a > p1q0.a) { p1q0.rgb = p1q1.rgb; }
}
// Interpolation in X direction.
vec4 pInterp_q0 = mix( p0q0, p1q0, a ); // Interpolates top row in X direction.
vec4 pInterp_q1 = mix( p0q1, p1q1, a ); // Interpolates bottom row in X direction.
return mix( pInterp_q0, pInterp_q1, b ); // Interpolate in Y direction.
}
vec4 textureR3D(sampler2D texSampler, ivec2 wrapMode, vec2 texSize, vec2 texCoord)
{
float numLevels = floor(log2(min(texSize.x, texSize.y))); // r3d only generates down to 1:1 for square textures, otherwise its the min dimension
float fLevel = min(mip_map_level(texCoord * texSize), numLevels);
if(alphaTest) fLevel *= 0.5;
else fLevel *= 0.8;
float iLevel = floor(fLevel); // value as an 'int'
vec2 texSize0 = texSize / pow(2, iLevel);
vec2 texSize1 = texSize / pow(2, iLevel+1.0);
vec4 texLevel0 = texBiLinear(texSampler, iLevel, wrapMode, texSize0, texCoord);
vec4 texLevel1 = texBiLinear(texSampler, iLevel+1.0, wrapMode, texSize1, texCoord);
return mix(texLevel0, texLevel1, fract(fLevel)); // linear blend between our mipmap levels
}
vec4 GetTextureValue()
{
vec4 tex1Data = textureR3D(tex1, textureWrapMode, baseTexSize, fsTexCoord);
if(textureInverted) {
tex1Data.rgb = vec3(1.0) - vec3(tex1Data.rgb);
}
if (microTexture) {
vec2 scale = (baseTexSize / 128.0) * microTextureScale;
vec4 tex2Data = textureR3D( tex2, ivec2(0), vec2(128.0), fsTexCoord * scale);
float lod = mip_map_level(fsTexCoord * scale * vec2(128.0));
float blendFactor = max(lod - 1.5, 0.0); // bias -1.5
blendFactor = min(blendFactor, 1.0); // clamp to max value 1
blendFactor = (blendFactor + 1.0) / 2.0; // 0.5 - 1 range
tex1Data = mix(tex2Data, tex1Data, blendFactor);
}
if (alphaTest) {
if (tex1Data.a < (32.0/255.0)) {
discard;
}
}
if(textureAlpha) {
if(discardAlpha) { // opaque 1st pass
if (tex1Data.a < 1.0) {
discard;
}
}
else { // transparent 2nd pass
if ((tex1Data.a * fsColor.a) >= 1.0) {
discard;
}
}
}
if (textureAlpha == false) {
tex1Data.a = 1.0;
}
return tex1Data;
}
void Step15Luminous(inout vec4 colour)
{
// luminous polys seem to behave very differently on step 1.5 hardware
// when fixed shading is enabled the colour is modulated by the vp ambient + fixed shade value
// when disabled it appears to be multiplied by 1.5, presumably to allow a higher range
if(hardwareStep==0x15) {
if(!lightEnabled && textureEnabled) {
if(fixedShading) {
colour.rgb *= 1.0 + fsFixedShade + lighting[1].y;
}
else {
colour.rgb *= vec3(1.5);
}
}
}
}
float CalcFog()
{
float z = -fsViewVertex.z;
float fog = fogIntensity * clamp(fogStart + z * fogDensity, 0.0, 1.0);
return fog;
}
void main()
{
vec4 tex1Data;
vec4 colData;
vec4 finalData;
vec4 fogData;
QuadraticInterpolation(); // calculate our vertex attributes
fogData = vec4(fogColour.rgb * fogAmbient, CalcFog());
tex1Data = vec4(1.0, 1.0, 1.0, 1.0);
if(textureEnabled) {
tex1Data = GetTextureValue();
}
colData = fsColor;
Step15Luminous(colData); // no-op for step 2.0+
finalData = tex1Data * colData;
if (finalData.a < (1.0/16.0)) { // basically chuck out any totally transparent pixels value = 1/16 the smallest transparency level h/w supports
discard;
}
float ellipse;
ellipse = length((gl_FragCoord.xy - spotEllipse.xy) / spotEllipse.zw);
ellipse = pow(ellipse, 2.0); // decay rate = square of distance from center
ellipse = 1.0 - ellipse; // invert
ellipse = max(0.0, ellipse); // clamp
// Compute spotlight and apply lighting
float enable, absExtent, d, inv_r, range;
// start of spotlight
enable = step(spotRange.x, -fsViewVertex.z);
if (spotRange.y == 0.0) {
range = 0.0;
}
else {
absExtent = abs(spotRange.y);
d = spotRange.x + absExtent + fsViewVertex.z;
d = min(d, 0.0);
// slope of decay function
inv_r = 1.0 / (1.0 + absExtent);
// inverse-linear falloff
// Reference: https://imdoingitwrong.wordpress.com/2011/01/31/light-attenuation/
// y = 1 / (d/r + 1)^2
range = 1.0 / pow(d * inv_r - 1.0, 2.0);
range *= enable;
}
float lobeEffect = range * ellipse;
float lobeFogEffect = enable * ellipse;
if (lightEnabled) {
vec3 lightIntensity;
vec3 sunVector; // sun lighting vector (as reflecting away from vertex)
float sunFactor; // sun light projection along vertex normal (0.0 to 1.0)
// Sun angle
sunVector = lighting[0];
// Compute diffuse factor for sunlight
if(fixedShading) {
sunFactor = fsFixedShade;
}
else {
sunFactor = dot(sunVector, fsViewNormal);
}
// Clamp ceil, fix for upscaled models without "modelScale" defined
sunFactor = clamp(sunFactor,-1.0,1.0);
// Optional clamping, value is allowed to be negative
if(sunClamp) {
sunFactor = max(sunFactor,0.0);
}
// Total light intensity: sum of all components
lightIntensity = vec3(sunFactor*lighting[1].x + lighting[1].y); // diffuse + ambient
lightIntensity.rgb += spotColor*lobeEffect;
// Upper clamp is optional, step 1.5+ games will drive brightness beyond 100%
if(intensityClamp) {
lightIntensity = min(lightIntensity,1.0);
}
finalData.rgb *= lightIntensity;
// for now assume fixed shading doesn't work with specular
if (specularEnabled) {
float exponent, NdotL, specularFactor;
vec4 biasIndex, expIndex, multIndex;
// Always clamp floor to zero, we don't want deep black areas
NdotL = max(0.0,sunFactor);
expIndex = vec4(8.0, 16.0, 32.0, 64.0);
multIndex = vec4(2.0, 2.0, 3.0, 4.0);
biasIndex = vec4(0.95, 0.95, 1.05, 1.0);
exponent = expIndex[int(shininess)] / biasIndex[int(shininess)];
specularFactor = pow(NdotL, exponent);
specularFactor *= multIndex[int(shininess)];
specularFactor *= biasIndex[int(shininess)];
specularFactor *= specularValue;
specularFactor *= lighting[1].x;
if (colData.a < 1.0) {
/// Specular hi-light affects translucent polygons alpha channel ///
finalData.a = max(finalData.a, specularFactor);
}
finalData.rgb += vec3(specularFactor);
}
}
// Final clamp: we need it for proper shading in dimmed light and dark ambients
finalData.rgb = min(finalData.rgb, vec3(1.0));
// Spotlight on fog
vec3 lSpotFogColor = spotFogColor * fogAttenuation * fogColour.rgb * lobeFogEffect;
// Fog & spotlight applied
finalData.rgb = mix(finalData.rgb, fogData.rgb + lSpotFogColor, fogData.a);
// Write output
outColor = finalData;
}
)glsl";
#endif