Supermodel/Src/Graphics/New3D/New3D.cpp

978 lines
27 KiB
C++
Raw Normal View History

#include "New3D.h"
#include "PolyHeader.h"
#include "Texture.h"
#include "Vec.h"
#include <cmath> // needed by gcc
#ifndef M_PI
#define M_PI 3.14159265359
#endif
namespace New3D {
CNew3D::CNew3D()
{
m_cullingRAMLo = nullptr;
m_cullingRAMHi = nullptr;
m_polyRAM = nullptr;
m_vrom = nullptr;
m_textureRAM = nullptr;
}
CNew3D::~CNew3D()
{
m_vboDynamic.Destroy();
}
void CNew3D::AttachMemory(const UINT32 *cullingRAMLoPtr, const UINT32 *cullingRAMHiPtr, const UINT32 *polyRAMPtr, const UINT32 *vromPtr, const UINT16 *textureRAMPtr)
{
m_cullingRAMLo = cullingRAMLoPtr;
m_cullingRAMHi = cullingRAMHiPtr;
m_polyRAM = polyRAMPtr;
m_vrom = vromPtr;
m_textureRAM = textureRAMPtr;
}
void CNew3D::SetStep(int stepID)
{
m_step = stepID;
if ((m_step != 0x10) && (m_step != 0x15) && (m_step != 0x20) && (m_step != 0x21)) {
m_step = 0x10;
}
if (m_step > 0x10) {
m_offset = 0; // culling nodes are 10 words
m_vertexFactor = (1.0f / 2048.0f); // vertices are in 13.11 format
}
else {
m_offset = 2; // 8 words
m_vertexFactor = (1.0f / 128.0f); // 17.7
}
m_vboDynamic.Create(GL_ARRAY_BUFFER, GL_DYNAMIC_DRAW, sizeof(Poly)* 100000); // allocate space for 100k polys ~ 10meg
}
bool CNew3D::Init(unsigned xOffset, unsigned yOffset, unsigned xRes, unsigned yRes, unsigned totalXResParam, unsigned totalYResParam)
{
// Resolution and offset within physical display area
m_xRatio = xRes / 496.0f;
m_yRatio = yRes / 384.0f;
m_xOffs = xOffset;
m_yOffs = yOffset;
m_totalXRes = totalXResParam;
m_totalYRes = totalYResParam;
m_r3dShader.LoadShader();
glUseProgram(0);
return OKAY; // OKAY ? wtf ..
}
void CNew3D::UploadTextures(unsigned x, unsigned y, unsigned width, unsigned height)
{
m_texSheet.Invalidate(x, y, width, height);
}
void CNew3D::RenderScene(int priority, bool alpha)
{
if (alpha) {
glEnable(GL_BLEND);
}
for (auto &n : m_nodes) {
if (n.viewport.priority != priority || n.models.empty()) {
continue;
}
glViewport (n.viewport.x, n.viewport.y, n.viewport.width, n.viewport.height);
glMatrixMode (GL_PROJECTION);
glLoadMatrixf (n.viewport.projectionMatrix);
glMatrixMode (GL_MODELVIEW);
m_r3dShader.SetViewportUniforms(&n.viewport);
for (auto &m : n.models) {
bool matrixLoaded = false;
if (m.meshes.empty()) {
continue;
}
m_r3dShader.SetModelStates(&m);
for (auto &mesh : m.meshes) {
if (alpha) {
if (!mesh.textureAlpha && !mesh.polyAlpha) {
continue;
}
}
else {
if (mesh.textureAlpha || mesh.polyAlpha) {
continue;
}
}
if (!matrixLoaded) {
glLoadMatrixf(m.modelMat);
matrixLoaded = true; // do this here to stop loading matrices we don't need. Ie when rendering non transparent etc
}
if (mesh.texture) {
mesh.texture->BindTexture();
mesh.texture->SetWrapMode(mesh.mirrorU, mesh.mirrorV);
}
m_r3dShader.SetMeshUniforms(&mesh);
glDrawArrays(GL_TRIANGLES, mesh.vboOffset*3, mesh.triangleCount*3); // times 3 to convert triangles to vertices
}
}
}
glDisable(GL_BLEND);
glDepthMask(GL_TRUE);
}
void CNew3D::RenderFrame(void)
{
// release any resources from last frame
m_polyBuffer.clear(); // clear dyanmic model memory buffer
m_nodes.clear(); // memory will grow during the object life time, that's fine, no need to shrink to fit
m_modelMat.Release(); // would hope we wouldn't need this but no harm in checking
m_nodeAttribs.Reset();
glDepthFunc (GL_LEQUAL);
glEnable (GL_DEPTH_TEST);
glActiveTexture (GL_TEXTURE0);
glEnable (GL_CULL_FACE);
glFrontFace (GL_CW);
for (int pri = 0; pri <= 3; pri++) {
RenderViewport(0x800000, pri); // build model structure
}
m_vboDynamic.Bind(true);
m_vboDynamic.BufferSubData(0, m_polyBuffer.size()*sizeof(Poly), m_polyBuffer.data()); // upload all the data to GPU in one go
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glEnableClientState(GL_COLOR_ARRAY);
// before draw, specify vertex and index arrays with their offsets, offsetof is maybe evil ..
glVertexPointer (3, GL_FLOAT, sizeof(Vertex), 0);
glNormalPointer (GL_FLOAT, sizeof(Vertex), (void*)offsetof(Vertex, normal));
glTexCoordPointer (2, GL_FLOAT, sizeof(Vertex), (void*)offsetof(Vertex, texcoords));
glColorPointer (4, GL_UNSIGNED_BYTE, sizeof(Vertex), (void*)offsetof(Vertex, color));
m_r3dShader.SetShader(true);
for (int pri = 0; pri <= 3; pri++) {
glClear (GL_DEPTH_BUFFER_BIT);
RenderScene (pri, false);
RenderScene (pri, true);
}
m_r3dShader.SetShader(false); // unbind shader
m_vboDynamic.Bind(false);
glDisable(GL_CULL_FACE);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glDisableClientState(GL_COLOR_ARRAY);
}
void CNew3D::BeginFrame(void)
{
}
void CNew3D::EndFrame(void)
{
}
/******************************************************************************
Real3D Address Translation
Functions that interpret word-granular Real3D addresses and return pointers.
******************************************************************************/
// Translates 24-bit culling RAM addresses
const UINT32* CNew3D::TranslateCullingAddress(UINT32 addr)
{
addr &= 0x00FFFFFF; // caller should have done this already
if ((addr >= 0x800000) && (addr < 0x840000)) {
return &m_cullingRAMHi[addr & 0x3FFFF];
}
else if (addr < 0x100000) {
return &m_cullingRAMLo[addr];
}
return NULL;
}
// Translates model references
const UINT32* CNew3D::TranslateModelAddress(UINT32 modelAddr)
{
modelAddr &= 0x00FFFFFF; // caller should have done this already
if (modelAddr < 0x100000) {
return &m_polyRAM[modelAddr];
}
else {
return &m_vrom[modelAddr];
}
}
bool CNew3D::DrawModel(UINT32 modelAddr)
{
const UINT32 *modelAddress;
Model* m;
modelAddress = TranslateModelAddress(modelAddr);
// create a new model to push onto the vector
m_nodes.back().models.emplace_back(Model());
// get the pointer to the last element in the array
m = &m_nodes.back().models.back();
// copy lutidx - wtf is this
m->lutIdx = modelAddr & 0xFFFFFF;
// copy model matrix
for (int i = 0; i < 16; i++) {
m->modelMat[i] = m_modelMat.currentMatrix[i];
}
//calculate determinant
m->determinant = Determinant3x3(m_modelMat);
CacheModel(m, modelAddress);
return true;
}
// Descends into a 10-word culling node
void CNew3D::DescendCullingNode(UINT32 addr)
{
const UINT32 *node, *lodTable;
UINT32 matrixOffset, node1Ptr, node2Ptr;
float x, y, z;
int tx, ty;
if (m_nodeAttribs.StackLimit()) {
return;
}
node = TranslateCullingAddress(addr);
if (NULL == node) {
return;
}
// Extract known fields
node1Ptr = node[0x07 - m_offset];
node2Ptr = node[0x08 - m_offset];
matrixOffset = node[0x03 - m_offset] & 0xFFF;
x = *(float *)&node[0x04 - m_offset]; // magic numbers everywhere !
y = *(float *)&node[0x05 - m_offset];
z = *(float *)&node[0x06 - m_offset];
m_nodeAttribs.Push(); // save current attribs
if (!m_offset) // Step 1.5+
{
tx = 32 * ((node[0x02] >> 7) & 0x3F);
ty = 32 * (node[0x02] & 0x3F) + ((node[0x02] & 0x4000) ? 1024 : 0); // TODO: 5 or 6 bits for Y coord?
// apply texture offsets, else retain current ones
if ((node[0x02] & 0x8000)) {
m_nodeAttribs.currentTexOffsetX = tx;
m_nodeAttribs.currentTexOffsetY = ty;
m_nodeAttribs.currentTexOffset = node[0x02] & 0x7FFF;
}
}
// Apply matrix and translation
m_modelMat.PushMatrix();
// apply translation vector
if ((node[0x00] & 0x10)) {
m_modelMat.Translate(x, y, z);
}
// multiply matrix, if specified
else if (matrixOffset) {
MultMatrix(matrixOffset,m_modelMat);
}
// Descend down first link
if ((node[0x00] & 0x08)) // 4-element LOD table
{
lodTable = TranslateCullingAddress(node1Ptr);
if (NULL != lodTable) {
if ((node[0x03 - m_offset] & 0x20000000)) {
DescendCullingNode(lodTable[0] & 0xFFFFFF);
}
else {
DrawModel(lodTable[0] & 0xFFFFFF); //TODO
}
}
}
else {
DescendNodePtr(node1Ptr);
}
// Proceed to second link
m_modelMat.PopMatrix();
// seems to indicate second link is invalid (fixes circular references)
if ((node[0x00] & 0x07) != 0x06) {
DescendNodePtr(node2Ptr);
}
// Restore old texture offsets
m_nodeAttribs.Pop();
}
void CNew3D::DescendNodePtr(UINT32 nodeAddr)
{
// Ignore null links
if ((nodeAddr & 0x00FFFFFF) == 0) {
return;
}
switch ((nodeAddr >> 24) & 0xFF) // pointer type encoded in upper 8 bits
{
case 0x00: // culling node
DescendCullingNode(nodeAddr & 0xFFFFFF);
break;
case 0x01: // model (perhaps bit 1 is a flag in this case?)
case 0x03:
DrawModel(nodeAddr & 0xFFFFFF);
break;
case 0x04: // pointer list
DescendPointerList(nodeAddr & 0xFFFFFF);
break;
default:
//printf("ATTENTION: Unknown pointer format: %08X\n\n", nodeAddr);
break;
}
}
void CNew3D::DescendPointerList(UINT32 addr)
{
const UINT32* list;
UINT32 nodeAddr;
int listEnd;
if (m_listDepth > 2) { // several Step 2.1 games require this safeguard
return;
}
list = TranslateCullingAddress(addr);
if (NULL == list) {
return;
}
m_listDepth++;
// Traverse the list forward and print it out
listEnd = 0;
while (1)
{
if ((list[listEnd] & 0x02000000)) { // end of list (?)
break;
}
if ((list[listEnd] == 0) || (((list[listEnd]) >> 24) != 0)) {
listEnd--; // back up to last valid list element
break;
}
listEnd++;
}
for (int i = 0; i <= listEnd; i++) {
nodeAddr = list[i] & 0x00FFFFFF; // clear upper 8 bits to ensure this is processed as a culling node
if (!(list[i] & 0x01000000)) { //Fighting Vipers
if ((nodeAddr != 0) && (nodeAddr != 0x800800)) {
DescendCullingNode(nodeAddr);
}
}
}
/*
// Traverse the list backward and descend into each pointer
while (listEnd >= 0)
{
nodeAddr = list[listEnd] & 0x00FFFFFF; // clear upper 8 bits to ensure this is processed as a culling node
if (!(list[listEnd] & 0x01000000)) { //Fighting Vipers
if ((nodeAddr != 0) && (nodeAddr != 0x800800)) {
DescendCullingNode(nodeAddr);
}
}
listEnd--;
}
*/
m_listDepth--;
}
/******************************************************************************
Matrix Stack
******************************************************************************/
// Macro to generate column-major (OpenGL) index from y,x subscripts
#define CMINDEX(y,x) (x*4+y)
/*
* MultMatrix():
*
* Multiplies the matrix stack by the specified Real3D matrix. The matrix
* index is a 12-bit number specifying a matrix number relative to the base.
* The base matrix MUST be set up before calling this function.
*/
void CNew3D::MultMatrix(UINT32 matrixOffset, Mat4& mat)
{
GLfloat m[4*4];
const float *src = &m_matrixBasePtr[matrixOffset * 12];
if (m_matrixBasePtr == NULL) // LA Machineguns
return;
m[CMINDEX(0, 0)] = src[3];
m[CMINDEX(0, 1)] = src[4];
m[CMINDEX(0, 2)] = src[5];
m[CMINDEX(0, 3)] = src[0];
m[CMINDEX(1, 0)] = src[6];
m[CMINDEX(1, 1)] = src[7];
m[CMINDEX(1, 2)] = src[8];
m[CMINDEX(1, 3)] = src[1];
m[CMINDEX(2, 0)] = src[9];
m[CMINDEX(2, 1)] = src[10];
m[CMINDEX(2, 2)] = src[11];
m[CMINDEX(2, 3)] = src[2];
m[CMINDEX(3, 0)] = 0.0;
m[CMINDEX(3, 1)] = 0.0;
m[CMINDEX(3, 2)] = 0.0;
m[CMINDEX(3, 3)] = 1.0;
mat.MultMatrix(m);
}
/*
* InitMatrixStack():
*
* Initializes the modelview (model space -> view space) matrix stack and
* Real3D coordinate system. These are the last transforms to be applied (and
* the first to be defined on the stack) before projection.
*
* Model 3 games tend to define the following unusual base matrix:
*
* 0 0 -1 0
* 1 0 0 0
* 0 -1 0 0
* 0 0 0 1
*
* When this is multiplied by a column vector, the output is:
*
* -Z
* X
* -Y
* 1
*
* My theory is that the Real3D GPU accepts vectors in Z,X,Y order. The games
* store everything as X,Y,Z and perform the translation at the end. The Real3D
* also has Y and Z coordinates opposite of the OpenGL convention. This
* function inserts a compensating matrix to undo these things.
*
* NOTE: This function assumes we are in GL_MODELVIEW matrix mode.
*/
void CNew3D::InitMatrixStack(UINT32 matrixBaseAddr, Mat4& mat)
{
GLfloat m[4 * 4];
// This matrix converts vectors back from the weird Model 3 Z,X,Y ordering
// and also into OpenGL viewspace (-Y,-Z)
m[CMINDEX(0, 0)] = 0.0; m[CMINDEX(0, 1)] = 1.0; m[CMINDEX(0, 2)] = 0.0; m[CMINDEX(0, 3)] = 0.0;
m[CMINDEX(1, 0)] = 0.0; m[CMINDEX(1, 1)] = 0.0; m[CMINDEX(1, 2)] =-1.0; m[CMINDEX(1, 3)] = 0.0;
m[CMINDEX(2, 0)] =-1.0; m[CMINDEX(2, 1)] = 0.0; m[CMINDEX(2, 2)] = 0.0; m[CMINDEX(2, 3)] = 0.0;
m[CMINDEX(3, 0)] = 0.0; m[CMINDEX(3, 1)] = 0.0; m[CMINDEX(3, 2)] = 0.0; m[CMINDEX(3, 3)] = 1.0;
if (m_step > 0x10) {
mat.LoadMatrix(m);
}
else {
// Scaling seems to help w/ Step 1.0's extremely large coordinates
GLfloat s = 1.0f / 2048.0f; // this will fuck up normals
mat.LoadIdentity();
mat.Scale(s, s, s);
mat.MultMatrix(m);
}
// Set matrix base address and apply matrix #0 (coordinate system matrix)
m_matrixBasePtr = (float *)TranslateCullingAddress(matrixBaseAddr);
MultMatrix(0, mat);
}
// Draws viewports of the given priority
void CNew3D::RenderViewport(UINT32 addr, int pri)
{
GLfloat color[8][3] = // RGB1 translation
{
{ 0.0, 0.0, 0.0 }, // off
{ 0.0, 0.0, 1.0 }, // blue
{ 0.0, 1.0, 0.0 }, // green
{ 0.0, 1.0, 1.0 }, // cyan
{ 1.0, 0.0, 0.0 }, // red
{ 1.0, 0.0, 1.0 }, // purple
{ 1.0, 1.0, 0.0 }, // yellow
{ 1.0, 1.0, 1.0 } // white
};
const UINT32 *vpnode;
UINT32 nextAddr, nodeAddr, matrixBase;
int curPri;
int vpX, vpY, vpWidth, vpHeight;
int spotColorIdx;
GLfloat vpTopAngle, vpBotAngle, fovYDegrees;
GLfloat scrollFog, scrollAtt;
Viewport* vp;
// Translate address and obtain pointer
vpnode = TranslateCullingAddress(addr);
if (NULL == vpnode) {
return;
}
curPri = (vpnode[0x00] >> 3) & 3; // viewport priority
nextAddr = vpnode[0x01] & 0xFFFFFF; // next viewport
nodeAddr = vpnode[0x02]; // scene database node pointer
// Recursively process next viewport
if (vpnode[0x01] == 0) { // memory probably hasn't been set up yet, abort
return;
}
if (vpnode[0x01] != 0x01000000) {
RenderViewport(vpnode[0x01], pri);
}
// If the priority doesn't match, do not process
if (curPri != pri) {
return;
}
// create node object
m_nodes.emplace_back(Node());
m_nodes.back().models.reserve(2048); // create space for models
// get pointer to its viewport
vp = &m_nodes.back().viewport;
vp->priority = pri;
// Fetch viewport parameters (TO-DO: would rounding make a difference?)
vpX = (vpnode[0x1A] & 0xFFFF) >> 4; // viewport X (12.4 fixed point)
vpY = (vpnode[0x1A] >> 20) & 0xFFF; // viewport Y (12.4)
vpWidth = (vpnode[0x14] & 0xFFFF) >> 2; // width (14.2)
vpHeight = (vpnode[0x14] >> 18) & 0x3FFF; // height (14.2)
matrixBase = vpnode[0x16] & 0xFFFFFF; // matrix base address
// Field of view and clipping
vpTopAngle = (float)asin(*(float *)&vpnode[0x0E]); // FOV Y upper half-angle (radians)
vpBotAngle = (float)asin(*(float *)&vpnode[0x12]); // FOV Y lower half-angle
fovYDegrees = (vpTopAngle + vpBotAngle)*(float)(180.0 / 3.14159265358979323846);
// TO-DO: investigate clipping planes
//if (g_Config.wideScreen && (vpX == 0) && (vpWidth >= 495) && (vpY == 0) && (vpHeight >= 383)) // only expand viewports that occupy whole screen
//if (0)
if ((vpX == 0) && (vpWidth >= 495) && (vpY == 0) && (vpHeight >= 383))
{
// Wide screen hack only modifies X axis and not the Y FOV
vp->x = 0;
vp->y = m_yOffs + (GLint)((float)(384 - (vpY + vpHeight))*m_yRatio);
vp->width = m_totalXRes;
vp->height = (GLint)((float)vpHeight*m_yRatio);
vp->projectionMatrix.Perspective(fovYDegrees, (GLfloat)vp->width / (GLfloat)vp->height, 0.1f, 1e5); // use actual full screen ratio to get proper X FOV
}
else
{
vp->x = m_xOffs + (GLint)((float)vpX*m_xRatio);
vp->y = m_yOffs + (GLint)((float)(384 - (vpY + vpHeight))*m_yRatio);
vp->width = (GLint)((float)vpWidth*m_xRatio);
vp->height = (GLint)((float)vpHeight*m_yRatio);
vp->projectionMatrix.Perspective(fovYDegrees, (GLfloat)vpWidth / (GLfloat)vpHeight, 0.1f, 1e5); // use Model 3 viewport ratio
}
// Lighting (note that sun vector points toward sun -- away from vertex)
vp->lightingParams[0] = *(float *)&vpnode[0x05]; // sun X
vp->lightingParams[1] = *(float *)&vpnode[0x06]; // sun Y
vp->lightingParams[2] = *(float *)&vpnode[0x04]; // sun Z
vp->lightingParams[3] = *(float *)&vpnode[0x07]; // sun intensity
vp->lightingParams[4] = (float)((vpnode[0x24] >> 8) & 0xFF) * (1.0f / 255.0f); // ambient intensity
vp->lightingParams[5] = 0.0; // reserved
// Spotlight
spotColorIdx = (vpnode[0x20] >> 11) & 7; // spotlight color index
vp->spotEllipse[0] = (float)((vpnode[0x1E] >> 3) & 0x1FFF); // spotlight X position (fractional component?)
vp->spotEllipse[1] = (float)((vpnode[0x1D] >> 3) & 0x1FFF); // spotlight Y
vp->spotEllipse[2] = (float)((vpnode[0x1E] >> 16) & 0xFFFF); // spotlight X size (16-bit? May have fractional component below bit 16)
vp->spotEllipse[3] = (float)((vpnode[0x1D] >> 16) & 0xFFFF); // spotlight Y size
vp->spotRange[0] = 1.0f / (*(float *)&vpnode[0x21]); // spotlight start
vp->spotRange[1] = *(float *)&vpnode[0x1F]; // spotlight extent
vp->spotColor[0] = color[spotColorIdx][0]; // spotlight color
vp->spotColor[1] = color[spotColorIdx][1];
vp->spotColor[2] = color[spotColorIdx][2];
// Spotlight is applied on a per pixel basis, must scale its position and size to screen
vp->spotEllipse[1] = 384.0f - vp->spotEllipse[1];
vp->spotRange[1] += vp->spotRange[0]; // limit
vp->spotEllipse[2] = 496.0f / sqrt(vp->spotEllipse[2]); // spotlight appears to be specified in terms of physical resolution (unconfirmed)
vp->spotEllipse[3] = 384.0f / sqrt(vp->spotEllipse[3]);
// Scale the spotlight to the OpenGL viewport
vp->spotEllipse[0] = vp->spotEllipse[0] * m_xRatio + m_xOffs;
vp->spotEllipse[1] = vp->spotEllipse[1] * m_yRatio + m_yOffs;
vp->spotEllipse[2] *= m_xRatio;
vp->spotEllipse[3] *= m_yRatio;
// Fog
vp->fogParams[0] = (float)((vpnode[0x22] >> 16) & 0xFF) * (1.0f / 255.0f); // fog color R
vp->fogParams[1] = (float)((vpnode[0x22] >> 8) & 0xFF) * (1.0f / 255.0f); // fog color G
vp->fogParams[2] = (float)((vpnode[0x22] >> 0) & 0xFF) * (1.0f / 255.0f); // fog color B
vp->fogParams[3] = *(float *)&vpnode[0x23]; // fog density
vp->fogParams[4] = (float)(INT16)(vpnode[0x25] & 0xFFFF)*(1.0f / 255.0f); // fog start
if (std::isinf(vp->fogParams[3]) || std::isnan(vp->fogParams[3]) || std::isinf(vp->fogParams[4]) || std::isnan(vp->fogParams[4])) { // Star Wars Trilogy
vp->fogParams[3] = vp->fogParams[4] = 0.0f;
}
// Unknown light/fog parameters
scrollFog = (float)(vpnode[0x20] & 0xFF) * (1.0f / 255.0f); // scroll fog
scrollAtt = (float)(vpnode[0x24] & 0xFF) * (1.0f / 255.0f); // scroll attenuation
// Clear texture offsets before proceeding
m_nodeAttribs.Reset();
// Set up coordinate system and base matrix
InitMatrixStack(matrixBase, m_modelMat);
// Safeguard: weird coordinate system matrices usually indicate scenes that will choke the renderer
if (NULL != m_matrixBasePtr)
{
float m21, m32, m13;
// Get the three elements that are usually set and see if their magnitudes are 1
m21 = m_matrixBasePtr[6];
m32 = m_matrixBasePtr[10];
m13 = m_matrixBasePtr[5];
m21 *= m21;
m32 *= m32;
m13 *= m13;
if ((m21>1.05) || (m21<0.95))
return;
if ((m32>1.05) || (m32<0.95))
return;
if ((m13>1.05) || (m13<0.95))
return;
}
m_listDepth = 0;
// Descend down the node link: Use recursive traversal
DescendNodePtr(nodeAddr);
}
void CNew3D::CopyVertexData(R3DPoly& r3dPoly, std::vector<Poly>& polyArray)
{
//====================
Poly p;
V3::Vec3 normal;
float dotProd;
bool clockWise;
//====================
V3::createNormal(r3dPoly.v[0].pos, r3dPoly.v[1].pos, r3dPoly.v[2].pos, normal);
dotProd = V3::dotProduct(normal, r3dPoly.faceNormal);
clockWise = dotProd >= 0.0;
if (clockWise) {
p.p1 = r3dPoly.v[0];
p.p2 = r3dPoly.v[1];
p.p3 = r3dPoly.v[2];
}
else {
p.p1 = r3dPoly.v[2];
p.p2 = r3dPoly.v[1];
p.p3 = r3dPoly.v[0];
}
polyArray.emplace_back(p);
if (r3dPoly.number == 4) {
if (clockWise) {
p.p1 = r3dPoly.v[0];
p.p2 = r3dPoly.v[2];
p.p3 = r3dPoly.v[3];
}
else {
p.p1 = r3dPoly.v[0];
p.p2 = r3dPoly.v[3];
p.p3 = r3dPoly.v[2];
}
polyArray.emplace_back(p);
}
}
void CNew3D::CacheModel(Model *m, const UINT32 *data)
{
Vertex prev[4];
PolyHeader ph;
int numPolys = 0;
bool done = false;
UINT64 lastHash = -1;
SortingMesh* currentMesh = nullptr;
std::shared_ptr<Texture> tex;
std::map<UINT64, SortingMesh> sMap;
if (data == NULL)
return;
ph = data;
int numTriangles = ph.NumTrianglesTotal();
// Cache all polygons
while (!done)
{
R3DPoly p; // current polygon
GLfloat uvScale;
int i, j;
bool validPoly = true;
ph = data;
if (ph.header[6] == 0) {
break;
}
if ((ph.header[0] & 0x100) && (ph.header[0] & 0x200)) { // assuming these two bits mean z and colour writes are disabled
validPoly = false;
}
else {
if (!numPolys && (ph.NumSharedVerts() != 0)) { // sharing vertices, but we haven't started the model yet
printf("incomplete data\n");
validPoly = false;
}
}
// Set current header pointer (header is 7 words)
data += 7; // data will now point to first vertex
// create a hash value based on poly attributes -todo add more attributes
auto hash = ph.Hash(m_nodeAttribs.currentTexOffsetX, m_nodeAttribs.currentTexOffsetY);
if (hash != lastHash && validPoly) {
if (sMap.count(hash) == 0) {
sMap[hash] = SortingMesh();
currentMesh = &sMap[hash];
//make space for our vertices
currentMesh->polys.reserve(numTriangles);
//copy attributes
currentMesh->doubleSided = ph.DoubleSided();
currentMesh->mirrorU = ph.TexUMirror();
currentMesh->mirrorV = ph.TexVMirror();
currentMesh->textured = ph.TexEnabled();
currentMesh->alphaTest = ph.AlphaTest();
currentMesh->textureAlpha = ph.TextureAlpha();
currentMesh->polyAlpha = ph.PolyAlpha();
currentMesh->lighting = ph.LightEnabled();
if (ph.header[6] & 0x10000) {
currentMesh->testBit = true;
}
if (!ph.Luminous()) {
currentMesh->fogIntensity = 1.0f;
}
else {
currentMesh->fogIntensity = ph.LightModifier();
}
if (ph.TexEnabled()) {
currentMesh->texture = m_texSheet.BindTexture(m_textureRAM, ph.TexFormat(), ph.TexUMirror(), ph.TexVMirror(), ph.X(m_nodeAttribs.currentTexOffsetX), ph.Y(m_nodeAttribs.currentTexOffsetY), ph.TexWidth(), ph.TexHeight());
}
}
currentMesh = &sMap[hash];
if (ph.TexEnabled()) {
tex = currentMesh->texture;
}
else {
tex = nullptr;
}
}
if (validPoly) {
lastHash = hash;
}
// Obtain basic polygon parameters
done = ph.LastPoly();
p.number = ph.NumVerts();
uvScale = ph.UVScale();
ph.FaceNormal(p.faceNormal);
// Fetch reused vertices according to bitfield, then new verts
i = 0;
j = 0;
for (i = 0; i < 4; i++) // up to 4 reused vertices
{
if (ph.SharedVertex(i))
{
p.v[j] = prev[i];
++j;
}
}
for (; j < p.number; j++) // remaining vertices are new and defined here
{
// Fetch vertices
UINT32 ix = data[0];
UINT32 iy = data[1];
UINT32 iz = data[2];
UINT32 it = data[3];
// Decode vertices
p.v[j].pos[0] = (GLfloat)(((INT32)ix) >> 8) * m_vertexFactor;
p.v[j].pos[1] = (GLfloat)(((INT32)iy) >> 8) * m_vertexFactor;
p.v[j].pos[2] = (GLfloat)(((INT32)iz) >> 8) * m_vertexFactor;
p.v[j].normal[0] = p.faceNormal[0] + (GLfloat)(INT8)(ix & 0xFF); // vertex normals are offset from polygon normal - we can normalise them in the shader
p.v[j].normal[1] = p.faceNormal[1] + (GLfloat)(INT8)(iy & 0xFF);
p.v[j].normal[2] = p.faceNormal[2] + (GLfloat)(INT8)(iz & 0xFF);
if ((ph.header[1] & 2) == 0) {
UINT32 colorIdx = ((ph.header[4] >> 20) & 0x7FF);
p.v[j].color[0] = (m_polyRAM[0x400 + colorIdx] & 0xFF);
p.v[j].color[1] = (m_polyRAM[0x400 + colorIdx] >> 8) & 0xFF;
p.v[j].color[2] = (m_polyRAM[0x400 + colorIdx] >> 16) & 0xFF;
}
else if (ph.FixedShading()) {
UINT8 shade = ph.ShadeValue();
p.v[j].color[0] = shade;
p.v[j].color[1] = shade;
p.v[j].color[2] = shade;
}
else {
p.v[j].color[0] = (ph.header[4] >> 24);
p.v[j].color[1] = (ph.header[4] >> 16) & 0xFF;
p.v[j].color[2] = (ph.header[4] >> 8) & 0xFF;
}
if ((ph.header[6] & 0x00800000)) { // if set, polygon is opaque
p.v[j].color[3] = 255;
}
else {
p.v[j].color[3] = ph.Transparency();
}
float texU, texV = 0;
// tex coords
if (tex) {
tex->GetCoordinates((UINT16)(it >> 16), (UINT16)(it & 0xFFFF), uvScale, texU, texV);
}
p.v[j].texcoords[0] = texU;
p.v[j].texcoords[1] = texV;
data += 4;
}
// Copy current vertices into previous vertex array
for (i = 0; i < 4 && validPoly; i++) {
prev[i] = p.v[i];
}
// Copy this polygon into the model buffer
if (validPoly) {
CopyVertexData(p, currentMesh->polys);
numPolys++;
}
}
//sorted the data, now copy to main data structures
// we know how many meshes we have so reserve appropriate space
m->meshes.reserve(sMap.size());
for (auto& it : sMap) {
// calculate VBO values for current mesh
it.second.vboOffset = m_polyBuffer.size();
it.second.triangleCount = it.second.polys.size();
//it.second.clockWise = cw;
// copy poly data to main buffer
m_polyBuffer.insert(m_polyBuffer.end(), it.second.polys.begin(), it.second.polys.end());
//copy the temp mesh into the model structure
//this will lose the associated vertex data, which is now copied to the main buffer anyway
m->meshes.push_back(it.second);
}
}
2016-03-22 13:47:28 +00:00
float CNew3D::Determinant3x3(const float m[16]) {
/*
| A B C |
M = | D E F |
| G H I |
then the determinant is calculated as follows:
det M = A * (EI - HF) - B * (DI - GF) + C * (DH - GE)
*/
return m[0] * ((m[5] * m[10]) - (m[6] * m[9])) - m[4] * ((m[1] * m[10]) - (m[2] * m[9])) + m[8] * ((m[1] * m[6]) - (m[2] * m[5]));
}
} // New3D