diff --git a/Src/Graphics/Legacy3D/Shaders/Fragment_NoSpotlight.glsl b/Src/Graphics/Legacy3D/Shaders/Fragment_NoSpotlight.glsl index 07e99ac..0653d24 100644 --- a/Src/Graphics/Legacy3D/Shaders/Fragment_NoSpotlight.glsl +++ b/Src/Graphics/Legacy3D/Shaders/Fragment_NoSpotlight.glsl @@ -1,202 +1,196 @@ -/** - ** Supermodel - ** A Sega Model 3 Arcade Emulator. - ** Copyright 2011 Bart Trzynadlowski, Nik Henson - ** - ** This file is part of Supermodel. - ** - ** Supermodel is free software: you can redistribute it and/or modify it under - ** the terms of the GNU General Public License as published by the Free - ** Software Foundation, either version 3 of the License, or (at your option) - ** any later version. - ** - ** Supermodel is distributed in the hope that it will be useful, but WITHOUT - ** ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - ** FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - ** more details. - ** - ** You should have received a copy of the GNU General Public License along - ** with Supermodel. If not, see . - **/ - -/* - * Fragment_NoSpotlight.glsl - * - * Fragment shader for 3D rendering. Spotlight effect removed. Fixes fragment - * shader link errors on older ATI Radeon GPUs. - * - * To load external fragment shaders, use the -frag-shader= option when - * starting Supermodel. - */ - -#version 120 - -// Global uniforms -uniform sampler2D textureMap; // complete texture map, 2048x2048 texels -uniform vec4 spotEllipse; // spotlight ellipse position: .x=X position (screen coordinates), .y=Y position, .z=half-width, .w=half-height) -uniform vec2 spotRange; // spotlight Z range: .x=start (viewspace coordinates), .y=limit -uniform vec3 spotColor; // spotlight RGB color -uniform float mapSize; // texture map size (2048,4096,6144 etc) - -// Inputs from vertex shader -varying vec4 fsSubTexture; // .x=texture X, .y=texture Y, .z=texture width, .w=texture height (all in texels) -varying vec4 fsTexParams; // .x=texture enable (if 1, else 0), .y=use transparency (if > 0), .z=U wrap mode (1=mirror, 0=repeat), .w=V wrap mode -varying float fsTexFormat; // .x=T1RGB5 contour texture (if > 0) -varying float fsTransLevel; // translucence level, 0.0 (transparent) to 1.0 (opaque) -varying vec3 fsLightIntensity; // lighting intensity -varying float fsFogFactor; // fog factor -varying float fsViewZ; // Z distance to fragment from viewpoint at origin - -/* - * WrapTexelCoords(): - * - * Computes the normalized OpenGL S,T coordinates within the 2048x2048 texture - * sheet, taking into account wrapping behavior. - * - * Computing normalized OpenGL texture coordinates (0 to 1) within the - * Real3D texture sheet: - * - * If the texture is not mirrored, we simply have to clamp the - * coordinates to fit within the texture dimensions, add the texture - * X, Y position to select the appropriate one, and normalize by 2048 - * (the dimensions of the Real3D texture sheet). - * - * = [(u,v)%(w,h)+(x,y)]/(2048,2048) - * - * If mirroring is enabled, textures are mirrored every odd multiple of - * the original texture. To detect whether we are in an odd multiple, - * simply divide the coordinate by the texture dimension and check - * whether the result is odd. Then, clamp the coordinates as before but - * subtract from the last texel to mirror them: - * - * = [M*((w-1,h-1)-(u,v)%(w,h)) + (1-M)*(u,v)%(w,h) + (x,y)]/(2048,2048) - * where M is 1.0 if the texture must be mirrored. - * - * As an optimization, this function computes TWO texture coordinates - * simultaneously. The first is texCoord.xy, the second is in .zw. The other - * parameters must have .xy = .zw. - */ -vec4 WrapTexelCoords(vec4 texCoord, vec4 texOffset, vec4 texSize, vec4 mirrorEnable) -{ - vec4 clampedCoord, mirror, glTexCoord; - - clampedCoord = mod(texCoord,texSize); // clamp coordinates to within texture size - mirror = mirrorEnable * mod(floor(texCoord/texSize),2.0); // whether this texel needs to be mirrored - - glTexCoord = ( mirror*(texSize-clampedCoord) + - (vec4(1.0,1.0,1.0,1.0)-mirror)*clampedCoord + - texOffset - ) / mapSize; -/* - glTexCoord = ( mirror*(texSize-vec4(1.0,1.0,1.0,1.0)-clampedCoord) + - (vec4(1.0,1.0,1.0,1.0)-mirror)*clampedCoord + - texOffset - ) / mapSize; -*/ - return glTexCoord; -} - -/* - * main(): - * - * Fragment shader entry point. - */ - -void main(void) -{ - vec4 uv_top, uv_bot, c[4]; - vec2 r; - vec4 fragColor; - vec2 ellipse; - vec3 lightIntensity; - float insideSpot; - - // Get polygon color for untextured polygons (textured polygons will overwrite) - if (fsTexParams.x < 0.5) - fragColor = gl_Color; - else - // Textured polygons: set fragment color to texel value - { - /* - * Bilinear Filtering - * - * In order to get this working on ATI, the number of operations is - * reduced by putting everything into vec4s. uv_top holds the UV - * coordinates for the top two texels (.xy=left, .zw=right) and uv_bot - * is for the lower two. - */ - - // Compute fractional blending factor, r, and lower left corner of texel 0 - uv_bot.xy = gl_TexCoord[0].st-vec2(0.5,0.5); // move into the lower left blending texel - r = uv_bot.xy-floor(uv_bot.xy); // fractional part - uv_bot.xy = floor(uv_bot.xy); // integral part - - // Compute texel coordinates - uv_bot.xy += vec2(0.5,0.5); // offset to center of pixel (should not be needed but it fixes a lot of glitches, esp. on Nvidia) - uv_bot.zw = uv_bot.xy + vec2(1.0,0.0); // compute coordinates of the other three neighbors - uv_top = uv_bot + vec4(0.0,1.0,0.0,1.0); - - // Compute the properly wrapped texel coordinates - uv_top = WrapTexelCoords(uv_top,vec4(fsSubTexture.xy,fsSubTexture.xy),vec4(fsSubTexture.zw,fsSubTexture.zw), vec4(fsTexParams.zw,fsTexParams.zw)); - uv_bot = WrapTexelCoords(uv_bot,vec4(fsSubTexture.xy,fsSubTexture.xy),vec4(fsSubTexture.zw,fsSubTexture.zw), vec4(fsTexParams.zw,fsTexParams.zw)); - - // Fetch the texels - c[0]=texture2D(textureMap,uv_bot.xy); // bottom-left (base texel) - c[1]=texture2D(textureMap,uv_bot.zw); // bottom-right - c[2]=texture2D(textureMap,uv_top.xy); // top-left - c[3]=texture2D(textureMap,uv_top.zw); // top-right - - // Interpolate texels and blend result with material color to determine final (unlit) fragment color - // fragColor = (c[0]*(1.0-r.s)*(1.0-r.t) + c[1]*r.s*(1.0-r.t) + c[2]*(1.0-r.s)*r.t + c[3]*r.s*r.t); - // Faster method: - c[0] += (c[1]-c[0])*r.s; // 2 alu - c[2] += (c[3]-c[2])*r.s; // 2 alu - fragColor = c[0]+(c[2]-c[0])*r.t; //2 alu - - /* - * T1RGB5: - * - * The transparency bit determines whether to discard pixels (if set). - * What is unknown is how this bit behaves when interpolated. OpenGL - * processes it as an alpha value, so it might concievably be blended - * with neighbors. Here, an arbitrary threshold is chosen. - * - * To-do: blending could probably enabled and this would work even - * better with a hard threshold. - * - * Countour processing also seems to be enabled for RGBA4 textures. - * When the alpha value is 0.0 (or close), pixels are discarded - * entirely. - */ - if (fsTexParams.y > 0.5) // contour processing enabled - { - if (fragColor.a < 0.01) // discard anything with alpha == 0 - discard; - } - - // If contour texture and not discarded, force alpha to 1.0 because will later be modified by polygon translucency - if (fsTexFormat < 0.5) // contour (T1RGB5) texture map - fragColor.a = 1.0; - } - - // Compute spotlight and apply lighting - /*** - ellipse = (gl_FragCoord.xy-spotEllipse.xy)/spotEllipse.zw; - insideSpot = dot(ellipse,ellipse); - if ((insideSpot <= 1.0) && (fsViewZ>=spotRange.x) && (fsViewZ. + **/ + +/* + * Fragment.glsl + * + * Fragment shader for 3D rendering. + */ + +#version 120 + +// Global uniforms +uniform sampler2D textureMap; // complete texture map, 2048x2048 texels +uniform vec4 spotEllipse; // spotlight ellipse position: .x=X position (screen coordinates), .y=Y position, .z=half-width, .w=half-height) +uniform vec2 spotRange; // spotlight Z range: .x=start (viewspace coordinates), .y=limit +uniform vec3 spotColor; // spotlight RGB color +uniform vec3 lighting[2]; // lighting state (lighting[0] = sun direction, lighting[1].x,y = diffuse, ambient intensities from 0-1.0) +uniform float mapSize; // texture map size (2048,4096,6144 etc) + +// Inputs from vertex shader +varying vec4 fsSubTexture; // .x=texture X, .y=texture Y, .z=texture width, .w=texture height (all in texels) +varying vec4 fsTexParams; // .x=texture enable (if 1, else 0), .y=use transparency (if > 0), .z=U wrap mode (1=mirror, 0=repeat), .w=V wrap mode +varying float fsTexFormat; // T1RGB5 contour texture (if > 0) +varying float fsTexMap; // texture map number +varying float fsTransLevel; // translucence level, 0.0 (transparent) to 1.0 (opaque) +varying vec3 fsLightIntensity; // lighting intensity +varying float fsSpecularTerm; // specular highlight +varying float fsFogFactor; // fog factor +varying float fsViewZ; // Z distance to fragment from viewpoint at origin + +/* + * WrapTexelCoords(): + * + * Computes the normalized OpenGL S,T coordinates within the 2048x2048 texture + * sheet, taking into account wrapping behavior. + * + * Computing normalized OpenGL texture coordinates (0 to 1) within the + * Real3D texture sheet: + * + * If the texture is not mirrored, we simply have to clamp the + * coordinates to fit within the texture dimensions, add the texture + * X, Y position to select the appropriate one, and normalize by 2048 + * (the dimensions of the Real3D texture sheet). + * + * = [(u,v)%(w,h)+(x,y)]/(2048,2048) + * + * If mirroring is enabled, textures are mirrored every odd multiple of + * the original texture. To detect whether we are in an odd multiple, + * simply divide the coordinate by the texture dimension and check + * whether the result is odd. Then, clamp the coordinates as before but + * subtract from the last texel to mirror them: + * + * = [M*((w-1,h-1)-(u,v)%(w,h)) + (1-M)*(u,v)%(w,h) + (x,y)]/(2048,2048) + * where M is 1.0 if the texture must be mirrored. + * + * As an optimization, this function computes TWO texture coordinates + * simultaneously. The first is texCoord.xy, the second is in .zw. The other + * parameters must have .xy = .zw. + */ +vec4 WrapTexelCoords(vec4 texCoord, vec4 texOffset, vec4 texSize, vec4 mirrorEnable) +{ + vec4 clampedCoord, mirror, glTexCoord; + + clampedCoord = mod(texCoord,texSize); // clamp coordinates to within texture size + mirror = mirrorEnable * mod(floor(texCoord/texSize),2.0); // whether this texel needs to be mirrored + + glTexCoord = ( mirror*(texSize-clampedCoord) + + (vec4(1.0,1.0,1.0,1.0)-mirror)*clampedCoord + + texOffset + ) / mapSize; + return glTexCoord; +} + +/* + * main(): + * + * Fragment shader entry point. + */ + +void main(void) +{ + vec4 uv_top, uv_bot, c[4]; + vec2 r; + vec4 fragColor; + vec2 ellipse; + vec3 lightIntensity; + float insideSpot; + int x; + + // Get polygon color for untextured polygons (textured polygons will overwrite) + if (fsTexParams.x < 0.5) + fragColor = gl_Color; + else + // Textured polygons: set fragment color to texel value + { + /* + * Bilinear Filtering + * + * In order to get this working on ATI, the number of operations is + * reduced by putting everything into vec4s. uv_top holds the UV + * coordinates for the top two texels (.xy=left, .zw=right) and uv_bot + * is for the lower two. + */ + + // Compute fractional blending factor, r, and lower left corner of texel 0 + uv_bot.xy = gl_TexCoord[0].st-vec2(0.5,0.5); // move into the lower left blending texel + r = uv_bot.xy-floor(uv_bot.xy); // fractional part + uv_bot.xy = floor(uv_bot.xy); // integral part + + // Compute texel coordinates + uv_bot.xy += vec2(0.5,0.5); // offset to center of pixel (should not be needed but it fixes a lot of glitches, esp. on Nvidia) + uv_bot.zw = uv_bot.xy + vec2(1.0,0.0); // compute coordinates of the other three neighbors + uv_top = uv_bot + vec4(0.0,1.0,0.0,1.0); + + // Compute the properly wrapped texel coordinates + uv_top = WrapTexelCoords(uv_top,vec4(fsSubTexture.xy,fsSubTexture.xy),vec4(fsSubTexture.zw,fsSubTexture.zw), vec4(fsTexParams.zw,fsTexParams.zw)); + uv_bot = WrapTexelCoords(uv_bot,vec4(fsSubTexture.xy,fsSubTexture.xy),vec4(fsSubTexture.zw,fsSubTexture.zw), vec4(fsTexParams.zw,fsTexParams.zw)); + + // Fetch the texels + c[0]=texture2D(textureMap,uv_bot.xy); // bottom-left (base texel) + c[1]=texture2D(textureMap,uv_bot.zw); // bottom-right + c[2]=texture2D(textureMap,uv_top.xy); // top-left + c[3]=texture2D(textureMap,uv_top.zw); // top-right + + // Interpolate texels and blend result with material color to determine final (unlit) fragment color + // fragColor = (c[0]*(1.0-r.s)*(1.0-r.t) + c[1]*r.s*(1.0-r.t) + c[2]*(1.0-r.s)*r.t + c[3]*r.s*r.t); + // Faster method: + c[0] += (c[1]-c[0])*r.s; // 2 alu + c[2] += (c[3]-c[2])*r.s; // 2 alu + fragColor = c[0]+(c[2]-c[0])*r.t; //2 alu + + /* + * T1RGB5: + * + * The transparency bit determines whether to discard pixels (if set). + * What is unknown is how this bit behaves when interpolated. OpenGL + * processes it as an alpha value, so it might concievably be blended + * with neighbors. Here, an arbitrary threshold is chosen. + * + * To-do: blending could probably enabled and this would work even + * better with a hard threshold. + * + * Countour processing also seems to be enabled for RGBA4 textures. + * When the alpha value is 0.0 (or close), pixels are discarded + * entirely. + */ + if (fsTexParams.y > 0.5) // contour processing enabled + { + if (fragColor.a < 0.01) // discard anything with alpha == 0 + discard; + } + + // If contour texture and not discarded, force alpha to 1.0 because will later be modified by polygon translucency + if (fsTexFormat < 0.5) // contour (T1RGB5) texture + fragColor.a = 1.0; + } + + // Compute spotlight and apply lighting + /* + ellipse = (gl_FragCoord.xy-spotEllipse.xy)/spotEllipse.zw; + insideSpot = dot(ellipse,ellipse); + if ((insideSpot <= 1.0) && (fsViewZ>=spotRange.x) && (fsViewZ