address review

This commit is contained in:
toxieainc 2022-10-03 04:30:59 +02:00 committed by trzy
parent 519d695f57
commit 5f97e5af6c
4 changed files with 53 additions and 83 deletions

View file

@ -176,8 +176,8 @@ namespace Legacy3D {
// Microsoft doesn't provide isnan() and isinf()
#ifdef _MSC_VER
#include <cfloat>
#define ISNAN(x) (_isnan(x))
#define ISINF(x) (!_finite(x))
#define ISNAN(x) (_isnanf(x))
#define ISINF(x) (!_finitef(x))
#else
#define ISNAN(x) (std::isnan(x))
#define ISINF(x) (std::isinf(x))
@ -812,7 +812,7 @@ void CLegacy3D::DescendNodePtr(UINT32 nodeAddr)
// Draws viewports of the given priority
void CLegacy3D::RenderViewport(UINT32 addr, int pri, bool wideScreen)
{
static const GLfloat color[8][3] = {
static constexpr GLfloat color[8][3] = {
{ 0.0, 0.0, 0.0 }, // off
{ 0.0, 0.0, 1.0 }, // blue
{ 0.0, 1.0, 0.0 }, // green
@ -825,7 +825,7 @@ void CLegacy3D::RenderViewport(UINT32 addr, int pri, bool wideScreen)
// Translate address and obtain pointer
const UINT32 *vpnode = TranslateCullingAddress(addr);
if (NULL == vpnode)
if (nullptr == vpnode)
return;
// Recursively process next viewport
@ -852,8 +852,8 @@ void CLegacy3D::RenderViewport(UINT32 addr, int pri, bool wideScreen)
int vpHeight = (vpnode[0x14]>>18)&0x3FFF; // height (14.2)
// Field of view and clipping
GLfloat vpTopAngle = asinf(Util::UintAsFloat(vpnode[0x0E])); // FOV Y upper half-angle (radians)
GLfloat vpBotAngle = asinf(Util::UintAsFloat(vpnode[0x12])); // FOV Y lower half-angle
GLfloat vpTopAngle = asinf(Util::Uint32AsFloat(vpnode[0x0E])); // FOV Y upper half-angle (radians)
GLfloat vpBotAngle = asinf(Util::Uint32AsFloat(vpnode[0x12])); // FOV Y lower half-angle
GLfloat fovYDegrees = (vpTopAngle+vpBotAngle)*(float)(180.0/M_PI);
// TO-DO: investigate clipping planes
@ -876,15 +876,15 @@ void CLegacy3D::RenderViewport(UINT32 addr, int pri, bool wideScreen)
viewportY = yOffs + (GLint) ((float)(384-(vpY+vpHeight))*yRatio);
viewportWidth = (GLint) ((float)vpWidth*xRatio);
viewportHeight = (GLint) ((float)vpHeight*yRatio);
gluPerspective(fovYDegrees,(GLfloat)vpWidth/(GLfloat)vpHeight,0.1f,1e5); // use Model 3 viewport ratio
gluPerspective(fovYDegrees,(GLdouble)vpWidth/(GLdouble)vpHeight,0.1,1e5); // use Model 3 viewport ratio
}
// Lighting (note that sun vector points toward sun -- away from vertex)
lightingParams[0] = *(float *) &vpnode[0x05]; // sun X
lightingParams[1] = *(float *) &vpnode[0x06]; // sun Y
lightingParams[2] = *(float *) &vpnode[0x04]; // sun Z
lightingParams[3] = *(float *) &vpnode[0x07]; // sun intensity
lightingParams[4] = (float) ((vpnode[0x24]>>8)&0xFF) * (1.0f/255.0f); // ambient intensity
lightingParams[0] = Util::Uint32AsFloat(vpnode[0x05]); // sun X
lightingParams[1] = Util::Uint32AsFloat(vpnode[0x06]); // sun Y
lightingParams[2] = Util::Uint32AsFloat(vpnode[0x04]); // sun Z
lightingParams[3] = Util::Uint32AsFloat(vpnode[0x07]); // sun intensity
lightingParams[4] = (float) ((vpnode[0x24]>>8)&0xFF) * (float)(1.0/255.0); // ambient intensity
lightingParams[5] = 0.0; // reserved
// Spotlight
@ -893,8 +893,8 @@ void CLegacy3D::RenderViewport(UINT32 addr, int pri, bool wideScreen)
spotEllipse[1] = (float) ((vpnode[0x1D]>>3)&0x1FFF); // spotlight Y
spotEllipse[2] = (float) ((vpnode[0x1E]>>16)&0xFFFF); // spotlight X size (16-bit? May have fractional component below bit 16)
spotEllipse[3] = (float) ((vpnode[0x1D]>>16)&0xFFFF); // spotlight Y size
spotRange[0] = 1.0f/(*(float *) &vpnode[0x21]); // spotlight start
spotRange[1] = *(float *) &vpnode[0x1F]; // spotlight extent
spotRange[0] = 1.0f/Util::Uint32AsFloat(vpnode[0x21]); // spotlight start
spotRange[1] = Util::Uint32AsFloat(vpnode[0x1F]); // spotlight extent
spotColor[0] = color[spotColorIdx][0]; // spotlight color
spotColor[1] = color[spotColorIdx][1];
spotColor[2] = color[spotColorIdx][2];
@ -913,30 +913,30 @@ void CLegacy3D::RenderViewport(UINT32 addr, int pri, bool wideScreen)
spotEllipse[3] *= yRatio;
// Fog
fogParams[0] = (float) ((vpnode[0x22]>>16)&0xFF) * (1.0f/255.0f); // fog color R
fogParams[1] = (float) ((vpnode[0x22]>>8)&0xFF) * (1.0f/255.0f); // fog color G
fogParams[2] = (float) ((vpnode[0x22]>>0)&0xFF) * (1.0f/255.0f); // fog color B
fogParams[3] = *(float *) &vpnode[0x23]; // fog density
fogParams[4] = (float) (INT16) (vpnode[0x25]&0xFFFF)*(1.0f/255.0f); // fog start
fogParams[0] = (float) ((vpnode[0x22]>>16)&0xFF) * (float)(1.0/255.0); // fog color R
fogParams[1] = (float) ((vpnode[0x22]>>8)&0xFF) * (float)(1.0/255.0); // fog color G
fogParams[2] = (float) ((vpnode[0x22]>>0)&0xFF) * (float)(1.0/255.0); // fog color B
fogParams[3] = Util::Uint32AsFloat(vpnode[0x23]); // fog density
fogParams[4] = (float) (INT16) (vpnode[0x25]&0xFFFF) * (float)(1.0/255.0); // fog start
if (ISINF(fogParams[3]) || ISNAN(fogParams[3]) || ISINF(fogParams[4]) || ISNAN(fogParams[4])) // Star Wars Trilogy
fogParams[3] = fogParams[4] = 0.0f;
// Unknown light/fog parameters
//GLfloat scrollFog = (float) (vpnode[0x20]&0xFF) * (1.0f/255.0f); // scroll fog
//GLfloat scrollAtt = (float) (vpnode[0x24]&0xFF) * (1.0f/255.0f); // scroll attenuation
//GLfloat scrollFog = (float) (vpnode[0x20]&0xFF) * (float)(1.0/255.0); // scroll fog
//GLfloat scrollAtt = (float) (vpnode[0x24]&0xFF) * (float)(1.0/255.0); // scroll attenuation
//printf("scrollFog = %g, scrollAtt = %g\n", scrollFog, scrollAtt);
//printf("Fog: R=%02X G=%02X B=%02X density=%g (%X) %d start=%g\n", ((vpnode[0x22]>>16)&0xFF), ((vpnode[0x22]>>8)&0xFF), ((vpnode[0x22]>>0)&0xFF), fogParams[3], vpnode[0x23], (fogParams[3]==fogParams[3]), fogParams[4]);
// Clear texture offsets before proceeding
m_textureOffset = TextureOffset();
// Set up coordinate system and base matrix
UINT32 matrixBase = vpnode[0x16] & 0xFFFFFF;
glMatrixMode(GL_MODELVIEW);
InitMatrixStack(matrixBase);
// Safeguard: weird coordinate system matrices usually indicate scenes that will choke the renderer
if (NULL != matrixBasePtr)
if (nullptr != matrixBasePtr)
{
float m21, m32, m13;

View file

@ -553,8 +553,8 @@ void CNew3D::DescendCullingNode(UINT32 addr)
m_nodeAttribs.Push(); // save current attribs
if (!m_offset) { // Step 1.5+
float modelScale = Util::UintAsFloat(node[1]);
float modelScale = Util::Uint32AsFloat(node[1]);
if (modelScale > std::numeric_limits<float>::min()) {
m_nodeAttribs.currentModelScale = modelScale;
}
@ -574,9 +574,9 @@ void CNew3D::DescendCullingNode(UINT32 addr)
// apply translation vector
if (node[0x00] & 0x10) {
float x = Util::UintAsFloat(node[0x04 - m_offset]);
float y = Util::UintAsFloat(node[0x05 - m_offset]);
float z = Util::UintAsFloat(node[0x06 - m_offset]);
float x = Util::Uint32AsFloat(node[0x04 - m_offset]);
float y = Util::Uint32AsFloat(node[0x05 - m_offset]);
float z = Util::Uint32AsFloat(node[0x06 - m_offset]);
m_modelMat.Translate(x, y, z);
}
// multiply matrix, if specified
@ -832,16 +832,16 @@ void CNew3D::RenderViewport(UINT32 addr)
m_LODBlendTable = (LODBlendTable*)TranslateCullingAddress(vpnode[0x17] & 0xFFFFFF);
/*
vp->angle_left = -atan2f(Util::UintAsFloat(vpnode[12]), Util::UintAsFloat(vpnode[13])); // These values work out as the normals for the clipping planes.
vp->angle_right = atan2f(Util::UintAsFloat(vpnode[16]), -Util::UintAsFloat(vpnode[17])); // Sometimes these values (dirt devils,lost world) are totally wrong
vp->angle_top = atan2f(Util::UintAsFloat(vpnode[14]), Util::UintAsFloat(vpnode[15])); // and don't work for the frustum values exactly.
vp->angle_bottom = -atan2f(Util::UintAsFloat(vpnode[18]), -Util::UintAsFloat(vpnode[19])); // Perhaps they are just used for culling and not rendering.
vp->angle_left = -atan2f(Util::Uint32AsFloat(vpnode[12]), Util::Uint32AsFloat(vpnode[13])); // These values work out as the normals for the clipping planes.
vp->angle_right = atan2f(Util::Uint32AsFloat(vpnode[16]), -Util::Uint32AsFloat(vpnode[17])); // Sometimes these values (dirt devils,lost world) are totally wrong
vp->angle_top = atan2f(Util::Uint32AsFloat(vpnode[14]), Util::Uint32AsFloat(vpnode[15])); // and don't work for the frustum values exactly.
vp->angle_bottom = -atan2f(Util::Uint32AsFloat(vpnode[18]), -Util::Uint32AsFloat(vpnode[19])); // Perhaps they are just used for culling and not rendering.
*/
float cv = Util::UintAsFloat(vpnode[0x8]); // 1/(left-right)
float cw = Util::UintAsFloat(vpnode[0x9]); // 1/(top-bottom)
float io = Util::UintAsFloat(vpnode[0xa]); // top / bottom (ratio) - ish
float jo = Util::UintAsFloat(vpnode[0xb]); // left / right (ratio)
float cv = Util::Uint32AsFloat(vpnode[0x8]); // 1/(left-right)
float cw = Util::Uint32AsFloat(vpnode[0x9]); // 1/(top-bottom)
float io = Util::Uint32AsFloat(vpnode[0xa]); // top / bottom (ratio) - ish
float jo = Util::Uint32AsFloat(vpnode[0xb]); // left / right (ratio)
vp->angle_left = (0.0f - jo) / cv;
vp->angle_right = (1.0f - jo) / cv;
@ -855,10 +855,10 @@ void CNew3D::RenderViewport(UINT32 addr)
CalcFrustumPlanes(m_planes, vp->projectionMatrix); // we need to calc a 'projection matrix' to get the correct frustum planes for clipping
// Lighting (note that sun vector points toward sun -- away from vertex)
vp->lightingParams[0] = Util::UintAsFloat(vpnode[0x05]); // sun X
vp->lightingParams[1] = -Util::UintAsFloat(vpnode[0x06]); // sun Y (- to convert to ogl cordinate system)
vp->lightingParams[2] = -Util::UintAsFloat(vpnode[0x04]); // sun Z (- to convert to ogl cordinate system)
vp->lightingParams[3] = std::max(0.f, std::min(Util::UintAsFloat(vpnode[0x07]), 1.0f)); // sun intensity (clamp to 0-1)
vp->lightingParams[0] = Util::Uint32AsFloat(vpnode[0x05]); // sun X
vp->lightingParams[1] = -Util::Uint32AsFloat(vpnode[0x06]); // sun Y (- to convert to ogl cordinate system)
vp->lightingParams[2] = -Util::Uint32AsFloat(vpnode[0x04]); // sun Z (- to convert to ogl cordinate system)
vp->lightingParams[3] = std::max(0.f, std::min(Util::Uint32AsFloat(vpnode[0x07]), 1.0f)); // sun intensity (clamp to 0-1)
vp->lightingParams[4] = (float)((vpnode[0x24] >> 8) & 0xFF) * (float)(1.0 / 255.0); // ambient intensity
vp->lightingParams[5] = 0.0f; // reserved
@ -874,8 +874,8 @@ void CNew3D::RenderViewport(UINT32 addr)
vp->spotEllipse[2] = (float)((vpnode[0x1E] >> 16) & 0xFFFF); // spotlight X size (16-bit)
vp->spotEllipse[3] = (float)((vpnode[0x1D] >> 16) & 0xFFFF); // spotlight Y size
vp->spotRange[0] = 1.0f / Util::UintAsFloat(vpnode[0x21]); // spotlight start
vp->spotRange[1] = Util::UintAsFloat(vpnode[0x1F]); // spotlight extent
vp->spotRange[0] = 1.0f / Util::Uint32AsFloat(vpnode[0x21]); // spotlight start
vp->spotRange[1] = Util::Uint32AsFloat(vpnode[0x1F]); // spotlight extent
vp->spotColor[0] = color[spotColorIdx][0]; // spotlight color
vp->spotColor[1] = color[spotColorIdx][1];
@ -909,7 +909,7 @@ void CNew3D::RenderViewport(UINT32 addr)
vp->fogParams[0] = (float)((vpnode[0x22] >> 16) & 0xFF) * (float)(1.0 / 255.0); // fog color R
vp->fogParams[1] = (float)((vpnode[0x22] >> 8) & 0xFF) * (float)(1.0 / 255.0); // fog color G
vp->fogParams[2] = (float)((vpnode[0x22] >> 0) & 0xFF) * (float)(1.0 / 255.0); // fog color B
vp->fogParams[3] = std::abs(Util::UintAsFloat(vpnode[0x23])); // fog density - ocean hunter uses negative values, but looks the same
vp->fogParams[3] = std::abs(Util::Uint32AsFloat(vpnode[0x23])); // fog density - ocean hunter uses negative values, but looks the same
vp->fogParams[4] = (float)(INT16)(vpnode[0x25] & 0xFFFF)* (float)(1.0 / 255.0); // fog start
// Avoid Infinite and NaN values for Star Wars Trilogy

View file

@ -35,5 +35,5 @@ UINT32 R3DFloat::Convert16BitProFloat(UINT32 a1)
float R3DFloat::ToFloat(UINT32 a1)
{
return Util::UintAsFloat(a1);
return Util::Uint32AsFloat(a1);
}

View file

@ -8,10 +8,10 @@ namespace Util
{
#if __cplusplus >= 202002L
#include <bit>
#define FloatAsInt(x) std::bit_cast<int>(x)
#define IntAsFloat(x) std::bit_cast<float>(x)
#define UintAsFloat(x) std::bit_cast<float>(x)
#elif 1
#define FloatAsInt32(x) std::bit_cast<int32_t>(x)
#define Int32AsFloat(x) std::bit_cast<float>(x)
#define Uint32AsFloat(x) std::bit_cast<float>(x)
#else
template <class Dest, class Source>
inline Dest bit_cast(Source const& source) {
static_assert(sizeof(Dest) == sizeof(Source), "size of destination and source objects must be equal");
@ -22,39 +22,9 @@ inline Dest bit_cast(Source const& source) {
std::memcpy(&dest, &source, sizeof(dest));
return dest;
}
#define FloatAsInt(x) bit_cast<int,float>(x)
#define IntAsFloat(x) bit_cast<float,int>(x)
#define UintAsFloat(x) bit_cast<float,unsigned int>(x)
#else
inline int FloatAsInt(const float x)
{
union {
float f;
int i;
} uc;
uc.f = x;
return uc.i;
}
inline float IntAsFloat(const int i)
{
union {
int i;
float f;
} iaf;
iaf.i = i;
return iaf.f;
}
inline float UintAsFloat(const unsigned int i)
{
union {
unsigned int u;
float f;
} iaf;
iaf.u = i;
return iaf.f;
}
#define FloatAsInt32(x) bit_cast<int32_t,float>(x)
#define Int32AsFloat(x) bit_cast<float,int32_t>(x)
#define Uint32AsFloat(x) bit_cast<float,uint32_t>(x)
#endif
} // Util