mirror of
https://github.com/RetroDECK/Supermodel.git
synced 2025-04-10 19:15:14 +00:00
Updated legacy engine vertex shader to use specular shininess and coefficient along with old equation. Still not correct (too strong compared to the old method).
This commit is contained in:
parent
c5ce2b9679
commit
6dc35f9563
|
@ -673,7 +673,8 @@ void CLegacy3D::InsertVertex(ModelCache *Cache, const Vertex *V, const Poly *P,
|
|||
|
||||
// Specular shininess
|
||||
GLfloat specularCoefficient = (GLfloat) ((P->header[0]>>26) & 0x3F) * (1.0f/63.0f);
|
||||
int shininess = (P->header[6] >> 5) & 3;
|
||||
int shinyBits = (P->header[6] >> 5) & 3;
|
||||
float shininess = pow(2.0, 1+shinyBits);
|
||||
if (!(P->header[0]&0x80)) //|| (shininess == 0)) // bit 0x80 seems to enable specular lighting
|
||||
{
|
||||
specularCoefficient = 0.; // disable
|
||||
|
|
|
@ -42,7 +42,8 @@ attribute float texFormat; // T1RGB5 contour texture (if > 0)
|
|||
attribute float texMap; // texture map number
|
||||
attribute float transLevel; // translucence level, 0.0 (transparent) to 1.0 (opaque). if less than 1.0, replace alpha value
|
||||
attribute float lightEnable; // lighting enabled (1.0) or luminous (0.0), drawn at full intensity
|
||||
attribute float shininess; // specular shininess (if >= 0.0) or disable specular lighting (negative)
|
||||
attribute float specular; // specular coefficient (0.0 if disabled)
|
||||
attribute float shininess; // specular shininess
|
||||
attribute float fogIntensity; // fog intensity (1.0, full fog effect, 0.0, no fog)
|
||||
|
||||
// Custom outputs to fragment shader
|
||||
|
@ -145,11 +146,38 @@ void main(void)
|
|||
if (shininess >= 0.0)
|
||||
{
|
||||
// Standard specular lighting equation
|
||||
if (sunFactor > 0.0)
|
||||
{
|
||||
vec3 V = normalize(-viewVertex);
|
||||
vec3 H = normalize(sunVector+V); // halfway vector
|
||||
fsSpecularTerm = specular*pow(max(dot(viewNormal,H),0.0),shininess);
|
||||
|
||||
// Phong formula
|
||||
// vec3 R = normalize(2.0*dot(sunVector,viewNormal)*viewNormal - sunVector);
|
||||
// vec3 V = normalize(-viewVertex);
|
||||
// fsSpecularTerm = lighting[1].x * specular * pow(max(dot(R,V),0.0),4.);
|
||||
|
||||
//
|
||||
// This looks decent in Scud Race attract mode. It is directionally
|
||||
// correct (highlights appear in the right places under the same
|
||||
// conditions as the actual game). In game play, it no longer works.
|
||||
// This is loosely based on the Model 2 formula, which is:
|
||||
//
|
||||
// s = 2*dot(light, normal)*normal.z - light.z
|
||||
//
|
||||
// float dot1 = dot(sunVector, viewNormal);
|
||||
// float s = dot1*viewNormal.z;
|
||||
// fsSpecularTerm =specular * pow(max(s, 0.0), 2.);
|
||||
//
|
||||
}
|
||||
|
||||
/*
|
||||
vec3 V = normalize(-viewVertex);
|
||||
vec3 H = normalize(sunVector+V); // halfway vector
|
||||
float s = max(10.0,64.0-shininess); // seems to look nice, but probably not correct
|
||||
fsSpecularTerm = pow(max(dot(viewNormal,H),0.0),s);
|
||||
if (sunFactor <= 0.0) fsSpecularTerm = 0.0;
|
||||
*/
|
||||
|
||||
// Faster approximation
|
||||
//float temp = max(dot(viewNormal,H),0.0);
|
||||
|
|
|
@ -63,156 +63,184 @@ static const char vertexShaderSource[] =
|
|||
"#version 120\n"
|
||||
"\n"
|
||||
"// Global uniforms\n"
|
||||
"uniform mat4\tmodelViewMatrix;\t// model -> view space matrix\n"
|
||||
"uniform mat4\tprojectionMatrix;\t// view space -> screen space matrix\n"
|
||||
"uniform vec3\tlighting[2];\t\t// lighting state (lighting[0] = sun direction, lighting[1].x,y = diffuse, ambient intensities from 0-1.0)\n"
|
||||
"uniform vec4\tspotEllipse;\t\t// spotlight ellipse position: .x=X position (normalized device coordinates), .y=Y position, .z=half-width, .w=half-height)\n"
|
||||
"uniform vec2\tspotRange;\t\t\t// spotlight Z range: .x=start (viewspace coordinates), .y=limit\n"
|
||||
"uniform vec3\tspotColor;\t\t\t// spotlight RGB color\n"
|
||||
"uniform mat4 modelViewMatrix; // model -> view space matrix\n"
|
||||
"uniform mat4 projectionMatrix; // view space -> screen space matrix\n"
|
||||
"uniform vec3 lighting[2]; // lighting state (lighting[0] = sun direction, lighting[1].x,y = diffuse, ambient intensities from 0-1.0)\n"
|
||||
"uniform vec4 spotEllipse; // spotlight ellipse position: .x=X position (normalized device coordinates), .y=Y position, .z=half-width, .w=half-height)\n"
|
||||
"uniform vec2 spotRange; // spotlight Z range: .x=start (viewspace coordinates), .y=limit\n"
|
||||
"uniform vec3 spotColor; // spotlight RGB color\n"
|
||||
"\n"
|
||||
"// Custom vertex attributes\n"
|
||||
"attribute vec4\tsubTexture;\t\t// .x=texture X, .y=texture Y, .z=texture width, .w=texture height (all in texels)\n"
|
||||
"attribute vec4\ttexParams;\t\t// .x=texture enable (if 1, else 0), .y=use transparency (if >=0), .z=U wrap mode (1=mirror, 0=repeat), .w=V wrap mode\n"
|
||||
"attribute float\ttexFormat;\t\t// T1RGB5 contour texture (if > 0)\n"
|
||||
"attribute float\ttexMap;\t\t// texture map number\n"
|
||||
"attribute float\ttransLevel;\t\t// translucence level, 0.0 (transparent) to 1.0 (opaque). if less than 1.0, replace alpha value\n"
|
||||
"attribute float\tlightEnable;\t// lighting enabled (1.0) or luminous (0.0), drawn at full intensity\n"
|
||||
"attribute float\tshininess;\t\t// specular shininess (if >= 0.0) or disable specular lighting (negative)\n"
|
||||
"attribute float\tfogIntensity;\t// fog intensity (1.0, full fog effect, 0.0, no fog) \n"
|
||||
"attribute vec4 subTexture; // .x=texture X, .y=texture Y, .z=texture width, .w=texture height (all in texels)\n"
|
||||
"attribute vec4 texParams; // .x=texture enable (if 1, else 0), .y=use transparency (if >=0), .z=U wrap mode (1=mirror, 0=repeat), .w=V wrap mode\n"
|
||||
"attribute float texFormat; // T1RGB5 contour texture (if > 0)\n"
|
||||
"attribute float texMap; // texture map number\n"
|
||||
"attribute float transLevel; // translucence level, 0.0 (transparent) to 1.0 (opaque). if less than 1.0, replace alpha value\n"
|
||||
"attribute float lightEnable; // lighting enabled (1.0) or luminous (0.0), drawn at full intensity\n"
|
||||
"attribute float specular; // specular coefficient (0.0 if disabled)\n"
|
||||
"attribute float shininess; // specular shininess\n"
|
||||
"attribute float fogIntensity; // fog intensity (1.0, full fog effect, 0.0, no fog) \n"
|
||||
"\n"
|
||||
"// Custom outputs to fragment shader\n"
|
||||
"varying vec4\tfsSubTexture;\n"
|
||||
"varying vec4\tfsTexParams;\n"
|
||||
"varying float\tfsTexFormat;\n"
|
||||
"varying float\tfsTexMap;\n"
|
||||
"varying float\tfsTransLevel;\n"
|
||||
"varying vec3\tfsLightIntensity;\t// total light intensity for this vertex\n"
|
||||
"varying float\tfsSpecularTerm;\t\t// specular light term (additive)\n"
|
||||
"varying float\tfsFogFactor;\t\t// fog factor\n"
|
||||
"varying float\tfsViewZ;\n"
|
||||
"varying vec4 fsSubTexture;\n"
|
||||
"varying vec4 fsTexParams;\n"
|
||||
"varying float fsTexFormat;\n"
|
||||
"varying float fsTexMap;\n"
|
||||
"varying float fsTransLevel;\n"
|
||||
"varying vec3 fsLightIntensity; // total light intensity for this vertex\n"
|
||||
"varying float fsSpecularTerm; // specular light term (additive)\n"
|
||||
"varying float fsFogFactor; // fog factor\n"
|
||||
"varying float fsViewZ;\n"
|
||||
"\n"
|
||||
"// Gets the 3x3 matrix out of a 4x4 (because mat3(mat4matrix) does not work on ATI!)\n"
|
||||
"mat3 GetLinearPart( mat4 m )\n"
|
||||
"{\n"
|
||||
"\tmat3 result;\n"
|
||||
"\t\n"
|
||||
"\tresult[0][0] = m[0][0]; \n"
|
||||
"\tresult[0][1] = m[0][1]; \n"
|
||||
"\tresult[0][2] = m[0][2]; \n"
|
||||
" mat3 result;\n"
|
||||
" \n"
|
||||
"\tresult[1][0] = m[1][0]; \n"
|
||||
"\tresult[1][1] = m[1][1]; \n"
|
||||
"\tresult[1][2] = m[1][2]; \n"
|
||||
"\t\n"
|
||||
"\tresult[2][0] = m[2][0]; \n"
|
||||
"\tresult[2][1] = m[2][1]; \n"
|
||||
"\tresult[2][2] = m[2][2]; \n"
|
||||
"\t\n"
|
||||
"\treturn result;\n"
|
||||
" result[0][0] = m[0][0];\n"
|
||||
" result[0][1] = m[0][1];\n"
|
||||
" result[0][2] = m[0][2];\n"
|
||||
"\n"
|
||||
" result[1][0] = m[1][0];\n"
|
||||
" result[1][1] = m[1][1];\n"
|
||||
" result[1][2] = m[1][2];\n"
|
||||
" \n"
|
||||
" result[2][0] = m[2][0];\n"
|
||||
" result[2][1] = m[2][1];\n"
|
||||
" result[2][2] = m[2][2];\n"
|
||||
" \n"
|
||||
" return result;\n"
|
||||
"}\n"
|
||||
"\n"
|
||||
"void main(void)\n"
|
||||
"{\n"
|
||||
"\tvec3\tviewVertex;\t\t// vertex coordinates in view space\n"
|
||||
"\tvec3\tviewNormal;\t\t// vertex normal in view space\n"
|
||||
"\tvec3\tsunVector;\t\t// sun lighting vector (as reflecting away from vertex)\n"
|
||||
"\tfloat\tsunFactor;\t\t// sun light projection along vertex normal (0.0 to 1.0)\n"
|
||||
"\tvec3\thalfway;\n"
|
||||
"\tfloat\tspecFactor;\n"
|
||||
"\t\n"
|
||||
"\t// Transform vertex\n"
|
||||
"\tgl_Position = projectionMatrix * modelViewMatrix * gl_Vertex;\n"
|
||||
"\tviewVertex = vec3(modelViewMatrix * gl_Vertex);\t\n"
|
||||
"\t\n"
|
||||
"\t/*\n"
|
||||
"\t * Modulation\n"
|
||||
"\t *\n"
|
||||
" \t * Polygon color serves as material color (modulating the light intensity)\n"
|
||||
"\t * for textured polygons. The fragment shader will ignore (overwrite) the\n"
|
||||
"\t * the color passed to it if the fragment is textured. \n"
|
||||
"\t *\n"
|
||||
"\t * Untextured fragments must be set to the polygon color and the light\n"
|
||||
"\t * intensity is initialized to 1.0 here. Alpha must be set to 1.0 because\n"
|
||||
"\t * the fragment shader multiplies it by the polygon translucency setting. \n"
|
||||
"\t *\n"
|
||||
"\t * TO-DO: Does OpenGL set alpha to 1.0 by default if no alpha is specified\n"
|
||||
"\t * for the vertex? If so, we can remove that line from here.\n"
|
||||
"\t */\n"
|
||||
" vec3 viewVertex; // vertex coordinates in view space\n"
|
||||
" vec3 viewNormal; // vertex normal in view space\n"
|
||||
" vec3 sunVector; // sun lighting vector (as reflecting away from vertex)\n"
|
||||
" float sunFactor; // sun light projection along vertex normal (0.0 to 1.0)\n"
|
||||
" vec3 halfway;\n"
|
||||
" float specFactor;\n"
|
||||
" \n"
|
||||
"\tgl_FrontColor = gl_Color;\t// untextured polygons will use this\n"
|
||||
"\tgl_FrontColor.a = 1.0;\t\n"
|
||||
"\tfsLightIntensity = vec3(1.0,1.0,1.0);\n"
|
||||
"\tif (texParams.x > 0.5)\t\t// textured\n"
|
||||
"\t\tfsLightIntensity *= gl_Color.rgb;\n"
|
||||
"\t\t\n"
|
||||
"\t/*\n"
|
||||
" \t * Sun Light\n"
|
||||
"\t *\n"
|
||||
"\t * Parallel light source and ambient lighting are only applied for non-\n"
|
||||
"\t * luminous polygons.\n"
|
||||
" \t */\n"
|
||||
"\tfsSpecularTerm = 0.0;\n"
|
||||
" \tif (lightEnable > 0.5)\t// not luminous\n"
|
||||
"\t{\n"
|
||||
"\t\t// Normal -> view space\n"
|
||||
"\t\tviewNormal = normalize(GetLinearPart(modelViewMatrix)*gl_Normal);\n"
|
||||
" // Transform vertex\n"
|
||||
" gl_Position = projectionMatrix * modelViewMatrix * gl_Vertex;\n"
|
||||
" viewVertex = vec3(modelViewMatrix * gl_Vertex); \n"
|
||||
" \n"
|
||||
"\t\t// Real3D -> OpenGL view space convention (TO-DO: do this outside of shader)\n"
|
||||
"\t\tsunVector = lighting[0]*vec3(1.0,-1.0,-1.0);\n"
|
||||
"\t\t\n"
|
||||
"\t\t// Compute diffuse factor for sunlight\n"
|
||||
"\t\tsunFactor = max(dot(sunVector,viewNormal),0.0);\n"
|
||||
"\t\t\n"
|
||||
"\t\t// Total light intensity: sum of all components\n"
|
||||
"\t\tfsLightIntensity *= min(1.0,(sunFactor*lighting[1].x+lighting[1].y));\n"
|
||||
"\t\t\n"
|
||||
"\t\t/*\n"
|
||||
"\t\t * Specular Lighting\n"
|
||||
"\t\t *\n"
|
||||
"\t\t * The specular term is treated similarly to the \"separate specular\n"
|
||||
"\t\t * color\" functionality of OpenGL: it is added as a highlight in the\n"
|
||||
"\t\t * fragment shader. This allows even black textures to be lit.\n"
|
||||
"\t\t *\n"
|
||||
"\t\t * TO-DO: Ambient intensity viewport parameter is known but what about\n"
|
||||
"\t\t * the intensity of the specular term? Always applied with full \n"
|
||||
"\t\t * intensity here but this is unlikely to be correct.\n"
|
||||
"\t\t */\n"
|
||||
" \t\tif (shininess >= 0.0)\n"
|
||||
" \t\t{\n"
|
||||
" \t\t\t// Standard specular lighting equation\n"
|
||||
" \t\t\tvec3 V = normalize(-viewVertex);\n"
|
||||
" \t\t\tvec3 H = normalize(sunVector+V);\t// halfway vector\n"
|
||||
" \t\t\tfloat s = max(10.0,64.0-shininess);\t\t// seems to look nice, but probably not correct\n"
|
||||
" \t\t\tfsSpecularTerm = pow(max(dot(viewNormal,H),0.0),s);\n"
|
||||
" \t\t\tif (sunFactor <= 0.0) fsSpecularTerm = 0.0;\n"
|
||||
" \t\t\t\n"
|
||||
" \t\t\t// Faster approximation \t\t\t\n"
|
||||
" \t\t\t//float temp = max(dot(viewNormal,H),0.0);\n"
|
||||
" \t\t\t//float s = 64.0-shininess;\n"
|
||||
" \t\t\t//fsSpecularTerm = temp/(s-temp*s+temp);\n"
|
||||
" \t\t\t\n"
|
||||
" \t\t\t// Phong formula\n"
|
||||
" \t\t\t//vec3 R = normalize(2.0*dot(sunVector,viewNormal)*viewNormal - sunVector);\n"
|
||||
" \t\t\t//vec3 V = normalize(-viewVertex);\n"
|
||||
" \t\t\t//float s = max(2.0,64.0-shininess);\n"
|
||||
" \t\t\t//fsSpecularTerm = pow(max(dot(R,V),0.0),s);\n"
|
||||
" \t\t}\n"
|
||||
"\t}\n"
|
||||
"\t\n"
|
||||
"\t// Fog\n"
|
||||
"\tfloat z = length(viewVertex);\n"
|
||||
"\tfsFogFactor = clamp(1.0-fogIntensity*(gl_Fog.start+z*gl_Fog.density), 0.0, 1.0);\n"
|
||||
" /*\n"
|
||||
" * Modulation\n"
|
||||
" *\n"
|
||||
" * Polygon color serves as material color (modulating the light intensity)\n"
|
||||
" * for textured polygons. The fragment shader will ignore (overwrite) the\n"
|
||||
" * the color passed to it if the fragment is textured. \n"
|
||||
" *\n"
|
||||
" * Untextured fragments must be set to the polygon color and the light\n"
|
||||
" * intensity is initialized to 1.0 here. Alpha must be set to 1.0 because\n"
|
||||
" * the fragment shader multiplies it by the polygon translucency setting. \n"
|
||||
" *\n"
|
||||
" * TO-DO: Does OpenGL set alpha to 1.0 by default if no alpha is specified\n"
|
||||
" * for the vertex? If so, we can remove that line from here.\n"
|
||||
" */\n"
|
||||
"\n"
|
||||
"\t// Pass viewspace Z coordinate (for spotlight)\n"
|
||||
"\tfsViewZ = -viewVertex.z;\t// convert Z from GL->Real3D convention (want +Z to be further into screen)\n"
|
||||
" gl_FrontColor = gl_Color; // untextured polygons will use this\n"
|
||||
" gl_FrontColor.a = 1.0; \n"
|
||||
" fsLightIntensity = vec3(1.0,1.0,1.0);\n"
|
||||
" if (texParams.x > 0.5) // textured\n"
|
||||
" fsLightIntensity *= gl_Color.rgb;\n"
|
||||
" \n"
|
||||
"\t// Pass remaining parameters to fragment shader\n"
|
||||
"\tgl_TexCoord[0] = gl_MultiTexCoord0;\n"
|
||||
"\tfsSubTexture = subTexture;\n"
|
||||
"\tfsTexParams = texParams;\n"
|
||||
"\tfsTransLevel = transLevel;\n"
|
||||
"\tfsTexFormat = texFormat;\n"
|
||||
"\tfsTexMap = texMap;\n"
|
||||
" /*\n"
|
||||
" * Sun Light\n"
|
||||
" *\n"
|
||||
" * Parallel light source and ambient lighting are only applied for non-\n"
|
||||
" * luminous polygons.\n"
|
||||
" */\n"
|
||||
" fsSpecularTerm = 0.0;\n"
|
||||
" if (lightEnable > 0.5) // not luminous\n"
|
||||
" {\n"
|
||||
" // Normal -> view space\n"
|
||||
" viewNormal = normalize(GetLinearPart(modelViewMatrix)*gl_Normal);\n"
|
||||
"\n"
|
||||
" // Real3D -> OpenGL view space convention (TO-DO: do this outside of shader)\n"
|
||||
" sunVector = lighting[0]*vec3(1.0,-1.0,-1.0);\n"
|
||||
"\n"
|
||||
" // Compute diffuse factor for sunlight\n"
|
||||
" sunFactor = max(dot(sunVector,viewNormal),0.0);\n"
|
||||
"\n"
|
||||
" // Total light intensity: sum of all components\n"
|
||||
" fsLightIntensity *= min(1.0,(sunFactor*lighting[1].x+lighting[1].y));\n"
|
||||
"\n"
|
||||
" /*\n"
|
||||
" * Specular Lighting\n"
|
||||
" *\n"
|
||||
" * The specular term is treated similarly to the \"separate specular\n"
|
||||
" * color\" functionality of OpenGL: it is added as a highlight in the\n"
|
||||
" * fragment shader. This allows even black textures to be lit.\n"
|
||||
" *\n"
|
||||
" * TO-DO: Ambient intensity viewport parameter is known but what about\n"
|
||||
" * the intensity of the specular term? Always applied with full \n"
|
||||
" * intensity here but this is unlikely to be correct.\n"
|
||||
" */\n"
|
||||
" if (shininess >= 0.0)\n"
|
||||
" {\n"
|
||||
" // Standard specular lighting equation\n"
|
||||
" if (sunFactor > 0.0)\n"
|
||||
" {\n"
|
||||
" vec3 V = normalize(-viewVertex);\n"
|
||||
" vec3 H = normalize(sunVector+V); // halfway vector\n"
|
||||
" fsSpecularTerm = specular*pow(max(dot(viewNormal,H),0.0),shininess);\n"
|
||||
"\n"
|
||||
" // Phong formula\n"
|
||||
" // vec3 R = normalize(2.0*dot(sunVector,viewNormal)*viewNormal - sunVector);\n"
|
||||
" // vec3 V = normalize(-viewVertex);\n"
|
||||
" // fsSpecularTerm = lighting[1].x * specular * pow(max(dot(R,V),0.0),4.);\n"
|
||||
"\n"
|
||||
" //\n"
|
||||
" // This looks decent in Scud Race attract mode. It is directionally\n"
|
||||
" // correct (highlights appear in the right places under the same\n"
|
||||
" // conditions as the actual game). In game play, it no longer works.\n"
|
||||
" // This is loosely based on the Model 2 formula, which is:\n"
|
||||
" //\n"
|
||||
" // s = 2*dot(light, normal)*normal.z - light.z\n"
|
||||
" //\n"
|
||||
" // float dot1 = dot(sunVector, viewNormal);\n"
|
||||
" // float s = dot1*viewNormal.z;\n"
|
||||
" // fsSpecularTerm =specular * pow(max(s, 0.0), 2.);\n"
|
||||
" //\n"
|
||||
" }\n"
|
||||
"\n"
|
||||
" /*\n"
|
||||
" vec3 V = normalize(-viewVertex);\n"
|
||||
" vec3 H = normalize(sunVector+V); // halfway vector\n"
|
||||
" float s = max(10.0,64.0-shininess); // seems to look nice, but probably not correct\n"
|
||||
" fsSpecularTerm = pow(max(dot(viewNormal,H),0.0),s);\n"
|
||||
" if (sunFactor <= 0.0) fsSpecularTerm = 0.0;\n"
|
||||
" */\n"
|
||||
"\n"
|
||||
" // Faster approximation\n"
|
||||
" //float temp = max(dot(viewNormal,H),0.0);\n"
|
||||
" //float s = 64.0-shininess;\n"
|
||||
" //fsSpecularTerm = temp/(s-temp*s+temp);\n"
|
||||
"\n"
|
||||
" // Phong formula\n"
|
||||
" //vec3 R = normalize(2.0*dot(sunVector,viewNormal)*viewNormal - sunVector);\n"
|
||||
" //vec3 V = normalize(-viewVertex);\n"
|
||||
" //float s = max(2.0,64.0-shininess);\n"
|
||||
" //fsSpecularTerm = pow(max(dot(R,V),0.0),s);\n"
|
||||
" }\n"
|
||||
" }\n"
|
||||
" \n"
|
||||
" // Fog\n"
|
||||
" float z = length(viewVertex);\n"
|
||||
" fsFogFactor = clamp(1.0-fogIntensity*(gl_Fog.start+z*gl_Fog.density), 0.0, 1.0);\n"
|
||||
"\n"
|
||||
" // Pass viewspace Z coordinate (for spotlight)\n"
|
||||
" fsViewZ = -viewVertex.z; // convert Z from GL->Real3D convention (want +Z to be further into screen)\n"
|
||||
"\n"
|
||||
" // Pass remaining parameters to fragment shader\n"
|
||||
" gl_TexCoord[0] = gl_MultiTexCoord0;\n"
|
||||
" fsSubTexture = subTexture;\n"
|
||||
" fsTexParams = texParams;\n"
|
||||
" fsTransLevel = transLevel;\n"
|
||||
" fsTexFormat = texFormat;\n"
|
||||
" fsTexMap = texMap;\n"
|
||||
"}\n"
|
||||
};
|
||||
|
||||
|
@ -250,23 +278,23 @@ static const char fragmentShaderSingleSheetSource[] =
|
|||
"#version 120\n"
|
||||
"\n"
|
||||
"// Global uniforms\n"
|
||||
"uniform sampler2D\ttextureMap;\t\t// complete texture map, 2048x2048 texels\n"
|
||||
"uniform vec4\t\tspotEllipse;\t\t// spotlight ellipse position: .x=X position (screen coordinates), .y=Y position, .z=half-width, .w=half-height)\n"
|
||||
"uniform vec2\t\tspotRange;\t\t// spotlight Z range: .x=start (viewspace coordinates), .y=limit\n"
|
||||
"uniform vec3\t\tspotColor;\t\t// spotlight RGB color\n"
|
||||
"uniform vec3\t\tlighting[2];\t\t// lighting state (lighting[0] = sun direction, lighting[1].x,y = diffuse, ambient intensities from 0-1.0)\n"
|
||||
"uniform float\t\tmapSize;\t\t// texture map size (2048,4096,6144 etc)\n"
|
||||
"uniform sampler2D textureMap; // complete texture map, 2048x2048 texels\n"
|
||||
"uniform vec4 spotEllipse; // spotlight ellipse position: .x=X position (screen coordinates), .y=Y position, .z=half-width, .w=half-height)\n"
|
||||
"uniform vec2 spotRange; // spotlight Z range: .x=start (viewspace coordinates), .y=limit\n"
|
||||
"uniform vec3 spotColor; // spotlight RGB color\n"
|
||||
"uniform vec3 lighting[2]; // lighting state (lighting[0] = sun direction, lighting[1].x,y = diffuse, ambient intensities from 0-1.0)\n"
|
||||
"uniform float mapSize; // texture map size (2048,4096,6144 etc)\n"
|
||||
"\n"
|
||||
"// Inputs from vertex shader \n"
|
||||
"varying vec4\t\tfsSubTexture;\t// .x=texture X, .y=texture Y, .z=texture width, .w=texture height (all in texels)\n"
|
||||
"varying vec4\t\tfsTexParams;\t// .x=texture enable (if 1, else 0), .y=use transparency (if > 0), .z=U wrap mode (1=mirror, 0=repeat), .w=V wrap mode\n"
|
||||
"varying float\t\tfsTexFormat;\t// T1RGB5 contour texture (if > 0)\n"
|
||||
"varying float\t\tfsTexMap;\t\t// texture map number\n"
|
||||
"varying float\t\tfsTransLevel;\t// translucence level, 0.0 (transparent) to 1.0 (opaque)\n"
|
||||
"varying vec3\t\tfsLightIntensity;\t// lighting intensity \n"
|
||||
"varying float\t\tfsSpecularTerm;\t// specular highlight\n"
|
||||
"varying float\t\tfsFogFactor;\t// fog factor\n"
|
||||
"varying float\t\tfsViewZ;\t\t// Z distance to fragment from viewpoint at origin\n"
|
||||
"varying vec4 fsSubTexture; // .x=texture X, .y=texture Y, .z=texture width, .w=texture height (all in texels)\n"
|
||||
"varying vec4 fsTexParams; // .x=texture enable (if 1, else 0), .y=use transparency (if > 0), .z=U wrap mode (1=mirror, 0=repeat), .w=V wrap mode\n"
|
||||
"varying float fsTexFormat; // T1RGB5 contour texture (if > 0)\n"
|
||||
"varying float fsTexMap; // texture map number\n"
|
||||
"varying float fsTransLevel; // translucence level, 0.0 (transparent) to 1.0 (opaque)\n"
|
||||
"varying vec3 fsLightIntensity; // lighting intensity \n"
|
||||
"varying float fsSpecularTerm; // specular highlight\n"
|
||||
"varying float fsFogFactor; // fog factor\n"
|
||||
"varying float fsViewZ; // Z distance to fragment from viewpoint at origin\n"
|
||||
"\n"
|
||||
"/*\n"
|
||||
" * WrapTexelCoords():\n"
|
||||
|
@ -282,7 +310,7 @@ static const char fragmentShaderSingleSheetSource[] =
|
|||
" * X, Y position to select the appropriate one, and normalize by 2048\n"
|
||||
" * (the dimensions of the Real3D texture sheet).\n"
|
||||
" *\n"
|
||||
" *\t\t= [(u,v)%(w,h)+(x,y)]/(2048,2048)\n"
|
||||
" * = [(u,v)%(w,h)+(x,y)]/(2048,2048)\n"
|
||||
" *\n"
|
||||
" * If mirroring is enabled, textures are mirrored every odd multiple of\n"
|
||||
" * the original texture. To detect whether we are in an odd multiple, \n"
|
||||
|
@ -290,8 +318,8 @@ static const char fragmentShaderSingleSheetSource[] =
|
|||
" * whether the result is odd. Then, clamp the coordinates as before but\n"
|
||||
" * subtract from the last texel to mirror them:\n"
|
||||
" *\n"
|
||||
" * \t\t= [M*((w-1,h-1)-(u,v)%(w,h)) + (1-M)*(u,v)%(w,h) + (x,y)]/(2048,2048)\n"
|
||||
" *\t\twhere M is 1.0 if the texture must be mirrored.\n"
|
||||
" * = [M*((w-1,h-1)-(u,v)%(w,h)) + (1-M)*(u,v)%(w,h) + (x,y)]/(2048,2048)\n"
|
||||
" * where M is 1.0 if the texture must be mirrored.\n"
|
||||
" *\n"
|
||||
" * As an optimization, this function computes TWO texture coordinates\n"
|
||||
" * simultaneously. The first is texCoord.xy, the second is in .zw. The other\n"
|
||||
|
@ -299,16 +327,16 @@ static const char fragmentShaderSingleSheetSource[] =
|
|||
" */\n"
|
||||
"vec4 WrapTexelCoords(vec4 texCoord, vec4 texOffset, vec4 texSize, vec4 mirrorEnable)\n"
|
||||
"{\n"
|
||||
"\tvec4\tclampedCoord, mirror, glTexCoord;\n"
|
||||
"\t\n"
|
||||
"\tclampedCoord = mod(texCoord,texSize);\t\t\t\t\t\t// clamp coordinates to within texture size\n"
|
||||
"\tmirror = mirrorEnable * mod(floor(texCoord/texSize),2.0);\t// whether this texel needs to be mirrored\n"
|
||||
" vec4 clampedCoord, mirror, glTexCoord;\n"
|
||||
" \n"
|
||||
"\tglTexCoord = (\tmirror*(texSize-clampedCoord) +\n"
|
||||
"\t\t\t\t\t(vec4(1.0,1.0,1.0,1.0)-mirror)*clampedCoord +\n"
|
||||
"\t\t\t\t\ttexOffset\n"
|
||||
"\t\t\t\t ) / mapSize;\n"
|
||||
"\treturn glTexCoord;\n"
|
||||
" clampedCoord = mod(texCoord,texSize); // clamp coordinates to within texture size\n"
|
||||
" mirror = mirrorEnable * mod(floor(texCoord/texSize),2.0); // whether this texel needs to be mirrored\n"
|
||||
"\n"
|
||||
" glTexCoord = ( mirror*(texSize-clampedCoord) +\n"
|
||||
" (vec4(1.0,1.0,1.0,1.0)-mirror)*clampedCoord +\n"
|
||||
" texOffset\n"
|
||||
" ) / mapSize;\n"
|
||||
" return glTexCoord;\n"
|
||||
"}\n"
|
||||
"\n"
|
||||
"/*\n"
|
||||
|
@ -318,101 +346,101 @@ static const char fragmentShaderSingleSheetSource[] =
|
|||
" */\n"
|
||||
"\n"
|
||||
"void main(void)\n"
|
||||
"{\t\n"
|
||||
"\tvec4\tuv_top, uv_bot, c[4];\n"
|
||||
"\tvec2\tr;\n"
|
||||
"\tvec4\tfragColor;\n"
|
||||
"\tvec2\tellipse;\n"
|
||||
"\tvec3\tlightIntensity;\n"
|
||||
"\tfloat\tinsideSpot;\n"
|
||||
"\tint\t\tx;\n"
|
||||
"\t\n"
|
||||
"\t// Get polygon color for untextured polygons (textured polygons will overwrite)\n"
|
||||
"\tif (fsTexParams.x < 0.5)\n"
|
||||
"\t\tfragColor = gl_Color;\t\t\n"
|
||||
"\telse\n"
|
||||
"\t// Textured polygons: set fragment color to texel value\n"
|
||||
"\t{\t\t\t\n"
|
||||
"\t\t/*\n"
|
||||
"\t\t * Bilinear Filtering\n"
|
||||
"\t\t *\n"
|
||||
"\t\t * In order to get this working on ATI, the number of operations is\n"
|
||||
"\t\t * reduced by putting everything into vec4s. uv_top holds the UV \n"
|
||||
"\t\t * coordinates for the top two texels (.xy=left, .zw=right) and uv_bot\n"
|
||||
"\t\t * is for the lower two.\n"
|
||||
"\t\t */\n"
|
||||
"{ \n"
|
||||
" vec4 uv_top, uv_bot, c[4];\n"
|
||||
" vec2 r;\n"
|
||||
" vec4 fragColor;\n"
|
||||
" vec2 ellipse;\n"
|
||||
" vec3 lightIntensity;\n"
|
||||
" float insideSpot;\n"
|
||||
" int x;\n"
|
||||
" \n"
|
||||
"\t\t// Compute fractional blending factor, r, and lower left corner of texel 0\n"
|
||||
"\t\tuv_bot.xy = gl_TexCoord[0].st-vec2(0.5,0.5);\t// move into the lower left blending texel \n"
|
||||
"\t\tr = uv_bot.xy-floor(uv_bot.xy);\t\t\t\t\t// fractional part\n"
|
||||
"\t\tuv_bot.xy = floor(uv_bot.xy);\t\t\t\t\t// integral part\n"
|
||||
"\t\t\n"
|
||||
"\t\t// Compute texel coordinates\n"
|
||||
"\t\tuv_bot.xy += vec2(0.5,0.5);\t// offset to center of pixel (should not be needed but it fixes a lot of glitches, esp. on Nvidia)\n"
|
||||
"\t\tuv_bot.zw = uv_bot.xy + vec2(1.0,0.0);\t\t\t// compute coordinates of the other three neighbors\n"
|
||||
"\t\tuv_top = uv_bot + vec4(0.0,1.0,0.0,1.0);\n"
|
||||
" // Get polygon color for untextured polygons (textured polygons will overwrite)\n"
|
||||
" if (fsTexParams.x < 0.5)\n"
|
||||
" fragColor = gl_Color; \n"
|
||||
" else\n"
|
||||
" // Textured polygons: set fragment color to texel value\n"
|
||||
" { \n"
|
||||
" /*\n"
|
||||
" * Bilinear Filtering\n"
|
||||
" *\n"
|
||||
" * In order to get this working on ATI, the number of operations is\n"
|
||||
" * reduced by putting everything into vec4s. uv_top holds the UV \n"
|
||||
" * coordinates for the top two texels (.xy=left, .zw=right) and uv_bot\n"
|
||||
" * is for the lower two.\n"
|
||||
" */\n"
|
||||
"\n"
|
||||
"\t\t// Compute the properly wrapped texel coordinates\n"
|
||||
"\t\tuv_top = WrapTexelCoords(uv_top,vec4(fsSubTexture.xy,fsSubTexture.xy),vec4(fsSubTexture.zw,fsSubTexture.zw), vec4(fsTexParams.zw,fsTexParams.zw));\n"
|
||||
"\t\tuv_bot = WrapTexelCoords(uv_bot,vec4(fsSubTexture.xy,fsSubTexture.xy),vec4(fsSubTexture.zw,fsSubTexture.zw), vec4(fsTexParams.zw,fsTexParams.zw));\n"
|
||||
" // Compute fractional blending factor, r, and lower left corner of texel 0\n"
|
||||
" uv_bot.xy = gl_TexCoord[0].st-vec2(0.5,0.5); // move into the lower left blending texel\n"
|
||||
" r = uv_bot.xy-floor(uv_bot.xy); // fractional part\n"
|
||||
" uv_bot.xy = floor(uv_bot.xy); // integral part\n"
|
||||
" \n"
|
||||
"\t\t// Fetch the texels\n"
|
||||
"\t\tc[0]=texture2D(textureMap,uv_bot.xy);\t// bottom-left (base texel)\n"
|
||||
"\t\tc[1]=texture2D(textureMap,uv_bot.zw);\t// bottom-right\n"
|
||||
"\t\tc[2]=texture2D(textureMap,uv_top.xy);\t// top-left\n"
|
||||
"\t\tc[3]=texture2D(textureMap,uv_top.zw);\t// top-right\t\t\n"
|
||||
" // Compute texel coordinates\n"
|
||||
" uv_bot.xy += vec2(0.5,0.5); // offset to center of pixel (should not be needed but it fixes a lot of glitches, esp. on Nvidia)\n"
|
||||
" uv_bot.zw = uv_bot.xy + vec2(1.0,0.0); // compute coordinates of the other three neighbors\n"
|
||||
" uv_top = uv_bot + vec4(0.0,1.0,0.0,1.0);\n"
|
||||
"\n"
|
||||
"\t\t// Interpolate texels and blend result with material color to determine final (unlit) fragment color\n"
|
||||
"\t\t// fragColor = (c[0]*(1.0-r.s)*(1.0-r.t) + c[1]*r.s*(1.0-r.t) + c[2]*(1.0-r.s)*r.t + c[3]*r.s*r.t);\n"
|
||||
"\t\t// Faster method:\n"
|
||||
"\t\tc[0] += (c[1]-c[0])*r.s;\t\t\t// 2 alu\n"
|
||||
"\t\tc[2] += (c[3]-c[2])*r.s;\t\t\t// 2 alu\n"
|
||||
"\t\tfragColor = c[0]+(c[2]-c[0])*r.t;\t//2 alu\n"
|
||||
"\t\n"
|
||||
"\t\t/*\n"
|
||||
"\t\t * T1RGB5:\n"
|
||||
"\t\t *\n"
|
||||
"\t\t * The transparency bit determines whether to discard pixels (if set).\n"
|
||||
"\t\t * What is unknown is how this bit behaves when interpolated. OpenGL\n"
|
||||
"\t\t * processes it as an alpha value, so it might concievably be blended\n"
|
||||
"\t\t * with neighbors. Here, an arbitrary threshold is chosen.\n"
|
||||
"\t\t *\n"
|
||||
"\t\t * To-do: blending could probably enabled and this would work even\n"
|
||||
"\t\t * better with a hard threshold.\n"
|
||||
"\t\t *\n"
|
||||
"\t\t * Countour processing also seems to be enabled for RGBA4 textures.\n"
|
||||
"\t\t * When the alpha value is 0.0 (or close), pixels are discarded \n"
|
||||
"\t\t * entirely.\n"
|
||||
"\t\t */\n"
|
||||
"\t\tif (fsTexParams.y > 0.5)\t// contour processing enabled\n"
|
||||
"\t\t{\n"
|
||||
"\t\t\tif (fragColor.a < 0.01)\t// discard anything with alpha == 0\n"
|
||||
"\t\t\t\tdiscard;\n"
|
||||
"\t\t}\n"
|
||||
"\t\t\n"
|
||||
"\t\t// If contour texture and not discarded, force alpha to 1.0 because will later be modified by polygon translucency\n"
|
||||
"\t\tif (fsTexFormat < 0.5)\t\t// contour (T1RGB5) texture\n"
|
||||
"\t\t\tfragColor.a = 1.0;\n"
|
||||
"\t}\n"
|
||||
" // Compute the properly wrapped texel coordinates\n"
|
||||
" uv_top = WrapTexelCoords(uv_top,vec4(fsSubTexture.xy,fsSubTexture.xy),vec4(fsSubTexture.zw,fsSubTexture.zw), vec4(fsTexParams.zw,fsTexParams.zw));\n"
|
||||
" uv_bot = WrapTexelCoords(uv_bot,vec4(fsSubTexture.xy,fsSubTexture.xy),vec4(fsSubTexture.zw,fsSubTexture.zw), vec4(fsTexParams.zw,fsTexParams.zw));\n"
|
||||
"\n"
|
||||
"\t// Compute spotlight and apply lighting\n"
|
||||
"\tellipse = (gl_FragCoord.xy-spotEllipse.xy)/spotEllipse.zw;\n"
|
||||
"\tinsideSpot = dot(ellipse,ellipse);\n"
|
||||
"\tif ((insideSpot <= 1.0) && (fsViewZ>=spotRange.x) && (fsViewZ<spotRange.y))\n"
|
||||
"\t\tlightIntensity = fsLightIntensity+(1.0-insideSpot)*spotColor;\n"
|
||||
"\telse\n"
|
||||
"\t\tlightIntensity = fsLightIntensity;\n"
|
||||
"\tfragColor.rgb *= lightIntensity;\n"
|
||||
"\tfragColor.rgb += vec3(fsSpecularTerm,fsSpecularTerm,fsSpecularTerm);\n"
|
||||
"\t\n"
|
||||
"\t// Translucency (modulates existing alpha channel for RGBA4 texels)\n"
|
||||
"\tfragColor.a *= fsTransLevel;\n"
|
||||
" // Fetch the texels\n"
|
||||
" c[0]=texture2D(textureMap,uv_bot.xy); // bottom-left (base texel)\n"
|
||||
" c[1]=texture2D(textureMap,uv_bot.zw); // bottom-right\n"
|
||||
" c[2]=texture2D(textureMap,uv_top.xy); // top-left\n"
|
||||
" c[3]=texture2D(textureMap,uv_top.zw); // top-right\n"
|
||||
"\n"
|
||||
"\t// Apply fog under the control of fog factor setting from polygon header\n"
|
||||
"\tfragColor.rgb = mix(gl_Fog.color.rgb, fragColor.rgb, fsFogFactor);\n"
|
||||
" // Interpolate texels and blend result with material color to determine final (unlit) fragment color\n"
|
||||
" // fragColor = (c[0]*(1.0-r.s)*(1.0-r.t) + c[1]*r.s*(1.0-r.t) + c[2]*(1.0-r.s)*r.t + c[3]*r.s*r.t);\n"
|
||||
" // Faster method:\n"
|
||||
" c[0] += (c[1]-c[0])*r.s; // 2 alu\n"
|
||||
" c[2] += (c[3]-c[2])*r.s; // 2 alu\n"
|
||||
" fragColor = c[0]+(c[2]-c[0])*r.t; //2 alu\n"
|
||||
"\n"
|
||||
"\t// Store final color\n"
|
||||
"\tgl_FragColor = fragColor;\n"
|
||||
" /*\n"
|
||||
" * T1RGB5:\n"
|
||||
" *\n"
|
||||
" * The transparency bit determines whether to discard pixels (if set).\n"
|
||||
" * What is unknown is how this bit behaves when interpolated. OpenGL\n"
|
||||
" * processes it as an alpha value, so it might concievably be blended\n"
|
||||
" * with neighbors. Here, an arbitrary threshold is chosen.\n"
|
||||
" *\n"
|
||||
" * To-do: blending could probably enabled and this would work even\n"
|
||||
" * better with a hard threshold.\n"
|
||||
" *\n"
|
||||
" * Countour processing also seems to be enabled for RGBA4 textures.\n"
|
||||
" * When the alpha value is 0.0 (or close), pixels are discarded \n"
|
||||
" * entirely.\n"
|
||||
" */\n"
|
||||
" if (fsTexParams.y > 0.5) // contour processing enabled\n"
|
||||
" {\n"
|
||||
" if (fragColor.a < 0.01) // discard anything with alpha == 0\n"
|
||||
" discard;\n"
|
||||
" }\n"
|
||||
" \n"
|
||||
" // If contour texture and not discarded, force alpha to 1.0 because will later be modified by polygon translucency\n"
|
||||
" if (fsTexFormat < 0.5) // contour (T1RGB5) texture\n"
|
||||
" fragColor.a = 1.0;\n"
|
||||
" }\n"
|
||||
"\n"
|
||||
" // Compute spotlight and apply lighting\n"
|
||||
" ellipse = (gl_FragCoord.xy-spotEllipse.xy)/spotEllipse.zw;\n"
|
||||
" insideSpot = dot(ellipse,ellipse);\n"
|
||||
" if ((insideSpot <= 1.0) && (fsViewZ>=spotRange.x) && (fsViewZ<spotRange.y))\n"
|
||||
" lightIntensity = fsLightIntensity+(1.0-insideSpot)*spotColor;\n"
|
||||
" else\n"
|
||||
" lightIntensity = fsLightIntensity;\n"
|
||||
" fragColor.rgb *= lightIntensity;\n"
|
||||
" fragColor.rgb += vec3(fsSpecularTerm,fsSpecularTerm,fsSpecularTerm);\n"
|
||||
" \n"
|
||||
" // Translucency (modulates existing alpha channel for RGBA4 texels)\n"
|
||||
" fragColor.a *= fsTransLevel;\n"
|
||||
"\n"
|
||||
" // Apply fog under the control of fog factor setting from polygon header\n"
|
||||
" fragColor.rgb = mix(gl_Fog.color.rgb, fragColor.rgb, fsFogFactor);\n"
|
||||
"\n"
|
||||
" // Store final color\n"
|
||||
" gl_FragColor = fragColor;\n"
|
||||
"}\n"
|
||||
};
|
||||
|
||||
|
@ -451,30 +479,30 @@ static const char fragmentShaderMultiSheetSource[] =
|
|||
"#version 120\n"
|
||||
"\n"
|
||||
"// Global uniforms\n"
|
||||
"uniform sampler2D\ttextureMap0;\t\t// complete texture map (fmt 0), 2048x2048 texels\n"
|
||||
"uniform sampler2D\ttextureMap1;\t\t// complete texture map (fmt 1), 2048x2048 texels\n"
|
||||
"uniform sampler2D\ttextureMap2;\t\t// complete texture map (fmt 2), 2048x2048 texels\n"
|
||||
"uniform sampler2D\ttextureMap3;\t\t// complete texture map (fmt 3), 2048x2048 texels\n"
|
||||
"uniform sampler2D\ttextureMap4;\t\t// complete texture map (fmt 4), 2048x2048 texels\n"
|
||||
"uniform sampler2D\ttextureMap5;\t\t// complete texture map (fmt 5), 2048x2048 texels\n"
|
||||
"uniform sampler2D\ttextureMap6;\t\t// complete texture map (fmt 6), 2048x2048 texels\n"
|
||||
"uniform sampler2D\ttextureMap7;\t\t// complete texture map (fmt 7), 2048x2048 texels\n"
|
||||
"uniform vec4\t\tspotEllipse;\t\t// spotlight ellipse position: .x=X position (screen coordinates), .y=Y position, .z=half-width, .w=half-height)\n"
|
||||
"uniform vec2\t\tspotRange;\t\t\t// spotlight Z range: .x=start (viewspace coordinates), .y=limit\n"
|
||||
"uniform vec3\t\tspotColor;\t\t\t// spotlight RGB color\n"
|
||||
"uniform vec3\t\tlighting[2];\t\t// lighting state (lighting[0] = sun direction, lighting[1].x,y = diffuse, ambient intensities from 0-1.0)\n"
|
||||
"uniform float\t\tmapSize;\t\t// texture map size (2048,4096,6144 etc)\n"
|
||||
"uniform sampler2D textureMap0; // complete texture map (fmt 0), 2048x2048 texels\n"
|
||||
"uniform sampler2D textureMap1; // complete texture map (fmt 1), 2048x2048 texels\n"
|
||||
"uniform sampler2D textureMap2; // complete texture map (fmt 2), 2048x2048 texels\n"
|
||||
"uniform sampler2D textureMap3; // complete texture map (fmt 3), 2048x2048 texels\n"
|
||||
"uniform sampler2D textureMap4; // complete texture map (fmt 4), 2048x2048 texels\n"
|
||||
"uniform sampler2D textureMap5; // complete texture map (fmt 5), 2048x2048 texels\n"
|
||||
"uniform sampler2D textureMap6; // complete texture map (fmt 6), 2048x2048 texels\n"
|
||||
"uniform sampler2D textureMap7; // complete texture map (fmt 7), 2048x2048 texels\n"
|
||||
"uniform vec4 spotEllipse; // spotlight ellipse position: .x=X position (screen coordinates), .y=Y position, .z=half-width, .w=half-height)\n"
|
||||
"uniform vec2 spotRange; // spotlight Z range: .x=start (viewspace coordinates), .y=limit\n"
|
||||
"uniform vec3 spotColor; // spotlight RGB color\n"
|
||||
"uniform vec3 lighting[2]; // lighting state (lighting[0] = sun direction, lighting[1].x,y = diffuse, ambient intensities from 0-1.0)\n"
|
||||
"uniform float mapSize; // texture map size (2048,4096,6144 etc)\n"
|
||||
"\n"
|
||||
"// Inputs from vertex shader \n"
|
||||
"varying vec4\t\tfsSubTexture;\t// .x=texture X, .y=texture Y, .z=texture width, .w=texture height (all in texels)\n"
|
||||
"varying vec4\t\tfsTexParams;\t// .x=texture enable (if 1, else 0), .y=use transparency (if > 0), .z=U wrap mode (1=mirror, 0=repeat), .w=V wrap mode\n"
|
||||
"varying float\t\tfsTexFormat;\t// T1RGB5 contour texture (if > 0)\n"
|
||||
"varying float\t\tfsTexMap;\t// texture map number\n"
|
||||
"varying float\t\tfsTransLevel;\t// translucence level, 0.0 (transparent) to 1.0 (opaque)\n"
|
||||
"varying vec3\t\tfsLightIntensity;\t// lighting intensity \n"
|
||||
"varying float\t\tfsSpecularTerm;\t// specular highlight\n"
|
||||
"varying float\t\tfsFogFactor;\t// fog factor\n"
|
||||
"varying float\t\tfsViewZ;\t\t// Z distance to fragment from viewpoint at origin\n"
|
||||
"varying vec4 fsSubTexture; // .x=texture X, .y=texture Y, .z=texture width, .w=texture height (all in texels)\n"
|
||||
"varying vec4 fsTexParams; // .x=texture enable (if 1, else 0), .y=use transparency (if > 0), .z=U wrap mode (1=mirror, 0=repeat), .w=V wrap mode\n"
|
||||
"varying float fsTexFormat; // T1RGB5 contour texture (if > 0)\n"
|
||||
"varying float fsTexMap; // texture map number\n"
|
||||
"varying float fsTransLevel; // translucence level, 0.0 (transparent) to 1.0 (opaque)\n"
|
||||
"varying vec3 fsLightIntensity; // lighting intensity \n"
|
||||
"varying float fsSpecularTerm; // specular highlight\n"
|
||||
"varying float fsFogFactor; // fog factor\n"
|
||||
"varying float fsViewZ; // Z distance to fragment from viewpoint at origin\n"
|
||||
"\n"
|
||||
"/*\n"
|
||||
" * WrapTexelCoords():\n"
|
||||
|
@ -490,7 +518,7 @@ static const char fragmentShaderMultiSheetSource[] =
|
|||
" * X, Y position to select the appropriate one, and normalize by 2048\n"
|
||||
" * (the dimensions of the Real3D texture sheet).\n"
|
||||
" *\n"
|
||||
" *\t\t= [(u,v)%(w,h)+(x,y)]/(2048,2048)\n"
|
||||
" * = [(u,v)%(w,h)+(x,y)]/(2048,2048)\n"
|
||||
" *\n"
|
||||
" * If mirroring is enabled, textures are mirrored every odd multiple of\n"
|
||||
" * the original texture. To detect whether we are in an odd multiple, \n"
|
||||
|
@ -498,8 +526,8 @@ static const char fragmentShaderMultiSheetSource[] =
|
|||
" * whether the result is odd. Then, clamp the coordinates as before but\n"
|
||||
" * subtract from the last texel to mirror them:\n"
|
||||
" *\n"
|
||||
" * \t\t= [M*((w-1,h-1)-(u,v)%(w,h)) + (1-M)*(u,v)%(w,h) + (x,y)]/(2048,2048)\n"
|
||||
" *\t\twhere M is 1.0 if the texture must be mirrored.\n"
|
||||
" * = [M*((w-1,h-1)-(u,v)%(w,h)) + (1-M)*(u,v)%(w,h) + (x,y)]/(2048,2048)\n"
|
||||
" * where M is 1.0 if the texture must be mirrored.\n"
|
||||
" *\n"
|
||||
" * As an optimization, this function computes TWO texture coordinates\n"
|
||||
" * simultaneously. The first is texCoord.xy, the second is in .zw. The other\n"
|
||||
|
@ -507,16 +535,16 @@ static const char fragmentShaderMultiSheetSource[] =
|
|||
" */\n"
|
||||
"vec4 WrapTexelCoords(vec4 texCoord, vec4 texOffset, vec4 texSize, vec4 mirrorEnable)\n"
|
||||
"{\n"
|
||||
"\tvec4\tclampedCoord, mirror, glTexCoord;\n"
|
||||
"\t\n"
|
||||
"\tclampedCoord = mod(texCoord,texSize);\t\t\t\t\t\t// clamp coordinates to within texture size\n"
|
||||
"\tmirror = mirrorEnable * mod(floor(texCoord/texSize),2.0);\t// whether this texel needs to be mirrored\n"
|
||||
" vec4 clampedCoord, mirror, glTexCoord;\n"
|
||||
" \n"
|
||||
"\tglTexCoord = (\tmirror*(texSize-clampedCoord) +\n"
|
||||
"\t\t\t\t\t(vec4(1.0,1.0,1.0,1.0)-mirror)*clampedCoord +\n"
|
||||
"\t\t\t\t\ttexOffset\n"
|
||||
"\t\t\t\t ) / mapSize;\n"
|
||||
"\treturn glTexCoord;\n"
|
||||
" clampedCoord = mod(texCoord,texSize); // clamp coordinates to within texture size\n"
|
||||
" mirror = mirrorEnable * mod(floor(texCoord/texSize),2.0); // whether this texel needs to be mirrored\n"
|
||||
"\n"
|
||||
" glTexCoord = ( mirror*(texSize-clampedCoord) +\n"
|
||||
" (vec4(1.0,1.0,1.0,1.0)-mirror)*clampedCoord +\n"
|
||||
" texOffset\n"
|
||||
" ) / mapSize;\n"
|
||||
" return glTexCoord;\n"
|
||||
"}\n"
|
||||
"\n"
|
||||
"/*\n"
|
||||
|
@ -526,138 +554,138 @@ static const char fragmentShaderMultiSheetSource[] =
|
|||
" */\n"
|
||||
"\n"
|
||||
"void main(void)\n"
|
||||
"{\t\n"
|
||||
"\tvec4\tuv_top, uv_bot, c[4];\n"
|
||||
"\tvec2\tr;\n"
|
||||
"\tvec4\tfragColor;\n"
|
||||
"\tvec2\tellipse;\n"
|
||||
"\tvec3\tlightIntensity;\n"
|
||||
"\tfloat\tinsideSpot;\n"
|
||||
"\tint\t\tx;\n"
|
||||
"\t\n"
|
||||
"\t// Get polygon color for untextured polygons (textured polygons will overwrite)\n"
|
||||
"\tif (fsTexParams.x < 0.5)\n"
|
||||
"\t\tfragColor = gl_Color;\t\t\n"
|
||||
"\telse\n"
|
||||
"\t// Textured polygons: set fragment color to texel value\n"
|
||||
"\t{\t\t\t\n"
|
||||
"\t\t/*\n"
|
||||
"\t\t * Bilinear Filtering\n"
|
||||
"\t\t *\n"
|
||||
"\t\t * In order to get this working on ATI, the number of operations is\n"
|
||||
"\t\t * reduced by putting everything into vec4s. uv_top holds the UV \n"
|
||||
"\t\t * coordinates for the top two texels (.xy=left, .zw=right) and uv_bot\n"
|
||||
"\t\t * is for the lower two.\n"
|
||||
"\t\t */\n"
|
||||
"{ \n"
|
||||
" vec4 uv_top, uv_bot, c[4];\n"
|
||||
" vec2 r;\n"
|
||||
" vec4 fragColor;\n"
|
||||
" vec2 ellipse;\n"
|
||||
" vec3 lightIntensity;\n"
|
||||
" float insideSpot;\n"
|
||||
" int x;\n"
|
||||
" \n"
|
||||
"\t\t// Compute fractional blending factor, r, and lower left corner of texel 0\n"
|
||||
"\t\tuv_bot.xy = gl_TexCoord[0].st-vec2(0.5,0.5);\t// move into the lower left blending texel \n"
|
||||
"\t\tr = uv_bot.xy-floor(uv_bot.xy);\t\t\t\t\t// fractional part\n"
|
||||
"\t\tuv_bot.xy = floor(uv_bot.xy);\t\t\t\t\t// integral part\n"
|
||||
"\t\t\n"
|
||||
"\t\t// Compute texel coordinates\n"
|
||||
"\t\tuv_bot.xy += vec2(0.5,0.5);\t// offset to center of pixel (should not be needed but it fixes a lot of glitches, esp. on Nvidia)\n"
|
||||
"\t\tuv_bot.zw = uv_bot.xy + vec2(1.0,0.0);\t\t\t// compute coordinates of the other three neighbors\n"
|
||||
"\t\tuv_top = uv_bot + vec4(0.0,1.0,0.0,1.0);\n"
|
||||
" // Get polygon color for untextured polygons (textured polygons will overwrite)\n"
|
||||
" if (fsTexParams.x < 0.5)\n"
|
||||
" fragColor = gl_Color; \n"
|
||||
" else\n"
|
||||
" // Textured polygons: set fragment color to texel value\n"
|
||||
" { \n"
|
||||
" /*\n"
|
||||
" * Bilinear Filtering\n"
|
||||
" *\n"
|
||||
" * In order to get this working on ATI, the number of operations is\n"
|
||||
" * reduced by putting everything into vec4s. uv_top holds the UV \n"
|
||||
" * coordinates for the top two texels (.xy=left, .zw=right) and uv_bot\n"
|
||||
" * is for the lower two.\n"
|
||||
" */\n"
|
||||
"\n"
|
||||
"\t\t// Compute the properly wrapped texel coordinates\n"
|
||||
"\t\tuv_top = WrapTexelCoords(uv_top,vec4(fsSubTexture.xy,fsSubTexture.xy),vec4(fsSubTexture.zw,fsSubTexture.zw), vec4(fsTexParams.zw,fsTexParams.zw));\n"
|
||||
"\t\tuv_bot = WrapTexelCoords(uv_bot,vec4(fsSubTexture.xy,fsSubTexture.xy),vec4(fsSubTexture.zw,fsSubTexture.zw), vec4(fsTexParams.zw,fsTexParams.zw));\n"
|
||||
" // Compute fractional blending factor, r, and lower left corner of texel 0\n"
|
||||
" uv_bot.xy = gl_TexCoord[0].st-vec2(0.5,0.5); // move into the lower left blending texel \n"
|
||||
" r = uv_bot.xy-floor(uv_bot.xy); // fractional part\n"
|
||||
" uv_bot.xy = floor(uv_bot.xy); // integral part\n"
|
||||
" \n"
|
||||
"\t\t// Fetch the texels from the given texture map\n"
|
||||
"\t\tif (fsTexMap < 0.5f)\t{\n"
|
||||
"\t\t\tc[0]=texture2D(textureMap0, uv_bot.xy); // bottom-left (base texel)\n"
|
||||
"\t\t\tc[1]=texture2D(textureMap0, uv_bot.zw); // bottom-right\n"
|
||||
"\t\t\tc[2]=texture2D(textureMap0, uv_top.xy); // top-left\n"
|
||||
"\t\t\tc[3]=texture2D(textureMap0, uv_top.zw); // top-right\n"
|
||||
"\t\t} else if (fsTexMap < 1.5f) {\n"
|
||||
" // Compute texel coordinates\n"
|
||||
" uv_bot.xy += vec2(0.5,0.5); // offset to center of pixel (should not be needed but it fixes a lot of glitches, esp. on Nvidia)\n"
|
||||
" uv_bot.zw = uv_bot.xy + vec2(1.0,0.0); // compute coordinates of the other three neighbors\n"
|
||||
" uv_top = uv_bot + vec4(0.0,1.0,0.0,1.0);\n"
|
||||
"\n"
|
||||
" // Compute the properly wrapped texel coordinates\n"
|
||||
" uv_top = WrapTexelCoords(uv_top,vec4(fsSubTexture.xy,fsSubTexture.xy),vec4(fsSubTexture.zw,fsSubTexture.zw), vec4(fsTexParams.zw,fsTexParams.zw));\n"
|
||||
" uv_bot = WrapTexelCoords(uv_bot,vec4(fsSubTexture.xy,fsSubTexture.xy),vec4(fsSubTexture.zw,fsSubTexture.zw), vec4(fsTexParams.zw,fsTexParams.zw));\n"
|
||||
"\n"
|
||||
" // Fetch the texels from the given texture map\n"
|
||||
" if (fsTexMap < 0.5f) {\n"
|
||||
" c[0]=texture2D(textureMap0, uv_bot.xy); // bottom-left (base texel)\n"
|
||||
" c[1]=texture2D(textureMap0, uv_bot.zw); // bottom-right\n"
|
||||
" c[2]=texture2D(textureMap0, uv_top.xy); // top-left\n"
|
||||
" c[3]=texture2D(textureMap0, uv_top.zw); // top-right\n"
|
||||
" } else if (fsTexMap < 1.5f) {\n"
|
||||
" c[0]=texture2D(textureMap1, uv_bot.xy); // bottom-left (base texel)\n"
|
||||
"\t\t\tc[1]=texture2D(textureMap1, uv_bot.zw); // bottom-right\n"
|
||||
"\t\t\tc[2]=texture2D(textureMap1, uv_top.xy); // top-left\n"
|
||||
"\t\t\tc[3]=texture2D(textureMap1, uv_top.zw); // top-right\n"
|
||||
"\t\t} else if (fsTexMap < 2.5f) {\n"
|
||||
" c[1]=texture2D(textureMap1, uv_bot.zw); // bottom-right\n"
|
||||
" c[2]=texture2D(textureMap1, uv_top.xy); // top-left\n"
|
||||
" c[3]=texture2D(textureMap1, uv_top.zw); // top-right\n"
|
||||
" } else if (fsTexMap < 2.5f) {\n"
|
||||
" c[0]=texture2D(textureMap2, uv_bot.xy); // bottom-left (base texel)\n"
|
||||
"\t\t\tc[1]=texture2D(textureMap2, uv_bot.zw); // bottom-right\n"
|
||||
"\t\t\tc[2]=texture2D(textureMap2, uv_top.xy); // top-left\n"
|
||||
"\t\t\tc[3]=texture2D(textureMap2, uv_top.zw); // top-right\n"
|
||||
"\t\t} else if (fsTexMap < 3.5f) {\n"
|
||||
" c[1]=texture2D(textureMap2, uv_bot.zw); // bottom-right\n"
|
||||
" c[2]=texture2D(textureMap2, uv_top.xy); // top-left\n"
|
||||
" c[3]=texture2D(textureMap2, uv_top.zw); // top-right\n"
|
||||
" } else if (fsTexMap < 3.5f) {\n"
|
||||
" c[0]=texture2D(textureMap3, uv_bot.xy); // bottom-left (base texel)\n"
|
||||
"\t\t\tc[1]=texture2D(textureMap3, uv_bot.zw); // bottom-right\n"
|
||||
"\t\t\tc[2]=texture2D(textureMap3, uv_top.xy); // top-left\n"
|
||||
"\t\t\tc[3]=texture2D(textureMap3, uv_top.zw); // top-right\n"
|
||||
"\t\t} else if (fsTexMap < 4.5f) {\n"
|
||||
" c[1]=texture2D(textureMap3, uv_bot.zw); // bottom-right\n"
|
||||
" c[2]=texture2D(textureMap3, uv_top.xy); // top-left\n"
|
||||
" c[3]=texture2D(textureMap3, uv_top.zw); // top-right\n"
|
||||
" } else if (fsTexMap < 4.5f) {\n"
|
||||
" c[0]=texture2D(textureMap4, uv_bot.xy); // bottom-left (base texel)\n"
|
||||
"\t\t\tc[1]=texture2D(textureMap4, uv_bot.zw); // bottom-right\n"
|
||||
"\t\t\tc[2]=texture2D(textureMap4, uv_top.xy); // top-left\n"
|
||||
"\t\t\tc[3]=texture2D(textureMap4, uv_top.zw); // top-right\n"
|
||||
"\t\t} else if (fsTexMap < 5.5f) {\n"
|
||||
" c[1]=texture2D(textureMap4, uv_bot.zw); // bottom-right\n"
|
||||
" c[2]=texture2D(textureMap4, uv_top.xy); // top-left\n"
|
||||
" c[3]=texture2D(textureMap4, uv_top.zw); // top-right\n"
|
||||
" } else if (fsTexMap < 5.5f) {\n"
|
||||
" c[0]=texture2D(textureMap5, uv_bot.xy); // bottom-left (base texel)\n"
|
||||
"\t\t\tc[1]=texture2D(textureMap5, uv_bot.zw); // bottom-right\n"
|
||||
"\t\t\tc[2]=texture2D(textureMap5, uv_top.xy); // top-left\n"
|
||||
"\t\t\tc[3]=texture2D(textureMap5, uv_top.zw); // top-right\n"
|
||||
"\t\t} else if (fsTexMap < 6.5f) {\n"
|
||||
"\t\t\tc[0]=texture2D(textureMap6, uv_bot.xy); // bottom-left (base texel)\n"
|
||||
"\t\t\tc[1]=texture2D(textureMap6, uv_bot.zw); // bottom-right\n"
|
||||
"\t\t\tc[2]=texture2D(textureMap6, uv_top.xy); // top-left\n"
|
||||
"\t\t\tc[3]=texture2D(textureMap6, uv_top.zw); // top-right\n"
|
||||
"\t\t} else {\n"
|
||||
" c[1]=texture2D(textureMap5, uv_bot.zw); // bottom-right\n"
|
||||
" c[2]=texture2D(textureMap5, uv_top.xy); // top-left\n"
|
||||
" c[3]=texture2D(textureMap5, uv_top.zw); // top-right\n"
|
||||
" } else if (fsTexMap < 6.5f) {\n"
|
||||
" c[0]=texture2D(textureMap6, uv_bot.xy); // bottom-left (base texel)\n"
|
||||
" c[1]=texture2D(textureMap6, uv_bot.zw); // bottom-right\n"
|
||||
" c[2]=texture2D(textureMap6, uv_top.xy); // top-left\n"
|
||||
" c[3]=texture2D(textureMap6, uv_top.zw); // top-right\n"
|
||||
" } else {\n"
|
||||
" c[0]=texture2D(textureMap7, uv_bot.xy); // bottom-left (base texel)\n"
|
||||
"\t\t\tc[1]=texture2D(textureMap7, uv_bot.zw); // bottom-right\n"
|
||||
"\t\t\tc[2]=texture2D(textureMap7, uv_top.xy); // top-left\n"
|
||||
"\t\t\tc[3]=texture2D(textureMap7, uv_top.zw); // top-right\n"
|
||||
"\t\t} \n"
|
||||
" c[1]=texture2D(textureMap7, uv_bot.zw); // bottom-right\n"
|
||||
" c[2]=texture2D(textureMap7, uv_top.xy); // top-left\n"
|
||||
" c[3]=texture2D(textureMap7, uv_top.zw); // top-right\n"
|
||||
" } \n"
|
||||
"\n"
|
||||
"\t\t// Interpolate texels and blend result with material color to determine final (unlit) fragment color\n"
|
||||
"\t\t// fragColor = (c[0]*(1.0-r.s)*(1.0-r.t) + c[1]*r.s*(1.0-r.t) + c[2]*(1.0-r.s)*r.t + c[3]*r.s*r.t);\n"
|
||||
"\t\t// Faster method:\n"
|
||||
"\t\tc[0] += (c[1]-c[0])*r.s;\t\t\t// 2 alu\n"
|
||||
"\t\tc[2] += (c[3]-c[2])*r.s;\t\t\t// 2 alu\n"
|
||||
"\t\tfragColor = c[0]+(c[2]-c[0])*r.t;\t// 2 alu\n"
|
||||
"\t\n"
|
||||
"\t\t/*\n"
|
||||
"\t\t * T1RGB5:\n"
|
||||
"\t\t *\n"
|
||||
"\t\t * The transparency bit determines whether to discard pixels (if set).\n"
|
||||
"\t\t * What is unknown is how this bit behaves when interpolated. OpenGL\n"
|
||||
"\t\t * processes it as an alpha value, so it might concievably be blended\n"
|
||||
"\t\t * with neighbors. Here, an arbitrary threshold is chosen.\n"
|
||||
"\t\t *\n"
|
||||
"\t\t * To-do: blending could probably enabled and this would work even\n"
|
||||
"\t\t * better with a hard threshold.\n"
|
||||
"\t\t *\n"
|
||||
"\t\t * Countour processing also seems to be enabled for RGBA4 textures.\n"
|
||||
"\t\t * When the alpha value is 0.0 (or close), pixels are discarded \n"
|
||||
"\t\t * entirely.\n"
|
||||
"\t\t */\n"
|
||||
"\t\tif (fsTexParams.y > 0.5)\t// contour processing enabled\n"
|
||||
"\t\t{\n"
|
||||
"\t\t\tif (fragColor.a < 0.01)\t// discard anything with alpha == 0\n"
|
||||
"\t\t\t\tdiscard;\n"
|
||||
"\t\t}\n"
|
||||
"\t\t\n"
|
||||
"\t\t// If contour texture and not discarded, force alpha to 1.0 because will later be modified by polygon translucency\n"
|
||||
"\t\tif (fsTexFormat < 0.5)\t\t// contour (T1RGB5) texture map\n"
|
||||
"\t\t\tfragColor.a = 1.0;\n"
|
||||
"\t}\n"
|
||||
" // Interpolate texels and blend result with material color to determine final (unlit) fragment color\n"
|
||||
" // fragColor = (c[0]*(1.0-r.s)*(1.0-r.t) + c[1]*r.s*(1.0-r.t) + c[2]*(1.0-r.s)*r.t + c[3]*r.s*r.t);\n"
|
||||
" // Faster method:\n"
|
||||
" c[0] += (c[1]-c[0])*r.s; // 2 alu\n"
|
||||
" c[2] += (c[3]-c[2])*r.s; // 2 alu\n"
|
||||
" fragColor = c[0]+(c[2]-c[0])*r.t; // 2 alu\n"
|
||||
"\n"
|
||||
"\t// Compute spotlight and apply lighting\n"
|
||||
"\tellipse = (gl_FragCoord.xy-spotEllipse.xy)/spotEllipse.zw;\n"
|
||||
"\tinsideSpot = dot(ellipse,ellipse);\n"
|
||||
"\tif ((insideSpot <= 1.0) && (fsViewZ>=spotRange.x) && (fsViewZ<spotRange.y))\n"
|
||||
"\t\tlightIntensity = fsLightIntensity+(1.0-insideSpot)*spotColor;\n"
|
||||
"\telse\n"
|
||||
"\t\tlightIntensity = fsLightIntensity;\n"
|
||||
"\tfragColor.rgb *= lightIntensity;\n"
|
||||
"\tfragColor.rgb += vec3(fsSpecularTerm,fsSpecularTerm,fsSpecularTerm);\n"
|
||||
"\t\n"
|
||||
"\t// Translucency (modulates existing alpha channel for RGBA4 texels)\n"
|
||||
"\tfragColor.a *= fsTransLevel;\n"
|
||||
" /*\n"
|
||||
" * T1RGB5:\n"
|
||||
" *\n"
|
||||
" * The transparency bit determines whether to discard pixels (if set).\n"
|
||||
" * What is unknown is how this bit behaves when interpolated. OpenGL\n"
|
||||
" * processes it as an alpha value, so it might concievably be blended\n"
|
||||
" * with neighbors. Here, an arbitrary threshold is chosen.\n"
|
||||
" *\n"
|
||||
" * To-do: blending could probably enabled and this would work even\n"
|
||||
" * better with a hard threshold.\n"
|
||||
" *\n"
|
||||
" * Countour processing also seems to be enabled for RGBA4 textures.\n"
|
||||
" * When the alpha value is 0.0 (or close), pixels are discarded \n"
|
||||
" * entirely.\n"
|
||||
" */\n"
|
||||
" if (fsTexParams.y > 0.5) // contour processing enabled\n"
|
||||
" {\n"
|
||||
" if (fragColor.a < 0.01) // discard anything with alpha == 0\n"
|
||||
" discard;\n"
|
||||
" }\n"
|
||||
" \n"
|
||||
"\t// Apply fog under the control of fog factor setting from polygon header\n"
|
||||
"\tfragColor.rgb = mix(gl_Fog.color.rgb, fragColor.rgb, fsFogFactor);\n"
|
||||
" // If contour texture and not discarded, force alpha to 1.0 because will later be modified by polygon translucency\n"
|
||||
" if (fsTexFormat < 0.5) // contour (T1RGB5) texture map\n"
|
||||
" fragColor.a = 1.0;\n"
|
||||
" }\n"
|
||||
"\n"
|
||||
"\t// Store final color\n"
|
||||
"\tgl_FragColor = fragColor;\n"
|
||||
" // Compute spotlight and apply lighting\n"
|
||||
" ellipse = (gl_FragCoord.xy-spotEllipse.xy)/spotEllipse.zw;\n"
|
||||
" insideSpot = dot(ellipse,ellipse);\n"
|
||||
" if ((insideSpot <= 1.0) && (fsViewZ>=spotRange.x) && (fsViewZ<spotRange.y))\n"
|
||||
" lightIntensity = fsLightIntensity+(1.0-insideSpot)*spotColor;\n"
|
||||
" else\n"
|
||||
" lightIntensity = fsLightIntensity;\n"
|
||||
" fragColor.rgb *= lightIntensity;\n"
|
||||
" fragColor.rgb += vec3(fsSpecularTerm,fsSpecularTerm,fsSpecularTerm);\n"
|
||||
" \n"
|
||||
" // Translucency (modulates existing alpha channel for RGBA4 texels)\n"
|
||||
" fragColor.a *= fsTransLevel;\n"
|
||||
"\n"
|
||||
" // Apply fog under the control of fog factor setting from polygon header\n"
|
||||
" fragColor.rgb = mix(gl_Fog.color.rgb, fragColor.rgb, fsFogFactor);\n"
|
||||
"\n"
|
||||
" // Store final color\n"
|
||||
" gl_FragColor = fragColor;\n"
|
||||
"}\n"
|
||||
};
|
||||
|
||||
|
|
Loading…
Reference in a new issue