mirror of
https://github.com/RetroDECK/Supermodel.git
synced 2024-11-22 05:45:38 +00:00
fix parenthesis error
This commit is contained in:
parent
e7eb912eaa
commit
8ea5978093
|
@ -581,7 +581,7 @@ static bool IsDynamicModel(const UINT32 *data)
|
|||
unsigned numVerts = (data[0]&0x40 ? 4 : 3);
|
||||
// Deduct number of reused verts
|
||||
numVerts -= sharedVerts[data[0]&0xf];
|
||||
done = data[1] & 4 > 0;
|
||||
done = (data[1] & 4) > 0;
|
||||
// Skip header and vertices to next polygon
|
||||
data += 7 + numVerts * 4;
|
||||
}
|
||||
|
|
|
@ -753,7 +753,7 @@ struct VBORef *CLegacy3D::CacheModel(ModelCache *Cache, int lutIdx, UINT16 texOf
|
|||
bool validPoly = (P.header[0] & 0x300) != 0x300;
|
||||
|
||||
// Obtain basic polygon parameters
|
||||
done = P.header[1] & 4 > 0; // last polygon?
|
||||
done = (P.header[1] & 4) > 0; // last polygon?
|
||||
P.numVerts = (P.header[0]&0x40)?4:3;
|
||||
|
||||
// Texture data
|
||||
|
|
|
@ -1,194 +1,194 @@
|
|||
/**
|
||||
** Supermodel
|
||||
** A Sega Model 3 Arcade Emulator.
|
||||
** Copyright 2011-2012 Bart Trzynadlowski, Nik Henson
|
||||
**
|
||||
** This file is part of Supermodel.
|
||||
**
|
||||
** Supermodel is free software: you can redistribute it and/or modify it under
|
||||
** the terms of the GNU General Public License as published by the Free
|
||||
** Software Foundation, either version 3 of the License, or (at your option)
|
||||
** any later version.
|
||||
**
|
||||
** Supermodel is distributed in the hope that it will be useful, but WITHOUT
|
||||
** ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
** FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
** more details.
|
||||
**
|
||||
** You should have received a copy of the GNU General Public License along
|
||||
** with Supermodel. If not, see <http://www.gnu.org/licenses/>.
|
||||
**/
|
||||
|
||||
/*
|
||||
* Fragment.glsl
|
||||
*
|
||||
* Fragment shader for 3D rendering.
|
||||
*/
|
||||
|
||||
#version 120
|
||||
|
||||
// Global uniforms
|
||||
uniform sampler2D textureMap; // complete texture map, 2048x2048 texels
|
||||
uniform vec4 spotEllipse; // spotlight ellipse position: .x=X position (screen coordinates), .y=Y position, .z=half-width, .w=half-height)
|
||||
uniform vec2 spotRange; // spotlight Z range: .x=start (viewspace coordinates), .y=limit
|
||||
uniform vec3 spotColor; // spotlight RGB color
|
||||
uniform vec3 lighting[2]; // lighting state (lighting[0] = sun direction, lighting[1].x,y = diffuse, ambient intensities from 0-1.0)
|
||||
uniform float mapSize; // texture map size (2048,4096,6144 etc)
|
||||
|
||||
// Inputs from vertex shader
|
||||
varying vec4 fsSubTexture; // .x=texture X, .y=texture Y, .z=texture width, .w=texture height (all in texels)
|
||||
varying vec4 fsTexParams; // .x=texture enable (if 1, else 0), .y=use transparency (if > 0), .z=U wrap mode (1=mirror, 0=repeat), .w=V wrap mode
|
||||
/**
|
||||
** Supermodel
|
||||
** A Sega Model 3 Arcade Emulator.
|
||||
** Copyright 2011-2012 Bart Trzynadlowski, Nik Henson
|
||||
**
|
||||
** This file is part of Supermodel.
|
||||
**
|
||||
** Supermodel is free software: you can redistribute it and/or modify it under
|
||||
** the terms of the GNU General Public License as published by the Free
|
||||
** Software Foundation, either version 3 of the License, or (at your option)
|
||||
** any later version.
|
||||
**
|
||||
** Supermodel is distributed in the hope that it will be useful, but WITHOUT
|
||||
** ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
** FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
** more details.
|
||||
**
|
||||
** You should have received a copy of the GNU General Public License along
|
||||
** with Supermodel. If not, see <http://www.gnu.org/licenses/>.
|
||||
**/
|
||||
|
||||
/*
|
||||
* Fragment.glsl
|
||||
*
|
||||
* Fragment shader for 3D rendering.
|
||||
*/
|
||||
|
||||
#version 120
|
||||
|
||||
// Global uniforms
|
||||
uniform sampler2D textureMap; // complete texture map, 2048x2048 texels
|
||||
uniform vec4 spotEllipse; // spotlight ellipse position: .x=X position (screen coordinates), .y=Y position, .z=half-width, .w=half-height)
|
||||
uniform vec2 spotRange; // spotlight Z range: .x=start (viewspace coordinates), .y=limit
|
||||
uniform vec3 spotColor; // spotlight RGB color
|
||||
uniform vec3 lighting[2]; // lighting state (lighting[0] = sun direction, lighting[1].x,y = diffuse, ambient intensities from 0-1.0)
|
||||
uniform float mapSize; // texture map size (2048,4096,6144 etc)
|
||||
|
||||
// Inputs from vertex shader
|
||||
varying vec4 fsSubTexture; // .x=texture X, .y=texture Y, .z=texture width, .w=texture height (all in texels)
|
||||
varying vec4 fsTexParams; // .x=texture enable (if 1, else 0), .y=use transparency (if > 0), .z=U wrap mode (1=mirror, 0=repeat), .w=V wrap mode
|
||||
varying float fsTexFormat; // T1RGB5 contour texture (if > 0)
|
||||
varying float fsTexMap; // texture map number
|
||||
varying float fsTransLevel; // translucence level, 0.0 (transparent) to 1.0 (opaque)
|
||||
varying vec3 fsLightIntensity; // lighting intensity
|
||||
varying float fsSpecularTerm; // specular highlight
|
||||
varying float fsFogFactor; // fog factor
|
||||
varying float fsViewZ; // Z distance to fragment from viewpoint at origin
|
||||
|
||||
/*
|
||||
* WrapTexelCoords():
|
||||
*
|
||||
* Computes the normalized OpenGL S,T coordinates within the 2048x2048 texture
|
||||
* sheet, taking into account wrapping behavior.
|
||||
*
|
||||
* Computing normalized OpenGL texture coordinates (0 to 1) within the
|
||||
* Real3D texture sheet:
|
||||
*
|
||||
* If the texture is not mirrored, we simply have to clamp the
|
||||
* coordinates to fit within the texture dimensions, add the texture
|
||||
* X, Y position to select the appropriate one, and normalize by 2048
|
||||
* (the dimensions of the Real3D texture sheet).
|
||||
*
|
||||
* = [(u,v)%(w,h)+(x,y)]/(2048,2048)
|
||||
*
|
||||
* If mirroring is enabled, textures are mirrored every odd multiple of
|
||||
* the original texture. To detect whether we are in an odd multiple,
|
||||
* simply divide the coordinate by the texture dimension and check
|
||||
* whether the result is odd. Then, clamp the coordinates as before but
|
||||
* subtract from the last texel to mirror them:
|
||||
*
|
||||
* = [M*((w-1,h-1)-(u,v)%(w,h)) + (1-M)*(u,v)%(w,h) + (x,y)]/(2048,2048)
|
||||
* where M is 1.0 if the texture must be mirrored.
|
||||
*
|
||||
* As an optimization, this function computes TWO texture coordinates
|
||||
* simultaneously. The first is texCoord.xy, the second is in .zw. The other
|
||||
* parameters must have .xy = .zw.
|
||||
*/
|
||||
vec4 WrapTexelCoords(vec4 texCoord, vec4 texOffset, vec4 texSize, vec4 mirrorEnable)
|
||||
{
|
||||
vec4 clampedCoord, mirror, glTexCoord;
|
||||
|
||||
clampedCoord = mod(texCoord,texSize); // clamp coordinates to within texture size
|
||||
mirror = mirrorEnable * mod(floor(texCoord/texSize),2.0); // whether this texel needs to be mirrored
|
||||
|
||||
glTexCoord = ( mirror*(texSize-clampedCoord) +
|
||||
(vec4(1.0,1.0,1.0,1.0)-mirror)*clampedCoord +
|
||||
texOffset
|
||||
) / mapSize;
|
||||
return glTexCoord;
|
||||
}
|
||||
|
||||
/*
|
||||
* main():
|
||||
*
|
||||
* Fragment shader entry point.
|
||||
*/
|
||||
|
||||
void main(void)
|
||||
{
|
||||
vec4 uv_top, uv_bot, c[4];
|
||||
vec2 r;
|
||||
vec4 fragColor;
|
||||
vec2 ellipse;
|
||||
vec3 lightIntensity;
|
||||
float insideSpot;
|
||||
int x;
|
||||
|
||||
// Get polygon color for untextured polygons (textured polygons will overwrite)
|
||||
if (fsTexParams.x < 0.5)
|
||||
fragColor = gl_Color;
|
||||
else
|
||||
// Textured polygons: set fragment color to texel value
|
||||
{
|
||||
/*
|
||||
* Bilinear Filtering
|
||||
*
|
||||
* In order to get this working on ATI, the number of operations is
|
||||
* reduced by putting everything into vec4s. uv_top holds the UV
|
||||
* coordinates for the top two texels (.xy=left, .zw=right) and uv_bot
|
||||
* is for the lower two.
|
||||
*/
|
||||
|
||||
// Compute fractional blending factor, r, and lower left corner of texel 0
|
||||
uv_bot.xy = gl_TexCoord[0].st-vec2(0.5,0.5); // move into the lower left blending texel
|
||||
r = uv_bot.xy-floor(uv_bot.xy); // fractional part
|
||||
uv_bot.xy = floor(uv_bot.xy); // integral part
|
||||
|
||||
// Compute texel coordinates
|
||||
uv_bot.xy += vec2(0.5,0.5); // offset to center of pixel (should not be needed but it fixes a lot of glitches, esp. on Nvidia)
|
||||
uv_bot.zw = uv_bot.xy + vec2(1.0,0.0); // compute coordinates of the other three neighbors
|
||||
uv_top = uv_bot + vec4(0.0,1.0,0.0,1.0);
|
||||
|
||||
// Compute the properly wrapped texel coordinates
|
||||
uv_top = WrapTexelCoords(uv_top,vec4(fsSubTexture.xy,fsSubTexture.xy),vec4(fsSubTexture.zw,fsSubTexture.zw), vec4(fsTexParams.zw,fsTexParams.zw));
|
||||
uv_bot = WrapTexelCoords(uv_bot,vec4(fsSubTexture.xy,fsSubTexture.xy),vec4(fsSubTexture.zw,fsSubTexture.zw), vec4(fsTexParams.zw,fsTexParams.zw));
|
||||
|
||||
// Fetch the texels
|
||||
c[0]=texture2D(textureMap,uv_bot.xy); // bottom-left (base texel)
|
||||
c[1]=texture2D(textureMap,uv_bot.zw); // bottom-right
|
||||
c[2]=texture2D(textureMap,uv_top.xy); // top-left
|
||||
c[3]=texture2D(textureMap,uv_top.zw); // top-right
|
||||
|
||||
// Interpolate texels and blend result with material color to determine final (unlit) fragment color
|
||||
// fragColor = (c[0]*(1.0-r.s)*(1.0-r.t) + c[1]*r.s*(1.0-r.t) + c[2]*(1.0-r.s)*r.t + c[3]*r.s*r.t);
|
||||
// Faster method:
|
||||
c[0] += (c[1]-c[0])*r.s; // 2 alu
|
||||
c[2] += (c[3]-c[2])*r.s; // 2 alu
|
||||
fragColor = c[0]+(c[2]-c[0])*r.t; //2 alu
|
||||
|
||||
/*
|
||||
* T1RGB5:
|
||||
*
|
||||
* The transparency bit determines whether to discard pixels (if set).
|
||||
* What is unknown is how this bit behaves when interpolated. OpenGL
|
||||
* processes it as an alpha value, so it might concievably be blended
|
||||
* with neighbors. Here, an arbitrary threshold is chosen.
|
||||
*
|
||||
* To-do: blending could probably enabled and this would work even
|
||||
* better with a hard threshold.
|
||||
*
|
||||
* Countour processing also seems to be enabled for RGBA4 textures.
|
||||
* When the alpha value is 0.0 (or close), pixels are discarded
|
||||
* entirely.
|
||||
*/
|
||||
if (fsTexParams.y > 0.5) // contour processing enabled
|
||||
{
|
||||
if (fragColor.a < 0.01) // discard anything with alpha == 0
|
||||
discard;
|
||||
}
|
||||
|
||||
// If contour texture and not discarded, force alpha to 1.0 because will later be modified by polygon translucency
|
||||
if (fsTexFormat < 0.5) // contour (T1RGB5) texture
|
||||
fragColor.a = 1.0;
|
||||
}
|
||||
|
||||
// Compute spotlight and apply lighting
|
||||
ellipse = (gl_FragCoord.xy-spotEllipse.xy)/spotEllipse.zw;
|
||||
insideSpot = dot(ellipse,ellipse);
|
||||
if ((insideSpot <= 1.0) && (fsViewZ>=spotRange.x) && (fsViewZ<spotRange.y))
|
||||
lightIntensity = fsLightIntensity+(1.0-insideSpot)*spotColor;
|
||||
else
|
||||
lightIntensity = fsLightIntensity;
|
||||
fragColor.rgb *= lightIntensity;
|
||||
fragColor.rgb += vec3(fsSpecularTerm,fsSpecularTerm,fsSpecularTerm);
|
||||
|
||||
// Translucency (modulates existing alpha channel for RGBA4 texels)
|
||||
fragColor.a *= fsTransLevel;
|
||||
|
||||
// Apply fog under the control of fog factor setting from polygon header
|
||||
fragColor.rgb = mix(gl_Fog.color.rgb, fragColor.rgb, fsFogFactor);
|
||||
|
||||
// Store final color
|
||||
gl_FragColor = fragColor;
|
||||
}
|
||||
varying float fsTexMap; // texture map number
|
||||
varying float fsTransLevel; // translucence level, 0.0 (transparent) to 1.0 (opaque)
|
||||
varying vec3 fsLightIntensity; // lighting intensity
|
||||
varying float fsSpecularTerm; // specular highlight
|
||||
varying float fsFogFactor; // fog factor
|
||||
varying float fsViewZ; // Z distance to fragment from viewpoint at origin
|
||||
|
||||
/*
|
||||
* WrapTexelCoords():
|
||||
*
|
||||
* Computes the normalized OpenGL S,T coordinates within the 2048x2048 texture
|
||||
* sheet, taking into account wrapping behavior.
|
||||
*
|
||||
* Computing normalized OpenGL texture coordinates (0 to 1) within the
|
||||
* Real3D texture sheet:
|
||||
*
|
||||
* If the texture is not mirrored, we simply have to clamp the
|
||||
* coordinates to fit within the texture dimensions, add the texture
|
||||
* X, Y position to select the appropriate one, and normalize by 2048
|
||||
* (the dimensions of the Real3D texture sheet).
|
||||
*
|
||||
* = [(u,v)%(w,h)+(x,y)]/(2048,2048)
|
||||
*
|
||||
* If mirroring is enabled, textures are mirrored every odd multiple of
|
||||
* the original texture. To detect whether we are in an odd multiple,
|
||||
* simply divide the coordinate by the texture dimension and check
|
||||
* whether the result is odd. Then, clamp the coordinates as before but
|
||||
* subtract from the last texel to mirror them:
|
||||
*
|
||||
* = [M*((w-1,h-1)-(u,v)%(w,h)) + (1-M)*(u,v)%(w,h) + (x,y)]/(2048,2048)
|
||||
* where M is 1.0 if the texture must be mirrored.
|
||||
*
|
||||
* As an optimization, this function computes TWO texture coordinates
|
||||
* simultaneously. The first is texCoord.xy, the second is in .zw. The other
|
||||
* parameters must have .xy = .zw.
|
||||
*/
|
||||
vec4 WrapTexelCoords(vec4 texCoord, vec4 texOffset, vec4 texSize, vec4 mirrorEnable)
|
||||
{
|
||||
vec4 clampedCoord, mirror, glTexCoord;
|
||||
|
||||
clampedCoord = mod(texCoord,texSize); // clamp coordinates to within texture size
|
||||
mirror = mirrorEnable * mod(floor(texCoord/texSize),2.0); // whether this texel needs to be mirrored
|
||||
|
||||
glTexCoord = ( mirror*(texSize-clampedCoord) +
|
||||
(vec4(1.0,1.0,1.0,1.0)-mirror)*clampedCoord +
|
||||
texOffset
|
||||
) / mapSize;
|
||||
return glTexCoord;
|
||||
}
|
||||
|
||||
/*
|
||||
* main():
|
||||
*
|
||||
* Fragment shader entry point.
|
||||
*/
|
||||
|
||||
void main(void)
|
||||
{
|
||||
vec4 uv_top, uv_bot, c[4];
|
||||
vec2 r;
|
||||
vec4 fragColor;
|
||||
vec2 ellipse;
|
||||
vec3 lightIntensity;
|
||||
float insideSpot;
|
||||
int x;
|
||||
|
||||
// Get polygon color for untextured polygons (textured polygons will overwrite)
|
||||
if (fsTexParams.x < 0.5)
|
||||
fragColor = gl_Color;
|
||||
else
|
||||
// Textured polygons: set fragment color to texel value
|
||||
{
|
||||
/*
|
||||
* Bilinear Filtering
|
||||
*
|
||||
* In order to get this working on ATI, the number of operations is
|
||||
* reduced by putting everything into vec4s. uv_top holds the UV
|
||||
* coordinates for the top two texels (.xy=left, .zw=right) and uv_bot
|
||||
* is for the lower two.
|
||||
*/
|
||||
|
||||
// Compute fractional blending factor, r, and lower left corner of texel 0
|
||||
uv_bot.xy = gl_TexCoord[0].st-vec2(0.5,0.5); // move into the lower left blending texel
|
||||
r = uv_bot.xy-floor(uv_bot.xy); // fractional part
|
||||
uv_bot.xy = floor(uv_bot.xy); // integral part
|
||||
|
||||
// Compute texel coordinates
|
||||
uv_bot.xy += vec2(0.5,0.5); // offset to center of pixel (should not be needed but it fixes a lot of glitches, esp. on Nvidia)
|
||||
uv_bot.zw = uv_bot.xy + vec2(1.0,0.0); // compute coordinates of the other three neighbors
|
||||
uv_top = uv_bot + vec4(0.0,1.0,0.0,1.0);
|
||||
|
||||
// Compute the properly wrapped texel coordinates
|
||||
uv_top = WrapTexelCoords(uv_top,vec4(fsSubTexture.xy,fsSubTexture.xy),vec4(fsSubTexture.zw,fsSubTexture.zw), vec4(fsTexParams.zw,fsTexParams.zw));
|
||||
uv_bot = WrapTexelCoords(uv_bot,vec4(fsSubTexture.xy,fsSubTexture.xy),vec4(fsSubTexture.zw,fsSubTexture.zw), vec4(fsTexParams.zw,fsTexParams.zw));
|
||||
|
||||
// Fetch the texels
|
||||
c[0]=texture2D(textureMap,uv_bot.xy); // bottom-left (base texel)
|
||||
c[1]=texture2D(textureMap,uv_bot.zw); // bottom-right
|
||||
c[2]=texture2D(textureMap,uv_top.xy); // top-left
|
||||
c[3]=texture2D(textureMap,uv_top.zw); // top-right
|
||||
|
||||
// Interpolate texels and blend result with material color to determine final (unlit) fragment color
|
||||
// fragColor = (c[0]*(1.0-r.s)*(1.0-r.t) + c[1]*r.s*(1.0-r.t) + c[2]*(1.0-r.s)*r.t + c[3]*r.s*r.t);
|
||||
// Faster method:
|
||||
c[0] += (c[1]-c[0])*r.s; // 2 alu
|
||||
c[2] += (c[3]-c[2])*r.s; // 2 alu
|
||||
fragColor = c[0]+(c[2]-c[0])*r.t; //2 alu
|
||||
|
||||
/*
|
||||
* T1RGB5:
|
||||
*
|
||||
* The transparency bit determines whether to discard pixels (if set).
|
||||
* What is unknown is how this bit behaves when interpolated. OpenGL
|
||||
* processes it as an alpha value, so it might concievably be blended
|
||||
* with neighbors. Here, an arbitrary threshold is chosen.
|
||||
*
|
||||
* To-do: blending could probably enabled and this would work even
|
||||
* better with a hard threshold.
|
||||
*
|
||||
* Countour processing also seems to be enabled for RGBA4 textures.
|
||||
* When the alpha value is 0.0 (or close), pixels are discarded
|
||||
* entirely.
|
||||
*/
|
||||
if (fsTexParams.y > 0.5) // contour processing enabled
|
||||
{
|
||||
if (fragColor.a < 0.01) // discard anything with alpha == 0
|
||||
discard;
|
||||
}
|
||||
|
||||
// If contour texture and not discarded, force alpha to 1.0 because will later be modified by polygon translucency
|
||||
if (fsTexFormat < 0.5) // contour (T1RGB5) texture
|
||||
fragColor.a = 1.0;
|
||||
}
|
||||
|
||||
// Compute spotlight and apply lighting
|
||||
ellipse = (gl_FragCoord.xy-spotEllipse.xy)/spotEllipse.zw;
|
||||
insideSpot = dot(ellipse,ellipse);
|
||||
if ((insideSpot <= 1.0) && (fsViewZ>=spotRange.x) && (fsViewZ<spotRange.y))
|
||||
lightIntensity = fsLightIntensity+(1.0-insideSpot)*spotColor;
|
||||
else
|
||||
lightIntensity = fsLightIntensity;
|
||||
fragColor.rgb *= lightIntensity;
|
||||
fragColor.rgb += vec3(fsSpecularTerm,fsSpecularTerm,fsSpecularTerm);
|
||||
|
||||
// Translucency (modulates existing alpha channel for RGBA4 texels)
|
||||
fragColor.a *= fsTransLevel;
|
||||
|
||||
// Apply fog under the control of fog factor setting from polygon header
|
||||
fragColor.rgb = mix(gl_Fog.color.rgb, fragColor.rgb, fsFogFactor);
|
||||
|
||||
// Store final color
|
||||
gl_FragColor = fragColor;
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue