Floating point reversed z-buffer and new clipping code

Also always draw nodes with culling disabled even if they test as being outside the visible frustum
This commit is contained in:
gm-matthew 2023-12-22 02:00:47 +00:00
parent 6f409539a7
commit 9f66fcaac7
7 changed files with 94 additions and 396 deletions

View file

@ -149,14 +149,12 @@ void Mat4::Rotate(float angle, float x, float y, float z)
Mat4::MultiMatrices(currentMatrix, m, currentMatrix);
}
void Mat4::Frustum(float left, float right, float bottom, float top, float nearVal, float farVal)
void Mat4::Frustum(float left, float right, float bottom, float top, float nearVal)
{
float x = (2.0F*nearVal) / (right - left);
float y = (2.0F*nearVal) / (top - bottom);
float x = 2.0F / (right - left);
float y = 2.0F / (top - bottom);
float a = (right + left) / (right - left);
float b = (top + bottom) / (top - bottom);
float c = -(farVal + nearVal) / (farVal - nearVal);
float d = -(2.0F*farVal*nearVal) / (farVal - nearVal);
float m[16];
m[0] = x;
@ -171,30 +169,30 @@ void Mat4::Frustum(float left, float right, float bottom, float top, float nearV
m[8] = a;
m[9] = b;
m[10] = c;
m[10] = 0.f;
m[11] = -1.f;
m[12] = 0.f;
m[13] = 0.f;
m[14] = d;
m[14] = nearVal;
m[15] = 0.f;
Mat4::MultiMatrices(currentMatrix, m, currentMatrix);
}
void Mat4::Perspective(float fovy, float aspect, float zNear, float zFar)
void Mat4::Perspective(float fovy, float aspect, float zNear)
{
float ymax = zNear * tanf(fovy * (float)(M_PI / 360.0));
float ymax = tanf(fovy * (float)(M_PI / 360.0));
float xmax = ymax * aspect;
Frustum(-xmax, xmax, -ymax, ymax, zNear, zFar);
Frustum(-xmax, xmax, -ymax, ymax, zNear);
}
void Mat4::Ortho(float left, float right, float bottom, float top, float nearVal, float farVal)
{
float tx = -(right + left) / (right - left);
float ty = -(top + bottom) / (top - bottom);
float tz = -(farVal + nearVal) / (farVal - nearVal);
float tz = (farVal + nearVal - 1.f) / (farVal - nearVal);
float m[16];
m[0] = 2.f/(right-left);
@ -209,7 +207,7 @@ void Mat4::Ortho(float left, float right, float bottom, float top, float nearVal
m[8] = 0.f;
m[9] = 0.f;
m[10] = -2.f/(farVal-nearVal);
m[10] = 1.f/(farVal-nearVal);
m[11] = 0.f;
m[12] = tx;

View file

@ -15,8 +15,8 @@ public:
void Translate (float x, float y, float z);
void Rotate (float angle, float x, float y, float z);
void Scale (float x, float y, float z);
void Frustum (float left, float right, float bottom, float top, float nearVal, float farVal);
void Perspective (float fovy, float aspect, float zNear, float zFar);
void Frustum (float left, float right, float bottom, float top, float nearVal);
void Perspective (float fovy, float aspect, float zNear);
void Ortho (float left, float right, float bottom, float top, float nearVal, float farVal);
void MultMatrix (const float *m);
void LoadMatrix (const float *m);

View file

@ -13,6 +13,8 @@
#define BYTE_TO_FLOAT(B) ((2.0f * (B) + 1.0f) * (float)(1.0/255.0))
#define NEAR_PLANE 1e-3f
namespace New3D {
CNew3D::CNew3D(const Util::Config::Node &config, const std::string& gameName) :
@ -267,7 +269,7 @@ bool CNew3D::RenderScene(int priority, bool renderOverlay, Layer layer)
continue;
}
CalcViewport(&n.viewport, std::abs(m_nfPairs[priority].zNear*0.96f), std::abs(m_nfPairs[priority].zFar*1.05f)); // make planes 5% bigger
CalcViewport(&n.viewport);
glViewport(n.viewport.x, n.viewport.y, n.viewport.width, n.viewport.height);
m_r3dShader.SetViewportUniforms(&n.viewport);
@ -323,7 +325,7 @@ void CNew3D::SetRenderStates()
m_r3dShader.SetShader(true);
glDepthFunc (GL_LEQUAL);
glDepthFunc (GL_GEQUAL);
glEnable (GL_DEPTH_TEST);
glDepthMask (GL_TRUE);
glActiveTexture (GL_TEXTURE0);
@ -348,11 +350,6 @@ void CNew3D::DisableRenderStates()
void CNew3D::RenderFrame(void)
{
for (int i = 0; i < 4; i++) {
m_nfPairs[i].zNear = -std::numeric_limits<float>::max();
m_nfPairs[i].zFar = std::numeric_limits<float>::max();
}
{
std::lock_guard<std::mutex> guard(m_losMutex);
std::swap(m_losBack, m_losFront);
@ -411,6 +408,7 @@ void CNew3D::RenderFrame(void)
m_r3dFrameBuffers.SetFBO(Layer::colour);
glClearDepth(0.0);
glClear(GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
m_r3dShader.DiscardAlpha(true);
@ -421,7 +419,7 @@ void CNew3D::RenderFrame(void)
ProcessLos(pri);
}
glDepthFunc(GL_LESS);
glDepthFunc(GL_GREATER);
m_r3dShader.DiscardAlpha(false);
@ -537,10 +535,6 @@ bool CNew3D::DrawModel(UINT32 modelAddr)
CacheModel(m, modelAddress);
}
if (m_nodeAttribs.currentClipStatus != Clip::INSIDE) {
ClipModel(m); // not storing clipped values, only working out the Z range
}
return true;
}
@ -605,7 +599,6 @@ void CNew3D::DescendCullingNode(UINT32 addr)
const UINT32 *node, *lodPtr;
UINT32 matrixOffset, child1Ptr, sibling2Ptr;
BBox bbox;
UINT16 uCullRadius;
float fCullRadius;
UINT16 uBlendRadius;
@ -679,10 +672,10 @@ void CNew3D::DescendCullingNode(UINT32 addr)
// apply translation vector
if (node[0x00] & 0x10) {
float x = Util::Uint32AsFloat(node[0x04 - m_offset]);
float y = Util::Uint32AsFloat(node[0x05 - m_offset]);
float z = Util::Uint32AsFloat(node[0x06 - m_offset]);
m_modelMat.Translate(x, y, z);
float centroid_x = Util::Uint32AsFloat(node[0x04 - m_offset]);
float centroid_y = Util::Uint32AsFloat(node[0x05 - m_offset]);
float centroid_z = Util::Uint32AsFloat(node[0x06 - m_offset]);
m_modelMat.Translate(centroid_x, centroid_y, centroid_z);
}
// multiply matrix, if specified
else if (matrixOffset) {
@ -693,42 +686,29 @@ void CNew3D::DescendCullingNode(UINT32 addr)
ResetMatrix(m_modelMat);
}
float& x = m_modelMat.currentMatrix[12];
float& y = m_modelMat.currentMatrix[13];
float& z = m_modelMat.currentMatrix[14];
uCullRadius = node[9 - m_offset] & 0xFFFF;
fCullRadius = R3DFloat::GetFloat16(uCullRadius);
fCullRadius = R3DFloat::GetFloat16(uCullRadius) * m_nodeAttribs.currentModelScale;;
uBlendRadius = node[9 - m_offset] >> 16;
fBlendRadius = R3DFloat::GetFloat16(uBlendRadius);
fBlendRadius = R3DFloat::GetFloat16(uBlendRadius) * m_nodeAttribs.currentModelScale;;
if (m_nodeAttribs.currentClipStatus != Clip::INSIDE) {
if (uCullRadius != R3DFloat::Pro16BitMax) {
CalcBox(fCullRadius, bbox);
TransformBox(m_modelMat, bbox);
m_nodeAttribs.currentClipStatus = ClipBox(bbox, m_planes);
if (m_nodeAttribs.currentClipStatus == Clip::INSIDE) {
CalcBoxExtents(bbox);
}
}
else {
m_nodeAttribs.currentClipStatus = Clip::NOT_SET;
}
bool outsideFrustum = false;
if ((z * m_planes.bnlu - x * m_planes.bnlv * m_planes.correction) > fCullRadius ||
(z * m_planes.bntu + y * m_planes.bntw) > fCullRadius ||
(z * m_planes.bnru - x * m_planes.bnrv * m_planes.correction) > fCullRadius ||
(z * m_planes.bnbu + y * m_planes.bnbw) > fCullRadius)
{
outsideFrustum = true;
}
float LODscale;
if (m_nodeAttribs.currentDisableCulling) {
LODscale = std::numeric_limits<float>::max();
}
else {
float distance = std::hypot(m_modelMat.currentMatrix[12], m_modelMat.currentMatrix[13], m_modelMat.currentMatrix[14]);
LODscale = fBlendRadius * m_nodeAttribs.currentModelScale / distance;
}
float LODscale = m_nodeAttribs.currentDisableCulling ? std::numeric_limits<float>::max() : (fBlendRadius / std::hypot(x, y, z));
const LOD *lod = m_LODBlendTable->table[lodTablePointer].lod;
const LODFeatureType& lodTableEntry = m_LODBlendTable->table[lodTablePointer];
if (m_nodeAttribs.currentClipStatus != Clip::OUTSIDE && LODscale >= lodTableEntry.lod[3].deleteSize) {
if (m_nodeAttribs.currentDisableCulling || (!outsideFrustum && LODscale >= lod[3].deleteSize)) {
// Descend down first link
if ((node[0x00] & 0x08)) // 4-element LOD table
@ -740,17 +720,17 @@ void CNew3D::DescendCullingNode(UINT32 addr)
int modelLOD;
for (modelLOD = 0; modelLOD < 3; modelLOD++)
{
if (LODscale >= lodTableEntry.lod[modelLOD].deleteSize && lodPtr[modelLOD] & 0x1000000)
if (LODscale >= lod[modelLOD].deleteSize && lodPtr[modelLOD] & 0x1000000)
break;
}
float tempAlpha = m_nodeAttribs.currentModelAlpha;
float nodeAlpha = lodTableEntry.lod[modelLOD].blendFactor * (LODscale - lodTableEntry.lod[modelLOD].deleteSize);
float nodeAlpha = lod[modelLOD].blendFactor * (LODscale - lod[modelLOD].deleteSize);
nodeAlpha = std::clamp(nodeAlpha, 0.0f, 1.0f);
if (nodeAlpha > 15.0f / 16.0f) // shader discards pixels below 1/16 alpha
if (nodeAlpha > 31.0f / 32.0f) // shader discards pixels below 1/32 alpha
nodeAlpha = 1.0f;
else if (nodeAlpha < 1.0f / 16.0f)
else if (nodeAlpha < 1.0f / 32.0f)
nodeAlpha = 0.0f;
m_nodeAttribs.currentModelAlpha *= nodeAlpha; // alpha of each node multiples by the alpha of its parent
@ -776,7 +756,7 @@ void CNew3D::DescendCullingNode(UINT32 addr)
}
else {
float nodeAlpha = lodTableEntry.lod[3].blendFactor * (LODscale - lodTableEntry.lod[3].deleteSize);
float nodeAlpha = lod[3].blendFactor * (LODscale - lod[3].deleteSize);
nodeAlpha = std::clamp(nodeAlpha, 0.0f, 1.0f);
m_nodeAttribs.currentModelAlpha *= nodeAlpha; // alpha of each node multiples by the alpha of its parent
@ -1015,28 +995,27 @@ void CNew3D::RenderViewport(UINT32 addr)
m_LODBlendTable = (LODBlendTable*)TranslateCullingAddress(vpnode[0x17] & 0xFFFFFF);
/*
vp->angle_left = -atan2f(Util::Uint32AsFloat(vpnode[12]), Util::Uint32AsFloat(vpnode[13])); // These values work out as the normals for the clipping planes.
vp->angle_right = atan2f(Util::Uint32AsFloat(vpnode[16]), -Util::Uint32AsFloat(vpnode[17])); // Sometimes these values (dirt devils,lost world) are totally wrong
vp->angle_top = atan2f(Util::Uint32AsFloat(vpnode[14]), Util::Uint32AsFloat(vpnode[15])); // and don't work for the frustum values exactly.
vp->angle_bottom = -atan2f(Util::Uint32AsFloat(vpnode[18]), -Util::Uint32AsFloat(vpnode[19])); // Perhaps they are just used for culling and not rendering.
*/
float cv = Util::Uint32AsFloat(vpnode[0x8]); // 1/(left-right)
float cw = Util::Uint32AsFloat(vpnode[0x9]); // 1/(top-bottom)
float io = Util::Uint32AsFloat(vpnode[0xa]); // top / bottom (ratio) - ish
float jo = Util::Uint32AsFloat(vpnode[0xb]); // left / right (ratio)
// clipping plane normals
m_planes.bnlu = Util::Uint32AsFloat(vpnode[0xc]);
m_planes.bnlv = Util::Uint32AsFloat(vpnode[0xd]);
m_planes.bntu = Util::Uint32AsFloat(vpnode[0xe]);
m_planes.bntw = Util::Uint32AsFloat(vpnode[0xf]);
m_planes.bnru = Util::Uint32AsFloat(vpnode[0x10]);
m_planes.bnrv = Util::Uint32AsFloat(vpnode[0x11]);
m_planes.bnbu = Util::Uint32AsFloat(vpnode[0x12]);
m_planes.bnbw = Util::Uint32AsFloat(vpnode[0x13]);
vp->angle_left = (0.0f - jo) / cv;
vp->angle_right = (1.0f - jo) / cv;
vp->angle_bottom = -(1.0f - io)/ cw;
vp->angle_top = -(0.0f - io)/ cw;
// calculate the frustum shape, near/far pair are dummy values
CalcViewport(vp, 1.f, 1000.f);
// calculate frustum planes
CalcFrustumPlanes(m_planes, vp->projectionMatrix); // we need to calc a 'projection matrix' to get the correct frustum planes for clipping
CalcViewport(vp);
// Lighting (note that sun vector points toward sun -- away from vertex)
vp->lightingParams[0] = Util::Uint32AsFloat(vpnode[0x05]); // sun X
@ -1520,283 +1499,12 @@ bool CNew3D::IsVROMModel(UINT32 modelAddr)
return modelAddr >= 0x100000;
}
void CNew3D::CalcFrustumPlanes(Plane p[5], const float* matrix)
void CNew3D::CalcViewport(Viewport* vp)
{
// Left Plane
p[0].a = matrix[3] + matrix[0];
p[0].b = matrix[7] + matrix[4];
p[0].c = matrix[11] + matrix[8];
p[0].d = matrix[15] + matrix[12];
p[0].Normalise();
// Right Plane
p[1].a = matrix[3] - matrix[0];
p[1].b = matrix[7] - matrix[4];
p[1].c = matrix[11] - matrix[8];
p[1].d = matrix[15] - matrix[12];
p[1].Normalise();
// Bottom Plane
p[2].a = matrix[3] + matrix[1];
p[2].b = matrix[7] + matrix[5];
p[2].c = matrix[11] + matrix[9];
p[2].d = matrix[15] + matrix[13];
p[2].Normalise();
// Top Plane
p[3].a = matrix[3] - matrix[1];
p[3].b = matrix[7] - matrix[5];
p[3].c = matrix[11] - matrix[9];
p[3].d = matrix[15] - matrix[13];
p[3].Normalise();
// Front Plane
p[4].a = 0.f;
p[4].b = 0.f;
p[4].c = -1.f;
p[4].d = 0.f;
}
void CNew3D::CalcBox(float distance, BBox& box)
{
//bottom left front
box.points[0][0] = -distance;
box.points[0][1] = -distance;
box.points[0][2] = distance;
box.points[0][3] = 1.f;
//bottom left back
box.points[1][0] = -distance;
box.points[1][1] = -distance;
box.points[1][2] = -distance;
box.points[1][3] = 1.f;
//bottom right back
box.points[2][0] = distance;
box.points[2][1] = -distance;
box.points[2][2] = -distance;
box.points[2][3] = 1.f;
//bottom right front
box.points[3][0] = distance;
box.points[3][1] = -distance;
box.points[3][2] = distance;
box.points[3][3] = 1.f;
//top left front
box.points[4][0] = -distance;
box.points[4][1] = distance;
box.points[4][2] = distance;
box.points[4][3] = 1.f;
//top left back
box.points[5][0] = -distance;
box.points[5][1] = distance;
box.points[5][2] = -distance;
box.points[5][3] = 1.f;
//top right back
box.points[6][0] = distance;
box.points[6][1] = distance;
box.points[6][2] = -distance;
box.points[6][3] = 1.f;
//top right front
box.points[7][0] = distance;
box.points[7][1] = distance;
box.points[7][2] = distance;
box.points[7][3] = 1.f;
}
void CNew3D::MultVec(const float matrix[16], const float in[4], float out[4])
{
for (int i = 0; i < 4; i++) {
out[i] =
in[0] * matrix[0 * 4 + i] +
in[1] * matrix[1 * 4 + i] +
in[2] * matrix[2 * 4 + i] +
in[3] * matrix[3 * 4 + i];
}
}
void CNew3D::TransformBox(const float *m, BBox& box)
{
for (int i = 0; i < 8; i++) {
float v[4];
MultVec(m, box.points[i], v);
box.points[i][0] = v[0];
box.points[i][1] = v[1];
box.points[i][2] = v[2];
}
}
Clip CNew3D::ClipBox(const BBox& box, Plane planes[5])
{
int count = 0;
for (int i = 0; i < 8; i++) {
int temp = 0;
for (int j = 0; j < 5; j++) {
if (planes[j].DistanceToPoint(box.points[i]) >= 0.f) {
temp++;
}
}
if (temp == 5) count++; // point is inside all 4 frustum planes
}
if (count == 8) return Clip::INSIDE;
if (count > 0) return Clip::INTERCEPT;
//if we got here all points are outside of the view frustum
//check for all points being side same of any plane, means box outside of view
for (int i = 0; i < 5; i++) {
int temp = 0;
for (int j = 0; j < 8; j++) {
if (planes[i].DistanceToPoint(box.points[j]) >= 0.f) {
temp++;
}
}
if (temp == 0) {
return Clip::OUTSIDE;
}
}
//if we got here, box is traversing view frustum
return Clip::INTERCEPT;
}
void CNew3D::CalcBoxExtents(const BBox& box)
{
for (int i = 0; i < 8; i++) {
if (box.points[i][2] < 0.f) {
m_nfPairs[m_currentPriority].zNear = std::max(box.points[i][2], m_nfPairs[m_currentPriority].zNear);
m_nfPairs[m_currentPriority].zFar = std::min(box.points[i][2], m_nfPairs[m_currentPriority].zFar);
}
}
}
void CNew3D::ClipPolygon(ClipPoly& clipPoly, Plane planes[5])
{
//============
ClipPoly temp;
ClipPoly *in;
ClipPoly *out;
//============
in = &clipPoly;
out = &temp;
for (int i = 0; i < 4; i++) {
//=================
bool currentIn;
float currentDot;
//=================
currentDot = planes[i].DotProduct(in->list[0].pos);
currentIn = (currentDot + planes[i].d) >= 0.f;
out->count = 0;
for (int j = 0; j < in->count; j++) {
if (currentIn) {
out->list[out->count] = in->list[j];
out->count++;
}
int nextIndex = j + 1;
if (nextIndex >= in->count) {
nextIndex = 0;
}
float nextDot = planes[i].DotProduct(in->list[nextIndex].pos);
bool nextIn = (nextDot + planes[i].d) >= 0.f;
// we have an intersection
if (currentIn != nextIn) {
float u = (currentDot + planes[i].d) / (currentDot - nextDot);
const float* p1 = in->list[j].pos;
const float* p2 = in->list[nextIndex].pos;
out->list[out->count].pos[0] = p1[0] + ((p2[0] - p1[0]) * u);
out->list[out->count].pos[1] = p1[1] + ((p2[1] - p1[1]) * u);
out->list[out->count].pos[2] = p1[2] + ((p2[2] - p1[2]) * u);
out->count++;
}
currentDot = nextDot;
currentIn = nextIn;
}
std::swap(in, out);
}
}
void CNew3D::ClipModel(const Model *m)
{
//===============================
ClipPoly clipPoly;
std::vector<FVertex>* vertices;
int offset;
//===============================
if (m->dynamic) {
vertices = &m_polyBufferRam;
offset = MAX_ROM_VERTS;
}
else {
vertices = &m_polyBufferRom;
offset = 0;
}
for (const auto &mesh : *m->meshes) {
int start = mesh.vboOffset - offset;
for (int i = 0; i < mesh.vertexCount; i += m_numPolyVerts) { // inc to next poly
for (int j = 0; j < m_numPolyVerts; j++) {
MultVec(m->modelMat, (*vertices)[start + i + j].pos, clipPoly.list[j].pos); // copy all 3 of 4 our transformed vertices into our clip poly struct
}
clipPoly.count = m_numPolyVerts;
ClipPolygon(clipPoly, m_planes);
for (int j = 0; j < clipPoly.count; j++) {
if (clipPoly.list[j].pos[2] < 0.f) {
m_nfPairs[m_currentPriority].zNear = std::max(clipPoly.list[j].pos[2], m_nfPairs[m_currentPriority].zNear);
m_nfPairs[m_currentPriority].zFar = std::min(clipPoly.list[j].pos[2], m_nfPairs[m_currentPriority].zFar);
}
}
}
}
}
void CNew3D::CalcViewport(Viewport* vp, float near, float far)
{
if (far > 1e30f) {
far = near * 1000000.f; // fix for ocean hunter which passes some FLT_MAX for a few matrices. HW must have some safe guard for these
}
if (near < far / 1000000.f) {
near = far / 1000000.f; // if we get really close to zero somehow, we will have almost no depth precision
}
float l = near * vp->angle_left; // we need to calc the shape of the projection frustum for culling
float r = near * vp->angle_right;
float t = near * vp->angle_top;
float b = near * vp->angle_bottom;
float l = vp->angle_left; // we need to calc the shape of the projection frustum for culling
float r = vp->angle_right;
float t = vp->angle_top;
float b = vp->angle_bottom;
vp->projectionMatrix.LoadIdentity(); // reset matrix
@ -1828,13 +1536,14 @@ void CNew3D::CalcViewport(Viewport* vp, float near, float far)
// screen and non-wide-screen modes have identical resolution parameters
// and only their scissor box differs)
float correction = windowAR / viewableAreaAR;
m_planes.correction = 1.0f / correction;
vp->x = 0;
vp->y = m_yOffs + (int)((float)(384 - (vp->vpY + vp->vpHeight))*m_yRatio);
vp->width = m_totalXRes;
vp->height = (int)((float)vp->vpHeight*m_yRatio);
vp->projectionMatrix.Frustum(l*correction, r*correction, b, t, near, far);
vp->projectionMatrix.Frustum(l*correction, r*correction, b, t, NEAR_PLANE);
}
else {
@ -1843,7 +1552,7 @@ void CNew3D::CalcViewport(Viewport* vp, float near, float far)
vp->width = (int)((float)vp->vpWidth*m_xRatio);
vp->height = (int)((float)vp->vpHeight*m_yRatio);
vp->projectionMatrix.Frustum(l, r, b, t, near, far);
vp->projectionMatrix.Frustum(l, r, b, t, NEAR_PLANE);
}
}
@ -1883,17 +1592,10 @@ bool CNew3D::ProcessLos(int priority)
int losX, losY;
TranslateLosPosition(n.viewport.losPosX, n.viewport.losPosY, losX, losY);
float depth;
glReadPixels(losX, losY, 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT, &depth);
float range;
glReadPixels(losX, losY, 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT, &range);
depth = 2.0f * depth - 1.0f;
float zNear = m_nfPairs[priority].zNear;
float zFar = m_nfPairs[priority].zFar;
float zVal = 2.0f * zNear * zFar / (zFar + zNear - depth * (zFar - zNear));
// real3d test program indicates that return values are 1/zVal
zVal = 1.0f / zVal;
float zVal = range / NEAR_PLANE;
GLubyte stencilVal;
glReadPixels(losX, losY, 1, 1, GL_STENCIL_INDEX, GL_UNSIGNED_BYTE, &stencilVal);

View file

@ -287,31 +287,22 @@ private:
R3DScrollFog m_r3dScrollFog;
R3DFrameBuffers m_r3dFrameBuffers;
Plane m_planes[5];
struct BBox
{
V4::Vec4 points[8];
};
struct NFPair
{
float zNear;
float zFar;
};
NFPair m_nfPairs[4];
int m_currentPriority;
void CalcFrustumPlanes (Plane p[5], const float* matrix);
void CalcBox (float distance, BBox& box);
void TransformBox (const float *m, BBox& box);
void MultVec (const float matrix[16], const float in[4], float out[4]);
Clip ClipBox (const BBox& box, Plane planes[5]);
void ClipModel (const Model *m);
void ClipPolygon (ClipPoly& clipPoly, Plane planes[5]);
void CalcBoxExtents (const BBox& box);
void CalcViewport (Viewport* vp, float near, float far);
struct
{
float bnlu;
float bnlv;
float bntu;
float bntw;
float bnru;
float bnrv;
float bnbu;
float bnbw;
float correction;
} m_planes;
void CalcViewport (Viewport* vp);
};
} // New3D

View file

@ -59,7 +59,7 @@ bool R3DFrameBuffers::CreateFBO(int width, int height)
// depth/stencil attachment
glGenRenderbuffers(1, &m_renderBufferID);
glBindRenderbuffer(GL_RENDERBUFFER, m_renderBufferID);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH24_STENCIL8, width, height);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH32F_STENCIL8, width, height);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, m_renderBufferID);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_RENDERBUFFER, m_renderBufferID);
@ -80,7 +80,7 @@ bool R3DFrameBuffers::CreateFBODepthCopy(int width, int height)
glGenRenderbuffers(1, &m_renderBufferIDCopy);
glBindRenderbuffer(GL_RENDERBUFFER, m_renderBufferIDCopy);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH24_STENCIL8, width, height);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH32F_STENCIL8, width, height);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, m_renderBufferIDCopy);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_RENDERBUFFER, m_renderBufferIDCopy);

View file

@ -353,7 +353,7 @@ void QuadraticInterpolation()
depth = vertex.z * interp_oneOverW;
}
gl_FragDepth = depth * 0.5 + 0.5;
gl_FragDepth = depth;
}
void main()
@ -376,7 +376,7 @@ void main()
Step15Luminous(colData); // no-op for step 2.0+
finalData = tex1Data * colData;
if (finalData.a < (1.0/16.0)) { // basically chuck out any totally transparent pixels value = 1/16 the smallest transparency level h/w supports
if (finalData.a < (1.0/32.0)) { // basically chuck out any totally transparent pixels value = 1/16 the smallest transparency level h/w supports
discard;
}
@ -433,7 +433,8 @@ void main()
sunFactor = clamp(sunFactor,-1.0,1.0);
// Optional clamping, value is allowed to be negative
if(sunClamp) {
// We suspect that translucent polygons are always clamped (e.g. lasers in Daytona 2)
if(sunClamp || fsColor.a < 0.99) {
sunFactor = max(sunFactor,0.0);
}

View file

@ -103,6 +103,9 @@ uniform bool fixedShading;
uniform int hardwareStep;
uniform int colourLayer;
// matrices (shared with vertex shader)
uniform mat4 projMat;
//interpolated inputs from vertex shader
in vec3 fsViewVertex;
in vec3 fsViewNormal; // per vertex normal vector
@ -135,7 +138,9 @@ void main()
if(fsDiscard > 0) {
discard; //emulate back face culling here
}
gl_FragDepth = projMat[3][2] * gl_FragCoord.w;
fogData = vec4(fogColour.rgb * fogAmbient, CalcFog());
tex1Data = vec4(1.0, 1.0, 1.0, 1.0);
@ -147,7 +152,7 @@ void main()
Step15Luminous(colData); // no-op for step 2.0+
finalData = tex1Data * colData;
if (finalData.a < (1.0/16.0)) { // basically chuck out any totally transparent pixels value = 1/16 the smallest transparency level h/w supports
if (finalData.a < (1.0/32.0)) { // basically chuck out any totally transparent pixels value = 1/16 the smallest transparency level h/w supports
discard;
}
@ -204,7 +209,8 @@ void main()
sunFactor = clamp(sunFactor,-1.0,1.0);
// Optional clamping, value is allowed to be negative
if(sunClamp) {
// We suspect that translucent polygons are always clamped (e.g. lasers in Daytona 2)
if(sunClamp || fsColor.a < 0.99) {
sunFactor = max(sunFactor,0.0);
}