/**
** Supermodel
** A Sega Model 3 Arcade Emulator.
** Copyright 2011 Bart Trzynadlowski, Nik Henson
**
** This file is part of Supermodel.
**
** Supermodel is free software: you can redistribute it and/or modify it under
** the terms of the GNU General Public License as published by the Free
** Software Foundation, either version 3 of the License, or (at your option)
** any later version.
**
** Supermodel is distributed in the hope that it will be useful, but WITHOUT
** ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
** FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
** more details.
**
** You should have received a copy of the GNU General Public License along
** with Supermodel. If not, see .
**/
/*
* Render3D.cpp
*
* Core module for OpenGL-based Real3D graphics engine.
*
*
* Optimization To-Do List
* -----------------------
*
* 0. Optimize backface culling. Is it possible to compute normal matrix only
* when needed? Should also be more careful about OpenGL state info, such as
* the winding mode.
* 1. Do not store matrices in a uniform, use glLoadMatrix() in MODELVIEW mode.
* It will no longer be necessary to compute normal matrix!
* 2. Move stuff into vertex shader (vision by 2048? Subtract of 0.5,0.5 for bilinear filtering?)
* 3. Just one call to BufferSubData rather than 2
*
* Spotlight
* ---------
*
* Spotlight illumination occurs between two Z ranges within an ellipse
* specified in coordinates that ought to be relative to the viewport. They
* actually appear to be defined in terms of physical display coordinates
* regardless of the size of the viewport, although this has not been 100%
* confirmed.
*
* The parameters that describe the ellipse in display coordinates are:
*
* cx,cy Center point.
* a,b Width (or rather, half-width) and height of spotlight.
*
* These correspond to the standard form of the ellipse equation:
*
* ((x-cx)/a)^2 + ((y-cy)/b)^2 = 1
*
* It is trivial to test whether a point lies inside an ellipse by plugging
* it into the equation and checking to see if it is less than or equal to
* 1. The a and b parameters appear to be stored as values w and h, which
* range from 0 to 255 (according to the Scud Race debug menu) but which
* may be up to 16 bits (this has not been observed). They are already
* inverted, scaled by the screen size, and squared.
*
* w = (496/a)^2 -> a = 496/sqrt(w)
* h = (384/b)^2 -> b = 384/sqrt(h)
*
* This is mostly a guess. It is almost certain, however, based on
* observations of the Scud Race backfire effect that w and h are related
* to spotlight size in an inverse-square-root fashion. The spotlight in
* view 3 should be smaller than in view 4, but the values are actually
* larger. Here is some data:
*
* View 3:
* X,Y=247,342
* W,H=24,16
* N,F=1e-9,200
* Car translation length: 4.93
* View 4:
* X,Y=247,317
* W,H=48,32
* N,F=1e-9,200
* Car translation length: 7.5
*
* The translation length is the total translation vector for the car model
* extracted by applying the scene matrices. Note that sqrt(48/24) = 1.4
* and 7.5/4.93 = 1.52, a fairly close match.
*
* It remains unknown whether the spotlight parameters are relative to the
* physical display resolution (496x384), as computed here, or the viewport
* size. What is needed is an example of a spotlight in a viewport whose
* dimensions are not 496x384.
*
* The spotlight near and far ranges are in viewspace (eye) coordinates.
* The inverse of the near range is specified and the far range is stored
* as a displacement (I think) from the near range. Color is RGB111.
*
* The spotlight should be smooth at the edges. Using the magnitude of the
* ellipse test works well -- when it is 1.0, the spotlight should be fully
* attenuated (0 intensity) and when it is 0.0, render at full intensity.
*
* Alpha Processing
* ----------------
* When processing "alpha" (translucent) polygons, alpha values range from 0.0,
* completely transparent, to 1.0, completely opaque. This appears to be the
* same convention as for Model 3 and corresponds to a blend mode setting of:
* glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA).
*
* For all texels and colors which do not include an alpha channel, for
* translucency to work properly, the alpha channel must be set to opaque.
* Contour textures use T=1 to indicate transparency, therefore their alpha
* value must be inverted.
*
* Translucent Polygons
* --------------------
* The 32-level polygon translucency appears to be applied as follows
*
* 1. If polygon is untextured, fragment color is the polygon color and
* the translucency level becomes the alpha channel.
* 2. If contour textures are used, the translucency level becomes the
* alpha channel regardless of the contour bit. I assume that contour
* bit processing is still carried out, if enabled, however.
* 3. If the texture format is RGBA4, translucency is multiplied by texel
* alpha.
* 4. Other texture formats: ???
*
* A simple way to handle this is to force alpha to 1.0 for polygon colors,
* discard fragments if required by the contour setting (forcing alpha to 1.0
* otherwise), and then in the end, multiplying whatever alpha value remains by
* the translucency level.
*
* List of Safeguards
* ------------------
* During boot-up, many games load up scene data that cannot feasibly be
* processed (way too many models). This occurs in Scud Race and Virtual On 2,
* for example. This is currently being handled by attempting to detect the
* defective scenes.
*
* 1. Scud Race: the coordinate system matrix is checked for vectors whose
* magnitudes are not 1.0.
* 2. Virtual On 2: model 0x200000 is not rendered.
*
* There are probably better ways of doing it.
*
* To-Do List
* ----------
* - Can some of the floating point flag attribs be replaced with ints?
*/
#include
#include "Supermodel.h"
#include "Graphics/Shaders3D.h" // fragment and vertex shaders
// Microsoft doesn't provide isnan() and isinf()
#ifdef _MSC_VER
#include
#define ISNAN(x) (_isnan(x))
#define ISINF(x) (!_finite(x))
#else
#define ISNAN(x) (std::isnan(x))
#define ISINF(x) (std::isinf(x))
#endif
/******************************************************************************
Definitions and Constants
******************************************************************************/
// Shader program files
#define VERTEX_SHADER_FILE "Src/Graphics/Vertex.glsl"
#define FRAGMENT_SHADER_FILE "Src/Graphics/Fragment.glsl"
// Model cache settings
#define NUM_STATIC_VERTS 700000 // suggested maximum number of static vertices
#define NUM_DYNAMIC_VERTS 64000 // "" dynamic vertices
#define NUM_LOCAL_VERTS 32768 // size of local vertex buffer
#define NUM_STATIC_MODELS 10000 // maximum number of unique static models to cache
#define NUM_DYNAMIC_MODELS 1024 // maximum number of unique dynamic models to cache
#define NUM_DISPLAY_LIST_ITEMS 10000 // maximum number of model instances displayed per frame
// Scene traversal stack
#define STACK_SIZE 1024
/******************************************************************************
Texture Management
******************************************************************************/
void CRender3D::DecodeTexture(int format, int x, int y, int width, int height)
{
int xi, yi, i;
UINT16 texel;
GLfloat c, a;
x &= 2047;
y &= 2047;
if ((x+width)>2048 || (y+height)>2048)
return;
if (width > 512 || height > 512)
{
//ErrorLog("Encountered a texture that is too large (%d,%d,%d,%d)", x, y, width, height);
return;
}
// Check to see if ALL texture tiles have been properly decoded
if ((textureFormat[y/32][x/32]==format) && (textureWidth[y/32][x/32]>=width) && (textureHeight[y/32][x/32]>=height))
return;
// Copy and decode
i = 0;
switch (format)
{
default:
case 0: // T1RGB5
for (yi = y; yi < (y+height); yi++)
{
for (xi = x; xi < (x+width); xi++)
{
textureBuffer[i++] = (GLfloat) ((textureRAM[yi*2048+xi]>>10)&0x1F) * (1.0f/31.0f); // R
textureBuffer[i++] = (GLfloat) ((textureRAM[yi*2048+xi]>>5)&0x1F) * (1.0f/31.0f); // G
textureBuffer[i++] = (GLfloat) ((textureRAM[yi*2048+xi]>>0)&0x1F) * (1.0f/31.0f); // B
textureBuffer[i++] = ((textureRAM[yi*2048+xi]&0x8000)?0.0f:1.0f); // T
}
}
break;
case 7: // RGBA4
for (yi = y; yi < (y+height); yi++)
{
for (xi = x; xi < (x+width); xi++)
{
textureBuffer[i++] = (GLfloat) ((textureRAM[yi*2048+xi]>>12)&0xF) * (1.0f/15.0f); // R
textureBuffer[i++] = (GLfloat) ((textureRAM[yi*2048+xi]>>8)&0xF) * (1.0f/15.0f); // G
textureBuffer[i++] = (GLfloat) ((textureRAM[yi*2048+xi]>>4)&0xF) * (1.0f/15.0f); // B
textureBuffer[i++] = (GLfloat) ((textureRAM[yi*2048+xi]>>0)&0xF) * (1.0f/15.0f); // A
}
}
break;
case 5: // 8-bit grayscale
for (yi = y; yi < (y+height); yi++)
{
for (xi = x; xi < (x+width); xi++)
{
/*
texel = textureRAM[yi*2048+xi];
c = (GLfloat) (texel&0xFF) * (1.0f/255.0f);
textureBuffer[i++] = c;
textureBuffer[i++] = c;
textureBuffer[i++] = c;
textureBuffer[i++] = 1.0;
*/
// Interpret as 8-bit grayscale
texel = textureRAM[yi*2048+xi];
c = (GLfloat) texel * (1.0f/255.0f);
textureBuffer[i++] = c;
textureBuffer[i++] = c;
textureBuffer[i++] = c;
textureBuffer[i++] = 1.0f;
}
}
break;
case 4: // 8-bit, L4A4
for (yi = y; yi < (y+height); yi++)
{
for (xi = x; xi < (x+width); xi++)
{
texel = textureRAM[yi*2048+xi];
//c = (GLfloat) (~texel&0x0F) * (1.0f/15.0f);
//a = (GLfloat) ((texel>>4)&0xF) * (1.0f/15.0f);
c = (GLfloat) ((texel>>4)&0xF) * (1.0f/15.0f); // seems to work better in Lost World (raptor shadows)
a = (GLfloat) (texel&0xF) * (1.0f/15.0f);
textureBuffer[i++] = c;
textureBuffer[i++] = c;
textureBuffer[i++] = c;
textureBuffer[i++] = a;
}
}
break;
case 6: // 8-bit grayscale? (How does this differ from format 5? Alpha values?)
for (yi = y; yi < (y+height); yi++)
{
for (xi = x; xi < (x+width); xi++)
{
/*
texel = textureRAM[yi*2048+xi];
c = (GLfloat) ((texel>>4)&0xF) * (1.0f/15.0f);
a = (GLfloat) (texel&0xF) * (1.0f/15.0f);
textureBuffer[i++] = c;
textureBuffer[i++] = c;
textureBuffer[i++] = c;
textureBuffer[i++] = a;
*/
texel = textureRAM[yi*2048+xi]&0xFF;
c = (GLfloat) texel * (1.0f/255.0f);
textureBuffer[i++] = c;
textureBuffer[i++] = c;
textureBuffer[i++] = c;
textureBuffer[i++] = 1.0f;
}
}
break;
case 2: // Unknown (all 16 bits appear present in Daytona 2, but only lower 8 bits in Le Mans 24)
for (yi = y; yi < (y+height); yi++)
{
for (xi = x; xi < (x+width); xi++)
{
texel = textureRAM[yi*2048+xi];
a = (GLfloat) ((texel>>4)&0xF) * (1.0f/15.0f);
c = (GLfloat) (texel&0xF) * (1.0f/15.0f);
textureBuffer[i++] = c;
textureBuffer[i++] = c;
textureBuffer[i++] = c;
textureBuffer[i++] = a;
//printf("%04X\n", textureRAM[yi*2048+xi]);
/*
texel = textureRAM[yi*2048+xi]&0xFF;
c = (GLfloat) texel * (1.0f/255.0f);
textureBuffer[i++] = c;
textureBuffer[i++] = c;
textureBuffer[i++] = c;
textureBuffer[i++] = 1.0f;
*/
}
}
break;
case 3: // Interleaved A4L4 (high byte)
for (yi = y; yi < (y+height); yi++)
{
for (xi = x; xi < (x+width); xi++)
{
texel = textureRAM[yi*2048+xi]>>8;
c = (GLfloat) (texel&0xF) * (1.0f/15.0f);
a = (GLfloat) (texel>>4) * (1.0f/15.0f);
textureBuffer[i++] = c;
textureBuffer[i++] = c;
textureBuffer[i++] = c;
textureBuffer[i++] = a;
}
}
break;
case 1: // Interleaved A4L4 (low byte)
for (yi = y; yi < (y+height); yi++)
{
for (xi = x; xi < (x+width); xi++)
{
// Interpret as A4L4
texel = textureRAM[yi*2048+xi]&0xFF;
c = (GLfloat) (texel&0xF) * (1.0f/15.0f);
a = (GLfloat) (texel>>4) * (1.0f/15.0f);
textureBuffer[i++] = c;
textureBuffer[i++] = c;
textureBuffer[i++] = c;
textureBuffer[i++] = a;
}
}
break;
}
// Upload the texture
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glBindTexture(GL_TEXTURE_2D, texID);
glTexSubImage2D(GL_TEXTURE_2D, 0, x, y, width, height, GL_RGBA, GL_FLOAT, textureBuffer);
// Mark as decoded
textureFormat[y/32][x/32] = format;
textureWidth[y/32][x/32] = width;
textureHeight[y/32][x/32] = height;
}
// Signals that new textures have been uploaded. Flushes model caches. Be careful not to exceed bounds!
void CRender3D::UploadTextures(unsigned x, unsigned y, unsigned width, unsigned height)
{
unsigned xi, yi;
// Make everything red
#ifdef DEBUG
for (int i = 0; i < 512*512; )
{
textureBuffer[i++] = 1.0f;
textureBuffer[i++] = 0.0f;
textureBuffer[i++] = 0.0f;
textureBuffer[i++] = 1.0f;
}
#endif
for (xi = x/32; xi < (x+width)/32; xi++)
for (yi = y/32; yi < (y+height)/32; yi++)
{
textureFormat[yi][xi] = -1;
textureWidth[yi][xi] = -1;
textureHeight[yi][xi] = -1;
}
ClearModelCache(&VROMCache);
ClearModelCache(&PolyCache);
}
/******************************************************************************
Real3D Address Translation
Functions that interpret word-granular Real3D addresses and return pointers.
******************************************************************************/
// Translates 24-bit culling RAM addresses
const UINT32 *CRender3D::TranslateCullingAddress(UINT32 addr)
{
addr &= 0x00FFFFFF; // caller should have done this already
if ((addr>=0x800000) && (addr<0x840000))
return &cullingRAMHi[addr&0x3FFFF];
else if (addr < 0x100000)
return &cullingRAMLo[addr];
#ifdef DEBUG
ErrorLog("TranslateCullingAddress(): invalid address: %06X", addr);
#endif
return NULL;
}
// Translates model references
const UINT32 *CRender3D::TranslateModelAddress(UINT32 modelAddr)
{
modelAddr &= 0x00FFFFFF; // caller should have done this already
if (modelAddr < 0x100000)
return &polyRAM[modelAddr];
else
return &vrom[modelAddr];
}
/******************************************************************************
Stack Management
Matrix and processing stack (for the experimental stack-based scene parser).
******************************************************************************/
// Macro to generate column-major (OpenGL) index from y,x subscripts
#define CMINDEX(y,x) (x*4+y)
/*
* MultMatrix():
*
* Multiplies the matrix stack by the specified Real3D matrix. The matrix
* index is a 12-bit number specifying a matrix number relative to the base.
* The base matrix MUST be set up before calling this function.
*/
void CRender3D::MultMatrix(UINT32 matrixOffset)
{
GLfloat m[4*4];
const float *src = &matrixBasePtr[matrixOffset*12];
if (matrixBasePtr==NULL) // LA Machineguns
return;
m[CMINDEX(0, 0)] = src[3];
m[CMINDEX(0, 1)] = src[4];
m[CMINDEX(0, 2)] = src[5];
m[CMINDEX(0, 3)] = src[0];
m[CMINDEX(1, 0)] = src[6];
m[CMINDEX(1, 1)] = src[7];
m[CMINDEX(1, 2)] = src[8];
m[CMINDEX(1, 3)] = src[1];
m[CMINDEX(2, 0)] = src[9];
m[CMINDEX(2, 1)] = src[10];
m[CMINDEX(2, 2)] = src[11];
m[CMINDEX(2, 3)] = src[2];
m[CMINDEX(3, 0)] = 0.0;
m[CMINDEX(3, 1)] = 0.0;
m[CMINDEX(3, 2)] = 0.0;
m[CMINDEX(3, 3)] = 1.0;
glMultMatrixf(m);
}
/*
* InitMatrixStack():
*
* Initializes the modelview (model space -> view space) matrix stack and
* Real3D coordinate system. These are the last transforms to be applied (and
* the first to be defined on the stack) before projection.
*
* Model 3 games tend to define the following unusual base matrix:
*
* 0 0 -1 0
* 1 0 0 0
* 0 -1 0 0
* 0 0 0 1
*
* When this is multiplied by a column vector, the output is:
*
* -Z
* X
* -Y
* 1
*
* My theory is that the Real3D GPU accepts vectors in Z,X,Y order. The games
* store everything as X,Y,Z and perform the translation at the end. The Real3D
* also has Y and Z coordinates opposite of the OpenGL convention. This
* function inserts a compensating matrix to undo these things.
*
* NOTE: This function assumes we are in GL_MODELVIEW matrix mode.
*/
void CRender3D::InitMatrixStack(UINT32 matrixBaseAddr)
{
GLfloat m[4*4];
// This matrix converts vectors back from the weird Model 3 Z,X,Y ordering
// and also into OpenGL viewspace (-Y,-Z)
m[CMINDEX(0,0)]=0.0; m[CMINDEX(0,1)]=1.0; m[CMINDEX(0,2)]=0.0; m[CMINDEX(0,3)]=0.0;
m[CMINDEX(1,0)]=0.0; m[CMINDEX(1,1)]=0.0; m[CMINDEX(1,2)]=-1.0; m[CMINDEX(1,3)]=0.0;
m[CMINDEX(2,0)]=-1.0; m[CMINDEX(2,1)]=0.0; m[CMINDEX(2,2)]=0.0; m[CMINDEX(2,3)]=0.0;
m[CMINDEX(3,0)]=0.0; m[CMINDEX(3,1)]=0.0; m[CMINDEX(3,2)]=0.0; m[CMINDEX(3,3)]=1.0;
if (step > 0x10)
glLoadMatrixf(m);
else
{
// Scaling seems to help w/ Step 1.0's extremely large coordinates
GLfloat s = 1.0f/2048.0f;
glLoadIdentity();
glScalef(s,s,s);
glMultMatrixf(m);
}
// Set matrix base address and apply matrix #0 (coordinate system matrix)
matrixBasePtr = (float *) TranslateCullingAddress(matrixBaseAddr);
MultMatrix(0);
}
/*
* Push():
*
* Pushes a pointer onto the processing stack and, optionally, pushes the
* current matrix onto the matrix stack. Note that the high nibble is used by
* Supermodel to encode commands (such as pushing the matrix stack, and other
* operations within the stack machine). We must be careful to ensure that no
* games ever write data to this high nibble.
*/
void CRender3D::Push(UINT32 ptr, bool pushMatrix)
{
#ifdef DEBUG
if ((ptr&0xF0000000)) // high nibble already being used for something!
printf("Push(): MSB already in use!\n");
#endif
// MSB of address is used to encode whether or not matrix has been pushed
if (pushMatrix)
ptr |= 0x80000000;
if (stackTop < stackSize)
{
stack[stackTop++] = ptr;
if (pushMatrix)
{
glPushMatrix();
#ifdef DEBUG
if (glGetError() == GL_STACK_OVERFLOW)
printf("GL stack overflow\n");
#endif
}
}
else
{
stackOverflow = true; // signal that a stack overflow occurred
#ifdef DEBUG
printf("stack overflow\n");
#endif
}
}
// Pop the stack
UINT32 CRender3D::Pop(void)
{
UINT32 ptr;
if (stackTop > 0)
{
ptr = stack[--stackTop];
if ((ptr&0x80000000))
{
glPopMatrix();
ptr &= 0x7FFFFFFF;
}
return ptr;
}
return 0;
}
// Clear the stack
void CRender3D::ClearStack(void)
{
stackTop = 0;
stackOverflow = false;
}
/******************************************************************************
Scene Database
Complete scene database traversal and rendering.
******************************************************************************/
/*
* DrawModel():
*
* Draw the specified model (adds it to the display list). This is where vertex
* buffer overflows and display list overflows will be detected. An attempt is
* made to salvage the situation if this occurs, so if DrawModel() returns
* FAIL, it is a serious matter and rendering should be aborted for the frame.
*
* The current texture offset state, texOffset, is also used. Models are cached
* for each unique texOffset.
*/
bool CRender3D::DrawModel(UINT32 modelAddr)
{
ModelCache *Cache;
const UINT32 *model;
int lutIdx;
struct VBORef *ModelRef;
//if (modelAddr==0x7FFF00) // Fighting Vipers (this is not polygon data!)
// return;
if (modelAddr == 0x200000) // Virtual On 2 (during boot-up, causes slow-down)
return OKAY;
model = TranslateModelAddress(modelAddr);
// Determine whether model is in polygon RAM or VROM
if (modelAddr < 0x100000)
Cache = &PolyCache;
else
Cache = &VROMCache;
// Look up the model in the LUT and cache it if necessary
lutIdx = modelAddr&0xFFFFFF;
ModelRef = LookUpModel(Cache, lutIdx, texOffset);
if (NULL == ModelRef)
{
// Attempt to cache the model
ModelRef = CacheModel(Cache, lutIdx, texOffset, model);
if (NULL == ModelRef)
{
// Model could not be cached. Render what we have so far and try again.
DrawDisplayList(&VROMCache, POLY_STATE_NORMAL);
DrawDisplayList(&PolyCache, POLY_STATE_NORMAL);
DrawDisplayList(&VROMCache, POLY_STATE_ALPHA);
DrawDisplayList(&PolyCache, POLY_STATE_ALPHA);
ClearModelCache(&VROMCache);
ClearModelCache(&PolyCache);
// Try caching again...
ModelRef = CacheModel(Cache, lutIdx, texOffset, model);
if (NULL == ModelRef)
return ErrorUnableToCacheModel(modelAddr); // nothing we can do :(
}
}
// Add to display list
return AppendDisplayList(Cache, false, ModelRef);
}
// Descends into a 10-word culling node
void CRender3D::DescendCullingNode(UINT32 addr)
{
const UINT32 *node, *lodTable;
UINT32 matrixOffset, node1Ptr, node2Ptr;
float x, y, z, oldTexOffsetX, oldTexOffsetY;
int tx, ty;
UINT16 oldTexOffset;
++stackDepth;
// Stack depth of 64 is too small for Star Wars Trilogy (Hoth)
if (stackDepth>=(512+64)) // safety (prevent overflows -- OpenGL matrix stack will still overflow by this point)
{
--stackDepth;
return;
}
node = TranslateCullingAddress(addr);
if (NULL == node)
{
--stackDepth;
return;
}
// Debug: texture offset? (NOTE: offsets 1 and 2 don't exist on step 1.0)
//if (node[0x02]&0xFFFF)
// printf("%X -> %02X %04X\n", addr, node[0x00]&0xFF, node[0x02]&0xFFFF);
// Extract known fields
node1Ptr = node[0x07-offset];
node2Ptr = node[0x08-offset];
matrixOffset = node[0x03-offset]&0xFFF;
x = *(float *) &node[0x04-offset];
y = *(float *) &node[0x05-offset];
z = *(float *) &node[0x06-offset];
// Texture offset?
oldTexOffsetX = texOffsetXY[0]; // save old offsets
oldTexOffsetY = texOffsetXY[1];
oldTexOffset = texOffset;
if (!offset) // Step 1.5+
{
tx = 32*((node[0x02]>>7)&0x3F);
ty = 32*(node[0x02]&0x3F) + ((node[0x02]&0x4000)?1024:0); // TODO: 5 or 6 bits for Y coord?
if ((node[0x02]&0x8000)) // apply texture offsets, else retain current ones
{
texOffsetXY[0] = (GLfloat) tx;
texOffsetXY[1] = (GLfloat) ty;
texOffset = node[0x02]&0x7FFF;
//printf("Tex Offset: %d, %d (%08X %08X)\n", tx, ty, node[0x02], node1Ptr);
}
}
// Apply matrix and translation
glPushMatrix();
if ((node[0x00]&0x10)) // apply translation vector
glTranslatef(x,y,z);
else if (matrixOffset) // multiply matrix, if specified
MultMatrix(matrixOffset);
// Descend down first link
if ((node[0x00]&0x08)) // 4-element LOD table
{
lodTable = TranslateCullingAddress(node1Ptr);
if (NULL != lodTable)
{
if ((node[0x03-offset]&0x20000000))
DescendCullingNode(lodTable[0]&0xFFFFFF);
else
DrawModel(lodTable[0]&0xFFFFFF);
}
}
else
DescendNodePtr(node1Ptr);
// Proceed to second link
glPopMatrix();
DescendNodePtr(node2Ptr);
--stackDepth;
// Restore old texture offsets
texOffsetXY[0] = oldTexOffsetX;
texOffsetXY[1] = oldTexOffsetY;
texOffset = oldTexOffset;
}
// A list of pointers. MAME assumes that these may only point to culling nodes.
void CRender3D::DescendPointerList(UINT32 addr)
{
const UINT32 *list;
UINT32 nodeAddr;
int listEnd;
if (listDepth > 2) // several Step 2.1 games require this safeguard
return;
list = TranslateCullingAddress(addr);
if (NULL == list)
return;
++listDepth;
// Traverse the list forward and print it out
listEnd = 0;
while (1)
{
if ((list[listEnd] & 0x02000000)) // end of list (?)
break;
if ((list[listEnd] == 0) || (((list[listEnd])>>24) != 0))
{
//printf("ATTENTION: Unknown list termination: %08X.\n", list[listEnd]);
listEnd--; // back up to last valid list element
break;
}
++listEnd;
}
// Traverse the list backward and descend into each pointer
while (listEnd >= 0)
{
nodeAddr = list[listEnd]&0x00FFFFFF; // clear upper 8 bits to ensure this is processed as a culling node
if (!(list[listEnd]&0x01000000))//Fighting Vipers
{
if ((nodeAddr != 0) && (nodeAddr != 0x800800))
{
DescendCullingNode(nodeAddr);
}
//else
// printf("Strange pointers encountered\n");
}
--listEnd;
}
--listDepth;
}
/*
* DescendNodePtr():
*
* The old scene traversal engine. Recursively descends into a node pointer.
*/
void CRender3D::DescendNodePtr(UINT32 nodeAddr)
{
// Ignore null links
if ((nodeAddr&0x00FFFFFF) == 0)
return;
switch ((nodeAddr>>24)&0xFF) // pointer type encoded in upper 8 bits
{
case 0x00: // culling node
DescendCullingNode(nodeAddr&0xFFFFFF);
break;
case 0x01: // model (perhaps bit 1 is a flag in this case?)
case 0x03:
DrawModel(nodeAddr&0xFFFFFF);
break;
case 0x04: // pointer list
DescendPointerList(nodeAddr&0xFFFFFF);
break;
default:
//printf("ATTENTION: Unknown pointer format: %08X\n\n", nodeAddr);
break;
}
}
/*
* StackMachine():
*
* The new scene traversal engine. Uses a "processing stack" to avoid
* recursion when traversing the scene graph. The real hardware almost
* certainly does something similar, although it probably does not use a stack
* for everything (for instance, display lists).
*
* If the OpenGL stack is pushed/popped as frequently as the node pointers, it
* will rapidly overflow. Therefore, it is only saved when necessary (while
* processing the first link in a culling node).
*
* Some games have been observed to create circular references in their display
* lists (a culling node at some point will call the same display list from
* which it was called). To handle this unusual situation, the stack machine
* function maintains a small "stack" of list pointers. To pop this stack,
* specially encoded pointers are pushed on the processing stack. It is assumed
* that no games use the upper nibble of the node pointers for anything.
*
* Problems
* --------
* For some reason, terminating early can corrupt the OpenGL stack, so I've
* added code to pop everything. It's still slower than the recursive method.
*/
void CRender3D::StackMachine(UINT32 nodeAddr)
{
unsigned listStackDepth = 0;
// Push this address on to the stack to begin the process
Push(nodeAddr,false);
// Process the stack (keep popping until all finished)
while (stackTop > 0)
{
unsigned nodeType;
// Pop
nodeAddr = Pop();
// Check for our special "list stack" indicator
if ((nodeAddr&0x40000000))
{
listStackDepth--;
continue;
}
// Determine how to process this node
nodeType = (nodeAddr>>24)&0xFF; // extract type
nodeAddr &= 0x00FFFFFF; // extract the address itself
if (nodeAddr == 0) // ignore null links
continue;
switch (nodeType)
{
/*
* Unknown
*/
default:
//printf("ATTENTION: Unknown pointer format: %08X\n\n", nodeAddr);
break;
/*
* Model
*/
case 0x01:
case 0x03: // perhaps bit 1 is a flag?
if (DrawModel(nodeAddr&0x00FFFFFF))
goto PopAll;
break;
/*
* Display List
*
* Circular references in display lists are handled with a nasty hack
* here which abuses the processing stack by encoding a bit into the
* highest nibble of a pointer. Note that we may have to maintain an
* actual list stack in case more than a few nested lists are used
* without circular references (in that case, we would have to scan the
* list stack each time for duplicates). For now, we use the simple
* approach.
*/
case 0x04:
const UINT32 *list;
list = TranslateCullingAddress(nodeAddr);
if (NULL == list)
break;
// Push our special "list stack" indicator onto the stack, if there is room
if (listStackDepth > 4) // probably indicates a recursive list
break;
else
{
Push(0x40000000,NULL);
listStackDepth++;
}
// Push all list elements onto stack (they will be processed backwards)
for (int i = 0; ; i++)
{
nodeAddr = list[i]&0x00FFFFFF; // clear upper 8 bits to ensure this is processed as a culling node
if (nodeAddr==0) // we went too far, the display list has ended
break;
//if (((list[i]>>24)&0xFC) != 0)
// ErrorLog("Unrecognized pointer format in display list: %08X\n", list[i]);
if (!(list[i]&0x01000000)) // Fighting Vipers (this bit seems to indicate "do not process"
{
if ((nodeAddr != 0) && (nodeAddr != 0x800800))
Push(nodeAddr,false); // don't need to save matrix (each culling node saves/restores matrix)
}
if ((list[i]&0x02000000)) // list terminator
break;
}
break;
/*
* Culling Node
*
* The current matrix stack must be saved when processing a culling
* node and restored after the first link is finished. Therefore,
* the only point at which the matrix needs to be saved is when pushing
* the second link onto the processing stack. In other words, the
* second link is more of a "JUMP" than a nested "CALL."
*/
case 0x00:
const UINT32 *node, *lodTable;
UINT32 matrixOffset, node1Ptr, node2Ptr;
float x, y, z;
// Get pointer
node = TranslateCullingAddress(nodeAddr);
if (NULL == node) // invalid address, ignore
break;
// Extract known fields
node1Ptr = node[0x07-offset];
node2Ptr = node[0x08-offset];
matrixOffset = node[0x03-offset]&0xFFF;
x = *(float *) &node[0x04-offset];
y = *(float *) &node[0x05-offset];
z = *(float *) &node[0x06-offset];
// Push second link on stack (this also saves current matrix and will ensure it is restored)
Push(node2Ptr,true);
// Apply matrix and translation, then process first link
if ((node[0x00]&0x10)) // apply translation vector
glTranslatef(x,y,z);
else if (matrixOffset) // multiply matrix, if specified
MultMatrix(matrixOffset);
if ((node[0x00]&0x08)) // 4-element LOD table
{
lodTable = TranslateCullingAddress(node1Ptr);
if (NULL != lodTable)
{
if ((node[0x03-offset]&0x20000000))
Push(lodTable[0]&0x00FFFFFF,false); // process as culling node
else
{
if (DrawModel(lodTable[0]&0x00FFFFFF))
goto PopAll;
}
}
}
else
Push(node1Ptr,false);
break;
}
// Check for overflows and abort
if (stackOverflow)
{
ErrorLog("Stack overflow in scene database!");
return;
}
}
// Pop everything off the stack (ensures OpenGL matrix stack will be cleared)
PopAll:
while (stackTop > 0)
Pop();
}
// Draws viewports of the given priority
void CRender3D::RenderViewport(UINT32 addr, int pri)
{
GLfloat color[8][3] = // RGB1 translation
{
{ 0.0, 0.0, 0.0 }, // off
{ 0.0, 0.0, 1.0 }, // blue
{ 0.0, 1.0, 0.0 }, // green
{ 0.0, 1.0, 1.0 }, // cyan
{ 1.0, 0.0, 0.0 }, // red
{ 1.0, 0.0, 1.0 }, // purple
{ 1.0, 1.0, 0.0 }, // yellow
{ 1.0, 1.0, 1.0 } // white
};
const UINT32 *vpnode;
UINT32 nextAddr, nodeAddr, matrixBase;
int curPri;
int vpX, vpY, vpWidth, vpHeight;
int spotColorIdx;
GLfloat vpTopAngle, vpBotAngle, fovYDegrees;
GLfloat scrollFog, scrollAtt;
// Translate address and obtain pointer
vpnode = TranslateCullingAddress(addr);
if (NULL == vpnode)
return;
curPri = (vpnode[0x00] >> 3) & 3; // viewport priority
nextAddr = vpnode[0x01] & 0xFFFFFF; // next viewport
nodeAddr = vpnode[0x02]; // scene database node pointer
// Recursively process next viewport
if (vpnode[0x01] == 0) // memory probably hasn't been set up yet, abort
return;
if (vpnode[0x01] != 0x01000000)
RenderViewport(vpnode[0x01],pri);
// If the priority doesn't match, do not process
if (curPri != pri)
return;
// Fetch viewport parameters (TO-DO: would rounding make a difference?)
vpX = (vpnode[0x1A]&0xFFFF)>>4; // viewport X (12.4 fixed point)
vpY = (vpnode[0x1A]>>20)&0xFFF; // viewport Y (12.4)
vpWidth = (vpnode[0x14]&0xFFFF)>>2; // width (14.2)
vpHeight = (vpnode[0x14]>>18)&0x3FFF; // height (14.2)
matrixBase = vpnode[0x16]&0xFFFFFF; // matrix base address
// Field of view and clipping
vpTopAngle = (float) asin(*(float *)&vpnode[0x0E]); // FOV Y upper half-angle (radians)
vpBotAngle = (float) asin(*(float *)&vpnode[0x12]); // FOV Y lower half-angle
fovYDegrees = (vpTopAngle+vpBotAngle)*(float)(180.0/3.14159265358979323846);
// TO-DO: investigate clipping planes
// Set up viewport and projection (TO-DO: near and far clipping)
viewportX = xOffs + (GLint) ((float)vpX*xRatio);
viewportY = yOffs + (GLint) ((float)(384-(vpY+vpHeight))*yRatio);
viewportWidth = (GLint) ((float)vpWidth*xRatio);
viewportHeight = (GLint) ((float)vpHeight*yRatio);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(fovYDegrees,(GLfloat)vpWidth/(GLfloat)vpHeight,0.1f,1e5);
// Lighting (note that sun vector points toward sun -- away from vertex)
lightingParams[0] = *(float *) &vpnode[0x05]; // sun X
lightingParams[1] = *(float *) &vpnode[0x06]; // sun Y
lightingParams[2] = *(float *) &vpnode[0x04]; // sun Z
lightingParams[3] = *(float *) &vpnode[0x07]; // sun intensity
lightingParams[4] = (float) ((vpnode[0x24]>>8)&0xFF) * (1.0f/255.0f); // ambient intensity
lightingParams[5] = 0.0; // reserved
// Spotlight
spotColorIdx = (vpnode[0x20]>>11)&7; // spotlight color index
spotEllipse[0] = (float) ((vpnode[0x1E]>>3)&0x1FFF); // spotlight X position (fractional component?)
spotEllipse[1] = (float) ((vpnode[0x1D]>>3)&0x1FFF); // spotlight Y
spotEllipse[2] = (float) ((vpnode[0x1E]>>16)&0xFFFF); // spotlight X size (16-bit? May have fractional component below bit 16)
spotEllipse[3] = (float) ((vpnode[0x1D]>>16)&0xFFFF); // spotlight Y size
spotRange[0] = 1.0f/(*(float *) &vpnode[0x21]); // spotlight start
spotRange[1] = *(float *) &vpnode[0x1F]; // spotlight extent
spotColor[0] = color[spotColorIdx][0]; // spotlight color
spotColor[1] = color[spotColorIdx][1];
spotColor[2] = color[spotColorIdx][2];
//printf("(%g,%g),(%g,%g),(%g,%g) -> \n", spotEllipse[0], spotEllipse[1], spotEllipse[2], spotEllipse[3], spotRange[0], spotRange[1]);
// Spotlight is applied on a per pixel basis, must scale its position and size to screen
spotEllipse[1] = 384.0f-spotEllipse[1];
spotRange[1] += spotRange[0]; // limit
spotEllipse[2] = 496.0f/sqrt(spotEllipse[2]); // spotlight appears to be specified in terms of physical resolution (unconfirmed)
spotEllipse[3] = 384.0f/sqrt(spotEllipse[3]);
// Scale the spotlight to the OpenGL viewport
spotEllipse[0] = spotEllipse[0]*xRatio + xOffs;
spotEllipse[1] = spotEllipse[1]*yRatio + yOffs;
spotEllipse[2] *= xRatio;
spotEllipse[3] *= yRatio;
// Fog
fogParams[0] = (float) ((vpnode[0x22]>>16)&0xFF) * (1.0f/255.0f); // fog color R
fogParams[1] = (float) ((vpnode[0x22]>>8)&0xFF) * (1.0f/255.0f); // fog color G
fogParams[2] = (float) ((vpnode[0x22]>>0)&0xFF) * (1.0f/255.0f); // fog color B
fogParams[3] = *(float *) &vpnode[0x23]; // fog density
fogParams[4] = (float) (INT16) (vpnode[0x25]&0xFFFF)*(1.0f/255.0f); // fog start
if (ISINF(fogParams[3]) || ISNAN(fogParams[3]) || ISINF(fogParams[4]) || ISNAN(fogParams[4])) // Star Wars Trilogy
fogParams[3] = fogParams[4] = 0.0f;
// Unknown light/fog parameters
scrollFog = (float) (vpnode[0x20]&0xFF) * (1.0f/255.0f); // scroll fog
scrollAtt = (float) (vpnode[0x24]&0xFF) * (1.0f/255.0f); // scroll attenuation
//printf("scrollFog = %g, scrollAtt = %g\n", scrollFog, scrollAtt);
//printf("Fog: R=%02X G=%02X B=%02X density=%g (%X) %d start=%g\n", ((vpnode[0x22]>>16)&0xFF), ((vpnode[0x22]>>8)&0xFF), ((vpnode[0x22]>>0)&0xFF), fogParams[3], vpnode[0x23], (fogParams[3]==fogParams[3]), fogParams[4]);
// Clear texture offsets before proceeding
texOffsetXY[0] = 0.0;
texOffsetXY[1] = 0.0;
texOffset = 0x0000;
// Set up coordinate system and base matrix
glMatrixMode(GL_MODELVIEW);
InitMatrixStack(matrixBase);
// Safeguard: weird coordinate system matrices usually indicate scenes that will choke the renderer
if (NULL != matrixBasePtr)
{
float m21, m32, m13;
// Get the three elements that are usually set and see if their magnitudes are 1
m21 = matrixBasePtr[6];
m32 = matrixBasePtr[10];
m13 = matrixBasePtr[5];
m21 *= m21;
m32 *= m32;
m13 *= m13;
if ((m21>1.05) || (m21<0.95))
return;
if ((m32>1.05) || (m32<0.95))
return;
if ((m13>1.05) || (m13<0.95))
return;
}
// Render
AppendDisplayList(&VROMCache, true, 0); // add a viewport display list node
AppendDisplayList(&PolyCache, true, 0);
stackDepth = 0;
listDepth = 0;
// Descend down the node link: Use stack machine to traverse display list
//ClearStack();
//StackMachine(nodeAddr);
// Descend down the node link: Use recursive traversal
DescendNodePtr(nodeAddr);
}
void CRender3D::RenderFrame(void)
{
// Begin frame
ClearErrors(); // must be cleared each frame
//printf("BEGIN FRAME\n");
// Z buffering (Z buffer is cleared by display list viewport nodes)
glDepthFunc(GL_LESS);
glEnable(GL_DEPTH_TEST);
// Bind Real3D shader program and texture map
glUseProgram(shaderProgram);
glBindTexture(GL_TEXTURE_2D, texID);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // fragment shader performs its own interpolation
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
// Enable VBO client states
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
glEnableClientState(GL_COLOR_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glEnableVertexAttribArray(subTextureLoc);
glEnableVertexAttribArray(texParamsLoc);
glEnableVertexAttribArray(texFormatLoc);
glEnableVertexAttribArray(transLevelLoc);
glEnableVertexAttribArray(lightEnableLoc);
glEnableVertexAttribArray(fogIntensityLoc);
// Draw
//ClearModelCache(&VROMCache); // debug
ClearModelCache(&PolyCache);
for (int pri = 0; pri <= 3; pri++)
{
glClear(GL_DEPTH_BUFFER_BIT);
//ClearModelCache(&PolyCache);
ClearDisplayList(&PolyCache);
ClearDisplayList(&VROMCache);
RenderViewport(0x800000,pri);
DrawDisplayList(&VROMCache, POLY_STATE_NORMAL);
DrawDisplayList(&PolyCache, POLY_STATE_NORMAL);
DrawDisplayList(&VROMCache, POLY_STATE_ALPHA);
DrawDisplayList(&PolyCache, POLY_STATE_ALPHA);
}
glFrontFace(GL_CW); // restore front face
// Disable VBO client states
glDisableVertexAttribArray(fogIntensityLoc);
glDisableVertexAttribArray(lightEnableLoc);
glDisableVertexAttribArray(transLevelLoc);
glDisableVertexAttribArray(texFormatLoc);
glDisableVertexAttribArray(texParamsLoc);
glDisableVertexAttribArray(subTextureLoc);
glDisableClientState(GL_COLOR_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
glDisableClientState(GL_VERTEX_ARRAY);
}
void CRender3D::EndFrame(void)
{
}
void CRender3D::BeginFrame(void)
{
}
/******************************************************************************
Configuration, Initialization, and Shutdown
******************************************************************************/
void CRender3D::AttachMemory(const UINT32 *cullingRAMLoPtr, const UINT32 *cullingRAMHiPtr, const UINT32 *polyRAMPtr, const UINT32 *vromPtr, const UINT16 *textureRAMPtr)
{
cullingRAMLo = cullingRAMLoPtr;
cullingRAMHi = cullingRAMHiPtr;
polyRAM = polyRAMPtr;
vrom = vromPtr;
textureRAM = textureRAMPtr;
DebugLog("Render3D attached Real3D memory regions\n");
}
void CRender3D::SetStep(int stepID)
{
step = stepID;
if ((step!=0x10) && (step!=0x15) && (step!=0x20) && (step!=0x21))
{
DebugLog("Render3D: Unrecognized stepping: %d.%d\n", (step>>4)&0xF, step&0xF);
step = 0x10;
}
if (step > 0x10)
{
offset = 0; // culling nodes are 10 words
vertexFactor = (1.0f/2048.0f); // vertices are in 13.11 format
}
else
{
offset = 2; // 8 words
vertexFactor = (1.0f/128.0f); // 17.7
}
DebugLog("Render3D set to Step %d.%d\n", (step>>4)&0xF, step&0xF);
}
bool CRender3D::Init(unsigned xOffset, unsigned yOffset, unsigned xRes, unsigned yRes)
{
// Allocate memory for texture buffer
textureBuffer = new(std::nothrow) GLfloat[512*512*4];
if (NULL == textureBuffer)
return ErrorLog("Insufficient memory for texture decode buffer.");
// Allocate memory for scene stack
stackSize = STACK_SIZE;
stack = new(std::nothrow) UINT32[STACK_SIZE];
if (NULL == stack)
return ErrorLog("Insufficient memory for scene stack.");
// Create texture map
glGetError(); // clear error flag
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glGenTextures(1, &texID);
glActiveTexture(GL_TEXTURE0); // texture unit 0
glBindTexture(GL_TEXTURE_2D, texID);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // fragment shader performs its own interpolation
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, 2048, 2048, 0, GL_RGBA, GL_UNSIGNED_SHORT_5_5_5_1, 0);
if (glGetError() != GL_NO_ERROR)
return ErrorLog("OpenGL was unable to provide a 2048x2048-texel texture map.");
// Create model caches and VBOs
if (CreateModelCache(&VROMCache, NUM_STATIC_VERTS, NUM_LOCAL_VERTS, NUM_STATIC_MODELS, 0x4000000/4, NUM_DISPLAY_LIST_ITEMS, false))
return FAIL;
if (CreateModelCache(&PolyCache, NUM_DYNAMIC_VERTS, NUM_LOCAL_VERTS, NUM_DYNAMIC_MODELS, 0x400000/4, NUM_DISPLAY_LIST_ITEMS, true))
return FAIL;
// Initialize lighting parameters (updated as viewports are traversed)
lightingParams[0] = 0.0;
lightingParams[1] = 0.0;
lightingParams[2] = 0.0;
lightingParams[3] = 0.0;
lightingParams[4] = 1.0; // full ambient intensity in case we want to render a standalone model
lightingParams[5] = 0.0;
// Resolution and offset within physical display area
xRatio = (GLfloat) xRes / 496.0f;
yRatio = (GLfloat) yRes / 384.0f;
xOffs = xOffset;
yOffs = yOffset;
// Load shaders
const char *vsFile = g_Config.vertexShaderFile.size() ? g_Config.vertexShaderFile.c_str() : NULL;
const char *fsFile = g_Config.fragmentShaderFile.size() ? g_Config.fragmentShaderFile.c_str() : NULL;
if (OKAY != LoadShaderProgram(&shaderProgram,&vertexShader,&fragmentShader,vsFile,fsFile,vertexShaderSource,fragmentShaderSource))
return FAIL;
// Bind the texture to the "textureMap" uniform so fragment shader can access it
textureMapLoc = glGetUniformLocation(shaderProgram, "textureMap");
glUseProgram(shaderProgram); // bind program
glUniform1i(textureMapLoc,0); // attach it to texture unit 0
// Get location of the rest of the uniforms
modelViewMatrixLoc = glGetUniformLocation(shaderProgram,"modelViewMatrix");
projectionMatrixLoc = glGetUniformLocation(shaderProgram,"projectionMatrix");
lightingLoc = glGetUniformLocation(shaderProgram, "lighting");
spotEllipseLoc = glGetUniformLocation(shaderProgram, "spotEllipse");
spotRangeLoc = glGetUniformLocation(shaderProgram, "spotRange");
spotColorLoc = glGetUniformLocation(shaderProgram, "spotColor");
// Get locations of custom vertex attributes
subTextureLoc = glGetAttribLocation(shaderProgram,"subTexture");
texParamsLoc = glGetAttribLocation(shaderProgram,"texParams");
texFormatLoc = glGetAttribLocation(shaderProgram,"texFormat");
transLevelLoc = glGetAttribLocation(shaderProgram,"transLevel");
lightEnableLoc = glGetAttribLocation(shaderProgram,"lightEnable");
fogIntensityLoc = glGetAttribLocation(shaderProgram,"fogIntensity");
// Additional OpenGL stuff
glFrontFace(GL_CW); // polygons are uploaded w/ clockwise winding
glCullFace(GL_BACK);
glEnable(GL_CULL_FACE);
glClearDepth(1.0);
glEnable(GL_TEXTURE_2D);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
// Mark all textures as dirty
UploadTextures(0,0,2048,2048);
DebugLog("Render3D initialized\n");
return OKAY;
}
CRender3D::CRender3D(void)
{
cullingRAMLo = NULL;
cullingRAMHi = NULL;
polyRAM = NULL;
vrom = NULL;
textureRAM = NULL;
textureBuffer = NULL;
stack = NULL;
// Clear model cache pointers so we can safely destroy them if init fails
for (int i = 0; i < 2; i++)
{
VROMCache.verts[i] = NULL;
PolyCache.verts[i] = NULL;
VROMCache.Models = NULL;
PolyCache.Models = NULL;
VROMCache.lut = NULL;
PolyCache.lut = NULL;
VROMCache.List = NULL;
PolyCache.List = NULL;
VROMCache.ListHead[i] = NULL;
PolyCache.ListHead[i] = NULL;
VROMCache.ListTail[i] = NULL;
PolyCache.ListTail[i] = NULL;
}
DebugLog("Built Render3D\n");
}
CRender3D::~CRender3D(void)
{
DestroyShaderProgram(shaderProgram,vertexShader,fragmentShader);
if (glBindBuffer != NULL) // we may have failed earlier due to lack of OpenGL 2.0 functions
glBindBuffer(GL_ARRAY_BUFFER, 0); // disable VBOs by binding to 0
glDeleteTextures(1,&texID);
DestroyModelCache(&VROMCache);
DestroyModelCache(&PolyCache);
cullingRAMLo = NULL;
cullingRAMHi = NULL;
polyRAM = NULL;
vrom = NULL;
textureRAM = NULL;
if (textureBuffer != NULL)
delete [] textureBuffer;
textureBuffer = NULL;
if (stack != NULL)
delete [] stack;
stack = NULL;
DebugLog("Destroyed Render3D\n");
}