#ifndef _R3DSHADERTRIANGLES_H_ #define _R3DSHADERTRIANGLES_H_ static const char *vertexShaderR3D = R"glsl( #version 410 core // uniforms uniform float modelScale; uniform float nodeAlpha; uniform mat4 modelMat; uniform mat4 projMat; uniform bool translatorMap; // attributes in vec4 inVertex; in vec3 inNormal; in vec2 inTexCoord; in vec4 inColour; in vec3 inFaceNormal; // used to emulate r3d culling in float inFixedShade; // outputs to fragment shader out vec3 fsViewVertex; out vec3 fsViewNormal; // per vertex normal vector out vec2 fsTexCoord; out vec4 fsColor; out float fsDiscard; // can't have varying bool (glsl spec) out float fsFixedShade; vec4 GetColour(vec4 colour) { vec4 c = colour; if(translatorMap) { c.rgb *= 16.0; } c.a *= nodeAlpha; return c; } float CalcBackFace(in vec3 viewVertex) { vec3 vt = viewVertex - vec3(0.0); vec3 vn = (mat3(modelMat) * inFaceNormal); // dot product of face normal with view direction return dot(vt, vn); } void main(void) { fsViewVertex = vec3(modelMat * inVertex); fsViewNormal = (mat3(modelMat) * inNormal) / modelScale; fsDiscard = CalcBackFace(fsViewVertex); fsColor = GetColour(inColour); fsTexCoord = inTexCoord; fsFixedShade = inFixedShade; gl_Position = projMat * modelMat * inVertex; } )glsl"; static const char *fragmentShaderR3D = R"glsl( #version 410 core uniform usampler2D textureBank[2]; // entire texture sheet // texturing uniform bool textureEnabled; uniform bool microTexture; uniform float microTextureScale; uniform int microTextureID; uniform ivec4 baseTexInfo; // x/y are x,y positions in the texture sheet. z/w are with and height uniform int baseTexType; uniform bool textureInverted; uniform bool textureAlpha; uniform bool alphaTest; uniform bool discardAlpha; uniform ivec2 textureWrapMode; uniform int texturePage; // general uniform vec3 fogColour; uniform vec4 spotEllipse; // spotlight ellipse position: .x=X position (screen coordinates), .y=Y position, .z=half-width, .w=half-height) uniform vec2 spotRange; // spotlight Z range: .x=start (viewspace coordinates), .y=limit uniform vec3 spotColor; // spotlight RGB color uniform vec3 spotFogColor; // spotlight RGB color on fog uniform vec3 lighting[2]; // lighting state (lighting[0] = sun direction, lighting[1].x,y = diffuse, ambient intensities from 0-1.0) uniform bool lightEnabled; // lighting enabled (1.0) or luminous (0.0), drawn at full intensity uniform bool sunClamp; // not used by daytona and la machine guns uniform bool intensityClamp; // some games such as daytona and uniform bool specularEnabled; // specular enabled uniform float specularValue; // specular coefficient uniform float shininess; // specular shininess uniform float fogIntensity; uniform float fogDensity; uniform float fogStart; uniform float fogAttenuation; uniform float fogAmbient; uniform bool fixedShading; uniform int hardwareStep; uniform int colourLayer; uniform bool polyAlpha; // matrices (shared with vertex shader) uniform mat4 projMat; //interpolated inputs from vertex shader in vec3 fsViewVertex; in vec3 fsViewNormal; // per vertex normal vector in vec4 fsColor; in vec2 fsTexCoord; in float fsDiscard; in float fsFixedShade; //outputs layout(location = 0) out vec4 out0; // opaque layout(location = 1) out vec4 out1; // trans layer 1 layout(location = 2) out vec4 out2; // trans layer 2 // forward declarations (see common file) float CalcFog(); void Step15Luminous(inout vec4 colour); vec4 GetTextureValue(); void WriteOutputs(vec4 colour, int layer); float Sqr(float a); float SqrLength(vec2 a); void main() { vec4 tex1Data; vec4 colData; vec4 finalData; vec4 fogData; if(fsDiscard > 0) { discard; //emulate back face culling here } gl_FragDepth = projMat[3][2] * gl_FragCoord.w; fogData = vec4(fogColour.rgb * fogAmbient, CalcFog()); tex1Data = vec4(1.0, 1.0, 1.0, 1.0); if(textureEnabled) { tex1Data = GetTextureValue(); } colData = fsColor; Step15Luminous(colData); // no-op for step 2.0+ finalData = tex1Data * colData; if (finalData.a < (1.0/32.0)) { // basically chuck out any totally transparent pixels value = 1/16 the smallest transparency level h/w supports discard; } float ellipse; ellipse = SqrLength((gl_FragCoord.xy - spotEllipse.xy) / spotEllipse.zw); // decay rate = square of distance from center ellipse = 1.0 - ellipse; // invert ellipse = max(0.0, ellipse); // clamp // Compute spotlight and apply lighting float enable, absExtent, d, inv_r, range; // start of spotlight enable = step(spotRange.x, -fsViewVertex.z); if (spotRange.y == 0.0) { range = 0.0; } else { absExtent = abs(spotRange.y); d = spotRange.x + absExtent + fsViewVertex.z; d = min(d, 0.0); // slope of decay function inv_r = 1.0 / (1.0 + absExtent); // inverse-linear falloff // Reference: https://imdoingitwrong.wordpress.com/2011/01/31/light-attenuation/ // y = 1 / (d/r + 1)^2 range = 1.0 / Sqr(d * inv_r - 1.0); range *= enable; } float lobeEffect = range * ellipse; float lobeFogEffect = enable * ellipse; if (lightEnabled) { vec3 lightIntensity; vec3 sunVector; // sun lighting vector (as reflecting away from vertex) float sunFactor; // sun light projection along vertex normal (0.0 to 1.0) // Sun angle sunVector = lighting[0]; // Compute diffuse factor for sunlight if(fixedShading) { sunFactor = fsFixedShade; } else { sunFactor = dot(sunVector, fsViewNormal); } // Clamp ceil, fix for upscaled models without "modelScale" defined sunFactor = clamp(sunFactor,-1.0,1.0); // Optional clamping, value is allowed to be negative // We suspect that translucent polygons are always clamped (e.g. lasers in Daytona 2) if(sunClamp || polyAlpha) { sunFactor = max(sunFactor,0.0); } // Total light intensity: sum of all components lightIntensity = vec3(sunFactor*lighting[1].x + lighting[1].y); // diffuse + ambient lightIntensity.rgb += spotColor*lobeEffect; // Upper clamp is optional, step 1.5+ games will drive brightness beyond 100% if(intensityClamp) { lightIntensity = min(lightIntensity,1.0); } finalData.rgb *= lightIntensity; // for now assume fixed shading doesn't work with specular if (specularEnabled) { float exponent, NdotL, specularFactor; vec4 biasIndex, expIndex, multIndex; // Always clamp floor to zero, we don't want deep black areas NdotL = max(0.0,sunFactor); expIndex = vec4(8.0, 16.0, 32.0, 64.0); multIndex = vec4(2.0, 2.0, 3.0, 4.0); biasIndex = vec4(0.95, 0.95, 1.05, 1.0); exponent = expIndex[int(shininess)] / biasIndex[int(shininess)]; specularFactor = pow(NdotL, exponent); specularFactor *= multIndex[int(shininess)]; specularFactor *= biasIndex[int(shininess)]; specularFactor *= specularValue; specularFactor *= lighting[1].x; if (colData.a < 1.0) { /// Specular hi-light affects translucent polygons alpha channel /// finalData.a = max(finalData.a, specularFactor); } finalData.rgb += vec3(specularFactor); } } // Final clamp: we need it for proper shading in dimmed light and dark ambients finalData.rgb = min(finalData.rgb, vec3(1.0)); // Spotlight on fog vec3 lSpotFogColor = spotFogColor * fogAttenuation * fogColour.rgb * lobeFogEffect; // Fog & spotlight applied finalData.rgb = mix(finalData.rgb, fogData.rgb + lSpotFogColor, fogData.a); // Write outputs to colour buffers WriteOutputs(finalData,colourLayer); } )glsl"; #endif