/**
** Supermodel
** A Sega Model 3 Arcade Emulator.
** Copyright 2011 Bart Trzynadlowski, Nik Henson
**
** This file is part of Supermodel.
**
** Supermodel is free software: you can redistribute it and/or modify it under
** the terms of the GNU General Public License as published by the Free
** Software Foundation, either version 3 of the License, or (at your option)
** any later version.
**
** Supermodel is distributed in the hope that it will be useful, but WITHOUT
** ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
** FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
** more details.
**
** You should have received a copy of the GNU General Public License along
** with Supermodel. If not, see .
**/
/*
* ppc_ops.c
*
* PowerPC common opcodes. Included from ppc.cpp; do not compile compile
* separately.
*
* Changes to opcode handlers since inclusion in new Supermodel:
* - Feb. 13 2011: Changed stwcx. to always set the EQ flag.
*/
/* PowerPC common opcodes */
// it really seems like this should be elsewhere - like maybe the floating point checks can hang out someplace else
#include
static void ppc_unimplemented(UINT32 op)
{
ErrorLog("PowerPC hit an unimplemented instruction. Halting emulation until reset.");
DebugLog("PowerPC encountered an unimplemented opcode %08X at %08X\n", op, ppc.pc);
ppc.fatalError = true;
}
static void ppc_addx(UINT32 op)
{
UINT32 ra = REG(RA);
UINT32 rb = REG(RB);
REG(RT) = ra + rb;
if( OEBIT ) {
SET_ADD_OV(REG(RT), ra, rb);
}
if( RCBIT ) {
SET_CR0(REG(RT));
}
}
static void ppc_addcx(UINT32 op)
{
UINT32 ra = REG(RA);
UINT32 rb = REG(RB);
REG(RT) = ra + rb;
SET_ADD_CA(REG(RT), ra, rb);
if( OEBIT ) {
SET_ADD_OV(REG(RT), ra, rb);
}
if( RCBIT ) {
SET_CR0(REG(RT));
}
}
static void ppc_addex(UINT32 op)
{
UINT32 ra = REG(RA);
UINT32 rb = REG(RB);
UINT32 carry = (XER >> 29) & 0x1;
UINT32 tmp;
tmp = rb + carry;
REG(RT) = ra + tmp;
if( ADD_CA(tmp, rb, carry) || ADD_CA(REG(RT), ra, tmp) )
XER |= XER_CA;
else
XER &= ~XER_CA;
if( OEBIT ) {
SET_ADD_OV(REG(RT), ra, rb);
}
if( RCBIT ) {
SET_CR0(REG(RT));
}
}
static void ppc_addi(UINT32 op)
{
UINT32 i = SIMM16;
UINT32 a = RA;
if( a )
i += REG(a);
REG(RT) = i;
}
static void ppc_addic(UINT32 op)
{
UINT32 i = SIMM16;
UINT32 ra = REG(RA);
REG(RT) = ra + i;
if( ADD_CA(REG(RT), ra, i) )
XER |= XER_CA;
else
XER &= ~XER_CA;
}
static void ppc_addic_rc(UINT32 op)
{
UINT32 i = SIMM16;
UINT32 ra = REG(RA);
REG(RT) = ra + i;
if( ADD_CA(REG(RT), ra, i) )
XER |= XER_CA;
else
XER &= ~XER_CA;
SET_CR0(REG(RT));
}
static void ppc_addis(UINT32 op)
{
UINT32 i = UIMM16 << 16;
UINT32 a = RA;
if( a )
i += REG(a);
REG(RT) = i;
}
static void ppc_addmex(UINT32 op)
{
UINT32 ra = REG(RA);
UINT32 carry = (XER >> 29) & 0x1;
UINT32 tmp;
tmp = ra + carry;
REG(RT) = tmp + -1;
if( ADD_CA(tmp, ra, carry) || ADD_CA(REG(RT), tmp, -1) )
XER |= XER_CA;
else
XER &= ~XER_CA;
if( OEBIT ) {
SET_ADD_OV(REG(RT), ra, carry - 1);
}
if( RCBIT ) {
SET_CR0(REG(RT));
}
}
static void ppc_addzex(UINT32 op)
{
UINT32 ra = REG(RA);
UINT32 carry = (XER >> 29) & 0x1;
REG(RT) = ra + carry;
if( ADD_CA(REG(RT), ra, carry) )
XER |= XER_CA;
else
XER &= ~XER_CA;
if( OEBIT ) {
SET_ADD_OV(REG(RT), ra, carry);
}
if( RCBIT ) {
SET_CR0(REG(RT));
}
}
static void ppc_andx(UINT32 op)
{
REG(RA) = REG(RS) & REG(RB);
if( RCBIT ) {
SET_CR0(REG(RA));
}
}
static void ppc_andcx(UINT32 op)
{
REG(RA) = REG(RS) & ~REG(RB);
if( RCBIT ) {
SET_CR0(REG(RA));
}
}
static void ppc_andi_rc(UINT32 op)
{
UINT32 i = UIMM16;
REG(RA) = REG(RS) & i;
SET_CR0(REG(RA));
}
static void ppc_andis_rc(UINT32 op)
{
UINT32 i = UIMM16 << 16;
REG(RA) = REG(RS) & i;
SET_CR0(REG(RA));
}
static void ppc_bx(UINT32 op)
{
INT32 li = op & 0x3fffffc;
if( li & 0x2000000 )
li |= 0xfc000000;
if( AABIT ) {
ppc.npc = li;
} else {
ppc.npc = ppc.pc + li;
}
if( LKBIT ) {
LR = ppc.pc + 4;
}
ppc_change_pc(ppc.npc);
}
static void ppc_bcx(UINT32 op)
{
int condition = check_condition_code(BO, BI);
if( condition ) {
if( AABIT ) {
ppc.npc = SIMM16 & ~0x3;
} else {
ppc.npc = ppc.pc + (SIMM16 & ~0x3);
}
ppc_change_pc(ppc.npc);
}
if( LKBIT ) {
LR = ppc.pc + 4;
}
}
static void ppc_bcctrx(UINT32 op)
{
int condition = check_condition_code(BO, BI);
if( condition ) {
ppc.npc = CTR & ~0x3;
ppc_change_pc(ppc.npc);
}
if( LKBIT ) {
LR = ppc.pc + 4;
}
}
static void ppc_bclrx(UINT32 op)
{
int condition = check_condition_code(BO, BI);
if( condition ) {
ppc.npc = LR & ~0x3;
ppc_change_pc(ppc.npc);
}
if( LKBIT ) {
LR = ppc.pc + 4;
}
}
static void ppc_cmp(UINT32 op)
{
INT32 ra = REG(RA);
INT32 rb = REG(RB);
int d = CRFD;
if( ra < rb )
CR(d) = 0x8;
else if( ra > rb )
CR(d) = 0x4;
else
CR(d) = 0x2;
if( XER & XER_SO )
CR(d) |= 0x1;
}
static void ppc_cmpi(UINT32 op)
{
INT32 ra = REG(RA);
INT32 i = SIMM16;
int d = CRFD;
if( ra < i )
CR(d) = 0x8;
else if( ra > i )
CR(d) = 0x4;
else
CR(d) = 0x2;
if( XER & XER_SO )
CR(d) |= 0x1;
}
static void ppc_cmpl(UINT32 op)
{
UINT32 ra = REG(RA);
UINT32 rb = REG(RB);
int d = CRFD;
if( ra < rb )
CR(d) = 0x8;
else if( ra > rb )
CR(d) = 0x4;
else
CR(d) = 0x2;
if( XER & XER_SO )
CR(d) |= 0x1;
}
static void ppc_cmpli(UINT32 op)
{
UINT32 ra = REG(RA);
UINT32 i = UIMM16;
int d = CRFD;
if( ra < i )
CR(d) = 0x8;
else if( ra > i )
CR(d) = 0x4;
else
CR(d) = 0x2;
if( XER & XER_SO )
CR(d) |= 0x1;
}
static void ppc_cntlzw(UINT32 op)
{
int n = 0;
int t = RT;
UINT32 m = 0x80000000;
while(n < 32)
{
if( REG(t) & m )
break;
m >>= 1;
n++;
}
REG(RA) = n;
if( RCBIT ) {
SET_CR0(REG(RA));
}
}
static void ppc_crand(UINT32 op)
{
int bit = RT;
int b = CRBIT(RA) & CRBIT(RB);
if( b & 0x1 )
CR(bit / 4) |= _BIT(3-(bit % 4));
else
CR(bit / 4) &= ~_BIT(3-(bit % 4));
}
static void ppc_crandc(UINT32 op)
{
int bit = RT;
int b = CRBIT(RA) & ~CRBIT(RB);
if( b & 0x1 )
CR(bit / 4) |= _BIT(3-(bit % 4));
else
CR(bit / 4) &= ~_BIT(3-(bit % 4));
}
static void ppc_creqv(UINT32 op)
{
int bit = RT;
int b = ~(CRBIT(RA) ^ CRBIT(RB));
if( b & 0x1 )
CR(bit / 4) |= _BIT(3-(bit % 4));
else
CR(bit / 4) &= ~_BIT(3-(bit % 4));
}
static void ppc_crnand(UINT32 op)
{
int bit = RT;
int b = ~(CRBIT(RA) & CRBIT(RB));
if( b & 0x1 )
CR(bit / 4) |= _BIT(3-(bit % 4));
else
CR(bit / 4) &= ~_BIT(3-(bit % 4));
}
static void ppc_crnor(UINT32 op)
{
int bit = RT;
int b = ~(CRBIT(RA) | CRBIT(RB));
if( b & 0x1 )
CR(bit / 4) |= _BIT(3-(bit % 4));
else
CR(bit / 4) &= ~_BIT(3-(bit % 4));
}
static void ppc_cror(UINT32 op)
{
int bit = RT;
int b = CRBIT(RA) | CRBIT(RB);
if( b & 0x1 )
CR(bit / 4) |= _BIT(3-(bit % 4));
else
CR(bit / 4) &= ~_BIT(3-(bit % 4));
}
static void ppc_crorc(UINT32 op)
{
int bit = RT;
int b = CRBIT(RA) | ~CRBIT(RB);
if( b & 0x1 )
CR(bit / 4) |= _BIT(3-(bit % 4));
else
CR(bit / 4) &= ~_BIT(3-(bit % 4));
}
static void ppc_crxor(UINT32 op)
{
int bit = RT;
int b = CRBIT(RA) ^ CRBIT(RB);
if( b & 0x1 )
CR(bit / 4) |= _BIT(3-(bit % 4));
else
CR(bit / 4) &= ~_BIT(3-(bit % 4));
}
static void ppc_dcbf(UINT32 op)
{
}
static void ppc_dcbi(UINT32 op)
{
}
static void ppc_dcbst(UINT32 op)
{
}
static void ppc_dcbt(UINT32 op)
{
}
static void ppc_dcbtst(UINT32 op)
{
}
static void ppc_dcbz(UINT32 op)
{
}
static void ppc_divwx(UINT32 op)
{
if( REG(RB) == 0 && REG(RA) < 0x80000000 )
{
REG(RT) = 0;
if( OEBIT ) {
XER |= XER_SO | XER_OV;
}
}
else if( REG(RB) == 0 || (REG(RB) == 0xffffffff && REG(RA) == 0x80000000) )
{
REG(RT) = 0xffffffff;
if( OEBIT ) {
XER |= XER_SO | XER_OV;
}
}
else
{
REG(RT) = (INT32)REG(RA) / (INT32)REG(RB);
if( OEBIT ) {
XER &= ~XER_OV;
}
}
if( RCBIT ) {
SET_CR0(REG(RT));
}
}
static void ppc_divwux(UINT32 op)
{
if( REG(RB) == 0 )
{
REG(RT) = 0;
if( OEBIT ) {
XER |= XER_SO | XER_OV;
}
}
else
{
REG(RT) = (UINT32)REG(RA) / (UINT32)REG(RB);
if( OEBIT ) {
XER &= ~XER_OV;
}
}
if( RCBIT ) {
SET_CR0(REG(RT));
}
}
static void ppc_eieio(UINT32 op)
{
}
static void ppc_eqvx(UINT32 op)
{
REG(RA) = ~(REG(RS) ^ REG(RB));
if( RCBIT ) {
SET_CR0(REG(RA));
}
}
static void ppc_extsbx(UINT32 op)
{
REG(RA) = (INT32)(INT8)REG(RS);
if( RCBIT ) {
SET_CR0(REG(RA));
}
}
static void ppc_extshx(UINT32 op)
{
REG(RA) = (INT32)(INT16)REG(RS);
if( RCBIT ) {
SET_CR0(REG(RA));
}
}
static void ppc_icbi(UINT32 op)
{
}
static void ppc_isync(UINT32 op)
{
}
static void ppc_lbz(UINT32 op)
{
UINT32 ea;
if( RA == 0 )
ea = SIMM16;
else
ea = REG(RA) + SIMM16;
REG(RT) = (UINT32)READ8(ea);
}
static void ppc_lbzu(UINT32 op)
{
UINT32 ea = REG(RA) + SIMM16;
REG(RT) = (UINT32)READ8(ea);
REG(RA) = ea;
}
static void ppc_lbzux(UINT32 op)
{
UINT32 ea = REG(RA) + REG(RB);
REG(RT) = (UINT32)READ8(ea);
REG(RA) = ea;
}
static void ppc_lbzx(UINT32 op)
{
UINT32 ea;
if( RA == 0 )
ea = REG(RB);
else
ea = REG(RA) + REG(RB);
REG(RT) = (UINT32)READ8(ea);
}
static void ppc_lha(UINT32 op)
{
UINT32 ea;
if( RA == 0 )
ea = SIMM16;
else
ea = REG(RA) + SIMM16;
REG(RT) = (INT32)(INT16)READ16(ea);
}
static void ppc_lhau(UINT32 op)
{
UINT32 ea = REG(RA) + SIMM16;
REG(RT) = (INT32)(INT16)READ16(ea);
REG(RA) = ea;
}
static void ppc_lhaux(UINT32 op)
{
UINT32 ea = REG(RA) + REG(RB);
REG(RT) = (INT32)(INT16)READ16(ea);
REG(RA) = ea;
}
static void ppc_lhax(UINT32 op)
{
UINT32 ea;
if( RA == 0 )
ea = REG(RB);
else
ea = REG(RA) + REG(RB);
REG(RT) = (INT32)(INT16)READ16(ea);
}
static void ppc_lhbrx(UINT32 op)
{
UINT32 ea;
UINT16 w;
if( RA == 0 )
ea = REG(RB);
else
ea = REG(RA) + REG(RB);
w = READ16(ea);
REG(RT) = (UINT32)BYTE_REVERSE16(w);
}
static void ppc_lhz(UINT32 op)
{
UINT32 ea;
if( RA == 0 )
ea = SIMM16;
else
ea = REG(RA) + SIMM16;
REG(RT) = (UINT32)READ16(ea);
}
static void ppc_lhzu(UINT32 op)
{
UINT32 ea = REG(RA) + SIMM16;
REG(RT) = (UINT32)READ16(ea);
REG(RA) = ea;
}
static void ppc_lhzux(UINT32 op)
{
UINT32 ea = REG(RA) + REG(RB);
REG(RT) = (UINT32)READ16(ea);
REG(RA) = ea;
}
static void ppc_lhzx(UINT32 op)
{
UINT32 ea;
if( RA == 0 )
ea = REG(RB);
else
ea = REG(RA) + REG(RB);
REG(RT) = (UINT32)READ16(ea);
}
static void ppc_lmw(UINT32 op)
{
int r = RT;
UINT32 ea;
if( RA == 0 )
ea = SIMM16;
else
ea = REG(RA) + SIMM16;
while( r <= 31 )
{
REG(r) = READ32(ea);
ea += 4;
r++;
}
}
static void ppc_lswi(UINT32 op)
{
int n, r, i;
UINT32 ea = 0;
if( RA != 0 )
ea = REG(RA);
if( RB == 0 )
n = 32;
else
n = RB;
r = RT - 1;
i = 0;
while(n > 0)
{
if (i == 0) {
r = (r + 1) % 32;
REG(r) = 0;
}
REG(r) |= ((READ8(ea) & 0xff) << (24 - i));
i += 8;
if (i == 32) {
i = 0;
}
ea++;
n--;
}
}
static void ppc_lswx(UINT32 op)
{
ErrorLog("PowerPC hit an unimplemented instruction. Halting emulation until reset.");
DebugLog("ppc: lswx unimplemented at %08X\n", ppc.pc);
ppc.fatalError = true;
}
static void ppc_lwarx(UINT32 op)
{
UINT32 ea;
if( RA == 0 )
ea = REG(RB);
else
ea = REG(RA) + REG(RB);
ppc.reserved_address = ea;
ppc.reserved = 1;
REG(RT) = READ32(ea);
}
static void ppc_lwbrx(UINT32 op)
{
UINT32 ea;
UINT32 w;
if( RA == 0 )
ea = REG(RB);
else
ea = REG(RA) + REG(RB);
w = READ32(ea);
REG(RT) = BYTE_REVERSE32(w);
}
static void ppc_lwz(UINT32 op)
{
UINT32 ea;
if( RA == 0 )
ea = SIMM16;
else
ea = REG(RA) + SIMM16;
REG(RT) = READ32(ea);
}
static void ppc_lwzu(UINT32 op)
{
UINT32 ea = REG(RA) + SIMM16;
REG(RT) = READ32(ea);
REG(RA) = ea;
}
static void ppc_lwzux(UINT32 op)
{
UINT32 ea = REG(RA) + REG(RB);
REG(RT) = READ32(ea);
REG(RA) = ea;
}
static void ppc_lwzx(UINT32 op)
{
UINT32 ea;
if( RA == 0 )
ea = REG(RB);
else
ea = REG(RA) + REG(RB);
REG(RT) = READ32(ea);
}
static void ppc_mcrf(UINT32 op)
{
CR(RT >> 2) = CR(RA >> 2);
}
static void ppc_mcrxr(UINT32 op)
{
CR(RT >> 2) = (XER >> 28) & 0x0F;
XER &= ~0xf0000000;
}
static void ppc_mfcr(UINT32 op)
{
REG(RT) = ppc_get_cr();
}
static void ppc_mfmsr(UINT32 op)
{
REG(RT) = ppc_get_msr();
}
static void ppc_mfspr(UINT32 op)
{
REG(RT) = ppc_get_spr(SPR);
}
static void ppc_mtcrf(UINT32 op)
{
int fxm = FXM;
int t = RT;
if( fxm & 0x80 ) CR(0) = (REG(t) >> 28) & 0xf;
if( fxm & 0x40 ) CR(1) = (REG(t) >> 24) & 0xf;
if( fxm & 0x20 ) CR(2) = (REG(t) >> 20) & 0xf;
if( fxm & 0x10 ) CR(3) = (REG(t) >> 16) & 0xf;
if( fxm & 0x08 ) CR(4) = (REG(t) >> 12) & 0xf;
if( fxm & 0x04 ) CR(5) = (REG(t) >> 8) & 0xf;
if( fxm & 0x02 ) CR(6) = (REG(t) >> 4) & 0xf;
if( fxm & 0x01 ) CR(7) = (REG(t) >> 0) & 0xf;
}
static void ppc_mtmsr(UINT32 op)
{
ppc_set_msr(REG(RS));
}
static void ppc_mtspr(UINT32 op)
{
ppc_set_spr(SPR, REG(RS));
}
static void ppc_mulhwx(UINT32 op)
{
INT64 ra = (INT64)(INT32)REG(RA);
INT64 rb = (INT64)(INT32)REG(RB);
REG(RT) = (UINT32)((ra * rb) >> 32);
if( RCBIT ) {
SET_CR0(REG(RT));
}
}
static void ppc_mulhwux(UINT32 op)
{
UINT64 ra = (UINT64)REG(RA);
UINT64 rb = (UINT64)REG(RB);
REG(RT) = (UINT32)((ra * rb) >> 32);
if( RCBIT ) {
SET_CR0(REG(RT));
}
}
static void ppc_mulli(UINT32 op)
{
INT32 ra = (INT32)REG(RA);
INT32 i = SIMM16;
REG(RT) = ra * i;
}
static void ppc_mullwx(UINT32 op)
{
INT64 ra = (INT64)(INT32)REG(RA);
INT64 rb = (INT64)(INT32)REG(RB);
INT64 r;
r = ra * rb;
REG(RT) = (UINT32)r;
if( OEBIT ) {
XER &= ~XER_OV;
if( r != (INT64)(INT32)r )
XER |= XER_OV | XER_SO;
}
if( RCBIT ) {
SET_CR0(REG(RT));
}
}
static void ppc_nandx(UINT32 op)
{
REG(RA) = ~(REG(RS) & REG(RB));
if( RCBIT ) {
SET_CR0(REG(RA));
}
}
static void ppc_negx(UINT32 op)
{
REG(RT) = -(INT32)(REG(RA));
if( OEBIT ) {
if( REG(RT) == 0x80000000 )
XER |= XER_OV | XER_SO;
else
XER &= ~XER_OV;
}
if( RCBIT ) {
SET_CR0(REG(RT));
}
}
static void ppc_norx(UINT32 op)
{
REG(RA) = ~(REG(RS) | REG(RB));
if( RCBIT ) {
SET_CR0(REG(RA));
}
}
static void ppc_orx(UINT32 op)
{
REG(RA) = REG(RS) | REG(RB);
if( RCBIT ) {
SET_CR0(REG(RA));
}
}
static void ppc_orcx(UINT32 op)
{
REG(RA) = REG(RS) | ~REG(RB);
if( RCBIT ) {
SET_CR0(REG(RA));
}
}
static void ppc_ori(UINT32 op)
{
REG(RA) = REG(RS) | UIMM16;
}
static void ppc_oris(UINT32 op)
{
REG(RA) = REG(RS) | (UIMM16 << 16);
}
static void ppc_rfi(UINT32 op)
{
UINT32 msr;
ppc.npc = ppc_get_spr(SPR_SRR0);
msr = ppc_get_spr(SPR_SRR1);
ppc_set_msr( msr );
ppc_change_pc(ppc.npc);
}
static void ppc_rlwimix(UINT32 op)
{
UINT32 r;
UINT32 mask = GET_ROTATE_MASK(MB, ME);
UINT32 rs = REG(RS);
int sh = SH;
r = (rs << sh) | (rs >> (32-sh));
REG(RA) = (REG(RA) & ~mask) | (r & mask);
if( RCBIT ) {
SET_CR0(REG(RA));
}
}
static void ppc_rlwinmx(UINT32 op)
{
UINT32 r;
UINT32 mask = GET_ROTATE_MASK(MB, ME);
UINT32 rs = REG(RS);
int sh = SH;
r = (rs << sh) | (rs >> (32-sh));
REG(RA) = r & mask;
if( RCBIT ) {
SET_CR0(REG(RA));
}
}
static void ppc_rlwnmx(UINT32 op)
{
UINT32 r;
UINT32 mask = GET_ROTATE_MASK(MB, ME);
UINT32 rs = REG(RS);
int sh = REG(RB) & 0x1f;
r = (rs << sh) | (rs >> (32-sh));
REG(RA) = r & mask;
if( RCBIT ) {
SET_CR0(REG(RA));
}
}
static void ppc_sc(UINT32 op)
{
ppc603_exception(EXCEPTION_SYSTEM_CALL);
}
static void ppc_slwx(UINT32 op)
{
int sh = REG(RB) & 0x3f;
if( sh > 31 ) {
REG(RA) = 0;
}
else {
REG(RA) = REG(RS) << sh;
}
if( RCBIT ) {
SET_CR0(REG(RA));
}
}
static void ppc_srawx(UINT32 op)
{
int sh = REG(RB) & 0x3f;
XER &= ~XER_CA;
if( sh > 31 ) {
if (REG(RS) & 0x80000000)
REG(RA) = 0xffffffff;
else
REG(RA) = 0;
if( REG(RA) )
XER |= XER_CA;
}
else {
REG(RA) = (INT32)(REG(RS)) >> sh;
if( ((INT32)(REG(RS)) < 0) && (REG(RS) & BITMASK_0(sh)) )
XER |= XER_CA;
}
if( RCBIT ) {
SET_CR0(REG(RA));
}
}
static void ppc_srawix(UINT32 op)
{
int sh = SH;
XER &= ~XER_CA;
if( ((INT32)(REG(RS)) < 0) && (REG(RS) & BITMASK_0(sh)) )
XER |= XER_CA;
REG(RA) = (INT32)(REG(RS)) >> sh;
if( RCBIT ) {
SET_CR0(REG(RA));
}
}
static void ppc_srwx(UINT32 op)
{
int sh = REG(RB) & 0x3f;
if( sh > 31 ) {
REG(RA) = 0;
}
else {
REG(RA) = REG(RS) >> sh;
}
if( RCBIT ) {
SET_CR0(REG(RA));
}
}
static void ppc_stb(UINT32 op)
{
UINT32 ea;
if( RA == 0 )
ea = SIMM16;
else
ea = REG(RA) + SIMM16;
WRITE8(ea, (UINT8)REG(RS));
}
static void ppc_stbu(UINT32 op)
{
UINT32 ea = REG(RA) + SIMM16;
WRITE8(ea, (UINT8)REG(RS));
REG(RA) = ea;
}
static void ppc_stbux(UINT32 op)
{
UINT32 ea = REG(RA) + REG(RB);
WRITE8(ea, (UINT8)REG(RS));
REG(RA) = ea;
}
static void ppc_stbx(UINT32 op)
{
UINT32 ea;
if( RA == 0 )
ea = REG(RB);
else
ea = REG(RA) + REG(RB);
WRITE8(ea, (UINT8)REG(RS));
}
static void ppc_sth(UINT32 op)
{
UINT32 ea;
if( RA == 0 )
ea = SIMM16;
else
ea = REG(RA) + SIMM16;
WRITE16(ea, (UINT16)REG(RS));
}
static void ppc_sthbrx(UINT32 op)
{
UINT32 ea;
UINT16 w;
if( RA == 0 )
ea = REG(RB);
else
ea = REG(RA) + REG(RB);
w = REG(RS);
WRITE16(ea, (UINT16)BYTE_REVERSE16(w));
}
static void ppc_sthu(UINT32 op)
{
UINT32 ea = REG(RA) + SIMM16;
WRITE16(ea, (UINT16)REG(RS));
REG(RA) = ea;
}
static void ppc_sthux(UINT32 op)
{
UINT32 ea = REG(RA) + REG(RB);
WRITE16(ea, (UINT16)REG(RS));
REG(RA) = ea;
}
static void ppc_sthx(UINT32 op)
{
UINT32 ea;
if( RA == 0 )
ea = REG(RB);
else
ea = REG(RA) + REG(RB);
WRITE16(ea, (UINT16)REG(RS));
}
static void ppc_stmw(UINT32 op)
{
UINT32 ea;
int r = RS;
if( RA == 0 )
ea = SIMM16;
else
ea = REG(RA) + SIMM16;
while( r <= 31 )
{
WRITE32(ea, REG(r));
ea += 4;
r++;
}
}
static void ppc_stswi(UINT32 op)
{
int n, r, i;
UINT32 ea = 0;
if( RA != 0 )
ea = REG(RA);
if( RB == 0 )
n = 32;
else
n = RB;
r = RT - 1;
i = 0;
while(n > 0)
{
if (i == 0) {
r = (r + 1) % 32;
}
WRITE8(ea, (REG(r) >> (24-i)) & 0xff);
i += 8;
if (i == 32) {
i = 0;
}
ea++;
n--;
}
}
static void ppc_stswx(UINT32 op)
{
ErrorLog("PowerPC hit an unimplemented instruction. Halting emulation until reset.");
DebugLog("ppc: stswx unimplemented\n");
ppc.fatalError = true;
}
static void ppc_stw(UINT32 op)
{
UINT32 ea;
if( RA == 0 )
ea = SIMM16;
else
ea = REG(RA) + SIMM16;
WRITE32(ea, REG(RS));
}
static void ppc_stwbrx(UINT32 op)
{
UINT32 ea;
UINT32 w;
if( RA == 0 )
ea = REG(RB);
else
ea = REG(RA) + REG(RB);
w = REG(RS);
WRITE32(ea, BYTE_REVERSE32(w));
}
static void ppc_stwcx_rc(UINT32 op)
{
UINT32 ea;
if( RA == 0 )
ea = REG(RB);
else
ea = REG(RA) + REG(RB);
if( ppc.reserved ) {
WRITE32(ea, REG(RS));
ppc.reserved = 0;
ppc.reserved_address = 0;
CR(0) = 0x2; // set EQ to indicate success
if( XER & XER_SO )
CR(0) |= 0x1;
} else {
CR(0) = 0;
if( XER & XER_SO )
CR(0) |= 0x1;
}
}
static void ppc_stwu(UINT32 op)
{
UINT32 ea = REG(RA) + SIMM16;
WRITE32(ea, REG(RS));
REG(RA) = ea;
}
static void ppc_stwux(UINT32 op)
{
UINT32 ea = REG(RA) + REG(RB);
WRITE32(ea, REG(RS));
REG(RA) = ea;
}
static void ppc_stwx(UINT32 op)
{
UINT32 ea;
if( RA == 0 )
ea = REG(RB);
else
ea = REG(RA) + REG(RB);
WRITE32(ea, REG(RS));
}
static void ppc_subfx(UINT32 op)
{
UINT32 ra = REG(RA);
UINT32 rb = REG(RB);
REG(RT) = rb - ra;
if( OEBIT ) {
SET_SUB_OV(REG(RT), rb, ra);
}
if( RCBIT ) {
SET_CR0(REG(RT));
}
}
static void ppc_subfcx(UINT32 op)
{
UINT32 ra = REG(RA);
UINT32 rb = REG(RB);
REG(RT) = rb - ra;
SET_SUB_CA(REG(RT), rb, ra);
if( OEBIT ) {
SET_SUB_OV(REG(RT), rb, ra);
}
if( RCBIT ) {
SET_CR0(REG(RT));
}
}
static void ppc_subfex(UINT32 op)
{
UINT32 ra = REG(RA);
UINT32 rb = REG(RB);
UINT32 carry = (XER >> 29) & 0x1;
UINT32 r;
r = ~ra + carry;
REG(RT) = rb + r;
SET_ADD_CA(r, ~ra, carry); /* step 1 carry */
if( REG(RT) < r ) /* step 2 carry */
XER |= XER_CA;
if( OEBIT ) {
SET_SUB_OV(REG(RT), rb, ra);
}
if( RCBIT ) {
SET_CR0(REG(RT));
}
}
static void ppc_subfic(UINT32 op)
{
UINT32 i = SIMM16;
UINT32 ra = REG(RA);
REG(RT) = i - ra;
SET_SUB_CA(REG(RT), i, ra);
}
static void ppc_subfmex(UINT32 op)
{
UINT32 ra = REG(RA);
UINT32 carry = (XER >> 29) & 0x1;
UINT32 r;
r = ~ra + carry;
REG(RT) = r - 1;
SET_SUB_CA(r, ~ra, carry); /* step 1 carry */
if( REG(RT) < r )
XER |= XER_CA; /* step 2 carry */
if( OEBIT ) {
SET_SUB_OV(REG(RT), -1, ra);
}
if( RCBIT ) {
SET_CR0(REG(RT));
}
}
static void ppc_subfzex(UINT32 op)
{
UINT32 ra = REG(RA);
UINT32 carry = (XER >> 29) & 0x1;
REG(RT) = ~ra + carry;
SET_ADD_CA(REG(RT), ~ra, carry);
if( OEBIT ) {
SET_SUB_OV(REG(RT), 0, REG(RA));
}
if( RCBIT ) {
SET_CR0(REG(RT));
}
}
static void ppc_sync(UINT32 op)
{
}
static void ppc_tw(UINT32 op)
{
int exception = 0;
INT32 a = REG(RA);
INT32 b = REG(RB);
int to = RT;
if( (a < b) && (to & 0x10) ) {
exception = 1;
}
if( (a > b) && (to & 0x08) ) {
exception = 1;
}
if( (a == b) && (to & 0x04) ) {
exception = 1;
}
if( ((UINT32)a < (UINT32)b) && (to & 0x02) ) {
exception = 1;
}
if( ((UINT32)a > (UINT32)b) && (to & 0x01) ) {
exception = 1;
}
if (exception) {
ppc603_exception(EXCEPTION_TRAP);
}
}
static void ppc_twi(UINT32 op)
{
int exception = 0;
INT32 a = REG(RA);
INT32 i = SIMM16;
int to = RT;
if( (a < i) && (to & 0x10) ) {
exception = 1;
}
if( (a > i) && (to & 0x08) ) {
exception = 1;
}
if( (a == i) && (to & 0x04) ) {
exception = 1;
}
if( ((UINT32)a < (UINT32)i) && (to & 0x02) ) {
exception = 1;
}
if( ((UINT32)a > (UINT32)i) && (to & 0x01) ) {
exception = 1;
}
if (exception) {
ppc603_exception(EXCEPTION_TRAP);
}
}
static void ppc_xorx(UINT32 op)
{
REG(RA) = REG(RS) ^ REG(RB);
if( RCBIT ) {
SET_CR0(REG(RA));
}
}
static void ppc_xori(UINT32 op)
{
REG(RA) = REG(RS) ^ UIMM16;
}
static void ppc_xoris(UINT32 op)
{
REG(RA) = REG(RS) ^ (UIMM16 << 16);
}
static void ppc_invalid(UINT32 op)
{
ErrorLog("PowerPC hit an invalid instruction. Halting emulation until reset.");
DebugLog("ppc: Invalid opcode %08X PC : %X, %08X\n", op, ppc.pc, ppc.npc);
ppc.fatalError = true;
}
#define DOUBLE_SIGN (0x8000000000000000ULL)
#define DOUBLE_EXP (0x7ff0000000000000ULL)
#define DOUBLE_FRAC (0x000fffffffffffffULL)
#define DOUBLE_ZERO (0ULL)
/*
Floating point operations.
*/
/*************************OLD
INLINE int is_nan_double(FPR x)
{
return( ((x.id & DOUBLE_EXP) == DOUBLE_EXP) &&
((x.id & DOUBLE_FRAC) != DOUBLE_ZERO) );
}
INLINE int is_qnan_double(FPR x)
{
return( ((x.id & DOUBLE_EXP) == DOUBLE_EXP) &&
((x.id & 0x0007fffffffffff) == 0x000000000000000) &&
((x.id & 0x000800000000000) == 0x000800000000000) );
}
INLINE int is_snan_double(FPR x)
{
return( ((x.id & DOUBLE_EXP) == DOUBLE_EXP) &&
((x.id & DOUBLE_FRAC) != DOUBLE_ZERO) &&
((x.id & 0x0008000000000000) == DOUBLE_ZERO) );
}
INLINE int is_infinity_double(FPR x)
{
return( ((x.id & DOUBLE_EXP) == DOUBLE_EXP) &&
((x.id & DOUBLE_FRAC) == DOUBLE_ZERO) );
}
INLINE int is_normalized_double(FPR x)
{
UINT64 exp;
exp = (x.id & DOUBLE_EXP) >> 52;
return (exp >= 1) && (exp <= 2046);
}
INLINE int is_denormalized_double(FPR x)
{
return( ((x.id & DOUBLE_EXP) == 0) &&
((x.id & DOUBLE_FRAC) != DOUBLE_ZERO) );
}
INLINE int sign_double(FPR x)
{
return ((x.id & DOUBLE_SIGN) != 0);
}
INLINE INT64 round_to_nearest(FPR f)
{
//return (INT64)(f.fd + 0.5);
if (f.fd >= 0)
{
return (INT64)(f.fd + 0.5);
}
else
{
return -(INT64)(-f.fd + 0.5);
}
}
INLINE INT64 round_toward_zero(FPR f)
{
return (INT64)(f.fd);
}
INLINE INT64 round_toward_positive_infinity(FPR f)
{
double r = ceil(f.fd);
return (INT64)(r);
}
INLINE INT64 round_toward_negative_infinity(FPR f)
{
double r = floor(f.fd);
return (INT64)(r);
}
*/
// New below, based on changes in MAME
INLINE int is_nan_double(FPR x)
{
return( ((x.id & DOUBLE_EXP) == DOUBLE_EXP) &&
((x.id & DOUBLE_FRAC) != DOUBLE_ZERO) );
}
INLINE int is_qnan_double(FPR x)
{
return( ((x.id & DOUBLE_EXP) == DOUBLE_EXP) &&
((x.id & 0x0007fffffffffffULL) == 0x000000000000000ULL) &&
((x.id & 0x000800000000000ULL) == 0x000800000000000ULL) );
}
INLINE int is_snan_double(FPR x)
{
return( ((x.id & DOUBLE_EXP) == DOUBLE_EXP) &&
((x.id & DOUBLE_FRAC) != DOUBLE_ZERO) &&
((x.id & (0x0008000000000000ULL)) == DOUBLE_ZERO) );
}
INLINE int is_infinity_double(FPR x)
{
return( ((x.id & DOUBLE_EXP) == DOUBLE_EXP) &&
((x.id & DOUBLE_FRAC) == DOUBLE_ZERO) );
}
INLINE int is_normalized_double(FPR x)
{
UINT64 exp;
exp = (x.id & DOUBLE_EXP) >> 52;
return (exp >= 1) && (exp <= 2046);
}
INLINE int is_denormalized_double(FPR x)
{
return( ((x.id & DOUBLE_EXP) == 0) &&
((x.id & DOUBLE_FRAC) != DOUBLE_ZERO) );
}
INLINE int sign_double(FPR x)
{
return ((x.id & DOUBLE_SIGN) != 0);
}
INLINE INT64 smround_to_nearest(FPR f)
{
if (f.fd >= 0)
{
return (INT64)(f.fd + 0.5);
}
else
{
return -(INT64)(-f.fd + 0.5);
}
}
INLINE INT64 smround_toward_zero(FPR f)
{
return (INT64)(f.fd);
}
INLINE INT64 round_toward_positive_infinity(FPR f)
{
double r = ceil(f.fd);
return (INT64)(r);
}
INLINE INT64 round_toward_negative_infinity(FPR f)
{
double r = floor(f.fd);
return (INT64)(r);
}
#define SET_VXSNAN(a, b) if (is_snan_double(a) || is_snan_double(b)) ppc.fpscr |= 0x80000000
#define SET_VXSNAN_1(c) if (is_snan_double(c)) ppc.fpscr |= 0x80000000
INLINE void set_fprf(FPR f)
{
UINT32 fprf;
// see page 3-30, 3-31
if (is_qnan_double(f))
{
fprf = 0x11;
}
else if (is_infinity_double(f))
{
if (sign_double(f)) // -INF
fprf = 0x09;
else // +INF
fprf = 0x05;
}
else if (is_normalized_double(f))
{
if (sign_double(f)) // -Normalized
fprf = 0x08;
else // +Normalized
fprf = 0x04;
}
else if (is_denormalized_double(f))
{
if (sign_double(f)) // -Denormalized
fprf = 0x18;
else // +Denormalized
fprf = 0x14;
}
else // Zero
{
if (sign_double(f)) // -Zero
fprf = 0x12;
else // +Zero
fprf = 0x02;
}
ppc.fpscr &= ~0x0001f000;
ppc.fpscr |= (fprf << 12);
}
static void ppc_lfs(UINT32 op)
{
UINT32 ea = SIMM16;
UINT32 a = RA;
UINT32 t = RT;
FPR32 f;
if(a)
ea += REG(a);
f.i = READ32(ea);
FPR(t).fd = (double)(f.f);
}
static void ppc_lfsu(UINT32 op)
{
UINT32 ea = SIMM16;
UINT32 a = RA;
UINT32 t = RT;
FPR32 f;
ea += REG(a);
f.i = READ32(ea);
FPR(t).fd = (double)(f.f);
REG(a) = ea;
}
static void ppc_lfd(UINT32 op)
{
UINT32 ea = SIMM16;
UINT32 a = RA;
UINT32 t = RT;
if(a)
ea += REG(a);
FPR(t).id = READ64(ea);
}
static void ppc_lfdu(UINT32 op)
{
UINT32 ea = SIMM16;
UINT32 a = RA;
UINT32 d = RD;
ea += REG(a);
FPR(d).id = READ64(ea);
REG(a) = ea;
}
static void ppc_stfs(UINT32 op)
{
UINT32 ea = SIMM16;
UINT32 a = RA;
UINT32 t = RT;
FPR32 f;
if(a)
ea += REG(a);
f.f = (float)(FPR(t).fd);
WRITE32(ea, f.i);
}
static void ppc_stfsu(UINT32 op)
{
UINT32 ea = SIMM16;
UINT32 a = RA;
UINT32 t = RT;
FPR32 f;
ea += REG(a);
f.f = (float)(FPR(t).fd);
WRITE32(ea, f.i);
REG(a) = ea;
}
static void ppc_stfd(UINT32 op)
{
UINT32 ea = SIMM16;
UINT32 a = RA;
UINT32 t = RT;
if(a)
ea += REG(a);
WRITE64(ea, FPR(t).id);
}
static void ppc_stfdu(UINT32 op)
{
UINT32 ea = SIMM16;
UINT32 a = RA;
UINT32 t = RT;
ea += REG(a);
WRITE64(ea, FPR(t).id);
REG(a) = ea;
}
static void ppc_lfdux(UINT32 op)
{
UINT32 ea = REG(RB);
UINT32 a = RA;
UINT32 d = RD;
ea += REG(a);
FPR(d).id = READ64(ea);
REG(a) = ea;
}
static void ppc_lfdx(UINT32 op)
{
UINT32 ea = REG(RB);
UINT32 a = RA;
UINT32 d = RD;
if(a)
ea += REG(a);
FPR(d).id = READ64(ea);
}
static void ppc_lfsux(UINT32 op)
{
UINT32 ea = REG(RB);
UINT32 a = RA;
UINT32 t = RT;
FPR32 f;
ea += REG(a);
f.i = READ32(ea);
FPR(t).fd = (double)(f.f);
REG(a) = ea;
}
static void ppc_lfsx(UINT32 op)
{
UINT32 ea = REG(RB);
UINT32 a = RA;
UINT32 t = RT;
FPR32 f;
if(a)
ea += REG(a);
f.i = READ32(ea);
FPR(t).fd = (double)(f.f);
}
static void ppc_mfsr(UINT32 op)
{
UINT32 sr = (op >> 16) & 15;
UINT32 t = RT;
CHECK_SUPERVISOR();
REG(t) = ppc.sr[sr];
}
static void ppc_mfsrin(UINT32 op)
{
UINT32 b = RB;
UINT32 t = RT;
CHECK_SUPERVISOR();
REG(t) = ppc.sr[REG(b) >> 28];
}
static void ppc_mftb(UINT32 op)
{
UINT32 x = SPRF;
switch(x)
{
case 268: REG(RT) = (UINT32)(ppc_read_timebase()); break;
case 269: REG(RT) = (UINT32)(ppc_read_timebase() >> 32); break;
default:
ErrorLog("PowerPC read from an invalid register. Halting emulation until reset.");
DebugLog("ppc: Invalid timebase register %d at %08X\n", x, ppc.pc);
ppc.fatalError = true;
break;
}
}
static void ppc_mtsr(UINT32 op)
{
UINT32 sr = (op >> 16) & 15;
UINT32 t = RT;
CHECK_SUPERVISOR();
ppc.sr[sr] = REG(t);
}
static void ppc_mtsrin(UINT32 op)
{
UINT32 b = RB;
UINT32 t = RT;
CHECK_SUPERVISOR();
ppc.sr[REG(b) >> 28] = REG(t);
}
static void ppc_dcba(UINT32 op)
{
/* TODO: Cache not emulated so this opcode doesn't need to be implemented */
}
static void ppc_stfdux(UINT32 op)
{
UINT32 ea = REG(RB);
UINT32 a = RA;
UINT32 t = RT;
ea += REG(a);
WRITE64(ea, FPR(t).id);
REG(a) = ea;
}
static void ppc_stfdx(UINT32 op)
{
UINT32 ea = REG(RB);
UINT32 a = RA;
UINT32 t = RT;
if(a)
ea += REG(a);
WRITE64(ea, FPR(t).id);
}
static void ppc_stfiwx(UINT32 op)
{
UINT32 ea = REG(RB);
UINT32 a = RA;
UINT32 t = RT;
if(a)
ea += REG(a);
WRITE32(ea, (UINT32)FPR(t).id);
}
static void ppc_stfsux(UINT32 op)
{
UINT32 ea = REG(RB);
UINT32 a = RA;
UINT32 t = RT;
FPR32 f;
ea += REG(a);
f.f = (float)(FPR(t).fd);
WRITE32(ea, f.i);
REG(a) = ea;
}
static void ppc_stfsx(UINT32 op)
{
UINT32 ea = REG(RB);
UINT32 a = RA;
UINT32 t = RT;
FPR32 f;
if(a)
ea += REG(a);
f.f = (float)(FPR(t).fd);
WRITE32(ea, f.i);
}
static void ppc_tlbia(UINT32 op)
{
/* TODO: TLB not emulated so this opcode doesn't need to implemented */
}
static void ppc_tlbie(UINT32 op)
{
/* TODO: TLB not emulated so this opcode doesn't need to implemented */
}
static void ppc_tlbsync(UINT32 op)
{
/* TODO: TLB not emulated so this opcode doesn't need to implemented */
}
static void ppc_eciwx(UINT32 op)
{
ppc_unimplemented(op);
}
static void ppc_ecowx(UINT32 op)
{
ppc_unimplemented(op);
}
static void ppc_fabsx(UINT32 op)
{
UINT32 b = RB;
UINT32 t = RT;
CHECK_FPU_AVAILABLE();
FPR(t).id = FPR(b).id & ~DOUBLE_SIGN;
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_faddx(UINT32 op)
{
UINT32 b = RB;
UINT32 a = RA;
UINT32 t = RT;
CHECK_FPU_AVAILABLE();
SET_VXSNAN(FPR(a), FPR(b));
FPR(t).fd = FPR(a).fd + FPR(b).fd;
set_fprf(FPR(t));
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_fcmpo(UINT32 op)
{
UINT32 b = RB;
UINT32 a = RA;
UINT32 t = (RT >> 2);
UINT32 c;
CHECK_FPU_AVAILABLE();
SET_VXSNAN(FPR(a), FPR(b));
if(is_nan_double(FPR(a)) || is_nan_double(FPR(b)))
{
c = 1; /* OX */
if(is_snan_double(FPR(a)) || is_snan_double(FPR(b))) {
ppc.fpscr |= 0x01000000; /* VXSNAN */
if(!(ppc.fpscr & 0x40000000) || is_qnan_double(FPR(a)) || is_qnan_double(FPR(b)))
ppc.fpscr |= 0x00080000; /* VXVC */
}
}
else if(FPR(a).fd < FPR(b).fd){
c = 8; /* FX */
}
else if(FPR(a).fd > FPR(b).fd){
c = 4; /* FEX */
}
else {
c = 2; /* VX */
}
CR(t) = c;
// TODO
// Enabled by Bart
ppc.fpscr &= ~0x0001F000;
ppc.fpscr |= (c << 12);
}
static void ppc_fcmpu(UINT32 op)
{
UINT32 b = RB;
UINT32 a = RA;
UINT32 t = (RT >> 2);
UINT32 c;
CHECK_FPU_AVAILABLE();
SET_VXSNAN(FPR(a), FPR(b));
if(is_nan_double(FPR(a)) || is_nan_double(FPR(b)))
{
c = 1; /* OX */
if(is_snan_double(FPR(a)) || is_snan_double(FPR(b))) {
ppc.fpscr |= 0x01000000; /* VXSNAN */
}
}
else if(FPR(a).fd < FPR(b).fd){
c = 8; /* FX */
}
else if(FPR(a).fd > FPR(b).fd){
c = 4; /* FEX */
}
else {
c = 2; /* VX */
}
CR(t) = c;
// TODO
ppc.fpscr &= ~0x0001F000;
ppc.fpscr |= (c << 12);
}
static void ppc_fctiwx(UINT32 op)
{
UINT32 b = RB;
UINT32 t = RT;
INT64 r = 0;
// TODO: fix FPSCR flags FX,VXSNAN,VXCVI
CHECK_FPU_AVAILABLE();
SET_VXSNAN_1(FPR(b));
switch(ppc.fpscr & 3)
{
case 0: r = (INT64)smround_to_nearest(FPR(b)); break;
case 1: r = (INT64)smround_toward_zero(FPR(b)); break;
case 2: r = (INT64)round_toward_positive_infinity(FPR(b)); break;
case 3: r = (INT64)round_toward_negative_infinity(FPR(b)); break;
}
if(r > (INT64)((INT32)0x7FFFFFFF))
{
FPR(t).id = 0x7FFFFFFF;
// FPSCR[FR] = 0
// FPSCR[FI] = 1
// FPSCR[XX] = 1
}
else if(FPR(b).fd < (INT64)((INT32)0x80000000))
{
FPR(t).id = 0x80000000;
// FPSCR[FR] = 1
// FPSCR[FI] = 1
// FPSCR[XX] = 1
}
else
{
FPR(t).id = (UINT32)(r);
// FPSCR[FR] = t.iw > t.fd
// FPSCR[FI] = t.iw == t.fd
// FPSCR[XX] = ?
}
// FPSCR[FPRF] = undefined (leave it as is)
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_fctiwzx(UINT32 op)
{
UINT32 b = RB;
UINT32 t = RT;
INT64 r;
// TODO: fix FPSCR flags FX,VXSNAN,VXCVI
CHECK_FPU_AVAILABLE();
SET_VXSNAN_1(FPR(b));
r = smround_toward_zero(FPR(b));
if(r > (INT64)((INT32)0x7fffffff))
{
FPR(t).id = 0x7fffffff;
// FPSCR[FR] = 0
// FPSCR[FI] = 1
// FPSCR[XX] = 1
}
else if(r < (INT64)((INT32)0x80000000))
{
FPR(t).id = 0x80000000;
// FPSCR[FR] = 1
// FPSCR[FI] = 1
// FPSCR[XX] = 1
}
else
{
FPR(t).id = (UINT32)r;
// FPSCR[FR] = t.iw > t.fd
// FPSCR[FI] = t.iw == t.fd
// FPSCR[XX] = ?
}
// FPSCR[FPRF] = undefined (leave it as is)
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_fdivx(UINT32 op)
{
UINT32 b = RB;
UINT32 a = RA;
UINT32 t = RT;
CHECK_FPU_AVAILABLE();
SET_VXSNAN(FPR(a), FPR(b));
FPR(t).fd = FPR(a).fd / FPR(b).fd;
set_fprf(FPR(t));
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_fmrx(UINT32 op)
{
UINT32 b = RB;
UINT32 t = RT;
CHECK_FPU_AVAILABLE();
FPR(t).fd = FPR(b).fd;
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_fnabsx(UINT32 op)
{
UINT32 b = RB;
UINT32 t = RT;
CHECK_FPU_AVAILABLE();
FPR(t).id = FPR(b).id | DOUBLE_SIGN;
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_fnegx(UINT32 op)
{
UINT32 b = RB;
UINT32 t = RT;
CHECK_FPU_AVAILABLE();
FPR(t).id = FPR(b).id ^ DOUBLE_SIGN;
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_frspx(UINT32 op)
{
UINT32 b = RB;
UINT32 t = RT;
CHECK_FPU_AVAILABLE();
SET_VXSNAN_1(FPR(b));
FPR(t).fd = (float)FPR(b).fd;
set_fprf(FPR(t));
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_frsqrtex(UINT32 op)
{
UINT32 b = RB;
UINT32 t = RT;
CHECK_FPU_AVAILABLE();
SET_VXSNAN_1(FPR(b));
FPR(t).fd = 1.0 / sqrt(FPR(b).fd); /* verify this */
set_fprf(FPR(t));
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_fsqrtx(UINT32 op)
{
/* NOTE: PPC603e doesn't support this opcode */
UINT32 b = RB;
UINT32 t = RT;
CHECK_FPU_AVAILABLE();
SET_VXSNAN_1(FPR(b));
FPR(t).fd = (double)(sqrt(FPR(b).fd));
set_fprf(FPR(t));
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_fsubx(UINT32 op)
{
UINT32 b = RB;
UINT32 a = RA;
UINT32 t = RT;
CHECK_FPU_AVAILABLE();
SET_VXSNAN(FPR(a), FPR(b));
FPR(t).fd = FPR(a).fd - FPR(b).fd;
set_fprf(FPR(t));
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_mffsx(UINT32 op)
{
FPR(RT).id = (UINT32)ppc.fpscr;
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_mtfsb0x(UINT32 op)
{
UINT32 crbD;
crbD = (op >> 21) & 0x1F;
if (crbD != 1 && crbD != 2) // these bits cannot be explicitly cleared
ppc.fpscr &= ~(1 << (31 - crbD));
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_mtfsb1x(UINT32 op)
{
UINT32 crbD;
crbD = (op >> 21) & 0x1F;
if (crbD != 1 && crbD != 2) // these bits cannot be explicitly cleared
ppc.fpscr |= (1 << (31 - crbD));
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_mtfsfx(UINT32 op)
{
UINT32 b = RB;
UINT32 f = FM;
f = ppc_field_xlat[FM];
ppc.fpscr &= (~f) | ~(FPSCR_FEX | FPSCR_VX);
ppc.fpscr |= (UINT32)(FPR(b).id) & ~(FPSCR_FEX | FPSCR_VX);
// FEX, VX
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_mtfsfix(UINT32 op)
{
UINT32 crfd = CRFD;
UINT32 imm = (op >> 12) & 0xF;
/*
* According to the manual:
*
* If bits 0 and 3 of FPSCR are to be modified, they take the immediate
* value specified. Bits 1 and 2 (FEX and VX) are set according to the
* "usual rule" and not from IMM[1-2].
*
* The "usual rule" is not emulated, so these bits simply aren't modified
* at all here.
*/
crfd = (7 - crfd) * 4; // calculate LSB position of field
if (crfd == 28) // field containing FEX and VX is special...
{ // bits 1 and 2 of FPSCR must not be altered
ppc.fpscr &= 0x9fffffff;
ppc.fpscr |= (imm & 0x9fffffff);
}
ppc.fpscr &= ~(0xf << crfd); // clear field
ppc.fpscr |= (imm << crfd); // insert new data
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_mcrfs(UINT32 op)
{
UINT32 crfs, f;
crfs = CRFA;
f = ppc.fpscr >> ((7 - crfs) * 4); // get crfS field from FPSCR
f &= 0xf;
switch(crfs) // determine which exception bits to clear in FPSCR
{
case 0: // FX, OX
ppc.fpscr &= ~0x90000000;
break;
case 1: // UX, ZX, XX, VXSNAN
ppc.fpscr &= ~0x0f000000;
break;
case 2: // VXISI, VXIDI, VXZDZ, VXIMZ
ppc.fpscr &= ~0x00F00000;
break;
case 3: // VXVC
ppc.fpscr &= ~0x00080000;
break;
case 5: // VXSOFT, VXSQRT, VXCVI
ppc.fpscr &= ~0x00000700;
break;
default:
break;
}
CR(CRFD) = f;
}
static void ppc_faddsx(UINT32 op)
{
UINT32 b = RB;
UINT32 a = RA;
UINT32 t = RT;
CHECK_FPU_AVAILABLE();
SET_VXSNAN(FPR(a), FPR(b));
FPR(t).fd = (float)(FPR(a).fd + FPR(b).fd);
set_fprf(FPR(t));
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_fdivsx(UINT32 op)
{
UINT32 b = RB;
UINT32 a = RA;
UINT32 t = RT;
CHECK_FPU_AVAILABLE();
SET_VXSNAN(FPR(a), FPR(b));
FPR(t).fd = (float)(FPR(a).fd / FPR(b).fd);
set_fprf(FPR(t));
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_fresx(UINT32 op)
{
UINT32 b = RB;
UINT32 t = RT;
CHECK_FPU_AVAILABLE();
SET_VXSNAN_1(FPR(b));
FPR(t).fd = 1.0 / FPR(b).fd; /* ??? */
set_fprf(FPR(t));
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_fsqrtsx(UINT32 op)
{
/* NOTE: This opcode is not supported in PPC603e */
UINT32 b = RB;
UINT32 t = RT;
CHECK_FPU_AVAILABLE();
SET_VXSNAN_1(FPR(b));
FPR(t).fd = (float)(sqrt(FPR(b).fd));
set_fprf(FPR(t));
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_fsubsx(UINT32 op)
{
UINT32 b = RB;
UINT32 a = RA;
UINT32 t = RT;
CHECK_FPU_AVAILABLE();
SET_VXSNAN(FPR(a), FPR(b));
FPR(t).fd = (float)(FPR(a).fd - FPR(b).fd);
set_fprf(FPR(t));
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_fmaddx(UINT32 op)
{
UINT32 c = RC;
UINT32 b = RB;
UINT32 a = RA;
UINT32 t = RT;
CHECK_FPU_AVAILABLE();
SET_VXSNAN(FPR(a), FPR(b));
SET_VXSNAN_1(FPR(c));
FPR(t).fd = ((FPR(a).fd * FPR(c).fd) + FPR(b).fd);
set_fprf(FPR(t));
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_fmsubx(UINT32 op)
{
UINT32 c = RC;
UINT32 b = RB;
UINT32 a = RA;
UINT32 t = RT;
CHECK_FPU_AVAILABLE();
SET_VXSNAN(FPR(a), FPR(b));
SET_VXSNAN_1(FPR(c));
FPR(t).fd = ((FPR(a).fd * FPR(c).fd) - FPR(b).fd);
set_fprf(FPR(t));
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_fmulx(UINT32 op)
{
UINT32 c = RC;
UINT32 a = RA;
UINT32 t = RT;
CHECK_FPU_AVAILABLE();
SET_VXSNAN(FPR(a), FPR(c));
FPR(t).fd = (FPR(a).fd * FPR(c).fd);
set_fprf(FPR(t));
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_fnmaddx(UINT32 op)
{
UINT32 c = RC;
UINT32 b = RB;
UINT32 a = RA;
UINT32 t = RT;
CHECK_FPU_AVAILABLE();
SET_VXSNAN(FPR(a), FPR(b));
SET_VXSNAN_1(FPR(c));
FPR(t).fd = (-((FPR(a).fd * FPR(c).fd) + FPR(b).fd));
set_fprf(FPR(t));
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_fnmsubx(UINT32 op)
{
UINT32 c = RC;
UINT32 b = RB;
UINT32 a = RA;
UINT32 t = RT;
CHECK_FPU_AVAILABLE();
SET_VXSNAN(FPR(a), FPR(b));
SET_VXSNAN_1(FPR(c));
FPR(t).fd = (-((FPR(a).fd * FPR(c).fd) - FPR(b).fd));
set_fprf(FPR(t));
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_fselx(UINT32 op)
{
UINT32 c = RC;
UINT32 b = RB;
UINT32 a = RA;
UINT32 t = RT;
CHECK_FPU_AVAILABLE();
FPR(t).fd = (FPR(a).fd >= 0.0) ? FPR(c).fd : FPR(b).fd;
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_fmaddsx(UINT32 op)
{
UINT32 c = RC;
UINT32 b = RB;
UINT32 a = RA;
UINT32 t = RT;
CHECK_FPU_AVAILABLE();
SET_VXSNAN(FPR(a), FPR(b));
SET_VXSNAN_1(FPR(c));
FPR(t).fd = (float)((FPR(a).fd * FPR(c).fd) + FPR(b).fd);
set_fprf(FPR(t));
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_fmsubsx(UINT32 op)
{
UINT32 c = RC;
UINT32 b = RB;
UINT32 a = RA;
UINT32 t = RT;
CHECK_FPU_AVAILABLE();
SET_VXSNAN(FPR(a), FPR(b));
SET_VXSNAN_1(FPR(c));
FPR(t).fd = (float)((FPR(a).fd * FPR(c).fd) - FPR(b).fd);
set_fprf(FPR(t));
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_fmulsx(UINT32 op)
{
UINT32 c = RC;
UINT32 a = RA;
UINT32 t = RT;
CHECK_FPU_AVAILABLE();
SET_VXSNAN(FPR(a), FPR(c));
FPR(t).fd = (float)(FPR(a).fd * FPR(c).fd);
set_fprf(FPR(t));
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_fnmaddsx(UINT32 op)
{
UINT32 c = RC;
UINT32 b = RB;
UINT32 a = RA;
UINT32 t = RT;
CHECK_FPU_AVAILABLE();
SET_VXSNAN(FPR(a), FPR(b));
SET_VXSNAN_1(FPR(c));
FPR(t).fd = (float)(-((FPR(a).fd * FPR(c).fd) + FPR(b).fd));
set_fprf(FPR(t));
if( RCBIT ) {
SET_CR1();
}
}
static void ppc_fnmsubsx(UINT32 op)
{
UINT32 c = RC;
UINT32 b = RB;
UINT32 a = RA;
UINT32 t = RT;
CHECK_FPU_AVAILABLE();
SET_VXSNAN(FPR(a), FPR(b));
SET_VXSNAN_1(FPR(c));
FPR(t).fd = (float)(-((FPR(a).fd * FPR(c).fd) - FPR(b).fd));
set_fprf(FPR(t));
if( RCBIT ) {
SET_CR1();
}
}