/**
** Supermodel
** A Sega Model 3 Arcade Emulator.
** Copyright 2011 Bart Trzynadlowski, Nik Henson
**
** This file is part of Supermodel.
**
** Supermodel is free software: you can redistribute it and/or modify it under
** the terms of the GNU General Public License as published by the Free
** Software Foundation, either version 3 of the License, or (at your option)
** any later version.
**
** Supermodel is distributed in the hope that it will be useful, but WITHOUT
** ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
** FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
** more details.
**
** You should have received a copy of the GNU General Public License along
** with Supermodel. If not, see .
**/
/*
* PPCDisasm.cpp
*
* PowerPC 603e disassembler from the original Supermodel project.
* Copyright 2003 Bart Trzynadlowski, Ville Linde, and Stefano Teso.
*
* When possible, invalid forms of instructions are checked for. To the best
* of my knowledge, all appropriate load/store instructions are checked. I'm
* not sure whether any other kinds of instructions need checking.
*/
#include
#include
#ifdef STANDALONE
#include
#endif
#include "Supermodel.h"
#define DISASM_VERSION "1.0"
/******************************************************************************
Instruction Descriptions
The disassembler is primarily table-driven making it easily modifiable.
******************************************************************************/
/*
* Masks
*
* These masks isolate fields in an instruction word.
*/
#define M_LI 0x03fffffc
#define M_AA 0x00000002
#define M_LK 0x00000001
#define M_BO 0x03e00000
#define M_BI 0x001f0000
#define M_BD 0x0000fffc
#define M_RT 0x03e00000
#define M_RA 0x001f0000
#define M_RB 0x0000f800
#define M_CRFD 0x03800000
#define M_L 0x00200000
#define M_TO 0x03e00000
#define M_D 0x0000ffff
#define M_SIMM 0x0000ffff
#define M_UIMM 0x0000ffff
#define M_NB 0x0000f800
#define M_SR 0x000f0000
#define M_SH 0x0000f800
#define M_CRFS 0x001c0000
#define M_IMM 0x0000f000
#define M_CRBD 0x03e00000
#define M_RC 0x00000001
#define M_CRBA 0x001f0000
#define M_CRBB 0x0000f800
#define M_SPR 0x001FF800
#define M_TBR 0x001FF800
#define M_CRM 0x000FF000
#define M_FM 0x01FE0000
#define M_OE 0x00000400
#define M_REGC 0x000007c0
#define M_MB 0x000007c0
#define M_ME 0x0000003e
#define M_XO 0x000007fe
/*
* Field Defining Macros
*
* These macros generate instruction words with their associated fields filled
* in with the passed value.
*/
#define D_OP(op) ((op & 0x3f) << 26)
#define D_XO(xo) ((xo & 0x3ff) << 1)
#define D_RT(r) ((r & 0x1f) << (31 - 10))
#define D_RA(r) ((r & 0x1f) << (31 - 15))
#define D_UIMM(u) (u & 0xffff)
/*
* Macros to Get Field Values
*
* These macros return the values of fields in an opcode. They all return
* unsigned values and do not perform any sign extensions.
*/
#define G_RT(op) ((op & M_RT) >> (31 - 10))
#define G_RA(op) ((op & M_RA) >> (31 - 15))
#define G_RB(op) ((op & M_RB) >> (31 - 20))
#define G_SIMM(op) (op & M_SIMM)
#define G_UIMM(op) (op & M_UIMM)
#define G_LI(op) ((op & M_LI) >> 2)
#define G_BO(op) ((op & M_BO) >> (31 - 10))
#define G_BI(op) ((op & M_BI) >> (31 - 15))
#define G_BD(op) ((op & M_BD) >> 2)
#define G_CRFD(op) ((op & M_CRFD) >> (31 - 8))
#define G_L(op) ((op & M_L) >> (31 - 10))
#define G_CRBD(op) ((op & M_CRBD) >> (31 - 10))
#define G_CRBA(op) ((op & M_CRBA) >> (31 - 15))
#define G_CRBB(op) ((op & M_CRBB) >> (31 - 20))
#define G_REGC(op) ((op & M_REGC) >> (31 - 25))
#define G_D(op) (op & M_D)
#define G_NB(op) ((op & M_NB) >> (31 - 20))
#define G_CRFS(op) ((op & M_CRFS) >> (31 - 13))
#define G_SPR(op) ((op & M_SPR) >> (31 - 20))
#define G_SR(op) ((op & M_SR) >> (31 - 15))
#define G_CRM(op) ((op & M_CRM) >> (31 - 19))
#define G_FM(op) ((op & M_FM) >> (31 - 14))
#define G_IMM(op) ((op & M_IMM) >> (31 - 19))
#define G_SH(op) ((op & M_SH) >> (31 - 20))
#define G_MB(op) ((op & M_MB) >> (31 - 25))
#define G_ME(op) ((op & M_ME) >> 1)
#define G_TO(op) ((op & M_TO) >> (31 - 10))
/*
* Operand Formats
*
* These convey information on what operand fields are present and how they
* ought to be printed.
*
* I'm fairly certain all of these are used, but that is not guaranteed.
*/
enum
{
F_NONE, //
F_LI, // LI*4+PC if AA=0 else LI*4
F_BCx, // BO, BI, target_addr used only by BCx
F_RT_RA_0_SIMM, // rT, rA|0, SIMM rA|0 means if rA == 0, print 0
F_ADDIS, // rT, rA, SIMM (printed as unsigned) only used by ADDIS
F_RT_RA_SIMM, // rT, rA, SIMM
F_RA_RT_UIMM, // rA, rT, UIMM
F_CMP_SIMM, // crfD, L, A, SIMM
F_CMP_UIMM, // crfD, L, A, UIMM
F_RT_RA_0_RB, // rT, rA|0, rB
F_RT_RA_RB, // rT, rA, rB
F_RT_D_RA_0, // rT, d(rA|0)
F_RT_D_RA, // rT, d(rA)
F_RA_RT_RB, // rA, rT, rB
F_FRT_D_RA_0, // frT, d(RA|0)
F_FRT_D_RA, // frT, d(RA)
F_FRT_RA_0_RB, // frT, rA|0, rB
F_FRT_RA_RB, // frT, rA, rB
F_TWI, // TO, rA, SIMM only used by TWI instruction
F_CMP, // crfD, L, rA, rB
F_RA_RT, // rA, rT
F_RA_0_RB, // rA|0, rB
F_FRT_FRB, // frT, frB
F_FCMP, // crfD, frA, frB
F_CRFD_CRFS, // crfD, crfS
F_MCRXR, // crfD only used by MCRXR
F_RT, // rT
F_MFSR, // rT, SR only used by MFSR
F_MTSR, // SR, rT only used by MTSR
F_MFFSx, // frT only used by MFFSx
F_FCRBD, // crbD FPSCR[crbD]
F_MTFSFIx, // crfD, IMM only used by MTFSFIx
F_RB, // rB
F_TW, // TO, rA, rB only used by TW
F_RT_RA_0_NB, // rT, rA|0, NB print 32 if NB == 0
F_SRAWIx, // rA, rT, SH only used by SRAWIx
F_BO_BI, // BO, BI
F_CRBD_CRBA_CRBB, // crbD, crbA, crbB
F_RT_SPR, // rT, SPR and TBR
F_MTSPR, // SPR, rT only used by MTSPR
F_MTCRF, // CRM, rT only used by MTCRF
F_MTFSFx, // FM, frB only used by MTFSFx
F_RT_RA, // rT, rA
F_FRT_FRA_FRC_FRB, // frT, frA, frC, frB
F_FRT_FRA_FRB, // frT, frA, frB
F_FRT_FRA_FRC, // frT, frA, frC
F_RA_RT_SH_MB_ME, // rA, rT, SH, MB, ME
F_RLWNMx, // rT, rA, rB, MB, ME only used by RLWNMx
F_RT_RB, // rT, rB
};
/*
* Flags
*/
#define FL_OE (1 << 0) // if there is an OE field
#define FL_RC (1 << 1) // if there is an RC field
#define FL_LK (1 << 2) // if there is an LK field
#define FL_AA (1 << 3) // if there is an AA field
#define FL_CHECK_RA_RT (1 << 4) // assert rA!=0 and rA!=rT
#define FL_CHECK_RA (1 << 5) // assert rA!=0
#define FL_CHECK_LSWI (1 << 6) // specific check for LSWI validity
#define FL_CHECK_LSWX (1 << 7) // specific check for LSWX validity
/*
* Instruction Descriptor
*
* Describes the layout of an instruction.
*/
typedef struct
{
char *mnem; // mnemonic
UINT32 match; // bit pattern of instruction after it has been masked
UINT32 mask; // mask of variable fields (AND with ~mask to compare w/
// bit pattern to determine a match)
int format; // operand format
unsigned flags; // flags
} IDESCR;
/*
* Instruction Table
*
* Table of instruction descriptors which allows the disassembler to decode
* and print instructions.
*/
static const IDESCR itab[] =
{
{ "add", D_OP(31)|D_XO(266), M_RT|M_RA|M_RB|M_OE|M_RC, F_RT_RA_RB, FL_OE|FL_RC },
{ "addc", D_OP(31)|D_XO(10), M_RT|M_RA|M_RB|M_OE|M_RC, F_RT_RA_RB, FL_OE|FL_RC },
{ "adde", D_OP(31)|D_XO(138), M_RT|M_RA|M_RB|M_OE|M_RC, F_RT_RA_RB, FL_OE|FL_RC },
{ "addi", D_OP(14), M_RT|M_RA|M_SIMM, F_RT_RA_0_SIMM, 0 },
{ "addic", D_OP(12), M_RT|M_RA|M_SIMM, F_RT_RA_SIMM, 0 },
{ "addic.", D_OP(13), M_RT|M_RA|M_SIMM, F_RT_RA_SIMM, 0 },
{ "addis", D_OP(15), M_RT|M_RA|M_SIMM, F_ADDIS, 0 },
{ "addme", D_OP(31)|D_XO(234), M_RT|M_RA|M_OE|M_RC, F_RT_RA, FL_OE|FL_RC },
{ "addze", D_OP(31)|D_XO(202), M_RT|M_RA|M_OE|M_RC, F_RT_RA, FL_OE|FL_RC },
{ "and", D_OP(31)|D_XO(28), M_RT|M_RA|M_RB|M_RC, F_RA_RT_RB, FL_RC },
{ "andc", D_OP(31)|D_XO(60), M_RT|M_RA|M_RB|M_RC, F_RA_RT_RB, FL_RC },
{ "andi.", D_OP(28), M_RT|M_RA|M_UIMM, F_RA_RT_UIMM, 0 },
{ "andis.", D_OP(29), M_RT|M_RA|M_UIMM, F_RA_RT_UIMM, 0 },
{ "b", D_OP(18), M_LI|M_AA|M_LK, F_LI, FL_AA|FL_LK },
{ "bc", D_OP(16), M_BO|M_BI|M_BD|M_AA|M_LK, F_BCx, FL_AA|FL_LK },
{ "bcctr", D_OP(19)|D_XO(528), M_BO|M_BI|M_LK, F_BO_BI, FL_LK },
{ "bclr", D_OP(19)|D_XO(16), M_BO|M_BI|M_LK, F_BO_BI, FL_LK },
{ "cmp", D_OP(31)|D_XO(0), M_CRFD|M_L|M_RA|M_RB, F_CMP, 0 },
{ "cmpi", D_OP(11), M_CRFD|M_L|M_RA|M_SIMM, F_CMP_SIMM, 0 },
{ "cmpl", D_OP(31)|D_XO(32), M_CRFD|M_L|M_RA|M_RB, F_CMP, 0 },
{ "cmpli", D_OP(10), M_CRFD|M_L|M_RA|M_UIMM, F_CMP_UIMM, 0 },
{ "cntlzw", D_OP(31)|D_XO(26), M_RT|M_RA|M_RC, F_RA_RT, FL_RC },
{ "crand", D_OP(19)|D_XO(257), M_CRBD|M_CRBA|M_CRBB, F_CRBD_CRBA_CRBB, 0 },
{ "crandc", D_OP(19)|D_XO(129), M_CRBD|M_CRBA|M_CRBB, F_CRBD_CRBA_CRBB, 0 },
{ "creqv", D_OP(19)|D_XO(289), M_CRBD|M_CRBA|M_CRBB, F_CRBD_CRBA_CRBB, 0 },
{ "crnand", D_OP(19)|D_XO(225), M_CRBD|M_CRBA|M_CRBB, F_CRBD_CRBA_CRBB, 0 },
{ "crnor", D_OP(19)|D_XO(33), M_CRBD|M_CRBA|M_CRBB, F_CRBD_CRBA_CRBB, 0 },
{ "cror", D_OP(19)|D_XO(449), M_CRBD|M_CRBA|M_CRBB, F_CRBD_CRBA_CRBB, 0 },
{ "crorc", D_OP(19)|D_XO(417), M_CRBD|M_CRBA|M_CRBB, F_CRBD_CRBA_CRBB, 0 },
{ "crxor", D_OP(19)|D_XO(193), M_CRBD|M_CRBA|M_CRBB, F_CRBD_CRBA_CRBB, 0 },
{ "dcba", D_OP(31)|D_XO(758), M_RA|M_RB, F_RA_0_RB, 0 },
{ "dcbf", D_OP(31)|D_XO(86), M_RA|M_RB, F_RA_0_RB, 0 },
{ "dcbi", D_OP(31)|D_XO(470), M_RA|M_RB, F_RA_0_RB, 0 },
{ "dcbst", D_OP(31)|D_XO(54), M_RA|M_RB, F_RA_0_RB, 0 },
{ "dcbt", D_OP(31)|D_XO(278), M_RA|M_RB, F_RA_0_RB, 0 },
{ "dcbtst", D_OP(31)|D_XO(246), M_RA|M_RB, F_RA_0_RB, 0 },
{ "dcbz", D_OP(31)|D_XO(1014),M_RA|M_RB, F_RA_0_RB, 0 },
{ "divw", D_OP(31)|D_XO(491), M_RT|M_RA|M_RB|M_OE|M_RC, F_RT_RA_RB, FL_OE|FL_RC },
{ "divwu", D_OP(31)|D_XO(459), M_RT|M_RA|M_RB|M_OE|M_RC, F_RT_RA_RB, FL_OE|FL_RC },
{ "eciwx", D_OP(31)|D_XO(310), M_RT|M_RA|M_RB, F_RT_RA_0_RB, 0 },
{ "ecowx", D_OP(31)|D_XO(438), M_RT|M_RA|M_RB, F_RT_RA_0_RB, 0 },
{ "eieio", D_OP(31)|D_XO(854), 0, F_NONE, 0 },
{ "eqv", D_OP(31)|D_XO(284), M_RT|M_RA|M_RB|M_RC, F_RA_RT_RB, FL_RC },
{ "extsb", D_OP(31)|D_XO(954), M_RT|M_RA|M_RC, F_RA_RT, FL_RC },
{ "extsh", D_OP(31)|D_XO(922), M_RT|M_RA|M_RC, F_RA_RT, FL_RC },
{ "fabs", D_OP(63)|D_XO(264), M_RT|M_RB|M_RC, F_FRT_FRB, FL_RC },
{ "fadd", D_OP(63)|D_XO(21), M_RT|M_RA|M_RB|M_RC, F_FRT_FRA_FRB, FL_RC },
{ "fadds", D_OP(59)|D_XO(21), M_RT|M_RA|M_RB|M_RC, F_FRT_FRA_FRB, FL_RC },
{ "fcmpo", D_OP(63)|D_XO(32), M_CRFD|M_RA|M_RB, F_FCMP, 0 },
{ "fcmpu", D_OP(63)|D_XO(0), M_CRFD|M_RA|M_RB, F_FCMP, 0 },
{ "fctiw", D_OP(63)|D_XO(14), M_RT|M_RB|M_RC, F_FRT_FRB, FL_RC },
{ "fctiwz", D_OP(63)|D_XO(15), M_RT|M_RB|M_RC, F_FRT_FRB, FL_RC },
{ "fdiv", D_OP(63)|D_XO(18), M_RT|M_RA|M_RB|M_RC, F_FRT_FRA_FRB, FL_RC },
{ "fdivs", D_OP(59)|D_XO(18), M_RT|M_RA|M_RB|M_RC, F_FRT_FRA_FRB, FL_RC },
{ "fmadd", D_OP(63)|D_XO(29), M_RT|M_RA|M_RB|M_REGC|M_RC, F_FRT_FRA_FRC_FRB, FL_RC },
{ "fmadds", D_OP(59)|D_XO(29), M_RT|M_RA|M_RB|M_REGC|M_RC, F_FRT_FRA_FRC_FRB, FL_RC },
{ "fmr", D_OP(63)|D_XO(72), M_RT|M_RB|M_RC, F_FRT_FRB, FL_RC },
{ "fmsub", D_OP(63)|D_XO(28), M_RT|M_RA|M_RB|M_REGC|M_RC, F_FRT_FRA_FRC_FRB, FL_RC },
{ "fmsubs", D_OP(59)|D_XO(28), M_RT|M_RA|M_RB|M_REGC|M_RC, F_FRT_FRA_FRC_FRB, FL_RC },
{ "fmul", D_OP(63)|D_XO(25), M_RT|M_RA|M_REGC|M_RC, F_FRT_FRA_FRC, FL_RC },
{ "fmuls", D_OP(59)|D_XO(25), M_RT|M_RA|M_REGC|M_RC, F_FRT_FRA_FRC, FL_RC },
{ "fnabs", D_OP(63)|D_XO(136), M_RT|M_RB|M_RC, F_FRT_FRB, FL_RC },
{ "fneg", D_OP(63)|D_XO(40), M_RT|M_RB|M_RC, F_FRT_FRB, FL_RC },
{ "fnmadd", D_OP(63)|D_XO(31), M_RT|M_RA|M_RB|M_REGC|M_RC, F_FRT_FRA_FRC_FRB, FL_RC },
{ "fnmadds",D_OP(59)|D_XO(31), M_RT|M_RA|M_RB|M_REGC|M_RC, F_FRT_FRA_FRC_FRB, FL_RC },
{ "fnmsub", D_OP(63)|D_XO(30), M_RT|M_RA|M_RB|M_REGC|M_RC, F_FRT_FRA_FRC_FRB, FL_RC },
{ "fnmsubs",D_OP(59)|D_XO(30), M_RT|M_RA|M_RB|M_REGC|M_RC, F_FRT_FRA_FRC_FRB, FL_RC },
{ "fres", D_OP(59)|D_XO(24), M_RT|M_RB|M_RC, F_FRT_FRB, FL_RC },
{ "frsp", D_OP(63)|D_XO(12), M_RT|M_RB|M_RC, F_FRT_FRB, FL_RC },
{ "frsqrte",D_OP(63)|D_XO(26), M_RT|M_RB|M_RC, F_FRT_FRB, FL_RC },
{ "fsel", D_OP(63)|D_XO(23), M_RT|M_RA|M_RB|M_REGC|M_RC, F_FRT_FRA_FRC_FRB, FL_RC },
{ "fsqrt", D_OP(63)|D_XO(22), M_RT|M_RB|M_RC, F_FRT_FRB, FL_RC },
{ "fsqrts", D_OP(59)|D_XO(22), M_RT|M_RB|M_RC, F_FRT_FRB, FL_RC },
{ "fsub", D_OP(63)|D_XO(20), M_RT|M_RA|M_RB|M_RC, F_FRT_FRA_FRB, FL_RC },
{ "fsubs", D_OP(59)|D_XO(20), M_RT|M_RA|M_RB|M_RC, F_FRT_FRA_FRB, FL_RC },
{ "icbi", D_OP(31)|D_XO(982), M_RA|M_RB, F_RA_0_RB, 0 },
{ "isync", D_OP(19)|D_XO(150), 0, F_NONE, 0 },
{ "lbz", D_OP(34), M_RT|M_RA|M_D, F_RT_D_RA_0, 0 },
{ "lbzu", D_OP(35), M_RT|M_RA|M_D, F_RT_D_RA, FL_CHECK_RA_RT },
{ "lbzux", D_OP(31)|D_XO(119), M_RT|M_RA|M_RB, F_RT_RA_RB, FL_CHECK_RA_RT },
{ "lbzx", D_OP(31)|D_XO(87), M_RT|M_RA|M_RB, F_RT_RA_0_RB, 0 },
{ "lfd", D_OP(50), M_RT|M_RA|M_D, F_FRT_D_RA_0, 0 },
{ "lfdu", D_OP(51), M_RT|M_RA|M_D, F_FRT_D_RA, FL_CHECK_RA },
{ "lfdux", D_OP(31)|D_XO(631), M_RT|M_RA|M_RB, F_FRT_RA_RB, FL_CHECK_RA },
{ "lfdx", D_OP(31)|D_XO(599), M_RT|M_RA|M_RB, F_FRT_RA_0_RB, 0 },
{ "lfs", D_OP(48), M_RT|M_RA|M_D, F_FRT_D_RA_0, 0 },
{ "lfsu", D_OP(49), M_RT|M_RA|M_D, F_FRT_D_RA, FL_CHECK_RA },
{ "lfsux", D_OP(31)|D_XO(567), M_RT|M_RA|M_RB, F_FRT_RA_RB, FL_CHECK_RA },
{ "lfsx", D_OP(31)|D_XO(535), M_RT|M_RA|M_RB, F_FRT_RA_0_RB, 0 },
{ "lha", D_OP(42), M_RT|M_RA|M_D, F_RT_D_RA_0, 0 },
{ "lhau", D_OP(43), M_RT|M_RA|M_D, F_RT_D_RA, FL_CHECK_RA_RT },
{ "lhaux", D_OP(31)|D_XO(375), M_RT|M_RA|M_RB, F_RT_RA_RB, FL_CHECK_RA_RT },
{ "lhax", D_OP(31)|D_XO(343), M_RT|M_RA|M_RB, F_RT_RA_0_RB, 0 },
{ "lhbrx", D_OP(31)|D_XO(790), M_RT|M_RA|M_RB, F_RT_RA_0_RB, 0 },
{ "lhz", D_OP(40), M_RT|M_RA|M_D, F_RT_D_RA_0, 0 },
{ "lhzu", D_OP(41), M_RT|M_RA|M_D, F_RT_D_RA, FL_CHECK_RA_RT },
{ "lhzux", D_OP(31)|D_XO(311), M_RT|M_RA|M_RB, F_RT_RA_RB, FL_CHECK_RA_RT },
{ "lhzx", D_OP(31)|D_XO(279), M_RT|M_RA|M_RB, F_RT_RA_0_RB, 0 },
{ "lmw", D_OP(46), M_RT|M_RA|M_D, F_RT_D_RA_0, 0 },
{ "lswi", D_OP(31)|D_XO(597), M_RT|M_RA|M_NB, F_RT_RA_0_NB, FL_CHECK_LSWI },
{ "lswx", D_OP(31)|D_XO(533), M_RT|M_RA|M_RB, F_RT_RA_0_RB, FL_CHECK_LSWX },
{ "lwarx", D_OP(31)|D_XO(20), M_RT|M_RA|M_RB, F_RT_RA_0_RB, 0 },
{ "lwbrx", D_OP(31)|D_XO(534), M_RT|M_RA|M_RB, F_RT_RA_0_RB, 0 },
{ "lwz", D_OP(32), M_RT|M_RA|M_D, F_RT_D_RA_0, 0 },
{ "lwzu", D_OP(33), M_RT|M_RA|M_D, F_RT_D_RA, FL_CHECK_RA_RT },
{ "lwzux", D_OP(31)|D_XO(55), M_RT|M_RA|M_RB, F_RT_RA_RB, FL_CHECK_RA_RT },
{ "lwzx", D_OP(31)|D_XO(23), M_RT|M_RA|M_RB, F_RT_RA_0_RB, 0 },
{ "mcrf", D_OP(19)|D_XO(0), M_CRFD|M_CRFS, F_CRFD_CRFS, 0 },
{ "mcrfs", D_OP(63)|D_XO(64), M_CRFD|M_CRFS, F_CRFD_CRFS, 0 },
{ "mcrxr", D_OP(31)|D_XO(512), M_CRFD, F_MCRXR, 0 },
{ "mfcr", D_OP(31)|D_XO(19), M_RT, F_RT, 0 },
{ "mffs", D_OP(63)|D_XO(583), M_RT|M_RC, F_MFFSx, FL_RC },
{ "mfmsr", D_OP(31)|D_XO(83), M_RT, F_RT, 0 },
{ "mfspr", D_OP(31)|D_XO(339), M_RT|M_SPR, F_RT_SPR, 0 },
{ "mfsr", D_OP(31)|D_XO(595), M_RT|M_SR, F_MFSR, 0 },
{ "mfsrin", D_OP(31)|D_XO(659), M_RT|M_RB, F_RT_RB, 0 },
{ "mftb", D_OP(31)|D_XO(371), M_RT|M_TBR, F_RT_SPR, 0 },
{ "mtcrf", D_OP(31)|D_XO(144), M_RT|M_CRM, F_MTCRF, 0 },
{ "mtfsb0", D_OP(63)|D_XO(70), M_CRBD|M_RC, F_FCRBD, FL_RC },
{ "mtfsb1", D_OP(63)|D_XO(38), M_CRBD|M_RC, F_FCRBD, FL_RC },
{ "mtfsf", D_OP(63)|D_XO(711), M_FM|M_RB|M_RC, F_MTFSFx, FL_RC },
{ "mtfsfi", D_OP(63)|D_XO(134), M_CRFD|M_IMM|M_RC, F_MTFSFIx, FL_RC },
{ "mtmsr", D_OP(31)|D_XO(146), M_RT, F_RT, 0 },
{ "mtspr", D_OP(31)|D_XO(467), M_RT|M_SPR, F_MTSPR, 0 },
{ "mtsr", D_OP(31)|D_XO(210), M_RT|M_SR, F_MTSR, 0 },
{ "mtsrin", D_OP(31)|D_XO(242), M_RT|M_RB, F_RT_RB, 0 },
{ "mulhw", D_OP(31)|D_XO(75), M_RT|M_RA|M_RB|M_RC, F_RT_RA_RB, FL_RC },
{ "mulhwu", D_OP(31)|D_XO(11), M_RT|M_RA|M_RB|M_RC, F_RT_RA_RB, FL_RC },
{ "mulli", D_OP(7), M_RT|M_RA|M_SIMM, F_RT_RA_SIMM, 0 },
{ "mullw", D_OP(31)|D_XO(235), M_RT|M_RA|M_RB|M_OE|M_RC, F_RT_RA_RB, FL_OE|FL_RC },
{ "nand", D_OP(31)|D_XO(476), M_RA|M_RT|M_RB|M_RC, F_RA_RT_RB, FL_RC },
{ "neg", D_OP(31)|D_XO(104), M_RT|M_RA|M_OE|M_RC, F_RT_RA, FL_OE|FL_RC },
{ "nor", D_OP(31)|D_XO(124), M_RT|M_RA|M_RB|M_RC, F_RA_RT_RB, FL_RC },
{ "or", D_OP(31)|D_XO(444), M_RT|M_RA|M_RB|M_RC, F_RA_RT_RB, FL_RC },
{ "orc", D_OP(31)|D_XO(412), M_RT|M_RA|M_RB|M_RC, F_RA_RT_RB, FL_RC },
{ "ori", D_OP(24), M_RT|M_RA|M_UIMM, F_RA_RT_UIMM, 0 },
{ "oris", D_OP(25), M_RT|M_RA|M_UIMM, F_RA_RT_UIMM, 0 },
{ "rfi", D_OP(19)|D_XO(50), 0, F_NONE, 0 },
{ "rlwimi", D_OP(20), M_RT|M_RA|M_SH|M_MB|M_ME|M_RC, F_RA_RT_SH_MB_ME, FL_RC },
{ "rlwinm", D_OP(21), M_RT|M_RA|M_SH|M_MB|M_ME|M_RC, F_RA_RT_SH_MB_ME, FL_RC },
{ "rlwnm", D_OP(23), M_RT|M_RA|M_RB|M_MB|M_ME|M_RC, F_RLWNMx, FL_RC },
{ "sc", D_OP(17)|2, 0, F_NONE, 0 },
{ "slw", D_OP(31)|D_XO(24), M_RT|M_RA|M_RB|M_RC, F_RA_RT_RB, FL_RC },
{ "sraw", D_OP(31)|D_XO(792), M_RT|M_RA|M_RB|M_RC, F_RA_RT_RB, FL_RC },
{ "srawi", D_OP(31)|D_XO(824), M_RT|M_RA|M_SH|M_RC, F_SRAWIx, FL_RC },
{ "srw", D_OP(31)|D_XO(536), M_RT|M_RA|M_RB|M_RC, F_RA_RT_RB, FL_RC },
{ "stb", D_OP(38), M_RT|M_RA|M_D, F_RT_D_RA_0, 0 },
{ "stbu", D_OP(39), M_RT|M_RA|M_D, F_RT_D_RA, FL_CHECK_RA },
{ "stbux", D_OP(31)|D_XO(247), M_RT|M_RA|M_RB, F_RT_RA_RB, FL_CHECK_RA },
{ "stbx", D_OP(31)|D_XO(215), M_RT|M_RA|M_RB, F_RT_RA_0_RB, 0 },
{ "stfd", D_OP(54), M_RT|M_RA|M_D, F_FRT_D_RA_0, 0 },
{ "stfdu", D_OP(55), M_RT|M_RA|M_D, F_FRT_D_RA, FL_CHECK_RA },
{ "stfdux", D_OP(31)|D_XO(759), M_RT|M_RA|M_RB, F_FRT_RA_RB, FL_CHECK_RA },
{ "stfdx", D_OP(31)|D_XO(727), M_RT|M_RA|M_RB, F_FRT_RA_0_RB, 0 },
{ "stfiwx", D_OP(31)|D_XO(983), M_RT|M_RA|M_RB, F_FRT_RA_0_RB, 0 },
{ "stfs", D_OP(52), M_RT|M_RA|M_D, F_FRT_D_RA_0, 0 },
{ "stfsu", D_OP(53), M_RT|M_RA|M_D, F_FRT_D_RA, FL_CHECK_RA },
{ "stfsux", D_OP(31)|D_XO(695), M_RT|M_RA|M_RB, F_FRT_RA_RB, FL_CHECK_RA },
{ "stfsx", D_OP(31)|D_XO(663), M_RT|M_RA|M_RB, F_FRT_RA_0_RB, 0 },
{ "sth", D_OP(44), M_RT|M_RA|M_D, F_RT_D_RA_0, 0 },
{ "sthbrx", D_OP(31)|D_XO(918), M_RT|M_RA|M_RB, F_RT_RA_0_RB, 0 },
{ "sthu", D_OP(45), M_RT|M_RA|M_D, F_RT_D_RA, FL_CHECK_RA },
{ "sthux", D_OP(31)|D_XO(439), M_RT|M_RA|M_RB, F_RT_RA_RB, FL_CHECK_RA },
{ "sthx", D_OP(31)|D_XO(407), M_RT|M_RA|M_RB, F_RT_RA_0_RB, 0 },
{ "stmw", D_OP(47), M_RT|M_RA|M_D, F_RT_D_RA_0, 0 },
{ "stswi", D_OP(31)|D_XO(725), M_RT|M_RA|M_NB, F_RT_RA_0_NB, 0 },
{ "stswx", D_OP(31)|D_XO(661), M_RT|M_RA|M_RB, F_RT_RA_0_RB, 0 },
{ "stw", D_OP(36), M_RT|M_RA|M_D, F_RT_D_RA_0, 0 },
{ "stwbrx", D_OP(31)|D_XO(662), M_RT|M_RA|M_RB, F_RT_RA_0_RB, 0 },
{ "stwcx.", D_OP(31)|D_XO(150)|1, M_RT|M_RA|M_RB, F_RT_RA_0_RB, 0 },
{ "stwu", D_OP(37), M_RT|M_RA|M_D, F_RT_D_RA, FL_CHECK_RA },
{ "stwux", D_OP(31)|D_XO(183), M_RT|M_RA|M_RB, F_RT_RA_RB, FL_CHECK_RA },
{ "stwx", D_OP(31)|D_XO(151), M_RT|M_RA|M_RB, F_RT_RA_0_RB, 0 },
{ "subf", D_OP(31)|D_XO(40), M_RT|M_RA|M_RB|M_OE|M_RC, F_RT_RA_RB, FL_OE|FL_RC },
{ "subfc", D_OP(31)|D_XO(8), M_RT|M_RA|M_RB|M_OE|M_RC, F_RT_RA_RB, FL_OE|FL_RC },
{ "subfe", D_OP(31)|D_XO(136), M_RT|M_RA|M_RB|M_OE|M_RC, F_RT_RA_RB, FL_OE|FL_RC },
{ "subfic", D_OP(8), M_RT|M_RA|M_SIMM, F_RT_RA_SIMM, 0 },
{ "subfme", D_OP(31)|D_XO(232), M_RT|M_RA|M_OE|M_RC, F_RT_RA, FL_OE|FL_RC },
{ "subfze", D_OP(31)|D_XO(200), M_RT|M_RA|M_OE|M_RC, F_RT_RA, FL_OE|FL_RC },
{ "sync", D_OP(31)|D_XO(598), 0, F_NONE, 0 },
{ "tlbia", D_OP(31)|D_XO(370), 0, F_NONE, 0 },
{ "tlbie", D_OP(31)|D_XO(306), M_RB, F_RB, 0 },
{ "tlbsync",D_OP(31)|D_XO(566), 0, F_NONE, 0 },
{ "tw", D_OP(31)|D_XO(4), M_TO|M_RA|M_RB, F_TW, 0 },
{ "twi", D_OP(3), M_TO|M_RA|M_SIMM, F_TWI, 0 },
{ "xor", D_OP(31)|D_XO(316), M_RT|M_RA|M_RB|M_RC, F_RA_RT_RB, FL_RC },
{ "xori", D_OP(26), M_RT|M_RA|M_UIMM, F_RA_RT_UIMM, 0 },
{ "xoris", D_OP(27), M_RT|M_RA|M_UIMM, F_RA_RT_UIMM, 0 },
/*
* PowerPC 603e/EC603e-specific instructions
*/
{ "tlbld", D_OP(31)|D_XO(978), M_RB, F_RB, 0 },
{ "tlbli", D_OP(31)|D_XO(1010),M_RB, F_RB, 0 }
};
/******************************************************************************
Instruction Decoding and Disassembly Functions
******************************************************************************/
/*
* CR Bits
*
* Use an index of BI&3 into this table to obtain the CR field bit name.
*/
static char *crbit[] = { "lt", "gt", "eq", "so" };
/*
* SPR():
*
* Decode the SPR (or TBR) field and append the register name to dest. If
* no name is associated with the field value, the value itself is printed.
*/
static void SPR(char *dest, unsigned spr_field)
{
unsigned spr;
/*
* Construct the SPR number -- SPR field is 2 5-bit fields
*/
spr = (spr_field >> 5) & 0x1f;
spr |= (spr_field & 0x1f) << 5;
/*
* Append the SPR name to the destination string using strcat()
*/
switch (spr)
{
case 1: strcat(dest, "xer"); break;
case 8: strcat(dest, "lr"); break;
case 9: strcat(dest, "ctr"); break;
case 18: strcat(dest, "dsisr"); break;
case 19: strcat(dest, "dar"); break;
case 22: strcat(dest, "dec"); break;
case 25: strcat(dest, "sdr1"); break;
case 26: strcat(dest, "srr0"); break;
case 27: strcat(dest, "srr1"); break;
case 272: strcat(dest, "sprg0"); break;
case 273: strcat(dest, "sprg1"); break;
case 274: strcat(dest, "sprg2"); break;
case 275: strcat(dest, "sprg3"); break;
case 282: strcat(dest, "ear"); break;
case 287: strcat(dest, "pvr"); break;
case 528: strcat(dest, "ibat0u"); break;
case 529: strcat(dest, "ibat0l"); break;
case 530: strcat(dest, "ibat1u"); break;
case 531: strcat(dest, "ibat1l"); break;
case 532: strcat(dest, "ibat2u"); break;
case 533: strcat(dest, "ibat2l"); break;
case 534: strcat(dest, "ibat3u"); break;
case 535: strcat(dest, "ibat3l"); break;
case 536: strcat(dest, "dbat0u"); break;
case 537: strcat(dest, "dbat0l"); break;
case 538: strcat(dest, "dbat1u"); break;
case 539: strcat(dest, "dbat1l"); break;
case 540: strcat(dest, "dbat2u"); break;
case 541: strcat(dest, "dbat2l"); break;
case 542: strcat(dest, "dbat3u"); break;
case 543: strcat(dest, "dbat3l"); break;
case 1013: strcat(dest, "dabr"); break; // unsupported on 603e/EC603e
/*
* Some PowerPC implementations may implement MFTB and MFSPR identically,
* therefore TBR registers are also decoded here
*/
case 268: strcat(dest, "tbl"); break;
case 269: strcat(dest, "tbu"); break;
/*
* PowerPC 603e/EC603e-specific registers
*/
case 1008: strcat(dest, "hid0"); break;
case 1009: strcat(dest, "hid1"); break;
case 976: strcat(dest, "dmiss"); break;
case 977: strcat(dest, "dcmp"); break;
case 978: strcat(dest, "hash2"); break;
case 979: strcat(dest, "hash2"); break;
case 980: strcat(dest, "imiss"); break;
case 981: strcat(dest, "icmp"); break;
case 982: strcat(dest, "rpa"); break;
case 1010: strcat(dest, "iabr"); break;
default: sprintf(dest, "%s%d", dest, spr);
break;
}
}
/*
* DecodeSigned16():
*
* Predecodes the SIMM field for us. If do_unsigned, it is printed as an
* unsigned 32-bit integer.
*/
static void DecodeSigned16(char *outbuf, UINT32 op, bool do_unsigned)
{
INT16 s;
s = G_SIMM(op);
if (do_unsigned) // sign extend to unsigned 32-bits
sprintf(outbuf, "0x%04X", (UINT32) s);
else // print as signed 16 bits
{
if (s < 0)
sprintf(outbuf, "-0x%02X", -s);
else
sprintf(outbuf, "0x%02X",s);
}
}
/*
* Mask():
*
* Generate a mask from bit MB through ME (PPC-style backwards bit numbering.)
*/
static UINT32 Mask(unsigned mb, unsigned me)
{
UINT32 i, mask;
mb &= 31;
me &= 31;
i = mb;
mask = 0;
while (1)
{
mask |= (1 << (31 - i));
if (i == me)
break;
i = (i + 1) & 31;
}
return mask;
}
/*
* Check():
*
* Perform checks on the instruction as required by the flags. Returns 1 if
* the instruction failed.
*/
static bool Check(UINT32 op, unsigned flags)
{
unsigned nb, rt, ra;
if (!flags) return OKAY; // nothing to check for!
rt = G_RT(op);
ra = G_RA(op);
if (flags & FL_CHECK_RA_RT) // invalid if rA==0 or rA==rT
{
if ((G_RA(op) == 0) || (G_RA(op) == G_RT(op)))
return FAIL;
}
if (flags & FL_CHECK_RA) // invalid if rA==0
{
if (G_RA(op) == 0)
return FAIL;
}
if (flags & FL_CHECK_LSWI)
{
/*
* Check that rA is not in the range of registers to be loaded (even
* if rA == 0)
*/
nb = G_NB(op);
if (ra >= rt && ra <= (rt + nb - 1)) return FAIL;
if ((rt + nb - 1) > 31) // register wrap-around!
{
if (ra < ((rt + nb - 1) - 31))
return FAIL;
}
}
if (flags & FL_CHECK_LSWX)
{
/*
* Check that rT != rA, rT != rB, and rD and rA both do not specify
* R0.
*
* We cannot check fully whether rA or rB are in the range of
* registers specified to be loaded because that depends on XER.
*/
if (rt == ra || rt == G_RB(op) || ((rt == 0) && (ra == 0)))
return FAIL;
}
return OKAY; // passed checks
}
/*
* Simplified():
*
* Handles all simplified instruction forms. Returns 1 if one was decoded,
* otherwise 0 to indicate disassembly should carry on as normal.
*/
static bool Simplified(UINT32 op, UINT32 vpc, char *signed16, char *mnem, char *oprs)
{
UINT32 value, disp;
value = G_SIMM(op); // value is fully sign-extended SIMM field
if (value & 0x8000)
value |= 0xffff0000;
if (op == (D_OP(24)|D_RT(0)|D_RA(0)|D_UIMM(0)))
strcat(mnem, "nop"); // ori r0,r0,0 -> nop
else if ((op & ~(M_RT|M_RA|M_RB|M_RC)) == (D_OP(31)|D_XO(444)))
{
if (G_RT(op) == G_RB(op))
{
strcat(mnem, "mr"); // orx rA,rT,rT -> mrx rA,rT
if (op & M_RC) strcat(mnem, ".");
sprintf(oprs, "r%d,r%d", G_RA(op), G_RT(op));
}
else
return 0;
}
else if ((op & ~(M_RT|M_RA|M_RB|M_RC)) == (D_OP(31)|D_XO(124)))
{
if (G_RT(op) == G_RB(op))
{
strcat(mnem, "not"); // nor rA,rT,rT -> not rA,rT
if (op & M_RC) strcat(mnem, ".");
sprintf(oprs, "r%d,r%d", G_RA(op), G_RT(op));
}
else
return 0;
}
else if ((op & ~(M_RT|M_RA|M_SIMM)) == D_OP(14))
{
if (G_RA(op) == 0)
{
strcat(mnem, "li"); // addi rT,0,value -> li rT,value
sprintf(oprs, "r%d,0x%08X", G_RT(op), value);
}
else
return 0;
}
else if ((op & ~(M_RT|M_RA|M_SIMM)) == D_OP(15))
{
if (G_RA(op) == 0)
{
strcat(mnem, "li"); // addis rT,0,value -> li rT,(value<<16)
sprintf(oprs, "r%d,0x%08X", G_RT(op), value << 16);
}
else
{
strcat(mnem, "addi"); // addis rT,rA,SIMM -> addi rT,rA,SIMM<<16
sprintf(oprs, "r%d,r%d,0x%08X", G_RT(op), G_RA(op), value << 16);
}
}
else if ((op & ~(M_RT|M_RA|M_UIMM)) == D_OP(29))
{
strcat(mnem, "andi."); // andis. rA,rT,UIMM -> andi. rA,rT,UIMM<<16
sprintf(oprs, "r%d,r%d,0x%08X", G_RA(op), G_RT(op), G_UIMM(op) << 16);
}
else if ((op & ~(M_RT|M_RA|M_UIMM)) == D_OP(25))
{
strcat(mnem, "ori"); // oris rA,rT,UIMM -> ori rA,rT,UIMM<<16
sprintf(oprs, "r%d,r%d,0x%08X", G_RA(op), G_RT(op), G_UIMM(op) << 16);
}
else if ((op & ~(M_RT|M_RA|M_UIMM)) == D_OP(27))
{
strcat(mnem, "xori"); // xoris rA,rT,UIMM -> xori rA,rT,UIMM<<16
sprintf(oprs, "r%d,r%d,0x%08X", G_RA(op), G_RT(op), G_UIMM(op) << 16);
}
else if ((op & ~(M_RT|M_RA|M_SH|M_MB|M_ME|M_RC)) == D_OP(20))
{
value = Mask(G_MB(op), G_ME(op));
strcat(mnem, "rlwimi"); // rlwimi[.] rA,rT,SH,MB,ME -> rlwimi[.] rA,rT,SH,MASK
if (op & M_RC) strcat(mnem, ".");
sprintf(oprs, "r%d,r%d,%d,0x%08X", G_RA(op), G_RT(op), G_SH(op), value);
}
else if ((op & ~(M_RT|M_RA|M_SH|M_MB|M_ME|M_RC)) == D_OP(21))
{
value = Mask(G_MB(op), G_ME(op));
if (G_SH(op) == 0) // rlwinm[.] rA,rT,0,MB,ME -> and[.] rA,rT,MASK
{
strcat(mnem, "and");
if (op & M_RC) strcat(mnem, ".");
sprintf(oprs, "r%d,r%d,0x%08X", G_RA(op), G_RT(op), value);
}
else // rlwinm[.] rA,rT,SH,MASK
{
strcat(mnem, "rlwinm");
if (op & M_RC) strcat(mnem, ".");
sprintf(oprs, "r%d,r%d,%d,0x%08X", G_RA(op), G_RT(op), G_SH(op), value);
}
}
else if ((op & ~(M_RT|M_RA|M_RB|M_MB|M_ME|M_RC)) == D_OP(23))
{
value = Mask(G_MB(op), G_ME(op));
strcat(mnem, "rlwnm"); // rlwnm[.] rA,rT,SH,MB,ME -> rlwnm[.] rA,rT,SH,MASK
if (op & M_RC) strcat(mnem, ".");
sprintf(oprs, "r%d,r%d,r%d,0x%08X", G_RA(op), G_RT(op), G_RB(op), value);
}
else if ((op & ~(M_BO|M_BI|M_BD|M_AA|M_LK)) == D_OP(16))
{
disp = G_BD(op) * 4;
if (disp & 0x00008000)
disp |= 0xffff0000;
switch (G_BO(op))
{
case 0x04: // branch if condition is false
case 0x05:
case 0x06:
case 0x07:
strcat(mnem, "bf");
break;
case 0x0c:
case 0x0d:
case 0x0e:
case 0x0f:
strcat(mnem, "bt");
break;
default:
return 0;
}
if (op & M_LK) strcat(mnem, "l");
if (op & M_AA) strcat(mnem, "a");
sprintf(oprs, "cr%d[%s],0x%08X", G_BI(op) / 4, crbit[G_BI(op) & 3], disp + ((op & M_AA) ? 0 : vpc));
}
else if ((op & ~(M_RT|M_RA|M_RB|M_OE|M_RC)) == (D_OP(31)|D_XO(40)))
{
strcat(mnem, "sub");
if (op & M_OE) strcat(mnem, "o");
if (op & M_RC) strcat(mnem, ".");
sprintf(oprs, "r%d,r%d,r%d", G_RT(op), G_RB(op), G_RA(op));
}
else if ((op & ~(M_RT|M_RA|M_RB|M_OE|M_RC)) == (D_OP(31)|D_XO(8)))
{
strcat(mnem, "subc");
if (op & M_OE) strcat(mnem, "o");
if (op & M_RC) strcat(mnem, ".");
sprintf(oprs, "r%d,r%d,r%d", G_RT(op), G_RB(op), G_RA(op));
}
else
return 0; // no match
return 1;
}
/*
* DisassemblePowerPC(op, vpc, mnem, oprs, simplify):
*
* Disassembles one PowerPC 603e instruction.
*
* A non-zero return code indicates that the instruction could not be
* recognized or that the operands to an instruction were invalid. To
* determine which case occured, check if mnem[0] == '\0'. If it does not,
* then the latter case happened.
*
* Arguments:
* op Instruction word to disassemble.
* vpc Current instruction address.
* mnem Buffer to write instruction mnemonic to. If no
* instruction was decoded, mnem[0] and oprs[0] will be set
* to '\0'.
* oprs Buffer to write any operands to.
* simplify If non-zero, simplified forms of instructions will be
* printed in certain cases.
*
* Returns:
* Zero if successful, non-zero if the instruction was unrecognized or
* had an invalid form (see note above in function description.)
*/
bool DisassemblePowerPC(UINT32 op, UINT32 vpc, char *mnem, char *oprs,
bool simplify)
{
char signed16[12];
UINT32 disp;
int i;
mnem[0] = '\0'; // so we can use strcat()
oprs[0] = '\0';
/*
* Decode signed 16-bit fields (SIMM and d) to spare us the work later
*/
DecodeSigned16(signed16, op, 0);
/*
* Try simplified forms first, then real instructions
*/
if (simplify)
{
if (Simplified(op, vpc, signed16, mnem, oprs))
return OKAY;
}
/*
* Search for the instruction in the list and print it if there's a match
*/
for (i = 0; i < sizeof(itab) / sizeof(IDESCR); i++)
{
if ((op & ~itab[i].mask) == itab[i].match) // check for match
{
/*
* Base mnemonic followed be O, ., L, A
*/
strcat(mnem, itab[i].mnem);
if (itab[i].flags & FL_OE) if (op & M_OE) strcat(mnem, "o");
if (itab[i].flags & FL_RC) if (op & M_RC) strcat(mnem, ".");
if (itab[i].flags & FL_LK) if (op & M_LK) strcat(mnem, "l");
if (itab[i].flags & FL_AA) if (op & M_AA) strcat(mnem, "a");
/*
* Print operands
*/
switch (itab[i].format)
{
case F_RT_RA_RB:
sprintf(oprs, "r%d,r%d,r%d", G_RT(op), G_RA(op), G_RB(op));
break;
case F_RT_RA_0_SIMM:
if (G_RA(op))
sprintf(oprs, "r%d,r%d,%s", G_RT(op), G_RA(op), signed16);
else
sprintf(oprs, "r%d,0,%s", G_RT(op), signed16);
break;
case F_ADDIS:
if (G_RA(op))
sprintf(oprs, "r%d,r%d,0x%04X", G_RT(op), G_RA(op), G_SIMM(op));
else
sprintf(oprs, "r%d,0,0x%04X", G_RT(op), G_SIMM(op));
break;
case F_RT_RA_SIMM:
sprintf(oprs, "r%d,r%d,%s", G_RT(op), G_RA(op), signed16);
break;
case F_RT_RA:
sprintf(oprs, "r%d,r%d", G_RT(op), G_RA(op));
break;
case F_RA_RT_RB:
sprintf(oprs, "r%d,r%d,r%d", G_RA(op), G_RT(op), G_RB(op));
break;
case F_RA_RT_UIMM:
sprintf(oprs, "r%d,r%d,0x%04X", G_RA(op), G_RT(op), G_UIMM(op));
break;
case F_LI:
disp = G_LI(op) * 4;
if (disp & 0x02000000) // sign extend
disp |= 0xfc000000;
sprintf(oprs, "0x%08X", disp + ((op & M_AA) ? 0 : vpc));
break;
case F_BCx:
disp = G_BD(op) * 4;
if (disp & 0x00008000)
disp |= 0xffff0000;
if (G_BO(op) & 0x10) // BI is ignored (don't print CR bit)
sprintf(oprs, "0x%02X,%d,0x%08X", G_BO(op), G_BI(op), disp + ((op & M_AA) ? 0 : vpc));
else // BI gives us the condition bit
sprintf(oprs, "0x%02X,cr%d[%s],0x%08X", G_BO(op), G_BI(op) / 4, crbit[G_BI(op) & 3], disp + ((op & M_AA) ? 0 : vpc));
break;
case F_BO_BI:
if (G_BO(op) & 0x10) // BI is ignored (don't print CR bit)
sprintf(oprs, "0x%02X,%d", G_BO(op), G_BI(op));
else
sprintf(oprs, "0x%02X,cr%d[%s]", G_BO(op), G_BI(op) / 4, crbit[G_BI(op) & 3]);
break;
case F_CMP:
sprintf(oprs, "cr%d,%d,r%d,r%d", G_CRFD(op), G_L(op), G_RA(op), G_RB(op));
break;
case F_CMP_SIMM:
sprintf(oprs, "cr%d,%d,r%d,%s", G_CRFD(op), G_L(op), G_RA(op), signed16);
break;
case F_CMP_UIMM:
sprintf(oprs, "cr%d,%d,r%d,0x%04X", G_CRFD(op), G_L(op), G_RA(op), G_UIMM(op));
break;
case F_RA_RT:
sprintf(oprs, "r%d,r%d", G_RA(op), G_RT(op));
break;
case F_CRBD_CRBA_CRBB:
sprintf(oprs, "cr%d[%s],cr%d[%s],cr%d[%s]", G_CRBD(op) / 4, crbit[G_CRBD(op) & 3], G_CRBA(op) / 4, crbit[G_CRBA(op) & 3], G_CRBB(op) / 4, crbit[G_CRBB(op) & 3]);
break;
case F_RA_0_RB:
if (G_RA(op))
sprintf(oprs, "r%d,r%d", G_RA(op), G_RB(op));
else
sprintf(oprs, "0,r%d", G_RB(op));
break;
case F_RT_RA_0_RB:
if (G_RA(op))
sprintf(oprs, "r%d,r%d,r%d", G_RT(op), G_RA(op), G_RB(op));
else
sprintf(oprs, "r%d,0,r%d", G_RT(op), G_RB(op));
break;
case F_FRT_FRB:
sprintf(oprs, "f%d,f%d", G_RT(op), G_RB(op));
break;
case F_FRT_FRA_FRB:
sprintf(oprs, "f%d,f%d,f%d", G_RT(op), G_RA(op), G_RB(op));
break;
case F_FCMP:
sprintf(oprs, "cr%d,f%d,f%d", G_CRFD(op), G_RA(op), G_RB(op));
break;
case F_FRT_FRA_FRC_FRB:
sprintf(oprs, "f%d,f%d,f%d,f%d", G_RT(op), G_RA(op), G_REGC(op), G_RB(op));
break;
case F_FRT_FRA_FRC:
sprintf(oprs, "f%d,f%d,f%d", G_RT(op), G_RA(op), G_REGC(op));
break;
case F_RT_D_RA_0:
if (G_RA(op))
sprintf(oprs, "r%d,%s(r%d)", G_RT(op), signed16, G_RA(op));
else
sprintf(oprs, "r%d,0x%08X", G_RT(op), (UINT32) ((INT16) G_D(op)));
break;
case F_RT_D_RA:
sprintf(oprs, "r%d,%s(r%d)", G_RT(op), signed16, G_RA(op));
break;
case F_FRT_D_RA_0:
if (G_RA(op))
sprintf(oprs, "f%d,%s(r%d)", G_RT(op), signed16, G_RA(op));
else
sprintf(oprs, "f%d,0x%08X", G_RT(op), (UINT32) ((INT16) G_D(op)));
break;
case F_FRT_D_RA:
sprintf(oprs, "f%d,%s(r%d)", G_RT(op), signed16, G_RA(op));
break;
case F_FRT_RA_RB:
sprintf(oprs, "f%d,r%d,r%d", G_RT(op), G_RA(op), G_RB(op));
break;
case F_FRT_RA_0_RB:
if (G_RA(op))
sprintf(oprs, "f%d,r%d,r%d", G_RT(op), G_RA(op), G_RB(op));
else
sprintf(oprs, "f%d,0,r%d", G_RT(op), G_RB(op));
break;
case F_RT_RA_0_NB:
if (G_RA(op))
sprintf(oprs, "r%d,r%d,%d", G_RT(op), G_RA(op), G_NB(op) ? G_NB(op) : 32);
else
sprintf(oprs, "r%d,0,%d", G_RT(op), G_NB(op) ? G_NB(op) : 32);
break;
case F_CRFD_CRFS:
sprintf(oprs, "cr%d,cr%d", G_CRFD(op), G_CRFS(op));
break;
case F_MCRXR:
sprintf(oprs, "cr%d", G_CRFD(op));
break;
case F_RT:
sprintf(oprs, "r%d", G_RT(op));
break;
case F_MFFSx:
sprintf(oprs, "f%d", G_RT(op));
break;
case F_FCRBD:
sprintf(oprs, "fpscr[%d]", G_CRBD(op));
break;
case F_RT_SPR:
sprintf(oprs, "r%d,", G_RT(op));
SPR(oprs, G_SPR(op));
break;
case F_MFSR:
sprintf(oprs, "r%d,sr%d", G_RT(op), G_SR(op));
break;
case F_MTCRF:
sprintf(oprs, "0x%02X,r%d", G_CRM(op), G_RT(op));
break;
case F_MTFSFx:
sprintf(oprs, "0x%02X,f%d", G_FM(op), G_RB(op));
break;
case F_MTFSFIx:
sprintf(oprs, "cr%d,0x%X", G_CRFD(op), G_IMM(op));
break;
case F_MTSPR:
SPR(oprs, G_SPR(op));
sprintf(oprs, "%s,r%d", oprs, G_RT(op));
break;
case F_MTSR:
sprintf(oprs, "sr%d,r%d", G_SR(op), G_RT(op));
break;
case F_RT_RB:
sprintf(oprs, "r%d,r%d", G_RT(op), G_RB(op));
break;
case F_RA_RT_SH_MB_ME:
sprintf(oprs, "r%d,r%d,%d,%d,%d", G_RA(op), G_RT(op), G_SH(op), G_MB(op), G_ME(op));
break;
case F_RLWNMx:
sprintf(oprs, "r%d,r%d,r%d,%d,%d", G_RA(op), G_RT(op), G_RB(op), G_MB(op), G_ME(op));
break;
case F_SRAWIx:
sprintf(oprs, "r%d,r%d,%d", G_RA(op), G_RT(op), G_SH(op));
break;
case F_RB:
sprintf(oprs, "r%d", G_RB(op));
break;
case F_TW:
sprintf(oprs, "%d,r%d,r%d", G_TO(op), G_RA(op), G_RB(op));
break;
case F_TWI:
sprintf(oprs, "%d,r%d,%s", G_TO(op), G_RA(op), signed16);
break;
case F_NONE:
default:
break;
}
return Check(op, itab[i].flags);
}
}
return FAIL; // no match found
}
/******************************************************************************
Standalone Disassembler
Define STANDALONE to build a command line-driven PowerPC disassembler.
******************************************************************************/
#ifdef STANDALONE
static void PrintUsage(void)
{
puts("ppcd Version "DISASM_VERSION" by Bart Trzynadlowski: PowerPC 603e Disassembler");
puts("Usage: ppcd [options]");
puts("Options: -?,-h Show this help text");
puts(" -s Start offset (hexadecimal)");
puts(" -l Number of instructions");
puts(" -o Set origin (hexadecimal)");
puts(" -big Big endian [Default]");
puts(" -little Little endian");
puts(" -simple Use simplified instruction forms [Default]");
puts(" -nosimple Do not use simplified forms");
exit(0);
}
/*
* main(argc, argv):
*
* Standalone PowerPC disassembler.
*/
int main(int argc, char **argv)
{
char mnem[16], oprs[48];
FILE *fp;
UINT8 *buffer;
unsigned i, fsize, start = 0, len, org, file = 0;
UINT32 op;
bool len_specified = 0, org_specified = 0, little = 0, simple = 1;
char *c;
if (argc <= 1)
PrintUsage();
for (i = 1; i < argc; i++)
{
if (!strcmp(argv[i], "-h") || !strcmp(argv[i], "-?"))
PrintUsage();
else if (!strcmp(argv[i], "-s"))
{
++i;
if (i >= argc)
fprintf(stderr, "ppcd: warning: no argument to %s\n", "-s");
else
start = strtoul(argv[i], &c, 16);
}
else if (!strcmp(argv[i], "-l"))
{
++i;
if (i >= argc)
fprintf(stderr, "ppcd: warning: no argument to %s\n", "-l");
else
{
len = atoi(argv[i]);
len_specified = 1;
}
}
else if (!strcmp(argv[i], "-o"))
{
++i;
if (i >= argc)
fprintf(stderr, "ppcd: warning: no argument to %s\n", "-o");
else
{
org = strtoul(argv[i], &c, 16);
org_specified = 1;
}
}
else if (!strcmp(argv[i], "-big"))
little = 0;
else if (!strcmp(argv[i], "-little"))
little = 1;
else if (!strcmp(argv[i], "-simple"))
simple = 1;
else if (!strcmp(argv[i], "-nosimple"))
simple = 0;
else
file = i;
}
if (!file)
{
fprintf(stderr, "ppcd: no input file specified\n");
exit(1);
}
/*
* Load file
*/
if ((fp = fopen(argv[file], "rb")) == NULL)
{
fprintf(stderr, "ppcd: failed to open file: %s\n", argv[file]);
exit(1);
}
fseek(fp, 0, SEEK_END);
fsize = ftell(fp);
rewind(fp);
if ((buffer = (UINT8 *) calloc(fsize, sizeof(UINT8))) == NULL)
{
fprintf(stderr, "ppcd: not enough memory to load input file: %s, %lu bytes\n", argv[file], (unsigned long) fsize);
fclose(fp);
exit(1);
}
fread(buffer, sizeof(UINT8), fsize, fp);
fclose(fp);
if (!len_specified)
len = fsize - start;
else
len *= 4; // each instruction == 4 bytes
if (!org_specified)
org = start;
/*
* Disassemble!
*/
for (i = start; i < fsize && i < (start + len); i += 4, org += 4)
{
if (!little)
op = (buffer[i] << 24) | (buffer[i + 1] << 16) |
(buffer[i + 2] << 8) | buffer[i + 3];
else
op = (buffer[i + 3] << 24) | (buffer[i + 2] << 16) |
(buffer[i + 1] << 8) | buffer[i + 0];
if (DisassemblePowerPC(op, org, mnem, oprs, simple))
{
if (mnem[0] != '\0') // invalid form
printf("0x%08X: 0x%08X\t%s*\t%s\n", org, op, mnem, oprs);
else
printf("0x%08X: 0x%08X\t?\n", org, op);
}
else
printf("0x%08X: 0x%08X\t%s\t%s\n", org, op, mnem, oprs);
}
free(buffer);
return 0;
}
#endif