/** ** Supermodel ** A Sega Model 3 Arcade Emulator. ** Copyright 2011-2012 Bart Trzynadlowski, Nik Henson ** ** This file is part of Supermodel. ** ** Supermodel is free software: you can redistribute it and/or modify it under ** the terms of the GNU General Public License as published by the Free ** Software Foundation, either version 3 of the License, or (at your option) ** any later version. ** ** Supermodel is distributed in the hope that it will be useful, but WITHOUT ** ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ** FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for ** more details. ** ** You should have received a copy of the GNU General Public License along ** with Supermodel. If not, see . **/ /* * Render2D.cpp * * Implementation of the CRender2D class: OpenGL tile generator graphics. * * To-Do List * ---------- * - Is there a universal solution to the 'ROLLING START' scrolling bug (Scud * Race) and the scrolling text during Magical Truck Adventure's attract * mode? To fix Scud Race, either the stencil mask or the h-scroll value must * be shifted by 16 pixels. Magical Truck Adventure is similar but opposite. * Perhaps this is a function of timing registers accessed via JTAG? * - Is there a better way to handle the overscan regions in wide screen mode? * Is clearing two thin viewports better than one big clear? * - Are v-scroll values 9 or 10 bits? (Does it matter?) Lost World seems to * have some scrolling issues. * - A proper shut-down function is needed! OpenGL might not be available when * the destructor for this class is called. * * Tile Generator Hardware Overview * -------------------------------- * * Model 3's medium resolution tile generator hardware appears to be derived * from the Model 2 and System 24 chipset, but is much simpler. It consists of * four 64x64 tile layers, comprised of 8x8 pixel tiles, with configurable * priorities. There may be additional features but so far, no known Model 3 * games use them. * * VRAM is comprised of 1 MB for tile data and an additional 128 KB for the * palette (each color occupies 32 bits). The four tilemap layers are referred * to as: A (0), A' (1), B (2), and B' (3). Palette RAM may be located on a * separate RAM IC. * * Registers * --------- 0xF1180020: -------- -------- -------- -------- ? -------- -------- x------- -------- Layer 3 bitdepth (0 = 8-bit, 1 = 4-bit) -------- -------- -x------ -------- Layer 2 bitdepth (0 = 8-bit, 1 = 4-bit) -------- -------- --x----- -------- Layer 1 bitdepth (0 = 8-bit, 1 = 4-bit) -------- -------- ---x---- -------- Layer 0 bitdepth (0 = 8-bit, 1 = 4-bit) -------- -------- ----x--- -------- Layer 3 priority (0 = below 3D, 1 = above 3D) -------- -------- -----x-- -------- Layer 2 priority (0 = below 3D, 1 = above 3D) -------- -------- ------x- -------- Layer 1 priority (0 = below 3D, 1 = above 3D) -------- -------- -------x -------- Layer 0 priority (0 = below 3D, 1 = above 3D) 0xF1180040: Foreground layer color modulation -------- xxxxxxxx -------- -------- Red component -------- -------- xxxxxxxx -------- Green component -------- -------- -------- xxxxxxxx Blue component 0xF1180044: Background layer color modulation -------- xxxxxxxx -------- -------- Red component -------- -------- xxxxxxxx -------- Green component -------- -------- -------- xxxxxxxx Blue component 0xF1180060: x------- -------- -------- -------- Layer 0 enable -------x xxxxxxxx -------- -------- Layer 0 Y scroll position -------- -------- x------- -------- Layer 0 X line scroll enable -------- -------- -------x xxxxxxxx Layer 0 X scroll position 0xF1180064: x------- -------- -------- -------- Layer 1 enable -------x xxxxxxxx -------- -------- Layer 1 Y scroll position -------- -------- x------- -------- Layer 1 X line scroll enable -------- -------- -------x xxxxxxxx Layer 1 X scroll position 0xF1180068: x------- -------- -------- -------- Layer 2 enable -------x xxxxxxxx -------- -------- Layer 2 Y scroll position -------- -------- x------- -------- Layer 2 X line scroll enable -------- -------- -------x xxxxxxxx Layer 2 X scroll position 0xF118006C: x------- -------- -------- -------- Layer 3 enable -------x xxxxxxxx -------- -------- Layer 3 Y scroll position -------- -------- x------- -------- Layer 3 X line scroll enable -------- -------- -------x xxxxxxxx Layer 3 X scroll position * * VRAM Memory Map * --------------- * * The lower 1 MB of VRAM is used for storing tiles, per-line horizontal scroll * values, and the stencil mask, which determines which of each pair of layers * is displayed on a given line and column. * * 00000-F5FFF Tile pattern data * F6000-F63FF Layer A horizontal scroll table (512 lines) * F6400-F67FF Layer A' horizontal scroll table * F6800-F6BFF Layer B horizontal scroll table * F6C00-F6FFF Layer B' horizontal scroll table * F7000-F77FF Mask table (assuming 4 bytes per line, 512 lines) * F7800-F7FFF ? * F8000-F9FFF Layer A name table * FA000-FBFFF Layer A' name table * FC000-FDFFF Layer B name table * FE000-FFFFF Layer B' name table * * Tiles may actually address the entire 1 MB space, although in practice, * that would conflict with the other fixed memory regions. * * Palette * ------- * * The palette stores 32768 colors. Each entry is a little endian 32-bit word. * The upper 16 bits are unused and the lower 16 bits contain the color: * * 15 0 * tbbb bbgg gggr rrrr * * The 't' bit is for transparency. When set, pixels of that color are * transparent, unless they are the bottom-most layer. * * Tile Name Table and Pattern Layout * ---------------------------------- * * The name table is a 64x64 array of 16-bit words serving as indices for tile * pattern data and the palette. The first 64 words correspond to the first * row of tiles, the next 64 to the second row, etc. Although 64x64 entries * describes a 512x512 pixel screen, only the upper-left 62x48 tiles are * visible when the vertical and horizontal scroll values are 0. Scrolling * moves the 496x384 pixel 'window' around, with individual wrapping of the * two axes. * * The data is actually arranged in 32-bit chunks in little endian format, so * that tiles 0, 1, 2, and 3 will be stored as 1, 0, 3, 2. Fetching two name * table entries as a single 32-bit word places the left tile in the high 16 * bits and the right tile in the low 16 bits. * * The format of a name table entry in 4-bit color mode is: * * 15 0 * jkpp pppp pppp iiii * * The pattern index is '0ppp pppp pppi iiij'. Multiplying by 32 yields the * offset in VRAM at which the tile pattern data is stored. Note that the MSB * of the name table entry becomes the LSB of the pattern index. This allows * for 32768 4-bit tile patterns, each occupying 32 bytes, which means the * whole 1 MB VRAM space can be addressed. * * The 4-bit pattern data is stored as 8 32-bit words. Each word stores a row * of 8 pixels: * * 31 0 * aaaa bbbb cccc dddd eeee ffff gggg hhhh * * 'a' is the left-most pixel data. These 4-bit values are combined with bits * from the name table to form a palette index, which determines the final * color. For example, for pixel 'a', the 15-bit color index is: * * 14 0 * kpp pppp pppp aaaa * * Note that index bits are re-used to form the palette index, meaning that * the pattern address partly determines the color. * * In 8-bit color mode, the name table entry looks like: * * 15 0 * ?ppp pppp iiii iiii * * The low 15 'p' and 'i' bits together form the pattern index, which must be * multiplied by 64 to get the offset. The pattern data now consists of 16 32- * bit words, each containing four 8-bit pixels: * * 31 0 * aaaa aaaa bbbb bbbb cccc cccc dddd dddd * * 'a' is the left-most pixel. Each line is therefore comprised of two 32-bit * words. The palette index for pixel 'a' is now formed from: * * 14 0 * ppp pppp aaaa aaaa * * Stencil Mask * ------------ * * For any pixel position, there are in fact only two visible layers, despite * there being four defined layers. The layers are grouped in pairs: A (the * 'primary' layer) and A' (the 'alternate') form one pair, and B and B' form * the other. Only one of the primary or alternate layers from each group may * be visible at a given position. The 'stencil mask' controls this. * * The mask table is a bit field organized into 512 (or 384?) lines with each * bit controlling four columns (32 pixels). The mask does not appear to be * affected by scrolling -- that is, it does not scroll with the underlying * tiles, which do so independently. The mask remains fixed. * * Each mask entry is a little endian 32-bit word. The high 16 bits control * A/A' and the low 16 bits control B/B'. Each word controls an entire line * (32 pixels per bit, 512 pixels per 16-bit line mask, where the first 16 * pixels are allocated to the overscan region.) If a bit is set to 1, the * pixel from the primary layer is used, otherwise the alternate layer is * used when the mask is 0. It is important to remember that the layers may * have been scrolled independently. The mask operates on the final resultant * two pixels that are determined for each location. * * Example of a line mask: * * 31 15 0 * 0111 0000 0000 1111 0000 0000 1111 1111 * * These settings would display layer A' for the first 32 pixels of the line, * followed by layer A for the next 96 pixels, A' for the subsequent 256 * pixels, and A for the final 128 pixels. The first 256 pixels of the line * would display layer B' and the second 256 pixels would be from layer B. * * The stencil mask does not affect layer priorities, which are managed * separately regardless of mask settings. * * Scrolling * --------- * * Each of the four layers can be scrolled independently. Vertical scroll * values are stored in the appropriate scroll register and horizontal scroll * values can be sourced either from the register (in which case the entire * layer will be scrolled uniformly) or from a table in VRAM (which contains * independent values for each line). * * The scroll registers are laid out as: * * 31 0 * e??? ???y yyyy yyyy h??? ??xx xxxx xxxx * * The 'e' bit enables the layer when set. The 'y' bits comprise a vertical * scroll value in pixels. The 'x' bits form a horizontal scroll value. If 'h' * is set, then the VRAM table (line-by-line scrolling) is used, otherwise the * 'x' values are applied to every line. It is also possible that the scroll * values use more or less bits, but probably no more than 1. * * Each line must be wrapped back to the beginning of the same line. Likewise, * vertical scrolling wraps around back to the top of the tilemap. * * The horizontal scroll table is a series of 16-bit little endian words, one * for each line beginning at 0. It appears all the values can be used for * scrolling (no control bits have been observed). The number of bits actually * used by the hardware is irrelevant -- wrapping has the effect of making * higher order bits unimportant. * * Layer Priorities * ---------------- * * The layer control register (0x20) contains 4 bits that appear to control * layer priorities. It is assumed that the 3D graphics, output by the Real3D * pixel processors independently of the tile generator, constitute their own * 'layer' and that the 2D tilemaps appear in front or behind. There may be a * specific function for each priority bit or the field may be interpreted as a * single 4-bit value denoting preset layer orders. * * Color Offsets * ------------- * * Color offsets can be applied to the final RGB color value of every pixel. * This is used for effects such as fading to a certain color, lightning (Lost * World), etc. The current best guess is that the two registers control each * pair (A/A' and B/B') of layers. The format appears to be: * * 31 0 * ???? ???? rrrr rrrr gggg gggg bbbb bbbb * * Where 'r', 'g', and 'b' appear to be signed 8-bit color offsets. Because * they exceed the color resolution of the palette, they must be scaled * appropriately. * * Color offset registers are handled in TileGen.cpp. Two palettes are computed * -- one for A/A' and another for B/B'. These are passed to the renderer. */ #include "Render2D.h" #include "Supermodel.h" #include "Shader.h" #include "Shaders2D.h" // fragment and vertex shaders #include #include /****************************************************************************** Frame Display Functions ******************************************************************************/ // Set up viewport and OpenGL state for 2D rendering (sets up blending function but disables blending) void CRender2D::Setup2D(bool isBottom) { glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // alpha of 1.0 is opaque, 0 is transparent // Disable Z-buffering glDisable(GL_DEPTH_TEST); // Clear everything if requested or just overscan areas for wide screen mode if (isBottom) { if (m_aaTarget) { glBindFramebuffer(GL_FRAMEBUFFER, m_aaTarget); // set target if needed } glClearColor(0.0, 0.0, 0.0, 0.0); glViewport (0, 0, m_totalXPixels, m_totalYPixels); glDisable (GL_SCISSOR_TEST); // scissor is enabled to fix the 2d/3d miss match problem glClear (GL_COLOR_BUFFER_BIT); // we want to clear outside the scissored areas so must disable it glEnable (GL_SCISSOR_TEST); if (m_aaTarget) { glBindFramebuffer(GL_FRAMEBUFFER, 0); // restore target if needed } } // Set up the viewport and orthogonal projection bool stretchBottom = m_config["WideBackground"].ValueAs() && isBottom; if (!stretchBottom) { glViewport(m_xOffset - m_correction, m_yOffset + m_correction, m_xPixels, m_yPixels); //Preserve aspect ratio of tile layer by constraining and centering viewport } } void CRender2D::DrawSurface(GLuint textureID) { if (m_aaTarget) { glBindFramebuffer(GL_FRAMEBUFFER, m_aaTarget); // set target if needed } m_shader.EnableShader(); glEnable (GL_BLEND); glBindVertexArray (m_vao); glActiveTexture (GL_TEXTURE0); // texture unit 0 glBindTexture (GL_TEXTURE_2D, textureID); glDrawArrays (GL_TRIANGLE_STRIP, 0, 4); glBindVertexArray (0); glDisable (GL_BLEND); m_shader.DisableShader(); if (m_aaTarget) { glBindFramebuffer(GL_FRAMEBUFFER, 0); // restore target if needed } } float CRender2D::LineToPercentStart(int lineNumber) { return lineNumber / 384.0f; } float CRender2D::LineToPercentEnd(int lineNumber) { return (lineNumber + 1) / 384.0f; } void CRender2D::BeginFrame(void) { } void CRender2D::PreRenderFrame(void) { glDisable(GL_SCISSOR_TEST); glViewport(0, 0, 496, 384); m_shaderTileGen.EnableShader(); glActiveTexture(GL_TEXTURE0); // texture unit 0 glBindTexture(GL_TEXTURE_2D, m_vramTexID); glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 512, 512, GL_RED_INTEGER, GL_UNSIGNED_INT, m_vram); glActiveTexture(GL_TEXTURE1); // texture unit 1 glBindTexture(GL_TEXTURE_2D, m_paletteTexID); glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 128, 256, GL_RED_INTEGER, GL_UNSIGNED_INT, m_vram + 0x40000); glActiveTexture(GL_TEXTURE0); // texture unit 1 glUniform1uiv(m_shaderTileGen.uniformLocMap["regs"], 32, m_regs); glBindVertexArray(m_vao); m_fboBottom.Set(); glClearColor(0, 0, 0, 0); glClear(GL_COLOR_BUFFER_BIT); glEnable(GL_BLEND); // render bottom layer for (int i = 4; i-- > 0;) { if (!IsEnabled(i)) { continue; } if (Above3D(i)) { continue; } glUniform1i(m_shaderTileGen.uniformLocMap["layerNumber"], i); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); } m_fboTop.Set(); glClear(GL_COLOR_BUFFER_BIT); // render top layer for (int i = 4; i-- > 0;) { if (!IsEnabled(i)) { continue; } if (!Above3D(i)) { continue; } glUniform1i(m_shaderTileGen.uniformLocMap["layerNumber"], i); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); } glBindVertexArray(0); m_shaderTileGen.DisableShader(); m_fboBottom.Disable(); glDisable(GL_BLEND); } void CRender2D::RenderFrameBottom(void) { Setup2D(true); DrawSurface(m_fboBottom.GetTextureID()); } void CRender2D::RenderFrameTop(void) { Setup2D(false); DrawSurface(m_fboTop.GetTextureID()); } void CRender2D::EndFrame(void) { } /****************************************************************************** Emulation Callbacks ******************************************************************************/ // Deprecated void CRender2D::WriteVRAM(unsigned addr, uint32_t data) { } /****************************************************************************** Configuration, Initialization, and Shutdown ******************************************************************************/ void CRender2D::AttachRegisters(const uint32_t* regPtr) { m_regs = regPtr; DebugLog("Render2D attached registers\n"); } void CRender2D::AttachPalette(const uint32_t* palPtr[2]) { m_palette[0] = palPtr[0]; m_palette[1] = palPtr[1]; DebugLog("Render2D attached palette\n"); } void CRender2D::AttachVRAM(const uint8_t* vramPtr) { m_vram = (uint32_t*)vramPtr; DebugLog("Render2D attached VRAM\n"); } bool CRender2D::Init(unsigned xOffset, unsigned yOffset, unsigned xRes, unsigned yRes, unsigned totalXRes, unsigned totalYRes, unsigned aaTarget) { // Resolution m_xPixels = xRes; m_yPixels = yRes; m_xOffset = xOffset; m_yOffset = yOffset; m_totalXPixels = totalXRes; m_totalYPixels = totalYRes; m_correction = (UINT32)(((yRes / 384.f) * 2) + 0.5f); // for some reason the 2d layer is 2 pixels off the 3D m_aaTarget = aaTarget; return OKAY; } CRender2D::CRender2D(const Util::Config::Node& config) : m_config(config), m_vao(0), m_vram(nullptr), m_palette{nullptr}, m_regs(nullptr) { DebugLog("Built Render2D\n"); m_shader.LoadShaders(s_vertexShaderSource, s_fragmentShaderSource); m_shader.GetUniformLocationMap("tex1"); m_shader.EnableShader(); // update uniform memory glUniform1i(m_shader.uniformLocMap["tex1"], 0); // texture unit zero m_shader.DisableShader(); m_shaderTileGen.LoadShaders(s_vertexShaderTileGen, s_fragmentShaderTileGen); m_shaderTileGen.GetUniformLocationMap("vram"); m_shaderTileGen.GetUniformLocationMap("palette"); m_shaderTileGen.GetUniformLocationMap("regs"); m_shaderTileGen.GetUniformLocationMap("layerNumber"); m_shaderTileGen.GetUniformLocationMap("lineStart"); m_shaderTileGen.GetUniformLocationMap("lineEnd"); m_shaderTileGen.EnableShader(); glUniform1i(m_shaderTileGen.uniformLocMap["vram"], 0); // texture unit 0 glUniform1i(m_shaderTileGen.uniformLocMap["palette"], 1); // texture unit 1 glUniform1f(m_shaderTileGen.uniformLocMap["lineStart"], LineToPercentStart(0)); glUniform1f(m_shaderTileGen.uniformLocMap["lineEnd"], LineToPercentEnd(383)); m_shaderTileGen.DisableShader(); glGenVertexArrays(1, &m_vao); glBindVertexArray(m_vao); // no states needed since we do it in the shader glBindVertexArray(0); glGenTextures(1, &m_vramTexID); glBindTexture(GL_TEXTURE_2D, m_vramTexID); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexImage2D(GL_TEXTURE_2D, 0, GL_R32UI, 512, 512, 0, GL_RED_INTEGER, GL_UNSIGNED_INT, nullptr); glGenTextures(1, &m_paletteTexID); glBindTexture(GL_TEXTURE_2D, m_paletteTexID); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexImage2D(GL_TEXTURE_2D, 0, GL_R32UI, 128, 256, 0, GL_RED_INTEGER, GL_UNSIGNED_INT, nullptr); glBindTexture(GL_TEXTURE_2D, 0); m_fboBottom.Create(496, 384); m_fboTop.Create(496, 384); } CRender2D::~CRender2D(void) { m_shader.UnloadShaders(); m_shaderTileGen.UnloadShaders(); if (m_vramTexID) { glDeleteTextures(1, &m_vramTexID); m_vramTexID = 0; } if (m_paletteTexID) { glDeleteTextures(1, &m_paletteTexID); m_paletteTexID = 0; } if (m_vao) { glDeleteVertexArrays(1, &m_vao); m_vao = 0; } m_fboBottom.Destroy(); m_fboTop.Destroy(); m_vram = nullptr; DebugLog("Destroyed Render2D\n"); } bool CRender2D::IsEnabled(int layerNumber) { return (m_regs[0x60 / 4 + layerNumber] & 0x80000000) > 0; } bool CRender2D::Above3D(int layerNumber) { return (m_regs[0x20 / 4] >> (8 + layerNumber)) & 0x1; }