#include "R3DShader.h" #include "Graphics/Shader.h" namespace New3D { static const char *vertexShaderBasic = // uniforms "uniform float fogIntensity;\n" "uniform float fogDensity;\n" "uniform float fogStart;\n" //outputs to fragment shader "varying float fsFogFactor;\n" "varying float fsSpecularTerm;\n" // specular light term (additive) "varying float fsViewZ;\n" "varying vec3 fsViewNormal;\n" // per vertex normal vector "void main(void)\n" "{\n" "vec3 viewVertex;\n" "viewVertex = vec3(gl_ModelViewMatrix * gl_Vertex);\n" "fsViewNormal = normalize(gl_NormalMatrix*gl_Normal);\n" "float z = length(viewVertex);\n" "fsFogFactor = clamp(fogIntensity*(fogStart + z*fogDensity), 0.0, 1.0);\n" "fsViewZ = -viewVertex.z;\n" // convert Z from GL->Real3D convention (want +Z to be further into screen) "gl_FrontColor = gl_Color;\n" "gl_TexCoord[0] = gl_MultiTexCoord0;\n" "gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;\n" "}\n"; static const char *fragmentShaderBasic = "uniform sampler2D tex1;\n" // base tex "uniform sampler2D tex2;\n" // micro tex (optional) "uniform int textureEnabled;\n" "uniform int microTexture;\n" "uniform int alphaTest;\n" "uniform int textureAlpha;\n" "uniform vec3 fogColour;\n" "uniform vec4 spotEllipse;\n" // spotlight ellipse position: .x=X position (screen coordinates), .y=Y position, .z=half-width, .w=half-height) "uniform vec2 spotRange;\n" // spotlight Z range: .x=start (viewspace coordinates), .y=limit "uniform vec3 spotColor;\n" // spotlight RGB color "uniform vec3 lighting[2];\n" // lighting state (lighting[0] = sun direction, lighting[1].x,y = diffuse, ambient intensities from 0-1.0) "uniform int lightEnable;\n" // lighting enabled (1.0) or luminous (0.0), drawn at full intensity "uniform float shininess;\n" // specular shininess (if >= 0.0) or disable specular lighting (negative) //interpolated inputs from vertex shader "varying float fsFogFactor;\n" "varying float fsSpecularTerm;\n" // specular light term (additive) "varying float fsViewZ;\n" "varying vec3 fsViewNormal;\n" // per vertex normal vector "void main()\n" "{\n" "vec4 tex1Data;\n" "vec4 colData;\n" "vec4 finalData;\n" "tex1Data = vec4(1.0, 1.0, 1.0, 1.0);\n" "if(textureEnabled==1) {\n" "tex1Data = texture2D( tex1, gl_TexCoord[0].st);\n" "if (microTexture==1) {\n" "vec4 tex2Data = texture2D( tex2, gl_TexCoord[0].st*4);\n" "tex1Data = (tex1Data+tex2Data)/2.0;\n" "}\n" "if (alphaTest==1) {\n" // does it make any sense to do this later? "if (tex1Data.a < (8.0/16.0)) {\n" "discard;\n" "}\n" "}\n" "if (textureAlpha == 0) {\n" "tex1Data.a = 1.0;\n" "}\n" "}\n" "colData = gl_Color;\n" "finalData = tex1Data * colData;\n" "if (finalData.a < (1.0/16.0)) {\n" // basically chuck out any totally transparent pixels value = 1/16 the smallest transparency level h/w supports "discard;\n" "}\n" "vec3 lightIntensity;\n" "if (lightEnable==1)\n" "{\n" "vec3 sunVector;\n" // sun lighting vector (as reflecting away from vertex) "float sunFactor;\n" // sun light projection along vertex normal (0.0 to 1.0) // Real3D -> OpenGL view space convention (TO-DO: do this outside of shader) "sunVector = lighting[0] * vec3(1.0, -1.0, -1.0);\n" // Compute diffuse factor for sunlight "sunFactor = max(dot(sunVector, fsViewNormal), 0.0);\n" // Total light intensity: sum of all components "lightIntensity = vec3(sunFactor*lighting[1].x + lighting[1].y);\n" "lightIntensity = clamp(lightIntensity,0.0,1.0);\n" "}\n" "else {\n" "lightIntensity = vec3(1.0,1.0,1.0);\n" "}\n" "finalData.rgb *= lightIntensity;\n" /* "vec2 ellipse;\n" "vec3 lightIntensity;\n" "float insideSpot;\n" // Compute spotlight and apply lighting "ellipse = (gl_FragCoord.xy - spotEllipse.xy) / spotEllipse.zw;\n" "insideSpot = dot(ellipse, ellipse);\n" "if ((insideSpot <= 1.0) && (fsViewZ >= spotRange.x) && (fsViewZtextured != m_textured1) { glUniform1i(m_locTexture1Enabled, m->textured); m_textured1 = m->textured; } if (m_dirtyMesh || m->microTexture != m_textured2) { glUniform1i(m_locTexture2Enabled, m->microTexture); m_textured2 = m->microTexture; } if (m_dirtyMesh || m->alphaTest != m_alphaTest) { glUniform1i(m_locAlphaTest, m->alphaTest); m_alphaTest = m->alphaTest; } if (m_dirtyMesh || m->textureAlpha != m_textureAlpha) { glUniform1i(m_locTextureAlpha, m->textureAlpha); m_textureAlpha = m->textureAlpha; } if (m_dirtyMesh || m->fogIntensity != m_fogIntensity) { glUniform1f(m_locFogIntensity, m->fogIntensity); m_fogIntensity = m->fogIntensity; } if (m_dirtyMesh || m->lighting != m_lightEnabled) { glUniform1i(m_locLightEnable, m->lighting); m_lightEnabled = m->lighting; } //glUniform1f(m_locShininess, 1); if (m_matDet!=MatDet::zero) { if (m_dirtyMesh || m->doubleSided != m_doubleSided) { m_doubleSided = m->doubleSided; if (m_doubleSided) { glDisable(GL_CULL_FACE); } else { glEnable(GL_CULL_FACE); } } } m_dirtyMesh = false; } void R3DShader::SetViewportUniforms(const Viewport *vp) { //didn't bother caching these, they don't get frequently called anyway glUniform1f (m_locFogDensity, vp->fogParams[3]); glUniform1f (m_locFogStart, vp->fogParams[4]); glUniform3fv(m_locFogColour, 1, vp->fogParams); glUniform3fv(m_locLighting, 2, vp->lightingParams); glUniform4fv(m_locSpotEllipse, 1, vp->spotEllipse); glUniform2fv(m_locSpotRange, 1, vp->spotRange); glUniform3fv(m_locSpotColor, 1, vp->spotColor); } void R3DShader::SetModelStates(const Model* model) { //========== MatDet test; //========== test = MatDet::notset; // happens for bad matrices with NaN if (model->determinant < 0) { test = MatDet::negative; } else if (model->determinant > 0) { test = MatDet::positive; } else if (model->determinant == 0) { test = MatDet::zero; } if (m_dirtyModel || m_matDet!=test) { switch (test) { case MatDet::negative: glCullFace(GL_FRONT); glEnable(GL_CULL_FACE); m_doubleSided = false; break; case MatDet::positive: glCullFace(GL_BACK); glEnable(GL_CULL_FACE); m_doubleSided = false; break; default: glDisable(GL_CULL_FACE); m_doubleSided = true; // basically drawing on both sides now } } m_matDet = test; m_dirtyModel = false; } } // New3D