#include "R3DShader.h" #include "Graphics/Shader.h" namespace New3D { static const char *vertexShaderR3D = R"glsl( #version 120 // uniforms uniform float fogIntensity; uniform float fogDensity; uniform float fogStart; uniform float modelScale; // attributes attribute vec4 inVertex; attribute vec3 inNormal; attribute vec2 inTexCoord; attribute vec4 inColour; attribute vec3 inFaceNormal; // used to emulate r3d culling attribute float inFixedShade; // outputs to fragment shader varying float fsFogFactor; varying vec3 fsViewVertex; varying vec3 fsViewNormal; // per vertex normal vector varying vec2 fsTexCoord; varying vec4 fsColor; varying float fsDiscard; // can't have varying bool (glsl spec) varying float fsFixedShade; float CalcBackFace(in vec3 viewVertex) { vec3 vt = viewVertex - vec3(0.0); vec3 vn = (mat3(gl_ModelViewMatrix) * inFaceNormal); // dot product of face normal with view direction return dot(vt, vn); } void main(void) { fsViewVertex = vec3(gl_ModelViewMatrix * inVertex); fsViewNormal = (mat3(gl_ModelViewMatrix) * inNormal) / modelScale; float z = -fsViewVertex.z; fsFogFactor = fogIntensity * clamp(fogStart + z * fogDensity, 0.0, 1.0); fsDiscard = CalcBackFace(fsViewVertex); fsColor = inColour; fsTexCoord = inTexCoord; fsFixedShade = inFixedShade; gl_Position = gl_ModelViewProjectionMatrix * inVertex; } )glsl"; static const char *fragmentShaderR3D = R"glsl( #version 120 uniform sampler2D tex1; // base tex uniform sampler2D tex2; // micro tex (optional) // texturing uniform bool textureEnabled; uniform bool microTexture; uniform float microTextureScale; uniform vec2 baseTexSize; uniform bool textureInverted; uniform bool textureAlpha; uniform bool alphaTest; // general uniform vec3 fogColour; uniform vec4 spotEllipse; // spotlight ellipse position: .x=X position (screen coordinates), .y=Y position, .z=half-width, .w=half-height) uniform vec2 spotRange; // spotlight Z range: .x=start (viewspace coordinates), .y=limit uniform vec3 spotColor; // spotlight RGB color uniform vec3 spotFogColor; // spotlight RGB color on fog uniform vec3 lighting[2]; // lighting state (lighting[0] = sun direction, lighting[1].x,y = diffuse, ambient intensities from 0-1.0) uniform bool lightEnabled; // lighting enabled (1.0) or luminous (0.0), drawn at full intensity uniform bool sunClamp; // not used by daytona and la machine guns uniform bool intensityClamp; // some games such as daytona and uniform bool specularEnabled; // specular enabled uniform float specularValue; // specular coefficient uniform float shininess; // specular shininess uniform float fogAttenuation; uniform float fogAmbient; uniform bool fixedShading; uniform int hardwareStep; //interpolated inputs from vertex shader varying float fsFogFactor; varying vec3 fsViewVertex; varying vec3 fsViewNormal; // per vertex normal vector varying vec4 fsColor; varying vec2 fsTexCoord; varying float fsDiscard; varying float fsFixedShade; vec4 GetTextureValue() { vec4 tex1Data = texture2D( tex1, fsTexCoord.st); if(textureInverted) { tex1Data.rgb = vec3(1.0) - vec3(tex1Data.rgb); } if (microTexture) { vec2 scale = baseTexSize/256.0; vec4 tex2Data = texture2D( tex2, fsTexCoord.st * scale * microTextureScale); tex1Data = (tex1Data+tex2Data)/2.0; } if (alphaTest) { if (tex1Data.a < (8.0/16.0)) { discard; } } if (textureAlpha == false) { tex1Data.a = 1.0; } return tex1Data; } void Step15Lighting(inout vec4 colour) { // on step 1.5 these polys seem to be effected by vpAmbient // logic is not completely understood if(hardwareStep==0x15) { if(!lightEnabled && fixedShading) { colour.rgb *= (fsFixedShade+lighting[1].x) + lighting[1].y; } } } void main() { vec4 tex1Data; vec4 colData; vec4 finalData; vec4 fogData; if(fsDiscard>=0) { discard; //emulate back face culling here } fogData = vec4(fogColour.rgb * fogAmbient, fsFogFactor); tex1Data = vec4(1.0, 1.0, 1.0, 1.0); if(textureEnabled) { tex1Data = GetTextureValue(); } colData = fsColor; Step15Lighting(colData); // no-op for step 2.0 finalData = tex1Data * colData; if (finalData.a < (1.0/16.0)) { // basically chuck out any totally transparent pixels value = 1/16 the smallest transparency level h/w supports discard; } float ellipse; ellipse = length((gl_FragCoord.xy - spotEllipse.xy) / spotEllipse.zw); ellipse = pow(ellipse, 2.0); // decay rate = square of distance from center ellipse = 1.0 - ellipse; // invert ellipse = max(0.0, ellipse); // clamp // Compute spotlight and apply lighting float enable, absExtent, d, inv_r, range; // start of spotlight enable = step(spotRange.x, -fsViewVertex.z); if (spotRange.y == 0.0) { range = 0.0; } else { absExtent = abs(spotRange.y); d = spotRange.x + absExtent + fsViewVertex.z; d = min(d, 0.0); // slope of decay function inv_r = 1.0 / (1.0 + absExtent); // inverse-linear falloff // Reference: https://imdoingitwrong.wordpress.com/2011/01/31/light-attenuation/ // y = 1 / (d/r + 1)^2 range = 1.0 / pow(d * inv_r - 1.0, 2.0); range *= enable; } float lobeEffect = range * ellipse; float lobeFogEffect = enable * ellipse; if (lightEnabled) { vec3 lightIntensity; vec3 sunVector; // sun lighting vector (as reflecting away from vertex) float sunFactor; // sun light projection along vertex normal (0.0 to 1.0) // Sun angle sunVector = lighting[0]; // Compute diffuse factor for sunlight if(fixedShading) { sunFactor = fsFixedShade; } else { sunFactor = dot(sunVector, fsViewNormal); } // Clamp ceil, fix for upscaled models without "modelScale" defined sunFactor = clamp(sunFactor,-1.0,1.0); // Optional clamping, value is allowed to be negative if(sunClamp) { sunFactor = max(sunFactor,0.0); } // Total light intensity: sum of all components lightIntensity = vec3(sunFactor*lighting[1].x + lighting[1].y); // diffuse + ambient // Upper clamp is optional, step 1.5+ games will drive brightness beyond 100% if(intensityClamp) { lightIntensity = min(lightIntensity,1.0); } lightIntensity.rgb += spotColor*lobeEffect; finalData.rgb *= lightIntensity; // for now assume fixed shading doesn't work with specular if (specularEnabled && !fixedShading) { float exponent, NdotL, specularFactor; vec4 biasIndex, expIndex, multIndex; // Always clamp floor to zero, we don't want deep black areas NdotL = max(0.0,sunFactor); expIndex = vec4(8.0, 16.0, 32.0, 64.0); multIndex = vec4(2.0, 2.0, 3.0, 4.0); biasIndex = vec4(0.95, 0.95, 1.05, 1.0); exponent = expIndex[int(shininess)] / biasIndex[int(shininess)]; specularFactor = pow(NdotL, exponent); specularFactor *= multIndex[int(shininess)]; specularFactor *= biasIndex[int(shininess)]; specularFactor *= specularValue; specularFactor *= lighting[1].x; if (colData.a < 1.0) { /// Specular hi-light affects translucent polygons alpha channel /// finalData.a = max(finalData.a, specularFactor); } finalData.rgb += vec3(specularFactor); } } // Final clamp: we need it for proper shading in dimmed light and dark ambients finalData.rgb = min(finalData.rgb, vec3(1.0)); // Spotlight on fog vec3 lSpotFogColor = spotFogColor * fogAttenuation * fogColour.rgb * lobeFogEffect; // Fog & spotlight applied finalData.rgb = mix(finalData.rgb, fogData.rgb + lSpotFogColor, fogData.a); gl_FragColor = finalData; } )glsl"; R3DShader::R3DShader(const Util::Config::Node &config) : m_config(config) { m_shaderProgram = 0; m_vertexShader = 0; m_fragmentShader = 0; Start(); // reset attributes } void R3DShader::Start() { m_textured1 = false; m_textured2 = false; m_textureAlpha = false; // use alpha in texture m_alphaTest = false; // discard fragment based on alpha (ogl does this with fixed function) m_lightEnabled = false; m_specularEnabled = false; m_layered = false; m_textureInverted = false; m_fixedShading = false; m_modelScale = 1.0f; m_shininess = 0; m_specularValue = 0; m_microTexScale = 0; m_baseTexSize[0] = 0; m_baseTexSize[1] = 0; m_dirtyMesh = true; // dirty means all the above are dirty, ie first run m_dirtyModel = true; } bool R3DShader::LoadShader(const char* vertexShader, const char* fragmentShader) { const char* vShader; const char* fShader; bool success; if (vertexShader) { vShader = vertexShader; } else { vShader = vertexShaderR3D; } if (fragmentShader) { fShader = fragmentShader; } else { fShader = fragmentShaderR3D; } success = LoadShaderProgram(&m_shaderProgram, &m_vertexShader, &m_fragmentShader, m_config["VertexShader"].ValueAs(), m_config["FragmentShader"].ValueAs(), vShader, fShader); m_locTexture1 = glGetUniformLocation(m_shaderProgram, "tex1"); m_locTexture2 = glGetUniformLocation(m_shaderProgram, "tex2"); m_locTexture1Enabled= glGetUniformLocation(m_shaderProgram, "textureEnabled"); m_locTexture2Enabled= glGetUniformLocation(m_shaderProgram, "microTexture"); m_locTextureAlpha = glGetUniformLocation(m_shaderProgram, "textureAlpha"); m_locAlphaTest = glGetUniformLocation(m_shaderProgram, "alphaTest"); m_locMicroTexScale = glGetUniformLocation(m_shaderProgram, "microTextureScale"); m_locBaseTexSize = glGetUniformLocation(m_shaderProgram, "baseTexSize"); m_locTextureInverted= glGetUniformLocation(m_shaderProgram, "textureInverted"); m_locFogIntensity = glGetUniformLocation(m_shaderProgram, "fogIntensity"); m_locFogDensity = glGetUniformLocation(m_shaderProgram, "fogDensity"); m_locFogStart = glGetUniformLocation(m_shaderProgram, "fogStart"); m_locFogColour = glGetUniformLocation(m_shaderProgram, "fogColour"); m_locFogAttenuation = glGetUniformLocation(m_shaderProgram, "fogAttenuation"); m_locFogAmbient = glGetUniformLocation(m_shaderProgram, "fogAmbient"); m_locLighting = glGetUniformLocation(m_shaderProgram, "lighting"); m_locLightEnabled = glGetUniformLocation(m_shaderProgram, "lightEnabled"); m_locSunClamp = glGetUniformLocation(m_shaderProgram, "sunClamp"); m_locIntensityClamp = glGetUniformLocation(m_shaderProgram, "intensityClamp"); m_locShininess = glGetUniformLocation(m_shaderProgram, "shininess"); m_locSpecularValue = glGetUniformLocation(m_shaderProgram, "specularValue"); m_locSpecularEnabled= glGetUniformLocation(m_shaderProgram, "specularEnabled"); m_locFixedShading = glGetUniformLocation(m_shaderProgram, "fixedShading"); m_locSpotEllipse = glGetUniformLocation(m_shaderProgram, "spotEllipse"); m_locSpotRange = glGetUniformLocation(m_shaderProgram, "spotRange"); m_locSpotColor = glGetUniformLocation(m_shaderProgram, "spotColor"); m_locSpotFogColor = glGetUniformLocation(m_shaderProgram, "spotFogColor"); m_locModelScale = glGetUniformLocation(m_shaderProgram, "modelScale"); m_locHardwareStep = glGetUniformLocation(m_shaderProgram, "hardwareStep"); return success; } GLint R3DShader::GetVertexAttribPos(const char* attrib) { return glGetAttribLocation(m_shaderProgram, attrib); // probably should cache this but only called 1x per frame anyway } void R3DShader::SetShader(bool enable) { if (enable) { glUseProgram(m_shaderProgram); Start(); } else { glUseProgram(0); } } void R3DShader::SetMeshUniforms(const Mesh* m) { if (m == nullptr) { return; // sanity check } if (m_dirtyMesh) { glUniform1i(m_locTexture1, 0); glUniform1i(m_locTexture2, 1); } if (m_dirtyMesh || m->textured != m_textured1) { glUniform1i(m_locTexture1Enabled, m->textured); m_textured1 = m->textured; } if (m_dirtyMesh || m->microTexture != m_textured2) { glUniform1i(m_locTexture2Enabled, m->microTexture); m_textured2 = m->microTexture; } if (m_dirtyMesh || m->microTextureScale != m_microTexScale) { glUniform1f(m_locMicroTexScale, m->microTextureScale); m_microTexScale = m->microTextureScale; } if (m_dirtyMesh || m->microTexture && (m_baseTexSize[0] != m->width || m_baseTexSize[1] != m->height)) { m_baseTexSize[0] = (float)m->width; m_baseTexSize[1] = (float)m->height; glUniform2fv(m_locBaseTexSize, 1, m_baseTexSize); } if (m_dirtyMesh || m->inverted != m_textureInverted) { glUniform1i(m_locTextureInverted, m->inverted); m_textureInverted = m->inverted; } if (m_dirtyMesh || m->alphaTest != m_alphaTest) { glUniform1i(m_locAlphaTest, m->alphaTest); m_alphaTest = m->alphaTest; } if (m_dirtyMesh || m->textureAlpha != m_textureAlpha) { glUniform1i(m_locTextureAlpha, m->textureAlpha); m_textureAlpha = m->textureAlpha; } if (m_dirtyMesh || m->fogIntensity != m_fogIntensity) { glUniform1f(m_locFogIntensity, m->fogIntensity); m_fogIntensity = m->fogIntensity; } if (m_dirtyMesh || m->lighting != m_lightEnabled) { glUniform1i(m_locLightEnabled, m->lighting); m_lightEnabled = m->lighting; } if (m_dirtyMesh || m->shininess != m_shininess) { glUniform1f(m_locShininess, m->shininess); m_shininess = m->shininess; } if (m_dirtyMesh || m->specular != m_specularEnabled) { glUniform1i(m_locSpecularEnabled, m->specular); m_specularEnabled = m->specular; } if (m_dirtyMesh || m->specularValue != m_specularValue) { glUniform1f(m_locSpecularValue, m->specularValue); m_specularValue = m->specularValue; } if (m_dirtyMesh || m->fixedShading != m_fixedShading) { glUniform1i(m_locFixedShading, m->fixedShading); m_fixedShading = m->fixedShading; } if (m_dirtyMesh || m->layered != m_layered) { m_layered = m->layered; if (m_layered) { glEnable(GL_STENCIL_TEST); } else { glDisable(GL_STENCIL_TEST); } } m_dirtyMesh = false; } void R3DShader::SetViewportUniforms(const Viewport *vp) { //didn't bother caching these, they don't get frequently called anyway glUniform1f (m_locFogDensity, vp->fogParams[3]); glUniform1f (m_locFogStart, vp->fogParams[4]); glUniform3fv(m_locFogColour, 1, vp->fogParams); glUniform1f (m_locFogAttenuation, vp->fogParams[5]); glUniform1f (m_locFogAmbient, vp->fogParams[6]); glUniform3fv(m_locLighting, 2, vp->lightingParams); glUniform1i (m_locSunClamp, vp->sunClamp); glUniform1i (m_locIntensityClamp, vp->intensityClamp); glUniform4fv(m_locSpotEllipse, 1, vp->spotEllipse); glUniform2fv(m_locSpotRange, 1, vp->spotRange); glUniform3fv(m_locSpotColor, 1, vp->spotColor); glUniform3fv(m_locSpotFogColor, 1, vp->spotFogColor); glUniform1i (m_locHardwareStep, vp->hardwareStep); } void R3DShader::SetModelStates(const Model* model) { if (m_dirtyModel || model->scale != m_modelScale) { glUniform1f(m_locModelScale, model->scale); m_modelScale = model->scale; } m_dirtyModel = false; } } // New3D