/**
 ** Supermodel
 ** A Sega Model 3 Arcade Emulator.
 ** Copyright 2011-2021 Bart Trzynadlowski, Nik Henson, Ian Curtis,
 **                     Harry Tuttle, and Spindizzi
 **
 ** This file is part of Supermodel.
 **
 ** Supermodel is free software: you can redistribute it and/or modify it under
 ** the terms of the GNU General Public License as published by the Free
 ** Software Foundation, either version 3 of the License, or (at your option)
 ** any later version.
 **
 ** Supermodel is distributed in the hope that it will be useful, but WITHOUT
 ** ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 ** FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 ** more details.
 **
 ** You should have received a copy of the GNU General Public License along
 ** with Supermodel.  If not, see <http://www.gnu.org/licenses/>.
 **/

/*
 * Model3.cpp
 *
 * Implementation of the CModel3 class: a complete Model 3 machine.
 *
 * To-Do List
 * ----------
 *  - Save state format has changed slightly. No longer need dmaUnknownRegister
 *    in Real3D.cpp and security board-related variable was added to Model 3
 *    state. PowerPC timing variables have changed. Before 0.3a release,
 *    important to change format version #.
 *  - Remove FLIPENDIAN32() macros and have little endian devices flip data
 *    around themselves. Bus standard should be big endian.
 *  - ROM sets should probably be handled with a class that manages ROM
 *    loading, the game list, as well as ROM patching
 *  - Wrap up CPU emulation inside a class.
 *  - Update the to-do list! I forgot lots of other stuff here :)
 *
 * PowerPC Address Map (may be slightly out of date/incomplete)
 * -------------------
 * 00000000-007FFFFF  RAM
 * 84000000-8400003F  Real3D Status Registers
 * 88000000-88000007  Real3D Command Port
 * 8C000000-8C3FFFFF  Real3D Culling RAM (Low)
 * 8E000000-8E0FFFFF  Real3D Culling RAM (High)
 * 90000000-9000000B  Real3D VROM Texture Port
 * 94000000-940FFFFF  Real3D Texture FIFO
 * 98000000-980FFFFF  Real3D Polygon RAM
 * C0000000-C000FFFF  Netboard Shared RAM (Step 1.5+)
 * C0010000-C00101FF  Netboard Registers (Step 1.5+)
 * C0020000-C002FFFF  Netboard Program RAM (Step 1.5+)
 * C0000000-C00000FF  SCSI (Step 1.x)
 * C1000000-C10000FF  SCSI (Step 1.x) (Lost World expects it here)
 * C2000000-C20000FF  Real3D DMA (Step 2.x)
 * F0040000-F004003F  Input (Controls) Registers
 * F0080000-F0080007  Sound Board Registers
 * F00C0000-F00DFFFF  Backup RAM
 * F0100000-F010003F  System Registers
 * F0140000-F014003F  Real-Time Clock
 * F0180000-F019FFFF  Security Board RAM
 * F01A0000-F01A003F  Security Board Registers
 * F0800CF8-F0800CFF  MPC105 CONFIG_ADDR (Step 1.x)
 * F0C00CF8-F0800CFF  MPC105 CONFIG_DATA (Step 1.x)
 * F1000000-F10F7FFF  Tile Generator Pattern Table
 * F10F8000-F10FFFFF  Tile Generator Name Table
 * F1100000-F111FFFF  Tile Generator Palette
 * F1180000-F11800FF  Tile Generator Registers
 * F8FFF000-F8FFF0FF  MPC105 (Step 1.x) or MPC106 (Step 2.x) Registers
 * F9000000-F90000FF  NCR 53C810 Registers (Step 1.x?)
 * FEC00000-FEDFFFFF  MPC106 CONFIG_ADDR (Step 2.x)
 * FEE00000-FEFFFFFF  MPC106 CONFIG_DATA (Step 2.x)
 * FF000000-FF7FFFFF  Banked CROM (CROMxx)
 * FF800000-FFFFFFFF  Fixed CROM
 *
 * Endianness
 * ----------
 * We assume a little endian machine and so for speed, PowerPC RAM and ROM
 * regions are byte reversed, which means that aligned words can be read and
 * written without any conversion. Problems arise when the PowerPC accesses
 * little endian devices, like the tile generator, MPC10x, or Real3D. Then, the
 * access must be carried out carefully one byte at a time or by manually byte
 * reversing first (because the PowerPC will already have byte reversed it).
 *
 * System Registers
 * ----------------
 *
 * F0100014: IRQ Enable
 *   7   6   5   4   3   2   1   0
 * +---+---+---+---+---+---+---+---+
 * | ? |SND| ? |NET|VGP|VDP|VBL|VD0|
 * +---+---+---+---+---+---+---+---+
 *    SND   SCSP (sound)
 *    NET   Network
 *    VGP   GP done (geometry processing)
 *    VDP   DP done (display processing)
 *    VBL   VBlank start
 *    VD0   Unknown video-related
 *    0 = Disable, 1 = Enable
 *
 * Game Buttons
 * ------------
 *
 * For further information, see ReadInputs().
 *
 * Offset 0x04, bank 0:
 *
 *    7   6   5   4   3   2   1   0
 *  +---+---+---+---+---+---+---+---+
 *  | ? | ? |ST2|ST1|SVA|TSA|CN2|CN1|
 *  +---+---+---+---+---+---+---+---+
 *    CNx   Coin 1, Coin 2
 *    TSA   Test Button A
 *    SVA   Service Button A
 *    STx   Start 1, Start 2
 *
 * Offset 0x04, bank 1:
 *
 *    7   6   5   4   3   2   1   0
 *  +---+---+---+---+---+---+---+---+
 *  |TSB|SVB|EEP| ? | ? | ? | ? | ? |
 *  +---+---+---+---+---+---+---+---+
 *    EEP   Mapped to EEPROM (values written here are ignored)
 *    SVB   Service Button B
 *    TSB   Test Button B
 *
 * Offset 0x08:
 *
 *    7   6   5   4   3   2   1   0
 *  +---+---+---+---+---+---+---+---+
 *  |G27|G26|G25|G24|G23|G22|G21|G20|
 *  +---+---+---+---+---+---+---+---+
 *    G2x   Game-specific
 *
 * Offset 0x0C:
 *
 *    7   6   5   4   3   2   1   0
 *  +---+---+---+---+---+---+---+---+
 *  |G37|G36|G35|G34|G33|G32|G31|G30|
 *  +---+---+---+---+---+---+---+---+
 *    G3x   Game-specific
 *
 * Game-specific buttons:
 *
 *  Scud Race:
 *    G27   ---
 *    G26   Shift 2 when combined w/ G25, Shift 1 when combined w/ G24
 *    G25   Shift 4
 *    G24   Shift 3
 *    G23   VR4 Green
 *    G22   VR3 Yellow
 *    G21   VR2 Blue
 *    G20   VR1 Red
 *
 *  Virtua Fighter 3, Fighting Vipers 2:
 *    G27   Right
 *    G26   Left
 *    G25   Down
 *    G24   Up
 *    G23   Punch
 *    G22   Kick
 *    G21   Guard
 *    G20   Escape (VF3 only)
 *
 *  Sega Rally 2:
 *    G21   Hand Brake
 *    G20   View Change
 *
 *  Lost World, LA Machineguns:
 *    G20   Gun trigger
 *
 *  Star Wars Trilogy:
 *    G20   Event button
 *    G25   Trigger
 *
 *  Virtual On 2:
 *    G27   Left Lever Left
 *    G26   Left Lever Right
 *    G25   Left Lever Up
 *    G24   Left Lever Down
 *    G23   ---
 *    G22   ---
 *    G21   Left Turbo
 *    G20   Left Shot Trigger
 *    G37   Right Lever Left
 *    G36   Right Lever Right
 *    G35   Right Lever Up
 *    G34   Right Lever Down
 *    G33   ---
 *    G32   ---
 *    G31   Right Turbo
 *    G30   Right Shot Trigger
 *
 * Misc. Notes
 * -----------
 *
 * daytona2:
 *  - Base address of program in CROM: 0x600000
 *  - 0x10019E is the location in RAM which contains link type.
 *  - Region menu can be accessed by entering test mode, holding start, and
 *    pressing: green, green, blue, yellow, red, yellow, blue
 *   (VR4,4,2,3,1,3,2).
 *
 * magtruck:
 *    Found a way to unlock region in Magical truck
 *    If Midi data port returns 0, magtruck is locked to japan region
 *    if Midi data port returns 1, magtruck region can be changed to export, usa, australian
 *    We decided to make a rom patch instead of introducing a specific config to allow the region to be set
 *    Reminder : to change region in magtruck, use the region menu code
 *               enter Service menu with Test, then Start P1, Start P1, Service, Start P1, Service, Test (default keys : 6 then 1 1 5 1 5 6)
 *    note : rom patch is active by default, comment the patch in games.xml if you want Japan region
 *
 */

#include "Model3.h"

#include <new>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include "Supermodel.h"
#include "DriveBoard/BillBoard.h"
#include "DriveBoard/JoystickBoard.h"
#include "DriveBoard/SkiBoard.h"
#include "DriveBoard/WheelBoard.h"
#include "Game.h"
#include "ROMSet.h"
#ifdef NET_BOARD
#include "Network/NetBoard.h"
#include "Network/SimNetBoard.h"
#endif // NET_BOARD
#include "OSD/Audio.h"
#include "OSD/Video.h"
#include "Util/Format.h"
#include "Util/ByteSwap.h"
#include <functional>
#include <set>
#include <iostream>
#include <algorithm>

/******************************************************************************
 Model 3 Inputs

 Game controls. The EEPROM is mapped here as well.
******************************************************************************/

UINT8 CModel3::ReadInputs(unsigned reg)
{
  UINT8 adc[8];
  UINT8 data;
  reg &= 0x3F;
  switch (reg)
  {
  case 0x00:  // input bank
    return inputBank;

  case 0x04:  // current input bank

    data = 0xFF;

    if ((inputBank&1) == 0)
    {
      data &= ~(Inputs->coin[0]->value);        // Coin 1
      data &= ~(Inputs->coin[1]->value<<1);     // Coin 2
      data &= ~(Inputs->test[0]->value<<2);     // Test A
      data &= ~(Inputs->service[0]->value<<3);  // Service A
      data &= ~(Inputs->start[0]->value<<4);    // Start 1
      data &= ~(Inputs->start[1]->value<<5);    // Start 2
    }
    else
    {
      data &= ~(Inputs->service[1]->value<<6);  // Service B
      data &= ~(Inputs->test[1]->value<<7);     // Test B
      data = (data&0xDF)|(EEPROM.Read()<<5);    // bank 1 contains EEPROM data bit
    }

    if ((m_game.inputs & Game::INPUT_SKI))
    {
      if ((inputBank&1) == 0)
      {
        data &= ~(Inputs->skiPollLeft->value<<5);
        data &= ~(Inputs->skiSelect1->value<<6);
        data &= ~(Inputs->skiSelect2->value<<7);
        data &= ~(Inputs->skiSelect3->value<<4);
      }
    }

    return data;

  case 0x08:  // game-specific inputs

    data = 0xFF;

    if ((m_game.inputs & Game::INPUT_SKI))
    {
      data &= ~(Inputs->skiPollRight->value<<0);
    }

    if ((m_game.inputs & Game::INPUT_JOYSTICK1))
    {
      data &= ~(Inputs->up[0]->value<<5);     // P1 Up
      data &= ~(Inputs->down[0]->value<<4);   // P1 Down
      data &= ~(Inputs->left[0]->value<<7);   // P1 Left
      data &= ~(Inputs->right[0]->value<<6);  // P1 Right
    }

    if ((m_game.inputs & Game::INPUT_FIGHTING))
    {
      data &= ~(Inputs->escape[0]->value<<3); // P1 Escape
      data &= ~(Inputs->guard[0]->value<<2);  // P1 Guard
      data &= ~(Inputs->kick[0]->value<<1);   // P1 Kick
      data &= ~(Inputs->punch[0]->value<<0);  // P1 Punch
    }

    if ((m_game.inputs & Game::INPUT_SPIKEOUT))
    {
      data &= ~(Inputs->shift->value<<2);     // Shift
      data &= ~(Inputs->beat->value<<0);      // Beat
      data &= ~(Inputs->charge->value<<1);    // Charge
      data &= ~(Inputs->jump->value<<3);      // Jump
    }

    if ((m_game.inputs & Game::INPUT_SOCCER))
    {
      data &= ~(Inputs->shortPass[0]->value<<2);  // P1 Short Pass
      data &= ~(Inputs->longPass[0]->value<<0);   // P1 Long Pass
      data &= ~(Inputs->shoot[0]->value<<1);      // P1 Shoot
    }

    if ((m_game.inputs & Game::INPUT_VR4))
    {
      data &= ~(Inputs->vr[0]->value<<0); // VR1 Red
      data &= ~(Inputs->vr[1]->value<<1); // VR2 Blue
      data &= ~(Inputs->vr[2]->value<<2); // VR3 Yellow
      data &= ~(Inputs->vr[3]->value<<3); // VR4 Green
    }

    if ((m_game.inputs & Game::INPUT_VIEWCHANGE))
    {
      // Harley is wired slightly differently
      if ((m_game.inputs & Game::INPUT_HARLEY))
        data &= ~(Inputs->viewChange->value<<1);  // View change
      else
        data &= ~(Inputs->viewChange->value<<0);  // View change
    }

    if ((m_game.inputs & Game::INPUT_SHIFT4))
    {
      if (Inputs->gearShift4->value == 2)       // Shift 2
        data &= ~0x60;
      else if (Inputs->gearShift4->value == 4)  // Shift 4
        data &= ~0x20;
      if (Inputs->gearShift4->value == 1)       // Shift 1
        data &= ~0x50;
      else if (Inputs->gearShift4->value == 3)  // Shift 3
        data &= ~0x10;
    }

    if ((m_game.inputs & Game::INPUT_SHIFTUPDOWN))
    {
      // Harley is wired slightly differently
      if ((m_game.inputs & Game::INPUT_HARLEY))
      {
        if (Inputs->gearShiftUp->value)         // Shift up
          data &= ~0x20;
        else if (Inputs->gearShiftDown->value)  // Shift down
          data &= ~0x10;
      }
      else
      {
        if (Inputs->gearShiftUp->value)         // Shift up
          data &= ~0x50;
        else if (Inputs->gearShiftDown->value)  // Shift down
          data &= ~0x60;
      }
    }

    if ((m_game.inputs & Game::INPUT_HANDBRAKE))
      data &= ~(Inputs->handBrake->value<<1);   // Hand brake

    if ((m_game.inputs & Game::INPUT_HARLEY))
      data &= ~(Inputs->musicSelect->value<<0); // Music select

    if ((m_game.inputs & Game::INPUT_GUN1))
      data &= ~(Inputs->trigger[0]->value<<0);  // P1 Trigger

    if ((m_game.inputs & Game::INPUT_ANALOG_JOYSTICK))
    {
      data &= ~(Inputs->analogJoyTrigger1->value<<5); // Trigger 1
      data &= ~(Inputs->analogJoyTrigger2->value<<4); // Trigger 2
      data &= ~(Inputs->analogJoyEvent1->value<<0);   // Event Button 1
      data &= ~(Inputs->analogJoyEvent2->value<<1);   // Event Button 2
    }

    if ((m_game.inputs & Game::INPUT_TWIN_JOYSTICKS)) // First twin joystick
    {
      /*
       * Process left joystick inputs first
       */

      // Shot trigger and Turbo
      data &= ~(Inputs->twinJoyShot1->value<<0);
      data &= ~(Inputs->twinJoyTurbo1->value<<1);

      // Stick
      data &= ~(Inputs->twinJoyLeft1->value<<7);
      data &= ~(Inputs->twinJoyRight1->value<<6);
      data &= ~(Inputs->twinJoyUp1->value<<5);
      data &= ~(Inputs->twinJoyDown1->value<<4);

      /*
       * Next, process twin joystick macro inputs (higher level inputs
       * that map to actions on both joysticks simultaneously).
       */

      /*
       * Forward/reverse/turn are mutually exclusive.
       *
       * Turn Left:   1D 2U
       * Turn Right:  1U 2D
       * Forward:     1U 2U
       * Reverse:     1D 2D
       */
      if (Inputs->twinJoyTurnLeft->value)
        data &= ~0x10;
      else if (Inputs->twinJoyTurnRight->value)
        data &= ~0x20;
      else if (Inputs->twinJoyForward->value)
        data &= ~0x20;
      else if (Inputs->twinJoyReverse->value)
        data &= ~0x10;

      /*
       * Strafe/crouch/jump are mutually exclusive.
       *
       * Strafe Left:   1L 2L
       * Strafe Right:  1R 2R
       * Jump:          1L 2R
       * Crouch:        1R 2L
       */
      if (Inputs->twinJoyStrafeLeft->value)
        data &= ~0x80;
      else if (Inputs->twinJoyStrafeRight->value)
        data &= ~0x40;
      else if (Inputs->twinJoyJump->value)
        data &= ~0x80;
      else if (Inputs->twinJoyCrouch->value)
        data &= ~0x40;
    }

    if ((m_game.inputs & Game::INPUT_ANALOG_GUN1))
    {
      data &= ~(Inputs->analogTriggerLeft[0]->value<<0);
      data &= ~(Inputs->analogTriggerRight[0]->value<<1);
    }

    if ((m_game.inputs & Game::INPUT_MAGTRUCK))
      data &= ~(Inputs->magicalPedal1->value << 0);

    if ((m_game.inputs & Game::INPUT_FISHING))
    {
      if (m_game.name == "getbassur")
      {
        // bass fishing
        data &= ~(Inputs->fishingCast->value << 0);
        data &= ~(Inputs->fishingSelect->value << 1);
      }
      else
      {
        // get bass fishing
        data &= ~(!Inputs->fishingCast->value << 4);
        data &= ~(!Inputs->fishingSelect->value << 5);
      }
    }
    return data;

  case 0x10: // Drive board
      return OutputRegister[0];
  case 0x14: // Lamps
      return OutputRegister[1];

  case 0x0C:  // game-specific inputs

    data = 0xFF;

    if (DriveBoard->IsAttached() && DriveBoard->GetType() != Game::DRIVE_BOARD_BILLBOARD)
    {
      // If driveboard is set as billboard, don't read BillBoard reg (no inputs)
      data = DriveBoard->Read();
    }

    if ((m_game.inputs & Game::INPUT_JOYSTICK2))
    {
      data &= ~(Inputs->up[1]->value<<5);     // P2 Up
      data &= ~(Inputs->down[1]->value<<4);   // P2 Down
      data &= ~(Inputs->left[1]->value<<7);   // P2 Left
      data &= ~(Inputs->right[1]->value<<6);  // P2 Right
    }

    if ((m_game.inputs & Game::INPUT_FIGHTING))
    {
      data &= ~(Inputs->escape[1]->value<<3); // P2 Escape
      data &= ~(Inputs->guard[1]->value<<2);  // P2 Guard
      data &= ~(Inputs->kick[1]->value<<1);   // P2 Kick
      data &= ~(Inputs->punch[1]->value<<0);  // P2 Punch
    }

    if ((m_game.inputs & Game::INPUT_SOCCER))
    {
      data &= ~(Inputs->shortPass[1]->value<<2);  // P2 Short Pass
      data &= ~(Inputs->longPass[1]->value<<0);   // P2 Long Pass
      data &= ~(Inputs->shoot[1]->value<<1);      // P2 Shoot
    }

    if ((m_game.inputs & Game::INPUT_TWIN_JOYSTICKS)) // Second twin joystick (see register 0x08 for comments)
    {

      data &= ~(Inputs->twinJoyShot2->value<<0);
      data &= ~(Inputs->twinJoyTurbo2->value<<1);

      data &= ~(Inputs->twinJoyLeft2->value<<7);
      data &= ~(Inputs->twinJoyRight2->value<<6);
      data &= ~(Inputs->twinJoyUp2->value<<5);
      data &= ~(Inputs->twinJoyDown2->value<<4);

      if (Inputs->twinJoyTurnLeft->value)
        data &= ~0x20;
      else if (Inputs->twinJoyTurnRight->value)
        data &= ~0x10;
      else if (Inputs->twinJoyForward->value)
        data &= ~0x20;
      else if (Inputs->twinJoyReverse->value)
        data &= ~0x10;

      if (Inputs->twinJoyStrafeLeft->value)
        data &= ~0x80;
      else if (Inputs->twinJoyStrafeRight->value)
        data &= ~0x40;
      else if (Inputs->twinJoyJump->value)
        data &= ~0x40;
      else if (Inputs->twinJoyCrouch->value)
        data &= ~0x80;
    }

    if ((m_game.inputs & Game::INPUT_GUN2))
      data &= ~(Inputs->trigger[1]->value<<0);  // P2 Trigger

    if ((m_game.inputs & Game::INPUT_ANALOG_GUN2))
    {
      data &= ~(Inputs->analogTriggerLeft[1]->value<<0);
      data &= ~(Inputs->analogTriggerRight[1]->value<<1);
    }

    if ((m_game.inputs & Game::INPUT_MAGTRUCK))
      data &= ~(Inputs->magicalPedal2->value << 0);

    return data;

  case 0x18:         // swtrilgy and getbass. Remove IO board error on getbass. Not sure, but may be related to device feedback ?
      data = 0x7f;   // Note : when this returned value is wrong, there is a side effect on Ocean Hunter game, a sort of 3d interlaced effect
      if (m_game.name == "bassdx" || m_game.name == "getbassdx" || m_game.name == "getbass")  // Prevent I/O erreur after a while (related to tension)
      {
          data = 0x01;
      }
      return data;

  case 0x2C:  // Serial FIFO 1
    return serialFIFO1;

  case 0x30:  // Serial FIFO 2
    return serialFIFO2;

  case 0x34:  // Serial FIFO full/empty flags
    if (m_game.inputs & (Game::INPUT_GUN1 | Game::INPUT_GUN2)) {
      return 0x0C;
    }
    else {
      return 0;
    }

  case 0x3C:  // ADC

    // Load ADC channels with input data
    memset(adc, 0, sizeof(adc));
    if ((m_game.inputs & Game::INPUT_VEHICLE))
    {
      adc[0] = (UINT8)Inputs->steering->value;
      adc[1] = (UINT8)Inputs->accelerator->value;
      adc[2] = (UINT8)Inputs->brake->value;
      if ((m_game.inputs & Game::INPUT_HARLEY))
        adc[3] = (UINT8)Inputs->rearBrake->value;
    }

    if ((m_game.inputs & Game::INPUT_ANALOG_JOYSTICK))
    {
      adc[0] = (UINT8)Inputs->analogJoyY->value;
      adc[1] = (UINT8)Inputs->analogJoyX->value;
    }

    if (m_game.inputs & (Game::INPUT_ANALOG_GUN1 | Game::INPUT_ANALOG_GUN2))
    {
      adc[0] = (UINT8)Inputs->analogGunX[0]->value;
      adc[2] = (UINT8)Inputs->analogGunY[0]->value;
      adc[1] = (UINT8)Inputs->analogGunX[1]->value;
      adc[3] = (UINT8)Inputs->analogGunY[1]->value;

  	  // Unclear why this is necessary or how to cleanly fix it, so I'm
  	  // disabling it but leaving it here for future reference. The proper fix is
  	  // probably to allow users to define inverted controls for this game only,
  	  // which means the input system must support loading per-game config (not
  	  // all analog_gun games require axis inversion to be playable).
	  if (m_game.name == "lostwsga" || m_game.name == "lostwsgo")
	  { // to do, not a string compare
        adc[0] =       (UINT8)Inputs->analogGunX[0]->value; // order is different for some reason in lost world
        adc[1] = 255 - (UINT8)Inputs->analogGunY[0]->value; // why are values inverted? is this the wrong place to fix this
        adc[2] =       (UINT8)Inputs->analogGunX[1]->value;
        adc[3] = 255 - (UINT8)Inputs->analogGunY[1]->value;
      }
    }

    if ((m_game.inputs & Game::INPUT_SKI))
    {
      adc[0] = (UINT8)Inputs->skiY->value;
      adc[1] = (UINT8)Inputs->skiX->value;
    }

    if ((m_game.inputs & Game::INPUT_MAGTRUCK))
    {
      adc[0] = uint8_t(Inputs->magicalLever1->value);
      adc[1] = uint8_t(Inputs->magicalLever2->value);
    }

    if ((m_game.inputs & Game::INPUT_FISHING))
    {
      adc[0] = uint8_t(Inputs->fishingRodY->value);
      adc[1] = uint8_t(Inputs->fishingRodX->value);
      adc[2] = uint8_t(Inputs->fishingTension->value); // get bass fishing only : Tension Sensor ?
      adc[3] = uint8_t(Inputs->fishingReel->value);
      adc[5] = uint8_t(Inputs->fishingStickX->value);
      adc[4] = uint8_t(Inputs->fishingStickY->value);
    }

    // Read out appropriate channel
    data = adc[adcChannel&7];
    ++adcChannel;
    return data;

  default:
    break;
  }

  return 0xFF;  // controls are active low
}

void CModel3::WriteInputs(unsigned reg, UINT8 data)
{
  switch (reg&0x3F)
  {
  case 0:
    EEPROM.Write((data>>6)&1,(data>>7)&1,(data>>5)&1);
    inputBank = data;
    break;

  case 0x10:  // Drive board
    if (DriveBoard->IsAttached())
      DriveBoard->Write(data);
    if (NULL != Outputs) // TODO - check gameInputs
      Outputs->SetValue(OutputRawDrive, data);
    OutputRegister[0] = data;
    break;

  case 0x14:  // Lamp outputs (Daytona/Scud Race/Sega Rally/Le Mans 24)
    if (NULL != Outputs) // TODO - check gameInputs
    {
      Outputs->SetValue(OutputLampStart, !!(data&0x04));
      Outputs->SetValue(OutputLampView1, !!(data&0x08));
      Outputs->SetValue(OutputLampView2, !!(data&0x10));
      Outputs->SetValue(OutputLampView3, !!(data&0x20));
      Outputs->SetValue(OutputLampView4, !!(data&0x40));
      Outputs->SetValue(OutputLampLeader, !!(data&0x80));
      Outputs->SetValue(OutputRawLamps, data);
    }
    OutputRegister[1] = data;
    break;

  case 0x24:  // Serial FIFO 1
    switch (data) // Command
    {
    case 0x00:    // Light gun register select
      gunReg = serialFIFO2;
      break;
    case 0x87:    // Read light gun register
      serialFIFO1 = 0;  // clear serial FIFO 1
      serialFIFO2 = 0;
      if ((m_game.inputs & Game::INPUT_GUN1)||(m_game.inputs & Game::INPUT_GUN2))
      {
        switch (gunReg)
        {
        case 0: // Player 1 gun Y (low 8 bits)
          serialFIFO2 = Inputs->gunY[0]->value&0xFF;
          break;
        case 1: // Player 1 gun Y (high 2 bits)
          serialFIFO2 = (Inputs->gunY[0]->value>>8)&3;
          break;
        case 2: // Player 1 gun X (low 8 bits)
          serialFIFO2 = Inputs->gunX[0]->value&0xFF;
          break;
        case 3: // Player 1 gun X (high 2 bits)
          serialFIFO2 = (Inputs->gunX[0]->value>>8)&3;
          break;
        case 4: // Player 2 gun Y (low 8 bits)
          serialFIFO2 = Inputs->gunY[1]->value&0xFF;
          break;
        case 5: // Player 2 gun Y (high 2 bits)
          serialFIFO2 = (Inputs->gunY[1]->value>>8)&3;
          break;
        case 6: // Player 2 gun X (low 8 bits)
          serialFIFO2 = Inputs->gunX[1]->value&0xFF;
          break;
        case 7: // Player 2 gun X (high 2 bits)
          serialFIFO2 = (Inputs->gunX[1]->value>>8)&3;
          break;
        case 8: // Off-screen indicator (bit 0 = player 1, bit 1 = player 2, set indicates off screen)
          serialFIFO2 = (Inputs->trigger[1]->offscreenValue<<1)|Inputs->trigger[0]->offscreenValue;
          break;
        default:
          DebugLog("Unknown gun register: %X\n", gunReg);
          break;
        }
      }
      break;
    default:
      DebugLog("Uknown command to serial FIFO: %02X\n", data);
      break;
    }
    break;
  case 0x28:  // Serial FIFO 2
    serialFIFO2 = data;
    break;
  case 0x3C:
    adcChannel = data&7;
    break;
  default:
    break;
  }
  //printf("Controls: %X=%02X\n", reg, data);
}


/******************************************************************************
 Model 3 Security Device

 The security device is present in some games. Virtual On and Dirt Devils read
 tile pattern data from it. Spikeout calls a routine at PC=0x6FAC8 that writes/
 reads the security device and, if the return value in R3 is 0, prints "ILLEGAL
 ROM" and locks the game. Our habit of returning all 1's for unknown reads
 seems to help avoid this.
******************************************************************************/

uint16_t CModel3::ReadSecurityRAM(uint32_t addr)
{
  if (addr < 0x8000)
    return (*(uint32_t *) &securityRAM[addr * 4]) >> 16;
  return 0;
}

UINT32 CModel3::ReadSecurity(unsigned reg)
{
  switch (reg)
  {
  case 0x00:  // Status
    return 0;
  case 0x1C:  // Data
    if (m_securityFirstRead)
    {
      m_securityFirstRead = false;
      return 0xFFFF0000;
    }
    else
    {
      uint8_t *base_ptr;
      return m_cryptoDevice.Decrypt(&base_ptr) << 16;
    }
  default:
    DebugLog("Security read: reg=%X\n", reg);
    break;
  }

  return 0xFFFFFFFF;
}

void CModel3::WriteSecurity(unsigned reg, UINT32 data)
{
  switch (reg)
  {
  case 0x10:
  case 0x14:
    m_cryptoDevice.SetAddressLow(0);
    m_cryptoDevice.SetAddressHigh(0);
    m_securityFirstRead = true;
    break;
  case 0x18:
  {
    uint16_t subKey = data >> 16;
    subKey = ((subKey & 0xFF00) >> 8) | ((subKey & 0x00FF) << 8);
    m_cryptoDevice.SetSubKey(subKey);
    break;
  }
  default:
    DebugLog("Security write: reg=%X, data=%08X (PC=%08X, LR=%08X)\n", reg, data, ppc_get_pc(), ppc_get_lr());
    break;
  }
}


/******************************************************************************
 PCI Devices

 Unknown PCI devices are handled here.
******************************************************************************/

UINT32 CModel3::ReadPCIConfigSpace(unsigned device, unsigned reg, unsigned bits, unsigned offset)
{
  if ((bits==8) || (bits==16))
  {
    DebugLog("Model 3: %d-bit PCI read request for reg=%02X\n", bits, reg);
    return 0;
  }

  switch (device)
  {
  case 16:  // Used by Daytona 2
    switch (reg)
    {
    case 0: // PCI vendor and device ID
      return 0x182711DB;
    default:
      break;
    }
  default:
    break;
  }

  DebugLog("Model 3: PCI %d-bit write request for device=%d, reg=%02X\n", bits, device, reg);
  return 0;
}

void CModel3::WritePCIConfigSpace(unsigned device, unsigned reg, unsigned bits, unsigned offset, UINT32 data)
{
  DebugLog("Model 3: PCI %d-bit write request for device=%d, reg=%02X, data=%08X\n", bits, device, reg, data);
}


/******************************************************************************
 Model 3 System Registers

 NOTE: Different modules that generate IRQs, like the tilegen, Real3D, and
 SCSP, should each call IRQ.Assert() on their own.
******************************************************************************/

// Set the CROM bank index (active low logic)
void CModel3::SetCROMBank(unsigned idx)
{
  cromBankReg = idx;
  idx = (~idx) & 0xF;
  cromBank = &crom[0x800000 + (idx*0x800000)];
  DebugLog("CROM bank setting: %d (%02X), PC=%08X, LR=%08X\n", idx, cromBankReg, ppc_get_pc(), ppc_get_lr());
}

UINT8 CModel3::ReadSystemRegister(unsigned reg)
{
  switch (reg&0x3F)
  {
  case 0x08:  // CROM bank
    return cromBankReg;
  case 0x14:  // IRQ enable
    return IRQ.ReadIRQEnable();
  case 0x18:  // IRQ pending
    return IRQ.ReadIRQState();
  case 0x1C:  // unknown (apparently expects some or all bits set)
    //DebugLog("System register %02X read\n", reg);
    return 0xFF;
  case 0x10:  // JTAG Test Access Port
    return m_jtag.Read() << 5;
  default:
    //DebugLog("System register %02X read\n", reg);
    break;
  }

  return 0xFF;
}

void CModel3::WriteSystemRegister(unsigned reg, UINT8 data)
{
  switch (reg&0x3F)
  {
  case 0x08:  // CROM bank
    SetCROMBank(data);
    break;
  case 0x14:  // IRQ enable
    IRQ.WriteIRQEnable(data);
    DebugLog("IRQ ENABLE=%02X\n", data);
    break;
  case 0x18:  // IRQ acknowledge
    IRQ.Deassert(data);
    DebugLog("IRQ ACK? %02X=%02X\n", reg, data);
    break;
  case 0x0C:  // JTAG Test Access Port
  {
    uint8_t tck = (data >> 6) & 1;
    uint8_t tms = (data >> 2) & 1;
    uint8_t tdi = (data >> 5) & 1;
    uint8_t trst = (data >> 7) & 1; // not sure about this one (trst not required to exist by JTAG spec)
    m_jtag.Write(tck, tms, tdi, trst);
    break;
  }
  case 0x0D:
  case 0x0E:
  case 0x0F:
  case 0x1C:  // LED control
    break;
  default:
    //DebugLog("System register %02X=%02X\n", reg, data);
    break;
  }
}


/******************************************************************************
 Address Space Access Handlers

 NOTE: Testing of some of the address ranges is not strict enough, especially
 for the MPC10x. Write32() handles the MPC10x most correctly.
******************************************************************************/

/*
 * CModel3::Read8(addr):
 * CModel3::Read16(addr):
 * CModel3::Read32(addr):
 * CModel3::Read64(addr):
 *
 * Read handlers.
 */
UINT8 CModel3::Read8(UINT32 addr)
{
  // RAM (most frequently accessed)
  if (addr<0x00800000)
    return ram[addr^3];

  // Other
  switch ((addr >> 24))
  {
  // CROM
  case 0xFF:
    if (addr < 0xFF800000)
      return cromBank[(addr & 0x7FFFFF) ^ 3];
    else
      return crom[(addr & 0x7FFFFF) ^ 3];

  // Real3D DMA
  case 0xC2:
    return GPU.ReadDMARegister8(addr & 0xFF);

  // Various
  case 0xF0:
  case 0xFE:  // mirror

    switch ((addr >> 16) & 0xFF)
    {
    // Inputs
    case 0x04:
      return ReadInputs(addr & 0x3F);

    // Sound Board
    case 0x08:
      switch (addr & 0xf)
      {
      case 0x0:         // MIDI data port
        return 0x00;    // Something to do with region locked in magtruck (0=locked, 1=unlocked). /!\ no effect if rom patch is activated!
      case 0x4:         // MIDI control port
        return 0x83;    // magtruck country check
      default:
        return 0;
      }
      break;

    // System registers
    case 0x10:
      return ReadSystemRegister(addr & 0x3F);

    // RTC
    case 0x14:
      if ((addr & 3) == 1)  // battery voltage test
        return 0x03;
      else if ((addr & 3) == 0)
        return RTC.ReadRegister((addr >> 2) & 0xF);
      return 0;

    // Unknown
    default:
      //printf("CMODEL3 : unknown R8 mirror : %x\n", addr >> 16);
      break;
    }

    break;

  // Tile generator
  case 0xF1:
    if (addr < 0xF1120000)
    {
      // Tile generator accesses its RAM as little endian, no adjustment needed here
      return TileGen.ReadRAM8(addr & 0x1FFFFF);
    }
    break;

  // 53C810 SCSI
  case 0xC0:  // only on Step 1.0
#ifndef NET_BOARD
    if (m_game.stepping != "1.0")
    {
      //printf("Model3 : Read8 %x\n", addr);
      break;
    }
#endif
#ifdef NET_BOARD
  if (m_runNetBoard)
  {
    switch ((addr & 0x3ffff) >> 16)
    {
    case 0:
      return NetBoard->ReadCommRAM8((addr & 0xFFFF) ^ 2);

    case 1: // ioreg 32bits access in 16bits environment
      if (addr > 0xc00101ff)
      {
        printf("R8 ATTENTION OUT OF RANGE\n");
        SDL_ShowSimpleMessageBox(SDL_MESSAGEBOX_ERROR, "Info", "Out of Range", NULL);
      }
      return (UINT8)NetBoard->ReadIORegister((addr & 0x1FF) / 2);

    case 2:
    case 3:
      return netRAM[((addr & 0x1FFFF) / 2)];

    default:
      printf("R8 ATTENTION OUT OF RANGE\n");
      SDL_ShowSimpleMessageBox(SDL_MESSAGEBOX_ERROR, "Info", "Out of Range", NULL);
      break;
    }
  }
  else if (m_game.stepping != "1.0") break;
#endif
  case 0xF9:
  case 0xC1:
    return SCSI.ReadRegister(addr&0xFF);

  // Unknown
  default:
#ifdef NET_BOARD
    printf("CMODEL3 : unknown R8 : %x\n", addr >> 24);
#endif
    break;
  }

  DebugLog("PC=%08X\tread8 : %08X\n", ppc_get_pc(), addr);
  return 0xFF;
}

UINT16 CModel3::Read16(UINT32 addr)
{
  UINT16  data;

  if ((addr&1))
  {
    data =  Read8(addr+0)<<8;
    data |= Read8(addr+1);
    return data;
  }

  // RAM (most frequently accessed)
  if (addr<0x00800000)
    return *(UINT16 *) &ram[addr^2];

  // Other
  switch ((addr>>24))
  {
  // CROM
  case 0xFF:
    if (addr < 0xFF800000)
      return *(UINT16 *) &cromBank[(addr&0x7FFFFF)^2];
    else
      return *(UINT16 *) &crom[(addr&0x7FFFFF)^2];

  // Various
  case 0xF0:
  case 0xFE:  // mirror

    switch ((addr>>16)&0xFF)
    {
    // Backup RAM
    case 0x0C:
    case 0x0D:
      return *(UINT16 *) &backupRAM[(addr&0x1FFFF)^2];

    // Sound Board
    case 0x08:
      //printf("PPC: Read16 %08X\n", addr);
      break;

    // MPC105
    case 0xC0:  // F0C00CF8
      return PCIBridge.ReadPCIConfigData(16,addr&3);

    // MPC106
    case 0xE0:
    case 0xE1:
    case 0xE2:
    case 0xE3:
    case 0xE4:
    case 0xE5:
    case 0xE6:
    case 0xE7:
    case 0xE8:
    case 0xE9:
    case 0xEA:
    case 0xEB:
    case 0xEC:
    case 0xED:
    case 0xEE:
    case 0xEF:
      return PCIBridge.ReadPCIConfigData(16,addr&3);

    // Unknown
    default:
      //printf("CMODEL3 : unknown R16 mirror : %x\n", addr >> 16);
      break;
    }

    break;

  // Tile generator
  case 0xF1:
    if (addr < 0xF1120000)
    {
      // Tile generator accesses its RAM as little endian, no adjustment needed here
      uint16_t data = TileGen.ReadRAM16(addr&0x1FFFFF);
      return FLIPENDIAN16(data);
    }
    break;

#ifdef NET_BOARD
  case 0xc0: // spikeout call this
  // interesting : poking @4 master to same value as slave (0x100) or simply !=0 -> connected and go in game, but freeze (prints comm error) as soon as players appear after the gate
  // sort of sync ack ? who writes this 16b value ?
  {
    UINT16 result;
    switch ((addr & 0x3ffff) >> 16)
    {
    case 0:
      result = NetBoard->ReadCommRAM16((addr & 0xFFFF) ^ 2);
      return FLIPENDIAN16(result); // result
    default:
      printf("CMODEL3 : unknown R16 : %x (C0)\n", addr);
      break;
    }
  }
#endif
  // Unknown
  default:
#ifdef NET_BOARD
    printf("CMODEL3 : unknown R16 : %x (%x)\n", addr, addr >> 24);
    SDL_ShowSimpleMessageBox(SDL_MESSAGEBOX_ERROR, "Info", "CMODEL3 : Unknown R16", NULL);
#endif
    break;
  }

  DebugLog("PC=%08X\tread16: %08X\n", ppc_get_pc(), addr);
  return 0xFFFF;
}

UINT32 CModel3::Read32(UINT32 addr)
{
  UINT32  data;

  if ((addr&3))
  {
    data =  Read16(addr+0)<<16;
    data |= Read16(addr+2);
    return data;
  }

  // RAM (most frequently accessed)
  if (addr < 0x00800000)
    return *(UINT32 *) &ram[addr];

  // Other
  switch ((addr>>24))
  {
  // CROM
  case 0xFF:
    if (addr < 0xFF800000)
      return *(UINT32 *) &cromBank[(addr&0x7FFFFF)];
    else
      return *(UINT32 *) &crom[(addr&0x7FFFFF)];

  // Real3D registers
  case 0x84:
    data = GPU.ReadRegister(addr&0x3F);
    return FLIPENDIAN32(data);

  // Real3D DMA
  case 0xC2:
    data = GPU.ReadDMARegister32(addr&0xFF);
    return FLIPENDIAN32(data);

  // Various
  case 0xF0:
  case 0xFE:  // mirror

    switch ((addr>>16)&0xFF)
    {
    // Inputs
    case 0x04:
      data =  ReadInputs((addr&0x3F)+0) << 24;
      data |= ReadInputs((addr&0x3F)+1) << 16;
      data |= ReadInputs((addr&0x3F)+2) << 8;
      data |= ReadInputs((addr&0x3F)+3) << 0;
      return data;

    // Sound Board
    case 0x08:
      //printf("PPC: Read32 %08X\n", addr);
      break;

    // Backup RAM
    case 0x0C:
    case 0x0D:
      return *(UINT32 *) &backupRAM[(addr&0x1FFFF)];

    // System registers
    case 0x10:
      data =  ReadSystemRegister((addr&0x3F)+0) << 24;
      data |= ReadSystemRegister((addr&0x3F)+1) << 16;
      data |= ReadSystemRegister((addr&0x3F)+2) << 8;
      data |= ReadSystemRegister((addr&0x3F)+3) << 0;
      return data;

    // MPC105
    case 0xC0:  // F0C00CF8
      return PCIBridge.ReadPCIConfigData(32,0);

    // MPC106
    case 0xE0:
    case 0xE1:
    case 0xE2:
    case 0xE3:
    case 0xE4:
    case 0xE5:
    case 0xE6:
    case 0xE7:
    case 0xE8:
    case 0xE9:
    case 0xEA:
    case 0xEB:
    case 0xEC:
    case 0xED:
    case 0xEE:
    case 0xEF:
      return PCIBridge.ReadPCIConfigData(32,0);

    // RTC
    case 0x14:
      data = (RTC.ReadRegister((addr>>2)&0xF) << 24);
      data |= 0x00030000; // set these bits to pass battery voltage test
      return data;

    // Security board RAM
    case 0x18:
    case 0x19:
      return *(UINT32 *) &securityRAM[(addr&0x1FFFF)];  // so far, only 32-bit access observed, so we use little endian access

    // Security board registers
    case 0x1A:
      return ReadSecurity(addr&0x3F);

    // Unknown
    default:
      //printf("CModel 3 unknown R32 mirror %x", (addr >> 16) & 0xFF);
      break;
    }

    break;

  // Tile generator
  case 0xF1:
    // Tile generator accesses its RAM as little endian, must flip for big endian PowerPC
    if (addr < 0xF1120000)
    {
      data = TileGen.ReadRAM32(addr&0x1FFFFF);
      return FLIPENDIAN32(data);
    }
    else if ((addr>=0xF1180000) && (addr<0xF1180100))
    {
      data = TileGen.ReadRegister(addr & 0xFF);
      return FLIPENDIAN32(data);
    }

    break;

  // 53C810 SCSI
  case 0xC0:  // only on Step 1.0
#ifndef NET_BOARD
    if (m_game.stepping != "1.0") // check for Step 1.0
      break;
#endif
#ifdef NET_BOARD
    if (m_runNetBoard)
    {
      UINT32 result;

      switch ((addr & 0x3ffff) >> 16)
      {
      case 0:
        result = NetBoard->ReadCommRAM32(addr & 0xFFFF);
        result = FLIPENDIAN32(result);
        return ((result << 16) | (result >> 16));

      case 1: // ioreg 32bits access to 16bits range
        if (addr > 0xc00101ff)
        {
          printf("R32 ATTENTION OUT OF RANGE\n");
        }

        result = NetBoard->ReadIORegister((addr & 0x1FF) / 2);
        return FLIPENDIAN32(result);

      case 2:
      case 3:
        result = (*(UINT32 *)&netRAM[((addr & 0x1FFFF) / 2)]) & 0x0000ffff;
        return FLIPENDIAN32(result); // result

      default:
        printf("R32 ATTENTION OUT OF RANGE\n");
        break;
      }

    }
    else if (m_game.stepping != "1.0") break;
#endif
  case 0xF9:
  case 0xC1:
    data =  (SCSI.ReadRegister((addr+0)&0xFF) << 24);
    data |= (SCSI.ReadRegister((addr+1)&0xFF) << 16);
    data |= (SCSI.ReadRegister((addr+2)&0xFF) << 8);
    data |= (SCSI.ReadRegister((addr+3)&0xFF) << 0);
    return data;

  // Unknown
  default:
#ifdef NET_BOARD
    printf("CMODEL3 : unknown R32 : %x\n", addr >> 24);
#endif
    break;
  }

  DebugLog("PC=%08X\tread32: %08X\n", ppc_get_pc(), addr);
  return 0xFFFFFFFF;
}

UINT64 CModel3::Read64(UINT32 addr)
{
  UINT64  data;

  data = Read32(addr+0);
  data <<= 32;
  data |= Read32(addr+4);
  //printf("read64 %x = %x\n",addr,data);
  return data;
}

/*
 * CModel3::Write8(addr, data):
 * CModel3::Write16(addr, data):
 * CModel3::Write32(addr, data):
 * CModel3::Write64(addr, data):
 *
 * Write handlers.
 */
void CModel3::Write8(UINT32 addr, UINT8 data)
{
  // RAM (most frequently accessed)
  if (addr < 0x00800000)
  {
    ram[addr^3] = data;
    return;
  }

  // Other
  switch ((addr>>24))
  {
  // Real3D DMA
  case 0xC2:
    GPU.WriteDMARegister8(addr&0xFF,data);
    break;

  // Various
  case 0xF0:
  case 0xFE:  // mirror

    switch ((addr>>16)&0xFF)
    {
    // Inputs
    case 0x04:
      WriteInputs(addr&0x3F,data);
      break;

    // Sound Board
    case 0x08:
      //printf("PPC: %08X=%02X * (PC=%08X, LR=%08X)\n", addr, data, ppc_get_pc(), ppc_get_lr());
      if ((addr&0xF) == 0)      // MIDI data port
        SoundBoard.WriteMIDIPort(data);
      else if ((addr&0xF) == 4) // MIDI control port
        midiCtrlPort = data;
      break;

    // Backup RAM
    case 0x0C:
    case 0x0D:
      backupRAM[(addr&0x1FFFF)^3] = data;
      break;

    // System registers
    case 0x10:
      WriteSystemRegister(addr&0x3F,data);
      break;

    // RTC
    case 0x14:
      if ((addr&3)==0)
        RTC.WriteRegister((addr>>2)&0xF,data);
      break;

    // Unknown
    default:
      //printf("CMODEL3 : unknown W8 mirror : %x\n", addr >> 16);
      break;
    }

    DebugLog("PC=%08X\twrite8 : %08X=%02X\n", ppc_get_pc(), addr, data);
    break;

  // Tile generator
  case 0xF1:
    if (addr < 0xF1120000)
    {
      // Tile generator accesses its RAM as little endian, no adjustment needed here
      TileGen.WriteRAM8(addr&0x1FFFFF, data);
      break;
    }
    goto Unknown8;

  // MPC105/106
  case 0xF8:
    PCIBridge.WriteRegister(addr&0xFF,data);
    break;

  // 53C810 SCSI
  case 0xC0:  // only on Step 1.0
#ifndef NET_BOARD
    if (m_game.stepping != "1.0")
      goto Unknown8;
#endif
#ifdef NET_BOARD
    if (m_runNetBoard)
    {
      //printf("CModel 3 : write8 %x<-%x\n", addr, data);

      switch ((addr & 0x3ffff) >> 16)
      {
      case 0:
        NetBoard->WriteCommRAM8((addr & 0xFFFF) ^ 2, data);
        break;

      case 1: // ioreg 32bits access to 16bits range
        if (addr > 0xc00101ff)
        {
          printf("W8 ATTENTION OUT OF RANGE\n");
        }

        NetBoard->WriteIORegister((addr & 0x1FF) / 2, data);
        break;

      case 2:
      case 3:
        *(UINT8 *)&netRAM[(addr & 0x1FFFF)/2] = data;
        break;

      default:
        printf("W8 ATTENTION OUT OF RANGE\n");
        break;
      }

      break;
    }
    else if (m_game.stepping != "1.0") break;
#endif
  case 0xF9:
  case 0xC1:
    SCSI.WriteRegister(addr&0xFF,data);
    break;

  // Unknown:
  default:
  Unknown8:
#ifdef NET_BOARD
    //printf("CMODEL3 : unknown W8 : %x\n", addr >> 24); // harleyb unknown 0xF1
#endif
    DebugLog("PC=%08X\twrite8 : %08X=%02X\n", ppc_get_pc(), addr, data);
    break;
  }
}

void CModel3::Write16(UINT32 addr, UINT16 data)
{
  if ((addr&1))
  {
    Write8(addr+0,data>>8);
    Write8(addr+1,data&0xFF);
    return;
  }

  // RAM (most frequently accessed)
  if (addr < 0x00800000)
  {
    *(UINT16 *) &ram[addr^2] = data;
    return;
  }

  // Other
  switch ((addr>>24))
  {
  // Various
  case 0xF0:
  case 0xFE:  // mirror

    switch ((addr>>16)&0xFF)
    {
    // Sound Board
    case 0x08:
      //printf("%08X=%04X\n", addr, data);
      break;

    // Backup RAM
    case 0x0C:
    case 0x0D:
      *(UINT16 *) &backupRAM[(addr&0x1FFFF)^2] = data;
      break;

    // MPC105
    case 0xC0:  // F0C00CF8
      PCIBridge.WritePCIConfigData(16,addr&2,data);
      break;

    // Unknown
    default:
      //printf("CMODEL3 : unknown W16 mirror : %x\n", addr >> 16);
      break;
    }

    DebugLog("PC=%08X\twrite16 : %08X=%04X\n", ppc_get_pc(), addr, data);
    break;

  // Tile generator
  case 0xF1:
    if (addr < 0xF1120000)
    {
      // Tile generator accesses its RAM as little endian, no adjustment needed here
      TileGen.WriteRAM16(addr&0x1FFFFF, FLIPENDIAN16(data));
    }
    goto Unknown16;

  // MPC105/106
  case 0xF8:
    // Write in big endian order, like a real PowerPC
    PCIBridge.WriteRegister((addr&0xFF)+0,data>>8);
    PCIBridge.WriteRegister((addr&0xFF)+1,data&0xFF);
    break;

#ifdef NET_BOARD
  case 0xC0: // skichamp only
    //printf("CModel 3 : write16 %x<-%x\n", addr, data);


    switch ((addr & 0x3ffff) >> 16)
    {
    case 0:
      NetBoard->WriteCommRAM16((addr & 0xFFFF) ^ 2, FLIPENDIAN16(data));
      break;

    default:
      //printf("CMODEL3 : unknown W16 : %x\n", addr >> 24);
      break;
    }

    break;
#endif

  // Unknown
  default:
  Unknown16:
    DebugLog("PC=%08X\twrite16: %08X=%04X\n", ppc_get_pc(), addr, data);
    break;
  }
}

void CModel3::Write32(UINT32 addr, UINT32 data)
{
  if ((addr&3))
  {
    Write16(addr+0,data>>16);
    Write16(addr+2,data);
    return;
  }

  // RAM (most frequently accessed)
  if (addr<0x00800000)
  {
    *(UINT32 *) &ram[addr] = data;
    return;
  }

  // Other
  switch ((addr>>24))
  {
  // Real3D trigger
  case 0x88:  // 88000000
    GPU.Flush();
    break;

  // Real3D low culling RAM
  case 0x8C:  // 8C000000-8C400000
    GPU.WriteLowCullingRAM(addr&0x3FFFFF,FLIPENDIAN32(data));
    break;

  // Real3D high culling RAM
  case 0x8E:  // 8E000000-8E100000
    GPU.WriteHighCullingRAM(addr&0xFFFFF,FLIPENDIAN32(data));
    break;

  // Real3D texture port
  case 0x90:  // 90000000-90??????
    GPU.WriteTexturePort(addr&0xFF,FLIPENDIAN32(data));
    break;

  // Real3D texture FIFO
  case 0x94:  // 94000000-94100000
    GPU.WriteTextureFIFO(FLIPENDIAN32(data));
    break;

  // Real3D polygon RAM
  case 0x98:  // 98000000-98400000
    GPU.WritePolygonRAM(addr&0x3FFFFF,FLIPENDIAN32(data));
    break;

  // Real3D configuration registers
  case 0x9C:  // 9Cxxxxxx
    //printf("%08X=%08X\n", addr, data);  //TODO: flip endian?
    break;

  // Real3D DMA
  case 0xC2:  // C2000000-C2000100
    GPU.WriteDMARegister32(addr&0xFF,FLIPENDIAN32(data));
    break;

  // Various
  case 0xF0:
  case 0xFE:  // mirror

    switch ((addr>>16)&0xFF)
    {
    // Inputs
    case 0x04:
      WriteInputs((addr&0x3F)+0,(data>>24)&0xFF);
      WriteInputs((addr&0x3F)+1,(data>>16)&0xFF);
      WriteInputs((addr&0x3F)+2,(data>>8)&0xFF);
      WriteInputs((addr&0x3F)+3,(data>>0)&0xFF);
      break;

    // Sound Board
    case 0x08:
      //printf("PPC: %08X=%08X\n", addr, data);
      break;

    // Backup RAM
    case 0x0C:
    case 0x0D:
      *(UINT32 *) &backupRAM[(addr&0x1FFFF)] = data;
      break;

    // MPC105
    case 0x80:  // F0800CF8 (never observed at 0xFExxxxxx)
      PCIBridge.WritePCIConfigAddress(data);
      break;

    // MPC105/106
    case 0xC0: case 0xD0: case 0xE0:
    case 0xC1: case 0xD1: case 0xE1:
    case 0xC2: case 0xD2: case 0xE2:
    case 0xC3: case 0xD3: case 0xE3:
    case 0xC4: case 0xD4: case 0xE4:
    case 0xC5: case 0xD5: case 0xE5:
    case 0xC6: case 0xD6: case 0xE6:
    case 0xC7: case 0xD7: case 0xE7:
    case 0xC8: case 0xD8: case 0xE8:
    case 0xC9: case 0xD9: case 0xE9:
    case 0xCA: case 0xDA: case 0xEA:
    case 0xCB: case 0xDB: case 0xEB:
    case 0xCC: case 0xDC: case 0xEC:
    case 0xCD: case 0xDD: case 0xED:
    case 0xCE: case 0xDE: case 0xEE:
    case 0xCF: case 0xDF: case 0xEF:
      if ((addr>=0xF0C00CF8) && (addr<0xF0C00D00))    // MPC105
        PCIBridge.WritePCIConfigData(32,0,data);
      else if ((addr>=0xFEC00000) && (addr<0xFEE00000)) // MPC106
        PCIBridge.WritePCIConfigAddress(data);
      else if ((addr>=0xFEE00000) && (addr<0xFEF00000)) // MPC106
        PCIBridge.WritePCIConfigData(32,0,data);
      break;

    // System registers
    case 0x10:
      WriteSystemRegister((addr&0x3F)+0,(data>>24)&0xFF);
      WriteSystemRegister((addr&0x3F)+1,(data>>16)&0xFF);
      WriteSystemRegister((addr&0x3F)+2,(data>>8)&0xFF);
      WriteSystemRegister((addr&0x3F)+3,(data>>0)&0xFF);
      break;

    // RTC
    case 0x14:
      RTC.WriteRegister((addr>>2)&0xF,data);
      break;

    // Security board RAM
    case 0x18:
    case 0x19:
      *(UINT32 *) &securityRAM[(addr&0x1FFFF)] = data;
      break;

    // Security board registers
    case 0x1A:
      WriteSecurity(addr&0x3F,data);
      break;

    // Unknown
    default:
      //printf("CMODEL3 : unknown W32 mirror : %x\n", addr >> 16);
      break;
    }

    DebugLog("PC=%08X\twrite32: %08X=%08X\n", ppc_get_pc(), addr, data);
    break;

  // Tile generator
  case 0xF1:
    if (addr < 0xF1120000)
    {
      // Tile generator accesses its RAM as little endian, must flip for big endian PowerPC
      data = FLIPENDIAN32(data);
      TileGen.WriteRAM32(addr&0x1FFFFF,data);
      break;
    }
    else if ((addr>=0xF1180000) && (addr<0xF1180100))
    {
      TileGen.WriteRegister(addr&0xFF,FLIPENDIAN32(data));
      break;
    }

    goto Unknown32;

  // MPC105/106
  case 0xF8:  // F8FFF000-F8FFF100
    // Write in big endian order, like a real PowerPC
    PCIBridge.WriteRegister((addr&0xFF)+0,(data>>24)&0xFF);
    PCIBridge.WriteRegister((addr&0xFF)+1,(data>>16)&0xFF);
    PCIBridge.WriteRegister((addr&0xFF)+2,(data>>8)&0xFF);
    PCIBridge.WriteRegister((addr&0xFF)+3,data&0xFF);
    break;

  // 53C810 SCSI
  case 0xC0:  // step 1.0 only
#ifndef NET_BOARD
    if (m_game.stepping != "1.0")
      goto Unknown32;
#endif
#ifdef NET_BOARD
    if (m_runNetBoard)
    {
      UINT32 temp;
      switch ((addr & 0x3ffff) >> 16)
      {
      case 0:
        temp = FLIPENDIAN32(data);
        NetBoard->WriteCommRAM32(addr & 0xFFFF, (temp << 16) | (temp >> 16));
        break;

      case 1: // ioreg 32bits access to 16bits range
        if (addr > 0xc00101ff)
        {
          printf("W32 ATTENTION OUT OF RANGE\n");
        }

        NetBoard->WriteIORegister((addr & 0x1FF) / 2, FLIPENDIAN16(data >> 16));
        break;

      case 2:
      case 3:
        *(UINT16 *)&netRAM[((addr & 0x1FFFF) / 2)] = FLIPENDIAN16(data >> 16);
        break;

      default:
        printf("W32 ATTENTION OUT OF RANGE\n");
        break;
      }

      break;
    }
    else if (m_game.stepping != "1.0") break;
#endif
  case 0xF9:
  case 0xC1:
    SCSI.WriteRegister((addr&0xFF)+0,(data>>24)&0xFF);
    SCSI.WriteRegister((addr&0xFF)+1,(data>>16)&0xFF);
    SCSI.WriteRegister((addr&0xFF)+2,(data>>8)&0xFF);
    SCSI.WriteRegister((addr&0xFF)+3,data&0xFF);
    break;

  // Unknown
  default:
  Unknown32:
#ifdef NET_BOARD
      if (m_runNetBoard) printf("CMODEL3 : unknown W32 : %x (%x) data=%d\n", addr,addr >> 24,data);
#endif
    //printf("PC=%08X\twrite32: %08X=%08X\n", ppc_get_pc(), addr, data);
    DebugLog("PC=%08X\twrite32: %08X=%08X\n", ppc_get_pc(), addr, data);
    break;
  }
}

void CModel3::Write64(UINT32 addr, UINT64 data)
{
    //printf("write64 %x <- %x\n", addr, data);
    Write32(addr+0, (UINT32) (data>>32));
    Write32(addr+4, (UINT32) data);
}


/******************************************************************************
 Emulation and Interface Functions
******************************************************************************/

void CModel3::SaveState(CBlockFile *SaveState)
{
  // Write Model 3 state
  SaveState->NewBlock("Model 3", __FILE__);
  SaveState->Write(&inputBank, sizeof(inputBank));
  SaveState->Write(&serialFIFO1, sizeof(serialFIFO1));
  SaveState->Write(&serialFIFO2, sizeof(serialFIFO2));
  SaveState->Write(&gunReg, sizeof(gunReg));
  SaveState->Write(&adcChannel, sizeof(adcChannel));
  SaveState->Write(&cromBankReg, sizeof(cromBankReg));
  SaveState->Write(&securityPtr, sizeof(securityPtr));
  SaveState->Write(ram, 0x800000);
  SaveState->Write(backupRAM, 0x20000);
  SaveState->Write(securityRAM, 0x20000);
  SaveState->Write(&midiCtrlPort, sizeof(midiCtrlPort));
  int32_t securityFirstRead = m_securityFirstRead;
  SaveState->Write(&securityFirstRead, sizeof(securityFirstRead));

  // All devices...
  ppc_save_state(SaveState);
  IRQ.SaveState(SaveState);
  PCIBridge.SaveState(SaveState);
  SCSI.SaveState(SaveState);
  EEPROM.SaveState(SaveState);
  TileGen.SaveState(SaveState);
  GPU.SaveState(SaveState);
  SoundBoard.SaveState(SaveState);  // also saves DSB state
  DriveBoard->SaveState(SaveState);
  m_cryptoDevice.SaveState(SaveState);
  m_jtag.SaveState(SaveState);
}

void CModel3::LoadState(CBlockFile *SaveState)
{
  // Load Model 3 state
  if (OKAY != SaveState->FindBlock("Model 3"))
  {
    ErrorLog("Unable to load Model 3 core state. Save state file is corrupt.");
    return;
  }

  SaveState->Read(&inputBank, sizeof(inputBank));
  SaveState->Read(&serialFIFO1, sizeof(serialFIFO1));
  SaveState->Read(&serialFIFO2, sizeof(serialFIFO2));
  SaveState->Read(&gunReg, sizeof(gunReg));
  SaveState->Read(&adcChannel, sizeof(adcChannel));
  SaveState->Read(&cromBankReg, sizeof(cromBankReg));
  SetCROMBank(cromBankReg); // update CROM bank
  SaveState->Read(&securityPtr, sizeof(securityPtr));
  SaveState->Read(ram, 0x800000);
  SaveState->Read(backupRAM, 0x20000);
  SaveState->Read(securityRAM, 0x20000);
  SaveState->Read(&midiCtrlPort, sizeof(midiCtrlPort));
  int32_t securityFirstRead;
  SaveState->Read(&securityFirstRead, sizeof(securityFirstRead));
  m_securityFirstRead = securityFirstRead != 0;

  // All devices...
  GPU.LoadState(SaveState);
  TileGen.LoadState(SaveState);
  EEPROM.LoadState(SaveState);
  SCSI.LoadState(SaveState);
  PCIBridge.LoadState(SaveState);
  IRQ.LoadState(SaveState);
  ppc_load_state(SaveState);
  SoundBoard.LoadState(SaveState);
  DriveBoard->LoadState(SaveState);
  m_cryptoDevice.LoadState(SaveState);
  m_jtag.LoadState(SaveState);
}

void CModel3::SaveNVRAM(CBlockFile *NVRAM)
{
  // Load EEPROM
  EEPROM.SaveState(NVRAM);

  // Save backup RAM
  NVRAM->NewBlock("Backup RAM", __FILE__);
  NVRAM->Write(backupRAM, 0x20000);
}

void CModel3::LoadNVRAM(CBlockFile *NVRAM)
{
  // Load EEPROM
  EEPROM.LoadState(NVRAM);

  // Load backup RAM
  if (OKAY != NVRAM->FindBlock("Backup RAM"))
  {
    ErrorLog("Unable to load Model 3 backup RAM. NVRAM file is corrupt.");
    return;
  }
  NVRAM->Read(backupRAM, 0x20000);
}

void CModel3::ClearNVRAM(void)
{
  memset(backupRAM, 0, 0x20000);
  EEPROM.Clear();
}

void CModel3::RunFrame(void)
{
  UINT32 start = CThread::GetTicks();

  // See if currently running multi-threaded
  if (m_multiThreaded)
  {
    // If so, check all threads are up and running
    if (!StartThreads())
      goto ThreadError;

    // Wake threads for PPC main board (if multi-threading GPU), sound board (if sync'd) and drive board (if attached) so they can process a frame
    if ((m_gpuMultiThreaded       && !ppcBrdThreadSync->Post()) ||
        (syncSndBrdThread         && !sndBrdThreadSync->Post()) ||
        (DriveBoard->IsAttached()  && !drvBrdThreadSync->Post()))
      goto ThreadError;

    // If not multi-threading GPU, then run PPC main board for a frame and sync GPUs now in this thread
    if (!m_gpuMultiThreaded)
    {
      RunMainBoardFrame();
      SyncGPUs();
    }

    // Render frame
    RenderFrame();

    // Enter notify wait critical section
    if (!notifyLock->Lock())
      goto ThreadError;

    // Wait for PPC main board, sound board and drive board threads to finish their work (if they are running and haven't finished already)
    while ((m_gpuMultiThreaded      && !ppcBrdThreadDone) ||
           (syncSndBrdThread        && !sndBrdThreadDone) ||
           (DriveBoard->IsAttached() && !drvBrdThreadDone))
    {
      if (!notifySync->Wait(notifyLock))
        goto ThreadError;
    }
    ppcBrdThreadDone = false;
    sndBrdThreadDone = false;
    drvBrdThreadDone = false;

    // Leave notify wait critical section
    if (!notifyLock->Unlock())
      goto ThreadError;

    // If multi-threading GPU, then sync GPUs last while PPC main board thread is waiting
    if (m_gpuMultiThreaded)
      SyncGPUs();

#ifdef NET_BOARD
    if (NetBoard->IsRunning() && m_config["SimulateNet"].ValueAs<bool>())
        RunNetBoardFrame();
#endif
  }
  else
  {
    // If not multi-threaded, then just process and render a single frame for PPC main board, sound board and drive board in turn in this thread
    RunMainBoardFrame();
    SyncGPUs();
    RenderFrame();
    RunSoundBoardFrame();
    if (DriveBoard->IsAttached())
      RunDriveBoardFrame();
#ifdef NET_BOARD
    if (NetBoard->IsRunning())
      RunNetBoardFrame();
#endif
  }

  timings.frameTicks = CThread::GetTicks() - start;
  // Frame counter
  timings.frameId++;
  return;

ThreadError:
  ErrorLog("Threading error in CModel3::RunFrame: %s\nSwitching back to single-threaded mode.\n", CThread::GetLastError());
  m_multiThreaded = false;
}

void CModel3::RunMainBoardFrame(void)
{
	UINT32 start = CThread::GetTicks();

	/* 
         * Compute display timings. Refresh rate is 57.524160 Hz and we assume frame timing is the same as System 24:
	 *
	 * - 25 scanlines from /VSYNC high to /BLANK high (top border)
         * - 384 scanlines from /BLANK high to /BLANK low (active display)
         * - 11 scanlines from /BLANK low to /VSYNC low (bottom border)
         * - 4 scanlines from /VSYNC low to /VSYNC high (vertical sync. pulse)
	 *
         * 424 lines total: 384 display and 40 blanking/vsync.
	 */ 
	unsigned ppcCycles		= m_config["PowerPCFrequency"].ValueAs<unsigned>() * 1000000;
	unsigned frameCycles	= (unsigned)((float)ppcCycles / 57.524160f);
	unsigned lineCycles     = frameCycles / 424;
	unsigned dispCycles     = lineCycles * (TileGen.ReadRegister(0x08) + 40);
	unsigned offsetCycles   = frameCycles - dispCycles;
	unsigned statusCycles   = (unsigned)((float)frameCycles * (0.005f));

	// Games will start writing a new frame after the ping-pong buffers have been flipped, which is indicated by the
	// ping-pong status bit. The timing of ping-pong flip is determined by the value of tilegen register 0x08, which
	// is the number of active video lines to display before ping-pong flip occurs. Most games set it to 238 or 239
	// so that ping-pong flip occurs 66% of the frame time after IRQ2, though a few games set it to a higher value.

	// Scale PPC timer ratio according to speed at which the PowerPC is being emulated so that the observed running frequency of the PPC timer
	// registers is more or less correct.  This is needed to get the Virtua Striker 2 series of games running at the right speed (they are
	// too slow otherwise).  Other games appear to not be affected by this ratio so much as their running speed depends more on the timing of
	// the Real3D status bit below.
	ppc_set_timer_ratio(ppc_get_bus_freq_multipler() * 2 * ppcCycles / ppc_get_cycles_per_sec());

	// VBlank
	if (gpusReady)
	{
		TileGen.BeginVBlank();
		GPU.BeginVBlank(statusCycles);	// Games poll the ping_pong at startup. Values aren't 100% accurate so we stretch the frame a bit to ensure writes happen in the correct frame

		ppc_execute(offsetCycles);
		IRQ.Assert(0x02);								// start at 33% of the frame

		// keep running cycles until IRQ2 is acknowledged
		// Ski Champ can hang if we check the MIDI control port too early
		// and miss MIDI interrupts pending before the next IRQ2
		while (IRQ.ReadIRQEnable() & 0x2 && IRQ.ReadIRQState() & 0x2 && dispCycles > 1000)
		{
			ppc_execute(1000);
			dispCycles -= 1000;
		}

		/*
		* Sound:
		*
		* Bit 0x20 of the MIDI control port appears to enable periodic interrupts,
		* which are used to send MIDI commands. Often games will write 0x27, send
		* a series of commands, and write 0x06 to stop. Other games, like Star
		* Wars Trilogy and Sega Rally 2, will enable interrupts at the beginning
		* by writing 0x37 and will disable/enable interrupts to control command
		* output.
		*/
		//printf("\t-- BEGIN (Ctrl=%02X, IRQEn=%02X, IRQPend=%02X) --\n", midiCtrlPort, IRQ.ReadIRQEnable()&0x40, IRQ.ReadIRQState());
		int irqCount = 0;
		while ((midiCtrlPort & 0x20))
			//while (midiCtrlPort == 0x27)  // 27 triggers IRQ sequence, 06 stops it
		{
			// Don't waste time firing MIDI interrupts if game has disabled them
			if ((IRQ.ReadIRQEnable() & 0x40) == 0)
				break;

			// Process MIDI interrupt
			IRQ.Assert(0x40);
			ppc_execute(200); // give PowerPC time to acknowledge IR
			IRQ.Deassert(0x40);
			ppc_execute(200); // acknowledge that IRQ was deasserted (TODO: is this really needed?)
			dispCycles -= 400;

			++irqCount;
			if (irqCount > 128)
			{
				break;
			}
		}

		IRQ.Assert(0x0D);

		// End VBlank
		GPU.EndVBlank();
		TileGen.EndVBlank();
	}

	// Run the PowerPC for the active display part of the frame
	ppc_execute(dispCycles);

	timings.ppcTicks = CThread::GetTicks() - start;
}

void CModel3::SyncGPUs(void)
{
  UINT32 start = CThread::GetTicks();

  timings.syncSize = GPU.SyncSnapshots() + TileGen.SyncSnapshots();
  gpusReady = true;

  timings.syncTicks = CThread::GetTicks() - start;
}

void CModel3::RenderFrame(void)
{
  UINT32 start = CThread::GetTicks();

  // Call OSD video callbacks
  if (BeginFrameVideo() && gpusReady)
  {
    // Render frame
    TileGen.BeginFrame();
    GPU.BeginFrame();
    TileGen.PreRenderFrame();
    TileGen.RenderFrameBottom();
    GPU.RenderFrame();
    TileGen.RenderFrameTop();
    GPU.EndFrame();
    TileGen.EndFrame();
  }

  EndFrameVideo();

  timings.renderTicks = CThread::GetTicks() - start;
}

bool CModel3::RunSoundBoardFrame(void)
{
  UINT32 start = CThread::GetTicks();
  bool bufferFull = SoundBoard.RunFrame();
  timings.sndTicks = CThread::GetTicks() - start;
  return bufferFull;
}

void CModel3::RunDriveBoardFrame(void)
{
  UINT32 start = CThread::GetTicks();
  DriveBoard->RunFrame();
  timings.drvTicks = CThread::GetTicks() - start;
}

#ifdef NET_BOARD
void CModel3::RunNetBoardFrame(void)
{
  NetBoard->RunFrame();
}
#endif

bool CModel3::StartThreads(void)
{
  if (startedThreads)
    return true;

  // Create synchronization objects
  if (m_gpuMultiThreaded)
  {
    ppcBrdThreadSync = CThread::CreateSemaphore(0);
    if (ppcBrdThreadSync == NULL)
      goto ThreadError;
  }
  sndBrdThreadSync = CThread::CreateSemaphore(0);
  if (sndBrdThreadSync == NULL)
    goto ThreadError;
  sndBrdNotifyLock = CThread::CreateMutex();
  if (sndBrdNotifyLock == NULL)
    goto ThreadError;
  sndBrdNotifySync = CThread::CreateCondVar();
  if (sndBrdNotifySync == NULL)
    goto ThreadError;
  if (DriveBoard->IsAttached())
  {
    drvBrdThreadSync = CThread::CreateSemaphore(0);
    if (drvBrdThreadSync == NULL)
      goto ThreadError;
  }
  notifyLock = CThread::CreateMutex();
  if (notifyLock == NULL)
    goto ThreadError;
  notifySync = CThread::CreateCondVar();
  if (notifySync == NULL)
    goto ThreadError;

  // Reset thread flags
  pauseThreads = false;
  stopThreads = false;

  // Create PPC main board thread, if multi-threading GPU
  if (m_gpuMultiThreaded)
  {
    ppcBrdThread = CThread::CreateThread("MainBoard", StartMainBoardThread, this);
    if (ppcBrdThread == NULL)
      goto ThreadError;
  }

  // Create sound board thread (sync'd or unsync'd)
  if (syncSndBrdThread)
    sndBrdThread = CThread::CreateThread("SoundBoardSync", StartSoundBoardThreadSyncd, this);
  else
    sndBrdThread = CThread::CreateThread("SoundBoardNoSync", StartSoundBoardThread, this);
  if (sndBrdThread == NULL)
    goto ThreadError;

  // Create drive board thread, if drive board is attached
  if (DriveBoard->IsAttached())
  {
    drvBrdThread = CThread::CreateThread("DriveBoard", StartDriveBoardThread, this);
    if (drvBrdThread == NULL)
      goto ThreadError;
  }

  // Set audio callback if sound board thread is unsync'd
  if (!syncSndBrdThread)
  {
    SetAudioCallback(AudioCallback, this);
  }

  startedThreads = true;
  return true;

ThreadError:
  ErrorLog("Unable to create threads and/or synchronization objects: %s\nSwitching back to single-threaded mode.\n", CThread::GetLastError());
  DeleteThreadObjects();
  m_multiThreaded = false;
  return false;
}

bool CModel3::PauseThreads(void)
{
  if (!startedThreads)
    return true;

  // Enter notify critical section
  if (!notifyLock->Lock())
    goto ThreadError;

  // Let threads know that they should pause and wait for all of them to do so
  pauseThreads = true;
  while (ppcBrdThreadRunning || sndBrdThreadRunning || drvBrdThreadRunning)
  {
    if (!notifySync->Wait(notifyLock))
      goto ThreadError;
  }

  // Leave notify critical section
  if (!notifyLock->Unlock())
    goto ThreadError;
  return true;

ThreadError:
  ErrorLog("Threading error in CModel3::PauseThreads: %s\nSwitching back to single-threaded mode.\n", CThread::GetLastError());
  m_multiThreaded = false;
  return false;
}

bool CModel3::ResumeThreads(void)
{
  if (!startedThreads)
    return true;

  // Enter notify critical section
  if (!notifyLock->Lock())
    goto ThreadError;

  // Let all threads know that they can continue running
  pauseThreads = false;

  // Leave notify critical section
  if (!notifyLock->Unlock())
    goto ThreadError;
  return true;

ThreadError:
  ErrorLog("Threading error in CModel3::ResumeThreads: %s\nSwitching back to single-threaded mode.\n", CThread::GetLastError());
  m_multiThreaded = false;
  return false;
}

bool CModel3::StopThreads(void)
{
  if (!startedThreads)
    return true;

  // If sound board thread is unsync'd then remove audio callback
  if (!syncSndBrdThread)
    SetAudioCallback(NULL, NULL);

  // Enter notify critical section
  if (!notifyLock->Lock())
    goto ThreadError;

  // Let threads know that they should pause and wait for all of them to do so
  pauseThreads = true;
  while (ppcBrdThreadRunning || sndBrdThreadRunning || drvBrdThreadRunning)
  {
    if (!notifySync->Wait(notifyLock))
      goto ThreadError;
  }

  // Now let threads know that they should exit
  stopThreads = true;

  // Leave notify critical section
  if (!notifyLock->Unlock())
    goto ThreadError;

  // Resume each thread in turn and wait for them to exit
  if (ppcBrdThread != NULL)
  {
    if (ppcBrdThreadSync->Post())
      ppcBrdThread->Wait();
  }
  if (sndBrdThread != NULL)
  {
    if (syncSndBrdThread)
    {
      if (sndBrdThreadSync->Post())
        sndBrdThread->Wait();
    }
    else
    {
      if (WakeSoundBoardThread())
        sndBrdThread->Wait();
    }
  }
  if (drvBrdThread != NULL)
  {
    if (drvBrdThreadSync->Post())
      drvBrdThread->Wait();
  }

  // Delete all thread and synchronization objects
  DeleteThreadObjects();
  startedThreads = false;
  return true;

ThreadError:
  ErrorLog("Threading error in CModel3::StopThreads: %s\nSwitching back to single-threaded mode.\n", CThread::GetLastError());
  m_multiThreaded = false;
  return false;
}

void CModel3::DeleteThreadObjects(void)
{
  // Delete PPC main board, sound board and drive board threads
  if (ppcBrdThread != NULL)
  {
    delete ppcBrdThread;
    ppcBrdThread = NULL;
  }
  if (sndBrdThread != NULL)
  {
    delete sndBrdThread;
    sndBrdThread = NULL;
  }
  if (drvBrdThread != NULL)
  {
    delete drvBrdThread;
    drvBrdThread = NULL;
  }


  // Delete synchronization objects
  if (ppcBrdThreadSync != NULL)
  {
    delete ppcBrdThreadSync;
    ppcBrdThreadSync = NULL;
  }
  if (sndBrdThreadSync != NULL)
  {
    delete sndBrdThreadSync;
    sndBrdThreadSync = NULL;
  }
  if (drvBrdThreadSync != NULL)
  {
    delete drvBrdThreadSync;
    drvBrdThreadSync = NULL;
  }


  if (sndBrdNotifyLock != NULL)
  {
    delete sndBrdNotifyLock;
    sndBrdNotifyLock = NULL;
  }
  if (sndBrdNotifySync != NULL)
  {
    delete sndBrdNotifySync;
    sndBrdNotifySync = NULL;
  }
  if (notifyLock != NULL)
  {
    delete notifyLock;
    notifyLock = NULL;
  }
  if (notifySync != NULL)
  {
    delete notifySync;
    notifySync = NULL;
  }
}

void CModel3::DumpTimings(void)
{
  printf("PPC:%3ums%c render:%3ums%c sync:%4uK%c%3ums%c snd:%3ums%c drv:%3ums%c frame:%3ums%c\n",
    timings.ppcTicks, (timings.ppcTicks > timings.renderTicks ? '!' : ','),
    timings.renderTicks, (timings.renderTicks > timings.ppcTicks ? '!' : ','),
    timings.syncSize / 1024, (timings.syncSize / 1024 > 128 ? '!' : ','),
    timings.syncTicks, (timings.syncTicks > 1 ? '!' : ','),
    timings.sndTicks, (timings.sndTicks > 10 ? '!' : ','),
    timings.drvTicks, (timings.drvTicks > 10 ? '!' : ','),
    timings.frameTicks, (timings.frameTicks > 16 ? '!' : ' '));
}

FrameTimings CModel3::GetTimings(void)
{
  return timings;
}

int CModel3::StartMainBoardThread(void *data)
{
  // Call method on CModel3 to run PPC main board thread
  CModel3 *model3 = (CModel3*)data;
  return model3->RunMainBoardThread();
}

int CModel3::StartSoundBoardThread(void *data)
{
  // Call method on CModel3 to run sound board thread (unsync'd)
  CModel3 *model3 = (CModel3*)data;
  return model3->RunSoundBoardThread();
}

int CModel3::StartSoundBoardThreadSyncd(void *data)
{
  // Call method on CModel3 to run sound board thread (sync'd)
  CModel3 *model3 = (CModel3*)data;
  return model3->RunSoundBoardThreadSyncd();
}

int CModel3::StartDriveBoardThread(void *data)
{
  // Call method on CModel3 to run drive board thread
  CModel3 *model3 = (CModel3*)data;
  return model3->RunDriveBoardThread();
}

int CModel3::RunMainBoardThread(void)
{
  for (;;)
  {
    bool wait = true;
    bool exit = false;
    while (wait && !exit)
    {
      // Wait on PPC main board thread semaphore
      if (!ppcBrdThreadSync->Wait())
        goto ThreadError;

      // Enter notify critical section
      if (!notifyLock->Lock())
        goto ThreadError;

      // Check threads are not being stopped or paused
      if (stopThreads)
        exit = true;
      else if (!pauseThreads)
      {
        wait = false;
        ppcBrdThreadRunning = true;
      }

      // Leave notify critical section
      if (!notifyLock->Unlock())
        goto ThreadError;
    }
    if (exit)
      return 0;

    // Process a single frame for PPC main board
    RunMainBoardFrame();

    // Enter notify critical section
    if (!notifyLock->Lock())
      goto ThreadError;

    // Let other threads know processing has finished
    ppcBrdThreadRunning = false;
    ppcBrdThreadDone = true;
    if (!notifySync->SignalAll())
      goto ThreadError;

    // Leave notify critical section
    if (!notifyLock->Unlock())
      goto ThreadError;
  }

ThreadError:
  ErrorLog("Threading error in RunMainBoardThread: %s\nSwitching back to single-threaded mode.\n", CThread::GetLastError());
  m_multiThreaded = false;
  return 1;
}

void CModel3::AudioCallback(void *data)
{
  // Call method on CModel3 to wake sound board thread
  CModel3 *model3 = (CModel3*)data;
  model3->WakeSoundBoardThread();
}

bool CModel3::WakeSoundBoardThread(void)
{
  // Enter sound board notify critical section
  bool wake;
  if (!sndBrdNotifyLock->Lock())
    goto ThreadError;

  // Enter main notify critical section
  if (!notifyLock->Lock())
    goto ThreadError;

  // See if sound board thread is currently running
  wake = !sndBrdThreadRunning;

  // Leave main notify critical section
  if (!notifyLock->Unlock())
    goto ThreadError;

  // Only send wake notification to sound board thread if it was not running
  if (wake)
  {
    // Signal to sound board thread that it should start processing again
    sndBrdWakeNotify = true;
    if (!sndBrdNotifySync->Signal())
      goto ThreadError;
  }

  // Leave sound board notify critical section
  if (!sndBrdNotifyLock->Unlock())
    goto ThreadError;
  return wake;

ThreadError:
  ErrorLog("Threading error in WakeSoundBoardThread: %s\nSwitching back to single-threaded mode.\n", CThread::GetLastError());
  m_multiThreaded = false;
  return false;
}

int CModel3::RunSoundBoardThread(void)
{
  for (;;)
  {
    bool wait = true;
    bool exit = false;
    while (wait && !exit)
    {
      // Enter sound board notify critical section
      if (!sndBrdNotifyLock->Lock())
        goto ThreadError;

      // Wait for notification from audio callback
      while (!sndBrdWakeNotify)
      {
        if (!sndBrdNotifySync->Wait(sndBrdNotifyLock))
          goto ThreadError;
      }
      sndBrdWakeNotify = false;

      // Enter main notify critical section
      if (!notifyLock->Lock())
        goto ThreadError;

      // Check threads are not being stopped or paused
      if (stopThreads)
        exit = true;
      else if (!pauseThreads)
      {
        wait = false;
        sndBrdThreadRunning = true;
      }

      // Leave main notify critical section
      if (!notifyLock->Unlock())
        goto ThreadError;

      // Leave sound board notify critical section
      if (!sndBrdNotifyLock->Unlock())
        goto ThreadError;
    }
    if (exit)
      return 0;

    // Keep processing frames until pausing or audio buffer is full
    while (true)
    {
      // Enter main notify critical section
      bool paused;
      if (!notifyLock->Lock())
        goto ThreadError;

      paused = pauseThreads;

      // Leave main notify critical section
      if (!notifyLock->Unlock())
        goto ThreadError;

      if (paused || RunSoundBoardFrame())
        break;
      //printf("Rerunning sound board\n");
    }

    // Enter main notify critical section
    if (!notifyLock->Lock())
      goto ThreadError;

    // Let other threads know processing has finished
    sndBrdThreadRunning = false;
    sndBrdThreadDone = true;
    if (!notifySync->SignalAll())
      goto ThreadError;

    // Leave main notify critical section
    if (!notifyLock->Unlock())
      goto ThreadError;
  }

ThreadError:
  ErrorLog("Threading error in RunSoundBoardThread: %s\nSwitching back to single-threaded mode.\n", CThread::GetLastError());
  m_multiThreaded = false;
  return 1;
}

int CModel3::RunSoundBoardThreadSyncd(void)
{
  for (;;)
  {
    bool wait = true;
    bool exit = false;
    while (wait && !exit)
    {
      // Wait on sound board thread semaphore
      if (!sndBrdThreadSync->Wait())
        goto ThreadError;

      // Enter notify critical section
      if (!notifyLock->Lock())
        goto ThreadError;

      // Check threads are not being stopped or paused
      if (stopThreads)
        exit = true;
      else if (!pauseThreads)
      {
        wait = false;
        sndBrdThreadRunning = true;
      }

      // Leave notify critical section
      if (!notifyLock->Unlock())
        goto ThreadError;
    }
    if (exit)
      return 0;

    // Process a single frame for sound board
    RunSoundBoardFrame();

    // Enter notify critical section
    if (!notifyLock->Lock())
      goto ThreadError;

    // Let other threads know processing has finished
    sndBrdThreadRunning = false;
    sndBrdThreadDone = true;
    if (!notifySync->SignalAll())
      goto ThreadError;

    // Leave notify critical section
    if (!notifyLock->Unlock())
      goto ThreadError;
  }

ThreadError:
  ErrorLog("Threading error in RunSoundBoardThreadSyncd: %s\nSwitching back to single-threaded mode.\n", CThread::GetLastError());
  m_multiThreaded = false;
  return 1;
}

int CModel3::RunDriveBoardThread(void)
{
  for (;;)
  {
    bool wait = true;
    bool exit = false;
    while (wait && !exit)
    {
      // Wait on drive board thread semaphore
      if (!drvBrdThreadSync->Wait())
        goto ThreadError;

      // Enter notify critical section
      if (!notifyLock->Lock())
        goto ThreadError;

      // Check threads are not being stopped or paused
      if (stopThreads)
        exit = true;
      else if (!pauseThreads)
      {
        wait = false;
        drvBrdThreadRunning = true;
      }

      // Leave notify critical section
      if (!notifyLock->Unlock())
        goto ThreadError;
    }
    if (exit)
      return 0;

    // Process a single frame for drive board
    RunDriveBoardFrame();

    // Enter notify critical section
    if (!notifyLock->Lock())
      goto ThreadError;

    // Let other threads know processing has finished
    drvBrdThreadRunning = false;
    drvBrdThreadDone = true;
    if (!notifySync->SignalAll())
      goto ThreadError;

    // Leave notify critical section
    if (!notifyLock->Unlock())
      goto ThreadError;
  }

ThreadError:
  ErrorLog("Threading error in RunDriveBoardThread: %s\nSwitching back to single-threaded mode.\n", CThread::GetLastError());
  m_multiThreaded = false;
  return 1;
}

void CModel3::Reset(void)
{
  // Clear memory (but do not modify backup RAM!)
  memset(ram, 0, 0x800000);

  // Initial bank is bank 0
  SetCROMBank(0xFF);

  // Reset security device
  securityPtr = 0;
  m_securityFirstRead = true;

  // Reset inputs
  inputBank = 0;
  serialFIFO1 = 0;
  serialFIFO2 = 0;
  adcChannel = 0;

  // MIDI
  midiCtrlPort = 0;

  // Reset all devices
  ppc_reset();
  IRQ.Reset();
  PCIBridge.Reset();
  PCIBus.Reset();
  SCSI.Reset();
  RTC.Reset();
  EEPROM.Reset();
  TileGen.Reset();
  GPU.Reset();
  SoundBoard.Reset();
  m_jtag.Reset();

  if (DriveBoard->IsAttached())
    DriveBoard->Reset();

  m_cryptoDevice.Reset();

  gpusReady = false;

  timings.ppcTicks = 0;
  timings.syncSize = 0;
  timings.syncTicks = 0;
  timings.renderTicks = 0;
  timings.sndTicks = 0;
  timings.drvTicks = 0;
#ifdef NET_BOARD
  timings.netTicks = 0;
  NetBoard->Reset();
#endif
  timings.frameTicks = 0;
  timings.frameId = 0;
  
  DebugLog("Model 3 reset\n");
}


/******************************************************************************
 Initialization, Shutdown, and ROM Management
******************************************************************************/

const Game &CModel3::GetGame() const
{
  return m_game;
}

// Stepping-dependent parameters (MPC10x type, etc.) are initialized here
bool CModel3::LoadGame(const Game &game, const ROMSet &rom_set)
{
  m_game = Game();

  /*
   * Copy in ROM data with mirroring as necessary for the following cases:
   *
   *  - VROM: 64MB. If <= 32MB, mirror to high 32MB.
   *  - Banked CROM: 128MB. If <= 64MB, mirror to high 64MB.
   *  - Fixed CROM: 8MB. If < 8MB, loaded only in high part of space and low
   *    part is a mirror of (banked) CROM0.
   *  - Sample ROM: 16MB. If <= 8MB, mirror to high 8MB.
   */
  if (rom_set.get_rom("vrom").size <= 32*0x100000)
  {
    rom_set.get_rom("vrom").CopyTo(&vrom[0], 32*100000);
    rom_set.get_rom("vrom").CopyTo(&vrom[32*0x100000], 32*0x100000);
  }
  else
    rom_set.get_rom("vrom").CopyTo(vrom, 64*0x100000);
  if (rom_set.get_rom("banked_crom").size <= 64*0x100000)
  {
    rom_set.get_rom("banked_crom").CopyTo(&crom[8*0x100000 + 0], 64*0x100000);
    rom_set.get_rom("banked_crom").CopyTo(&crom[8*0x100000 + 64*0x100000], 64*0x100000);
  }
  else
    rom_set.get_rom("banked_crom").CopyTo(&crom[8*0x100000 + 0], 128*0x100000);
  size_t crom_size = rom_set.get_rom("crom").size;
  rom_set.get_rom("crom").CopyTo(&crom[8*0x100000 - crom_size], crom_size);
  if (crom_size < 8*0x100000)
    rom_set.get_rom("banked_crom").CopyTo(&crom[0], 8*0x100000 - crom_size);
  if (rom_set.get_rom("sound_samples").size <= 8*0x100000)
  {
    rom_set.get_rom("sound_samples").CopyTo(&sampleROM[0], 8*0x100000);
    rom_set.get_rom("sound_samples").CopyTo(&sampleROM[8*0x100000], 8*0x100000);
  }
  else
    rom_set.get_rom("sound_samples").CopyTo(sampleROM, 16*0x100000);
  rom_set.get_rom("sound_program").CopyTo(soundROM, 512*1024);
  rom_set.get_rom("mpeg_program").CopyTo(dsbROM, 128*1024);
  rom_set.get_rom("mpeg_music").CopyTo(mpegROM, 16*0x100000);
  rom_set.get_rom("driveboard_program").CopyTo(driveROM, 64*1024);

  // Convert PowerPC and 68K ROMs to little endian words
  Util::FlipEndian32(crom, 8*0x100000 + 128*0x100000);
  Util::FlipEndian16(soundROM, 512*1024);
  Util::FlipEndian16(sampleROM, 16*0x100000);

  // Configure CPU and PCI bridge
  PPC_CONFIG  ppc_config;
  if (game.stepping == "2.0" || game.stepping == "2.1")
  {
    ppc_config.pvr = PPC_MODEL_603R;  // 166 MHz
    ppc_config.bus_frequency = BUS_FREQUENCY_66MHZ;
    ppc_config.bus_frequency_multiplier = 0x25; // 2.5X multiplier
    PCIBridge.SetModel(0x106);        // MPC106
  }
  else if (game.stepping == "1.5")
  {
    ppc_config.pvr = PPC_MODEL_603E;  // 100 MHz
    ppc_config.bus_frequency = BUS_FREQUENCY_66MHZ;
    ppc_config.bus_frequency_multiplier = 0x15; // 1.5X multiplier
    PCIBridge.SetModel(0x105);        // MPC105
  }
  else if (game.stepping == "1.0")
  {
    ppc_config.pvr = PPC_MODEL_603R;  // 66 MHz
    ppc_config.bus_frequency = BUS_FREQUENCY_66MHZ;
    ppc_config.bus_frequency_multiplier = 0x10; // 1X multiplier
    PCIBridge.SetModel(0x105);        // MPC105
  }
  else
  {
    ErrorLog("Cannot configure Model 3 because game uses unrecognized stepping (%s).", game.stepping.c_str());
    return FAIL;
  }

  if (!game.pci_bridge.empty())
  {
    if (game.pci_bridge == "MPC105")
      PCIBridge.SetModel(0x105);
    else if (game.pci_bridge == "MPC106")
      PCIBridge.SetModel(0x106);
    else
      ErrorLog("Unknown PCI bridge specified in ROM set definition file (%s). Defaulting to MPC%X.", game.pci_bridge.c_str(), PCIBridge.GetModel());
  }

  // Initialize CPU
  ppc_init(&ppc_config);
  ppc_attach_bus(this);
  PPCFetchRegions[0].start = 0;
  PPCFetchRegions[0].end = 0x007FFFFF;
  PPCFetchRegions[0].ptr = (UINT32 *) ram;
  PPCFetchRegions[1].start = 0xFF800000;
  PPCFetchRegions[1].end = 0xFFFFFFFF;
  PPCFetchRegions[1].ptr = (UINT32 *) crom;
  PPCFetchRegions[2].start = 0;
  PPCFetchRegions[2].end = 0;
  PPCFetchRegions[2].ptr = NULL;
  ppc_set_fetch(PPCFetchRegions);

  // Initialize Real3D
  int stepping = ((game.stepping[0] - '0') << 4) | (game.stepping[2] - '0');
  GPU.SetStepping(stepping);

  // MPEG board (if present)
  if (rom_set.get_rom("mpeg_program").size)
  {
    if (game.mpeg_board == "DSB1")
    {
      DSB = new(std::nothrow) CDSB1(m_config);
      if (NULL == DSB)
        return ErrorLog("Insufficient memory for Digital Sound Board object.");
    }
    else if (game.mpeg_board == "DSB2")
    {
      Util::FlipEndian16(dsbROM, 128*1024); // 68K program needs to be byte swapped
      DSB = new(std::nothrow) CDSB2(m_config);
      if (NULL == DSB)
        return ErrorLog("Insufficient memory for Digital Sound Board object.");
    }
    else if (game.mpeg_board.empty())
      ErrorLog("No MPEG board type defined in game XML for MPEG ROMs.");
    else
      ErrorLog("Unknown MPEG board type '%s'. Only 'DSB1' and 'DSB2' are supported.", game.mpeg_board.c_str());
    if (DSB && OKAY != DSB->Init(dsbROM, mpegROM))
      return FAIL;
  }
  SoundBoard.AttachDSB(DSB);

  // Drive board (if present)
  if (game.driveboard_type == Game::DRIVE_BOARD_WHEEL && rom_set.get_rom("driveboard_program").size)
  {
    DriveBoard = new CWheelBoard(m_config);
    if (DriveBoard->Init(driveROM))
      return FAIL;
  }
  else if (game.driveboard_type == Game::DRIVE_BOARD_JOYSTICK && rom_set.get_rom("driveboard_program").size)
  {
    DriveBoard = new CJoyBoard(m_config);
    if (DriveBoard->Init(driveROM))
      return FAIL;
  }
  else if (game.driveboard_type == Game::DRIVE_BOARD_BILLBOARD && rom_set.get_rom("driveboard_program").size)
  {
    DriveBoard = new CBillBoard(m_config);
    if (DriveBoard->Init(driveROM))
      return FAIL;
  }
  else if (game.driveboard_type == Game::DRIVE_BOARD_SKI)
  {
    DriveBoard = new CSkiBoard(m_config);
    if (DriveBoard->Init(driveROM)) // no actual ROM data loaded (ski feedback is simulated)
      return FAIL;
  }
  else
  {
    // Dummy drive board (presents itself as not attached)
    DriveBoard = new CDriveBoard(m_config);
    if (DriveBoard->Init())
      return FAIL;
  }

  // Security board encryption device
  m_cryptoDevice.Init(game.encryption_key, std::bind(&CModel3::ReadSecurityRAM, this, std::placeholders::_1));

  // Print game information
  std::set<std::string> extra_hw;

  if (DSB)
    extra_hw.insert(Util::Format() << "Digital Sound Board (Type " << game.mpeg_board << ")");
  if (DriveBoard->IsAttached())
  {
    if (DriveBoard->GetType() == Game::DRIVE_BOARD_BILLBOARD)
      extra_hw.insert("Billboard");
    else
      extra_hw.insert("Drive Board");
  }
  if (game.encryption_key)
    extra_hw.insert("Security Board");
  if (game.netboard_present)
    extra_hw.insert("Net Board");
  if (!game.version.empty())
    std::cout << "    Title:          " << game.title << " (" << game.version << ")" << std::endl;
  else
    std::cout << "    Title:          " << game.title << std::endl;
  std::cout << "    ROM Set:        " << game.name << std::endl;
  std::cout << "    Developer:      " << game.manufacturer << std::endl;
  std::cout << "    Year:           " << game.year << std::endl;
  std::cout << "    Stepping:       " << game.stepping << std::endl;
  if (!extra_hw.empty())
    std::cout << "    Extra Hardware: " << Util::Format(", ").Join(extra_hw) << std::endl;
  std::cout << std::endl;

  m_game = game;
#ifdef NET_BOARD
  NetBoard->GetGame(m_game);
  if (OKAY != NetBoard->Init(netRAM, netBuffer))
  {
    return FAIL;
  }

  m_runNetBoard = m_game.stepping != "1.0" && NetBoard->IsAttached();
#endif
  return OKAY;
}

void CModel3::AttachRenderers(CRender2D *Render2DPtr, IRender3D *Render3DPtr)
{
  TileGen.AttachRenderer(Render2DPtr);
  GPU.AttachRenderer(Render3DPtr);
}

void CModel3::AttachInputs(CInputs *InputsPtr)
{
  Inputs = InputsPtr;

  if (DriveBoard->IsAttached())
    DriveBoard->AttachInputs(Inputs, m_game.inputs);

  DebugLog("Model 3 attached inputs\n");
}

void CModel3::AttachOutputs(COutputs *OutputsPtr)
{
  Outputs = OutputsPtr;
  Outputs->SetGame(m_game);
  Outputs->Attached();

  if (DriveBoard->IsAttached())
    DriveBoard->AttachOutputs(Outputs);

  DebugLog("Model 3 attached outputs\n");
}

const static int RAM_SIZE			= 0x800000;		//8MB
const static int CROM_SIZE			= 0x800000;		//8MB
const static int CROMxx_SIZE		= 0x8000000;	//128MB
const static int VROM_SIZE			= 0x4000000;	//64MB
const static int BACKUPRAM_SIZE		= 0x20000;		//128KB
const static int SECURITYRAM_SIZE	= 0x20000;		//128KB
const static int SOUNDROM_SIZE		= 0x80000;		//512KB
const static int SAMPLEROM_SIZE		= 0x1000000;	//16MB
const static int DSBPROGROM_SIZE	= 0x20000;		//128KB
const static int DSBMPEGROM_SIZE	= 0x1000000;	//16MB
const static int DRIVEROM_SIZE		= 0x10000;		//64KB
const static int NETBUFFER_SIZE		= 0x20000;		//128KB
const static int NETRAM_SIZE		= 0x10000;		//64KB

const static int MEM_POOL_SIZE		= RAM_SIZE + CROM_SIZE +
                                        CROMxx_SIZE + VROM_SIZE +
                                        BACKUPRAM_SIZE + SECURITYRAM_SIZE +
                                        SOUNDROM_SIZE + SAMPLEROM_SIZE +
                                        DSBPROGROM_SIZE + DSBMPEGROM_SIZE +
                                        DRIVEROM_SIZE + NETBUFFER_SIZE +
                                        NETRAM_SIZE;

const static int RAM_OFFSET			= 0;
const static int CROM_OFFSET		= RAM_OFFSET + RAM_SIZE;
const static int CROMxx_OFFSET		= CROM_OFFSET + CROM_SIZE;
const static int VROM_OFFSET		= CROMxx_OFFSET + CROMxx_SIZE;
const static int BACKUPRAM_OFFSET	= VROM_OFFSET + VROM_SIZE;
const static int SECURITYRAM_OFFSET	= BACKUPRAM_OFFSET + BACKUPRAM_SIZE;
const static int SOUNDROM_OFFSET	= SECURITYRAM_OFFSET + SECURITYRAM_SIZE;
const static int SAMPLEROM_OFFSET	= SOUNDROM_OFFSET + SOUNDROM_SIZE;
const static int DSBPROGROM_OFFSET	= SAMPLEROM_OFFSET + SAMPLEROM_SIZE;
const static int DSBMPEGROM_OFFSET	= DSBPROGROM_OFFSET + DSBPROGROM_SIZE;
const static int DRIVEROM_OFFSET	= DSBMPEGROM_OFFSET + DSBMPEGROM_SIZE;
const static int NETBUFFER_OFFSET	= DRIVEROM_OFFSET + DRIVEROM_SIZE;
const static int NETRAM_OFFSET		= NETBUFFER_OFFSET + NETBUFFER_SIZE;

// Model 3 initialization. Some initialization is deferred until ROMs are loaded in LoadROMSet()
bool CModel3::Init(void)
{
  float memSizeMB = (float)MEM_POOL_SIZE / (float)0x100000;

  // Allocate all memory for ROMs and PPC RAM
  memoryPool = new(std::nothrow) UINT8[MEM_POOL_SIZE];
  if (NULL == memoryPool)
    return ErrorLog("Insufficient memory for Model 3 object (needs %1.1f MB).", memSizeMB);
  memset(memoryPool, 0, MEM_POOL_SIZE);

  // Set up pointers
  ram = &memoryPool[RAM_OFFSET];
  crom = &memoryPool[CROM_OFFSET];
  vrom = &memoryPool[VROM_OFFSET];
  soundROM = &memoryPool[SOUNDROM_OFFSET];
  sampleROM = &memoryPool[SAMPLEROM_OFFSET];
  dsbROM = &memoryPool[DSBPROGROM_OFFSET];
  mpegROM = &memoryPool[DSBMPEGROM_OFFSET];
  backupRAM = &memoryPool[BACKUPRAM_OFFSET];
  securityRAM = &memoryPool[SECURITYRAM_OFFSET];
  driveROM = &memoryPool[DRIVEROM_OFFSET];
  netRAM = &memoryPool[NETRAM_OFFSET];
  netBuffer = &memoryPool[NETBUFFER_OFFSET];

  SetCROMBank(0xFF);

  // Initialize other devices (PowerPC, DSB, and security board initialized after ROMs loaded)
  IRQ.Init();
  PCIBridge.Init();
  PCIBus.Init();
  SCSI.Init(this,&IRQ,0x100); // SCSI is actually a non-maskable interrupt, so we give it a bit number outside of 8-bit range
  RTC.Init();
  EEPROM.Init();
  if (OKAY != TileGen.Init(&IRQ))
    return FAIL;
  if (OKAY != GPU.Init(vrom,this,&IRQ,0x100)) // same for Real3D DMA interrupt
    return FAIL;
  if (OKAY != SoundBoard.Init(soundROM,sampleROM))
    return FAIL;

  PCIBridge.AttachPCIBus(&PCIBus);
  PCIBus.AttachDevice(13,&GPU);
  PCIBus.AttachDevice(14,&SCSI);
  PCIBus.AttachDevice(16,this);

#ifdef NET_BOARD
  if (m_config["SimulateNet"].ValueAs<bool>())
      NetBoard = new CSimNetBoard(m_config);
  else
      NetBoard = new CNetBoard(m_config);
#endif // NET_BOARD

  DebugLog("Initialized Model 3 (allocated %1.1f MB)\n", memSizeMB);

  return OKAY;
}

CSoundBoard *CModel3::GetSoundBoard(void)
{
  return &SoundBoard;
}

CDriveBoard *CModel3::GetDriveBoard(void)
{
  return DriveBoard;
}

#ifdef NET_BOARD
INetBoard *CModel3::GetNetBoard(void)
{
  return NetBoard;
}
#endif

CModel3::CModel3(Util::Config::Node &config)
  : m_config(config),
    m_multiThreaded(config["MultiThreaded"].ValueAs<bool>()),
    m_gpuMultiThreaded(config["GPUMultiThreaded"].ValueAs<bool>()),
    TileGen(config),
    GPU(config),
    SoundBoard(config),
    m_jtag(GPU)
{
  // Initialize pointers so dtor can know whether to free them
  memoryPool = NULL;

  // Various uninitialized pointers
  Inputs = NULL;
  Outputs = NULL;
  ram = NULL;
  crom = NULL;
  vrom = NULL;
  soundROM = NULL;
  sampleROM = NULL;
  dsbROM = NULL;
  mpegROM = NULL;
  cromBank = NULL;
  backupRAM = NULL;
  securityRAM = NULL;
  netRAM = NULL;
  netBuffer = NULL;

  DSB = NULL;
  DriveBoard = NULL;

#ifdef NET_BOARD
  NetBoard = NULL;
#endif

  securityPtr = 0;

  startedThreads = false;
  pauseThreads = false;
  stopThreads = false;
  ppcBrdThread = NULL;
  sndBrdThread = NULL;
  drvBrdThread = NULL;

  ppcBrdThreadRunning = false;
  ppcBrdThreadDone = false;
  sndBrdThreadRunning = false;
  sndBrdThreadDone = false;
  drvBrdThreadRunning = false;
  drvBrdThreadDone = false;

  syncSndBrdThread = false;
  ppcBrdThreadSync = NULL;
  sndBrdThreadSync = NULL;
  drvBrdThreadSync = NULL;

  notifyLock = NULL;
  notifySync = NULL;

  DebugLog("Built Model 3\n");
}

// Dumps a memory region to a file for debugging purposes
#if 0
static void Dump(const char *file, uint8_t *buf, size_t size, bool reverse32, bool reverse16)
{
  FILE *fp = fopen(file, "wb");
  if (NULL != fp)
  {
    if (reverse32)
      Util::FlipEndian32(buf, size);
    else if (reverse16)
      Util::FlipEndian16(buf, size);
    fwrite(buf, sizeof(UINT8), size, fp);
    fclose(fp);
    printf("dumped %s\n", file);
  }
  else
    printf("unable to dump %s\n", file);
}
#endif

CModel3::~CModel3(void)
{
  // Debug: dump some files
  //Dump("ram", ram, 0x800000, true, false);
  //Dump("vrom", vrom, 0x4000000, true, false);
  //Dump("crom", crom, 0x800000, true, false);
  //Dump("bankedCrom", &crom[0x800000], 0x7000000, true, false);
  //Dump("soundROM", soundROM, 0x80000, false, true);
  //Dump("sampleROM", sampleROM, 0x800000, false, true);

  // Stop all threads
  StopThreads();

  // Free memory
  if (memoryPool != NULL)
  {
    delete [] memoryPool;
    memoryPool = NULL;
  }

  if (DSB != NULL)
  {
    delete DSB;
    DSB = NULL;
  }

  if (DriveBoard != NULL)
  {
      delete DriveBoard;
      DriveBoard = NULL;
  }

#ifdef NET_BOARD
  if (NetBoard != NULL)
  {
      delete NetBoard;
      NetBoard = NULL;
  }
#endif

  Inputs = NULL;
  Outputs = NULL;
  ram = NULL;
  crom = NULL;
  vrom = NULL;
  soundROM = NULL;
  sampleROM = NULL;
  dsbROM = NULL;
  mpegROM = NULL;
  cromBank = NULL;
  backupRAM = NULL;
  securityRAM = NULL;
  netRAM = NULL;
  netBuffer = NULL;

  DebugLog("Destroyed Model 3\n");
}