/**
** Supermodel
** A Sega Model 3 Arcade Emulator.
** Copyright 2011-2021 Bart Trzynadlowski, Nik Henson, Ian Curtis,
** Harry Tuttle, and Spindizzi
**
** This file is part of Supermodel.
**
** Supermodel is free software: you can redistribute it and/or modify it under
** the terms of the GNU General Public License as published by the Free
** Software Foundation, either version 3 of the License, or (at your option)
** any later version.
**
** Supermodel is distributed in the hope that it will be useful, but WITHOUT
** ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
** FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
** more details.
**
** You should have received a copy of the GNU General Public License along
** with Supermodel. If not, see .
**/
/*
* JoyBoard.cpp
*
* Implementation of the CJoyBoard class: drive board (force feedback emulation
* for joystick) emulation.
*
* NOTE: This is largely a copy of CWheelBoard as it appears to be the same drive
* board. The joystick X axis is used rather than the wheel input. It is unknown
* how or whether the Y axis is involved at all.
*
* NOTE: Simulation does not yet work. Drive board ROMs are required.
*/
#include "Supermodel.h"
#include
#include
#include
Game::DriveBoardType CJoyBoard::GetType(void)
{
return Game::DRIVE_BOARD_JOYSTICK;
}
void CJoyBoard::Get7SegDisplays(UINT8 &seg1Digit1, UINT8 &seg1Digit2, UINT8 &seg2Digit1, UINT8 &seg2Digit2)
{
seg1Digit1 = m_seg1Digit1;
seg1Digit2 = m_seg1Digit2;
seg2Digit1 = m_seg2Digit1;
seg2Digit2 = m_seg2Digit2;
}
void CJoyBoard::SaveState(CBlockFile *SaveState)
{
CDriveBoard::SaveState(SaveState);
SaveState->NewBlock("JoystickBoard", __FILE__);
SaveState->Write(&m_simulated, sizeof(m_simulated));
if (m_simulated)
{
// TODO - save board simulation state
}
else
{
// Save DIP switches and digit displays
SaveState->Write(&m_dip1, sizeof(m_dip1));
SaveState->Write(&m_dip2, sizeof(m_dip2));
SaveState->Write(&m_adcPortRead, sizeof(m_adcPortRead));
SaveState->Write(&m_adcPortBit, sizeof(m_adcPortBit));
SaveState->Write(&m_uncenterVal1, sizeof(m_uncenterVal1));
SaveState->Write(&m_uncenterVal2, sizeof(m_uncenterVal2));
}
}
void CJoyBoard::LoadState(CBlockFile *SaveState)
{
CDriveBoard::LoadState(SaveState);
if (SaveState->FindBlock("JoystickBoard") != OKAY)
{
ErrorLog("Unable to load joystick drive board state. Save state file is corrupt.");
Disable();
return;
}
bool wasSimulated;
SaveState->Read(&wasSimulated, sizeof(wasSimulated));
if (wasSimulated)
{
// Simulation has never existed
ErrorLog("Save state contains unexpected data. Halting drive board emulation.");
Disable();
return;
}
else
{
// Load DIP switches and digit displays
SaveState->Read(&m_dip1, sizeof(m_dip1));
SaveState->Read(&m_dip2, sizeof(m_dip2));
SaveState->Read(&m_adcPortRead, sizeof(m_adcPortRead));
SaveState->Read(&m_adcPortBit, sizeof(m_adcPortBit));
SaveState->Read(&m_uncenterVal1, sizeof(m_uncenterVal1));
SaveState->Read(&m_uncenterVal2, sizeof(m_uncenterVal2));
}
}
void CJoyBoard::Disable(void)
{
SendStopAll();
CDriveBoard::Disable();
}
void CJoyBoard::Reset(void)
{
CDriveBoard::Reset();
m_seg1Digit1 = 0xFF;
m_seg1Digit2 = 0xFF;
m_seg2Digit1 = 0xFF;
m_seg2Digit2 = 0xFF;
m_adcPortRead = 0;
m_adcPortBit = 0;
m_port42Out = 0;
m_port45Out = 0;
m_port46Out = 0;
m_prev42Out = 0;
m_prev45Out = 0;
m_prev46Out = 0;
m_uncenterVal1 = 0;
m_uncenterVal2 = 0;
m_lastConstForce = 0;
m_lastConstForceY = 0;
m_lastSelfCenter = 0;
m_lastFriction = 0;
m_lastVibrate = 0;
m_simulated = false; //TODO: make this run-time configurable when simulation mode is supported
if (!m_config["ForceFeedback"].ValueAsDefault(false))
Disable();
// Stop any effects that may still be playing
if (!IsDisabled())
SendStopAll();
}
UINT8 CJoyBoard::Read(void)
{
if (IsDisabled())
{
return 0xFF;
}
// TODO - simulate initialization sequence even when emulating to get rid of long pause at boot up (drive board can
// carry on booting whilst game starts)
if (m_simulated)
return SimulateRead();
else
return CDriveBoard::Read();
}
void CJoyBoard::Write(UINT8 data)
{
if (IsDisabled())
{
return;
}
//if (data >= 0x01 && data <= 0x0F ||
// data >= 0x20 && data <= 0x2F ||
// data >= 0x30 && data <= 0x3F ||
// data >= 0x40 && data <= 0x4F ||
// data >= 0x70 && data <= 0x7F)
// DebugLog("DriveBoard.Write(%02X)\n", data);
if (m_simulated)
SimulateWrite(data);
else
{
CDriveBoard::Write(data);
if (data == 0xCB)
m_initialized = false;
}
}
UINT8 CJoyBoard::SimulateRead(void)
{
if (m_initialized)
{
switch (m_readMode)
{
case 0x0: return m_statusFlags; // Status flags
case 0x1: return m_dip1; // DIP switch 1 value
case 0x2: return m_dip2; // DIP switch 2 value
case 0x3: return m_wheelCenter; // Wheel center
case 0x4: return 0x80; // Cockpit banking center
case 0x5: return (UINT8)m_inputs->analogJoyX->value; // Wheel position
case 0x6: return 0x80; // Cockpit banking position
case 0x7: return m_echoVal; // Init status/echo test
default: return 0xFF;
}
}
else
{
switch (m_initState / 5)
{
case 0: return 0xCF; // Initiate start
case 1: return 0xCE;
case 2: return 0xCD;
case 3: return 0xCC; // Centering wheel
default:
m_initialized = true;
return 0x80;
}
}
}
void CJoyBoard::SimulateWrite(UINT8 cmd)
{
// Following are commands for Scud Race. Daytona 2 has a compatible command set while Sega Rally 2 is completely different
// TODO - finish for Scud Race and Daytona 2
// TODO - implement for Sega Rally 2
UINT8 type = cmd>>4;
UINT8 val = cmd&0xF;
switch (type)
{
case 0: // 0x00-0F Play sequence
/* TODO */
break;
case 1: // 0x10-1F Set centering strength
if (val == 0)
// Disable auto-centering
// TODO - is 0x10 for disable?
SendSelfCenter(0);
else
// Enable auto-centering (0x1 = weakest, 0xF = strongest)
SendSelfCenter(val * 0x11);
break;
case 2: // 0x20-2F Friction strength
if (val == 0)
// Disable friction
// TODO - is 0x20 for disable?
SendFriction(0);
else
// Enable friction (0x1 = weakest, 0xF = strongest)
SendFriction(val * 0x11);
break;
case 3: // 0x30-3F Uncentering (vibrate)
if (val == 0)
// Disable uncentering
SendVibrate(0);
else
// Enable uncentering (0x1 = weakest, 0xF = strongest)
SendVibrate(val * 0x11);
break;
case 4: // 0x40-4F Play power-slide sequence
/* TODO */
break;
case 5: // 0x50-5F Rotate wheel right
SendConstantForce((val + 1) * 0x5);
break;
case 6: // 0x60-6F Rotate wheel left
SendConstantForce(-(val + 1) * 0x5);
break;
case 7: // 0x70-7F Set steering parameters
/* TODO */
break;
case 8: // 0x80-8F Test Mode
switch (val & 0x7)
{
case 0: SendStopAll(); break; // 0x80 Stop motor
case 1: SendConstantForce(20); break; // 0x81 Roll wheel right
case 2: SendConstantForce(-20); break; // 0x82 Roll wheel left
case 3: /* Ignore - no clutch */ break; // 0x83 Clutch on
case 4: /* Ignore - no clutch */ break; // 0x84 Clutch off
case 5: m_wheelCenter = (UINT8)m_inputs->analogJoyX->value; break; // 0x85 Set wheel center position
case 6: /* Ignore */ break; // 0x86 Set cockpit banking position
case 7: /* Ignore */ break; // 0x87 Lamp on/off
}
case 0x9: // 0x90-9F ??? Don't appear to have any effect with Scud Race ROM
/* TODO */
break;
case 0xA: // 0xA0-AF ??? Don't appear to have any effect with Scud Race ROM
/* TODO */
break;
case 0xB: // 0xB0-BF Invalid command (reserved for use by PPC to send cabinet type 0xB0 or 0xB1 during initialization)
/* Ignore */
break;
case 0xC: // 0xC0-CF Set board mode (0xCB = reset board)
SendStopAll();
if (val >= 0xB)
{
// Reset board
m_initialized = false;
m_initState = 0;
}
else
m_boardMode = val;
break;
case 0xD: // 0xD0-DF Set read mode
m_readMode = val & 0x7;
break;
case 0xE: // 0xE0-EF Invalid command
/* Ignore */
break;
case 0xF: // 0xF0-FF Echo test
m_echoVal = val;
break;
}
}
void CJoyBoard::RunFrame(void)
{
if (m_simulated)
SimulateFrame();
else
CDriveBoard::RunFrame();
}
void CJoyBoard::SimulateFrame(void)
{
if (!m_initialized)
m_initState++;
// TODO - update m_statusFlags and play preset scripts according to board mode
}
UINT8 CJoyBoard::IORead8(UINT32 portNum)
{
UINT8 adcVal;
switch (portNum)
{
case 0x20: // DIP 1 value
return m_dip1;
case 0x21: // DIP 2 value
return m_dip2;
case 0x24: // ADC channel 1 - Y analog axis for joystick
case 0x25: // ADC channel 2 - steering wheel position (0x00 = full left, 0x80 = center, 0xFF = full right) and X analog axis for joystick
case 0x26: // ADC channel 3 - cockpit bank position (deluxe cabinets) (0x00 = full left, 0x80 = center, 0xFF = full right)
case 0x27: // ADC channel 4 - not connected
if (portNum == m_adcPortRead && m_adcPortBit-- > 0)
{
switch (portNum)
{
case 0x24: // Y analog axis for joystick
adcVal = ReadADCChannel1();
break;
case 0x25: // Steering wheel for twin racing cabinets - TODO - check actual range of steering, suspect it is not really 0x00-0xFF
adcVal = ReadADCChannel2();
break;
case 0x26: // Cockpit bank position for deluxe racing cabinets
adcVal = ReadADCChannel3();
break;
case 0x27: // Not connected
adcVal = ReadADCChannel4();
break;
default:
DebugLog("Unhandled Z80 input on ADC port %u (at PC = %04X)\n", portNum, m_z80.GetPC());
return 0xFF;
}
return (adcVal >> m_adcPortBit) & 0x01;
}
else
{
DebugLog("Unhandled Z80 input on ADC port %u (at PC = %04X)\n", portNum, m_z80.GetPC());
return 0xFF;
}
case 0x28: // PPC command
return m_dataSent;
case 0x2c: // Encoder error reporting (kept at 0x00 for no error)
// Bit 1 0
// 0 0 = encoder okay, no error
// 0 1 = encoder error 1 - overcurrent error
// 1 0 = encoder error 2 - overheat error
// 1 1 = encoder error 3 - encoder error, reinitializes board
return 0x00;
default:
DebugLog("Unhandled Z80 input on port %u (at PC = %04X)\n", portNum, m_z80.GetPC());
return 0xFF;
}
}
void CJoyBoard::IOWrite8(UINT32 portNum, UINT8 data)
{
switch (portNum)
{
case 0x10: // Unsure? - single byte 0x03 sent at initialization, then occasionally writes 0x07 & 0xFA to port
return;
case 0x11: // Interrupt control
if (data == 0x57)
m_allowInterrupts = true;
else if (data == 0x53) // Strictly speaking 0x53 then 0x04
m_allowInterrupts = false;
return;
case 0x1c: // Unsure? - two bytes 0xFF, 0xFF sent at initialization only
case 0x1d: // Unsure? - two bytes 0x0F, 0x17 sent at initialization only
case 0x1e: // Unsure? - same as port 28
case 0x1f: // Unsure? - same as port 31
return;
case 0x20: // Left digit of 7-segment display 1
m_seg1Digit1 = data;
return;
case 0x21: // Right digit of 7-segment display 1
m_seg1Digit2 = data;
return;
case 0x22: // Left digit of 7-segment display 2
m_seg2Digit1 = data;
return;
case 0x23: // Right digit of 7-segment display 2
m_seg2Digit2 = data;
return;
case 0x24: // ADC channel 1 control
case 0x25: // ADC channel 2 control
case 0x26: // ADC channel 3 control
case 0x27: // ADC channel 4 control
m_adcPortRead = portNum;
m_adcPortBit = 8;
return;
case 0x29: // Reply for PPC
m_dataReceived = data;
if (data == 0xCB)
m_initialized = true;
return;
case 0x2a: // Encoder motor data (x axis)
m_port42Out = data;
ProcessEncoderCmdJoystick();
return;
case 0x2d: // Clutch/lamp control (deluxe cabinets) ( or y axis)
m_port45Out = data;
ProcessEncoderCmdJoystick();
return;
case 0x2e: // Encoder motor control
m_port46Out = data;
return;
case 0xf0: // Unsure? - single byte 0xBB sent at initialization only
return;
case 0xf1: // Unsure? - single byte 0x4E sent regularly - some sort of watchdog?
return;
default:
DebugLog("Unhandled Z80 output on port %u (at PC = %04X)\n", portNum, m_z80.GetPC());
return;
}
}
void CJoyBoard::ProcessEncoderCmdJoystick(void)
{
if (m_prev42Out != m_port42Out || m_prev46Out != m_port46Out || m_prev45Out != m_port45Out)
{
switch (m_port46Out)
{
case 0xEE:
// Apply constant force
if (m_port42Out > 0x7f) // X
{
SendConstantForce(2 * (m_port42Out - 0x7f));
}
else if (m_port42Out < 0x7f)
{
SendConstantForce(2 * (m_port42Out - 0x7f));
}
else
{
SendConstantForce(0);
}
if (m_port45Out > 0x7f) // Y
{
SendConstantForceY(-2 * (m_port45Out - 0x7f));
}
else if (m_port45Out < 0x7f)
{
SendConstantForceY(-2 * (m_port45Out - 0x7f));
}
else
{
SendConstantForceY(0);
}
if (m_port42Out == 0x7f && m_port45Out == 0x81)
{
SendSelfCenter(255);
}
else SendSelfCenter(0);
break;
case 0xFF:
// Stop all effects
if (m_port42Out == 0 || m_port45Out == 0)
SendStopAll();
break;
case 0xcc: // init
//42[0B] / 45[0A]
//42[0B] / 45[0B]
//42[FF] / 45[0B]
//42[FF] / 45[FF]
break;
case 0xdd: // init
// 42[FF] / 45[00]
// 42[FF] / 45[FF]
// 42[0A] / 45[00]
// 42[0A] / 45[0A]
break;
case 0xce:
// 42[7F] / 45[08]
// 42[7F] / 45[09]
// 42[7F] / 45[0A]
// 42[7F] / 45[0B]
// 42[7F] / 45[81]
if (m_port42Out == 0x7f && m_port45Out != 0x81) // X
{
SendConstantForce(2 * m_port45Out);
}
if (m_port42Out == 0x7f && m_port45Out == 0x81)
{
SendSelfCenter(255);
}
break;
case 0xec:
// 42[09] / 45[81]
// 42[2A] / 45[81]
// 42[1B] / 45[81]
// 42[7F] / 45[81]
if (m_port45Out == 0x81 && m_port42Out != 0x7f) // Y
{
SendConstantForceY(2 * m_port42Out);
}
if (m_port42Out == 0x7f && m_port45Out == 0x81)
{
SendSelfCenter(255);
}
break;
case 0x00: // init
// 42[FF] / 45[00]
// 42[FF] / 45[FF]
break;
case 0x99: // init
// 42[B0] / 45[B0]
// 42[80] / 45[B0]
// 42[80] / 45[80]
break;
default:
//DebugLog("Unknown = 46 [%02X] / 42 [%02X] / 45 [%02X]\n", m_port46Out, m_port42Out, m_port45Out);
break;
}
m_prev42Out = m_port42Out;
m_prev46Out = m_port46Out;
m_prev45Out = m_port45Out;
}
}
void CJoyBoard::SendStopAll(void)
{
//DebugLog(">> Stop All Effects\n");
ForceFeedbackCmd ffCmd;
ffCmd.id = FFStop;
m_inputs->analogJoyX->SendForceFeedbackCmd(ffCmd);
m_inputs->analogJoyY->SendForceFeedbackCmd(ffCmd);
m_lastConstForce = 0;
m_lastSelfCenter = 0;
m_lastFriction = 0;
m_lastVibrate = 0;
m_lastConstForceY = 0;
}
void CJoyBoard::SendConstantForce(INT8 val)
{
if (val == m_lastConstForce)
return;
/*
if (val > 0)
{
DebugLog(">> Force Right %02X [%8s", val, "");
for (unsigned i = 0; i < 8; i++)
DebugLog(i == 0 || i <= (val + 1) / 16 ? ">" : " ");
DebugLog("]\n");
}
else if (val < 0)
{
DebugLog(">> Force Left %02X [", -val);
for (unsigned i = 0; i < 8; i++)
DebugLog(i == 7 || i >= (val + 128) / 16 ? "<" : " ");
DebugLog("%8s]\n", "");
}
else
DebugLog(">> Stop Force [%16s]\n", "");
*/
ForceFeedbackCmd ffCmd;
ffCmd.id = FFConstantForce;
ffCmd.force = (float)val / (val >= 0 ? 127.0f : 128.0f);
m_inputs->analogJoyX->SendForceFeedbackCmd(ffCmd);
m_lastConstForce = val;
}
void CJoyBoard::SendConstantForceY(INT8 val)
{
if (val == m_lastConstForceY)
return;
ForceFeedbackCmd ffCmd;
ffCmd.id = FFConstantForce;
ffCmd.force = (float)val / (val >= 0 ? 127.0f : 128.0f);
m_inputs->analogJoyY->SendForceFeedbackCmd(ffCmd);
m_lastConstForceY = val;
}
void CJoyBoard::SendSelfCenter(UINT8 val)
{
if (val == m_lastSelfCenter)
return;
/*
if (val == 0)
DebugLog(">> Stop Self-Center\n");
else
DebugLog(">> Self-Center %02X\n", val);
*/
ForceFeedbackCmd ffCmd;
ffCmd.id = FFSelfCenter;
ffCmd.force = (float)val / 255.0f;
m_inputs->analogJoyX->SendForceFeedbackCmd(ffCmd);
m_inputs->analogJoyY->SendForceFeedbackCmd(ffCmd);
m_lastSelfCenter = val;
}
void CJoyBoard::SendFriction(UINT8 val)
{
if (val == m_lastFriction)
return;
/*
if (val == 0)
DebugLog(">> Stop Friction\n");
else
DebugLog(">> Friction %02X\n", val);
*/
ForceFeedbackCmd ffCmd;
ffCmd.id = FFFriction;
ffCmd.force = (float)val / 255.0f;
m_inputs->analogJoyX->SendForceFeedbackCmd(ffCmd);
m_lastFriction = val;
}
void CJoyBoard::SendVibrate(UINT8 val)
{
if (val == m_lastVibrate)
return;
/*
if (val == 0)
DebugLog(">> Stop Vibrate\n");
else
DebugLog(">> Vibrate %02X\n", val);
*/
ForceFeedbackCmd ffCmd;
ffCmd.id = FFVibrate;
ffCmd.force = (float)val / 255.0f;
m_inputs->analogJoyX->SendForceFeedbackCmd(ffCmd);
m_lastVibrate = val;
}
uint8_t CJoyBoard::ReadADCChannel1()
{
if (m_initialized)
return (UINT8)m_inputs->analogJoyY->value;
else
return 0x80; // If not initialized, return 0x80 so that ffb centering test does not fail
}
uint8_t CJoyBoard::ReadADCChannel2()
{
if (m_initialized)
return (UINT8)m_inputs->analogJoyX->value;
else
return 0x80; // If not initialized, return 0x80 so that ffb centering test does not fail
}
uint8_t CJoyBoard::ReadADCChannel3()
{
return 0x80;
}
uint8_t CJoyBoard::ReadADCChannel4()
{
return 0x80;
}
CJoyBoard::CJoyBoard(const Util::Config::Node &config)
: CDriveBoard(config)
{
m_dip1 = 0xCF;
m_dip2 = 0xFF;
DebugLog("Built Drive Board (Joystick)\n");
}
CJoyBoard::~CJoyBoard(void)
{
}