#include "R3DShader.h" #include "Graphics/Shader.h" namespace New3D { static const char *vertexShaderBasic = // uniforms "uniform float fogIntensity;\n" "uniform float fogDensity;\n" "uniform float fogStart;\n" //outputs to fragment shader "varying float fsFogFactor;\n" "varying float fsSpecularTerm;\n" // specular light term (additive) "varying vec3 fsViewVertex;\n" "varying vec3 fsViewNormal;\n" // per vertex normal vector "varying vec4 fsColor;\n" "void main(void)\n" "{\n" "fsViewVertex = vec3(gl_ModelViewMatrix * gl_Vertex);\n" "fsViewNormal = normalize(gl_NormalMatrix *gl_Normal);\n" "float z = length(fsViewVertex);\n" "fsFogFactor = fogIntensity * clamp(fogStart + z * fogDensity, 0.0, 1.0);\n" "fsColor = gl_Color;\n" "gl_TexCoord[0] = gl_MultiTexCoord0;\n" "gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;\n" "}\n"; static const char *fragmentShaderBasic = "uniform sampler2D tex1;\n" // base tex "uniform sampler2D tex2;\n" // micro tex (optional) "uniform int textureEnabled;\n" "uniform int microTexture;\n" "uniform float microTextureScale;\n" "uniform int alphaTest;\n" "uniform int textureAlpha;\n" "uniform vec3 fogColour;\n" "uniform vec4 spotEllipse;\n" // spotlight ellipse position: .x=X position (screen coordinates), .y=Y position, .z=half-width, .w=half-height) "uniform vec2 spotRange;\n" // spotlight Z range: .x=start (viewspace coordinates), .y=limit "uniform vec3 spotColor;\n" // spotlight RGB color "uniform vec3 lighting[2];\n" // lighting state (lighting[0] = sun direction, lighting[1].x,y = diffuse, ambient intensities from 0-1.0) "uniform int lightEnable;\n" // lighting enabled (1.0) or luminous (0.0), drawn at full intensity "uniform float specularCoefficient;\n" // specular coefficient "uniform float shininess;\n" // specular shininess //interpolated inputs from vertex shader "varying float fsFogFactor;\n" "varying float fsSpecularTerm;\n" // specular light term (additive) "varying vec3 fsViewVertex;\n" "varying vec3 fsViewNormal;\n" // per vertex normal vector "varying vec4 fsColor;\n" "void main()\n" "{\n" "vec4 tex1Data;\n" "vec4 colData;\n" "vec4 finalData;\n" "bool discardFragment = false;\n" "tex1Data = vec4(1.0, 1.0, 1.0, 1.0);\n" "if(textureEnabled==1) {\n" "tex1Data = texture2D( tex1, gl_TexCoord[0].st);\n" "if (microTexture==1) {\n" "vec4 tex2Data = texture2D( tex2, gl_TexCoord[0].st * microTextureScale);\n" "tex1Data = (tex1Data+tex2Data)/2.0;\n" "}\n" "if (alphaTest==1) {\n" // does it make any sense to do this later? "if (tex1Data.a < (8.0/16.0)) {\n" "discardFragment = true;\n" "}\n" "}\n" "if (textureAlpha == 0) {\n" "tex1Data.a = 1.0;\n" "}\n" "}\n" "colData = fsColor;\n" "finalData = tex1Data * colData;\n" "if (finalData.a < (1.0/16.0)) {\n" // basically chuck out any totally transparent pixels value = 1/16 the smallest transparency level h/w supports "discardFragment = true;\n" "}\n" "if (discardFragment) {\n" "discard;\n" "}\n" "if (lightEnable==1) {\n" "vec3 lightIntensity;\n" "vec3 sunVector;\n" // sun lighting vector (as reflecting away from vertex) "float sunFactor;\n" // sun light projection along vertex normal (0.0 to 1.0) // Real3D -> OpenGL view space convention (TO-DO: do this outside of shader) "sunVector = lighting[0] * vec3(1.0, -1.0, -1.0);\n" // Compute diffuse factor for sunlight "sunFactor = max(dot(sunVector, fsViewNormal), 0.0);\n" // Total light intensity: sum of all components "lightIntensity = vec3(sunFactor*lighting[1].x + lighting[1].y);\n" // ambient + diffuse "lightIntensity = clamp(lightIntensity,0.0,1.0);\n" "vec2 ellipse;\n" "float insideSpot;\n" // Compute spotlight and apply lighting "ellipse = (gl_FragCoord.xy - spotEllipse.xy) / spotEllipse.zw;\n" "insideSpot = dot(ellipse, ellipse);\n" "if ((insideSpot <= 1.0) && (-fsViewVertex.z >= spotRange.x)) {\n" "lightIntensity.rgb += (1.0 - insideSpot)*spotColor;\n" "}\n" "finalData.rgb *= lightIntensity;\n" "if (sunFactor > 0.0 && specularCoefficient > 0.0) {\n" "float nDotL = max(dot(fsViewNormal,sunVector),0.0);\n" "finalData.rgb += vec3(specularCoefficient * pow(nDotL,shininess));\n" //"vec3 v = normalize(-fsViewVertex);\n" //"vec3 h = normalize(sunVector + v);\n" // halfway vector //"float NdotHV = max(dot(fsViewNormal,h),0.0);\n" //"finalData.rgb += vec3(specularCoefficient * pow(NdotHV,shininess));\n" "}\n" "}\n" "finalData.rgb = mix(finalData.rgb, fogColour, fsFogFactor);\n" "gl_FragColor = finalData;\n" "}\n"; R3DShader::R3DShader() { m_shaderProgram = 0; m_vertexShader = 0; m_fragmentShader = 0; Start(); // reset attributes } void R3DShader::Start() { m_textured1 = false; m_textured2 = false; m_textureAlpha = false; // use alpha in texture m_alphaTest = false; // discard fragment based on alpha (ogl does this with fixed function) m_doubleSided = false; m_lightEnabled = false; m_layered = false; m_shininess = 0; m_specularCoefficient = 0; m_microTexScale = 0; m_matDet = MatDet::notset; m_dirtyMesh = true; // dirty means all the above are dirty, ie first run m_dirtyModel = true; } bool R3DShader::LoadShader(const char* vertexShader, const char* fragmentShader) { const char* vShader; const char* fShader; bool success; if (vertexShader) { vShader = vertexShader; } else { vShader = vertexShaderBasic; } if (fragmentShader) { fShader = fragmentShader; } else { fShader = fragmentShaderBasic; } success = LoadShaderProgram(&m_shaderProgram, &m_vertexShader, &m_fragmentShader, nullptr, nullptr, vShader, fShader); m_locTexture1 = glGetUniformLocation(m_shaderProgram, "tex1"); m_locTexture2 = glGetUniformLocation(m_shaderProgram, "tex2"); m_locTexture1Enabled= glGetUniformLocation(m_shaderProgram, "textureEnabled"); m_locTexture2Enabled= glGetUniformLocation(m_shaderProgram, "microTexture"); m_locTextureAlpha = glGetUniformLocation(m_shaderProgram, "textureAlpha"); m_locAlphaTest = glGetUniformLocation(m_shaderProgram, "alphaTest"); m_locMicroTexScale = glGetUniformLocation(m_shaderProgram, "microTextureScale"); m_locFogIntensity = glGetUniformLocation(m_shaderProgram, "fogIntensity"); m_locFogDensity = glGetUniformLocation(m_shaderProgram, "fogDensity"); m_locFogStart = glGetUniformLocation(m_shaderProgram, "fogStart"); m_locFogColour = glGetUniformLocation(m_shaderProgram, "fogColour"); m_locLighting = glGetUniformLocation(m_shaderProgram, "lighting"); m_locLightEnable = glGetUniformLocation(m_shaderProgram, "lightEnable"); m_locShininess = glGetUniformLocation(m_shaderProgram, "shininess"); m_locSpecCoefficient= glGetUniformLocation(m_shaderProgram, "specularCoefficient"); m_locSpotEllipse = glGetUniformLocation(m_shaderProgram, "spotEllipse"); m_locSpotRange = glGetUniformLocation(m_shaderProgram, "spotRange"); m_locSpotColor = glGetUniformLocation(m_shaderProgram, "spotColor"); return success; } void R3DShader::SetShader(bool enable) { if (enable) { glUseProgram(m_shaderProgram); Start(); } else { glUseProgram(0); } } void R3DShader::SetMeshUniforms(const Mesh* m) { if (m == nullptr) { return; // sanity check } if (m_dirtyMesh) { glUniform1i(m_locTexture1, 0); glUniform1i(m_locTexture2, 1); } if (m_dirtyMesh || m->textured != m_textured1) { glUniform1i(m_locTexture1Enabled, m->textured); m_textured1 = m->textured; } if (m_dirtyMesh || m->microTexture != m_textured2) { glUniform1i(m_locTexture2Enabled, m->microTexture); m_textured2 = m->microTexture; } if (m_dirtyMesh || m->microTextureScale != m_microTexScale) { glUniform1f(m_locMicroTexScale, m->microTextureScale); m_microTexScale = m->microTextureScale; } if (m_dirtyMesh || m->alphaTest != m_alphaTest) { glUniform1i(m_locAlphaTest, m->alphaTest); m_alphaTest = m->alphaTest; } if (m_dirtyMesh || m->textureAlpha != m_textureAlpha) { glUniform1i(m_locTextureAlpha, m->textureAlpha); m_textureAlpha = m->textureAlpha; } if (m_dirtyMesh || m->fogIntensity != m_fogIntensity) { glUniform1f(m_locFogIntensity, m->fogIntensity); m_fogIntensity = m->fogIntensity; } if (m_dirtyMesh || m->lighting != m_lightEnabled) { glUniform1i(m_locLightEnable, m->lighting); m_lightEnabled = m->lighting; } if (m_dirtyMesh || m->shininess != m_shininess) { glUniform1f(m_locShininess, (m->shininess + 1) * 4); m_shininess = m->shininess; } if (m_dirtyMesh || m->specularCoefficient != m_specularCoefficient) { glUniform1f(m_locSpecCoefficient, m->specularCoefficient); m_specularCoefficient = m->specularCoefficient; } if (m_dirtyMesh || m->layered != m_layered) { m_layered = m->layered; if (m_layered) { glEnable(GL_STENCIL_TEST); } else { glDisable(GL_STENCIL_TEST); } } if (m_matDet!=MatDet::zero) { if (m_dirtyMesh || m->doubleSided != m_doubleSided) { m_doubleSided = m->doubleSided; if (m_doubleSided) { glDisable(GL_CULL_FACE); } else { glEnable(GL_CULL_FACE); } } } m_dirtyMesh = false; } void R3DShader::SetViewportUniforms(const Viewport *vp) { //didn't bother caching these, they don't get frequently called anyway glUniform1f (m_locFogDensity, vp->fogParams[3]); glUniform1f (m_locFogStart, vp->fogParams[4]); glUniform3fv(m_locFogColour, 1, vp->fogParams); glUniform3fv(m_locLighting, 2, vp->lightingParams); glUniform4fv(m_locSpotEllipse, 1, vp->spotEllipse); glUniform2fv(m_locSpotRange, 1, vp->spotRange); glUniform3fv(m_locSpotColor, 1, vp->spotColor); } void R3DShader::SetModelStates(const Model* model) { //========== MatDet test; //========== test = MatDet::notset; // happens for bad matrices with NaN if (model->determinant < 0) { test = MatDet::negative; } else if (model->determinant > 0) { test = MatDet::positive; } else if (model->determinant == 0) { test = MatDet::zero; } if (m_dirtyModel || m_matDet!=test) { switch (test) { case MatDet::negative: glCullFace(GL_FRONT); glEnable(GL_CULL_FACE); m_doubleSided = false; break; case MatDet::positive: glCullFace(GL_BACK); glEnable(GL_CULL_FACE); m_doubleSided = false; break; default: glDisable(GL_CULL_FACE); m_doubleSided = true; // basically drawing on both sides now } } m_matDet = test; m_dirtyModel = false; } } // New3D