#ifndef _R3DSHADERQUADS_H_ #define _R3DSHADERQUADS_H_ static const char *vertexShaderR3DQuads = R"glsl( #version 450 core // uniforms uniform float modelScale; uniform mat4 modelMat; uniform mat4 projMat; uniform bool translatorMap; // attributes in vec4 inVertex; in vec3 inNormal; in vec2 inTexCoord; in vec3 inFaceNormal; // used to emulate r3d culling in float inFixedShade; in vec4 inColour; // outputs to geometry shader out VS_OUT { vec3 viewVertex; vec3 viewNormal; // per vertex normal vector vec2 texCoord; vec4 color; float fixedShade; float discardPoly; // can't have varying bool (glsl spec) } vs_out; vec4 GetColour(vec4 colour) { vec4 c = colour; if(translatorMap) { c.rgb *= 16.0; } return c; } float CalcBackFace(in vec3 viewVertex) { vec3 vt = viewVertex; // - vec3(0.0); vec3 vn = mat3(modelMat) * inFaceNormal; // dot product of face normal with view direction return dot(vt, vn); } void main(void) { vs_out.viewVertex = vec3(modelMat * inVertex); vs_out.viewNormal = (mat3(modelMat) * inNormal) / modelScale; vs_out.discardPoly = CalcBackFace(vs_out.viewVertex); vs_out.color = GetColour(inColour); vs_out.texCoord = inTexCoord; vs_out.fixedShade = inFixedShade; gl_Position = projMat * modelMat * inVertex; } )glsl"; static const char *geometryShaderR3DQuads = R"glsl( #version 450 core layout (lines_adjacency) in; layout (triangle_strip, max_vertices = 4) out; in VS_OUT { vec3 viewVertex; vec3 viewNormal; // per vertex normal vector vec2 texCoord; vec4 color; float fixedShade; float discardPoly; // can't have varying bool (glsl spec) } gs_in[4]; out GS_OUT { noperspective vec2 v[4]; noperspective float area[4]; flat float oneOverW[4]; //our regular attributes flat vec3 viewVertex[4]; flat vec3 viewNormal[4]; // per vertex normal vector flat vec2 texCoord[4]; flat vec4 color; flat float fixedShade[4]; } gs_out; //a*b - c*d, computed in a stable fashion (Kahan) float DifferenceOfProducts(float a, float b, float c, float d) { precise float cd = c * d; precise float err = fma(-c, d, cd); precise float dop = fma(a, b, -cd); return dop + err; } void main(void) { if(gs_in[0].discardPoly > 0) { return; //emulate back face culling here (all vertices in poly have same value) } vec2 v[4]; for (int i=0; i<4; i++) { float oneOverW = 1.0 / gl_in[i].gl_Position.w; gs_out.oneOverW[i] = oneOverW; v[i] = gl_in[i].gl_Position.xy * oneOverW; // our regular vertex attribs gs_out.viewVertex[i] = gs_in[i].viewVertex * oneOverW; gs_out.viewNormal[i] = gs_in[i].viewNormal * oneOverW; gs_out.texCoord[i] = gs_in[i].texCoord * oneOverW; gs_out.fixedShade[i] = gs_in[i].fixedShade * oneOverW; } // flat attributes gs_out.color = gs_in[0].color; // precompute crossproducts for all vertex combinations to be looked up in loop below for area computation precise float cross[4][4]; for (int i=0; i<4; i++) { cross[i][i] = 0.0; for (int j=i+1; j<4; j++) cross[i][j] = DifferenceOfProducts(gl_in[i].gl_Position.x, gl_in[j].gl_Position.y, gl_in[j].gl_Position.x, gl_in[i].gl_Position.y) / (gl_in[i].gl_Position.w * gl_in[j].gl_Position.w); } for (int i=1; i<4; i++) for (int j=0; j | \ | // | | | \ | // 0----3 0----2 // int reorder[4] = int[]( 1, 0, 2, 3 ); int ii = reorder[i]; for (int j=0; j<4; j++) { gs_out.v[j] = v[j] - v[ii]; int j_next = (j+1) % 4; // compute area via shoelace algorithm BUT divided by w afterwards to improve precision! // in addition also use Kahans algorithm to further improve precision of the 2D crossproducts gs_out.area[j] = cross[j][j_next] + cross[j_next][ii] + cross[ii][j]; } gl_Position = gl_in[ii].gl_Position; EmitVertex(); } } )glsl"; static const char *fragmentShaderR3DQuads1 = R"glsl( #version 450 core uniform usampler2D tex1; // entire texture sheet // texturing uniform bool textureEnabled; uniform bool microTexture; uniform float microTextureScale; uniform int microTextureID; uniform ivec4 baseTexInfo; // x/y are x,y positions in the texture sheet. z/w are with and height uniform int baseTexType; uniform bool textureInverted; uniform bool textureAlpha; uniform bool alphaTest; uniform bool discardAlpha; uniform ivec2 textureWrapMode; // general uniform vec3 fogColour; uniform vec4 spotEllipse; // spotlight ellipse position: .x=X position (screen coordinates), .y=Y position, .z=half-width, .w=half-height) uniform vec2 spotRange; // spotlight Z range: .x=start (viewspace coordinates), .y=limit uniform vec3 spotColor; // spotlight RGB color uniform vec3 spotFogColor; // spotlight RGB color on fog uniform vec3 lighting[2]; // lighting state (lighting[0] = sun direction, lighting[1].x,y = diffuse, ambient intensities from 0-1.0) uniform bool lightEnabled; // lighting enabled (1.0) or luminous (0.0), drawn at full intensity uniform bool sunClamp; // not used by daytona and la machine guns uniform bool intensityClamp; // some games such as daytona and uniform bool specularEnabled; // specular enabled uniform float specularValue; // specular coefficient uniform float shininess; // specular shininess uniform float fogIntensity; uniform float fogDensity; uniform float fogStart; uniform float fogAttenuation; uniform float fogAmbient; uniform bool fixedShading; uniform int hardwareStep; // matrices (shared with vertex shader) uniform mat4 projMat; //interpolated inputs from geometry shader in GS_OUT { noperspective vec2 v[4]; noperspective float area[4]; flat float oneOverW[4]; //our regular attributes flat vec3 viewVertex[4]; flat vec3 viewNormal[4]; // per vertex normal vector flat vec2 texCoord[4]; flat vec4 color; flat float fixedShade[4]; } fs_in; //our calculated vertex attributes from the above vec3 fsViewVertex; vec3 fsViewNormal; vec2 fsTexCoord; float fsFixedShade; vec4 fsColor; //outputs out vec4 outColor; void QuadraticInterpolation() { vec2 s[4]; float A[4]; for (int i=0; i<4; i++) { s[i] = fs_in.v[i]; A[i] = fs_in.area[i]; } float D[4]; float r[4]; for (int i=0; i<4; i++) { int i_next = (i+1)%4; D[i] = dot(s[i], s[i_next]); r[i] = length(s[i]); if (fs_in.oneOverW[i] < 0.0) { // is w[i] negative? r[i] = -r[i]; } } float t[4]; for (int i=0; i<4; i++) { int i_next = (i+1)%4; if(A[i]==0.0) t[i] = 0.0; // check for zero area + div by zero else t[i] = (r[i]*r[i_next] - D[i]) / A[i]; } float uSum = 0.0; float u[4]; for (uint i=0; i<4; i++) { uint i_prev = (i-1)%4; u[i] = (t[i_prev] + t[i]) / r[i]; uSum += u[i]; } float lambda[4]; for (int i=0; i<4; i++) { lambda[i] = u[i] / uSum; } /* Discard fragments when all the weights are neither all negative nor all positive. */ int lambdaSignCount = 0; for (int i=0; i<4; i++) { if (fs_in.oneOverW[i] * lambda[i] < 0.0) { lambdaSignCount--; } else { lambdaSignCount++; } } if (lambdaSignCount != 4) { if(!gl_HelperInvocation) { discard; } } float interp_oneOverW = 0.0; fsViewVertex = vec3(0.0); fsViewNormal = vec3(0.0); fsTexCoord = vec2(0.0); fsFixedShade = 0.0; fsColor = fs_in.color; for (int i=0; i<4; i++) { fsViewVertex += lambda[i] * fs_in.viewVertex[i]; fsViewNormal += lambda[i] * fs_in.viewNormal[i]; fsTexCoord += lambda[i] * fs_in.texCoord[i]; fsFixedShade += lambda[i] * fs_in.fixedShade[i]; interp_oneOverW += lambda[i] * fs_in.oneOverW[i]; } fsViewVertex /= interp_oneOverW; fsViewNormal /= interp_oneOverW; fsTexCoord /= interp_oneOverW; fsFixedShade /= interp_oneOverW; vec4 vertex; float depth; // dirty hack for co-planar polys that really need 100% identical values to depth test correctly // the reason we waste cycles and calculate depth value here is because we have run out of vertex attribs if(fs_in.oneOverW[0]==fs_in.oneOverW[1] && fs_in.oneOverW[1]==fs_in.oneOverW[2] && fs_in.oneOverW[2]==fs_in.oneOverW[3]) { fsViewVertex.z = fs_in.viewVertex[0].z / fs_in.oneOverW[0]; vertex = projMat * vec4(fsViewVertex,1.0); depth = vertex.z / vertex.w; } else { vertex.z = projMat[2][2] * fsViewVertex.z + projMat[3][2]; // standard projMat * vertex - but just using Z components depth = vertex.z * interp_oneOverW; } gl_FragDepth = depth * 0.5 + 0.5; } vec4 ExtractColour(int type, uint value) { vec4 c = vec4(0.0); if(type==0) { // T1RGB5 c.r = float((value >> 10) & 0x1Fu); c.g = float((value >> 5 ) & 0x1Fu); c.b = float((value ) & 0x1Fu); c.rgb *= (1.0/31.0); c.a = 1.0 - float((value >> 15) & 0x1u); } else if(type==1) { // Interleaved A4L4 (low byte) c.rgb = vec3(float(value&0xFu)); c.a = float((value >> 4) & 0xFu); c *= (1.0/15.0); } else if(type==2) { c.a = float(value&0xFu); c.rgb = vec3(float((value >> 4) & 0xFu)); c *= (1.0/15.0); } else if(type==3) { c.rgb = vec3(float((value>>8)&0xFu)); c.a = float((value >> 12) & 0xFu); c *= (1.0/15.0); } else if(type==4) { c.a = float((value>>8)&0xFu); c.rgb = vec3(float((value >> 12) & 0xFu)); c *= (1.0/15.0); } else if(type==5) { c = vec4(float(value&0xFFu) / 255.0); if(c.a==1.0) { c.a = 0.0; } else { c.a = 1.0; } } else if(type==6) { c = vec4(float((value>>8)&0xFFu) / 255.0); if(c.a==1.0) { c.a = 0.0; } else { c.a = 1.0; } } else if(type==7) { // RGBA4 c.r = float((value>>12)&0xFu); c.g = float((value>> 8)&0xFu); c.b = float((value>> 4)&0xFu); c.a = float((value>> 0)&0xFu); c *= (1.0/15.0); } else if(type==8) { // low byte, low nibble c = vec4(float(value&0xFu) / 15.0); if(c.a==1.0) { c.a = 0.0; } else { c.a = 1.0; } } else if(type==9) { // low byte, high nibble c = vec4(float((value>>4)&0xFu) / 15.0); if(c.a==1.0) { c.a = 0.0; } else { c.a = 1.0; } } else if(type==10) { // high byte, low nibble c = vec4(float((value>>8)&0xFu) / 15.0); if(c.a==1.0) { c.a = 0.0; } else { c.a = 1.0; } } else if(type==11) { // high byte, high nibble c = vec4(float((value>>12)&0xFu) / 15.0); if(c.a==1.0) { c.a = 0.0; } else { c.a = 1.0; } } return c; } ivec2 GetTexturePosition(int level, ivec2 pos) { const int mipXBase[] = { 0, 1024, 1536, 1792, 1920, 1984, 2016, 2032, 2040, 2044, 2046, 2047 }; const int mipYBase[] = { 0, 512, 768, 896, 960, 992, 1008, 1016, 1020, 1022, 1023 }; int mipDivisor = 1 << level; int page = pos.y / 1024; pos.y -= (page * 1024); // remove page from tex y ivec2 retPos; retPos.x = mipXBase[level] + (pos.x / mipDivisor); retPos.y = mipYBase[level] + (pos.y / mipDivisor); retPos.y += (page * 1024); // add page back to tex y return retPos; } ivec2 GetTextureSize(int level, ivec2 size) { int mipDivisor = 1 << level; return size / mipDivisor; } ivec2 GetMicroTexturePos(int id) { int xCoords[8] = { 0, 0, 128, 128, 0, 0, 128, 128 }; int yCoords[8] = { 0, 128, 0, 128, 256, 384, 256, 384 }; return ivec2(xCoords[id],yCoords[id]); } int GetPage(int yCoord) { return yCoord / 1024; } int GetNextPage(int yCoord) { return (GetPage(yCoord) + 1) & 1; } int GetNextPageOffset(int yCoord) { return GetNextPage(yCoord) * 1024; } // wrapping tex coords would be super easy but we combined tex sheets so have to handle wrap around between sheets // hardware testing would be useful because i don't know exactly what happens if you try to read outside the texture sheet // wrap around is a good guess ivec2 WrapTexCoords(ivec2 pos, ivec2 coordinate) { ivec2 newCoord; newCoord.x = coordinate.x & 2047; newCoord.y = coordinate.y; int page = GetPage(pos.y); newCoord.y -= (page * 1024); // remove page newCoord.y &= 1023; // wrap around in the same sheet newCoord.y += (page * 1024); // add page back return newCoord; } float mip_map_level(in vec2 texture_coordinate) // in texel units { vec2 dx_vtc = dFdx(texture_coordinate); vec2 dy_vtc = dFdy(texture_coordinate); float delta_max_sqr = max(dot(dx_vtc, dx_vtc), dot(dy_vtc, dy_vtc)); float mml = 0.5 * log2(delta_max_sqr); return max( 0.0, mml ); } float LinearTexLocations(int wrapMode, float size, float u, out float u0, out float u1) { float texelSize = 1.0 / size; float halfTexelSize = 0.5 / size; if(wrapMode==0) { // repeat u = u * size - 0.5; u0 = (floor(u) + 0.5) / size; // + 0.5 offset added to push us into the centre of a pixel, without we'll get rounding errors u0 = fract(u0); u1 = u0 + texelSize; u1 = fract(u1); return fract(u); // return weight } else if(wrapMode==1) { // repeat + clamp u = fract(u); // must force into 0-1 to start u = u * size - 0.5; u0 = (floor(u) + 0.5) / size; // + 0.5 offset added to push us into the centre of a pixel, without we'll get rounding errors u1 = u0 + texelSize; if(u0 < 0.0) u0 = 0.0; if(u1 >= 1.0) u1 = 1.0 - halfTexelSize; return fract(u); // return weight } else { // mirror + mirror clamp - both are the same since the edge pixels are repeated anyway float odd = floor(mod(u, 2.0)); // odd values are mirrored if(odd > 0.0) { u = 1.0 - fract(u); } else { u = fract(u); } u = u * size - 0.5; u0 = (floor(u) + 0.5) / size; // + 0.5 offset added to push us into the centre of a pixel, without we'll get rounding errors u1 = u0 + texelSize; if(u0 < 0.0) u0 = 0.0; if(u1 >= 1.0) u1 = 1.0 - halfTexelSize; return fract(u); // return weight } } vec4 texBiLinear(usampler2D texSampler, ivec2 wrapMode, vec2 texSize, ivec2 texPos, vec2 texCoord) { float tx[2], ty[2]; float a = LinearTexLocations(wrapMode.s, texSize.x, texCoord.x, tx[0], tx[1]); float b = LinearTexLocations(wrapMode.t, texSize.y, texCoord.y, ty[0], ty[1]); vec4 p0q0 = ExtractColour(baseTexType,texelFetch(texSampler, WrapTexCoords(texPos,ivec2(vec2(tx[0],ty[0]) * texSize + texPos)), 0).r); vec4 p1q0 = ExtractColour(baseTexType,texelFetch(texSampler, WrapTexCoords(texPos,ivec2(vec2(tx[1],ty[0]) * texSize + texPos)), 0).r); vec4 p0q1 = ExtractColour(baseTexType,texelFetch(texSampler, WrapTexCoords(texPos,ivec2(vec2(tx[0],ty[1]) * texSize + texPos)), 0).r); vec4 p1q1 = ExtractColour(baseTexType,texelFetch(texSampler, WrapTexCoords(texPos,ivec2(vec2(tx[1],ty[1]) * texSize + texPos)), 0).r); if(alphaTest) { if(p0q0.a > p1q0.a) { p1q0.rgb = p0q0.rgb; } if(p0q0.a > p0q1.a) { p0q1.rgb = p0q0.rgb; } if(p1q0.a > p0q0.a) { p0q0.rgb = p1q0.rgb; } if(p1q0.a > p1q1.a) { p1q1.rgb = p1q0.rgb; } if(p0q1.a > p0q0.a) { p0q0.rgb = p0q1.rgb; } if(p0q1.a > p1q1.a) { p1q1.rgb = p0q1.rgb; } if(p1q1.a > p0q1.a) { p0q1.rgb = p1q1.rgb; } if(p1q1.a > p1q0.a) { p1q0.rgb = p1q1.rgb; } } // Interpolation in X direction. vec4 pInterp_q0 = mix( p0q0, p1q0, a ); // Interpolates top row in X direction. vec4 pInterp_q1 = mix( p0q1, p1q1, a ); // Interpolates bottom row in X direction. return mix( pInterp_q0, pInterp_q1, b ); // Interpolate in Y direction. } vec4 textureR3D(usampler2D texSampler, ivec2 wrapMode, ivec2 texSize, ivec2 texPos, vec2 texCoord) { float numLevels = floor(log2(min(float(texSize.x), float(texSize.y)))); // r3d only generates down to 1:1 for square textures, otherwise its the min dimension float fLevel = min(mip_map_level(texCoord * vec2(texSize)), numLevels); if(alphaTest) fLevel *= 0.5; else fLevel *= 0.8; int iLevel = int(fLevel); ivec2 texPos0 = GetTexturePosition(iLevel,texPos); ivec2 texPos1 = GetTexturePosition(iLevel+1,texPos); ivec2 texSize0 = GetTextureSize(iLevel, texSize); ivec2 texSize1 = GetTextureSize(iLevel+1, texSize); vec4 texLevel0 = texBiLinear(texSampler, wrapMode, vec2(texSize0), texPos0, texCoord); vec4 texLevel1 = texBiLinear(texSampler, wrapMode, vec2(texSize1), texPos1, texCoord); return mix(texLevel0, texLevel1, fract(fLevel)); // linear blend between our mipmap levels } vec4 GetTextureValue() { vec4 tex1Data = textureR3D(tex1, textureWrapMode, ivec2(baseTexInfo.zw), ivec2(baseTexInfo.xy), fsTexCoord); if(textureInverted) { tex1Data.rgb = vec3(1.0) - vec3(tex1Data.rgb); } if (microTexture) { vec2 scale = (vec2(baseTexInfo.zw) / 128.0) * microTextureScale; ivec2 pos = GetMicroTexturePos(microTextureID); // add page offset to microtexture position pos.y += GetNextPageOffset(baseTexInfo.y); vec4 tex2Data = textureR3D(tex1, ivec2(0), ivec2(128), pos, fsTexCoord * scale); float lod = mip_map_level(fsTexCoord * scale * vec2(128.0)); float blendFactor = max(lod - 1.5, 0.0); // bias -1.5 blendFactor = min(blendFactor, 1.0); // clamp to max value 1 blendFactor = (blendFactor + 1.0) / 2.0; // 0.5 - 1 range tex1Data = mix(tex2Data, tex1Data, blendFactor); } if (alphaTest) { if (tex1Data.a < (32.0/255.0)) { discard; } } if(textureAlpha) { if(discardAlpha) { // opaque 1st pass if (tex1Data.a < 1.0) { discard; } } else { // transparent 2nd pass if ((tex1Data.a * fsColor.a) >= 1.0) { discard; } } } if (textureAlpha == false) { tex1Data.a = 1.0; } return tex1Data; } void Step15Luminous(inout vec4 colour) { // luminous polys seem to behave very differently on step 1.5 hardware // when fixed shading is enabled the colour is modulated by the vp ambient + fixed shade value // when disabled it appears to be multiplied by 1.5, presumably to allow a higher range if(hardwareStep==0x15) { if(!lightEnabled && textureEnabled) { if(fixedShading) { colour.rgb *= 1.0 + fsFixedShade + lighting[1].y; } else { colour.rgb *= 1.5; } } } } float CalcFog() { float z = -fsViewVertex.z; float fog = fogIntensity * clamp(fogStart + z * fogDensity, 0.0, 1.0); return fog; } float sqr(float a) { return a*a; } float sqr_length(vec2 a) { return a.x*a.x + a.y*a.y; } )glsl"; static const char* fragmentShaderR3DQuads2 = R"glsl( void main() { vec4 tex1Data; vec4 colData; vec4 finalData; vec4 fogData; QuadraticInterpolation(); // calculate our vertex attributes fogData = vec4(fogColour.rgb * fogAmbient, CalcFog()); tex1Data = vec4(1.0, 1.0, 1.0, 1.0); if(textureEnabled) { tex1Data = GetTextureValue(); } colData = fsColor; Step15Luminous(colData); // no-op for step 2.0+ finalData = tex1Data * colData; if (finalData.a < (1.0/16.0)) { // basically chuck out any totally transparent pixels value = 1/16 the smallest transparency level h/w supports discard; } float ellipse; ellipse = sqr_length((gl_FragCoord.xy - spotEllipse.xy) / spotEllipse.zw); // decay rate = square of distance from center ellipse = 1.0 - ellipse; // invert ellipse = max(0.0, ellipse); // clamp // Compute spotlight and apply lighting float enable, absExtent, d, inv_r, range; // start of spotlight enable = step(spotRange.x, -fsViewVertex.z); if (spotRange.y == 0.0) { range = 0.0; } else { absExtent = abs(spotRange.y); d = spotRange.x + absExtent + fsViewVertex.z; d = min(d, 0.0); // slope of decay function inv_r = 1.0 / (1.0 + absExtent); // inverse-linear falloff // Reference: https://imdoingitwrong.wordpress.com/2011/01/31/light-attenuation/ // y = 1 / (d/r + 1)^2 range = 1.0 / sqr(d * inv_r - 1.0); range *= enable; } float lobeEffect = range * ellipse; float lobeFogEffect = enable * ellipse; if (lightEnabled) { vec3 lightIntensity; vec3 sunVector; // sun lighting vector (as reflecting away from vertex) float sunFactor; // sun light projection along vertex normal (0.0 to 1.0) // Sun angle sunVector = lighting[0]; // Compute diffuse factor for sunlight if(fixedShading) { sunFactor = fsFixedShade; } else { sunFactor = dot(sunVector, fsViewNormal); } // Clamp ceil, fix for upscaled models without "modelScale" defined sunFactor = clamp(sunFactor,-1.0,1.0); // Optional clamping, value is allowed to be negative if(sunClamp) { sunFactor = max(sunFactor,0.0); } // Total light intensity: sum of all components lightIntensity = vec3(sunFactor*lighting[1].x + lighting[1].y); // diffuse + ambient lightIntensity.rgb += spotColor*lobeEffect; // Upper clamp is optional, step 1.5+ games will drive brightness beyond 100% if(intensityClamp) { lightIntensity = min(lightIntensity,1.0); } finalData.rgb *= lightIntensity; // for now assume fixed shading doesn't work with specular if (specularEnabled) { float exponent, NdotL, specularFactor; vec4 biasIndex, expIndex, multIndex; // Always clamp floor to zero, we don't want deep black areas NdotL = max(0.0,sunFactor); expIndex = vec4(8.0, 16.0, 32.0, 64.0); multIndex = vec4(2.0, 2.0, 3.0, 4.0); biasIndex = vec4(0.95, 0.95, 1.05, 1.0); exponent = expIndex[int(shininess)] / biasIndex[int(shininess)]; specularFactor = pow(NdotL, exponent); specularFactor *= multIndex[int(shininess)]; specularFactor *= biasIndex[int(shininess)]; specularFactor *= specularValue; specularFactor *= lighting[1].x; if (colData.a < 1.0) { /// Specular hi-light affects translucent polygons alpha channel /// finalData.a = max(finalData.a, specularFactor); } finalData.rgb += vec3(specularFactor); } } // Final clamp: we need it for proper shading in dimmed light and dark ambients finalData.rgb = min(finalData.rgb, vec3(1.0)); // Spotlight on fog vec3 lSpotFogColor = spotFogColor * fogAttenuation * fogColour.rgb * lobeFogEffect; // Fog & spotlight applied finalData.rgb = mix(finalData.rgb, fogData.rgb + lSpotFogColor, fogData.a); // Write output outColor = finalData; } )glsl"; #endif