/**
** Supermodel
** A Sega Model 3 Arcade Emulator.
** Copyright 2011 Bart Trzynadlowski, Nik Henson
**
** This file is part of Supermodel.
**
** Supermodel is free software: you can redistribute it and/or modify it under
** the terms of the GNU General Public License as published by the Free
** Software Foundation, either version 3 of the License, or (at your option)
** any later version.
**
** Supermodel is distributed in the hope that it will be useful, but WITHOUT
** ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
** FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
** more details.
**
** You should have received a copy of the GNU General Public License along
** with Supermodel. If not, see .
**/
/*
* CPUDebug.h
*/
#ifdef SUPERMODEL_DEBUGGER
#ifndef INCLUDED_CPUDEBUG_H
#define INCLUDED_CPUDEBUG_H
#include
#include
#include
using namespace std;
#include "Types.h"
#include "CodeAnalyser.h"
#include "AddressTable.h"
#include "Breakpoint.h"
#include "Debugger.h"
#include "Exception.h"
#include "Interrupt.h"
#include "IO.h"
#include "Register.h"
#include "Watch.h"
#ifdef DEBUGGER_HASBLOCKFILE
#include "BlockFile.h"
#endif // DEBUGGER_HASBLOCKFILE
#ifdef DEBUGGER_HASTHREAD
#include "OSD/Thread.h"
#endif // DEBUGGER_HASTHREAD
#define MAX_EXCEPTIONS 255
#define MAX_INTERRUPTS 255
#define MAX_IOPORTS 255
namespace Debugger
{
class CRegion;
class CLabel;
class CComment;
enum EStepMode
{
StepInto = 0,
StepOver,
StepOut
};
enum EOpFlags
{
NormalOp = 0,
JumpSimple = 1,
JumpLoop = 2,
JumpSub = 4,
JumpEx = 8,
ReturnSub = 16,
ReturnEx = 32,
HaltExec = 64,
Relative = 128,
Conditional = 256,
NotFixed = 512
};
/*
* Base class that facilitates the debugging of a particular emulated CPU.
* It holds the debugging hooks that the CPU should call to implement debugging.
* Also contains CPU-specific information and provides access to CPU-specific objects such as CRegister, CException etc.
*/
class CCPUDebug
{
friend class CDebugger;
private:
bool m_break;
#ifdef DEBUGGER_HASTHREAD
bool m_breakWait;
#endif // DEBUGGER_HASTHREAD
bool m_breakUser;
bool m_halted;
bool m_step;
EStepMode m_stepMode;
bool m_stepBreak;
bool m_steppingOver;
UINT32 m_stepOverAddr;
bool m_steppingOut;
UINT32 m_stepOutAddr;
int m_count;
bool m_until;
UINT32 m_untilAddr;
#ifdef DEBUGGER_HASTHREAD
CMutex *m_mutex;
CCondVar *m_condVar;
#endif // DEBUGGER_HASTHREAD
CException *m_exArray[MAX_EXCEPTIONS];
CInterrupt *m_intArray[MAX_INTERRUPTS];
CPortIO *m_portArray[MAX_IOPORTS];
CAddressTable *m_mappedIOTable;
CAddressTable *m_memWatchTable;
CAddressTable *m_bpTable;
int m_numRegMons;
CRegMonitor **m_regMonArray;
bool ShiftAddress(UINT32 &addr, unsigned &dataSize, UINT64 &data, CAddressRef *ref);
void CheckRead(UINT32 addr, unsigned dataSize, UINT64 data);
void CheckWrite(UINT32 addr, unsigned dataSize, UINT64 data);
void MemWatchTriggered(CWatch *watch, UINT32 addr, unsigned dataSize, UINT64 data, bool isRead);
void IOWatchTriggered(CWatch *watch, CIO *io, UINT64 data, bool isRead);
void AttachToDebugger(CDebugger *theDebugger);
void DetachFromDebugger(CDebugger *theDebugger);
protected:
CCodeAnalyser *m_analyser;
bool m_stateUpdated;
CException *m_exRaised;
CException *m_exTrapped;
CInterrupt *m_intRaised;
CInterrupt *m_intTrapped;
CBreakpoint *m_bpReached;
CWatch *m_memWatchTriggered;
CWatch *m_ioWatchTriggered;
CRegMonitor *m_regMonTriggered;
UINT64 m_prevTotalCycles;
CCPUDebug(const char *cpuType, const char *cpuName,
UINT8 cpuMinInstrLen, UINT8 cpuMaxInstrLen, bool cpuBigEndian, UINT8 cpuMemBusWidth, UINT8 cpuMaxMnemLen);
//
// Protected virtual methods for sub-class to implement
//
virtual bool UpdatePC(UINT32 pc) = 0;
virtual bool ForceException(CException *ex) = 0;
virtual bool ForceInterrupt(CInterrupt *in) = 0;
public:
const char *type;
const char *name;
const UINT8 minInstrLen;
const UINT8 maxInstrLen;
const bool bigEndian;
const UINT8 memBusWidth;
const UINT8 maxMnemLen;
bool enabled;
EFormat addrFmt;
EFormat portFmt;
EFormat dataFmt;
CDebugger *debugger;
UINT16 numExCodes;
UINT16 numIntCodes;
UINT16 numPorts;
UINT32 memSize;
bool active;
UINT64 instrCount;
UINT64 totalCycles;
UINT64 cyclesPerPoll;
UINT32 pc;
UINT32 opcode;
vector regs;
vector exceps;
vector inters;
vector ios;
// TODO - should use map for T=CRegion,CLabel&CComment so that look-ups via address are faster
vector regions;
vector labels;
vector comments;
vector memWatches;
vector ioWatches;
vector bps;
vector regMons;
virtual ~CCPUDebug();
//
// Methods to define CPU registers (must be called before attached to debugger)
CPCRegister *AddPCRegister(const char *name, const char *group);
CAddrRegister *AddAddrRegister(const char *name, const char *group, unsigned id, GetInt32FPtr getFunc, SetInt32FPtr setFunc = NULL);
CIntRegister *AddInt8Register(const char *name, const char *group, unsigned id, GetInt8FPtr getFunc, SetInt8FPtr setFunc = NULL);
CIntRegister *AddInt16Register(const char *name, const char *group, unsigned id, GetInt16FPtr getFunc, SetInt16FPtr setFunc = NULL);
CIntRegister *AddInt32Register(const char *name, const char *group, unsigned id, GetInt32FPtr getFunc, SetInt32FPtr setFunc = NULL);
CIntRegister *AddInt64Register(const char *name, const char *group, unsigned id, GetInt64FPtr getFunc, SetInt64FPtr setFunc = NULL);
CStatusRegister *AddStatus8Register(const char *name, const char *group, unsigned id, const char *bitStr, GetInt8FPtr getFunc, SetInt8FPtr setFunc = NULL);
CStatusRegister *AddStatus16Register(const char *name, const char *group, unsigned id, const char *bitStr, GetInt16FPtr getFunc, SetInt16FPtr setFunc = NULL);
CStatusRegister *AddStatus32Register(const char *name, const char *group, unsigned id, const char *bitStr, GetInt32FPtr getFunc, SetInt32FPtr setFunc = NULL);
CFPointRegister *AddFPointRegister(const char *name, const char *group, unsigned id, GetFPointFPtr getFunc, SetFPointFPtr setFunc = NULL);
//
// Methods to add exceptions and interrupts (must be called before attached to debugger)
//
CException *AddException(const char *id, UINT16 code, const char *name);
CInterrupt *AddInterrupt(const char *id, UINT16 code, const char *name);
//
// Methods to define memory layout (must be called before attached to debugger)
//
CRegion *AddRegion(UINT32 start, UINT32 end, bool isCode, bool isReadOnly, const char *name);
CPortIO *AddPortIO(UINT16 portNum, unsigned dataSize, const char *name, const char *group);
CMappedIO *AddMappedIO(UINT32 addr, unsigned dataSize, const char *name, const char *group);
//
// Parsing and formatting methods
//
bool ParseData(const char *str, unsigned dataSize, UINT64 *data, bool registers = true);
void FormatData(char *str, unsigned dataSize, UINT64 data);
bool ParseAddress(const char *str, UINT32 *addr, bool customLabels = true, bool autoLabels = true, bool registers = true);
void FormatAddress(char *str, UINT32 addr, bool customLabels = false, ELabelFlags autoLabelFlags = LFNone);
void FormatJumpAddress(char *str, UINT32 jumpAddr, EOpFlags opFlags);
bool ParsePortNum(const char *str, UINT16 *portNum, bool customLabels = true, bool registers = true);
void FormatPortNum(char *str, UINT16 portNum, bool customLabels = false);
//
// Checking methods that hook into CPU emulation code
//
/*
* Should be called after every 8-bit read.
*/
void CheckRead8(UINT32 addr, UINT8 data);
/*
* Should be called after every 16-bit read.
*/
void CheckRead16(UINT32 addr, UINT16 data);
/*
* Should be called after every 32-bit read.
*/
void CheckRead32(UINT32 addr, UINT32 data);
/*
* Should be called after every 64-bit read.
*/
void CheckRead64(UINT32 addr, UINT64 data);
/*
* Should be called after every 8-bit write.
*/
void CheckWrite8(UINT32 addr, UINT8 data);
/*
* Should be called after every 16-bit write.
*/
void CheckWrite16(UINT32 addr, UINT16 data);
/*
* Should be called after every 32-bit write.
*/
void CheckWrite32(UINT32 addr, UINT32 data);
/*
* Should be called after every 64-bit write.
*/
void CheckWrite64(UINT32 addr, UINT64 data);
/*
* Should be called after every read from an I/O port.
*/
void CheckPortInput(UINT16 portNum, UINT64 data);
/*
* Should be called after every write to an I/O port.
*/
void CheckPortOutput(UINT16 portNum, UINT64 data);
/*
* Should be called by CPU when it becomes active and starts executing an instruction loop.
* This call is needed so that the debugger can handle multi-threading of CPUs.
*/
void CPUActive();
/*
* Should be called by CPU when it becomes inactive after having finished executing an instruction loop.
* This call is needed so that the debugger can handle multi-threading of CPUs.
*/
void CPUInactive();
/*
* Should be called by CPU before every instruction.
* If returns true, then PC may have been changed by user and/or an exception/interrupt may have forced, so CPU core should
* check for this and handle appropriately. Otherwise, it can continue to execute as normal.
*/
bool CPUExecute(UINT32 newPC, UINT32 newOpcode, UINT32 lastCycles);
/*
* Should be called by CPU whenever a CPU exception is raised (and before the exception handler is executed).
*/
virtual void CPUException(UINT16 exCode);
/*
* Should be called by CPU whenever a CPU interrupt is raised (and before the interrupt handler is executed).
*/
virtual void CPUInterrupt(UINT16 intCode);
void WaitCommand(EHaltReason reason);
#ifdef DEBUGGER_HASTHREAD
void ForceWait();
void WaitForHalt();
void ClearWait();
#endif // DEBUGGER_HASTHREAD
//
// Execution control
//
void ForceBreak(bool user);
void ClearBreak();
void SetContinue();
void SetStepMode(EStepMode stepMode);
void SetCount(int count);
void SetUntil(UINT32 untilAddr);
bool SetPC(UINT32 newPC);
bool GenerateException(CException *ex);
bool GenerateInterrupt(CInterrupt *in);
//
// Register access
//
CRegister *GetRegister(const char *name);
//
// Exception access
//
CException *GetException(const char *id);
CException *GetException(UINT16 code);
//
// Interrupt access
//
CInterrupt *GetInterrupt(const char *id);
CInterrupt *GetInterrupt(UINT16 code);
//
// I/O access
//
CPortIO *GetPortIO(UINT16 portNum);
CMappedIO *GetMappedIO(UINT32 addr);
//
// Region access
//
CRegion *GetRegion(UINT32 addr);
//
// Label handling
//
CLabel *AddLabel(UINT32 addr, const char *name);
CLabel *GetLabel(UINT32 addr);
CLabel *GetLabel(const char *name);
bool RemoveLabel(const char *name);
bool RemoveLabel(UINT32 addr);
bool RemoveLabel(CLabel *label);
bool RemoveAllLabels();
//
// Comment handling
//
CComment *AddComment(UINT32 addr, const char *commentText);
CComment *GetComment(UINT32 addr);
bool RemoveComment(UINT32 addr);
bool RemoveComment(CComment *comment);
bool RemoveAllComments();
//
// Watch handling
//
CSimpleWatch *AddSimpleMemWatch(UINT32 addr, UINT32 size, bool trigRead, bool trigWrite);
CCountWatch *AddCountMemWatch(UINT32 addr, UINT32 size, bool trigRead, bool trigWrite, unsigned count);
CMatchWatch *AddMatchMemWatch(UINT32 addr, UINT32 size, bool trigRead, bool trigWrite, vector &dataSeq);
CPrintWatch *AddPrintMemWatch(UINT32 addr, UINT32 size, bool trigRead, bool trigWrite);
CCaptureWatch *AddCaptureMemWatch(UINT32 addr, UINT32 size, bool trigRead, bool trigWrite, unsigned maxLen);
bool RemoveAllMemWatches();
bool RemoveAllIOWatches();
bool RemoveMemWatch(UINT32 addr, unsigned size);
CWatch *GetMemWatch(UINT32 addr, unsigned size);
void AddWatch(CWatch *watch);
bool RemoveWatch(CWatch *watch);
void UpdateIOWatchNums();
void UpdateMemWatchNums();
//
// Breakpoint handling
//
CSimpleBreakpoint *AddSimpleBreakpoint(UINT32 addr);
CCountBreakpoint *AddCountBreakpoint(UINT32 addr, unsigned count);
CPrintBreakpoint *AddPrintBreakpoint(UINT32 addr);
void AddBreakpoint(CBreakpoint *bp);
CBreakpoint *GetBreakpoint(UINT32 addr);
bool RemoveBreakpoint(UINT32 addr);
bool RemoveBreakpoint(CBreakpoint *bp);
bool RemoveAllBreakpoints();
void UpdateBreakpointNums();
//
// Register monitor handling
//
CRegMonitor *AddRegMonitor(const char *regName);
CRegMonitor *GetRegMonitor(const char *regName);
void AddRegMonitor(CRegMonitor *regMon);
bool RemoveRegMonitor(const char *regName);
bool RemoveRegMonitor(CRegMonitor *regMon);
bool RemoveAllRegMonitors();
void UpdateRegMonArray();
//
// Code analyser
//
CCodeAnalyser *GetCodeAnalyser();
//
// Memory searching
//
bool FindInMem(UINT32 start, UINT32 end, const char *str, bool matchCase, UINT32 &findAddr);
bool FindInMem(UINT32 start, UINT32 end, UINT8 *bytes, unsigned length, UINT32 &findAddr);
//
// Debugger state loading/saving
//
#ifdef DEBUGGER_HASBLOCKFILE
bool LoadState(CBlockFile *state);
bool SaveState(CBlockFile *state);
#endif // DEBUGGER_HASBLOCKFILE
//
// Public virtual methods for sub-class to implement
//
virtual void AttachToCPU() = 0;
virtual void DetachFromCPU() = 0;
virtual void DebuggerReset();
virtual void DebuggerPolled();
virtual UINT32 GetResetAddr() = 0;
virtual UINT64 ReadMem(UINT32 addr, unsigned dataSize);
virtual bool WriteMem(UINT32 addr, unsigned dataSize, UINT64 data);
virtual UINT64 ReadPort(UINT16 portNum);
virtual bool WritePort(UINT16 portNum, UINT64 data);
virtual int Disassemble(UINT32 addr, char *mnemonic, char *operands) = 0;
virtual int GetOpLength(UINT32 addr);
// Returns head (no more than 32-bits or min instr length) of full opcode for use with following methods
virtual UINT32 GetOpcode(UINT32 addr);
virtual EOpFlags GetOpFlags(UINT32 addr, UINT32 opcode) = 0;
virtual bool GetJumpAddr(UINT32 addr, UINT32 opcode, UINT32 &jumpAddr) = 0;
virtual bool GetJumpRetAddr(UINT32 addr, UINT32 opcode, UINT32 &retAddr) = 0;
virtual bool GetReturnAddr(UINT32 addr, UINT32 opcode, UINT32 &retAddr) = 0;
virtual bool GetHandlerAddr(CException *ex, UINT32 &handlerAddr) = 0;
virtual bool GetHandlerAddr(CInterrupt *in, UINT32 &handlerAddr) = 0;
};
//
// Inlined methods
//
inline bool CCPUDebug::ShiftAddress(UINT32 &addr, unsigned &dataSize, UINT64 &data, CAddressRef *ref)
{
UINT32 refAddr = ref->addr;
unsigned refSize = ref->size;
unsigned offset;
if (refAddr >= addr)
{
offset = refAddr - addr;
// dataSize will always be >= offset
dataSize -= offset;
if (dataSize <= refSize)
return false;
addr = refAddr + refSize;
dataSize -= refSize;
//data <<= (8 * (offset + refSize));
return true;
}
else
{
offset = refAddr + refSize - addr;
if (dataSize <= offset)
return false;
addr += offset;
dataSize -= offset;
//data <<= (8 * offset);
return true;
}
}
inline void CCPUDebug::CheckRead(UINT32 addr, unsigned dataSize, UINT64 data)
{
// TODO - currently assumes big-endian - should act according to this.bigEndian
// For reads larger than 1 byte, care is taken with mapped I/O or watches that overlap within the read region
while (dataSize > 0)
{
// Check if address is mapped I/O
CMappedIO *mappedIO = NULL;
if (m_mappedIOTable != NULL)
{
mappedIO = (CMappedIO*)m_mappedIOTable->Get(addr, dataSize);
if (mappedIO != NULL)
{
// Check with I/O if its watch is triggered
if (mappedIO->CheckInput(addr, dataSize, data))
IOWatchTriggered(mappedIO->watch, mappedIO, data, true);
// See if still have remaining data to check
if (!ShiftAddress(addr, dataSize, data, mappedIO))
return;
}
}
// Check if address has a watch
CWatch *watch = NULL;
if (m_memWatchTable != NULL)
{
watch = (CWatch*)m_memWatchTable->Get(addr, dataSize);
if (watch != NULL)
{
// Check if watch is triggered
if (watch->CheckRead(addr, dataSize, data))
MemWatchTriggered(watch, addr, dataSize, data, true);
// See if still have remaining data to check
if (!ShiftAddress(addr, dataSize, data, watch))
return;
}
else if (mappedIO == NULL)
return;
}
else if (mappedIO == NULL)
return;
}
}
inline void CCPUDebug::CheckWrite(UINT32 addr, unsigned dataSize, UINT64 data)
{
// TODO - currently assumes big-endian - should act according to this.bigEndian
// For writes larger than 1 byte, care is taken with mapped I/O or watches that overlap within the written region
while (dataSize > 0)
{
// Check if writing to mapped I/O address
CMappedIO *mappedIO = NULL;
if (m_mappedIOTable != NULL)
{
mappedIO = (CMappedIO*)m_mappedIOTable->Get(addr, dataSize);
if (mappedIO != NULL)
{
// Check with I/O if its watch is triggered
if (mappedIO->CheckOutput(addr, dataSize, data))
IOWatchTriggered(mappedIO->watch, mappedIO, data, false);
// See if still have remaining data to check
if (!ShiftAddress(addr, dataSize, data, mappedIO))
return;
}
}
// Check if address has a watch
CWatch *watch = NULL;
if (m_memWatchTable != NULL)
{
watch = (CWatch*)m_memWatchTable->Get(addr, dataSize);
if (watch != NULL)
{
// Check if watch is triggered
if (watch->CheckWrite(addr, dataSize, data))
MemWatchTriggered(watch, addr, dataSize, data, false);
// See if still have remaining data to check
if (!ShiftAddress(addr, dataSize, data, watch))
return;
}
else if (mappedIO == NULL)
return;
}
else if (mappedIO == NULL)
return;
}
}
inline void CCPUDebug::MemWatchTriggered(CWatch *watch, UINT32 addr, unsigned dataSize, UINT64 data, bool read)
{
m_memWatchTriggered = watch;
debugger->MemWatchTriggered(watch, addr, dataSize, data, read);
watch->Reset();
m_break = true;
}
inline void CCPUDebug::IOWatchTriggered(CWatch* watch, CIO *io, UINT64 data, bool read)
{
m_ioWatchTriggered = watch;
debugger->IOWatchTriggered(watch, io, data, read);
watch->Reset();
m_break = true;
}
inline void CCPUDebug::CheckRead8(UINT32 addr, UINT8 data)
{
// Check if reading from mapped I/O address
unsigned dataSize = 1;
if (m_mappedIOTable != NULL)
{
CMappedIO *mappedIO = (CMappedIO*)m_mappedIOTable->Get(addr);
if (mappedIO != NULL)
{
if (mappedIO->CheckInput(addr, dataSize, data))
IOWatchTriggered(mappedIO->watch, mappedIO, data, true);
return;
}
}
// Check if address has a watch
if (m_memWatchTable == NULL)
return;
CWatch *watch = (CWatch*)m_memWatchTable->Get(addr);
if (watch != NULL && watch->CheckRead(addr, dataSize, data))
MemWatchTriggered(watch, addr, dataSize, data, true);
}
inline void CCPUDebug::CheckRead16(UINT32 addr, UINT16 data)
{
CheckRead(addr, 2, data);
}
inline void CCPUDebug::CheckRead32(UINT32 addr, UINT32 data)
{
CheckRead(addr, 4, data);
}
inline void CCPUDebug::CheckRead64(UINT32 addr, UINT64 data)
{
CheckRead(addr, 8, data);
}
inline void CCPUDebug::CheckWrite8(UINT32 addr, UINT8 data)
{
// Check if writing to mapped I/O address
unsigned dataSize = 1;
if (m_mappedIOTable != NULL)
{
CMappedIO *mappedIO = (CMappedIO*)m_mappedIOTable->Get(addr);
if (mappedIO != NULL)
{
if (mappedIO->CheckOutput(addr, dataSize, data))
IOWatchTriggered(mappedIO->watch, mappedIO, data, false);
return;
}
}
// Check if address has a watch
if (m_memWatchTable == NULL)
return;
CWatch *watch = (CWatch*)m_memWatchTable->Get(addr);
if (watch != NULL && watch->CheckWrite(addr, dataSize, data))
MemWatchTriggered(watch, addr, dataSize, data, false);
}
inline void CCPUDebug::CheckWrite16(UINT32 addr, UINT16 data)
{
CheckWrite(addr, 2, data);
}
inline void CCPUDebug::CheckWrite32(UINT32 addr, UINT32 data)
{
CheckWrite(addr, 4, data);
}
inline void CCPUDebug::CheckWrite64(UINT32 addr, UINT64 data)
{
CheckWrite(addr, 8, data);
}
inline void CCPUDebug::CheckPortInput(UINT16 portNum, UINT64 data)
{
if (portNum >= numPorts)
return;
CPortIO *port = m_portArray[portNum];
if (port != NULL && port->CheckInput(data))
IOWatchTriggered(port->watch, port, data, true);
}
inline void CCPUDebug::CheckPortOutput(UINT16 portNum, UINT64 data)
{
if (portNum >= numPorts)
return;
CPortIO *port = m_portArray[portNum];
if (port != NULL && port->CheckOutput(data))
IOWatchTriggered(port->watch, port, data, false);
}
inline bool CCPUDebug::CPUExecute(UINT32 newPC, UINT32 newOpcode, UINT32 lastCycles)
{
// Check if debugging is enabled for this CPU
if (!enabled)
{
// If not, update instruction count, total cycles counts, pc and opcode but don't allow any execution control
instrCount++;
totalCycles += lastCycles;
pc = newPC;
opcode = newOpcode;
return false;
}
// Check not just updating state
bool stepBreak, countBreak, untilBreak;
if (!m_stateUpdated)
{
// If so, then first check to see if any registers have changed from previous instruction before updating pc and opcode
if (m_numRegMons > 0)
{
for (int i = 0; i < m_numRegMons; i++)
{
CRegMonitor *regMon = m_regMonArray[i];
if (regMon->HasChanged())
{
m_regMonTriggered = regMon;
debugger->MonitorTriggered(regMon);
regMon->Reset();
m_break = true;
}
}
}
// Now update instruction count, total cycles count, pc and opcode
instrCount++;
totalCycles += lastCycles;
pc = newPC;
opcode = newOpcode;
// Next check for breakpoints at new pc and opcode
if (m_bpTable != NULL)
{
CBreakpoint *bp = (CBreakpoint*)m_bpTable->Get(pc);
if (bp != NULL && bp->Check(pc, opcode))
{
m_bpReached = bp;
debugger->BreakpointReached(bp);
m_break = true;
}
}
// Check if currently implementing a step mode
if (m_step)
{
if (instrCount == 1)
stepBreak = true;
else
{
switch (m_stepMode)
{
case StepInto:
// Step-into always breaks
stepBreak = true;
break;
case StepOver:
// Step-over breaks if was not stepping over a jump or was stepping over and has returned from jump
stepBreak = !m_steppingOver || pc == m_stepOverAddr;
break;
case StepOut:
// Step-out steps over any jumps and breaks when it reaches a return or an exception/interrupt is raised
if (m_exRaised != NULL || m_intRaised != NULL)
stepBreak = true;
else if (m_steppingOver)
{
if (pc == m_stepOverAddr)
m_steppingOver = false;
stepBreak = false;
}
else
stepBreak = m_steppingOut && pc == m_stepOutAddr;
break;
default:
stepBreak = false;
break;
}
}
}
else
stepBreak = false;
// Lastly, check if counting instructions or if running until a given address
countBreak = m_count > 0 && --m_count == 0;
untilBreak = m_until && pc == m_untilAddr;
}
else
{
// Just updating state so update pc and opcode, but do not update instruction count
pc = newPC;
opcode = newOpcode;
stepBreak = false;
countBreak = false;
untilBreak = false;
}
// If a break has been forced, state was updated, stepping through code or have run a set number of instructions or to a
// given address then break now and wait for command from user
if (m_break || m_stateUpdated || stepBreak || countBreak || untilBreak)
{
// See if execution halt was caused by user manually breaking execution in some manner
EHaltReason reason = HaltNone;
if (m_stateUpdated) reason = (EHaltReason)(reason | HaltState);
if (m_breakUser) reason = (EHaltReason)(reason | HaltUser);
if (stepBreak) reason = (EHaltReason)(reason | HaltStep);
if (countBreak) reason = (EHaltReason)(reason | HaltCount);
if (untilBreak) reason = (EHaltReason)(reason | HaltUntil);
// Keep hold of breakpoint, if any, and its address so that can reset it later
UINT32 bpAddr = 0;
CBreakpoint *bpToReset = NULL;
if (m_bpReached != NULL)
{
bpAddr = m_bpReached->addr;
bpToReset = m_bpReached;
}
// Reset all control flags
m_stateUpdated = false;
m_step = false;
m_steppingOver = false;
m_steppingOut = false;
m_count = 0;
m_until = false;
m_exRaised = NULL;
m_exTrapped = NULL;
m_intRaised = NULL;
m_intTrapped = NULL;
m_bpReached = NULL;
m_memWatchTriggered = NULL;
m_ioWatchTriggered = NULL;
m_regMonTriggered = NULL;
// Wait for instruction from user
WaitCommand(reason);
// Reset breakpoint, if any
if (bpToReset != NULL && m_bpTable != NULL)
{
// Check breakpoint to reset was not deleted by user
CBreakpoint *bp = (CBreakpoint*)m_bpTable->Get(bpAddr);
if (bp == bpToReset)
bp->Reset();
}
// If stepping over, get step over address if available
if (m_step && m_stepMode == StepOver)
m_steppingOver = GetJumpRetAddr(pc, opcode, m_stepOverAddr);
}
// If stepping out, then make sure step over any jumps and if encounter a return instruction then break at return address
if (m_step && m_stepMode == StepOut)
{
if (!m_steppingOver)
m_steppingOver = GetJumpRetAddr(pc, opcode, m_stepOverAddr);
if (!m_steppingOver)
m_steppingOut = GetReturnAddr(pc, opcode, m_stepOutAddr);
}
return m_stateUpdated;
}
}
#endif // INCLUDED_CPUDEBUG_H
#endif // SUPERMODEL_DEBUGGER