#include "R3DShader.h" #include "Graphics/Shader.h" namespace New3D { static const char *vertexShaderR3D = R"glsl( // uniforms uniform float fogIntensity; uniform float fogDensity; uniform float fogStart; uniform float modelScale; //outputs to fragment shader varying float fsFogFactor; varying vec3 fsViewVertex; varying vec3 fsViewNormal; // per vertex normal vector varying vec4 fsColor; void main(void) { fsViewVertex = vec3(gl_ModelViewMatrix * gl_Vertex); fsViewNormal = (mat3(gl_ModelViewMatrix) * gl_Normal) / modelScale; float z = length(fsViewVertex); fsFogFactor = fogIntensity * clamp(fogStart + z * fogDensity, 0.0, 1.0); fsColor = gl_Color; gl_TexCoord[0] = gl_MultiTexCoord0; gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex; } )glsl"; static const char *fragmentShaderR3D = R"glsl( uniform sampler2D tex1; // base tex uniform sampler2D tex2; // micro tex (optional) // texturing uniform bool textureEnabled; uniform bool microTexture; uniform float microTextureScale; uniform vec2 baseTexSize; uniform bool textureInverted; uniform bool textureAlpha; uniform bool alphaTest; // general uniform vec3 fogColour; uniform vec4 spotEllipse; // spotlight ellipse position: .x=X position (screen coordinates), .y=Y position, .z=half-width, .w=half-height) uniform vec2 spotRange; // spotlight Z range: .x=start (viewspace coordinates), .y=limit uniform vec3 spotColor; // spotlight RGB color uniform vec3 spotFogColor; // spotlight RGB color on fog uniform vec3 lighting[2]; // lighting state (lighting[0] = sun direction, lighting[1].x,y = diffuse, ambient intensities from 0-1.0) uniform bool lightEnable; // lighting enabled (1.0) or luminous (0.0), drawn at full intensity uniform bool lightClamp; // not used by daytona and la machine guns uniform float specularCoefficient;// specular coefficient uniform float shininess; // specular shininess uniform float fogAttenuation; uniform float fogAmbient; //interpolated inputs from vertex shader varying float fsFogFactor; varying vec3 fsViewVertex; varying vec3 fsViewNormal; // per vertex normal vector varying vec4 fsColor; vec4 GetTextureValue() { vec4 tex1Data = texture2D( tex1, gl_TexCoord[0].st); if(textureInverted) { tex1Data.rgb = vec3(1.0) - vec3(tex1Data.rgb); } if (microTexture) { vec2 scale = baseTexSize/256.0; vec4 tex2Data = texture2D( tex2, gl_TexCoord[0].st * scale * microTextureScale); tex1Data = (tex1Data+tex2Data)/2.0; } if (alphaTest) { if (tex1Data.a < (8.0/16.0)) { discard; } } if (textureAlpha == false) { tex1Data.a = 1.0; } return tex1Data; } void main() { vec4 tex1Data; vec4 colData; vec4 finalData; vec4 fogData; fogData = vec4(fogColour.rgb * fogAmbient, fsFogFactor); tex1Data = vec4(1.0, 1.0, 1.0, 1.0); if(textureEnabled) { tex1Data = GetTextureValue(); } colData = fsColor; finalData = tex1Data * colData; if (finalData.a < (1.0/16.0)) { // basically chuck out any totally transparent pixels value = 1/16 the smallest transparency level h/w supports discard; } float ellipse; ellipse = length((gl_FragCoord.xy - spotEllipse.xy) / spotEllipse.zw); ellipse = pow(ellipse, 2.0); // decay rate = square of distance from center ellipse = 1.0 - ellipse; // invert ellipse = max(0.0, ellipse); // clamp if (lightEnable) { vec3 lightIntensity; vec3 sunVector; // sun lighting vector (as reflecting away from vertex) float sunFactor; // sun light projection along vertex normal (0.0 to 1.0) // Sun angle sunVector = lighting[0]; // Compute diffuse factor for sunlight sunFactor = dot(sunVector, fsViewNormal); // Optional clamping if(lightClamp) { sunFactor = max(sunFactor,0.0); } // Total light intensity: sum of all components lightIntensity = vec3(sunFactor*lighting[1].x + lighting[1].y); // diffuse + ambient lightIntensity = clamp(lightIntensity,0.0,1.0); // Compute spotlight and apply lighting float enable, range, d; float inv_r = 1.0 / spotEllipse.z; // slope of decay function d = spotRange.x + spotRange.y + fsViewVertex.z; enable = step(spotRange.x + min(spotRange.y, 0.0), -fsViewVertex.z); // inverse-linear falloff // Reference: https://imdoingitwrong.wordpress.com/2011/01/31/light-attenuation/ // y = 1 / (d/r + 1)^2 range = 1.0 / pow(min(0.0, d * inv_r) - 1.0, 2.0); range = clamp(range, 0.0, 1.0); range *= enable; float lobeEffect = range * ellipse; lightIntensity.rgb += spotColor*lobeEffect; finalData.rgb *= lightIntensity; if (sunFactor > 0.0 && specularCoefficient > 0.0) { float nDotL = max(dot(fsViewNormal,sunVector),0.0); finalData.rgb += vec3(specularCoefficient * pow(nDotL,shininess)); } } // Spotlight on fog vec3 lSpotFogColor = spotFogColor * ellipse * fogColour.rgb; // Fog & spotlight applied finalData.rgb = mix(finalData.rgb, lSpotFogColor * fogAttenuation + fogData.rgb, fogData.a); gl_FragColor = finalData; } )glsl"; R3DShader::R3DShader() { m_shaderProgram = 0; m_vertexShader = 0; m_fragmentShader = 0; Start(); // reset attributes } void R3DShader::Start() { m_textured1 = false; m_textured2 = false; m_textureAlpha = false; // use alpha in texture m_alphaTest = false; // discard fragment based on alpha (ogl does this with fixed function) m_doubleSided = false; m_lightEnabled = false; m_layered = false; m_textureInverted = false; m_modelScale = 1.0f; m_baseTexSize[0] = 0; m_baseTexSize[1] = 0; m_shininess = 0; m_specularCoefficient = 0; m_microTexScale = 0; m_matDet = MatDet::notset; m_dirtyMesh = true; // dirty means all the above are dirty, ie first run m_dirtyModel = true; } bool R3DShader::LoadShader(const char* vertexShader, const char* fragmentShader) { const char* vShader; const char* fShader; bool success; if (vertexShader) { vShader = vertexShader; } else { vShader = vertexShaderR3D; } if (fragmentShader) { fShader = fragmentShader; } else { fShader = fragmentShaderR3D; } success = LoadShaderProgram(&m_shaderProgram, &m_vertexShader, &m_fragmentShader, std::string(), std::string(), vShader, fShader); m_locTexture1 = glGetUniformLocation(m_shaderProgram, "tex1"); m_locTexture2 = glGetUniformLocation(m_shaderProgram, "tex2"); m_locTexture1Enabled= glGetUniformLocation(m_shaderProgram, "textureEnabled"); m_locTexture2Enabled= glGetUniformLocation(m_shaderProgram, "microTexture"); m_locTextureAlpha = glGetUniformLocation(m_shaderProgram, "textureAlpha"); m_locAlphaTest = glGetUniformLocation(m_shaderProgram, "alphaTest"); m_locMicroTexScale = glGetUniformLocation(m_shaderProgram, "microTextureScale"); m_locBaseTexSize = glGetUniformLocation(m_shaderProgram, "baseTexSize"); m_locTextureInverted= glGetUniformLocation(m_shaderProgram, "textureInverted"); m_locFogIntensity = glGetUniformLocation(m_shaderProgram, "fogIntensity"); m_locFogDensity = glGetUniformLocation(m_shaderProgram, "fogDensity"); m_locFogStart = glGetUniformLocation(m_shaderProgram, "fogStart"); m_locFogColour = glGetUniformLocation(m_shaderProgram, "fogColour"); m_locFogAttenuation = glGetUniformLocation(m_shaderProgram, "fogAttenuation"); m_locFogAmbient = glGetUniformLocation(m_shaderProgram, "fogAmbient"); m_locLighting = glGetUniformLocation(m_shaderProgram, "lighting"); m_locLightEnable = glGetUniformLocation(m_shaderProgram, "lightEnable"); m_locLightClamp = glGetUniformLocation(m_shaderProgram, "lightClamp"); m_locShininess = glGetUniformLocation(m_shaderProgram, "shininess"); m_locSpecCoefficient= glGetUniformLocation(m_shaderProgram, "specularCoefficient"); m_locSpotEllipse = glGetUniformLocation(m_shaderProgram, "spotEllipse"); m_locSpotRange = glGetUniformLocation(m_shaderProgram, "spotRange"); m_locSpotColor = glGetUniformLocation(m_shaderProgram, "spotColor"); m_locSpotFogColor = glGetUniformLocation(m_shaderProgram, "spotFogColor"); m_locModelScale = glGetUniformLocation(m_shaderProgram, "modelScale"); return success; } void R3DShader::SetShader(bool enable) { if (enable) { glUseProgram(m_shaderProgram); Start(); } else { glUseProgram(0); } } void R3DShader::SetMeshUniforms(const Mesh* m) { if (m == nullptr) { return; // sanity check } if (m_dirtyMesh) { glUniform1i(m_locTexture1, 0); glUniform1i(m_locTexture2, 1); } if (m_dirtyMesh || m->textured != m_textured1) { glUniform1i(m_locTexture1Enabled, m->textured); m_textured1 = m->textured; } if (m_dirtyMesh || m->microTexture != m_textured2) { glUniform1i(m_locTexture2Enabled, m->microTexture); m_textured2 = m->microTexture; } if (m_dirtyMesh || m->microTextureScale != m_microTexScale) { glUniform1f(m_locMicroTexScale, m->microTextureScale); m_microTexScale = m->microTextureScale; } if (m_dirtyMesh || m->microTexture && (m_baseTexSize[0] != m->width || m_baseTexSize[1] != m->height)) { m_baseTexSize[0] = (float)m->width; m_baseTexSize[1] = (float)m->height; glUniform2fv(m_locBaseTexSize, 1, m_baseTexSize); } if (m_dirtyMesh || m->inverted != m_textureInverted) { glUniform1i(m_locTextureInverted, m->inverted); m_textureInverted = m->inverted; } if (m_dirtyMesh || m->alphaTest != m_alphaTest) { glUniform1i(m_locAlphaTest, m->alphaTest); m_alphaTest = m->alphaTest; } if (m_dirtyMesh || m->textureAlpha != m_textureAlpha) { glUniform1i(m_locTextureAlpha, m->textureAlpha); m_textureAlpha = m->textureAlpha; } if (m_dirtyMesh || m->fogIntensity != m_fogIntensity) { glUniform1f(m_locFogIntensity, m->fogIntensity); m_fogIntensity = m->fogIntensity; } if (m_dirtyMesh || m->lighting != m_lightEnabled) { glUniform1i(m_locLightEnable, m->lighting); m_lightEnabled = m->lighting; } if (m_dirtyMesh || m->shininess != m_shininess) { glUniform1f(m_locShininess, (m->shininess + 1) * 4); m_shininess = m->shininess; } if (m_dirtyMesh || m->specularCoefficient != m_specularCoefficient) { glUniform1f(m_locSpecCoefficient, m->specularCoefficient); m_specularCoefficient = m->specularCoefficient; } if (m_dirtyMesh || m->layered != m_layered) { m_layered = m->layered; if (m_layered) { glEnable(GL_STENCIL_TEST); } else { glDisable(GL_STENCIL_TEST); } } if (m_matDet!=MatDet::zero) { if (m_dirtyMesh || m->doubleSided != m_doubleSided) { m_doubleSided = m->doubleSided; if (m_doubleSided) { glDisable(GL_CULL_FACE); } else { glEnable(GL_CULL_FACE); } } } m_dirtyMesh = false; } void R3DShader::SetViewportUniforms(const Viewport *vp) { //didn't bother caching these, they don't get frequently called anyway glUniform1f (m_locFogDensity, vp->fogParams[3]); glUniform1f (m_locFogStart, vp->fogParams[4]); glUniform3fv(m_locFogColour, 1, vp->fogParams); glUniform1f (m_locFogAttenuation, vp->fogParams[5]); glUniform1f (m_locFogAmbient, vp->fogParams[6]); glUniform3fv(m_locLighting, 2, vp->lightingParams); glUniform1i(m_locLightClamp, vp->lightClamp); glUniform4fv(m_locSpotEllipse, 1, vp->spotEllipse); glUniform2fv(m_locSpotRange, 1, vp->spotRange); glUniform3fv(m_locSpotColor, 1, vp->spotColor); glUniform3fv(m_locSpotFogColor, 1, vp->spotFogColor); } void R3DShader::SetModelStates(const Model* model) { //========== MatDet test; //========== test = MatDet::notset; // happens for bad matrices with NaN if (model->determinant < 0) { test = MatDet::negative; } else if (model->determinant > 0) { test = MatDet::positive; } else if (model->determinant == 0) { test = MatDet::zero; } if (m_dirtyModel || m_matDet!=test) { switch (test) { case MatDet::negative: glCullFace(GL_FRONT); glEnable(GL_CULL_FACE); m_doubleSided = false; break; case MatDet::positive: glCullFace(GL_BACK); glEnable(GL_CULL_FACE); m_doubleSided = false; break; default: glDisable(GL_CULL_FACE); m_doubleSided = true; // basically drawing on both sides now } } if (m_dirtyModel || model->scale != m_modelScale) { glUniform1f(m_locModelScale, model->scale); m_modelScale = model->scale; } m_matDet = test; m_dirtyModel = false; } } // New3D