/**
** Supermodel
** A Sega Model 3 Arcade Emulator.
** Copyright 2011-2012 Bart Trzynadlowski, Nik Henson
**
** This file is part of Supermodel.
**
** Supermodel is free software: you can redistribute it and/or modify it under
** the terms of the GNU General Public License as published by the Free
** Software Foundation, either version 3 of the License, or (at your option)
** any later version.
**
** Supermodel is distributed in the hope that it will be useful, but WITHOUT
** ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
** FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
** more details.
**
** You should have received a copy of the GNU General Public License along
** with Supermodel. If not, see .
**/
/*
* Render2D.cpp
*
* Implementation of the CRender2D class: OpenGL tile generator graphics.
*
* To-Do List
* ----------
* - Is there a universal solution to the 'ROLLING START' scrolling bug (Scud
* Race) and the scrolling text during Magical Truck Adventure's attract
* mode? To fix Scud Race, either the stencil mask or the h-scroll value must
* be shifted by 16 pixels. Magical Truck Adventure is similar but opposite.
* Perhaps this is a function of timing registers accessed via JTAG?
* - Is there a better way to handle the overscan regions in wide screen mode?
* Is clearing two thin viewports better than one big clear?
* - Are v-scroll values 9 or 10 bits? (Does it matter?) Lost World seems to
* have some scrolling issues.
* - A proper shut-down function is needed! OpenGL might not be available when
* the destructor for this class is called.
*
* Tile Generator Hardware Overview
* --------------------------------
*
* Model 3's medium resolution tile generator hardware appears to be derived
* from the Model 2 and System 24 chipset, but is much simpler. It consists of
* four 64x64 tile layers, comprised of 8x8 pixel tiles, with configurable
* priorities. There may be additional features but so far, no known Model 3
* games use them.
*
* VRAM is comprised of 1 MB for tile data and an additional 128 KB for the
* palette (each color occupies 32 bits). The four tilemap layers are referred
* to as: A (0), A' (1), B (2), and B' (3). Palette RAM may be located on a
* separate RAM IC.
*
* Registers
* ---------
*
* Registers are listed by their byte offset in the PowerPC address space. Each
* is 32 bits wide and little endian. Only those registers relevant to
* rendering are listed here (see CTileGen for others).
*
* Offset: Description:
*
* 0x20 Layer configuration
* 0x40 Layer A/A' color offset
* 0x44 Layer B/B' color offset
* 0x60 Layer A scroll
* 0x64 Layer A' scroll
* 0x68 Layer B scroll
* 0x6C Layer B' scroll
*
* Layer configuration is formatted as:
*
* 31 0
* ???? ???? ???? ???? pqrs tuvw ???? ????
*
* Bits 'pqrs' control the color depth of layers B', B, A', and A,
* respectively. If set, the layer's pattern data is encoded as 4 bits,
* otherwise the pixels are 8 bits.
*
* Bits 'tuvw' control priority for layers B', B, A', and A, respectively,
* which is also the relative ordering of the layers from bottom to top. For
* each layer, if its bit is clear, it will be drawn below the 3D layer,
* otherwise it is drawn on top.
*
* The remaining registers are described where appropriate further below.
*
* VRAM Memory Map
* ---------------
*
* The lower 1 MB of VRAM is used for storing tiles, per-line horizontal scroll
* values, and the stencil mask, which determines which of each pair of layers
* is displayed on a given line and column.
*
* 00000-F5FFF Tile pattern data
* F6000-F63FF Layer A horizontal scroll table (512 lines)
* F6400-F67FF Layer A' horizontal scroll table
* F6800-F6BFF Layer B horizontal scroll table
* F6C00-F6FFF Layer B' horizontal scroll table
* F7000-F77FF Mask table (assuming 4 bytes per line, 512 lines)
* F7800-F7FFF ?
* F8000-F9FFF Layer A name table
* FA000-FBFFF Layer A' name table
* FC000-FDFFF Layer B name table
* FE000-FFFFF Layer B' name table
*
* Tiles may actually address the entire 1 MB space, although in practice,
* that would conflict with the other fixed memory regions.
*
* Palette
* -------
*
* The palette stores 32768 colors. Each entry is a little endian 32-bit word.
* The upper 16 bits are unused and the lower 16 bits contain the color:
*
* 15 0
* tbbb bbgg gggr rrrr
*
* The 't' bit is for transparency. When set, pixels of that color are
* transparent, unless they are the bottom-most layer.
*
* Tile Name Table and Pattern Layout
* ----------------------------------
*
* The name table is a 64x64 array of 16-bit words serving as indices for tile
* pattern data and the palette. The first 64 words correspond to the first
* row of tiles, the next 64 to the second row, etc. Although 64x64 entries
* describes a 512x512 pixel screen, only the upper-left 62x48 tiles are
* visible when the vertical and horizontal scroll values are 0. Scrolling
* moves the 496x384 pixel 'window' around, with individual wrapping of the
* two axes.
*
* The data is actually arranged in 32-bit chunks in little endian format, so
* that tiles 0, 1, 2, and 3 will be stored as 1, 0, 3, 2. Fetching two name
* table entries as a single 32-bit word places the left tile in the high 16
* bits and the right tile in the low 16 bits.
*
* The format of a name table entry in 4-bit color mode is:
*
* 15 0
* jkpp pppp pppp iiii
*
* The pattern index is '0ppp pppp pppi iiij'. Multiplying by 32 yields the
* offset in VRAM at which the tile pattern data is stored. Note that the MSB
* of the name table entry becomes the LSB of the pattern index. This allows
* for 32768 4-bit tile patterns, each occupying 32 bytes, which means the
* whole 1 MB VRAM space can be addressed.
*
* The 4-bit pattern data is stored as 8 32-bit words. Each word stores a row
* of 8 pixels:
*
* 31 0
* aaaa bbbb cccc dddd eeee ffff gggg hhhh
*
* 'a' is the left-most pixel data. These 4-bit values are combined with bits
* from the name table to form a palette index, which determines the final
* color. For example, for pixel 'a', the 15-bit color index is:
*
* 14 0
* kpp pppp pppp aaaa
*
* Note that index bits are re-used to form the palette index, meaning that
* the pattern address partly determines the color.
*
* In 8-bit color mode, the name table entry looks like:
*
* 15 0
* ?ppp pppp iiii iiii
*
* The low 15 'p' and 'i' bits together form the pattern index, which must be
* multiplied by 64 to get the offset. The pattern data now consists of 16 32-
* bit words, each containing four 8-bit pixels:
*
* 31 0
* aaaa aaaa bbbb bbbb cccc cccc dddd dddd
*
* 'a' is the left-most pixel. Each line is therefore comprised of two 32-bit
* words. The palette index for pixel 'a' is now formed from:
*
* 14 0
* ppp pppp aaaa aaaa
*
* Stencil Mask
* ------------
*
* For any pixel position, there are in fact only two visible layers, despite
* there being four defined layers. The layers are grouped in pairs: A (the
* 'primary' layer) and A' (the 'alternate') form one pair, and B and B' form
* the other. Only one of the primary or alternate layers from each group may
* be visible at a given position. The 'stencil mask' controls this.
*
* The mask table is a bit field organized into 512 (or 384?) lines with each
* bit controlling four columns (32 pixels). The mask does not appear to be
* affected by scrolling -- that is, it does not scroll with the underlying
* tiles, which do so independently. The mask remains fixed.
*
* Each mask entry is a little endian 32-bit word. The high 16 bits control
* A/A' and the low 16 bits control B/B'. Each word controls an entire line
* (32 pixels per bit, 512 pixels per 16-bit line mask, where the first 16
* pixels are allocated to the overscan region.) If a bit is set to 1, the
* pixel from the primary layer is used, otherwise the alternate layer is
* used when the mask is 0. It is important to remember that the layers may
* have been scrolled independently. The mask operates on the final resultant
* two pixels that are determined for each location.
*
* Example of a line mask:
*
* 31 15 0
* 0111 0000 0000 1111 0000 0000 1111 1111
*
* These settings would display layer A' for the first 32 pixels of the line,
* followed by layer A for the next 96 pixels, A' for the subsequent 256
* pixels, and A for the final 128 pixels. The first 256 pixels of the line
* would display layer B' and the second 256 pixels would be from layer B.
*
* The stencil mask does not affect layer priorities, which are managed
* separately regardless of mask settings.
*
* Scrolling
* ---------
*
* Each of the four layers can be scrolled independently. Vertical scroll
* values are stored in the appropriate scroll register and horizontal scroll
* values can be sourced either from the register (in which case the entire
* layer will be scrolled uniformly) or from a table in VRAM (which contains
* independent values for each line).
*
* The scroll registers are laid out as:
*
* 31 0
* e??? ???y yyyy yyyy h??? ??xx xxxx xxxx
*
* The 'e' bit enables the layer when set. The 'y' bits comprise a vertical
* scroll value in pixels. The 'x' bits form a horizontal scroll value. If 'h'
* is set, then the VRAM table (line-by-line scrolling) is used, otherwise the
* 'x' values are applied to every line. It is also possible that the scroll
* values use more or less bits, but probably no more than 1.
*
* Each line must be wrapped back to the beginning of the same line. Likewise,
* vertical scrolling wraps around back to the top of the tilemap.
*
* The horizontal scroll table is a series of 16-bit little endian words, one
* for each line beginning at 0. It appears all the values can be used for
* scrolling (no control bits have been observed). The number of bits actually
* used by the hardware is irrelevant -- wrapping has the effect of making
* higher order bits unimportant.
*
* Layer Priorities
* ----------------
*
* The layer control register (0x20) contains 4 bits that appear to control
* layer priorities. It is assumed that the 3D graphics, output by the Real3D
* pixel processors independently of the tile generator, constitute their own
* 'layer' and that the 2D tilemaps appear in front or behind. There may be a
* specific function for each priority bit or the field may be interpreted as a
* single 4-bit value denoting preset layer orders.
*
* Color Offsets
* -------------
*
* Color offsets can be applied to the final RGB color value of every pixel.
* This is used for effects such as fading to a certain color, lightning (Lost
* World), etc. The current best guess is that the two registers control each
* pair (A/A' and B/B') of layers. The format appears to be:
*
* 31 0
* ???? ???? rrrr rrrr gggg gggg bbbb bbbb
*
* Where 'r', 'g', and 'b' appear to be signed 8-bit color offsets. Because
* they exceed the color resolution of the palette, they must be scaled
* appropriately.
*
* Color offset registers are handled in TileGen.cpp. Two palettes are computed
* -- one for A/A' and another for B/B'. These are passed to the renderer.
*/
#include "Render2D.h"
#include "Supermodel.h"
#include "Shader.h"
#include "Shaders2D.h" // fragment and vertex shaders
#include
#include
/******************************************************************************
Definitions and Constants
******************************************************************************/
// Shader program files (for use in development builds only)
#define VERTEX_2D_SHADER_FILE "Src/Graphics/Vertex2D.glsl"
#define FRAGMENT_2D_SHADER_FILE "Src/Graphics/Fragment2D.glsl"
/******************************************************************************
Layer Rendering
This code is quite slow and badly needs to be optimized. Dirty rectangles
should be implemented first and tile pre-decoding second.
******************************************************************************/
template
static inline void DrawTileLine(uint32_t *line, int pixelOffset, uint16_t tile, int patternLine, const uint32_t *vram, const uint32_t *palette, uint16_t mask)
{
static_assert(bits == 4 || bits == 8, "Tiles are either 4- or 8-bit");
// For 8-bit pixels, each line of tile pattern is two words
if (bits == 8)
patternLine *= 2;
// Compute offset of pattern for this line
int patternOffset;
if (bits == 4)
{
patternOffset = ((tile & 0x3FFF) << 1) | ((tile >> 15) & 1);
patternOffset *= 32;
patternOffset /= 4;
}
else
{
patternOffset = tile & 0x3FFF;
patternOffset *= 64;
patternOffset /= 4;
}
// Name table entry provides high color bits
uint32_t colorHi = tile & ((bits == 4) ? 0x7FF0 : 0x7F00);
// Draw
if (bits == 4)
{
uint32_t pattern = vram[patternOffset + patternLine];
for (int p = 7; p >= 0; p--)
{
if (!clip || (clip && pixelOffset >= 0 && pixelOffset < 496))
{
uint16_t maskTest = 1 << (15-((pixelOffset+0)/32));
bool visible = (mask & maskTest) != 0;
uint32_t pixel = palette[((pattern >> (p*4)) & 0xF) | colorHi];
if (alphaTest)
{
if (visible && (pixel >> 24) != 0) // only draw opaque pixels
line[pixelOffset] = pixel;
}
else
{
if (visible)
line[pixelOffset] = pixel;
else
line[pixelOffset] = 0;
}
}
++pixelOffset;
}
}
else
{
for (int i = 0; i < 2; i++) // 4 pixels per word
{
uint32_t pattern = vram[patternOffset + patternLine + i];
for (int p = 3; p >= 0; p--)
{
if (!clip || (clip && pixelOffset >= 0 && pixelOffset < 496))
{
uint16_t maskTest = 1 << (15-((pixelOffset+0)/32));
bool visible = (mask & maskTest) != 0;
uint32_t pixel = palette[((pattern >> (p*8)) & 0xFF) | colorHi];
if (alphaTest)
{
if (visible && (pixel >> 24) != 0)
line[pixelOffset] = pixel;
}
else
{
if (visible)
line[pixelOffset] = pixel;
else
line[pixelOffset] = 0; // transparent
}
}
++pixelOffset;
}
}
}
}
template
static void DrawLayer(uint32_t *pixels, int layerNum, const uint32_t *vram, const uint32_t *regs, const uint32_t *palette)
{
const uint16_t *nameTableBase = (const uint16_t *) &vram[(0xF8000 + layerNum * 0x2000) / 4];
const uint16_t *hScrollTable = (const uint16_t *) &vram[(0xF6000 + layerNum * 0x400) / 4];
bool lineScrollMode = (regs[0x60/4 + layerNum] & 0x8000) != 0;
int hFullScroll = regs[0x60/4 + layerNum] & 0x3FF;
int vScroll = (regs[0x60/4 + layerNum] >> 16) & 0x1FF;
const uint16_t *maskTable = (const uint16_t *) &vram[0xF7000 / 4];
if (layerNum < 2) // little endian: layers A and A' use second word in each pair
maskTable += 1;
// If mask bit is clear, alternate layer is shown. We want to test for non-
// zero, so we flip the mask when drawing alternate layers (layers 1 and 3).
const uint16_t maskPolarity = (layerNum & 1) ? 0xFFFF : 0x0000;
uint32_t *line = pixels;
for (int y = 0; y < 384; y++)
{
int hScroll = (lineScrollMode ? hScrollTable[y] : hFullScroll) & 0x1FF;
int hTile = hScroll / 8;
int hFine = hScroll & 7; // horizontal pixel offset within tile line
int vFine = (y + vScroll) & 7; // vertical pixel offset within 8x8 tile
const uint16_t *nameTable = &nameTableBase[(64 * ((y + vScroll) / 8)) & 0xFFF]; // clamp to 64x64 = 0x1000
uint16_t mask = *maskTable ^ maskPolarity; // each bit covers 32 pixels
int pixelOffset = -hFine;
int extraTile = (hFine != 0) ? 1 : 0; // h-scrolling requires part of 63rd tile
// First tile may be clipped
int tx = 0;
DrawTileLine(line, pixelOffset, nameTable[(hTile ^ 1) & 63], vFine, vram, palette, mask);
++hTile;
pixelOffset += 8;
// Middle tiles will not be clipped
for (tx = 1; tx < (62 - 1 + extraTile); tx++)
{
DrawTileLine(line, pixelOffset, nameTable[(hTile ^ 1) & 63], vFine, vram, palette, mask);
++hTile;
pixelOffset += 8;
}
// Last tile may be clipped
DrawTileLine(line, pixelOffset, nameTable[(hTile ^ 1) & 63], vFine, vram, palette, mask);
++hTile;
pixelOffset += 8;
// Advance one line
maskTable += 2;
line += 496;
}
}
std::pair CRender2D::DrawTilemaps(uint32_t *pixelsBottom, uint32_t *pixelsTop)
{
unsigned priority = (m_regs[0x20/4] >> 8) & 0xF;
// Render bottom layers
bool noBottomSurface = true;
static const int bottomOrder[4] = { 3, 2, 1, 0 };
for (int i = 0; i < 4; i++)
{
int layerNum = bottomOrder[i];
bool is4Bit = (m_regs[0x20/4] & (1 << (12 + layerNum))) != 0;
bool enabled = (m_regs[0x60/4 + layerNum] & 0x80000000) != 0;
bool selected = (priority & (1 << layerNum)) == 0;
if (enabled && selected)
{
if (noBottomSurface)
{
if (is4Bit)
DrawLayer<4, false>(pixelsBottom, layerNum, m_vram, m_regs, m_palette[layerNum / 2]);
else
DrawLayer<8, false>(pixelsBottom, layerNum, m_vram, m_regs, m_palette[layerNum / 2]);
}
else
{
if (is4Bit)
DrawLayer<4, true>(pixelsBottom, layerNum, m_vram, m_regs, m_palette[layerNum / 2]);
else
DrawLayer<8, true>(pixelsBottom, layerNum, m_vram, m_regs, m_palette[layerNum / 2]);
}
noBottomSurface = false;
}
}
// Render top layers
// NOTE: layer ordering is different according to MAME (which has 3, 2, 0, 1
// for top layer). Until I see evidence that this is correct and not a typo,
// I will assume consistent layer ordering.
bool noTopSurface = true;
static const int topOrder[4] = { 3, 2, 1, 0 };
for (int i = 0; i < 4; i++)
{
int layerNum = topOrder[i];
bool is4Bit = (m_regs[0x20/4] & (1 << (12 + layerNum))) != 0;
bool enabled = (m_regs[0x60/4 + layerNum] & 0x80000000) != 0;
bool selected = (priority & (1 << layerNum)) != 0;
if (enabled && selected)
{
if (noTopSurface)
{
if (is4Bit)
DrawLayer<4, false>(pixelsTop, layerNum, m_vram, m_regs, m_palette[layerNum / 2]);
else
DrawLayer<8, false>(pixelsTop, layerNum, m_vram, m_regs, m_palette[layerNum / 2]);
}
else
{
if (is4Bit)
DrawLayer<4, true>(pixelsTop, layerNum, m_vram, m_regs, m_palette[layerNum / 2]);
else
DrawLayer<8, true>(pixelsTop, layerNum, m_vram, m_regs, m_palette[layerNum / 2]);
}
noTopSurface = false;
}
}
// Indicate whether top and bottom surfaces have to be rendered
return std::pair(!noTopSurface, !noBottomSurface);
}
/******************************************************************************
Frame Display Functions
******************************************************************************/
// Draws a surface to the screen (0 is top and 1 is bottom)
void CRender2D::DisplaySurface(int surface)
{
// Draw the surface
glActiveTexture(GL_TEXTURE0); // texture unit 0
glBindTexture(GL_TEXTURE_2D, m_texID[surface]);
glBegin(GL_QUADS);
glTexCoord2f(0.0f, 0.0f); glVertex2f(0.0f, 0.0f);
glTexCoord2f(1.0f, 0.0f); glVertex2f(1.0f, 0.0f);
glTexCoord2f(1.0f, 1.0f); glVertex2f(1.0f, 1.0f);
glTexCoord2f(0.0f, 1.0f); glVertex2f(0.0f, 1.0f);
glEnd();
}
// Set up viewport and OpenGL state for 2D rendering (sets up blending function but disables blending)
void CRender2D::Setup2D(bool isBottom)
{
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // alpha of 1.0 is opaque, 0 is transparent
glDisable(GL_BLEND);
// Disable Z-buffering
glDisable(GL_DEPTH_TEST);
// Shader program
glUseProgram(m_shaderProgram);
// Clear everything if requested or just overscan areas for wide screen mode
if (isBottom)
{
glClearColor(0.0, 0.0, 0.0, 0.0);
glViewport(0, 0, m_totalXPixels, m_totalYPixels);
glDisable(GL_SCISSOR_TEST); // scissor is enabled to fix the 2d/3d miss match problem
glClear(GL_COLOR_BUFFER_BIT); // we want to clear outside the scissored areas so must disable it
glEnable(GL_SCISSOR_TEST);
}
// Set up the viewport and orthogonal projection
bool stretchBottom = m_config["WideBackground"].ValueAs() && isBottom;
if (!stretchBottom)
{
glViewport(m_xOffset - m_correction, m_yOffset + m_correction, m_xPixels, m_yPixels); //Preserve aspect ratio of tile layer by constraining and centering viewport
}
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0.0, 1.0, 1.0, 0.0, 1.0, -1.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
}
void CRender2D::BeginFrame(void)
{
}
void CRender2D::PreRenderFrame(void)
{
// Update all layers
m_surfaces_present = DrawTilemaps(m_bottomSurface, m_topSurface);
glActiveTexture(GL_TEXTURE0); // texture unit 0
if (m_surfaces_present.first)
{
glBindTexture(GL_TEXTURE_2D, m_texID[0]);
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 496, 384, GL_RGBA, GL_UNSIGNED_BYTE, m_topSurface);
}
if (m_surfaces_present.second)
{
glBindTexture(GL_TEXTURE_2D, m_texID[1]);
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 496, 384, GL_RGBA, GL_UNSIGNED_BYTE, m_bottomSurface);
}
}
void CRender2D::RenderFrameBottom(void)
{
// Display bottom surface if anything was drawn there, else clear everything
Setup2D(true);
if (m_surfaces_present.second)
DisplaySurface(1);
}
void CRender2D::RenderFrameTop(void)
{
// Display top surface only if it exists
if (m_surfaces_present.first)
{
Setup2D(false);
glEnable(GL_BLEND);
DisplaySurface(0);
}
}
void CRender2D::EndFrame(void)
{
}
/******************************************************************************
Emulation Callbacks
******************************************************************************/
// Deprecated
void CRender2D::WriteVRAM(unsigned addr, uint32_t data)
{
}
/******************************************************************************
Configuration, Initialization, and Shutdown
******************************************************************************/
void CRender2D::AttachRegisters(const uint32_t *regPtr)
{
m_regs = regPtr;
DebugLog("Render2D attached registers\n");
}
void CRender2D::AttachPalette(const uint32_t *palPtr[2])
{
m_palette[0] = palPtr[0];
m_palette[1] = palPtr[1];
DebugLog("Render2D attached palette\n");
}
void CRender2D::AttachVRAM(const uint8_t *vramPtr)
{
m_vram = (uint32_t *) vramPtr;
DebugLog("Render2D attached VRAM\n");
}
// Memory pool and offsets within it
#define MEMORY_POOL_SIZE (2*512*384*4)
#define OFFSET_TOP_SURFACE 0 // 512*384*4 bytes
#define OFFSET_BOTTOM_SURFACE (512*384*4) // 512*384*4
bool CRender2D::Init(unsigned xOffset, unsigned yOffset, unsigned xRes, unsigned yRes, unsigned totalXRes, unsigned totalYRes)
{
// Load shaders
if (OKAY != LoadShaderProgram(&m_shaderProgram, &m_vertexShader, &m_fragmentShader, m_config["VertexShader2D"].ValueAs(), m_config["FragmentShader2D"].ValueAs(), s_vertexShaderSource, s_fragmentShaderSource))
return FAIL;
// Get locations of the uniforms
glUseProgram(m_shaderProgram); // bind program
m_textureMapLoc = glGetUniformLocation(m_shaderProgram, "textureMap");
glUniform1i(m_textureMapLoc, 0); // attach it to texture unit 0
// Allocate memory for layer surfaces
m_memoryPool = new(std::nothrow) uint8_t[MEMORY_POOL_SIZE];
if (NULL == m_memoryPool)
return ErrorLog("Insufficient memory for tilemap surfaces (need %1.1f MB).", float(MEMORY_POOL_SIZE) / 0x100000);
memset(m_memoryPool, 0, MEMORY_POOL_SIZE); // clear textures
// Set up pointers to memory regions
m_topSurface = (uint32_t *) &m_memoryPool[OFFSET_TOP_SURFACE];
m_bottomSurface = (uint32_t *) &m_memoryPool[OFFSET_BOTTOM_SURFACE];
// Resolution
m_xPixels = xRes;
m_yPixels = yRes;
m_xOffset = xOffset;
m_yOffset = yOffset;
m_totalXPixels = totalXRes;
m_totalYPixels = totalYRes;
m_correction = (UINT32)(((yRes / 384.f) * 2) + 0.5f); // for some reason the 2d layer is 2 pixels off the 3D
// Create textures
glActiveTexture(GL_TEXTURE0); // texture unit 0
glGenTextures(2, m_texID);
for (int i = 0; i < 2; i++)
{
glBindTexture(GL_TEXTURE_2D, m_texID[i]);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, 496, 384, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
}
DebugLog("Render2D initialized (allocated %1.1f MB)\n", float(MEMORY_POOL_SIZE) / 0x100000);
return OKAY;
}
CRender2D::CRender2D(const Util::Config::Node &config)
: m_config(config)
{
DebugLog("Built Render2D\n");
}
CRender2D::~CRender2D(void)
{
DestroyShaderProgram(m_shaderProgram, m_vertexShader, m_fragmentShader);
glDeleteTextures(2, m_texID);
if (m_memoryPool)
{
delete [] m_memoryPool;
m_memoryPool = 0;
}
m_vram = 0;
m_topSurface = 0;
m_bottomSurface = 0;
DebugLog("Destroyed Render2D\n");
}