Supermodel/Src/Graphics/New3D/R3DShader.cpp
2018-01-15 14:40:59 +00:00

516 lines
15 KiB
C++

#include "R3DShader.h"
#include "Graphics/Shader.h"
namespace New3D {
static const char *vertexShaderR3D = R"glsl(
#version 120
// uniforms
uniform float modelScale;
// attributes
attribute vec4 inVertex;
attribute vec3 inNormal;
attribute vec2 inTexCoord;
attribute vec4 inColour;
attribute vec3 inFaceNormal; // used to emulate r3d culling
attribute float inFixedShade;
// outputs to fragment shader
varying vec3 fsViewVertex;
varying vec3 fsViewNormal; // per vertex normal vector
varying vec2 fsTexCoord;
varying vec4 fsColor;
varying float fsDiscard; // can't have varying bool (glsl spec)
varying float fsFixedShade;
float CalcBackFace(in vec3 viewVertex)
{
vec3 vt = viewVertex - vec3(0.0);
vec3 vn = (mat3(gl_ModelViewMatrix) * inFaceNormal);
// dot product of face normal with view direction
return dot(vt, vn);
}
void main(void)
{
fsViewVertex = vec3(gl_ModelViewMatrix * inVertex);
fsViewNormal = (mat3(gl_ModelViewMatrix) * inNormal) / modelScale;
fsDiscard = CalcBackFace(fsViewVertex);
fsColor = inColour;
fsTexCoord = inTexCoord;
fsFixedShade = inFixedShade;
gl_Position = gl_ModelViewProjectionMatrix * inVertex;
}
)glsl";
static const char *fragmentShaderR3D = R"glsl(
#version 120
uniform sampler2D tex1; // base tex
uniform sampler2D tex2; // micro tex (optional)
// texturing
uniform bool textureEnabled;
uniform bool microTexture;
uniform float microTextureScale;
uniform vec2 baseTexSize;
uniform bool textureInverted;
uniform bool textureAlpha;
uniform bool alphaTest;
// general
uniform vec3 fogColour;
uniform vec4 spotEllipse; // spotlight ellipse position: .x=X position (screen coordinates), .y=Y position, .z=half-width, .w=half-height)
uniform vec2 spotRange; // spotlight Z range: .x=start (viewspace coordinates), .y=limit
uniform vec3 spotColor; // spotlight RGB color
uniform vec3 spotFogColor; // spotlight RGB color on fog
uniform vec3 lighting[2]; // lighting state (lighting[0] = sun direction, lighting[1].x,y = diffuse, ambient intensities from 0-1.0)
uniform bool lightEnabled; // lighting enabled (1.0) or luminous (0.0), drawn at full intensity
uniform bool sunClamp; // not used by daytona and la machine guns
uniform bool intensityClamp; // some games such as daytona and
uniform bool specularEnabled; // specular enabled
uniform float specularValue; // specular coefficient
uniform float shininess; // specular shininess
uniform float fogIntensity;
uniform float fogDensity;
uniform float fogStart;
uniform float fogAttenuation;
uniform float fogAmbient;
uniform bool fixedShading;
uniform int hardwareStep;
//interpolated inputs from vertex shader
varying float fsFogFactor;
varying vec3 fsViewVertex;
varying vec3 fsViewNormal; // per vertex normal vector
varying vec4 fsColor;
varying vec2 fsTexCoord;
varying float fsDiscard;
varying float fsFixedShade;
vec4 GetTextureValue()
{
vec4 tex1Data = texture2D( tex1, fsTexCoord.st);
if(textureInverted) {
tex1Data.rgb = vec3(1.0) - vec3(tex1Data.rgb);
}
if (microTexture) {
vec2 scale = (baseTexSize / 128.0) * microTextureScale;
vec4 tex2Data = texture2D( tex2, fsTexCoord.st * scale);
tex1Data = (tex1Data+tex2Data)/2.0;
}
if (alphaTest) {
if (tex1Data.a < (8.0/16.0)) {
discard;
}
}
if (textureAlpha == false) {
tex1Data.a = 1.0;
}
return tex1Data;
}
void Step15Luminous(inout vec4 colour)
{
// luminous polys seem to behave very differently on step 1.5 hardware
// when fixed shading is enabled the colour is modulated by the vp ambient + fixed shade value
// when disabled it appears to be multiplied by 1.5, presumably to allow a higher range
if(hardwareStep==0x15) {
if(!lightEnabled && textureEnabled) {
if(fixedShading) {
colour.rgb *= 1.0 + fsFixedShade + lighting[1].y;
}
else {
colour.rgb *= vec3(1.5);
}
}
}
}
float CalcFog()
{
float z = -fsViewVertex.z;
float fog = fogIntensity * clamp(fogStart + z * fogDensity, 0.0, 1.0);
return fog;
}
void main()
{
vec4 tex1Data;
vec4 colData;
vec4 finalData;
vec4 fogData;
if(fsDiscard>=0) {
discard; //emulate back face culling here
}
fogData = vec4(fogColour.rgb * fogAmbient, CalcFog());
tex1Data = vec4(1.0, 1.0, 1.0, 1.0);
if(textureEnabled) {
tex1Data = GetTextureValue();
}
colData = fsColor;
Step15Luminous(colData); // no-op for step 2.0+
finalData = tex1Data * colData;
if (finalData.a < (1.0/16.0)) { // basically chuck out any totally transparent pixels value = 1/16 the smallest transparency level h/w supports
discard;
}
float ellipse;
ellipse = length((gl_FragCoord.xy - spotEllipse.xy) / spotEllipse.zw);
ellipse = pow(ellipse, 2.0); // decay rate = square of distance from center
ellipse = 1.0 - ellipse; // invert
ellipse = max(0.0, ellipse); // clamp
// Compute spotlight and apply lighting
float enable, absExtent, d, inv_r, range;
// start of spotlight
enable = step(spotRange.x, -fsViewVertex.z);
if (spotRange.y == 0.0) {
range = 0.0;
}
else {
absExtent = abs(spotRange.y);
d = spotRange.x + absExtent + fsViewVertex.z;
d = min(d, 0.0);
// slope of decay function
inv_r = 1.0 / (1.0 + absExtent);
// inverse-linear falloff
// Reference: https://imdoingitwrong.wordpress.com/2011/01/31/light-attenuation/
// y = 1 / (d/r + 1)^2
range = 1.0 / pow(d * inv_r - 1.0, 2.0);
range *= enable;
}
float lobeEffect = range * ellipse;
float lobeFogEffect = enable * ellipse;
if (lightEnabled) {
vec3 lightIntensity;
vec3 sunVector; // sun lighting vector (as reflecting away from vertex)
float sunFactor; // sun light projection along vertex normal (0.0 to 1.0)
// Sun angle
sunVector = lighting[0];
// Compute diffuse factor for sunlight
if(fixedShading) {
sunFactor = fsFixedShade;
}
else {
sunFactor = dot(sunVector, fsViewNormal);
}
// Clamp ceil, fix for upscaled models without "modelScale" defined
sunFactor = clamp(sunFactor,-1.0,1.0);
// Optional clamping, value is allowed to be negative
if(sunClamp) {
sunFactor = max(sunFactor,0.0);
}
// Total light intensity: sum of all components
lightIntensity = vec3(sunFactor*lighting[1].x + lighting[1].y); // diffuse + ambient
// Upper clamp is optional, step 1.5+ games will drive brightness beyond 100%
if(intensityClamp) {
lightIntensity = min(lightIntensity,1.0);
}
lightIntensity.rgb += spotColor*lobeEffect;
finalData.rgb *= lightIntensity;
// for now assume fixed shading doesn't work with specular
if (specularEnabled) {
float exponent, NdotL, specularFactor;
vec4 biasIndex, expIndex, multIndex;
// Always clamp floor to zero, we don't want deep black areas
NdotL = max(0.0,sunFactor);
expIndex = vec4(8.0, 16.0, 32.0, 64.0);
multIndex = vec4(2.0, 2.0, 3.0, 4.0);
biasIndex = vec4(0.95, 0.95, 1.05, 1.0);
exponent = expIndex[int(shininess)] / biasIndex[int(shininess)];
specularFactor = pow(NdotL, exponent);
specularFactor *= multIndex[int(shininess)];
specularFactor *= biasIndex[int(shininess)];
specularFactor *= specularValue;
specularFactor *= lighting[1].x;
if (colData.a < 1.0) {
/// Specular hi-light affects translucent polygons alpha channel ///
finalData.a = max(finalData.a, specularFactor);
}
finalData.rgb += vec3(specularFactor);
}
}
// Final clamp: we need it for proper shading in dimmed light and dark ambients
finalData.rgb = min(finalData.rgb, vec3(1.0));
// Spotlight on fog
vec3 lSpotFogColor = spotFogColor * fogAttenuation * fogColour.rgb * lobeFogEffect;
// Fog & spotlight applied
finalData.rgb = mix(finalData.rgb, fogData.rgb + lSpotFogColor, fogData.a);
gl_FragColor = finalData;
}
)glsl";
R3DShader::R3DShader(const Util::Config::Node &config)
: m_config(config)
{
m_shaderProgram = 0;
m_vertexShader = 0;
m_fragmentShader = 0;
Start(); // reset attributes
}
void R3DShader::Start()
{
m_textured1 = false;
m_textured2 = false;
m_textureAlpha = false; // use alpha in texture
m_alphaTest = false; // discard fragment based on alpha (ogl does this with fixed function)
m_lightEnabled = false;
m_specularEnabled = false;
m_layered = false;
m_textureInverted = false;
m_fixedShading = false;
m_modelScale = 1.0f;
m_shininess = 0;
m_specularValue = 0;
m_microTexScale = 0;
m_baseTexSize[0] = 0;
m_baseTexSize[1] = 0;
m_dirtyMesh = true; // dirty means all the above are dirty, ie first run
m_dirtyModel = true;
}
bool R3DShader::LoadShader(const char* vertexShader, const char* fragmentShader)
{
const char* vShader;
const char* fShader;
bool success;
if (vertexShader) {
vShader = vertexShader;
}
else {
vShader = vertexShaderR3D;
}
if (fragmentShader) {
fShader = fragmentShader;
}
else {
fShader = fragmentShaderR3D;
}
success = LoadShaderProgram(&m_shaderProgram, &m_vertexShader, &m_fragmentShader, m_config["VertexShader"].ValueAs<std::string>(), m_config["FragmentShader"].ValueAs<std::string>(), vShader, fShader);
m_locTexture1 = glGetUniformLocation(m_shaderProgram, "tex1");
m_locTexture2 = glGetUniformLocation(m_shaderProgram, "tex2");
m_locTexture1Enabled= glGetUniformLocation(m_shaderProgram, "textureEnabled");
m_locTexture2Enabled= glGetUniformLocation(m_shaderProgram, "microTexture");
m_locTextureAlpha = glGetUniformLocation(m_shaderProgram, "textureAlpha");
m_locAlphaTest = glGetUniformLocation(m_shaderProgram, "alphaTest");
m_locMicroTexScale = glGetUniformLocation(m_shaderProgram, "microTextureScale");
m_locBaseTexSize = glGetUniformLocation(m_shaderProgram, "baseTexSize");
m_locTextureInverted= glGetUniformLocation(m_shaderProgram, "textureInverted");
m_locFogIntensity = glGetUniformLocation(m_shaderProgram, "fogIntensity");
m_locFogDensity = glGetUniformLocation(m_shaderProgram, "fogDensity");
m_locFogStart = glGetUniformLocation(m_shaderProgram, "fogStart");
m_locFogColour = glGetUniformLocation(m_shaderProgram, "fogColour");
m_locFogAttenuation = glGetUniformLocation(m_shaderProgram, "fogAttenuation");
m_locFogAmbient = glGetUniformLocation(m_shaderProgram, "fogAmbient");
m_locLighting = glGetUniformLocation(m_shaderProgram, "lighting");
m_locLightEnabled = glGetUniformLocation(m_shaderProgram, "lightEnabled");
m_locSunClamp = glGetUniformLocation(m_shaderProgram, "sunClamp");
m_locIntensityClamp = glGetUniformLocation(m_shaderProgram, "intensityClamp");
m_locShininess = glGetUniformLocation(m_shaderProgram, "shininess");
m_locSpecularValue = glGetUniformLocation(m_shaderProgram, "specularValue");
m_locSpecularEnabled= glGetUniformLocation(m_shaderProgram, "specularEnabled");
m_locFixedShading = glGetUniformLocation(m_shaderProgram, "fixedShading");
m_locSpotEllipse = glGetUniformLocation(m_shaderProgram, "spotEllipse");
m_locSpotRange = glGetUniformLocation(m_shaderProgram, "spotRange");
m_locSpotColor = glGetUniformLocation(m_shaderProgram, "spotColor");
m_locSpotFogColor = glGetUniformLocation(m_shaderProgram, "spotFogColor");
m_locModelScale = glGetUniformLocation(m_shaderProgram, "modelScale");
m_locHardwareStep = glGetUniformLocation(m_shaderProgram, "hardwareStep");
return success;
}
GLint R3DShader::GetVertexAttribPos(const char* attrib)
{
return glGetAttribLocation(m_shaderProgram, attrib); // probably should cache this but only called 1x per frame anyway
}
void R3DShader::SetShader(bool enable)
{
if (enable) {
glUseProgram(m_shaderProgram);
Start();
}
else {
glUseProgram(0);
}
}
void R3DShader::SetMeshUniforms(const Mesh* m)
{
if (m == nullptr) {
return; // sanity check
}
if (m_dirtyMesh) {
glUniform1i(m_locTexture1, 0);
glUniform1i(m_locTexture2, 1);
}
if (m_dirtyMesh || m->textured != m_textured1) {
glUniform1i(m_locTexture1Enabled, m->textured);
m_textured1 = m->textured;
}
if (m_dirtyMesh || m->microTexture != m_textured2) {
glUniform1i(m_locTexture2Enabled, m->microTexture);
m_textured2 = m->microTexture;
}
if (m_dirtyMesh || m->microTextureScale != m_microTexScale) {
glUniform1f(m_locMicroTexScale, m->microTextureScale);
m_microTexScale = m->microTextureScale;
}
if (m_dirtyMesh || m->microTexture && (m_baseTexSize[0] != m->width || m_baseTexSize[1] != m->height)) {
m_baseTexSize[0] = (float)m->width;
m_baseTexSize[1] = (float)m->height;
glUniform2fv(m_locBaseTexSize, 1, m_baseTexSize);
}
if (m_dirtyMesh || m->inverted != m_textureInverted) {
glUniform1i(m_locTextureInverted, m->inverted);
m_textureInverted = m->inverted;
}
if (m_dirtyMesh || m->alphaTest != m_alphaTest) {
glUniform1i(m_locAlphaTest, m->alphaTest);
m_alphaTest = m->alphaTest;
}
if (m_dirtyMesh || m->textureAlpha != m_textureAlpha) {
glUniform1i(m_locTextureAlpha, m->textureAlpha);
m_textureAlpha = m->textureAlpha;
}
if (m_dirtyMesh || m->fogIntensity != m_fogIntensity) {
glUniform1f(m_locFogIntensity, m->fogIntensity);
m_fogIntensity = m->fogIntensity;
}
if (m_dirtyMesh || m->lighting != m_lightEnabled) {
glUniform1i(m_locLightEnabled, m->lighting);
m_lightEnabled = m->lighting;
}
if (m_dirtyMesh || m->shininess != m_shininess) {
glUniform1f(m_locShininess, m->shininess);
m_shininess = m->shininess;
}
if (m_dirtyMesh || m->specular != m_specularEnabled) {
glUniform1i(m_locSpecularEnabled, m->specular);
m_specularEnabled = m->specular;
}
if (m_dirtyMesh || m->specularValue != m_specularValue) {
glUniform1f(m_locSpecularValue, m->specularValue);
m_specularValue = m->specularValue;
}
if (m_dirtyMesh || m->fixedShading != m_fixedShading) {
glUniform1i(m_locFixedShading, m->fixedShading);
m_fixedShading = m->fixedShading;
}
if (m_dirtyMesh || m->layered != m_layered) {
m_layered = m->layered;
if (m_layered) {
glEnable(GL_STENCIL_TEST);
}
else {
glDisable(GL_STENCIL_TEST);
}
}
m_dirtyMesh = false;
}
void R3DShader::SetViewportUniforms(const Viewport *vp)
{
//didn't bother caching these, they don't get frequently called anyway
glUniform1f (m_locFogDensity, vp->fogParams[3]);
glUniform1f (m_locFogStart, vp->fogParams[4]);
glUniform3fv(m_locFogColour, 1, vp->fogParams);
glUniform1f (m_locFogAttenuation, vp->fogParams[5]);
glUniform1f (m_locFogAmbient, vp->fogParams[6]);
glUniform3fv(m_locLighting, 2, vp->lightingParams);
glUniform1i (m_locSunClamp, vp->sunClamp);
glUniform1i (m_locIntensityClamp, vp->intensityClamp);
glUniform4fv(m_locSpotEllipse, 1, vp->spotEllipse);
glUniform2fv(m_locSpotRange, 1, vp->spotRange);
glUniform3fv(m_locSpotColor, 1, vp->spotColor);
glUniform3fv(m_locSpotFogColor, 1, vp->spotFogColor);
glUniform1i (m_locHardwareStep, vp->hardwareStep);
}
void R3DShader::SetModelStates(const Model* model)
{
if (m_dirtyModel || model->scale != m_modelScale) {
glUniform1f(m_locModelScale, model->scale);
m_modelScale = model->scale;
}
m_dirtyModel = false;
}
} // New3D